|
|
--- |
|
|
dataset_info: |
|
|
- config_name: default |
|
|
features: |
|
|
- name: metrics.id |
|
|
dtype: string |
|
|
- name: metrics.json |
|
|
dtype: string |
|
|
- name: metrics.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.aspect_ratio_over_edge_rotational_transform |
|
|
dtype: float64 |
|
|
- name: metrics.average_triangularity |
|
|
dtype: float64 |
|
|
- name: metrics.axis_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.axis_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.edge_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.edge_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.flux_compression_in_regions_of_bad_curvature |
|
|
dtype: float64 |
|
|
- name: metrics.max_elongation |
|
|
dtype: float64 |
|
|
- name: metrics.minimum_normalized_magnetic_gradient_scale_length |
|
|
dtype: float64 |
|
|
- name: metrics.qi |
|
|
dtype: float64 |
|
|
- name: metrics.vacuum_well |
|
|
dtype: float64 |
|
|
- name: boundary.json |
|
|
dtype: string |
|
|
- name: boundary.is_stellarator_symmetric |
|
|
dtype: bool |
|
|
- name: boundary.n_field_periods |
|
|
dtype: int64 |
|
|
- name: boundary.n_periodicity |
|
|
dtype: int64 |
|
|
- name: boundary.r_cos |
|
|
sequence: |
|
|
sequence: float64 |
|
|
- name: boundary.r_sin |
|
|
dtype: 'null' |
|
|
- name: boundary.z_cos |
|
|
dtype: 'null' |
|
|
- name: boundary.z_sin |
|
|
sequence: |
|
|
sequence: float64 |
|
|
- name: omnigenous_field_and_targets.id |
|
|
dtype: string |
|
|
- name: omnigenous_field_and_targets.json |
|
|
dtype: string |
|
|
- name: omnigenous_field_and_targets.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: omnigenous_field_and_targets.major_radius |
|
|
dtype: float64 |
|
|
- name: omnigenous_field_and_targets.max_elongation |
|
|
dtype: float64 |
|
|
- name: omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients |
|
|
sequence: |
|
|
sequence: float64 |
|
|
- name: omnigenous_field_and_targets.omnigenous_field.n_field_periods |
|
|
dtype: int64 |
|
|
- name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding |
|
|
dtype: int64 |
|
|
- name: omnigenous_field_and_targets.omnigenous_field.torodial_winding |
|
|
dtype: int64 |
|
|
- name: omnigenous_field_and_targets.omnigenous_field.x_lmn |
|
|
sequence: |
|
|
sequence: |
|
|
sequence: float64 |
|
|
- name: omnigenous_field_and_targets.rotational_transform |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.id |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.json |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation |
|
|
dtype: bool |
|
|
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive |
|
|
dtype: bool |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric |
|
|
dtype: bool |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight |
|
|
dtype: float64 |
|
|
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter |
|
|
dtype: int64 |
|
|
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.name |
|
|
dtype: string |
|
|
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose |
|
|
dtype: int64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.id |
|
|
dtype: string |
|
|
- name: vmec_omnigenous_field_optimization_settings.json |
|
|
dtype: string |
|
|
- name: vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance |
|
|
dtype: float64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable |
|
|
dtype: int64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time |
|
|
dtype: int64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds |
|
|
dtype: float64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling |
|
|
dtype: float64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode |
|
|
dtype: int64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode |
|
|
dtype: int64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations |
|
|
dtype: int64 |
|
|
- name: vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space |
|
|
dtype: bool |
|
|
- name: vmec_omnigenous_field_optimization_settings.verbose |
|
|
dtype: bool |
|
|
- name: qp_init_omnigenous_field_optimization_settings.id |
|
|
dtype: string |
|
|
- name: qp_init_omnigenous_field_optimization_settings.json |
|
|
dtype: string |
|
|
