constellaration / README.md
alexbauer-pf's picture
Upload dataset
ecbc282 verified
|
raw
history blame
38.6 kB
metadata
dataset_info:
  - config_name: default
    features:
      - name: metrics.id
        dtype: string
      - name: metrics.json
        dtype: string
      - name: metrics.aspect_ratio
        dtype: float64
      - name: metrics.aspect_ratio_over_edge_rotational_transform
        dtype: float64
      - name: metrics.average_triangularity
        dtype: float64
      - name: metrics.axis_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.axis_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.edge_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.edge_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.flux_compression_in_regions_of_bad_curvature
        dtype: float64
      - name: metrics.max_elongation
        dtype: float64
      - name: metrics.minimum_normalized_magnetic_gradient_scale_length
        dtype: float64
      - name: metrics.qi
        dtype: float64
      - name: metrics.vacuum_well
        dtype: float64
      - name: boundary.json
        dtype: string
      - name: boundary.is_stellarator_symmetric
        dtype: bool
      - name: boundary.n_field_periods
        dtype: int64
      - name: boundary.n_periodicity
        dtype: int64
      - name: boundary.r_cos
        sequence:
          sequence: float64
      - name: boundary.r_sin
        dtype: 'null'
      - name: boundary.z_cos
        dtype: 'null'
      - name: boundary.z_sin
        sequence:
          sequence: float64
      - name: omnigenous_field_and_targets.id
        dtype: string
      - name: omnigenous_field_and_targets.json
        dtype: string
      - name: omnigenous_field_and_targets.aspect_ratio
        dtype: float64
      - name: omnigenous_field_and_targets.major_radius
        dtype: float64
      - name: omnigenous_field_and_targets.max_elongation
        dtype: float64
      - name: >-
          omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients
        sequence:
          sequence: float64
      - name: omnigenous_field_and_targets.omnigenous_field.n_field_periods
        dtype: int64
      - name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding
        dtype: int64
      - name: omnigenous_field_and_targets.omnigenous_field.torodial_winding
        dtype: int64
      - name: omnigenous_field_and_targets.omnigenous_field.x_lmn
        sequence:
          sequence:
            sequence: float64
      - name: omnigenous_field_and_targets.rotational_transform
        dtype: float64
      - name: desc_omnigenous_field_optimization_settings.id
        dtype: string
      - name: desc_omnigenous_field_optimization_settings.json
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation
        dtype: bool
      - name: >-
          desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode
        dtype: int64
      - name: >-
          desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode
        dtype: int64
      - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive
        dtype: bool
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric
        dtype: bool
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode
        dtype: int64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode
        dtype: int64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods
        dtype: int64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor
        dtype: int64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor
        dtype: int64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight
        dtype: float64
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind
        dtype: string
      - name: >-
          desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight
        dtype: float64
      - name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter
        dtype: int64
      - name: desc_omnigenous_field_optimization_settings.optimizer_settings.name
        dtype: string
      - name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose
        dtype: int64
      - name: vmec_omnigenous_field_optimization_settings.id
        dtype: string
      - name: vmec_omnigenous_field_optimization_settings.json
        dtype: string
      - name: >-
          vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance
        dtype: float64
      - name: >-
          vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable
        dtype: int64
      - name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time
        dtype: int64
      - name: >-
          vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds
        dtype: float64
      - name: >-
          vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling
        dtype: float64
      - name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode
        dtype: int64
      - name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode
        dtype: int64
      - name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations
        dtype: int64
      - name: >-
          vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space
        dtype: bool
      - name: vmec_omnigenous_field_optimization_settings.verbose
        dtype: bool
      - name: qp_init_omnigenous_field_optimization_settings.id
        dtype: string
      - name: qp_init_omnigenous_field_optimization_settings.json
        dtype: string
      - name: qp_init_omnigenous_field_optimization_settings.aspect_ratio
        dtype: float64
      - name: qp_init_omnigenous_field_optimization_settings.elongation
        dtype: float64
      - name: qp_init_omnigenous_field_optimization_settings.is_iota_positive
        dtype: bool
      - name: >-
          qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric
        dtype: bool
      - name: qp_init_omnigenous_field_optimization_settings.major_radius
        dtype: float64
      - name: qp_init_omnigenous_field_optimization_settings.mirror_ratio
        dtype: float64
