model_id
stringlengths 12
92
| model_card
stringlengths 166
900k
| model_labels
listlengths 2
250
|
---|---|---|
facebook/mask2former-swin-tiny-ade-semantic |
# Mask2Former
Mask2Former model trained on ADE20k semantic segmentation (tiny-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on ADE20k semantic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-tiny-ade-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-ade-semantic")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
facebook/mask2former-swin-base-IN21k-cityscapes-instance |
# Mask2Former
Mask2Former model trained on Cityscapes instance segmentation (base-IN21k version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Cityscapes instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-instance")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
] |
facebook/mask2former-swin-large-cityscapes-instance |
# Mask2Former
Mask2Former model trained on Cityscapes instance segmentation (large-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Cityscapes instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-cityscapes-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-cityscapes-instance")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
] |
facebook/mask2former-swin-base-IN21k-cityscapes-panoptic |
# Mask2Former
Mask2Former model trained on Cityscapes panoptic segmentation (base-IN21k version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Cityscapes panoptic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-panoptic/")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-panoptic/")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_panoptic_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"road",
"sidewalk",
"building",
"wall",
"fence",
"pole",
"traffic light",
"traffic sign",
"vegetation",
"terrain",
"sky",
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
] |
facebook/mask2former-swin-small-cityscapes-semantic |
# Mask2Former
Mask2Former model trained on Cityscapes semantic segmentation (small-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Cityscapes semantic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-cityscapes-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-cityscapes-semantic")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"road",
"sidewalk",
"building",
"wall",
"fence",
"pole",
"traffic light",
"traffic sign",
"vegetation",
"terrain",
"sky",
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
] |
facebook/mask2former-swin-tiny-cityscapes-semantic |
# Mask2Former
Mask2Former model trained on Cityscapes semantic segmentation (tiny-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Cityscapes semantic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-tiny-cityscapes-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-tiny-cityscapes-semantic")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"road",
"sidewalk",
"building",
"wall",
"fence",
"pole",
"traffic light",
"traffic sign",
"vegetation",
"terrain",
"sky",
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
] |
Xpitfire/segformer-finetuned-segments-cmp-facade |
**Semantic segmentation** is the task of classifying each pixel in an image to a corresponding category. It has a wide range of use cases in fields such as medical imaging, autonomous driving, robotics, etc. For the facade dataset we are interested to classify the front-view of buildings based on 12 distinct classes. The classes are as follows: facade, molding, cornice, pillar, window, door, sill, blind, balcony, shop, deco, and background.
In 2014, [Long et al.](https://arxiv.org/abs/1411.4038) published a fundamental paper that used convolutional neural networks for semantic segmentation. More recent successes in computer vision include the usage of Transformers, therefore also the usage in image classification tasks (i.e. [ViT](https://huggingface.co/blog/fine-tune-vit)). In this turn, Transformers have also been used for semantic segmentation, demonstrating excellent performance on several widely used datasets. We will specifically look at the SegFormer, which is a state-of-the-art model architecture for semantic segmentation introduced in 2021. It has a hierarchical Transformer encoder that does not rely on positional encodings and a simple multi-layer perceptron decoder. In this case, we will use SegFormer to classify street view images of buildings.
More, recently, Yin et al. introduced a novel approach to semantic segmentation that achieves state-of-the-art performance in a zero-shot setting. This means that the model is able to achieve results equivalent to supervised methods on various semantic segmentation datasets, without being trained on these datasets. The approach involves replacing class labels with vector-valued embeddings of short paragraphs that describe the class. This allows for the merging of multiple datasets with different class labels and semantics, resulting in a merged dataset of over 2 million images. The resulting model achieves performance equal to state-of-the-art supervised methods on 7 benchmark datasets, and even outperforms methods when fine-tuned on standard semantic segmentation datasets.
See the full tutorial [here](https://github.com/Xpitfire/SSIW). | [
"unknown",
"background",
"facade",
"window",
"door",
"cornice",
"sill",
"balcony",
"blind",
"molding",
"deco",
"pillar",
"shop"
] |
openmmlab/upernet-convnext-tiny |
# UperNet, ConvNeXt tiny-sized backbone
UperNet framework for semantic segmentation, leveraging a ConvNeXt backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a ConvNeXt backbone was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545).
Disclaimer: The team releasing UperNet + ConvNeXt did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-convnext-small |
# UperNet, ConvNeXt small-sized backbone
UperNet framework for semantic segmentation, leveraging a ConvNeXt backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a ConvNeXt backbone was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545).
Disclaimer: The team releasing UperNet + ConvNeXt did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-convnext-base |
# UperNet, ConvNeXt base-sized backbone
UperNet framework for semantic segmentation, leveraging a ConvNeXt backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a ConvNeXt backbone was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545).
Disclaimer: The team releasing UperNet + ConvNeXt did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-convnext-large |
# UperNet, ConvNeXt large-sized backbone
UperNet framework for semantic segmentation, leveraging a ConvNeXt backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a ConvNeXt backbone was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545).
Disclaimer: The team releasing UperNet + ConvNeXt did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-convnext-xlarge |
# UperNet, ConvNeXt xlarge-sized backbone
UperNet framework for semantic segmentation, leveraging a ConvNeXt backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a ConvNeXt backbone was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545).
Disclaimer: The team releasing UperNet + ConvNeXt did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-swin-tiny |
# UperNet, Swin Transformer tiny-sized backbone
UperNet framework for semantic segmentation, leveraging a Swin Transformer backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a Swin Transformer backbone was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030).
Disclaimer: The team releasing UperNet + Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-swin-small |
# UperNet, Swin Transformer small-sized backbone
UperNet framework for semantic segmentation, leveraging a Swin Transformer backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a Swin Transformer backbone was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030).
Disclaimer: The team releasing UperNet + Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-swin-base |
# UperNet, Swin Transformer base-sized backbone
UperNet framework for semantic segmentation, leveraging a Swin Transformer backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a Swin Transformer backbone was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030).
Disclaimer: The team releasing UperNet + Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
openmmlab/upernet-swin-large |
# UperNet, Swin Transformer large-sized backbone
UperNet framework for semantic segmentation, leveraging a Swin Transformer backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al.
Combining UperNet with a Swin Transformer backbone was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030).
Disclaimer: The team releasing UperNet + Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).
Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for
fine-tuned versions (with various backbones) on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
facebook/mask2former-swin-base-IN21k-cityscapes-semantic |
# Mask2Former
Mask2Former model trained on Cityscapes semantic segmentation (base-IN21k, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on Cityscapes semantic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-semantic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-IN21k-cityscapes-semantic")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"road",
"sidewalk",
"building",
"wall",
"fence",
"pole",
"traffic light",
"traffic sign",
"vegetation",
"terrain",
"sky",
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
] |
facebook/mask2former-swin-base-IN21k-coco-instance |
# Mask2Former
Mask2Former model trained on COCO instance segmentation (base-sized IN21k version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import requests
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on COCO instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-IN21k-coco-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-IN21k-coco-instance")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"bicycle",
"car",
"motorbike",
"aeroplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"sofa",
"pottedplant",
"bed",
"diningtable",
"toilet",
"tvmonitor",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush"
] |
andrewljohnson/segformer-b0-finetuned-magic-cards-230117 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-magic-cards-230117
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the andrewljohnson/magic_cards dataset.
It achieves the following results on the evaluation set:
- Loss: 0.059
- Mean Iou: 0.654
- Mean Accuracy: 0.981
- Overall Accuracy: 0.983
- Accuracy Unlabeled: nan
- Accuracy Front: 0.964
- Accuracy Back: 0.998
- Iou Unlabeled: 0.0
- Iou Front: 0.965
- Iou Back: 0.998
## Model description
Segment magic card front and backs.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.13.0.dev0
| [
"unlabeled",
"front",
"back"
] |
andrewljohnson/segformer-b5-finetuned-magic-cards-230117 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-magic-cards-230117
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2096
- Mean Iou: 0.6629
- Mean Accuracy: 0.9944
- Overall Accuracy: 0.9944
- Accuracy Unlabeled: nan
- Accuracy Front: 0.9997
- Accuracy Back: 0.9891
- Iou Unlabeled: 0.0
- Iou Front: 0.9997
- Iou Back: 0.9891
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
| 0.496 | 0.74 | 20 | 0.4441 | 0.6552 | 0.9838 | 0.9838 | nan | 0.9786 | 0.9890 | 0.0 | 0.9786 | 0.9869 |
| 0.1693 | 1.48 | 40 | 0.4098 | 0.6597 | 0.9897 | 0.9897 | nan | 0.9943 | 0.9851 | 0.0 | 0.9943 | 0.9849 |
| 0.1172 | 2.22 | 60 | 0.2734 | 0.6582 | 0.9874 | 0.9874 | nan | 0.9977 | 0.9770 | 0.0 | 0.9977 | 0.9770 |
| 0.1335 | 2.96 | 80 | 0.2637 | 0.6609 | 0.9914 | 0.9914 | nan | 0.9959 | 0.9869 | 0.0 | 0.9959 | 0.9869 |
| 0.0781 | 3.7 | 100 | 0.5178 | 0.6644 | 0.9966 | 0.9966 | nan | 0.9998 | 0.9933 | 0.0 | 0.9998 | 0.9933 |
| 0.1302 | 4.44 | 120 | 0.2753 | 0.6652 | 0.9978 | 0.9978 | nan | 0.9993 | 0.9962 | 0.0 | 0.9993 | 0.9962 |
| 0.0688 | 5.19 | 140 | 0.1458 | 0.6618 | 0.9926 | 0.9926 | nan | 0.9950 | 0.9903 | 0.0 | 0.9950 | 0.9903 |
| 0.0866 | 5.93 | 160 | 0.1763 | 0.6636 | 0.9954 | 0.9954 | nan | 0.9962 | 0.9946 | 0.0 | 0.9962 | 0.9946 |
| 0.0525 | 6.67 | 180 | 0.1812 | 0.6627 | 0.9941 | 0.9941 | nan | 0.9988 | 0.9895 | 0.0 | 0.9988 | 0.9895 |
| 0.0679 | 7.41 | 200 | 0.2246 | 0.6625 | 0.9937 | 0.9937 | nan | 0.9990 | 0.9884 | 0.0 | 0.9990 | 0.9884 |
| 0.0424 | 8.15 | 220 | 0.2079 | 0.6623 | 0.9934 | 0.9935 | nan | 0.9996 | 0.9873 | 0.0 | 0.9996 | 0.9873 |
| 0.0349 | 8.89 | 240 | 0.1559 | 0.6626 | 0.9939 | 0.9940 | nan | 0.9987 | 0.9892 | 0.0 | 0.9987 | 0.9892 |
| 0.0357 | 9.63 | 260 | 0.2096 | 0.6629 | 0.9944 | 0.9944 | nan | 0.9997 | 0.9891 | 0.0 | 0.9997 | 0.9891 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.13.0.dev0
| [
"unlabeled",
"front",
"back"
] |
andrewljohnson/segformer-b5-finetuned-magic-cards-230117-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-magic-cards-230117-2
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0491
- Mean Iou: 0.6649
- Mean Accuracy: 0.9974
- Overall Accuracy: 0.9972
- Accuracy Unlabeled: nan
- Accuracy Front: 0.9990
- Accuracy Back: 0.9957
- Iou Unlabeled: 0.0
- Iou Front: 0.9990
- Iou Back: 0.9957
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
| 0.5968 | 0.33 | 20 | 0.4422 | 0.6366 | 0.9701 | 0.9690 | nan | 0.9812 | 0.9590 | 0.0 | 0.9507 | 0.9590 |
| 0.8955 | 0.66 | 40 | 0.2353 | 0.6496 | 0.9819 | 0.9807 | nan | 0.9944 | 0.9695 | 0.0 | 0.9792 | 0.9695 |
| 0.1269 | 0.98 | 60 | 0.1739 | 0.6566 | 0.9922 | 0.9916 | nan | 0.9979 | 0.9866 | 0.0 | 0.9832 | 0.9866 |
| 0.7629 | 1.31 | 80 | 0.1664 | 0.6561 | 0.9915 | 0.9909 | nan | 0.9975 | 0.9856 | 0.0 | 0.9826 | 0.9856 |
| 0.106 | 1.64 | 100 | 0.1005 | 0.6641 | 0.9968 | 0.9967 | nan | 0.9978 | 0.9959 | 0.0 | 0.9966 | 0.9959 |