- name: qp_init_omnigenous_field_optimization_settings.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: qp_init_omnigenous_field_optimization_settings.elongation |
|
|
dtype: float64 |
|
|
- name: qp_init_omnigenous_field_optimization_settings.is_iota_positive |
|
|
dtype: bool |
|
|
- name: qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric |
|
|
dtype: bool |
|
|
- name: qp_init_omnigenous_field_optimization_settings.major_radius |
|
|
dtype: float64 |
|
|
- name: qp_init_omnigenous_field_optimization_settings.mirror_ratio |
|
|
dtype: float64 |
|
|
- name: qp_init_omnigenous_field_optimization_settings.n_field_periods |
|
|
dtype: int64 |
|
|
- name: qp_init_omnigenous_field_optimization_settings.torsion |
|
|
dtype: float64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.id |
|
|
dtype: string |
|
|
- name: nae_init_omnigenous_field_optimization_settings.json |
|
|
dtype: string |
|
|
- name: nae_init_omnigenous_field_optimization_settings.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.max_elongation |
|
|
dtype: float64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode |
|
|
dtype: int64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode |
|
|
dtype: int64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.mirror_ratio |
|
|
dtype: float64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.n_field_periods |
|
|
dtype: int64 |
|
|
- name: nae_init_omnigenous_field_optimization_settings.rotational_transform |
|
|
dtype: float64 |
|
|
- name: misc.vmecpp_wout_id |
|
|
dtype: string |
|
|
- name: misc.has_optimize_boundary_omnigenity_vmec_error |
|
|
dtype: bool |
|
|
- name: misc.has_optimize_boundary_omnigenity_desc_error |
|
|
dtype: bool |
|
|
- name: misc.has_generate_qp_initialization_from_targets_error |
|
|
dtype: bool |
|
|
- name: misc.has_generate_nae_initialization_from_targets_error |
|
|
dtype: bool |
|
|
- name: misc.has_neurips_2025_forward_model_error |
|
|
dtype: bool |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1240651097.3174775 |
|
|
num_examples: 182222 |
|
|
download_size: 610201645 |
|
|
dataset_size: 1240651097.3174775 |
|
|
- config_name: finite_beta_1pct |
|
|
features: |
|
|
- name: metrics.id |
|
|
dtype: string |
|
|
- name: metrics.json |
|
|
dtype: string |
|
|
- name: metrics.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.aspect_ratio_over_edge_rotational_transform |
|
|
dtype: float64 |
|
|
- name: metrics.average_triangularity |
|
|
dtype: float64 |
|
|
- name: metrics.axis_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.axis_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.edge_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.edge_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.flux_compression_in_regions_of_bad_curvature |
|
|
dtype: float64 |
|
|
- name: metrics.max_elongation |
|
|
dtype: float64 |
|
|
- name: metrics.minimum_normalized_magnetic_gradient_scale_length |
|
|
dtype: float64 |
|
|
- name: metrics.qi |
|
|
dtype: float64 |
|
|
- name: metrics.vacuum_well |
|
|
dtype: float64 |
|
|
- name: misc.vmecpp_wout_id |
|
|
dtype: string |
|
|
- name: misc.source_plasma_config_id |
|
|
dtype: string |
|
|
- name: misc.has_neurips_2025_forward_model_error |
|
|
dtype: bool |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 76508664.04284965 |
|
|
num_examples: 112804 |
|
|
download_size: 52556502 |
|
|
dataset_size: 76508664.04284965 |
|
|
- config_name: finite_beta_2pct |
|
|
features: |
|
|
- name: metrics.id |
|
|
dtype: string |
|
|
- name: metrics.json |
|
|
dtype: string |
|
|
- name: metrics.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.aspect_ratio_over_edge_rotational_transform |
|
|
dtype: float64 |
|
|
- name: metrics.average_triangularity |
|
|
dtype: float64 |
|
|
- name: metrics.axis_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.axis_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.edge_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.edge_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.flux_compression_in_regions_of_bad_curvature |
|
|
dtype: float64 |
|
|
- name: metrics.max_elongation |
|
|
dtype: float64 |
|
|
- name: metrics.minimum_normalized_magnetic_gradient_scale_length |
|
|