      - name: qp_init_omnigenous_field_optimization_settings.n_field_periods
        dtype: int64
      - name: qp_init_omnigenous_field_optimization_settings.torsion
        dtype: float64
      - name: nae_init_omnigenous_field_optimization_settings.id
        dtype: string
      - name: nae_init_omnigenous_field_optimization_settings.json
        dtype: string
      - name: nae_init_omnigenous_field_optimization_settings.aspect_ratio
        dtype: float64
      - name: nae_init_omnigenous_field_optimization_settings.max_elongation
        dtype: float64
      - name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode
        dtype: int64
      - name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode
        dtype: int64
      - name: nae_init_omnigenous_field_optimization_settings.mirror_ratio
        dtype: float64
      - name: nae_init_omnigenous_field_optimization_settings.n_field_periods
        dtype: int64
      - name: nae_init_omnigenous_field_optimization_settings.rotational_transform
        dtype: float64
      - name: misc.vmecpp_wout_id
        dtype: string
      - name: misc.has_optimize_boundary_omnigenity_vmec_error
        dtype: bool
      - name: misc.has_optimize_boundary_omnigenity_desc_error
        dtype: bool
      - name: misc.has_generate_qp_initialization_from_targets_error
        dtype: bool
      - name: misc.has_generate_nae_initialization_from_targets_error
        dtype: bool
      - name: misc.has_neurips_2025_forward_model_error
        dtype: bool
      - name: plasma_config_id
        dtype: string
    splits:
      - name: train
        num_bytes: 1240651097.3174775
        num_examples: 182222
    download_size: 610201645
    dataset_size: 1240651097.3174775
  - config_name: finite_beta_1pct
    features:
      - name: metrics.id
        dtype: string
      - name: metrics.json
        dtype: string
      - name: metrics.aspect_ratio
        dtype: float64
      - name: metrics.aspect_ratio_over_edge_rotational_transform
        dtype: float64
      - name: metrics.average_triangularity
        dtype: float64
      - name: metrics.axis_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.axis_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.edge_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.edge_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.flux_compression_in_regions_of_bad_curvature
        dtype: float64
      - name: metrics.max_elongation
        dtype: float64
      - name: metrics.minimum_normalized_magnetic_gradient_scale_length
        dtype: float64
      - name: metrics.qi
        dtype: float64
      - name: metrics.vacuum_well
        dtype: float64
      - name: misc.vmecpp_wout_id
        dtype: string
      - name: misc.source_plasma_config_id
        dtype: string
      - name: misc.has_neurips_2025_forward_model_error
        dtype: bool
      - name: plasma_config_id
        dtype: string
    splits:
      - name: train
        num_bytes: 76508664.04284965
        num_examples: 112804
    download_size: 52556502
    dataset_size: 76508664.04284965
  - config_name: finite_beta_2pct
    features:
      - name: metrics.id
        dtype: string
      - name: metrics.json
        dtype: string
      - name: metrics.aspect_ratio
        dtype: float64
      - name: metrics.aspect_ratio_over_edge_rotational_transform
        dtype: float64
      - name: metrics.average_triangularity
        dtype: float64
      - name: metrics.axis_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.axis_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.edge_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.edge_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.flux_compression_in_regions_of_bad_curvature
        dtype: float64
      - name: metrics.max_elongation
        dtype: float64
      - name: metrics.minimum_normalized_magnetic_gradient_scale_length
        dtype: float64
      - name: metrics.qi
        dtype: float64
      - name: metrics.vacuum_well
        dtype: float64
      - name: misc.vmecpp_wout_id
        dtype: string
      - name: misc.source_plasma_config_id
        dtype: string
      - name: misc.has_neurips_2025_forward_model_error
        dtype: bool
      - name: plasma_config_id
        dtype: string
    splits:
      - name: train
        num_bytes: 47402708.67692375
        num_examples: 82722
    download_size: 38593722
    dataset_size: 47402708.67692375
  - config_name: finite_beta_3pct
    features:
      - name: metrics.id
        dtype: string
      - name: metrics.json
        dtype: string
      - name: metrics.aspect_ratio
        dtype: float64
      - name: metrics.aspect_ratio_over_edge_rotational_transform
        dtype: float64
      - name: metrics.average_triangularity
        dtype: float64
      - name: metrics.axis_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.axis_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.edge_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.edge_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.flux_compression_in_regions_of_bad_curvature
        dtype: float64
      - name: metrics.max_elongation
        dtype: float64
      - name: metrics.minimum_normalized_magnetic_gradient_scale_length
        dtype: float64
      - name: metrics.qi
        dtype: float64
      - name: metrics.vacuum_well
        dtype: float64
      - name: misc.vmecpp_wout_id
        dtype: string
      - name: misc.source_plasma_config_id
        dtype: string
      - name: misc.has_neurips_2025_forward_model_error
        dtype: bool
      - name: plasma_config_id
        dtype: string
    splits:
      - name: train
        num_bytes: 25395079.54877086
        num_examples: 55448
    download_size: 25947395
    dataset_size: 25395079.54877086
  - config_name: finite_beta_4pct
    features:
      - name: metrics.id
        dtype: string
      - name: metrics.json
        dtype: string
      - name: metrics.aspect_ratio
        dtype: float64
      - name: metrics.aspect_ratio_over_edge_rotational_transform