| 0.3278 | 1.97 | 120 | 0.0577 | 0.6632 | 0.9948 | 0.9947 | nan | 0.9963 | 0.9934 | 0.0 | 0.9963 | 0.9934 |
| 0.061 | 2.3 | 140 | 0.0655 | 0.6642 | 0.9963 | 0.9962 | nan | 0.9972 | 0.9953 | 0.0 | 0.9972 | 0.9953 |
| 0.0766 | 2.62 | 160 | 0.0470 | 0.6635 | 0.9953 | 0.9954 | nan | 0.9940 | 0.9966 | 0.0 | 0.9940 | 0.9966 |
| 0.0664 | 2.95 | 180 | 0.0436 | 0.6617 | 0.9926 | 0.9931 | nan | 0.9877 | 0.9975 | 0.0 | 0.9877 | 0.9975 |
| 0.0655 | 3.28 | 200 | 0.0632 | 0.6649 | 0.9973 | 0.9971 | nan | 0.9994 | 0.9953 | 0.0 | 0.9994 | 0.9953 |
| 0.0356 | 3.61 | 220 | 0.0755 | 0.6661 | 0.9991 | 0.9991 | nan | 0.9992 | 0.9991 | 0.0 | 0.9992 | 0.9991 |
| 0.0516 | 3.93 | 240 | 0.0470 | 0.6643 | 0.9965 | 0.9963 | nan | 0.9987 | 0.9943 | 0.0 | 0.9987 | 0.9943 |
| 0.0517 | 4.26 | 260 | 0.0481 | 0.6645 | 0.9967 | 0.9965 | nan | 0.9989 | 0.9945 | 0.0 | 0.9989 | 0.9945 |
| 0.1886 | 4.59 | 280 | 0.0823 | 0.6659 | 0.9988 | 0.9987 | nan | 0.9999 | 0.9977 | 0.0 | 0.9999 | 0.9977 |
| 0.0453 | 4.92 | 300 | 0.0491 | 0.6649 | 0.9974 | 0.9972 | nan | 0.9990 | 0.9957 | 0.0 | 0.9990 | 0.9957 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.13.0.dev0
| [
"unlabeled",
"front",
"back"
] |
andrewljohnson/segformer-b5-finetuned-magic-cards-230117-3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-magic-cards-230117-3
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0691
- Mean Iou: 0.6585
- Mean Accuracy: 0.9878
- Overall Accuracy: 0.9912
- Accuracy Unlabeled: nan
- Accuracy Front: 0.9978
- Accuracy Back: 0.9777
- Iou Unlabeled: 0.0
- Iou Front: 0.9978
- Iou Back: 0.9777
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
| 1.2232 | 0.37 | 20 | 0.4691 | 0.6041 | 0.9201 | 0.9218 | nan | 0.9252 | 0.9150 | 0.0 | 0.9252 | 0.8870 |
| 0.2718 | 0.74 | 40 | 0.1983 | 0.6509 | 0.9764 | 0.9785 | nan | 0.9826 | 0.9702 | 0.0 | 0.9826 | 0.9702 |
| 0.255 | 1.11 | 60 | 0.0939 | 0.6524 | 0.9785 | 0.9794 | nan | 0.9812 | 0.9758 | 0.0 | 0.9812 | 0.9758 |
| 0.1103 | 1.48 | 80 | 0.0682 | 0.6536 | 0.9804 | 0.9813 | nan | 0.9830 | 0.9779 | 0.0 | 0.9830 | 0.9779 |
| 0.1373 | 1.85 | 100 | 0.1260 | 0.6631 | 0.9946 | 0.9961 | nan | 0.9989 | 0.9903 | 0.0 | 0.9989 | 0.9903 |
| 0.0566 | 2.22 | 120 | 0.1558 | 0.6578 | 0.9868 | 0.9912 | nan | 0.9999 | 0.9736 | 0.0 | 0.9999 | 0.9736 |
| 0.1535 | 2.59 | 140 | 0.1330 | 0.6558 | 0.9838 | 0.9883 | nan | 0.9973 | 0.9703 | 0.0 | 0.9973 | 0.9703 |
| 0.0586 | 2.96 | 160 | 0.2317 | 0.6599 | 0.9899 | 0.9933 | nan | 1.0000 | 0.9798 | 0.0 | 1.0000 | 0.9798 |
| 0.0727 | 3.33 | 180 | 0.1018 | 0.6586 | 0.9880 | 0.9919 | nan | 0.9995 | 0.9764 | 0.0 | 0.9995 | 0.9764 |
| 0.3588 | 3.7 | 200 | 0.1151 | 0.6608 | 0.9912 | 0.9939 | nan | 0.9993 | 0.9831 | 0.0 | 0.9993 | 0.9831 |
| 0.0463 | 4.07 | 220 | 0.0538 | 0.6610 | 0.9915 | 0.9934 | nan | 0.9969 | 0.9862 | 0.0 | 0.9969 | 0.9862 |
| 0.046 | 4.44 | 240 | 0.1201 | 0.6581 | 0.9871 | 0.9912 | nan | 0.9991 | 0.9751 | 0.0 | 0.9991 | 0.9751 |
| 0.0468 | 4.81 | 260 | 0.0691 | 0.6585 | 0.9878 | 0.9912 | nan | 0.9978 | 0.9777 | 0.0 | 0.9978 | 0.9777 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.13.0.dev0
| [
"unlabeled",
"front",
"back"
] |
mraottth/trashbot_v1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trashbot
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the mraottth/all_locations_pooled dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0191
- Mean Iou: 0.3997
- Mean Accuracy: 0.7995
- Overall Accuracy: 0.7995
- Accuracy Unlabeled: nan
- Accuracy Trash: 0.7995
- Iou Unlabeled: 0.0
- Iou Trash: 0.7995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Trash | Iou Unlabeled | Iou Trash |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
| 0.0748 | 1.0 | 90 | 0.0386 | 0.3630 | 0.7259 | 0.7259 | nan | 0.7259 | 0.0 | 0.7259 |
| 0.039 | 2.0 | 180 | 0.0242 | 0.3803 | 0.7607 | 0.7607 | nan | 0.7607 | 0.0 | 0.7607 |
| 0.0194 | 3.0 | 270 | 0.0242 | 0.3605 | 0.7210 | 0.7210 | nan | 0.7210 | 0.0 | 0.7210 |
| 0.0112 | 4.0 | 360 | 0.0205 | 0.3995 | 0.7991 | 0.7991 | nan | 0.7991 | 0.0 | 0.7991 |
| 0.0169 | 5.0 | 450 | 0.0192 | 0.4000 | 0.8000 | 0.8000 | nan | 0.8000 | 0.0 | 0.8000 |
| 0.041 | 6.0 | 540 | 0.0196 | 0.3838 | 0.7677 | 0.7677 | nan | 0.7677 | 0.0 | 0.7677 |
| 0.0188 | 7.0 | 630 | 0.0191 | 0.4139 | 0.8277 | 0.8277 | nan | 0.8277 | 0.0 | 0.8277 |
| 0.0073 | 8.0 | 720 | 0.0190 | 0.4069 | 0.8138 | 0.8138 | nan | 0.8138 | 0.0 | 0.8138 |
| 0.025 | 9.0 | 810 | 0.0191 | 0.4087 | 0.8174 | 0.8174 | nan | 0.8174 | 0.0 | 0.8174 |
| 0.006 | 10.0 | 900 | 0.0191 | 0.3997 | 0.7995 | 0.7995 | nan | 0.7995 | 0.0 | 0.7995 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
| [
"unlabeled",
"trash"
] |
mraottth/trashbot |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trashbot
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the mraottth/all_locations_pooled dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0189
- Mean Iou: 0.4050
- Mean Accuracy: 0.8101
- Overall Accuracy: 0.8101
- Accuracy Unlabeled: nan
- Accuracy Trash: 0.8101
- Iou Unlabeled: 0.0
- Iou Trash: 0.8101
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Trash | Iou Unlabeled | Iou Trash |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
| 0.0592 | 1.0 | 90 | 0.0387 | 0.3723 | 0.7446 | 0.7446 | nan | 0.7446 | 0.0 | 0.7446 |
| 0.0402 | 2.0 | 180 | 0.0281 | 0.4123 | 0.8247 | 0.8247 | nan | 0.8247 | 0.0 | 0.8247 |
| 0.0209 | 3.0 | 270 | 0.0246 | 0.3691 | 0.7382 | 0.7382 | nan | 0.7382 | 0.0 | 0.7382 |
| 0.0117 | 4.0 | 360 | 0.0210 | 0.3882 | 0.7763 | 0.7763 | nan | 0.7763 | 0.0 | 0.7763 |
| 0.019 | 5.0 | 450 | 0.0198 | 0.3822 | 0.7644 | 0.7644 | nan | 0.7644 | 0.0 | 0.7644 |
| 0.0445 | 6.0 | 540 | 0.0199 | 0.3771 | 0.7542 | 0.7542 | nan | 0.7542 | 0.0 | 0.7542 |
| 0.0195 | 7.0 | 630 | 0.0191 | 0.4177 | 0.8354 | 0.8354 | nan | 0.8354 | 0.0 | 0.8354 |
| 0.008 | 8.0 | 720 | 0.0191 | 0.4060 | 0.8119 | 0.8119 | nan | 0.8119 | 0.0 | 0.8119 |
| 0.0268 | 9.0 | 810 | 0.0188 | 0.4083 | 0.8166 | 0.8166 | nan | 0.8166 | 0.0 | 0.8166 |
| 0.0061 | 10.0 | 900 | 0.0189 | 0.4050 | 0.8101 | 0.8101 | nan | 0.8101 | 0.0 | 0.8101 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
| [
"unlabeled",
"trash"
] |
s3nh/SegFormer-b0-person-segmentation |
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
<img src = 'https://images.unsplash.com/photo-1438761681033-6461ffad8d80?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1170&q=80'>
### Description
Semantic segmentation is a computer vision technique for assigning a label to each pixel in an image, representing the semantic class of the objects or regions in the image.
It's a form of dense prediction because it involves assigning a label to each pixel in an image, instead of just boxes around objects or key points as in object detection or instance segmentation.
The goal of semantic segmentation is to recognize and understand the objects and scenes in an image, and partition the image into segments corresponding to different entities.
## Parameters
```
model = SegformerForSemanticSegmentation.from_pretrained("/notebooks/segformer_5_epoch",
num_labels=2,
id2label=id2label,
label2id=label2id, )
```
## Usage
```python
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# Transforms
_transform = A.Compose([
A.Resize(height = 512, width=512),
ToTensorV2(),
])
trans_image = _transform(image=np.array(image))
outputs = model(trans_image['image'].float().unsqueeze(0))
logits = outputs.logits.cpu()
print(logits.shape)
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(logits,
size=image.size[::-1], # (height, width)
mode='bilinear',
align_corners=False)
seg = upsampled_logits.argmax(dim=1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array([[0, 0, 0],[255, 255, 255]])
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
```
<img src = ''>
| [
"background",
"person"
] |
s3nh/SegFormer-b4-person-segmentation |
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
<img src = 'https://images.unsplash.com/photo-1438761681033-6461ffad8d80?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1170&q=80'>
### Description
Semantic segmentation is a computer vision technique for assigning a label to each pixel in an image, representing the semantic class of the objects or regions in the image.
It's a form of dense prediction because it involves assigning a label to each pixel in an image, instead of just boxes around objects or key points as in object detection or instance segmentation.
The goal of semantic segmentation is to recognize and understand the objects and scenes in an image, and partition the image into segments corresponding to different entities.
## Parameters
```
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b4",
num_labels=2,
id2label=id2label,
label2id=label2id, )
```
## Usage
```python
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# Transforms
_transform = A.Compose([
A.Resize(height = 512, width=512),
ToTensorV2(),
])
trans_image = _transform(image=np.array(image))
outputs = model(trans_image['image'].float().unsqueeze(0))
logits = outputs.logits.cpu()
print(logits.shape)
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(logits,
size=image.size[::-1], # (height, width)
mode='bilinear',
align_corners=False)
seg = upsampled_logits.argmax(dim=1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array([[0, 0, 0],[255, 255, 255]])
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
```
<img src = ''>
#Metric
Todo
#Note
This model was not built by using Huggingface based feature extractor, so automatic api could not work. | [
"background",
"person"
] |
s3nh/SegFormer-b5-person-segm |
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
<img src = 'https://images.unsplash.com/photo-1438761681033-6461ffad8d80?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1170&q=80'>
### Description
Semantic segmentation is a computer vision technique for assigning a label to each pixel in an image, representing the semantic class of the objects or regions in the image.
It's a form of dense prediction because it involves assigning a label to each pixel in an image, instead of just boxes around objects or key points as in object detection or instance segmentation.
The goal of semantic segmentation is to recognize and understand the objects and scenes in an image, and partition the image into segments corresponding to different entities.
## Parameters
```
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b5",
num_labels=2,
id2label=id2label,
label2id=label2id, )
```
## Usage
```python
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# Transforms
_transform = A.Compose([
A.Resize(height = 512, width=512),
ToTensorV2(),
])
trans_image = _transform(image=np.array(image))
outputs = model(trans_image['image'].float().unsqueeze(0))
logits = outputs.logits.cpu()
print(logits.shape)
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(logits,
size=image.size[::-1], # (height, width)
mode='bilinear',
align_corners=False)
seg = upsampled_logits.argmax(dim=1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array([[0, 0, 0],[255, 255, 255]])
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
```
<img src = ''>
#Metric
Todo
#Note
This model was not built by using Huggingface based feature extractor, so automatic api could not work. | [
"background",
"person"
] |
DunnBC22/mit-b0-CMP_semantic_seg_with_mps_v2 |
# mit-b0-CMP_semantic_seg_with_mps_v2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0).
It achieves the following results on the evaluation set:
- Loss: 1.0863
- Mean Iou: 0.4097
- Mean Accuracy: 0.5538
- Overall Accuracy: 0.6951
- Per Category Iou:
- Segment 0: 0.5921698801573617
- Segment 1: 0.5795623712718901
- Segment 2: 0.5784812820145221
- Segment 3: 0.2917052691882505
- Segment 4: 0.3792639848157326
- Segment 5: 0.37973303153855376
- Segment 6: 0.4481097636024487
- Segment 7: 0.4354492668218124
- Segment 8: 0.26472453634508664
- Segment 9: 0.4173722023142026
- Segment 10: 0.18166072949276144
- Segment 11: 0.36809541729585366
- Per Category Accuracy:
- Segment 0: 0.6884460857323806
- Segment 1: 0.7851625477616788
- Segment 2: 0.7322992353412343
- Segment 3: 0.45229387721112274
- Segment 4: 0.5829333862769369
- Segment 5: 0.5516333441001092
- Segment 6: 0.5904157921999404
- Segment 7: 0.5288772981353482
- Segment 8: 0.4518224891972707
- Segment 9: 0.571864661897264
- Segment 10: 0.23178753217655862
- Segment 11: 0.47833833709905393
## Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Segmentation/Trained%2C%20But%20to%20My%20Standard/Center%20for%20Machine%20Perception/Version%202/Center%20for%20Machine%20Perception%20-%20semantic_segmentation_v2.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to use it, but remember that it is at your own risk/peril.
## Training and evaluation data
Dataset Source: https://huggingface.co/datasets/Xpitfire/cmp_facade
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
#### Overall Dataset Metrics
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|
| 1.6807 | 1.0 | 189 | 1.3310 | 0.2226 | 0.3388 | 0.5893 |
| 1.1837 | 2.0 | 378 | 1.1731 | 0.2602 | 0.3876 | 0.6122 |
| 1.0241 | 3.0 | 567 | 1.0485 | 0.2915 | 0.3954 | 0.6393 |
| 0.9353 | 4.0 | 756 | 0.9943 | 0.3054 | 0.4021 | 0.6570 |
| 0.8717 | 5.0 | 945 | 1.0010 | 0.3299 | 0.4440 | 0.6530 |
| 0.8238 | 6.0 | 1134 | 0.9537 | 0.3546 | 0.4771 | 0.6701 |
| 0.7415 | 8.0 | 1512 | 0.9738 | 0.3554 | 0.4634 | 0.6733 |
| 0.7708 | 7.0 | 1323 | 0.9789 | 0.3550 | 0.4837 | 0.6683 |
| 0.7018 | 9.0 | 1701 | 0.9449 | 0.3667 | 0.4802 | 0.6826 |
| 0.682 | 10.0 | 1890 | 0.9422 | 0.3762 | 0.5047 | 0.6805 |
| 0.6503 | 11.0 | 2079 | 0.9889 | 0.3785 | 0.5082 | 0.6729 |
| 0.633 | 12.0 | 2268 | 0.9594 | 0.3901 | 0.5224 | 0.6797 |
| 0.6035 | 13.0 | 2457 | 0.9612 | 0.3939 | 0.5288 | 0.6834 |
| 0.5874 | 14.0 | 2646 | 0.9657 | 0.3939 | 0.5383 | 0.6844 |
| 0.5684 | 15.0 | 2835 | 0.9762 | 0.3950 | 0.5446 | 0.6855 |