dtype: float64 |
|
|
- name: metrics.qi |
|
|
dtype: float64 |
|
|
- name: metrics.vacuum_well |
|
|
dtype: float64 |
|
|
- name: misc.vmecpp_wout_id |
|
|
dtype: string |
|
|
- name: misc.source_plasma_config_id |
|
|
dtype: string |
|
|
- name: misc.has_neurips_2025_forward_model_error |
|
|
dtype: bool |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 47402708.67692375 |
|
|
num_examples: 82722 |
|
|
download_size: 38593722 |
|
|
dataset_size: 47402708.67692375 |
|
|
- config_name: finite_beta_3pct |
|
|
features: |
|
|
- name: metrics.id |
|
|
dtype: string |
|
|
- name: metrics.json |
|
|
dtype: string |
|
|
- name: metrics.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.aspect_ratio_over_edge_rotational_transform |
|
|
dtype: float64 |
|
|
- name: metrics.average_triangularity |
|
|
dtype: float64 |
|
|
- name: metrics.axis_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.axis_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.edge_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.edge_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.flux_compression_in_regions_of_bad_curvature |
|
|
dtype: float64 |
|
|
- name: metrics.max_elongation |
|
|
dtype: float64 |
|
|
- name: metrics.minimum_normalized_magnetic_gradient_scale_length |
|
|
dtype: float64 |
|
|
- name: metrics.qi |
|
|
dtype: float64 |
|
|
- name: metrics.vacuum_well |
|
|
dtype: float64 |
|
|
- name: misc.vmecpp_wout_id |
|
|
dtype: string |
|
|
- name: misc.source_plasma_config_id |
|
|
dtype: string |
|
|
- name: misc.has_neurips_2025_forward_model_error |
|
|
dtype: bool |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 25395079.54877086 |
|
|
num_examples: 55448 |
|
|
download_size: 25947395 |
|
|
dataset_size: 25395079.54877086 |
|
|
- config_name: finite_beta_4pct |
|
|
features: |
|
|
- name: metrics.id |
|
|
dtype: string |
|
|
- name: metrics.json |
|
|
dtype: string |
|
|
- name: metrics.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.aspect_ratio_over_edge_rotational_transform |
|
|
dtype: float64 |
|
|
- name: metrics.average_triangularity |
|
|
dtype: float64 |
|
|
- name: metrics.axis_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.axis_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.edge_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.edge_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.flux_compression_in_regions_of_bad_curvature |
|
|
dtype: float64 |
|
|
- name: metrics.max_elongation |
|
|
dtype: float64 |
|
|
- name: metrics.minimum_normalized_magnetic_gradient_scale_length |
|
|
dtype: float64 |
|
|
- name: metrics.qi |
|
|
dtype: float64 |
|
|
- name: metrics.vacuum_well |
|
|
dtype: float64 |
|
|
- name: misc.vmecpp_wout_id |
|
|
dtype: string |
|
|
- name: misc.source_plasma_config_id |
|
|
dtype: string |
|
|
- name: misc.has_neurips_2025_forward_model_error |
|
|
dtype: bool |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 13509704.764567751 |
|
|
num_examples: 36444 |
|
|
download_size: 17086365 |
|
|
dataset_size: 13509704.764567751 |
|
|
- config_name: finite_beta_5pct |
|
|
features: |
|
|
- name: metrics.id |
|
|
dtype: string |
|
|
- name: metrics.json |
|
|
dtype: string |
|
|
- name: metrics.aspect_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.aspect_ratio_over_edge_rotational_transform |
|
|
dtype: float64 |
|
|
- name: metrics.average_triangularity |
|
|
dtype: float64 |
|
|
- name: metrics.axis_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.axis_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.edge_magnetic_mirror_ratio |
|
|
dtype: float64 |
|
|
- name: metrics.edge_rotational_transform_over_n_field_periods |
|
|
dtype: float64 |
|
|
- name: metrics.flux_compression_in_regions_of_bad_curvature |
|
|
dtype: float64 |
|
|
- name: metrics.max_elongation |
|
|
dtype: float64 |
|
|
- name: metrics.minimum_normalized_magnetic_gradient_scale_length |
|
|
dtype: float64 |
|
|
- name: metrics.qi |
|
|
dtype: float64 |
|
|
- name: metrics.vacuum_well |
|
|
dtype: float64 |
|
|
- name: misc.vmecpp_wout_id |
|
|
dtype: string |
|
|
- name: misc.source_plasma_config_id |
|
|
dtype: string |
|
|
- name: misc.has_neurips_2025_forward_model_error |
|
|
