text
stringlengths
0
1.22k
2023-08-04 05:51:05.017407:
2023-08-04 05:51:05.017527: Epoch 284
2023-08-04 05:51:05.017608: Current learning rate: 0.00328
2023-08-04 05:52:03.745005: train_loss -0.9422
2023-08-04 05:52:03.745149: val_loss -0.8777
2023-08-04 05:52:03.745189: Pseudo dice [0.9007]
2023-08-04 05:52:03.745235: Epoch time: 58.73 s
2023-08-04 05:52:04.490191:
2023-08-04 05:52:04.490311: Epoch 285
2023-08-04 05:52:04.490391: Current learning rate: 0.00326
2023-08-04 05:53:03.205360: train_loss -0.94
2023-08-04 05:53:03.205508: val_loss -0.8781
2023-08-04 05:53:03.205548: Pseudo dice [0.9014]
2023-08-04 05:53:03.205592: Epoch time: 58.72 s
2023-08-04 05:53:03.951651:
2023-08-04 05:53:03.951758: Epoch 286
2023-08-04 05:53:03.951838: Current learning rate: 0.00323
2023-08-04 05:54:02.639082: train_loss -0.9445
2023-08-04 05:54:02.639233: val_loss -0.8884
2023-08-04 05:54:02.639273: Pseudo dice [0.909]
2023-08-04 05:54:02.639319: Epoch time: 58.69 s
2023-08-04 05:54:03.401543:
2023-08-04 05:54:03.401646: Epoch 287
2023-08-04 05:54:03.401726: Current learning rate: 0.00321
2023-08-04 05:55:02.113871: train_loss -0.9428
2023-08-04 05:55:02.114012: val_loss -0.883
2023-08-04 05:55:02.114052: Pseudo dice [0.9043]
2023-08-04 05:55:02.114096: Epoch time: 58.71 s
2023-08-04 05:55:02.994252:
2023-08-04 05:55:02.994384: Epoch 288
2023-08-04 05:55:02.994464: Current learning rate: 0.00318
2023-08-04 05:56:01.694236: train_loss -0.9411
2023-08-04 05:56:01.694365: val_loss -0.8892
2023-08-04 05:56:01.694404: Pseudo dice [0.9094]
2023-08-04 05:56:01.694455: Epoch time: 58.7 s
2023-08-04 05:56:02.445033:
2023-08-04 05:56:02.445153: Epoch 289
2023-08-04 05:56:02.445230: Current learning rate: 0.00315
2023-08-04 05:57:01.149062: train_loss -0.9445
2023-08-04 05:57:01.149202: val_loss -0.8832
2023-08-04 05:57:01.149241: Pseudo dice [0.9059]
2023-08-04 05:57:01.149286: Epoch time: 58.7 s
2023-08-04 05:57:01.895221:
2023-08-04 05:57:01.895336: Epoch 290
2023-08-04 05:57:01.895419: Current learning rate: 0.00313
2023-08-04 05:58:00.627392: train_loss -0.9424
2023-08-04 05:58:00.627527: val_loss -0.8806
2023-08-04 05:58:00.627567: Pseudo dice [0.9041]
2023-08-04 05:58:00.627612: Epoch time: 58.73 s
2023-08-04 05:58:01.382843:
2023-08-04 05:58:01.382949: Epoch 291
2023-08-04 05:58:01.383026: Current learning rate: 0.0031
2023-08-04 05:59:00.103788: train_loss -0.9433
2023-08-04 05:59:00.103929: val_loss -0.8836
2023-08-04 05:59:00.103969: Pseudo dice [0.9062]
2023-08-04 05:59:00.104014: Epoch time: 58.72 s
2023-08-04 05:59:00.848735:
2023-08-04 05:59:00.848840: Epoch 292
2023-08-04 05:59:00.848919: Current learning rate: 0.00308
2023-08-04 05:59:59.571183: train_loss -0.9441
2023-08-04 05:59:59.571324: val_loss -0.8827
2023-08-04 05:59:59.571362: Pseudo dice [0.905]
2023-08-04 05:59:59.571407: Epoch time: 58.72 s
2023-08-04 06:00:00.443994:
2023-08-04 06:00:00.444111: Epoch 293
2023-08-04 06:00:00.444189: Current learning rate: 0.00305
2023-08-04 06:00:59.163788: train_loss -0.9445
2023-08-04 06:00:59.163932: val_loss -0.8841
2023-08-04 06:00:59.163971: Pseudo dice [0.9063]
2023-08-04 06:00:59.164015: Epoch time: 58.72 s
2023-08-04 06:00:59.916509:
2023-08-04 06:00:59.916618: Epoch 294
2023-08-04 06:00:59.916697: Current learning rate: 0.00303
2023-08-04 06:01:58.640831: train_loss -0.941
2023-08-04 06:01:58.640986: val_loss -0.8843
2023-08-04 06:01:58.641026: Pseudo dice [0.9062]
2023-08-04 06:01:58.641072: Epoch time: 58.73 s
2023-08-04 06:01:58.641108: Yayy! New best EMA pseudo Dice: 0.905
2023-08-04 06:02:00.725918:
2023-08-04 06:02:00.726028: Epoch 295
2023-08-04 06:02:00.726110: Current learning rate: 0.003
2023-08-04 06:02:59.430862: train_loss -0.9428
2023-08-04 06:02:59.431005: val_loss -0.8841
2023-08-04 06:02:59.431045: Pseudo dice [0.9059]
2023-08-04 06:02:59.431089: Epoch time: 58.71 s
2023-08-04 06:02:59.431125: Yayy! New best EMA pseudo Dice: 0.9051
2023-08-04 06:03:01.610258:
2023-08-04 06:03:01.610379: Epoch 296
2023-08-04 06:03:01.610462: Current learning rate: 0.00297
2023-08-04 06:04:00.292610: train_loss -0.9466
2023-08-04 06:04:00.292743: val_loss -0.887
2023-08-04 06:04:00.292781: Pseudo dice [0.9083]
2023-08-04 06:04:00.292824: Epoch time: 58.68 s
2023-08-04 06:04:00.292860: Yayy! New best EMA pseudo Dice: 0.9054
2023-08-04 06:04:02.283863:
2023-08-04 06:04:02.283956: Epoch 297
2023-08-04 06:04:02.284036: Current learning rate: 0.00295
2023-08-04 06:05:00.976210: train_loss -0.9446
2023-08-04 06:05:00.976352: val_loss -0.8827
2023-08-04 06:05:00.976393: Pseudo dice [0.9042]