Datasets:
metadata
dataset_info:
features:
- name: image
dtype: image
- name: box
dtype:
array2_d:
shape:
- 1
- 4
dtype: float32
- name: class
dtype: string
- name: test_action
dtype: string
- name: expectation
dtype: string
- name: conclusion
dtype: string
- name: language
dtype: string
- name: brand
dtype: string
splits:
- name: test
num_bytes: 10799037234.96
num_examples: 4208
download_size: 2543121896
dataset_size: 10799037234.96
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: cc-by-4.0
task_categories:
- visual-question-answering
language:
- de
- en
tags:
- automotive
- car
- ui
- gui
- interface
AutomotiveUI-Bench-4K
Dataset Overview: 998 images and 4,208 annotations focusing on interaction with in-vehicle infotainment (IVI) systems. Key Features:
- Serves as a validation benchmark for automotive UI.
- Scope: Covers 15 automotive brands/OEMs, model years 2018-2025.
- Image Source: Primarily photographs of IVI displays (due to screenshot limitations in most vehicles), with some direct screenshots (e.g., Android Auto).
- Annotation Classes:
- Test Action: Bounding box + imperative command in natural language.
- Expected Result: Bounding box + expected outcome in natural lanugage + Pass/Fail status.
- Bounding boxes are in format [[x0,y0,x1,y1]]
- Languages:
- IVI UI: German and English.
- Annotations: English only (German UI text translated or quoted).
- 15 Brands/OEMs:
- VW: 170
- Kia: 124
- Audi: 91
- Cupra: 85
- Porsche: 78
- Ford: 72
- Maserati: 72
- Mini: 60
- BMW: 59
- Peugot: 52
- Tesla: 51
- Toyota: 34
- Opel: 30
- Apple CarPlay: 13
- Google Android Auto: 7
Usage
Corresponding model ELAM is available on Hugging Face as well.
Setup Environment for ELAM-7B
conda create -n elam python=3.10 -y
conda activate elam
pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0
pip install transformers==4.48.2
Dataloading and Inference with ELAM-7B
# Run inference on AutomotiveUI-4k dataset on local GPU
# Outputs will be written in a JSONL file
import json
import os
import time
import torch
from datasets import Dataset, load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
def preprocess_prompt_elam(user_request: str, label_class: str) -> str:
"""Apply ELAM prompt template depending on class."""
if label_class == "Expected Result":
return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation."
elif label_class == "Test Action":
return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}"
else:
raise ValueError()
def append_to_jsonl_file(data: dict, target_path: str) -> None:
assert str(target_path).endswith(".jsonl")
with open(target_path, "a", encoding="utf-8") as file:
file.write(f"{json.dumps(data, ensure_ascii=False)}\n")
def run_inference(dataset: Dataset, model: AutoModelForCausalLM, processor: AutoProcessor):
# Define output dir and file
timestamp = time.strftime("%Y%m%d-%H%M%S")
DEBUG_DIR = os.path.join("eval_output", timestamp)
model_outputs_path = os.path.join(DEBUG_DIR, f"model_outputs.jsonl")
print(f"Writing data to: {model_outputs_path}")
for sample_id, sample in enumerate(tqdm(dataset, desc="Processing")):
image = sample["image"]
gt_box = sample["box"][0]
label_class = sample["class"]
# read gt box
utterance = None
gt_status = None
if "Expected Result" == label_class:
utterance = sample["expectation"]
gt_status = sample["conclusion"].upper()
elif "Test Action" == label_class:
utterance = sample["test_action"]
else:
raise ValueError(f"Did not find valid utterance for image #{sample_id}.")
assert utterance
# Apply prompt template
rephrased_utterance = preprocess_prompt_elam(utterance, label_class)
# Process the image and text
inputs = processor.process(
images=[image],
text=rephrased_utterance,
)
# Move inputs to the correct device and make a batch of size 1, cast to bfloat16
inputs_bfloat16 = {}
for k, v in inputs.items():
if v.dtype == torch.float32:
inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0)
else:
inputs_bfloat16[k] = v.to(model.device).unsqueeze(0)
inputs = inputs_bfloat16 # Replace original inputs with the correctly typed inputs
# Generate output
output = model.generate_from_batch(
inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer
)
# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs["input_ids"].size(1) :]
response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# write current image with current label
os.makedirs(DEBUG_DIR, exist_ok=True)
# append line to jsonl
model_output_line = {
"sample_id": sample_id,
"input": rephrased_utterance,
"output": response,
"image_size": image.size,
"gt_class": label_class,
"gt_box": gt_box,
"gt_status": gt_status,
"language": sample["language"],
}
append_to_jsonl_file(model_output_line, target_path=model_outputs_path)
if __name__ == "__main__":
# Set dataset
dataset = load_dataset("sparks-solutions/AutomotiveUI-Bench-4K")["test"]
# Load the processor
model_name = "sparks-solutions/ELAM-7B"
processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
)
run_inference(dataset=dataset, processor=processor, model=model)
Parsing results and calculating metrics
import argparse
import json
import re
from pathlib import Path
from typing import Tuple
import numpy as np
def read_jsonl_file(path: str) -> list:
assert str(path).endswith(".jsonl")
data_list = []
with open(path, "r", encoding="utf-8") as file:
for line in file:
data = json.loads(line)
data_list.append(data)
return data_list
def write_json_file(data: dict | list, path: str) -> None:
assert str(path).endswith(".json")
with open(path, "w", encoding="utf-8") as outfile:
json.dump(data, outfile, ensure_ascii=False, indent=4)
def postprocess_response_elam(response: str) -> Tuple[float, float]:
"""Parse Molmo-style point coordinates from string."""