dtype: bool |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 8792377.219300479 |
|
|
num_examples: 26729 |
|
|
download_size: 12538180 |
|
|
dataset_size: 8792377.219300479 |
|
|
- config_name: vmecpp_wout |
|
|
features: |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
- name: id |
|
|
dtype: string |
|
|
- name: json |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1100757693175 |
|
|
num_examples: 148292 |
|
|
download_size: 956063943 |
|
|
dataset_size: 1100757693175 |
|
|
- config_name: vmecpp_wout_finite_beta_1pct |
|
|
features: |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
- name: id |
|
|
dtype: string |
|
|
- name: json |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1100757693175 |
|
|
num_examples: 148292 |
|
|
download_size: 956063943 |
|
|
dataset_size: 1100757693175 |
|
|
- config_name: vmecpp_wout_finite_beta_2pct |
|
|
features: |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
- name: id |
|
|
dtype: string |
|
|
- name: json |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1100757693175 |
|
|
num_examples: 148292 |
|
|
download_size: 956063943 |
|
|
dataset_size: 1100757693175 |
|
|
- config_name: vmecpp_wout_finite_beta_3pct |
|
|
features: |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
- name: id |
|
|
dtype: string |
|
|
- name: json |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1100757693175 |
|
|
num_examples: 148292 |
|
|
download_size: 956063943 |
|
|
dataset_size: 1100757693175 |
|
|
- config_name: vmecpp_wout_finite_beta_4pct |
|
|
features: |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
- name: id |
|
|
dtype: string |
|
|
- name: json |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1100757693175 |
|
|
num_examples: 148292 |
|
|
download_size: 956063943 |
|
|
dataset_size: 1100757693175 |
|
|
- config_name: vmecpp_wout_finite_beta_5pct |
|
|
features: |
|
|
- name: plasma_config_id |
|
|
dtype: string |
|
|
- name: id |
|
|
dtype: string |
|
|
- name: json |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1100757693175 |
|
|
num_examples: 148292 |
|
|
download_size: 956063943 |
|
|
dataset_size: 1100757693175 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
- config_name: finite_beta_1pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: finite_beta_1pct/train-* |
|
|
- config_name: finite_beta_2pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: finite_beta_2pct/train-* |
|
|
- config_name: finite_beta_3pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: finite_beta_3pct/train-* |
|
|
- config_name: finite_beta_4pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: finite_beta_4pct/train-* |
|
|
- config_name: finite_beta_5pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: finite_beta_5pct/train-* |
|
|
- config_name: vmecpp_wout |
|
|
data_files: |
|
|
- split: train |
|
|
path: vmecpp_wout/part* |
|
|
- config_name: vmecpp_wout_finite_beta_1pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: vmecpp_wout_finite_beta_1pct/part* |
|
|
- config_name: vmecpp_wout_finite_beta_2pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: vmecpp_wout_finite_beta_2pct/part* |
|
|
- config_name: vmecpp_wout_finite_beta_3pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: vmecpp_wout_finite_beta_3pct/part* |
|
|
- config_name: vmecpp_wout_finite_beta_4pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: vmecpp_wout_finite_beta_4pct/part* |
|
|
- config_name: vmecpp_wout_finite_beta_5pct |
|
|
data_files: |
|
|
- split: train |
|
|
path: vmecpp_wout_finite_beta_5pct/part* |
|
|
license: mit |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- physics |
|
|
- fusion |
|
|
- optimization |
|
|
- neurips |
|
|
pretty_name: ConStellaration |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
--- |
|
|
# Dataset Card for ConStellaration |
|
|
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
|
|
A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation. |
|
|
|
|
|
The performance metrics and ideal MHD equilibria were evaluated under vacuum (default) and with plasma inside (finite beta). |
|
|
|
|
|
## Dataset Details |
|
|
|
|
|
### Dataset Description |
|
|
|
|
|
<!-- Provide a longer summary of what this dataset is. --> |