        dtype: float64
      - name: metrics.average_triangularity
        dtype: float64
      - name: metrics.axis_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.axis_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.edge_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.edge_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.flux_compression_in_regions_of_bad_curvature
        dtype: float64
      - name: metrics.max_elongation
        dtype: float64
      - name: metrics.minimum_normalized_magnetic_gradient_scale_length
        dtype: float64
      - name: metrics.qi
        dtype: float64
      - name: metrics.vacuum_well
        dtype: float64
      - name: misc.vmecpp_wout_id
        dtype: string
      - name: misc.source_plasma_config_id
        dtype: string
      - name: misc.has_neurips_2025_forward_model_error
        dtype: bool
      - name: plasma_config_id
        dtype: string
    splits:
      - name: train
        num_bytes: 13509704.764567751
        num_examples: 36444
    download_size: 17086365
    dataset_size: 13509704.764567751
  - config_name: finite_beta_5pct
    features:
      - name: metrics.id
        dtype: string
      - name: metrics.json
        dtype: string
      - name: metrics.aspect_ratio
        dtype: float64
      - name: metrics.aspect_ratio_over_edge_rotational_transform
        dtype: float64
      - name: metrics.average_triangularity
        dtype: float64
      - name: metrics.axis_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.axis_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.edge_magnetic_mirror_ratio
        dtype: float64
      - name: metrics.edge_rotational_transform_over_n_field_periods
        dtype: float64
      - name: metrics.flux_compression_in_regions_of_bad_curvature
        dtype: float64
      - name: metrics.max_elongation
        dtype: float64
      - name: metrics.minimum_normalized_magnetic_gradient_scale_length
        dtype: float64
      - name: metrics.qi
        dtype: float64
      - name: metrics.vacuum_well
        dtype: float64
      - name: misc.vmecpp_wout_id
        dtype: string
      - name: misc.source_plasma_config_id
        dtype: string
      - name: misc.has_neurips_2025_forward_model_error
        dtype: bool
      - name: plasma_config_id
        dtype: string
    splits:
      - name: train
        num_bytes: 8792377.219300479
        num_examples: 26729
    download_size: 12538180
    dataset_size: 8792377.219300479
  - config_name: vmecpp_wout
    features:
      - name: plasma_config_id
        dtype: string
      - name: id
        dtype: string
      - name: json
        dtype: string
    splits:
      - name: train
        num_bytes: 1100757693175
        num_examples: 148292
    download_size: 956063943
    dataset_size: 1100757693175
  - config_name: vmecpp_wout_finite_beta_1pct
    features:
      - name: plasma_config_id
        dtype: string
      - name: id
        dtype: string
      - name: json
        dtype: string
    splits:
      - name: train
        num_bytes: 1100757693175
        num_examples: 148292
    download_size: 956063943
    dataset_size: 1100757693175
  - config_name: vmecpp_wout_finite_beta_2pct
    features:
      - name: plasma_config_id
        dtype: string
      - name: id
        dtype: string
      - name: json
        dtype: string
    splits:
      - name: train
        num_bytes: 1100757693175
        num_examples: 148292
    download_size: 956063943
    dataset_size: 1100757693175
  - config_name: vmecpp_wout_finite_beta_3pct
    features:
      - name: plasma_config_id
        dtype: string
      - name: id
        dtype: string
      - name: json
        dtype: string
    splits:
      - name: train
        num_bytes: 1100757693175
        num_examples: 148292
    download_size: 956063943
    dataset_size: 1100757693175
  - config_name: vmecpp_wout_finite_beta_4pct
    features:
      - name: plasma_config_id
        dtype: string
      - name: id
        dtype: string
      - name: json
        dtype: string
    splits:
      - name: train
        num_bytes: 1100757693175
        num_examples: 148292
    download_size: 956063943
    dataset_size: 1100757693175
  - config_name: vmecpp_wout_finite_beta_5pct
    features:
      - name: plasma_config_id
        dtype: string
      - name: id
        dtype: string
      - name: json
        dtype: string
    splits:
      - name: train
        num_bytes: 1100757693175
        num_examples: 148292
    download_size: 956063943
    dataset_size: 1100757693175
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
  - config_name: finite_beta_1pct
    data_files:
      - split: train
        path: finite_beta_1pct/train-*
  - config_name: finite_beta_2pct
    data_files:
      - split: train
        path: finite_beta_2pct/train-*
  - config_name: finite_beta_3pct
    data_files:
      - split: train
        path: finite_beta_3pct/train-*
  - config_name: finite_beta_4pct
    data_files:
      - split: train
        path: finite_beta_4pct/train-*
  - config_name: finite_beta_5pct
    data_files:
      - split: train
        path: finite_beta_5pct/train-*
  - config_name: vmecpp_wout
    data_files:
      - split: train
        path: vmecpp_wout/part*
  - config_name: vmecpp_wout_finite_beta_1pct
    data_files:
      - split: train
        path: vmecpp_wout_finite_beta_1pct/part*
  - config_name: vmecpp_wout_finite_beta_2pct
    data_files:
      - split: train
        path: vmecpp_wout_finite_beta_2pct/part*
  - config_name: vmecpp_wout_finite_beta_3pct
    data_files:
      - split: train
        path: vmecpp_wout_finite_beta_3pct/part*
  - config_name: vmecpp_wout_finite_beta_4pct
    data_files:
      - split: train
        path: vmecpp_wout_finite_beta_4pct/part*
  - config_name: vmecpp_wout_finite_beta_5pct
    data_files:
      - split: train
        path: vmecpp_wout_finite_beta_5pct/part*
license: mit
language:
  - en
tags:
  - physics
  - fusion
  - optimization
  - neurips
pretty_name: ConStellaration
size_categories:
  - 100K<n<1M