| 0.5485 | 16.0 | 3024 | 1.0645 | 0.3794 | 0.5095 | 0.6704 |
| 0.5402 | 17.0 | 3213 | 0.9747 | 0.4044 | 0.5600 | 0.6839 |
| 0.5275 | 18.0 | 3402 | 1.0054 | 0.3944 | 0.5411 | 0.6790 |
| 0.5032 | 19.0 | 3591 | 1.0014 | 0.3973 | 0.5256 | 0.6875 |
| 0.4985 | 20.0 | 3780 | 0.9893 | 0.3990 | 0.5468 | 0.6883 |
| 0.4925 | 21.0 | 3969 | 1.0416 | 0.3955 | 0.5339 | 0.6806 |
| 0.4772 | 22.0 | 4158 | 1.0142 | 0.3969 | 0.5476 | 0.6838 |
| 0.4707 | 23.0 | 4347 | 0.9896 | 0.4077 | 0.5458 | 0.6966 |
| 0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 |
| 0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 |
| 0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 |
| 0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 |
| 0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 |
| 0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 |
| 0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 |
| 0.4106 | 31.0 | 5859 | 1.0573 | 0.4113 | 0.5520 | 0.6937 |
| 0.4102 | 32.0 | 6048 | 1.0616 | 0.4043 | 0.5444 | 0.6904 |
| 0.394 | 33.0 | 6237 | 1.0244 | 0.4104 | 0.5587 | 0.6957 |
| 0.3865 | 34.0 | 6426 | 1.0618 | 0.4086 | 0.5468 | 0.6922 |
| 0.3816 | 35.0 | 6615 | 1.0515 | 0.4109 | 0.5587 | 0.6937 |
| 0.3803 | 36.0 | 6804 | 1.0709 | 0.4118 | 0.5507 | 0.6982 |
| 0.3841 | 37.0 | 6993 | 1.0646 | 0.4102 | 0.5423 | 0.7000 |
| 0.383 | 38.0 | 7182 | 1.0769 | 0.4076 | 0.5463 | 0.6981 |
| 0.3831 | 39.0 | 7371 | 1.0821 | 0.4081 | 0.5438 | 0.6949 |
| 0.3701 | 40.0 | 7560 | 1.0971 | 0.4094 | 0.5503 | 0.6939 |
| 0.3728 | 41.0 | 7749 | 1.0850 | 0.4073 | 0.5426 | 0.6955 |
| 0.3693 | 42.0 | 7938 | 1.0969 | 0.4065 | 0.5503 | 0.6922 |
| 0.3627 | 43.0 | 8127 | 1.0932 | 0.4087 | 0.5497 | 0.6948 |
| 0.3707 | 44.0 | 8316 | 1.1095 | 0.4071 | 0.5449 | 0.6950 |
| 0.3715 | 45.0 | 8505 | 1.0884 | 0.4110 | 0.5481 | 0.6962 |
| 0.3637 | 46.0 | 8694 | 1.0893 | 0.4116 | 0.5565 | 0.6948 |
| 0.3581 | 47.0 | 8883 | 1.1164 | 0.4080 | 0.5443 | 0.6938 |
| 0.3595 | 48.0 | 9072 | 1.1264 | 0.4056 | 0.5374 | 0.6942 |
| 0.3604 | 49.0 | 9261 | 1.0948 | 0.4104 | 0.5508 | 0.6953 |
| 0.3541 | 50.0 | 9450 | 1.0863 | 0.4097 | 0.5538 | 0.6951 |
#### Per Category IoU For Each Segment
| Epoch | Segment 0 | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segment 8 | Segment 9 | Segment 10 | Segment 11 |
|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 1.0 | 0.4635 | 0.4905 | 0.4698 | 0.0 | 0.2307 | 0.1515 | 0.2789 | 0.0002 | 0.0250 | 0.3527 | 0.0 | 0.2087 |
| 2.0 | 0.4240 | 0.5249 | 0.5152 | 0.0057 | 0.2636 | 0.2756 | 0.3312 | 0.0575 | 0.0539 | 0.3860 | 0.0 | 0.2854 |
| 3.0 | 0.5442 | 0.5037 | 0.5329 | 0.0412 | 0.3062 | 0.2714 | 0.3820 | 0.1430 | 0.0796 | 0.4007 | 0.0002 | 0.2929 |
| 4.0 | 0.5776 | 0.5289 | 0.5391 | 0.1171 | 0.3137 | 0.2600 | 0.3664 | 0.1527 | 0.1074 | 0.3935 | 0.0002 | 0.3078 |
| 5.0 | 0.4790 | 0.5506 | 0.5472 | 0.1547 | 0.3372 | 0.3297 | 0.4151 | 0.2339 | 0.1709 | 0.4081 | 0.0008 | 0.3314 |
| 6.0 | 0.5572 | 0.5525 | 0.5611 | 0.2076 | 0.3434 | 0.3163 | 0.4103 | 0.3279 | 0.2107 | 0.4191 | 0.0067 | 0.3418 |
| 7.0 | 0.5310 | 0.5634 | 0.5594 | 0.2299 | 0.3424 | 0.3375 | 0.4050 | 0.2883 | 0.2197 | 0.4142 | 0.0316 | 0.3373 |
| 8.0 | 0.5366 | 0.5659 | 0.5550 | 0.2331 | 0.3497 | 0.3334 | 0.4301 | 0.3401 | 0.1989 | 0.4181 | 0.0358 | 0.2680 |
| 9.0 | 0.5798 | 0.5657 | 0.5624 | 0.2368 | 0.3648 | 0.3271 | 0.4250 | 0.3207 | 0.2096 | 0.4236 | 0.0504 | 0.3346 |
| 10.0 | 0.5802 | 0.5622 | 0.5585 | 0.2340 | 0.3793 | 0.3407 | 0.4277 | 0.3801 | 0.2301 | 0.4216 | 0.0640 | 0.3367 |
| 11.0 | 0.5193 | 0.5649 | 0.5605 | 0.2698 | 0.3772 | 0.3526 | 0.4342 | 0.3433 | 0.2415 | 0.4336 | 0.0889 | 0.3562 |
| 12.0 | 0.5539 | 0.5641 | 0.5679 | 0.2658 | 0.3757 | 0.3510 | 0.4257 | 0.3993 | 0.2354 | 0.4338 | 0.1800 | 0.3287 |
| 13.0 | 0.5663 | 0.5666 | 0.5679 | 0.2631 | 0.3726 | 0.3609 | 0.4351 | 0.3759 | 0.2511 | 0.4256 | 0.1737 | 0.3681 |
| 14.0 | 0.5807 | 0.5670 | 0.5679 | 0.2670 | 0.3594 | 0.3605 | 0.4393 | 0.3863 | 0.2406 | 0.4228 | 0.1705 | 0.3652 |
| 15.0 | 0.5800 | 0.5711 | 0.5671 | 0.2825 | 0.3664 | 0.3587 | 0.4408 | 0.4021 | 0.2540 | 0.4246 | 0.1376 | 0.3548 |
| 16.0 | 0.4855 | 0.5683 | 0.5685 | 0.2612 | 0.3832 | 0.3628 | 0.4378 | 0.4056 | 0.2525 | 0.4206 | 0.1242 | 0.2825 |
| 17.0 | 0.5697 | 0.5674 | 0.5687 | 0.2971 | 0.3767 | 0.3741 | 0.4486 | 0.4126 | 0.2489 | 0.4260 | 0.1874 | 0.3757 |
| 18.0 | 0.5341 | 0.5728 | 0.5616 | 0.2827 | 0.3823 | 0.3782 | 0.4298 | 0.4070 | 0.2578 | 0.4195 | 0.1448 | 0.3632 |
| 19.0 | 0.5696 | 0.5739 | 0.5699 | 0.2918 | 0.3717 | 0.3635 | 0.4444 | 0.4122 | 0.2531 | 0.4142 | 0.1659 | 0.3369 |
| 20.0 | 0.5937 | 0.5702 | 0.5630 | 0.2892 | 0.3790 | 0.3757 | 0.4383 | 0.4110 | 0.2592 | 0.4147 | 0.1291 | 0.3653 |
| 21.0 | 0.5336 | 0.5723 | 0.5732 | 0.2843 | 0.3748 | 0.3738 | 0.4383 | 0.3876 | 0.2598 | 0.4170 | 0.1693 | 0.3624 |
| 22.0 | 0.5634 | 0.5752 | 0.5595 | 0.2783 | 0.3833 | 0.3540 | 0.4448 | 0.4054 | 0.2586 | 0.4145 | 0.1597 | 0.3660 |
| 23.0 | 0.6013 | 0.5801 | 0.5794 | 0.2988 | 0.3816 | 0.3736 | 0.4464 | 0.4241 | 0.2633 | 0.4162 | 0.1747 | 0.3530 |
| 24.0 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 |
| 25.0 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 |
| 26.0 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 |
| 27.0 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922 | - |
| 28.0 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 |
| 29.0 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 |
| 30.0 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 |
| 31.0 | 0.5819 | 0.5787 | 0.5775 | 0.2882 | 0.3861 | 0.3888 | 0.4522 | 0.4207 | 0.2722 | 0.4277 | 0.2050 | 0.3566 |
| 32.0 | 0.5769 | 0.5774 | 0.5737 | 0.2844 | 0.3762 | 0.3768 | 0.4424 | 0.4331 | 0.2649 | 0.3959 | 0.1748 | 0.3744 |
| 33.0 | 0.6076 | 0.5755 | 0.5774 | 0.2887 | 0.3833 | 0.3803 | 0.4483 | 0.4329 | 0.2687 | 0.4194 | 0.1884 | 0.3547 |
| 34.0 | 0.5729 | 0.5787 | 0.5789 | 0.2853 | 0.3854 | 0.3735 | 0.4469 | 0.4279 | 0.2694 | 0.4240 | 0.1986 | 0.3613 |
| 35.0 | 0.5942 | 0.5769 | 0.5777 | 0.2873 | 0.3867 | 0.3811 | 0.4448 | 0.4281 | 0.2669 | 0.4147 | 0.1956 | 0.3774 |
| 36.0 | 0.6024 | 0.5819 | 0.5782 | 0.2870 | 0.3850 | 0.3781 | 0.4469 | 0.4259 | 0.2696 | 0.4177 | 0.1885 | 0.3802 |
| 37.0 | 0.6099 | 0.5822 | 0.5787 | 0.2920 | 0.3827 | 0.3739 | 0.4416 | 0.4271 | 0.2646 | 0.4200 | 0.1864 | 0.3637 |
| 38.0 | 0.6028 | 0.5823 | 0.5799 | 0.2887 | 0.3828 | 0.3770 | 0.4470 | 0.4238 | 0.2639 | 0.4197 | 0.1617 | 0.3610 |
| 39.0 | 0.5856 | 0.5809 | 0.5772 | 0.2889 | 0.3772 | 0.3683 | 0.4493 | 0.4296 | 0.2665 | 0.4112 | 0.1902 | 0.3723 |
| 40.0 | 0.5830 | 0.5808 | 0.5785 | 0.2947 | 0.3803 | 0.3832 | 0.4496 | 0.4284 | 0.2675 | 0.4111 | 0.1913 | 0.3644 |
| 41.0 | 0.5853 | 0.5827 | 0.5786 | 0.2921 | 0.3809 | 0.3712 | 0.4464 | 0.4330 | 0.2670 | 0.4180 | 0.1631 | 0.3694 |
| 42.0 | 0.5756 | 0.5804 | 0.5766 | 0.2872 | 0.3775 | 0.3786 | 0.4480 | 0.4396 | 0.2669 | 0.4132 | 0.1619 | 0.3729 |
| 43.0 | 0.5872 | 0.5821 | 0.5762 | 0.2896 | 0.3820 | 0.3742 | 0.4499 | 0.4346 | 0.2685 | 0.4164 | 0.1848 | 0.3597 |
| 44.0 | 0.5894 | 0.5823 | 0.5774 | 0.2917 | 0.3801 | 0.3754 | 0.4476 | 0.4287 | 0.2635 | 0.4096 | 0.1911 | 0.3478 |
| 45.0 | 0.5912 | 0.5809 | 0.5791 | 0.2980 | 0.3817 | 0.3750 | 0.4483 | 0.4349 | 0.2677 | 0.4155 | 0.1909 | 0.3686 |
| 46.0 | 0.5922 | 0.5794 | 0.5788 | 0.2952 | 0.3804 | 0.3754 | 0.4487 | 0.4356 | 0.2641 | 0.4159 | 0.2068 | 0.3666 |
| 47.0 | 0.5748 | 0.5822 | 0.5779 | 0.2909 | 0.3849 | 0.3751 | 0.4487 | 0.4350 | 0.2687 | 0.4150 | 0.1785 | 0.3643 |
| 48.0 | 0.5787 | 0.5823 | 0.5789 | 0.2896 | 0.3819 | 0.3750 | 0.4479 | 0.4224 | 0.2665 | 0.4140 | 0.1723 | 0.3580 |
| 49.0 | 0.5878 | 0.5812 | 0.5782 | 0.2930 | 0.3807 | 0.3796 | 0.4482 | 0.4364 | 0.2659 | 0.4139 | 0.1915 | 0.3678 |
| 50.0 | 0.5922 | 0.5796 | 0.5785 | 0.2917 | 0.3793 | 0.3797 | 0.4481 | 0.4354 | 0.2647 | 0.4174 | 0.1817 | 0.3681 |
#### Per Category Accuracy For Each Segment
| Epoch | Segment 0 | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segment 8 | Segment 9 | Segment 10 | Segment 11 |
|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 1.0 | 0.6133 | 0.6847 | 0.7408 | 0.0 | 0.4973 | 0.1720 | 0.4073 | 0.0002 | 0.0255 | 0.6371 | 0.0 | 0.2874 |
| 2.0 | 0.4782 | 0.7844 | 0.6966 | 0.0057 | 0.5735 | 0.3684 | 0.6226 | 0.0577 | 0.0563 | 0.5907 | 0.0 | 0.4168 |
| 3.0 | 0.8126 | 0.6852 | 0.6683 | 0.0420 | 0.4972 | 0.3418 | 0.5121 | 0.1453 | 0.0849 | 0.5882 | 0.0002 | 0.3672 |
| 4.0 | 0.8079 | 0.7362 | 0.6803 | 0.1231 | 0.5129 | 0.3324 | 0.4212 | 0.1554 | 0.1223 | 0.5587 | 0.0002 | 0.3751 |
| 5.0 | 0.5408 | 0.8111 | 0.7439 | 0.1647 | 0.5336 | 0.4720 | 0.5650 | 0.2459 | 0.2127 | 0.6032 | 0.0008 | 0.4343 |
| 6.0 | 0.6870 | 0.7532 | 0.7389 | 0.2428 | 0.5081 | 0.4173 | 0.5923 | 0.3710 | 0.3117 | 0.6181 | 0.0068 | 0.4785 |
| 7.0 | 0.6050 | 0.7961 | 0.7434 | 0.2876 | 0.5835 | 0.4949 | 0.5608 | 0.3103 | 0.3672 | 0.6185 | 0.0345 | 0.4022 |
| 8.0 | 0.6081 | 0.8461 | 0.6598 | 0.3035 | 0.5720 | 0.4540 | 0.5735 | 0.3849 | 0.2642 | 0.5608 | 0.0379 | 0.2962 |
| 9.0 | 0.7241 | 0.7684 | 0.7677 | 0.2958 | 0.5321 | 0.4212 | 0.5547 | 0.3513 | 0.2813 | 0.5645 | 0.0544 | 0.4465 |
| 10.0 | 0.7124 | 0.7649 | 0.7024 | 0.2879 | 0.5535 | 0.4413 | 0.6310 | 0.4960 | 0.3982 | 0.5592 | 0.0724 | 0.4370 |
| 11.0 | 0.5876 | 0.8060 | 0.7296 | 0.3838 | 0.5267 | 0.4983 | 0.5902 | 0.3838 | 0.4151 | 0.5987 | 0.1030 | 0.4756 |
| 12.0 | 0.6497 | 0.7807 | 0.7448 | 0.4018 | 0.5381 | 0.4615 | 0.5849 | 0.4883 | 0.3248 | 0.6063 | 0.2918 | 0.3958 |
| 13.0 | 0.6650 | 0.7792 | 0.7595 | 0.4049 | 0.5501 | 0.4940 | 0.5831 | 0.4375 | 0.3843 | 0.5591 | 0.2578 | 0.4711 |
| 14.0 | 0.6881 | 0.7715 | 0.7076 | 0.4518 | 0.6011 | 0.4900 | 0.6235 | 0.4466 | 0.3627 | 0.5934 | 0.2537 | 0.4702 |
| 15.0 | 0.6690 | 0.7721 | 0.7253 | 0.4607 | 0.6286 | 0.4900 | 0.5936 | 0.4951 | 0.4337 | 0.6295 | 0.1749 | 0.4630 |
| 16.0 | 0.5250 | 0.8335 | 0.7460 | 0.3742 | 0.6114 | 0.4823 | 0.5880 | 0.5021 | 0.4084 | 0.5757 | 0.1498 | 0.3171 |
| 17.0 | 0.6652 | 0.7673 | 0.7058 | 0.4318 | 0.5995 | 0.5137 | 0.6112 | 0.5596 | 0.4548 | 0.5819 | 0.2821 | 0.5465 |
| 18.0 | 0.6012 | 0.8091 | 0.6765 | 0.4561 | 0.5707 | 0.5393 | 0.6255 | 0.5679 | 0.4347 | 0.5567 | 0.1806 | 0.4751 |
| 19.0 | 0.6634 | 0.8079 | 0.6986 | 0.4389 | 0.5274 | 0.4876 | 0.6232 | 0.5022 | 0.3717 | 0.5244 | 0.2232 | 0.4388 |
| 20.0 | 0.7110 | 0.7679 | 0.6952 | 0.4875 | 0.5261 | 0.5549 | 0.6444 | 0.5301 | 0.4512 | 0.5441 | 0.1603 | 0.4888 |
| 21.0 | 0.5945 | 0.8130 | 0.7299 | 0.4511 | 0.5922 | 0.5324 | 0.5643 | 0.4341 | 0.4067 | 0.5834 | 0.2272 | 0.4781 |
| 22.0 | 0.6478 | 0.7921 | 0.6887 | 0.4826 | 0.5784 | 0.4599 | 0.6029 | 0.5938 | 0.4905 | 0.5605 | 0.2094 | 0.4644 |
| 23.0 | 0.7110 | 0.7878 | 0.7192 | 0.4629 | 0.5670 | 0.5061 | 0.5891 | 0.5354 | 0.4442 | 0.5585 | 0.2280 | 0.4401 |
| 24.0 | 0.7277 | 0.7718 | 0.7095 | 0.4789 | 0.5401 | 0.5080 | 0.6040 | 0.5314 | 0.4573 | 0.5414 | 0.2853 | 0.5062 |
| 25.0 | 0.6781 | 0.7703 | 0.7305 | 0.5102 | 0.5954 | 0.5311 | 0.5960 | 0.5286 | 0.4647 | 0.5861 | 0.2676 | 0.5242 |
| 26.0 | 0.6603 | 0.7989 | 0.7349 | 0.4689 | 0.5677 | 0.4620 | 0.6111 | 0.5258 | 0.4556 | 0.5889 | 0.2110 | 0.4530 |
| 27.0 | - | - | - | - | - | - | - | - | - | - | - | - |
| 28.0 | 0.7218 | 0.7735 | 0.7273 | 0.4297 | 0.6001 | 0.5321 | - | - | - | - | - | - |
| 29.0 | 0.7054 | 0.7948 | 0.7009 | 0.4552 | 0.5413 | 0.5357 | 0.5421 | 0.5250 | 0.4701 | 0.5949 | 0.3048 | 0.4213 |
| 30.0 | 0.6744 | 0.8004 | 0.7289 | 0.4421 | 0.5410 | 0.5409 | 0.5822 | 0.5334 | 0.4790 | 0.5028 | 0.2177 | 0.4910 |
| 31.0 | 0.6622 | 0.7858 | 0.7534 | 0.3855 | 0.5707 | 0.5889 | 0.5902 | 0.4979 | 0.4268 | 0.6260 | 0.2735 | 0.4630 |
| 32.0 | 0.6629 | 0.7960 | 0.7345 | 0.4132 | 0.5703 | 0.5450 | 0.5855 | 0.5469 | 0.4371 | 0.5087 | 0.2178 | 0.5147 |
| 33.0 | 0.7279 | 0.7642 | 0.7250 | 0.4999 | 0.5330 | 0.5418 | 0.6148 | 0.5491 | 0.4678 | 0.5808 | 0.2548 | 0.4455 |
| 34.0 | 0.6571 | 0.8002 | 0.7190 | 0.4516 | 0.5621 | 0.5183 | 0.5822 | 0.5444 | 0.3994 | 0.5931 | 0.2752 | 0.4588 |
| 35.0 | 0.6946 | 0.7771 | 0.7289 | 0.4481 | 0.5478 | 0.5396 | 0.5834 | 0.5407 | 0.4980 | 0.5652 | 0.2696 | 0.5116 |
| 36.0 | 0.7040 | 0.7881 | 0.7314 | 0.4432 | 0.5429 | 0.5308 | 0.5705 | 0.5124 | 0.4619 | 0.5667 | 0.2465 | 0.5101 |
| 37.0 | 0.7277 | 0.7884 | 0.7298 | 0.4325 | 0.5471 | 0.5196 | 0.5523 | 0.5073 | 0.4390 | 0.5614 | 0.2453 | 0.4575 |
| 38.0 | 0.7092 | 0.7907 | 0.7297 | 0.4713 | 0.5626 | 0.5483 | 0.5667 | 0.5067 | 0.4552 | 0.5608 | 0.2002 | 0.4545 |
| 39.0 | 0.6763 | 0.8000 | 0.7345 | 0.4678 | 0.5544 | 0.5005 | 0.5818 | 0.5236 | 0.4071 | 0.5436 | 0.2496 | 0.4865 |
| 40.0 | 0.6681 | 0.8020 | 0.7232 | 0.4519 | 0.5724 | 0.5465 | 0.5828 | 0.5132 | 0.4686 | 0.5479 | 0.2589 | 0.4678 |
| 41.0 | 0.6698 | 0.8022 | 0.7318 | 0.4297 | 0.5493 | 0.5160 | 0.5727 | 0.5289 | 0.4574 | 0.5711 | 0.1978 | 0.4842 |
| 42.0 | 0.6542 | 0.7977 | 0.7309 | 0.4450 | 0.5653 | 0.5389 | 0.5874 | 0.5625 | 0.4662 | 0.5561 | 0.1969 | 0.5024 |
| 43.0 | 0.6732 | 0.7995 | 0.7126 | 0.4343 | 0.5636 | 0.5217 | 0.5952 | 0.5608 | 0.4679 | 0.5672 | 0.2449 | 0.4559 |
| 44.0 | 0.6797 | 0.8035 | 0.7234 | 0.4571 | 0.5651 | 0.5352 | 0.5728 | 0.5156 | 0.4591 | 0.5458 | 0.2506 | 0.4307 |
| 45.0 | 0.6866 | 0.7923 | 0.7332 | 0.4349 | 0.5523 | 0.5312 | 0.5855 | 0.5314 | 0.4323 | 0.5653 | 0.2488 | 0.4833 |
| 46.0 | 0.6868 | 0.7856 | 0.7297 | 0.4426 | 0.5763 | 0.5288 | 0.5846 | 0.5331 | 0.4573 | 0.5724 | 0.2999 | 0.4811 |
| 47.0 | 0.6506 | 0.8100 | 0.7248 | 0.4534 | 0.5506 | 0.5230 | 0.5954 | 0.5515 | 0.4251 | 0.5546 | 0.2245 | 0.4677 |
| 48.0 | 0.6590 | 0.8106 | 0.7334 | 0.4353 | 0.5542 | 0.5254 | 0.5813 | 0.4869 | 0.4373 | 0.5611 | 0.2135 | 0.4503 |
| 49.0 | 0.6790 | 0.7967 | 0.7227 | 0.4477 | 0.5612 | 0.5523 | 0.5861 | 0.5460 | 0.4310 | 0.5518 | 0.2535 | 0.4817 |
| 50.0 | 0.6884 | 0.7852 | 0.7323 | 0.4523 | 0.5829 | 0.5516 | 0.5904 | 0.5289 | 0.4518 | 0.5719 | 0.2318 | 0.4783 |
* All values in the above charts are rounded to nearest ten-thousandth.