|
|
|
|
|
Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions. |
|
|
|
|
|
With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid. |
|
|
|
|
|
- **Curated by:** Proxima Fusion |
|
|
- **License:** MIT |
|
|
|
|
|
 |
|
|
|
|
|
### Dataset Sources |
|
|
|
|
|
<!-- Provide the basic links for the dataset. --> |
|
|
|
|
|
- **Repository:** https://huggingface.co/datasets/proxima-fusion/constellaration |
|
|
- **Paper:** https://arxiv.org/abs/2506.19583 |
|
|
- **Code:** https://github.com/proximafusion/constellaration |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> |
|
|
|
|
|
There are 6 tuples of datasets, one for each percentage of volume-averaged plasma inside the boundary: |
|
|
<table> |
|
|
<tr> |
|
|
<th>Condition</th> |
|
|
<th>Boundaries, Metrics, Generation Settings, Misc</th> |
|
|
<th>Ideal MHD Equilibira</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<th>Vacuum</th> |
|
|
<th>default</th> |
|
|
<th>vmecpp_wout</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<th>1% Beta</th> |
|
|
<th>finte_beta_1pct</th> |
|
|
<th>vmecpp_wout_finite_beta_1pct</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<th>2% Beta</th> |
|
|
<th>finte_beta_2pct</th> |
|
|
<th>vmecpp_wout_finite_beta_2pct</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<th>3% Beta</th> |
|
|
<th>finte_beta_3pct</th> |
|
|
<th>vmecpp_wout_finite_beta_3pct</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<th>4% Beta</th> |
|
|
<th>finte_beta_4pct</th> |
|
|
<th>vmecpp_wout_finite_beta_4pct</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<th>5% Beta</th> |
|
|
<th>finte_beta_5pct</th> |
|
|
<th>vmecpp_wout_finite_beta_5pct</th> |
|
|
</tr> |
|
|
</table> |
|
|
<br> |
|
|
Contents of datasets: |
|
|
<table> |
|
|
<tr> |
|
|
<th style="border-right: 1px solid gray;">default</th> |
|
|
<th>vmecpp_wout</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<td style="border-right: 1px solid gray;"> |
|
|
Contains information about: |
|
|
<ul> |
|
|
<li>Plasma boundaries</li> |
|
|
<li>Ideal MHD metrics in vacuum</li> |
|
|
<li>Omnigenous field and targets, used as input for sampling of plasma boundaries</li> |
|
|
<li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li> |
|
|
<li>Miscellaneous information |
|
|
<ul> |
|
|
<li>the corresponding ideal MHD equilibrium ID in <b>vmecpp_wout</b></li> |
|
|
<li>errors that might have occurred during sampling or metrics computation.</li> |
|
|
</ul> |
|
|
</li> |
|
|
</ul> |
|
|
</td> |
|
|
<td> |
|
|
Contains: |
|
|
<ul> |
|
|
<li>For each plasma boundary in <b>default</b>, a JSON-string representation of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.</li> |
|
|
<li>The corresponding plasma configuration ID in <b>default</b></li> |
|
|
</ul> |
|
|
</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td colspan="2"> |
|
|
The <b>default</b> (vacuum) subset above is special in the sense that it contains more information than the other subsets (finite betas) below. Those are derived from the <b>default</b> (vacuum) subset by setting for each plasma boundary the respective volume-averaged beta percentage and re-computing the performance metrics and ideal MHD equilibria: |
|
|
</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<th style="border-right: 1px solid gray;">finite_beta_*pct</th> |
|
|
<th>vmecpp_wout_finite_beta_*pct</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<td style="border-right: 1px solid gray;"> |
|
|
Contains information about: |
|
|
<ul> |
|
|
<li>Ideal MHD metrics with plasma</li> |
|
|
<li>Miscellaneous information |
|
|
<ul> |
|
|
<li>the corresponding source plasma configuration ID in <b>default</b></li> |
|
|
<li>the corresponding ideal MHD equilibrium ID in <b>vmecpp_wout_finite_beta_*pct</b></li> |
|
|
<li>errors that might have occurred metrics computation.</li> |
|
|
</ul> |
|
|
</li> |
|
|
</ul> |
|
|
</td> |
|
|
<td> |
|
|
Same as <b>vmecpp_wout</b> above, corresponding to <b>finite_beta_*pct</b> |
|
|
</td> |
|
|
</tr> |
|
|
</table> |
|
|
|
|
|
For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf). |
|
|
|
|
|
## Uses |
|
|
|
|
|
Install Huggingface Datasets: `pip install datasets` |
|
|
|
|
|
### Basic Usage |
|
|