Dataset Card for ConStellaration

A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.

The performance metrics and ideal MHD equilibria were evaluated under vacuum (default) and with plasma inside (finite beta).

Dataset Details

Dataset Description

Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions.

With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.

  • Curated by: Proxima Fusion
  • License: MIT

Diagram of the computation of metrics of interest from a plasma boundary via the MHD equilibrium

Dataset Sources

Dataset Structure

There are 6 tuples of datasets, one for each percentage of volume-averaged plasma inside the boundary:

Condition Boundaries, Metrics, Generation Settings, Misc Ideal MHD Equilibira
Vacuum default vmecpp_wout
1% Beta finte_beta_1pct vmecpp_wout_finite_beta_1pct
2% Beta finte_beta_2pct vmecpp_wout_finite_beta_2pct
3% Beta finte_beta_3pct vmecpp_wout_finite_beta_3pct
4% Beta finte_beta_4pct vmecpp_wout_finite_beta_4pct
5% Beta finte_beta_5pct vmecpp_wout_finite_beta_5pct

Contents of datasets:
default vmecpp_wout
Contains information about:
  • Plasma boundaries
  • Ideal MHD metrics in vacuum
  • Omnigenous field and targets, used as input for sampling of plasma boundaries
  • Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)
  • Miscellaneous information
    • the corresponding ideal MHD equilibrium ID in vmecpp_wout
    • errors that might have occurred during sampling or metrics computation.
Contains:
  • For each plasma boundary in default, a JSON-string representation of the "WOut" file as obtained when running VMEC, initialized on the boundary.
    The JSON representation can be converted to a VMEC2000 output file.
  • The corresponding plasma configuration ID in default
The default (vacuum) subset above is special in the sense that it contains more information than the other subsets (finite betas) below. Those are derived from the default (vacuum) subset by setting for each plasma boundary the respective volume-averaged beta percentage and re-computing the performance metrics and ideal MHD equilibria:
finite_beta_*pct vmecpp_wout_finite_beta_*pct
Contains information about:
  • Ideal MHD metrics with plasma
  • Miscellaneous information
    • the corresponding source plasma configuration ID in default
    • the corresponding ideal MHD equilibrium ID in vmecpp_wout_finite_beta_*pct
    • errors that might have occurred metrics computation.
Same as vmecpp_wout above, corresponding to finite_beta_*pct

For each of the components above there is an identifier column (ending with .id), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with . separating the keys on the JSON path to the respective leaf).

Uses

Install Huggingface Datasets: pip install datasets

Basic Usage

Load the dataset and convert to a Pandas Dataframe (here, torch is used as an example; install it with" pip install torch):

import datasets
import torch
from pprint import pprint

ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    split="train",
    num_proc=4,
)
ds = ds.select_columns([c for c in ds.column_names
                        if c.startswith("boundary.")
                        or c.startswith("metrics.")])
ds = ds.filter(
    lambda x: x == 3,
    input_columns=["boundary.n_field_periods"],
    num_proc=4,
)
ml_ds = ds.remove_columns([
    "boundary.n_field_periods", "boundary.is_stellarator_symmetric",  # all same value
    "boundary.r_sin", "boundary.z_cos",  # empty
    "boundary.json", "metrics.json", "metrics.id",  # not needed
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_ds = ml_ds.with_format("torch", device=device)  # other options: "jax", "tensorflow" etc.