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.12.1 | [
"background",
"facade",
"window",
"door",
"cornice",
"sill",
"balcony",
"blind",
"molding",
"deco",
"pillar",
"shop"
] |
AlmogM/segformer-b0-finetuned-fish-almogm |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-fish-almogm
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0068
- eval_mean_iou: 0.4831
- eval_mean_accuracy: 1.0000
- eval_overall_accuracy: 1.0000
- eval_accuracy_background: 1.0000
- eval_accuracy_fish: nan
- eval_iou_background: 0.9662
- eval_iou_fish: 0.0
- eval_runtime: 62.449
- eval_samples_per_second: 0.801
- eval_steps_per_second: 0.4
- epoch: 6.46
- step: 640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2 | [
"background",
"fish"
] |
yiming19/segformer-b0-finetuned-segments-construction-1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-construction-1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the yiming19/construction_place dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2796
- Mean Iou: 0.3218
- Mean Accuracy: 0.5305
- Overall Accuracy: 0.9276
- Accuracy Unlabeled: nan
- Accuracy Ruler: 0.8954
- Accuracy Socket: 0.0
- Accuracy Wall: 0.9644
- Accuracy Window: nan
- Accuracy Heater: nan
- Accuracy Floor: 0.6710
- Accuracy Ceiling: 0.0
- Accuracy Skirting: nan
- Accuracy Door: 0.6525
- Accuracy Light: nan
- Iou Unlabeled: nan
- Iou Ruler: 0.7222
- Iou Socket: 0.0
- Iou Wall: 0.9553
- Iou Window: 0.0
- Iou Heater: nan
- Iou Floor: 0.2630
- Iou Ceiling: 0.0
- Iou Skirting: 0.0
- Iou Door: 0.6342
- Iou Light: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Ruler | Accuracy Socket | Accuracy Wall | Accuracy Window | Accuracy Heater | Accuracy Floor | Accuracy Ceiling | Accuracy Skirting | Accuracy Door | Accuracy Light | Iou Unlabeled | Iou Ruler | Iou Socket | Iou Wall | Iou Window | Iou Heater | Iou Floor | Iou Ceiling | Iou Skirting | Iou Door | Iou Light |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:---------------:|:-------------:|:---------------:|:---------------:|:--------------:|:----------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:---------:|:----------:|:--------:|:----------:|:----------:|:---------:|:-----------:|:------------:|:--------:|:---------:|
| 1.8126 | 1.43 | 20 | 2.1233 | 0.1955 | 0.5160 | 0.8448 | nan | 0.8191 | 0.0 | 0.8868 | nan | nan | 0.9618 | 0.0 | nan | 0.4281 | nan | 0.0 | 0.5555 | 0.0 | 0.8845 | 0.0 | 0.0 | 0.2971 | 0.0 | 0.0 | 0.4135 | 0.0 |
| 1.905 | 2.86 | 40 | 1.3611 | 0.1827 | 0.4921 | 0.8505 | nan | 0.9275 | 0.0 | 0.9139 | nan | nan | 0.9627 | 0.0 | nan | 0.1484 | nan | nan | 0.5404 | 0.0 | 0.9095 | 0.0 | 0.0 | 0.2289 | 0.0 | 0.0 | 0.1484 | 0.0 |
| 1.1072 | 4.29 | 60 | 1.0502 | 0.2327 | 0.5517 | 0.8903 | nan | 0.9108 | 0.0 | 0.9266 | nan | nan | 0.9367 | 0.0 | nan | 0.5360 | nan | nan | 0.5301 | 0.0 | 0.9206 | 0.0 | 0.0 | 0.3475 | 0.0 | 0.0 | 0.5284 | 0.0 |
| 1.0076 | 5.71 | 80 | 0.8802 | 0.2744 | 0.5609 | 0.9089 | nan | 0.8208 | 0.0 | 0.9410 | nan | nan | 0.9532 | 0.0 | nan | 0.6505 | nan | nan | 0.5500 | 0.0 | 0.9277 | 0.0 | 0.0 | 0.3688 | 0.0 | 0.0 | 0.6227 | nan |
| 1.5533 | 7.14 | 100 | 0.8991 | 0.2846 | 0.5514 | 0.8878 | nan | 0.8918 | 0.0 | 0.9243 | nan | nan | 0.9591 | 0.0 | nan | 0.5332 | nan | nan | 0.5262 | 0.0 | 0.9169 | 0.0 | nan | 0.3209 | 0.0 | 0.0 | 0.5132 | nan |
| 0.9912 | 8.57 | 120 | 0.9340 | 0.2891 | 0.5652 | 0.8854 | nan | 0.9478 | 0.0 | 0.9151 | nan | nan | 0.9438 | 0.0 | nan | 0.5844 | nan | nan | 0.5059 | 0.0 | 0.9098 | 0.0 | nan | 0.3424 | 0.0 | 0.0 | 0.5544 | nan |
| 0.784 | 10.0 | 140 | 0.7017 | 0.3140 | 0.5984 | 0.9173 | nan | 0.9136 | 0.0 | 0.9305 | nan | nan | 0.8971 | 0.0 | nan | 0.8493 | nan | nan | 0.5324 | 0.0 | 0.9224 | 0.0 | 0.0 | 0.5805 | 0.0 | 0.0 | 0.7909 | nan |
| 0.5636 | 11.43 | 160 | 0.6925 | 0.3573 | 0.5978 | 0.9280 | nan | 0.8714 | 0.0 | 0.9412 | nan | nan | 0.8868 | 0.0 | nan | 0.8876 | nan | nan | 0.5701 | 0.0 | 0.9308 | 0.0 | nan | 0.5638 | 0.0 | 0.0 | 0.7935 | nan |
| 1.0692 | 12.86 | 180 | 0.7313 | 0.2931 | 0.5724 | 0.8981 | nan | 0.9587 | 0.0 | 0.9231 | nan | nan | 0.8880 | 0.0 | nan | 0.6647 | nan | nan | 0.4988 | 0.0 | 0.9182 | 0.0 | nan | 0.3342 | 0.0 | 0.0 | 0.5932 | nan |
| 0.7603 | 14.29 | 200 | 0.6907 | 0.2577 | 0.5744 | 0.9001 | nan | 0.9619 | 0.0 | 0.9251 | nan | nan | 0.8930 | 0.0 | nan | 0.6661 | nan | nan | 0.4939 | 0.0 | 0.9208 | 0.0 | 0.0 | 0.3219 | 0.0 | 0.0 | 0.5824 | nan |
| 0.9509 | 15.71 | 220 | 0.5110 | 0.3682 | 0.6069 | 0.9324 | nan | 0.9355 | 0.0 | 0.9417 | nan | nan | 0.8453 | 0.0 | nan | 0.9191 | nan | nan | 0.5671 | 0.0 | 0.9334 | 0.0 | nan | 0.6050 | 0.0 | 0.0 | 0.8403 | nan |
| 0.4254 | 17.14 | 240 | 0.5925 | 0.2961 | 0.5629 | 0.9023 | nan | 0.9646 | 0.0 | 0.9295 | nan | nan | 0.8261 | 0.0 | nan | 0.6569 | nan | nan | 0.5302 | 0.0 | 0.9243 | 0.0 | nan | 0.3138 | 0.0 | 0.0 | 0.6009 | nan |
| 0.3839 | 18.57 | 260 | 0.4226 | 0.3537 | 0.5479 | 0.9367 | nan | 0.9108 | 0.0 | 0.9540 | nan | nan | 0.5102 | 0.0 | nan | 0.9124 | nan | nan | 0.6643 | 0.0 | 0.9426 | 0.0 | nan | 0.3868 | 0.0 | 0.0 | 0.8361 | nan |
| 0.7441 | 20.0 | 280 | 0.5084 | 0.3533 | 0.5993 | 0.9277 | nan | 0.9691 | 0.0 | 0.9391 | nan | nan | 0.8075 | 0.0 | nan | 0.8801 | nan | nan | 0.5527 | 0.0 | 0.9333 | 0.0 | nan | 0.5197 | 0.0 | 0.0 | 0.8208 | nan |
| 0.4374 | 21.43 | 300 | 0.4683 | 0.3038 | 0.5549 | 0.9173 | nan | 0.9662 | 0.0 | 0.9480 | nan | nan | 0.7594 | 0.0 | nan | 0.6558 | nan | nan | 0.6024 | 0.0 | 0.9419 | 0.0 | nan | 0.2804 | 0.0 | 0.0 | 0.6056 | nan |
| 0.6224 | 22.86 | 320 | 0.4100 | 0.3810 | 0.5960 | 0.9374 | nan | 0.9704 | 0.0 | 0.9460 | nan | nan | 0.7131 | 0.0 | nan | 0.9467 | nan | nan | 0.5986 | 0.0 | 0.9401 | 0.0 | nan | 0.6197 | 0.0 | 0.0 | 0.8898 | nan |
| 0.4473 | 24.29 | 340 | 0.3933 | 0.3368 | 0.5431 | 0.9336 | nan | 0.9212 | 0.0 | 0.9620 | nan | nan | 0.6197 | 0.0 | nan | 0.7556 | nan | nan | 0.7221 | 0.0 | 0.9521 | 0.0 | nan | 0.2958 | 0.0 | 0.0 | 0.7245 | nan |
| 0.3364 | 25.71 | 360 | 0.4336 | 0.2976 | 0.5125 | 0.9134 | nan | 0.9408 | 0.0 | 0.9544 | nan | nan | 0.6075 | 0.0 | nan | 0.5721 | nan | nan | 0.6918 | 0.0 | 0.9481 | 0.0 | nan | 0.1998 | 0.0 | 0.0 | 0.5411 | nan |
| 0.281 | 27.14 | 380 | 0.3795 | 0.3689 | 0.5760 | 0.9420 | nan | 0.9250 | 0.0 | 0.9589 | nan | nan | 0.6859 | 0.0 | nan | 0.8863 | nan | nan | 0.7108 | 0.0 | 0.9518 | 0.0 | nan | 0.4576 | 0.0 | 0.0 | 0.8305 | nan |
| 0.3198 | 28.57 | 400 | 0.4023 | 0.3158 | 0.5143 | 0.9238 | nan | 0.9120 | 0.0 | 0.9610 | nan | nan | 0.5580 | 0.0 | nan | 0.6550 | nan | nan | 0.7210 | 0.0 | 0.9519 | 0.0 | nan | 0.2238 | 0.0 | 0.0 | 0.6293 | nan |
| 0.4624 | 30.0 | 420 | 0.3565 | 0.3770 | 0.5774 | 0.9475 | nan | 0.9408 | 0.0 | 0.9613 | nan | nan | 0.6287 | 0.0 | nan | 0.9337 | nan | nan | 0.6855 | 0.0 | 0.9539 | 0.0 | nan | 0.4943 | 0.0 | 0.0 | 0.8827 | nan |
| 0.2356 | 31.43 | 440 | 0.3940 | 0.3100 | 0.5349 | 0.9221 | nan | 0.9268 | 0.0 | 0.9602 | nan | nan | 0.7187 | 0.0 | nan | 0.6040 | nan | nan | 0.7005 | 0.0 | 0.9536 | 0.0 | nan | 0.2474 | 0.0 | 0.0 | 0.5781 | nan |
| 0.3931 | 32.86 | 460 | 0.3516 | 0.3162 | 0.5570 | 0.9258 | nan | 0.9338 | 0.0 | 0.9598 | nan | nan | 0.8124 | 0.0 | nan | 0.6362 | nan | nan | 0.6824 | 0.0 | 0.9542 | 0.0 | nan | 0.2888 | 0.0 | 0.0 | 0.6040 | nan |
| 0.2431 | 34.29 | 480 | 0.4011 | 0.2955 | 0.5291 | 0.9138 | nan | 0.9242 | 0.0 | 0.9583 | nan | nan | 0.7864 | 0.0 | nan | 0.5058 | nan | nan | 0.6954 | 0.0 | 0.9520 | 0.0 | nan | 0.2331 | 0.0 | 0.0 | 0.4832 | nan |
| 0.2131 | 35.71 | 500 | 0.2847 | 0.3764 | 0.5613 | 0.9487 | nan | 0.8877 | 0.0 | 0.9679 | nan | nan | 0.6103 | 0.0 | nan | 0.9020 | nan | nan | 0.7330 | 0.0 | 0.9571 | 0.0 | nan | 0.4539 | 0.0 | 0.0 | 0.8669 | nan |
| 0.4151 | 37.14 | 520 | 0.3176 | 0.3186 | 0.5239 | 0.9256 | nan | 0.8930 | 0.0 | 0.9640 | nan | nan | 0.6505 | 0.0 | nan | 0.6356 | nan | nan | 0.7251 | 0.0 | 0.9544 | 0.0 | nan | 0.2507 | 0.0 | 0.0 | 0.6187 | nan |
| 0.2408 | 38.57 | 540 | 0.3267 | 0.3071 | 0.5361 | 0.9208 | nan | 0.9264 | 0.0 | 0.9600 | nan | nan | 0.7441 | 0.0 | nan | 0.5859 | nan | nan | 0.6868 | 0.0 | 0.9538 | 0.0 | nan | 0.2526 | 0.0 | 0.0 | 0.5635 | nan |
| 0.2274 | 40.0 | 560 | 0.2875 | 0.3396 | 0.5471 | 0.9349 | nan | 0.9098 | 0.0 | 0.9626 | nan | nan | 0.6456 | 0.0 | nan | 0.7649 | nan | nan | 0.7018 | 0.0 | 0.9547 | 0.0 | nan | 0.3216 | 0.0 | 0.0 | 0.7387 | nan |
| 0.2452 | 41.43 | 580 | 0.2998 | 0.3181 | 0.5357 | 0.9279 | nan | 0.9089 | 0.0 | 0.9642 | nan | nan | 0.6932 | 0.0 | nan | 0.6480 | nan | nan | 0.7057 | 0.0 | 0.9562 | 0.0 | nan | 0.2578 | 0.0 | 0.0 | 0.6252 | nan |
| 0.2922 | 42.86 | 600 | 0.2957 | 0.3131 | 0.5246 | 0.9255 | nan | 0.9056 | 0.0 | 0.9643 | nan | nan | 0.6535 | 0.0 | nan | 0.6242 | nan | nan | 0.7103 | 0.0 | 0.9563 | 0.0 | nan | 0.2347 | 0.0 | 0.0 | 0.6037 | nan |
| 0.3704 | 44.29 | 620 | 0.3290 | 0.3172 | 0.5429 | 0.9247 | nan | 0.9246 | 0.0 | 0.9583 | nan | nan | 0.7123 | 0.0 | nan | 0.6621 | nan | nan | 0.6856 | 0.0 | 0.9527 | 0.0 | nan | 0.2707 | 0.0 | 0.0 | 0.6286 | nan |
