Datasets:
Comprehensive Symbolic Regression Surface Dataset
Overview
This dataset contains a comprehensive collection of symbolic regression problems focused on 3D surface modeling. The dataset includes 18 different categories of surface types, each with multiple instances, providing a diverse benchmark for symbolic regression algorithms.
Dataset Structure
The dataset is organized in HDF5 format with the following structure:
/
├── Category_1/
│ ├── Instance_1/
│ │ ├── train_data (5000, 3) - Training data [x, y, z]
│ │ ├── test_data (500, 3) - Test data [x, y, z]
│ │ └── ood_test (500, 3) - Out-of-distribution test data [x, y, z]
│ └── Instance_2/
│ └── ...
└── Category_2/
└── ...
Categories
- Algebraic_Manifolds_of_Higher_Degree (24 instances)
- Bio-Inspired_Morphological_Surfaces (10 instances)
- Complex_Composite_Surfaces (10 instances)
- Complex_Morphological_Surfaces (16 instances)
- Discrete_Symbolic_Grid_Surfaces (10 instances)
- High_Dimensional_Parametric_Surfaces (10 instances)
- Hybrid_Multi-Modal_Symbolic_Surfaces (10 instances)
- Non-Canonical_3D_Geometric_Surfaces (11 instances)
- Nonlinear_Dynamical_System_Surfaces (9 instances)
- Piecewise_Regime_Surfaces (10 instances)
- Procedural_Fractal_Surfaces (10 instances)
- Quantum_Inspired_Surfaces (10 instances)
- Stochastic_Process_Surfaces (10 instances)
- Surrogate_Distilled_Symbolic_Approximations (9 instances)
- Symbolic-Numeric_Composite_Surfaces (10 instances)
- Tensor_Field_Surfaces (10 instances)
- Topologically_Rich_Parametric_Surfaces (10 instances)
- Transformed_Coordinate_Surfaces (10 instances)
Data Format
- Input: 2D coordinates (x, y)
- Output: Surface height (z)
- Training set: 5,000 points per instance
- Test set: 500 points per instance
- Out-of-distribution test: 500 points per instance
- Data type: float64
Usage
import h5py
import numpy as np
# Load the dataset
with h5py.File('dataset.h5', 'r') as f:
# Access a specific category and instance
category = 'Bio-Inspired_Morphological_Surfaces'
instance = 'BIMS1'
# Load training data
train_data = f[f'{category}/{instance}/train_data'][:]
X_train = train_data[:, :2] # x, y coordinates
y_train = train_data[:, 2] # z values
# Load test data
test_data = f[f'{category}/{instance}/test_data'][:]
X_test = test_data[:, :2]
y_test = test_data[:, 2]
# Load out-of-distribution test data
ood_data = f[f'{category}/{instance}/ood_test'][:]
X_ood = ood_data[:, :2]
y_ood = ood_data[:, 2]
Applications
This dataset is designed for:
- Symbolic regression algorithm benchmarking
- 3D surface modeling and reconstruction
- Function approximation research
- Out-of-distribution generalization studies
- Multi-modal symbolic learning
Citation
If you use this dataset in your research, please cite:
@dataset{symbolic_regression_surfaces_2024,
title={Comprehensive Symbolic Regression Surface Dataset},
author={[Your Name]},
year={2024},
url={https://huggingface.co/datasets/[your-username]/[dataset-name]}
}
License
[Specify your license here]
Contact
[Your contact information]