for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
    pprint(batch)
    break
Output
{'boundary.r_cos': tensor([[[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
          -6.5763e-02, -3.8500e-02,  2.2178e-03,  4.6007e-04],
         [-6.6648e-04, -1.0976e-02,  5.6475e-02,  1.4193e-02,  8.3476e-02,
          -4.6767e-02, -1.3679e-02,  3.9562e-03,  1.0087e-04],
         [-3.5474e-04,  4.7144e-03,  8.3967e-04, -1.9705e-02, -9.4592e-03,
          -5.8859e-03,  1.0172e-03,  9.2020e-04, -2.0059e-04],
         [ 2.9056e-03,  1.6125e-04, -4.0626e-04, -8.0189e-03,  1.3228e-03,
          -5.3636e-04, -7.3536e-04,  3.4558e-05,  1.4845e-04],
         [-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04,  8.3187e-05,
          -1.2714e-04, -2.1174e-04,  4.1940e-06, -4.5643e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  9.9909e-01,
          -6.8512e-02, -8.1567e-02,  2.5140e-02, -2.4035e-03],
         [-3.4328e-03,  1.6768e-02,  1.2305e-02, -3.6708e-02,  1.0285e-01,
           1.1224e-02, -2.3418e-02, -5.4137e-04,  9.3986e-04],
         [-2.8389e-03,  1.4652e-03,  1.0112e-03,  9.8102e-04, -2.3162e-02,
          -6.1180e-03,  1.5327e-03,  9.4122e-04, -1.2781e-03],
         [ 3.9240e-04, -2.3131e-04,  4.5690e-04, -3.8244e-03, -1.5314e-03,
           1.8863e-03,  1.1882e-03, -5.2338e-04,  2.6766e-04],
         [-2.8441e-04, -3.4162e-04,  5.4013e-05,  7.4252e-04,  4.9895e-04,
          -6.1110e-04, -8.7185e-04, -1.1714e-04,  9.9285e-08]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
           6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
         [ 1.4062e-03,  4.2645e-03, -1.0647e-02, -8.1579e-02,  1.0522e-01,
           1.6914e-02,  6.5321e-04,  6.9397e-04,  2.0881e-04],
         [-6.5155e-05, -1.2232e-03, -3.3660e-03,  9.8742e-03, -1.4611e-02,
           6.0985e-03,  9.5693e-04, -1.0049e-04,  5.4173e-05],
         [-4.3969e-04, -5.1155e-04,  6.9611e-03, -2.8698e-04, -5.8589e-03,
          -5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
         [-1.9741e-04,  1.0003e-04, -2.0176e-04,  4.9546e-04, -1.6201e-04,
          -1.9169e-04, -3.9886e-04,  3.3773e-05, -3.5972e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
           1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
         [ 3.1697e-03,  2.1618e-02,  2.7072e-02, -2.4032e-02,  8.6125e-02,
          -7.1168e-04, -1.2433e-02, -2.0902e-03,  1.5868e-04],
         [-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
          -8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
         [-1.0006e-03,  2.1055e-05, -1.7186e-03, -5.2886e-03,  4.5186e-03,
          -1.1530e-03,  6.2732e-05,  1.4212e-04,  4.3367e-05],
         [ 7.8993e-05, -3.9503e-04,  1.5458e-03, -4.9707e-04, -3.9470e-04,
           6.0808e-04, -3.6447e-04,  1.2936e-04,  6.3461e-07]]]),
 'boundary.z_sin': tensor([[[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.4295e-02,  1.4929e-02, -6.6461e-03, -3.0652e-04],
         [ 9.6958e-05, -1.6067e-03,  5.7568e-02, -2.2848e-02, -1.6101e-01,