| 0.2482 | 45.71 | 640 | 0.2995 | 0.3251 | 0.5368 | 0.9276 | nan | 0.9018 | 0.0 | 0.9617 | nan | nan | 0.6795 | 0.0 | nan | 0.6779 | nan | nan | 0.7154 | 0.0 | 0.9538 | 0.0 | nan | 0.2790 | 0.0 | 0.0 | 0.6528 | nan |
| 0.2798 | 47.14 | 660 | 0.2808 | 0.3323 | 0.5374 | 0.9319 | nan | 0.8938 | 0.0 | 0.9644 | nan | nan | 0.6554 | 0.0 | nan | 0.7110 | nan | nan | 0.7218 | 0.0 | 0.9554 | 0.0 | nan | 0.2919 | 0.0 | 0.0 | 0.6894 | nan |
| 0.2746 | 48.57 | 680 | 0.2695 | 0.3265 | 0.5341 | 0.9299 | nan | 0.8947 | 0.0 | 0.9642 | nan | nan | 0.6597 | 0.0 | nan | 0.6861 | nan | nan | 0.7198 | 0.0 | 0.9554 | 0.0 | nan | 0.2735 | 0.0 | 0.0 | 0.6633 | nan |
| 0.2169 | 50.0 | 700 | 0.2796 | 0.3218 | 0.5305 | 0.9276 | nan | 0.8954 | 0.0 | 0.9644 | nan | nan | 0.6710 | 0.0 | nan | 0.6525 | nan | nan | 0.7222 | 0.0 | 0.9553 | 0.0 | nan | 0.2630 | 0.0 | 0.0 | 0.6342 | nan |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.0.dev0
| [
"unlabeled",
"ruler",
"socket",
"wall",
"window",
"heater",
"floor",
"ceiling",
"skirting",
"door",
"light"
] |
shivalikasingh/video-mask2former-swin-tiny-youtubevis-2021-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2021 instance segmentation (tiny-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-tiny-youtubevis-2021-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-tiny-youtubevis-2021-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"airplane",
"bear",
"bird",
"boat",
"car",
"cat",
"cow",
"deer",
"dog",
"duck",
"earless_seal",
"elephant",
"fish",
"flying_disc",
"fox",
"frog",
"giant_panda",
"giraffe",
"horse",
"leopard",
"lizard",
"monkey",
"motorbike",
"mouse",
"parrot",
"person",
"rabbit",
"shark",
"skateboard",
"snake",
"snowboard",
"squirrel",
"surfboard",
"tennis_racket",
"tiger",
"train",
"truck",
"turtle",
"whale",
"zebra"
] |
shivalikasingh/video-mask2former-swin-tiny-youtubevis-2019-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2019 instance segmentation (tiny-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-tiny-youtubevis-2019-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-tiny-youtubevis-2019-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"giant_panda",
"lizard",
"parrot",
"skateboard",
"sedan",
"ape",
"dog",
"snake",
"monkey",
"hand",
"rabbit",
"duck",
"cat",
"cow",
"fish",
"train",
"horse",
"turtle",
"bear",
"motorbike",
"giraffe",
"leopard",
"fox",
"deer",
"owl",
"surfboard",
"airplane",
"truck",
"zebra",
"tiger",
"elephant",
"snowboard",
"boat",
"shark",
"mouse",
"frog",
"eagle",
"earless_seal",
"tennis_racket"
] |
shivalikasingh/video-mask2former-swin-small-youtubevis-2021-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2021 instance segmentation (small-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-small-youtubevis-2021-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-small-youtubevis-2021-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"airplane",
"bear",
"bird",
"boat",
"car",
"cat",
"cow",
"deer",
"dog",
"duck",
"earless_seal",
"elephant",
"fish",
"flying_disc",
"fox",
"frog",
"giant_panda",
"giraffe",
"horse",
"leopard",
"lizard",
"monkey",
"motorbike",
"mouse",
"parrot",
"person",
"rabbit",
"shark",
"skateboard",
"snake",
"snowboard",
"squirrel",
"surfboard",
"tennis_racket",
"tiger",
"train",
"truck",
"turtle",
"whale",
"zebra"
] |
shivalikasingh/video-mask2former-swin-base-IN21k-youtubevis-2021-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2021 instance segmentation (base-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-base-IN21k-youtubevis-2021-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-base-IN21k-youtubevis-2021-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"airplane",
"bear",
"bird",
"boat",
"car",
"cat",
"cow",
"deer",
"dog",
"duck",
"earless_seal",
"elephant",
"fish",
"flying_disc",
"fox",
"frog",
"giant_panda",
"giraffe",
"horse",
"leopard",
"lizard",
"monkey",
"motorbike",
"mouse",
"parrot",
"person",
"rabbit",
"shark",
"skateboard",
"snake",
"snowboard",
"squirrel",
"surfboard",
"tennis_racket",
"tiger",
"train",
"truck",
"turtle",
"whale",
"zebra"
] |
shivalikasingh/video-mask2former-swin-large-youtubevis-2021-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2021 instance segmentation (large-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-large-youtubevis-2021-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-large-youtubevis-2021-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"airplane",
"bear",
"bird",
"boat",
"car",
"cat",
"cow",
"deer",
"dog",
"duck",
"earless_seal",
"elephant",
"fish",
"flying_disc",
"fox",
"frog",
"giant_panda",
"giraffe",
"horse",
"leopard",
"lizard",
"monkey",
"motorbike",
"mouse",
"parrot",
"person",
"rabbit",
"shark",
"skateboard",
"snake",
"snowboard",
"squirrel",
"surfboard",
"tennis_racket",
"tiger",
"train",
"truck",
"turtle",
"whale",
"zebra"
] |
shivalikasingh/video-mask2former-swin-small-youtubevis-2019-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2019 instance segmentation (small-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-small-youtubevis-2019-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-small-youtubevis-2019-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"giant_panda",
"lizard",
"parrot",
"skateboard",
"sedan",
"ape",
"dog",
"snake",
"monkey",
"hand",
"rabbit",
"duck",
"cat",
"cow",
"fish",
"train",
"horse",
"turtle",
"bear",
"motorbike",
"giraffe",
"leopard",
"fox",
"deer",
"owl",
"surfboard",
"airplane",
"truck",
"zebra",
"tiger",
"elephant",
"snowboard",
"boat",
"shark",
"mouse",
"frog",
"eagle",
"earless_seal",
"tennis_racket"
] |
shivalikasingh/video-mask2former-swin-base-IN21k-youtubevis-2019-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2019 instance segmentation (base-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-base-IN21k-youtubevis-2019-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-base-IN21k-youtubevis-2019-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"giant_panda",
"lizard",
"parrot",
"skateboard",
"sedan",
"ape",
"dog",
"snake",
"monkey",
"hand",
"rabbit",
"duck",
"cat",
"cow",
"fish",
"train",
"horse",
"turtle",
"bear",
"motorbike",
"giraffe",
"leopard",
"fox",
"deer",
"owl",
"surfboard",
"airplane",
"truck",
"zebra",
"tiger",
"elephant",
"snowboard",
"boat",
"shark",
"mouse",
"frog",
"eagle",
"earless_seal",
"tennis_racket"
] |
shivalikasingh/video-mask2former-swin-large-youtubevis-2019-instance |
# Video Mask2Former
Video Mask2Former model trained on YouTubeVIS-2019 instance segmentation (large-sized version, Swin backbone). It was introduced in the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Video Mask2Former is an extension of the original Mask2Former paper released under the name, [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.
In the paper [Mask2Former for Video Instance Segmentation
](https://arxiv.org/abs/2112.10764), the authors have shown that Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline.

## Intended uses & limitations
You can use this particular checkpoint for instance segmentation. See the [model hub](https://huggingface.co/models?search=video-mask2former) to look for other fine-tuned versions of this model that may interest you.
### How to use
Here is how to use this model:
```python
import torch
import torchvision
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former trained on YouTubeVIS 2021 instance segmentation
processor = AutoImageProcessor.from_pretrained("facebook/video-mask2former-swin-large-youtubevis-2019-instance")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/video-mask2former-swin-large-youtubevis-2019-instance")
file_path = hf_hub_download(repo_id="shivi/video-demo", filename="cars.mp4", repo_type="dataset")
video = torchvision.io.read_video(file_path)[0]
video_frames = [image_processor(images=frame, return_tensors="pt").pixel_values for frame in video]
video_input = torch.cat(video_frames)
with torch.no_grad():
outputs = model(**video_input)
# model predicts class_queries_logits of shape `(batch_size, num_queries, num_classes)`
# and masks_queries_logits of shape `(num_queries, batch_size, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = image_processor.post_process_video_instance_segmentation(outputs, target_sizes=[tuple(video.shape[1:3])])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_video_instance_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"giant_panda",
"lizard",
"parrot",
"skateboard",
"sedan",
"ape",
"dog",
"snake",
"monkey",
"hand",
"rabbit",
"duck",
"cat",
"cow",
"fish",
"train",
"horse",
"turtle",
"bear",
"motorbike",
"giraffe",
"leopard",
"fox",
"deer",
"owl",
"surfboard",
"airplane",
"truck",
"zebra",
"tiger",
"elephant",
"snowboard",
"boat",
"shark",
"mouse",
"frog",
"eagle",
"earless_seal",
"tennis_racket"
] |
alanoix/segformer_b0_flair_one |
# pretrained model
- https://huggingface.co/nvidia/mit-b0
- SegFormer (b0-sized) encoder pre-trained-only
- SegFormer encoder fine-tuned on Imagenet-1k. It was introduced in the paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers by Xie et al. and first released in this repository.