pattern = r'<point x="(?P<x>\d+\.\d+)" y="(?P<y>\d+\.\d+)"'
match = re.search(pattern, response)
if match:
x_coord_raw = float(match.group("x"))
y_coord_raw = float(match.group("y"))
x_coord = x_coord_raw / 100
y_coord = y_coord_raw / 100
return [x_coord, y_coord]
else:
return [-1, -1]
def pred_center_in_gt(predicted_boxes, ground_truth_boxes):
"""Calculate the percentage of predictions where the predicted center is in the ground truth box and return the indices where it is not.
Args:
predicted_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes or predicted points
ground_truth_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes
Returns:
float: percentage of predictions where the predicted center is in the ground truth box
list: indices of predictions where the center is not in the ground truth box
"""
if ground_truth_boxes.size == 0: # Check for empty numpy array just to be explicit
return -1
if predicted_boxes.shape[1] == 2:
predicted_centers = predicted_boxes
else:
# Calculate the centers of the bounding boxes
predicted_centers = (predicted_boxes[:, :2] + predicted_boxes[:, 2:]) / 2
# Check if predicted centers are within ground truth boxes
within_gt = (
(predicted_centers[:, 0] >= ground_truth_boxes[:, 0])
& (predicted_centers[:, 0] <= ground_truth_boxes[:, 2])
& (predicted_centers[:, 1] >= ground_truth_boxes[:, 1])
& (predicted_centers[:, 1] <= ground_truth_boxes[:, 3])
)
return within_gt
def to_mean_percent(metrics: list | np.ndarray) -> float:
"""Calculate mean of array and multiply by 100."""
return np.mean(metrics) * 100
def calculate_alignment_numpy(array1, array2):
"""Returns boolean array where values are equal"""
if array1.size == 0: # Check for empty numpy array just to be explicit
return [], [], []
# Overall Accuracy
overall_hits = array1 == array2
# True Ground Truth Accuracy
true_ground_truth_indices = array2 == True # Boolean mask for True ground truth
true_ground_truth_predictions = array1[true_ground_truth_indices]
true_ground_truth_actuals = array2[true_ground_truth_indices]
true_gt_hits = true_ground_truth_predictions == true_ground_truth_actuals
# False Ground Truth Accuracy
false_ground_truth_indices = array2 == False # Boolean mask for False ground truth
false_ground_truth_predictions = array1[false_ground_truth_indices]
false_ground_truth_actuals = array2[false_ground_truth_indices]
false_gt_hits = false_ground_truth_predictions == false_ground_truth_actuals
return overall_hits, true_gt_hits, false_gt_hits
def clip_non_minus_one(arr):
"""Clips values in a NumPy array to [0, 1] but leaves -1 values unchanged."""
# Create a boolean mask for values NOT equal to -1
mask = arr != -1
# Create a copy of the array to avoid modifying the original in-place
clipped_arr = np.copy(arr)
# Apply clipping ONLY to the elements where the mask is True
clipped_arr[mask] = np.clip(clipped_arr[mask], 0, 1)
return clipped_arr
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run model inference and save outputs.")