Load the dataset and convert to a Pandas Dataframe (here, `torch` is used as an example; install it with" `pip install torch`): |
|
|
```python |
|
|
import datasets |
|
|
import torch |
|
|
from pprint import pprint |
|
|
|
|
|
ds = datasets.load_dataset( |
|
|
"proxima-fusion/constellaration", |
|
|
split="train", |
|
|
num_proc=4, |
|
|
) |
|
|
ds = ds.select_columns([c for c in ds.column_names |
|
|
if c.startswith("boundary.") |
|
|
or c.startswith("metrics.")]) |
|
|
ds = ds.filter( |
|
|
lambda x: x == 3, |
|
|
input_columns=["boundary.n_field_periods"], |
|
|
num_proc=4, |
|
|
) |
|
|
ml_ds = ds.remove_columns([ |
|
|
"boundary.n_field_periods", "boundary.is_stellarator_symmetric", # all same value |
|
|
"boundary.r_sin", "boundary.z_cos", # empty |
|
|
"boundary.json", "metrics.json", "metrics.id", # not needed |
|
|
]) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
torch_ds = ml_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc. |
|
|
|
|
|
for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4): |
|
|
pprint(batch) |
|
|
break |
|
|
``` |
|
|
<div style="margin-left: 1em;"> |
|
|
<details> |
|
|
<summary>Output</summary> |
|
|
|
|
|
```python |
|
|
{'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, |
|
|
-6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04], |
|
|
[-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02, |
|
|
-4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04], |
|
|
[-3.5474e-04, 4.7144e-03, 8.3967e-04, -1.9705e-02, -9.4592e-03, |
|
|
-5.8859e-03, 1.0172e-03, 9.2020e-04, -2.0059e-04], |
|
|
[ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03, |
|
|
-5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04], |
|
|
[-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05, |
|
|
-1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]], |
|
|
|
|
|
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9909e-01, |
|
|
-6.8512e-02, -8.1567e-02, 2.5140e-02, -2.4035e-03], |
|
|
[-3.4328e-03, 1.6768e-02, 1.2305e-02, -3.6708e-02, 1.0285e-01, |
|
|
1.1224e-02, -2.3418e-02, -5.4137e-04, 9.3986e-04], |
|
|
[-2.8389e-03, 1.4652e-03, 1.0112e-03, 9.8102e-04, -2.3162e-02, |
|
|
-6.1180e-03, 1.5327e-03, 9.4122e-04, -1.2781e-03], |
|
|
[ 3.9240e-04, -2.3131e-04, 4.5690e-04, -3.8244e-03, -1.5314e-03, |
|
|
1.8863e-03, 1.1882e-03, -5.2338e-04, 2.6766e-04], |
|
|
[-2.8441e-04, -3.4162e-04, 5.4013e-05, 7.4252e-04, 4.9895e-04, |
|
|
-6.1110e-04, -8.7185e-04, -1.1714e-04, 9.9285e-08]], |
|
|
|
|
|
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, |
|
|
6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04], |
|
|
[ 1.4062e-03, 4.2645e-03, -1.0647e-02, -8.1579e-02, 1.0522e-01, |
|
|
1.6914e-02, 6.5321e-04, 6.9397e-04, 2.0881e-04], |
|
|
[-6.5155e-05, -1.2232e-03, -3.3660e-03, 9.8742e-03, -1.4611e-02, |
|
|
6.0985e-03, 9.5693e-04, -1.0049e-04, 5.4173e-05], |
|
|
[-4.3969e-04, -5.1155e-04, 6.9611e-03, -2.8698e-04, -5.8589e-03, |
|
|
-5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05], |
|
|
[-1.9741e-04, 1.0003e-04, -2.0176e-04, 4.9546e-04, -1.6201e-04, |
|
|
-1.9169e-04, -3.9886e-04, 3.3773e-05, -3.5972e-05]], |
|
|
|
|
|
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00, |
|
|
1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03], |
|
|
[ 3.1697e-03, 2.1618e-02, 2.7072e-02, -2.4032e-02, 8.6125e-02, |
|
|
-7.1168e-04, -1.2433e-02, -2.0902e-03, 1.5868e-04], |
|
|
[-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02, |
|
|
-8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04], |
|
|
[-1.0006e-03, 2.1055e-05, -1.7186e-03, -5.2886e-03, 4.5186e-03, |
|
|
-1.1530e-03, 6.2732e-05, 1.4212e-04, 4.3367e-05], |
|
|
[ 7.8993e-05, -3.9503e-04, 1.5458e-03, -4.9707e-04, -3.9470e-04, |
|
|
6.0808e-04, -3.6447e-04, 1.2936e-04, 6.3461e-07]]]), |
|
|
'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, |
|
|
-1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04], |
|
|
[ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01, |
|
|
1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04], |
|
|
[-9.9541e-04, 3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04, |
|
|
9.4527e-03, -4.6871e-04, -5.5180e-04, 3.2248e-04], |
|
|
[ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03, |