           1.6560e-02,  1.5032e-02, -1.2463e-03, -4.0128e-04],
         [-9.9541e-04,  3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04,
           9.4527e-03, -4.6871e-04, -5.5180e-04,  3.2248e-04],
         [ 2.3465e-03, -2.4885e-03, -8.4212e-03,  8.9649e-03, -1.9880e-03,
          -1.6269e-03,  8.4700e-04,  3.7171e-04, -6.8400e-05],
         [-3.6228e-04, -1.8575e-04,  6.0890e-04,  5.0270e-04, -6.9953e-04,
          -7.6356e-05,  2.3796e-04, -3.2524e-05,  5.3396e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -8.5341e-02,  2.4825e-02,  8.0996e-03, -7.1501e-03],
         [-1.3470e-03,  4.6367e-03,  4.1579e-02, -3.6802e-02, -1.5076e-01,
           7.1852e-02, -1.9793e-02,  8.2575e-03, -3.8958e-03],
         [-2.3956e-03, -5.7497e-03,  5.8264e-03,  9.4471e-03, -3.5171e-03,
          -1.0481e-02, -3.2885e-03,  4.0624e-03,  4.3130e-04],
         [ 6.3403e-05, -9.2162e-04, -2.4765e-03,  5.4090e-04,  1.9999e-03,
          -1.1500e-03,  2.7581e-03, -5.7271e-04,  3.0363e-04],
         [ 4.6278e-04,  4.3696e-04,  8.0524e-05, -2.4660e-04, -2.3747e-04,
           5.5060e-05, -1.3221e-04, -5.4823e-05,  1.6025e-04]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.6090e-01, -1.4364e-02,  3.7923e-03,  1.8234e-03],
         [ 1.2118e-03,  3.1261e-03,  3.2037e-03, -5.7482e-02, -1.5461e-01,
          -1.8058e-03, -5.7149e-03, -7.4521e-04,  2.9463e-04],
         [ 8.7049e-04, -3.2717e-04, -1.0188e-02,  1.1215e-02, -7.4697e-03,
          -1.3592e-03, -1.4984e-03, -3.1362e-04,  1.5780e-06],
         [ 1.2617e-04, -1.2257e-04, -6.9928e-04,  8.7431e-04, -2.5848e-03,
           1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
         [-4.3932e-04, -1.8130e-04,  7.4368e-04, -6.1396e-04, -4.1518e-04,
           4.8132e-04,  1.6036e-04,  5.3081e-05,  1.6636e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.1264e-02, -1.8349e-03,  7.2464e-03,  2.3807e-03],
         [ 3.2969e-03,  1.9590e-02,  2.8355e-02, -1.0493e-02, -1.3216e-01,
           1.7804e-02,  7.9768e-03,  2.1362e-03, -6.9118e-04],
         [-5.2572e-04, -4.1409e-03, -3.6560e-02,  2.1644e-02,  1.6418e-02,
           9.3557e-03,  3.3846e-03,  7.4172e-05,  1.8406e-04],
         [-1.4907e-03,  2.0496e-03, -4.8581e-03,  3.5471e-03, -2.9191e-03,
          -1.5056e-03,  7.7168e-04, -2.3136e-04, -1.2064e-05],
         [-2.3742e-04,  4.5083e-04, -1.2933e-03, -4.4028e-04,  6.4168e-04,
          -8.2755e-04,  4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
 'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([  9.3211, 106.7966,  13.8752,   8.9834]),
 'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
 'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
 'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
 'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
 'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
 'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
 'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
 'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}