# training-set
- you can find the training-set here : https://codalab.lisn.upsaclay.fr/competitions/8769
# training-arguments
- channels : rgb
- batch : 8
- epochs : 8
- learning-rate : 5e-6
- GPU : T4
# results on test-set
- Mean IoU : 59.9
- more information here : https://codalab.lisn.upsaclay.fr/competitions/8769 | [
"none",
"building",
"pervious surface",
"impervious surface",
"bare soil",
"water",
"coniferous",
"deciduous",
"brushwood",
"vineyard",
"herbaceous vegetation",
"agricultural land",
"plowed land"
] |
Efferbach/segformer-finetuned-lane-1k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-lane-1k-steps
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-cityscapes-512-1024](https://huggingface.co/nvidia/segformer-b0-finetuned-cityscapes-512-1024) on the Efferbach/lane_master dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0548
- Mean Iou: 0.0708
- Mean Accuracy: 0.1236
- Overall Accuracy: 0.1217
- Accuracy Background: nan
- Accuracy Left: 0.1893
- Accuracy Right: 0.0578
- Iou Background: 0.0
- Iou Left: 0.1581
- Iou Right: 0.0544
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
| 0.1 | 1.0 | 308 | 0.0862 | 0.0008 | 0.0013 | 0.0012 | nan | 0.0025 | 0.0 | 0.0 | 0.0025 | 0.0 |
| 0.0596 | 2.0 | 616 | 0.0597 | 0.0712 | 0.1126 | 0.1132 | nan | 0.0940 | 0.1313 | 0.0 | 0.0907 | 0.1228 |
| 0.0506 | 3.0 | 924 | 0.0551 | 0.0682 | 0.1171 | 0.1152 | nan | 0.1805 | 0.0536 | 0.0 | 0.1539 | 0.0508 |
| 0.0494 | 3.25 | 1000 | 0.0548 | 0.0708 | 0.1236 | 0.1217 | nan | 0.1893 | 0.0578 | 0.0 | 0.1581 | 0.0544 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"background",
"left",
"right"
] |
Efferbach/segformer-finetuned-lane-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-lane-10k-steps
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-cityscapes-512-1024](https://huggingface.co/nvidia/segformer-b0-finetuned-cityscapes-512-1024) on the Efferbach/lane_master dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0365
- Mean Iou: 0.4899
- Mean Accuracy: 0.7371
- Overall Accuracy: 0.7371
- Accuracy Background: nan
- Accuracy Left: 0.7394
- Accuracy Right: 0.7348
- Iou Background: 0.0
- Iou Left: 0.7371
- Iou Right: 0.7325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
| 0.0792 | 1.0 | 308 | 0.0714 | 0.0148 | 0.0229 | 0.0225 | nan | 0.0373 | 0.0085 | 0.0 | 0.0362 | 0.0083 |
| 0.0437 | 2.0 | 616 | 0.0502 | 0.1687 | 0.2775 | 0.2784 | nan | 0.2492 | 0.3058 | 0.0 | 0.2343 | 0.2718 |
| 0.0326 | 3.0 | 924 | 0.0445 | 0.2614 | 0.4441 | 0.4479 | nan | 0.3134 | 0.5748 | 0.0 | 0.3100 | 0.4742 |
| 0.0224 | 4.0 | 1232 | 0.0370 | 0.4048 | 0.6098 | 0.6100 | nan | 0.6043 | 0.6153 | 0.0 | 0.6031 | 0.6113 |
| 0.0184 | 5.0 | 1540 | 0.0346 | 0.3820 | 0.5858 | 0.5870 | nan | 0.5421 | 0.6295 | 0.0 | 0.5400 | 0.6060 |
| 0.0159 | 6.0 | 1848 | 0.0319 | 0.4367 | 0.6567 | 0.6573 | nan | 0.6343 | 0.6791 | 0.0 | 0.6341 | 0.6760 |
| 0.0139 | 7.0 | 2156 | 0.0317 | 0.4555 | 0.6855 | 0.6860 | nan | 0.6691 | 0.7019 | 0.0 | 0.6680 | 0.6986 |
| 0.0129 | 8.0 | 2464 | 0.0321 | 0.4348 | 0.6533 | 0.6535 | nan | 0.6479 | 0.6588 | 0.0 | 0.6474 | 0.6571 |
| 0.0122 | 9.0 | 2772 | 0.0275 | 0.4541 | 0.6827 | 0.6830 | nan | 0.6710 | 0.6943 | 0.0 | 0.6697 | 0.6927 |
| 0.0111 | 10.0 | 3080 | 0.0305 | 0.4609 | 0.6928 | 0.6927 | nan | 0.6969 | 0.6887 | 0.0 | 0.6963 | 0.6865 |
| 0.011 | 11.0 | 3388 | 0.0286 | 0.4646 | 0.6988 | 0.6991 | nan | 0.6890 | 0.7087 | 0.0 | 0.6883 | 0.7055 |
| 0.0103 | 12.0 | 3696 | 0.0298 | 0.4693 | 0.7058 | 0.7062 | nan | 0.6939 | 0.7177 | 0.0 | 0.6932 | 0.7148 |
| 0.0097 | 13.0 | 4004 | 0.0293 | 0.4717 | 0.7090 | 0.7087 | nan | 0.7184 | 0.6996 | 0.0 | 0.7176 | 0.6975 |
| 0.0093 | 14.0 | 4312 | 0.0330 | 0.4537 | 0.6835 | 0.6836 | nan | 0.6775 | 0.6894 | 0.0 | 0.6768 | 0.6843 |
| 0.009 | 15.0 | 4620 | 0.0331 | 0.4804 | 0.7226 | 0.7226 | nan | 0.7194 | 0.7257 | 0.0 | 0.7178 | 0.7234 |
| 0.0088 | 16.0 | 4928 | 0.0315 | 0.4890 | 0.7355 | 0.7357 | nan | 0.7275 | 0.7435 | 0.0 | 0.7259 | 0.7411 |
| 0.0086 | 17.0 | 5236 | 0.0338 | 0.4813 | 0.7234 | 0.7234 | nan | 0.7224 | 0.7243 | 0.0 | 0.7216 | 0.7223 |
| 0.0085 | 18.0 | 5544 | 0.0348 | 0.4743 | 0.7129 | 0.7126 | nan | 0.7225 | 0.7033 | 0.0 | 0.7217 | 0.7012 |
| 0.0083 | 19.0 | 5852 | 0.0357 | 0.4812 | 0.7245 | 0.7244 | nan | 0.7281 | 0.7210 | 0.0 | 0.7254 | 0.7183 |
| 0.0081 | 20.0 | 6160 | 0.0334 | 0.4829 | 0.7271 | 0.7269 | nan | 0.7337 | 0.7205 | 0.0 | 0.7305 | 0.7182 |
| 0.0079 | 21.0 | 6468 | 0.0359 | 0.4773 | 0.7177 | 0.7177 | nan | 0.7184 | 0.7170 | 0.0 | 0.7174 | 0.7146 |
| 0.0077 | 22.0 | 6776 | 0.0351 | 0.4874 | 0.7332 | 0.7329 | nan | 0.7440 | 0.7223 | 0.0 | 0.7432 | 0.7190 |
| 0.0075 | 23.0 | 7084 | 0.0344 | 0.4855 | 0.7296 | 0.7292 | nan | 0.7437 | 0.7156 | 0.0 | 0.7425 | 0.7141 |
| 0.0077 | 24.0 | 7392 | 0.0362 | 0.4799 | 0.7216 | 0.7216 | nan | 0.7236 | 0.7196 | 0.0 | 0.7223 | 0.7174 |
| 0.0071 | 25.0 | 7700 | 0.0391 | 0.4775 | 0.7179 | 0.7180 | nan | 0.7173 | 0.7186 | 0.0 | 0.7161 | 0.7163 |
| 0.0077 | 26.0 | 8008 | 0.0339 | 0.4895 | 0.7367 | 0.7366 | nan | 0.7405 | 0.7329 | 0.0 | 0.7388 | 0.7297 |
| 0.0069 | 27.0 | 8316 | 0.0344 | 0.4858 | 0.7305 | 0.7305 | nan | 0.7291 | 0.7318 | 0.0 | 0.7278 | 0.7297 |
| 0.0069 | 28.0 | 8624 | 0.0361 | 0.4844 | 0.7283 | 0.7282 | nan | 0.7324 | 0.7243 | 0.0 | 0.7309 | 0.7221 |
| 0.007 | 29.0 | 8932 | 0.0371 | 0.4837 | 0.7273 | 0.7270 | nan | 0.7360 | 0.7186 | 0.0 | 0.7345 | 0.7166 |
| 0.007 | 30.0 | 9240 | 0.0366 | 0.4854 | 0.7305 | 0.7303 | nan | 0.7379 | 0.7231 | 0.0 | 0.7353 | 0.7208 |
| 0.0067 | 31.0 | 9548 | 0.0367 | 0.4866 | 0.7322 | 0.7321 | nan | 0.7357 | 0.7286 | 0.0 | 0.7335 | 0.7263 |
| 0.0068 | 32.0 | 9856 | 0.0364 | 0.4883 | 0.7348 | 0.7347 | nan | 0.7377 | 0.7318 | 0.0 | 0.7355 | 0.7295 |
| 0.0067 | 32.47 | 10000 | 0.0365 | 0.4899 | 0.7371 | 0.7371 | nan | 0.7394 | 0.7348 | 0.0 | 0.7371 | 0.7325 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"background",
"left",
"right"
] |
Efferbach/mobilevit-small-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilevit-small-10k-steps
This model is a fine-tuned version of [apple/deeplabv3-mobilevit-small](https://huggingface.co/apple/deeplabv3-mobilevit-small) on the Efferbach/lane_master2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0821
- Mean Iou: 0.0
- Mean Accuracy: 0.0
- Overall Accuracy: 0.0
- Accuracy Background: nan
- Accuracy Left: 0.0
- Accuracy Right: 0.0
- Iou Background: 0.0
- Iou Left: 0.0
- Iou Right: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
| 0.5041 | 1.0 | 385 | 0.3382 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1553 | 2.0 | 770 | 0.1387 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1019 | 3.0 | 1155 | 0.1037 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0882 | 4.0 | 1540 | 0.0883 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0828 | 5.0 | 1925 | 0.0823 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0807 | 6.0 | 2310 | 0.0820 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0795 | 7.0 | 2695 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0786 | 8.0 | 3080 | 0.0784 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0777 | 9.0 | 3465 | 0.0786 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0771 | 10.0 | 3850 | 0.0774 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0773 | 11.0 | 4235 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0765 | 12.0 | 4620 | 0.0782 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0757 | 13.0 | 5005 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0756 | 14.0 | 5390 | 0.0774 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0754 | 15.0 | 5775 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0746 | 16.0 | 6160 | 0.0775 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.074 | 17.0 | 6545 | 0.0779 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0736 | 18.0 | 6930 | 0.0792 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0737 | 19.0 | 7315 | 0.0801 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.073 | 20.0 | 7700 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0729 | 21.0 | 8085 | 0.0805 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0734 | 22.0 | 8470 | 0.0804 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0726 | 23.0 | 8855 | 0.0811 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0726 | 24.0 | 9240 | 0.0816 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0721 | 25.0 | 9625 | 0.0822 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0727 | 25.97 | 10000 | 0.0821 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"background",
"left",
"right"
] |
Efferbach/mobilenet_v2_1-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilenet_v2_1-10k-steps
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the Efferbach/lane_master2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0827
- Mean Iou: 0.0
- Mean Accuracy: 0.0
- Overall Accuracy: 0.0
- Accuracy Background: nan
- Accuracy Left: 0.0
- Accuracy Right: 0.0
- Iou Background: 0.0
- Iou Left: 0.0
- Iou Right: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Left | Accuracy Right | Iou Background | Iou Left | Iou Right |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:--------------:|:--------:|:---------:|
| 0.3253 | 1.0 | 385 | 0.0989 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.128 | 2.0 | 770 | 0.1518 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1212 | 3.0 | 1155 | 0.1852 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.117 | 4.0 | 1540 | 0.1446 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1148 | 5.0 | 1925 | 0.1087 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1167 | 6.0 | 2310 | 0.1502 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1128 | 7.0 | 2695 | 0.0882 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1156 | 8.0 | 3080 | 0.1005 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1164 | 9.0 | 3465 | 0.0844 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1128 | 10.0 | 3850 | 0.1497 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1151 | 11.0 | 4235 | 0.1024 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1112 | 12.0 | 4620 | 0.0869 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1093 | 13.0 | 5005 | 0.0940 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1102 | 14.0 | 5390 | 0.0914 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1111 | 15.0 | 5775 | 0.1047 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1087 | 16.0 | 6160 | 0.1104 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1105 | 17.0 | 6545 | 0.0970 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1083 | 18.0 | 6930 | 0.0868 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1077 | 19.0 | 7315 | 0.1121 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1115 | 20.0 | 7700 | 0.2092 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1102 | 21.0 | 8085 | 0.0850 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1077 | 22.0 | 8470 | 0.1011 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1111 | 23.0 | 8855 | 0.1136 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1099 | 24.0 | 9240 | 0.1001 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1086 | 25.0 | 9625 | 0.0997 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1066 | 25.97 | 10000 | 0.0827 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"background",
"left",
"right"
] |
zklee98/segformer-b1-solarModuleAnomaly-v0.1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-solarModuleAnomaly-v0.1
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the zklee98/solarModuleAnomaly dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1547
- Mean Iou: 0.3822
- Mean Accuracy: 0.7643
- Overall Accuracy: 0.7643
- Accuracy Unlabelled: nan
- Accuracy Anomaly: 0.7643
- Iou Unlabelled: 0.0
- Iou Anomaly: 0.7643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Anomaly | Iou Unlabelled | Iou Anomaly |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
| 0.4699 | 0.4 | 20 | 0.6337 | 0.4581 | 0.9162 | 0.9162 | nan | 0.9162 | 0.0 | 0.9162 |
| 0.3129 | 0.8 | 40 | 0.4636 | 0.3704 | 0.7407 | 0.7407 | nan | 0.7407 | 0.0 | 0.7407 |
| 0.2732 | 1.2 | 60 | 0.3164 | 0.3867 | 0.7734 | 0.7734 | nan | 0.7734 | 0.0 | 0.7734 |
| 0.2653 | 1.6 | 80 | 0.3769 | 0.4090 | 0.8180 | 0.8180 | nan | 0.8180 | 0.0 | 0.8180 |
| 0.2232 | 2.0 | 100 | 0.2976 | 0.2479 | 0.4958 | 0.4958 | nan | 0.4958 | 0.0 | 0.4958 |
| 0.5305 | 2.4 | 120 | 0.3151 | 0.3807 | 0.7613 | 0.7613 | nan | 0.7613 | 0.0 | 0.7613 |
| 0.2423 | 2.8 | 140 | 0.3189 | 0.4152 | 0.8305 | 0.8305 | nan | 0.8305 | 0.0 | 0.8305 |
| 0.3341 | 3.2 | 160 | 0.2384 | 0.3861 | 0.7723 | 0.7723 | nan | 0.7723 | 0.0 | 0.7723 |
| 0.2146 | 3.6 | 180 | 0.3200 | 0.4621 | 0.9243 | 0.9243 | nan | 0.9243 | 0.0 | 0.9243 |
| 0.1866 | 4.0 | 200 | 0.2510 | 0.3646 | 0.7291 | 0.7291 | nan | 0.7291 | 0.0 | 0.7291 |
| 0.2861 | 4.4 | 220 | 0.2736 | 0.4202 | 0.8404 | 0.8404 | nan | 0.8404 | 0.0 | 0.8404 |
| 0.2048 | 4.8 | 240 | 0.2410 | 0.3912 | 0.7823 | 0.7823 | nan | 0.7823 | 0.0 | 0.7823 |
| 0.1604 | 5.2 | 260 | 0.2233 | 0.3672 | 0.7344 | 0.7344 | nan | 0.7344 | 0.0 | 0.7344 |
| 0.2756 | 5.6 | 280 | 0.2705 | 0.4494 | 0.8987 | 0.8987 | nan | 0.8987 | 0.0 | 0.8987 |
| 0.1859 | 6.0 | 300 | 0.2211 | 0.4045 | 0.8089 | 0.8089 | nan | 0.8089 | 0.0 | 0.8089 |
| 0.1306 | 6.4 | 320 | 0.2140 | 0.3763 | 0.7525 | 0.7525 | nan | 0.7525 | 0.0 | 0.7525 |
| 0.5508 | 6.8 | 340 | 0.2231 | 0.4185 | 0.8371 | 0.8371 | nan | 0.8371 | 0.0 | 0.8371 |
| 0.1446 | 7.2 | 360 | 0.2139 | 0.3666 | 0.7332 | 0.7332 | nan | 0.7332 | 0.0 | 0.7332 |
| 0.3275 | 7.6 | 380 | 0.2470 | 0.3964 | 0.7928 | 0.7928 | nan | 0.7928 | 0.0 | 0.7928 |
| 0.164 | 8.0 | 400 | 0.2017 | 0.3910 | 0.7819 | 0.7819 | nan | 0.7819 | 0.0 | 0.7819 |
| 0.1864 | 8.4 | 420 | 0.2307 | 0.4408 | 0.8816 | 0.8816 | nan | 0.8816 | 0.0 | 0.8816 |
| 0.1578 | 8.8 | 440 | 0.1869 | 0.3707 | 0.7414 | 0.7414 | nan | 0.7414 | 0.0 | 0.7414 |
| 0.1201 | 9.2 | 460 | 0.2115 | 0.3834 | 0.7667 | 0.7667 | nan | 0.7667 | 0.0 | 0.7667 |
| 0.1783 | 9.6 | 480 | 0.2009 | 0.3747 | 0.7495 | 0.7495 | nan | 0.7495 | 0.0 | 0.7495 |
| 0.1232 | 10.0 | 500 | 0.1797 | 0.3865 | 0.7729 | 0.7729 | nan | 0.7729 | 0.0 | 0.7729 |
| 0.2572 | 10.4 | 520 | 0.1983 | 0.4057 | 0.8115 | 0.8115 | nan | 0.8115 | 0.0 | 0.8115 |
| 0.1209 | 10.8 | 540 | 0.1607 | 0.4274 | 0.8547 | 0.8547 | nan | 0.8547 | 0.0 | 0.8547 |
| 0.1234 | 11.2 | 560 | 0.2260 | 0.4066 | 0.8133 | 0.8133 | nan | 0.8133 | 0.0 | 0.8133 |
| 0.145 | 11.6 | 580 | 0.1963 | 0.3939 | 0.7878 | 0.7878 | nan | 0.7878 | 0.0 | 0.7878 |
| 0.0665 | 12.0 | 600 | 0.1912 | 0.3873 | 0.7747 | 0.7747 | nan | 0.7747 | 0.0 | 0.7747 |
| 0.0826 | 12.4 | 620 | 0.2095 | 0.4186 | 0.8373 | 0.8373 | nan | 0.8373 | 0.0 | 0.8373 |
| 0.1212 | 12.8 | 640 | 0.1732 | 0.4059 | 0.8118 | 0.8118 | nan | 0.8118 | 0.0 | 0.8118 |
| 0.142 | 13.2 | 660 | 0.2086 | 0.4007 | 0.8013 | 0.8013 | nan | 0.8013 | 0.0 | 0.8013 |
| 0.0899 | 13.6 | 680 | 0.1838 | 0.3928 | 0.7856 | 0.7856 | nan | 0.7856 | 0.0 | 0.7856 |
| 0.1857 | 14.0 | 700 | 0.1638 | 0.4157 | 0.8315 | 0.8315 | nan | 0.8315 | 0.0 | 0.8315 |
| 0.0788 | 14.4 | 720 | 0.1736 | 0.4112 | 0.8223 | 0.8223 | nan | 0.8223 | 0.0 | 0.8223 |
| 0.2543 | 14.8 | 740 | 0.1547 | 0.3822 | 0.7643 | 0.7643 | nan | 0.7643 | 0.0 | 0.7643 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"unlabelled",
"anomaly"
] |
mattmdjaga/segformer_b0_clothes | # Segformer B0 fine-tuned for clothes segmentation
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation.