|
|
-1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05], |
|
|
[-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04, |
|
|
-7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]], |
|
|
|
|
|
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, |
|
|
-8.5341e-02, 2.4825e-02, 8.0996e-03, -7.1501e-03], |
|
|
[-1.3470e-03, 4.6367e-03, 4.1579e-02, -3.6802e-02, -1.5076e-01, |
|
|
7.1852e-02, -1.9793e-02, 8.2575e-03, -3.8958e-03], |
|
|
[-2.3956e-03, -5.7497e-03, 5.8264e-03, 9.4471e-03, -3.5171e-03, |
|
|
-1.0481e-02, -3.2885e-03, 4.0624e-03, 4.3130e-04], |
|
|
[ 6.3403e-05, -9.2162e-04, -2.4765e-03, 5.4090e-04, 1.9999e-03, |
|
|
-1.1500e-03, 2.7581e-03, -5.7271e-04, 3.0363e-04], |
|
|
[ 4.6278e-04, 4.3696e-04, 8.0524e-05, -2.4660e-04, -2.3747e-04, |
|
|
5.5060e-05, -1.3221e-04, -5.4823e-05, 1.6025e-04]], |
|
|
|
|
|
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, |
|
|
-1.6090e-01, -1.4364e-02, 3.7923e-03, 1.8234e-03], |
|
|
[ 1.2118e-03, 3.1261e-03, 3.2037e-03, -5.7482e-02, -1.5461e-01, |
|
|
-1.8058e-03, -5.7149e-03, -7.4521e-04, 2.9463e-04], |
|
|
[ 8.7049e-04, -3.2717e-04, -1.0188e-02, 1.1215e-02, -7.4697e-03, |
|
|
-1.3592e-03, -1.4984e-03, -3.1362e-04, 1.5780e-06], |
|
|
[ 1.2617e-04, -1.2257e-04, -6.9928e-04, 8.7431e-04, -2.5848e-03, |
|
|
1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05], |
|
|
[-4.3932e-04, -1.8130e-04, 7.4368e-04, -6.1396e-04, -4.1518e-04, |
|
|
4.8132e-04, 1.6036e-04, 5.3081e-05, 1.6636e-05]], |
|
|
|
|
|
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, |
|
|
-1.1264e-02, -1.8349e-03, 7.2464e-03, 2.3807e-03], |
|
|
[ 3.2969e-03, 1.9590e-02, 2.8355e-02, -1.0493e-02, -1.3216e-01, |
|
|
1.7804e-02, 7.9768e-03, 2.1362e-03, -6.9118e-04], |
|
|
[-5.2572e-04, -4.1409e-03, -3.6560e-02, 2.1644e-02, 1.6418e-02, |
|
|
9.3557e-03, 3.3846e-03, 7.4172e-05, 1.8406e-04], |
|
|
[-1.4907e-03, 2.0496e-03, -4.8581e-03, 3.5471e-03, -2.9191e-03, |
|
|
-1.5056e-03, 7.7168e-04, -2.3136e-04, -1.2064e-05], |
|
|
[-2.3742e-04, 4.5083e-04, -1.2933e-03, -4.4028e-04, 6.4168e-04, |
|
|
-8.2755e-04, 4.1233e-04, -1.1037e-04, -6.3762e-06]]]), |
|
|
'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]), |
|
|
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 9.3211, 106.7966, 13.8752, 8.9834]), |
|
|
'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]), |
|
|
'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]), |
|
|
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]), |
|
|
'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]), |
|
|
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]), |
|
|
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]), |
|
|
'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]), |
|
|
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]), |
|
|
'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]), |
|
|
'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])} |
|
|
``` |
|
|
</details> |
|
|
</div> |
|
|
|
|
|
### Advanced Usage |
|
|
For advanced manipulation and visualization of data contained in this dataset, install `constellaration` from [here](https://github.com/proximafusion/constellaration): |
|
|
`pip install constellaration` |
|
|
|
|
|
Load and instantiate plasma boundaries: |
|
|
```python |
|
|
from constellaration.geometry import surface_rz_fourier |
|
|
|
|
|
ds = datasets.load_dataset( |
|
|
"proxima-fusion/constellaration", |
|
|
columns=["plasma_config_id", "boundary.json"], |
|
|
split="train", |
|
|
num_proc=4, |
|
|
) |
|
|
pandas_ds = ds.to_pandas().set_index("plasma_config_id") |
|
|
|
|
|
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf" |
|
|
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"] |
|
|
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json) |
|
|
``` |
|
|
Plot boundary: |
|
|
```python |
|
|
from constellaration.utils import visualization |
|
|
|
|
|
visualization.plot_surface(boundary).show() |
|
|
visualization.plot_boundary(boundary).get_figure().show() |
|
|
``` |
|
|
Boundary | Cross-sections |
|
|
:-------------------------:|:-------------------------: |
|
|
 |  |
|
|
|
|
|
Stream and instantiate the VMEC ideal MHD equilibria: |
|
|
```python |
|
|
from constellaration.mhd import vmec_utils |