parser.add_argument(
"-m", "--model_output_path", type=str, help="Path to json that contains model outputs from eval.", required=True
)
args = parser.parse_args()
EVAL_PATH = args.model_output_path
eval_jsonl_data = read_jsonl_file(EVAL_PATH)
ta_pred_bboxes, ta_gt_bboxes = [], []
er_pred_bboxes, er_gt_bboxes = [], []
er_pred_conclusion, er_gt_conclusion = [], []
ta_out_images, er_out_images = [], []
failed_pred_responses = []
er_en_ids = []
ta_en_ids = []
ta_de_ids = []
er_de_ids = []
for line in eval_jsonl_data:
# Read data from line
image_width, image_height = line["image_size"]
gt_box = line["gt_box"]
lang = line["language"]
response_raw = line["output"]
if "Test Action" == line["gt_class"]:
# Parse point/box from response and clip to image
parsed_response = postprocess_response_elam(response_raw)
if parsed_response[0] == -1:
failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw})
parsed_response = np.array(parsed_response)
parsed_response = clip_non_minus_one(parsed_response).tolist()
# Append results
ta_gt_bboxes.append(gt_box)
ta_pred_bboxes.append(parsed_response)
if lang == "DE":
ta_de_ids.append(len(ta_pred_bboxes) - 1) # append id
elif lang == "EN":
ta_en_ids.append(len(ta_pred_bboxes) - 1)
elif "Expected Result" in line["gt_class"]:
er_gt_bboxes.append(gt_box)
# Parse point/box from response and clip to image
parsed_response = postprocess_response_elam(response_raw)
if parsed_response[0] == -1:
failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw})
parsed_response = np.array(parsed_response)
parsed_response = clip_non_minus_one(parsed_response).tolist()
er_pred_bboxes.append(parsed_response)
# Read evaluation conclusion
gt_conclusion = line["gt_status"].upper()
gt_conclusion = True if gt_conclusion == "PASSED" else False
pred_conclusion = None
if "FAILED" in response_raw or "is not met" in response_raw:
pred_conclusion = False
elif "PASSED" in response_raw or "is met" in response_raw:
pred_conclusion = True
if pred_conclusion is None:
# Make prediction wrong if it couldn't be parsed
pred_conclusion = not gt_conclusion
er_gt_conclusion.append(gt_conclusion)
er_pred_conclusion.append(pred_conclusion)
if lang == "DE":
er_de_ids.append(len(er_pred_bboxes) - 1)
elif lang == "EN":
er_en_ids.append(len(er_pred_bboxes) - 1)
ta_pred_bboxes = np.array(ta_pred_bboxes)
ta_gt_bboxes = np.array(ta_gt_bboxes)
er_pred_bboxes = np.array(er_pred_bboxes)
er_gt_bboxes = np.array(er_gt_bboxes)
er_pred_conclusion = np.array(er_pred_conclusion)
er_gt_conclusion = np.array(er_gt_conclusion)
print(f"{'Test action (pred/gt):':<{36}}{ta_pred_bboxes.shape}, {ta_gt_bboxes.shape}")
print(f"{'Expected results (pred/gt):':<{36}}{er_pred_bboxes.shape}, {er_gt_bboxes.shape}")
# Calculate metrics
ta_pred_hits = pred_center_in_gt(ta_pred_bboxes, ta_gt_bboxes)
score_ta = to_mean_percent(ta_pred_hits)
er_pred_hits = pred_center_in_gt(er_pred_bboxes, er_gt_bboxes)
score_er = to_mean_percent(er_pred_hits)
overall_hits, true_gt_hits, false_gt_hits = calculate_alignment_numpy(er_pred_conclusion, er_gt_conclusion)
score_conclusion = to_mean_percent(overall_hits)
score_conclusion_gt_true = to_mean_percent(true_gt_hits)
score_conclusion_gt_false = to_mean_percent(false_gt_hits)
# Calculate language-specific metrics for TA
score_ta_en = to_mean_percent(ta_pred_hits[ta_en_ids])
score_ta_de = to_mean_percent(ta_pred_hits[ta_de_ids])
# Calculate language-specific metrics for ER (bbox)
score_er_en = to_mean_percent(er_pred_hits[er_en_ids])
score_er_de = to_mean_percent(er_pred_hits[er_de_ids])
# Calculate language-specific metrics for ER (conclusion)
score_conclusion_en = to_mean_percent(overall_hits[er_en_ids])
score_conclusion_de = to_mean_percent(overall_hits[er_de_ids])
print(f"\n{'Test action visual grounding:':<{36}}{score_ta:.1f}")
print(f"{'Expected result visual grounding:':<{36}}{score_er:.1f}")
print(f"{'Expected result evaluation:':<{36}}{score_conclusion:.1f}\n")
eval_out_path = Path(EVAL_PATH).parent / "eval_results.json"
write_json_file(
{
"score_ta": score_ta,
"score_ta_de": score_ta_de,
"score_ta_en": score_ta_en,
"score_er": score_er,
"score_er_de": score_er_de,
"score_er_en": score_er_en,
"score_er_conclusion": score_conclusion,
"score_er_conclusion_de": score_conclusion_de,
"score_er_conclusion_en": score_conclusion_en,
"score_conclusion_gt_true": score_conclusion_gt_true,
"score_conclusion_gt_false": score_conclusion_gt_false,
},
path=eval_out_path,
)
print(f"Stored results at {eval_out_path}")
if failed_pred_responses:
failed_responses_out_path = Path(EVAL_PATH).parent / "failed_responses.json"
write_json_file(failed_pred_responses, failed_responses_out_path)
print(f"Stored non-parsable responses at {failed_responses_out_path}")
Results
Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation |
---|---|---|---|
InternVL2.5-8B | 26.6 | 5.7 | 64.8 |
TinyClick | 61.0 | 54.6 | - |
UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - |
Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 |
LAM-270M (TinyClick) | 73.9 | 59.9 | - |
ELAM-7B (Molmo) | 87.6 | 77.5 | 78.2 |
Citation
If you find ELAM or AutomotiveUI-Bench-4K useful in your research, please cite the following paper:
@misc{ernhofer2025leveragingvisionlanguagemodelsvisual,
title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI},
author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann},
year={2025},
eprint={2505.05895},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.05895},
}
Acknowledgements
Funding
This work was supported by German BMBF within the scope of project "KI4BoardNet".