The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".
```python
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
extractor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b0_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
``` | [
"background",
"hat",
"hair",
"sunglasses",
"upper-clothes",
"skirt",
"pants",
"dress",
"belt",
"left-shoe",
"right-shoe",
"face",
"left-leg",
"right-leg",
"left-arm",
"right-arm",
"bag",
"scarf"
] |
Onegafer/segformer-v-mesh-0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-v-mesh-0
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0360
- Mean Iou: 0.4403
- Mean Accuracy: 0.8806
- Overall Accuracy: 0.8806
- Accuracy Background: nan
- Accuracy Windows: 0.8806
- Iou Background: 0.0
- Iou Windows: 0.8806
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Windows | Iou Background | Iou Windows |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
| 0.2932 | 0.16 | 20 | 0.3269 | 0.2578 | 0.5156 | 0.5156 | nan | 0.5156 | 0.0 | 0.5156 |
| 0.1417 | 0.31 | 40 | 0.1235 | 0.3790 | 0.7580 | 0.7580 | nan | 0.7580 | 0.0 | 0.7580 |
| 0.0952 | 0.47 | 60 | 0.1245 | 0.4606 | 0.9211 | 0.9211 | nan | 0.9211 | 0.0 | 0.9211 |
| 0.0778 | 0.62 | 80 | 0.0628 | 0.4042 | 0.8084 | 0.8084 | nan | 0.8084 | 0.0 | 0.8084 |
| 0.0448 | 0.78 | 100 | 0.0512 | 0.4161 | 0.8322 | 0.8322 | nan | 0.8322 | 0.0 | 0.8322 |
| 0.0323 | 0.94 | 120 | 0.0435 | 0.4167 | 0.8334 | 0.8334 | nan | 0.8334 | 0.0 | 0.8334 |
| 0.0337 | 1.09 | 140 | 0.0405 | 0.4131 | 0.8262 | 0.8262 | nan | 0.8262 | 0.0 | 0.8262 |
| 0.0586 | 1.25 | 160 | 0.0409 | 0.4509 | 0.9017 | 0.9017 | nan | 0.9017 | 0.0 | 0.9017 |
| 0.0591 | 1.41 | 180 | 0.0404 | 0.4310 | 0.8620 | 0.8620 | nan | 0.8620 | 0.0 | 0.8620 |
| 0.0953 | 1.56 | 200 | 0.0386 | 0.4366 | 0.8732 | 0.8732 | nan | 0.8732 | 0.0 | 0.8732 |
| 0.0607 | 1.72 | 220 | 0.0374 | 0.4414 | 0.8828 | 0.8828 | nan | 0.8828 | 0.0 | 0.8828 |
| 0.0387 | 1.88 | 240 | 0.0360 | 0.4403 | 0.8806 | 0.8806 | nan | 0.8806 | 0.0 | 0.8806 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"background",
"windows"
] |
bilal01/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the pixel_values, the label and the {'pixel_values': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1920x1080 at 0x7FCAFB662B60>, 'label': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1x1 at 0x7FCAFB662B30>} datasets.
It achieves the following results on the evaluation set:
- Loss: 3.5116
- Mean Iou: 0.0268
- Mean Accuracy: 0.0661
- Overall Accuracy: 0.2418
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.0351
- Accuracy Flat-sidewalk: 0.5938
- Accuracy Flat-crosswalk: 0.3236
- Accuracy Flat-cyclinglane: 0.0338
- Accuracy Flat-parkingdriveway: 0.0555
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0006
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0003
- Accuracy Vehicle-car: 0.3388
- Accuracy Vehicle-truck: 0.0016
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.2141
- Accuracy Vehicle-motorcycle: 0.0053
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0888
- Accuracy Construction-building: 0.0391
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0074
- Accuracy Construction-fenceguardrail: 0.0239
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0006
- Accuracy Object-pole: 0.0593
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0665
- Accuracy Nature-vegetation: 0.0846
- Accuracy Nature-terrain: 0.0002
- Accuracy Sky: 0.0030
- Accuracy Void-ground: 0.0635
- Accuracy Void-dynamic: 0.0004
- Accuracy Void-static: 0.0720
- Accuracy Void-unclear: 0.0022
- Iou Unlabeled: 0.0
- Iou Flat-road: 0.0297
- Iou Flat-sidewalk: 0.4826
- Iou Flat-crosswalk: 0.0624
- Iou Flat-cyclinglane: 0.0279
- Iou Flat-parkingdriveway: 0.0203
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0005
- Iou Human-person: 0.0
- Iou Human-rider: 0.0001
- Iou Vehicle-car: 0.1389
- Iou Vehicle-truck: 0.0000
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0013
- Iou Vehicle-motorcycle: 0.0007
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0004
- Iou Construction-building: 0.0383
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0057
- Iou Construction-fenceguardrail: 0.0127
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0001
- Iou Object-pole: 0.0085
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0002
- Iou Nature-vegetation: 0.0818
- Iou Nature-terrain: 0.0002
- Iou Sky: 0.0027
- Iou Void-ground: 0.0115
- Iou Void-dynamic: 0.0001
- Iou Void-static: 0.0102
- Iou Void-unclear: 0.0021
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 0.025
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 3.5028 | 0.01 | 5 | 3.5307 | 0.0194 | 0.0486 | 0.1779 | nan | 0.0150 | 0.4721 | 0.2351 | 0.0249 | 0.0409 | nan | 0.0003 | 0.0 | 0.0003 | 0.1461 | 0.0231 | 0.0 | 0.2163 | 0.0047 | 0.0 | 0.0 | 0.0318 | 0.0223 | 0.0003 | 0.0136 | 0.0166 | 0.0 | nan | 0.0008 | 0.0511 | 0.0 | 0.0665 | 0.0261 | 0.0005 | 0.0010 | 0.0697 | 0.0014 | 0.0720 | 0.0020 | 0.0 | 0.0128 | 0.3979 | 0.0509 | 0.0221 | 0.0166 | 0.0 | 0.0003 | 0.0 | 0.0001 | 0.0769 | 0.0000 | 0.0 | 0.0015 | 0.0003 | 0.0 | 0.0 | 0.0001 | 0.0219 | 0.0001 | 0.0089 | 0.0103 | 0.0 | 0.0 | 0.0001 | 0.0070 | 0.0 | 0.0001 | 0.0257 | 0.0005 | 0.0009 | 0.0109 | 0.0004 | 0.0099 | 0.0019 |
| 3.3613 | 0.03 | 10 | 3.5116 | 0.0268 | 0.0661 | 0.2418 | nan | 0.0351 | 0.5938 | 0.3236 | 0.0338 | 0.0555 | nan | 0.0006 | 0.0 | 0.0003 | 0.3388 | 0.0016 | 0.0 | 0.2141 | 0.0053 | 0.0 | 0.0 | 0.0888 | 0.0391 | 0.0 | 0.0074 | 0.0239 | 0.0 | nan | 0.0006 | 0.0593 | 0.0 | 0.0665 | 0.0846 | 0.0002 | 0.0030 | 0.0635 | 0.0004 | 0.0720 | 0.0022 | 0.0 | 0.0297 | 0.4826 | 0.0624 | 0.0279 | 0.0203 | 0.0 | 0.0005 | 0.0 | 0.0001 | 0.1389 | 0.0000 | 0.0 | 0.0013 | 0.0007 | 0.0 | 0.0 | 0.0004 | 0.0383 | 0.0 | 0.0057 | 0.0127 | 0.0 | 0.0 | 0.0001 | 0.0085 | 0.0 | 0.0002 | 0.0818 | 0.0002 | 0.0027 | 0.0115 | 0.0001 | 0.0102 | 0.0021 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
shehan97/mobilevitv2-1.0-voc-deeplabv3 |
# MobileViTv2 + DeepLabv3 (shehan97/mobilevitv2-1.0-voc-deeplabv3)
<!-- Provide a quick summary of what the model is/does. -->
MobileViTv2 model pre-trained on PASCAL VOC at resolution 512x512.
It was introduced in [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari, and first released in [this](https://github.com/apple/ml-cvnets) repository. The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE).
Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team.
### Model Description
<!-- Provide a longer summary of what this model is. -->
MobileViTv2 is constructed by replacing the multi-headed self-attention in MobileViT with separable self-attention.
The model in this repo adds a [DeepLabV3](https://arxiv.org/abs/1706.05587) head to the MobileViT backbone for semantic segmentation.
### Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=mobilevitv2) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import MobileViTv2FeatureExtractor, MobileViTv2ForSemanticSegmentation
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = MobileViTv2FeatureExtractor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
model = MobileViTv2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_mask = logits.argmax(1).squeeze(0)
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The MobileViT + DeepLabV3 model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes, and then fine-tuned on the [PASCAL VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/) dataset.
### BibTeX entry and citation info
```bibtex
@inproceedings{vision-transformer,
title = {Separable Self-attention for Mobile Vision Transformers},
author = {Sachin Mehta and Mohammad Rastegari},
year = {2022},
URL = {https://arxiv.org/abs/2206.02680}
}
```
| [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"
] |
matei-dorian/segformer-b0-finetuned-human-parsing |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-human-parsing
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9476
- Mean Iou: 0.0726
- Mean Accuracy: 0.1221
- Overall Accuracy: 0.3575
- Accuracy Background: nan
- Accuracy Hat: 0.0048
- Accuracy Hair: 0.4813
- Accuracy Sunglasses: 0.0
- Accuracy Upper-clothes: 0.9405
- Accuracy Skirt: 0.0000
- Accuracy Pants: 0.0631
- Accuracy Dress: 0.1031
- Accuracy Belt: 0.0
- Accuracy Left-shoe: 0.0011
- Accuracy Right-shoe: 0.0010
- Accuracy Face: 0.4406
- Accuracy Left-leg: 0.0291
- Accuracy Right-leg: 0.0
- Accuracy Left-arm: 0.0
- Accuracy Right-arm: 0.0001
- Accuracy Bag: 0.0114
- Accuracy Scarf: 0.0
- Iou Background: 0.0
- Iou Hat: 0.0043
- Iou Hair: 0.4221
- Iou Sunglasses: 0.0
- Iou Upper-clothes: 0.3239
- Iou Skirt: 0.0000
- Iou Pants: 0.0559
- Iou Dress: 0.0728
- Iou Belt: 0.0
- Iou Left-shoe: 0.0011
- Iou Right-shoe: 0.0009
- Iou Face: 0.3872
- Iou Left-leg: 0.0271
- Iou Right-leg: 0.0
- Iou Left-arm: 0.0
- Iou Right-arm: 0.0001
- Iou Bag: 0.0106
- Iou Scarf: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
| 2.5768 | 0.4 | 20 | 2.7812 | 0.0726 | 0.1332 | 0.2876 | nan | 0.0178 | 0.3204 | 0.0004 | 0.5548 | 0.0004 | 0.2555 | 0.2373 | 0.0 | 0.0103 | 0.0003 | 0.5637 | 0.0287 | 0.0302 | 0.0001 | 0.0008 | 0.2435 | 0.0 | 0.0 | 0.0166 | 0.2759 | 0.0001 | 0.2781 | 0.0004 | 0.1710 | 0.1295 | 0.0 | 0.0098 | 0.0003 | 0.3251 | 0.0260 | 0.0248 | 0.0001 | 0.0007 | 0.0491 | 0.0 |
| 2.2093 | 0.8 | 40 | 2.5166 | 0.0563 | 0.1052 | 0.3288 | nan | 0.0 | 0.1994 | 0.0 | 0.9447 | 0.0015 | 0.0435 | 0.1164 | 0.0 | 0.0008 | 0.0000 | 0.4655 | 0.0007 | 0.0003 | 0.0 | 0.0 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.1946 | 0.0 | 0.3037 | 0.0015 | 0.0417 | 0.0842 | 0.0 | 0.0008 | 0.0000 | 0.3726 | 0.0007 | 0.0003 | 0.0 | 0.0 | 0.0124 | 0.0 |
| 1.8804 | 1.2 | 60 | 2.0209 | 0.0632 | 0.1110 | 0.3374 | nan | 0.0087 | 0.3724 | 0.0 | 0.9475 | 0.0014 | 0.0162 | 0.0528 | 0.0 | 0.0001 | 0.0008 | 0.4257 | 0.0561 | 0.0001 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0077 | 0.3472 | 0.0 | 0.3086 | 0.0014 | 0.0156 | 0.0403 | 0.0 | 0.0001 | 0.0008 | 0.3597 | 0.0515 | 0.0001 | 0.0 | 0.0 | 0.0052 | 0.0 |
| 1.8776 | 1.6 | 80 | 2.0016 | 0.0665 | 0.1154 | 0.3454 | nan | 0.0056 | 0.4172 | 0.0 | 0.9412 | 0.0000 | 0.0490 | 0.0697 | 0.0 | 0.0002 | 0.0006 | 0.4349 | 0.0329 | 0.0000 | 0.0 | 0.0000 | 0.0100 | 0.0 | 0.0 | 0.0048 | 0.3791 | 0.0 | 0.3138 | 0.0000 | 0.0438 | 0.0542 | 0.0 | 0.0002 | 0.0006 | 0.3608 | 0.0304 | 0.0000 | 0.0 | 0.0000 | 0.0093 | 0.0 |