|
|
|
|
|
wout_ds = datasets.load_dataset( |
|
|
"proxima-fusion/constellaration", |
|
|
"vmecpp_wout", |
|
|
split="train", |
|
|
streaming=True, |
|
|
) |
|
|
|
|
|
row = next(wout_ds.__iter__()) |
|
|
|
|
|
vmecpp_wout_json = row["json"] |
|
|
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json) |
|
|
|
|
|
# Fetch corresponding boundary |
|
|
|
|
|
plasma_config_id = row["plasma_config_id"] |
|
|
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"] |
|
|
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json) |
|
|
``` |
|
|
Plot flux surfaces: |
|
|
```python |
|
|
from constellaration.utils import visualization |
|
|
|
|
|
visualization.plot_flux_surfaces(vmecpp_wout, boundary) |
|
|
``` |
|
|
 |
|
|
|
|
|
Save ideal MHD equilibrium to *VMEC2000 WOut* file: |
|
|
```python |
|
|
import pathlib |
|
|
from constellaration.utils import file_exporter |
|
|
|
|
|
file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc")) |
|
|
``` |
|
|
Match the boundaries from the **default** dataset to the corresponding metrics under a certain plasma condition: |
|
|
```python |
|
|
import datasets |
|
|
|
|
|
# Load default dataset to get the boundaries |
|
|
default_ds = datasets.load_dataset( |
|
|
"proxima-fusion/constellaration", |
|
|
split="train", |
|
|
num_proc=4, |
|
|
) |
|
|
|
|
|
# Load finite beta 3% dataset |
|
|
finite_beta_3pct_ds = datasets.load_dataset( |
|
|
"proxima-fusion/constellaration", |
|
|
name="finite_beta_3pct", |
|
|
split="train", |
|
|
num_proc=4, |
|
|
) |
|
|
|
|
|
# Join the two datasets on plasma_config_id <-> misc.source_plasma_config_id |
|
|
default_df = ( |
|
|
default_ds |
|
|
.to_pandas() |
|
|
.set_index("plasma_config_id") |
|
|
.filter(like="boundary.") |
|
|
) |
|
|
finite_beta_3pct_df = ( |
|
|
finite_beta_3pct_ds |
|
|
.to_pandas() |
|
|
.set_index("misc.source_plasma_config_id") |
|
|
) |
|
|
finite_beta_3pct_with_boundaries_df = ( |
|
|
finite_beta_3pct_df |
|
|
.join(default_df, how="inner") # joins on index |
|
|
.reset_index(names="misc.source_plasma_config_id") |
|
|
) |
|
|
``` |
|
|
|
|
|
## Dataset Creation |
|
|
|
|
|
### Curation Rationale |
|
|
|
|
|
<!-- Motivation for the creation of this dataset. --> |
|
|
|
|
|
Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations. |
|
|
|
|
|
### Source Data |
|
|
|
|
|
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> |
|
|
|
|
|
#### Data Collection and Processing |
|
|
|
|
|
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> |
|
|
|
|
|
We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods. |
|
|
|
|
|
#### Who are the source data producers? |
|
|
|
|
|
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> |
|
|
|
|
|
Proxima Fusion's stellarator optimization team. |
|
|
|
|
|
#### Personal and Sensitive Information |
|
|
|
|
|
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> |
|
|
|
|
|
The dataset contains no personally identifiable information. |
|
|
|
|
|
## Citation |
|
|
|
|
|
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> |
|
|
|
|
|
**BibTeX:** |
|
|
|
|
|
``` |
|
|
@article{cadena2025constellaration, |
|
|
title={ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks}, |
|
|
author={Cadena, Santiago A and Merlo, Andrea and Laude, Emanuel and Bauer, Alexander and Agrawal, Atul and Pascu, Maria and Savtchouk, Marija and Guiraud, Enrico and Bonauer, Lukas and Hudson, Stuart and others}, |
|
|
journal={arXiv preprint arXiv:2506.19583}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Glossary |
|
|
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> |
|
|
|
|
|
| Abbreviation | Expansion | |
|
|
| -------- | ------- | |
|
|
| QI | Quasi-Isodynamic(ity) | |
|
|
| MHD | Magneto-Hydrodynamic | |
|
|
| [DESC](https://desc-docs.readthedocs.io/en/stable/) | Dynamical Equilibrium Solver for Confinement | |
|
|
| VMEC/[VMEC++](https://github.com/proximafusion/vmecpp) | Variational Moments Equilibrium Code (Fortran/C++) | |
|
|
| QP | Quasi-Poloidal | |
|
|
| NAE | Near-Axis Expansion | |
|
|
| NFP | Number of Field Periods | |
|
|
|
|
|
## Dataset Card Authors |
|
|
|
|
|
Alexander Bauer, Santiago A. Cadena |
|
|
|
|
|
## Dataset Card Contact |
|
|
|
|
|
[email protected] |