Advanced Usage

For advanced manipulation and visualization of data contained in this dataset, install constellaration from here: pip install constellaration

Load and instantiate plasma boundaries:

from constellaration.geometry import surface_rz_fourier

ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    columns=["plasma_config_id", "boundary.json"],
    split="train",
    num_proc=4,
)
pandas_ds = ds.to_pandas().set_index("plasma_config_id")

plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)

Plot boundary:

from constellaration.utils import visualization

visualization.plot_surface(boundary).show()
visualization.plot_boundary(boundary).get_figure().show()
Boundary Cross-sections
Plot of plasma boundary Plot of boundary cross-sections

Stream and instantiate the VMEC ideal MHD equilibria:

from constellaration.mhd import vmec_utils

wout_ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    "vmecpp_wout",
    split="train",
    streaming=True,
)

row = next(wout_ds.__iter__())

vmecpp_wout_json = row["json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)

# Fetch corresponding boundary

plasma_config_id = row["plasma_config_id"]
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)

Plot flux surfaces:

from constellaration.utils import visualization

visualization.plot_flux_surfaces(vmecpp_wout, boundary)

Plot of flux surfaces

Save ideal MHD equilibrium to VMEC2000 WOut file:

import pathlib
from constellaration.utils import file_exporter

file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))

Match the boundaries from the default dataset to the corresponding metrics under a certain plasma condition:

import datasets

# Load default dataset to get the boundaries
default_ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    split="train",
    num_proc=4,
)

# Load finite beta 3% dataset
finite_beta_3pct_ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    name="finite_beta_3pct",
    split="train",
    num_proc=4,
)

# Join the two datasets on plasma_config_id <-> misc.source_plasma_config_id
default_df = (
    default_ds
    .to_pandas()
    .set_index("plasma_config_id")
    .filter(like="boundary.")
)
finite_beta_3pct_df = (
    finite_beta_3pct_ds
    .to_pandas()
    .set_index("misc.source_plasma_config_id")
)
finite_beta_3pct_with_boundaries_df = (
    finite_beta_3pct_df
    .join(default_df, how="inner")  # joins on index
    .reset_index(names="misc.source_plasma_config_id")
)

Dataset Creation

Curation Rationale

Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.

Source Data

Data Collection and Processing

We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.

Who are the source data producers?

Proxima Fusion's stellarator optimization team.

Personal and Sensitive Information

The dataset contains no personally identifiable information.

Citation

BibTeX:

@article{cadena2025constellaration,
  title={ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks},
  author={Cadena, Santiago A and Merlo, Andrea and Laude, Emanuel and Bauer, Alexander and Agrawal, Atul and Pascu, Maria and Savtchouk, Marija and Guiraud, Enrico and Bonauer, Lukas and Hudson, Stuart and others},
  journal={arXiv preprint arXiv:2506.19583},
  year={2025}
}

Glossary

Abbreviation Expansion
QI Quasi-Isodynamic(ity)
MHD Magneto-Hydrodynamic
DESC Dynamical Equilibrium Solver for Confinement
VMEC/VMEC++ Variational Moments Equilibrium Code (Fortran/C++)
QP Quasi-Poloidal
NAE Near-Axis Expansion
NFP Number of Field Periods

Dataset Card Authors

Alexander Bauer, Santiago A. Cadena

Dataset Card Contact

[email protected]