| 1.8471 | 2.0 | 100 | 1.9476 | 0.0726 | 0.1221 | 0.3575 | nan | 0.0048 | 0.4813 | 0.0 | 0.9405 | 0.0000 | 0.0631 | 0.1031 | 0.0 | 0.0011 | 0.0010 | 0.4406 | 0.0291 | 0.0 | 0.0 | 0.0001 | 0.0114 | 0.0 | 0.0 | 0.0043 | 0.4221 | 0.0 | 0.3239 | 0.0000 | 0.0559 | 0.0728 | 0.0 | 0.0011 | 0.0009 | 0.3872 | 0.0271 | 0.0 | 0.0 | 0.0001 | 0.0106 | 0.0 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"background",
"hat",
"hair",
"sunglasses",
"upper-clothes",
"skirt",
"pants",
"dress",
"belt",
"left-shoe",
"right-shoe",
"face",
"left-leg",
"right-leg",
"left-arm",
"right-arm",
"bag",
"scarf"
] |
matei-dorian/segformer-b5-finetuned-human-parsing |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-human-parsing
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2292
- Mean Iou: 0.6258
- Mean Accuracy: 0.7547
- Overall Accuracy: 0.8256
- Accuracy Background: nan
- Accuracy Hat: 0.8561
- Accuracy Hair: 0.8974
- Accuracy Sunglasses: 0.7540
- Accuracy Upper-clothes: 0.8553
- Accuracy Skirt: 0.7026
- Accuracy Pants: 0.8913
- Accuracy Dress: 0.7525
- Accuracy Belt: 0.4251
- Accuracy Left-shoe: 0.6014
- Accuracy Right-shoe: 0.6374
- Accuracy Face: 0.9094
- Accuracy Left-leg: 0.8452
- Accuracy Right-leg: 0.8343
- Accuracy Left-arm: 0.8506
- Accuracy Right-arm: 0.8287
- Accuracy Bag: 0.8232
- Accuracy Scarf: 0.3662
- Iou Background: 0.0
- Iou Hat: 0.7625
- Iou Hair: 0.8171
- Iou Sunglasses: 0.6400
- Iou Upper-clothes: 0.7700
- Iou Skirt: 0.6211
- Iou Pants: 0.7788
- Iou Dress: 0.5512
- Iou Belt: 0.3564
- Iou Left-shoe: 0.5032
- Iou Right-shoe: 0.5381
- Iou Face: 0.8294
- Iou Left-leg: 0.7412
- Iou Right-leg: 0.7591
- Iou Left-arm: 0.7579
- Iou Right-arm: 0.7705
- Iou Bag: 0.7729
- Iou Scarf: 0.2956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
| 1.1597 | 0.04 | 20 | 1.5815 | 0.1179 | 0.1991 | 0.4296 | nan | 0.0060 | 0.6905 | 0.0 | 0.7657 | 0.0108 | 0.6431 | 0.2946 | 0.0 | 0.0288 | 0.0366 | 0.1480 | 0.0025 | 0.5692 | 0.0096 | 0.0259 | 0.1537 | 0.0 | 0.0 | 0.0051 | 0.4253 | 0.0 | 0.5199 | 0.0103 | 0.3388 | 0.1700 | 0.0 | 0.0258 | 0.0338 | 0.0895 | 0.0025 | 0.3162 | 0.0094 | 0.0253 | 0.1495 | 0.0 |
| 0.6963 | 0.08 | 40 | 0.8073 | 0.1759 | 0.2719 | 0.4628 | nan | 0.0015 | 0.8699 | 0.0 | 0.4736 | 0.4932 | 0.5141 | 0.6775 | 0.0 | 0.0062 | 0.1038 | 0.5301 | 0.0916 | 0.5071 | 0.0092 | 0.0549 | 0.2889 | 0.0 | 0.0 | 0.0015 | 0.6169 | 0.0 | 0.4242 | 0.2202 | 0.3522 | 0.2251 | 0.0 | 0.0062 | 0.0904 | 0.4914 | 0.0852 | 0.3160 | 0.0092 | 0.0541 | 0.2731 | 0.0 |
| 0.5786 | 0.12 | 60 | 0.6136 | 0.2538 | 0.3642 | 0.4679 | nan | 0.0180 | 0.8122 | 0.0 | 0.1998 | 0.0000 | 0.6621 | 0.8592 | 0.0 | 0.1440 | 0.2772 | 0.8381 | 0.4032 | 0.6068 | 0.4182 | 0.3097 | 0.6434 | 0.0 | 0.0 | 0.0179 | 0.6760 | 0.0 | 0.1951 | 0.0000 | 0.5471 | 0.2218 | 0.0 | 0.1147 | 0.2032 | 0.6403 | 0.3189 | 0.4204 | 0.3505 | 0.2947 | 0.5676 | 0.0 |
| 0.324 | 0.16 | 80 | 0.4282 | 0.2893 | 0.4044 | 0.6041 | nan | 0.0147 | 0.7890 | 0.0 | 0.8222 | 0.7984 | 0.6646 | 0.1038 | 0.0 | 0.0896 | 0.3308 | 0.8277 | 0.4099 | 0.6839 | 0.2401 | 0.5474 | 0.5521 | 0.0 | 0.0 | 0.0147 | 0.6800 | 0.0 | 0.6159 | 0.3049 | 0.5913 | 0.0938 | 0.0 | 0.0802 | 0.2394 | 0.6598 | 0.3178 | 0.4504 | 0.2288 | 0.4189 | 0.5113 | 0.0 |
| 0.297 | 0.2 | 100 | 0.4020 | 0.3034 | 0.4230 | 0.6332 | nan | 0.0048 | 0.8076 | 0.0080 | 0.9042 | 0.6567 | 0.8036 | 0.0317 | 0.0 | 0.0481 | 0.5298 | 0.7728 | 0.2589 | 0.7232 | 0.5941 | 0.3839 | 0.6643 | 0.0 | 0.0 | 0.0048 | 0.6708 | 0.0080 | 0.6300 | 0.3836 | 0.5929 | 0.0314 | 0.0 | 0.0441 | 0.3152 | 0.6726 | 0.2420 | 0.4745 | 0.4532 | 0.3631 | 0.5759 | 0.0 |
| 0.2608 | 0.24 | 120 | 0.3538 | 0.3444 | 0.4554 | 0.6504 | nan | 0.2922 | 0.8078 | 0.0753 | 0.8472 | 0.0425 | 0.6961 | 0.6197 | 0.0 | 0.2550 | 0.3074 | 0.8020 | 0.5636 | 0.6895 | 0.3779 | 0.6930 | 0.6734 | 0.0 | 0.0 | 0.2757 | 0.6940 | 0.0747 | 0.6457 | 0.0419 | 0.6098 | 0.3611 | 0.0 | 0.1849 | 0.2412 | 0.7038 | 0.4513 | 0.5038 | 0.3439 | 0.4760 | 0.5915 | 0.0 |
| 0.3306 | 0.28 | 140 | 0.3281 | 0.3562 | 0.4736 | 0.6560 | nan | 0.4111 | 0.8576 | 0.1953 | 0.8081 | 0.6916 | 0.7888 | 0.3489 | 0.0 | 0.0809 | 0.3612 | 0.8132 | 0.0622 | 0.7078 | 0.6328 | 0.5437 | 0.7482 | 0.0 | 0.0 | 0.3895 | 0.7227 | 0.1857 | 0.6777 | 0.3750 | 0.6015 | 0.2749 | 0.0 | 0.0740 | 0.2602 | 0.7070 | 0.0612 | 0.4348 | 0.5114 | 0.4966 | 0.6385 | 0.0 |
| 0.364 | 0.32 | 160 | 0.3368 | 0.3689 | 0.4836 | 0.6531 | nan | 0.3898 | 0.8453 | 0.1743 | 0.9269 | 0.2493 | 0.7922 | 0.0842 | 0.0 | 0.4874 | 0.2384 | 0.8116 | 0.6226 | 0.5731 | 0.6049 | 0.6620 | 0.7597 | 0.0 | 0.0 | 0.3746 | 0.7246 | 0.1690 | 0.6015 | 0.1998 | 0.5942 | 0.0786 | 0.0 | 0.2682 | 0.1904 | 0.7015 | 0.4781 | 0.4781 | 0.5452 | 0.5804 | 0.6562 | 0.0 |
| 0.635 | 0.36 | 180 | 0.3092 | 0.3699 | 0.4903 | 0.6319 | nan | 0.4996 | 0.8387 | 0.2136 | 0.6184 | 0.0129 | 0.7920 | 0.8199 | 0.0 | 0.1895 | 0.3028 | 0.8307 | 0.7258 | 0.3386 | 0.7480 | 0.6543 | 0.7511 | 0.0 | 0.0 | 0.4613 | 0.7126 | 0.2042 | 0.5589 | 0.0128 | 0.6658 | 0.3529 | 0.0 | 0.1622 | 0.2426 | 0.7363 | 0.4646 | 0.3144 | 0.5794 | 0.5575 | 0.6321 | 0.0 |
| 0.1464 | 0.4 | 200 | 0.3306 | 0.3809 | 0.5041 | 0.6544 | nan | 0.6110 | 0.8337 | 0.2420 | 0.8913 | 0.8862 | 0.6492 | 0.0004 | 0.0 | 0.2888 | 0.2949 | 0.8514 | 0.4630 | 0.7751 | 0.7020 | 0.5429 | 0.5386 | 0.0 | 0.0 | 0.5329 | 0.7348 | 0.2331 | 0.6567 | 0.3661 | 0.5769 | 0.0004 | 0.0 | 0.2221 | 0.2333 | 0.7431 | 0.4133 | 0.5478 | 0.5718 | 0.5125 | 0.5107 | 0.0 |
| 0.2257 | 0.44 | 220 | 0.2751 | 0.4089 | 0.5400 | 0.6752 | nan | 0.6851 | 0.8458 | 0.4204 | 0.7241 | 0.1085 | 0.7997 | 0.7657 | 0.0 | 0.2458 | 0.4039 | 0.8858 | 0.7863 | 0.3199 | 0.7405 | 0.6974 | 0.7508 | 0.0 | 0.0 | 0.5815 | 0.7437 | 0.3776 | 0.6458 | 0.1033 | 0.6526 | 0.3966 | 0.0 | 0.2027 | 0.3078 | 0.7438 | 0.4680 | 0.2966 | 0.6204 | 0.5942 | 0.6260 | 0.0 |
| 0.3069 | 0.48 | 240 | 0.2614 | 0.4163 | 0.5499 | 0.6868 | nan | 0.6246 | 0.8571 | 0.3130 | 0.7765 | 0.8266 | 0.7786 | 0.3212 | 0.0 | 0.3560 | 0.3736 | 0.8579 | 0.1780 | 0.8761 | 0.7423 | 0.7693 | 0.6970 | 0.0 | 0.0 | 0.5597 | 0.7370 | 0.2931 | 0.6733 | 0.4032 | 0.6889 | 0.2487 | 0.0 | 0.2662 | 0.2901 | 0.7425 | 0.1724 | 0.4957 | 0.6373 | 0.6376 | 0.6470 | 0.0 |
| 0.1454 | 0.52 | 260 | 0.2563 | 0.4316 | 0.5610 | 0.6965 | nan | 0.6707 | 0.8388 | 0.5572 | 0.7616 | 0.3854 | 0.7280 | 0.7114 | 0.0 | 0.1934 | 0.3621 | 0.8718 | 0.7860 | 0.6140 | 0.7403 | 0.5340 | 0.7820 | 0.0 | 0.0 | 0.5710 | 0.7446 | 0.4497 | 0.6637 | 0.3125 | 0.6624 | 0.4219 | 0.0 | 0.1731 | 0.2862 | 0.7295 | 0.5339 | 0.5054 | 0.5742 | 0.4967 | 0.6449 | 0.0 |
| 0.1522 | 0.56 | 280 | 0.2521 | 0.4327 | 0.5567 | 0.7138 | nan | 0.5098 | 0.9135 | 0.3399 | 0.8898 | 0.5537 | 0.7508 | 0.2922 | 0.0 | 0.3367 | 0.2484 | 0.8388 | 0.7460 | 0.7191 | 0.7496 | 0.7996 | 0.7753 | 0.0 | 0.0 | 0.4902 | 0.7541 | 0.3196 | 0.6924 | 0.3853 | 0.6261 | 0.2512 | 0.0 | 0.2575 | 0.2171 | 0.7393 | 0.5563 | 0.5633 | 0.6403 | 0.6335 | 0.6621 | 0.0 |
| 0.1872 | 0.6 | 300 | 0.2359 | 0.4557 | 0.5797 | 0.7247 | nan | 0.6901 | 0.8832 | 0.5498 | 0.8857 | 0.6636 | 0.7843 | 0.3983 | 0.0 | 0.4549 | 0.2292 | 0.8147 | 0.7126 | 0.6223 | 0.7467 | 0.7014 | 0.7185 | 0.0 | 0.0 | 0.5881 | 0.7556 | 0.4621 | 0.7131 | 0.4264 | 0.6506 | 0.3311 | 0.0 | 0.3025 | 0.1975 | 0.7350 | 0.5635 | 0.5513 | 0.6505 | 0.6318 | 0.6439 | 0.0 |
| 0.2512 | 0.64 | 320 | 0.2601 | 0.4363 | 0.5599 | 0.6801 | nan | 0.6470 | 0.8482 | 0.3819 | 0.6317 | 0.2525 | 0.7437 | 0.8755 | 0.0 | 0.1737 | 0.5412 | 0.8907 | 0.5915 | 0.7943 | 0.7177 | 0.7437 | 0.6852 | 0.0 | 0.0 | 0.5580 | 0.7612 | 0.3645 | 0.5718 | 0.2362 | 0.6671 | 0.3836 | 0.0 | 0.1621 | 0.3641 | 0.7486 | 0.5132 | 0.5865 | 0.6472 | 0.6479 | 0.6409 | 0.0 |
| 0.6521 | 0.68 | 340 | 0.2286 | 0.4716 | 0.6024 | 0.7351 | nan | 0.6559 | 0.8492 | 0.3976 | 0.7517 | 0.5818 | 0.7622 | 0.7422 | 0.0 | 0.5277 | 0.2673 | 0.9098 | 0.7514 | 0.6903 | 0.7853 | 0.7795 | 0.7896 | 0.0 | 0.0 | 0.5839 | 0.7531 | 0.3761 | 0.6829 | 0.4643 | 0.6722 | 0.4762 | 0.0 | 0.3375 | 0.2261 | 0.7551 | 0.5838 | 0.5730 | 0.6548 | 0.6501 | 0.6987 | 0.0 |
| 0.1734 | 0.72 | 360 | 0.2511 | 0.4464 | 0.5731 | 0.7074 | nan | 0.6326 | 0.8339 | 0.5953 | 0.8987 | 0.8731 | 0.7575 | 0.1617 | 0.0 | 0.2314 | 0.5741 | 0.8497 | 0.6140 | 0.6973 | 0.5250 | 0.7576 | 0.7406 | 0.0 | 0.0 | 0.5777 | 0.7535 | 0.4840 | 0.6597 | 0.5208 | 0.6261 | 0.1507 | 0.0 | 0.2110 | 0.3920 | 0.7579 | 0.5436 | 0.5825 | 0.4959 | 0.6090 | 0.6702 | 0.0 |
| 0.1596 | 0.76 | 380 | 0.2303 | 0.4702 | 0.5922 | 0.7351 | nan | 0.6336 | 0.8772 | 0.4196 | 0.8004 | 0.4307 | 0.7034 | 0.7554 | 0.0 | 0.2914 | 0.4563 | 0.8930 | 0.7517 | 0.7146 | 0.7649 | 0.7420 | 0.8336 | 0.0 | 0.0 | 0.5854 | 0.7635 | 0.3937 | 0.6838 | 0.3957 | 0.6295 | 0.4857 | 0.0 | 0.2497 | 0.3439 | 0.7526 | 0.6021 | 0.6055 | 0.6591 | 0.6473 | 0.6657 | 0.0 |
| 0.1359 | 0.8 | 400 | 0.2332 | 0.4592 | 0.5773 | 0.7182 | nan | 0.6759 | 0.8564 | 0.5305 | 0.8221 | 0.4710 | 0.8463 | 0.5733 | 0.0 | 0.2630 | 0.5031 | 0.8314 | 0.7079 | 0.7295 | 0.7449 | 0.7233 | 0.5357 | 0.0 | 0.0 | 0.6046 | 0.7593 | 0.4670 | 0.7005 | 0.3678 | 0.5672 | 0.4327 | 0.0 | 0.2265 | 0.3566 | 0.7593 | 0.5975 | 0.6161 | 0.6456 | 0.6470 | 0.5178 | 0.0 |
| 0.2014 | 0.84 | 420 | 0.2298 | 0.4709 | 0.5957 | 0.7268 | nan | 0.6207 | 0.8571 | 0.5146 | 0.7670 | 0.6367 | 0.6238 | 0.7682 | 0.0 | 0.2470 | 0.4863 | 0.8939 | 0.5487 | 0.8665 | 0.7735 | 0.7827 | 0.7405 | 0.0 | 0.0 | 0.5729 | 0.7737 | 0.4637 | 0.6774 | 0.4588 | 0.5840 | 0.4656 | 0.0 | 0.2219 | 0.3668 | 0.7764 | 0.5020 | 0.5959 | 0.6641 | 0.6698 | 0.6833 | 0.0 |
| 0.137 | 0.88 | 440 | 0.2260 | 0.4824 | 0.6147 | 0.7401 | nan | 0.7197 | 0.8823 | 0.6023 | 0.8544 | 0.9048 | 0.7837 | 0.3094 | 0.0245 | 0.2877 | 0.4592 | 0.8905 | 0.6846 | 0.8472 | 0.7109 | 0.7647 | 0.7230 | 0.0 | 0.0 | 0.6089 | 0.7638 | 0.5071 | 0.7154 | 0.5084 | 0.6749 | 0.2801 | 0.0227 | 0.2486 | 0.3499 | 0.7679 | 0.6127 | 0.6436 | 0.6445 | 0.6729 | 0.6626 | 0.0 |
| 0.2494 | 0.92 | 460 | 0.2275 | 0.4721 | 0.5997 | 0.7321 | nan | 0.6265 | 0.8452 | 0.6870 | 0.8116 | 0.4266 | 0.8250 | 0.7026 | 0.0498 | 0.5651 | 0.1855 | 0.8745 | 0.7293 | 0.6387 | 0.6783 | 0.8080 | 0.7416 | 0.0 | 0.0 | 0.5764 | 0.7653 | 0.5312 | 0.7021 | 0.3635 | 0.6488 | 0.4468 | 0.0475 | 0.3420 | 0.1695 | 0.7764 | 0.5981 | 0.5821 | 0.6149 | 0.6599 | 0.6740 | 0.0 |
| 0.2788 | 0.96 | 480 | 0.2315 | 0.4670 | 0.5977 | 0.7292 | nan | 0.7105 | 0.8142 | 0.4169 | 0.8597 | 0.8573 | 0.7707 | 0.3171 | 0.0476 | 0.2514 | 0.4432 | 0.9214 | 0.7332 | 0.6989 | 0.8245 | 0.6729 | 0.7954 | 0.0255 | 0.0 | 0.6051 | 0.7556 | 0.3986 | 0.7114 | 0.4588 | 0.6423 | 0.2727 | 0.0438 | 0.2215 | 0.3468 | 0.7650 | 0.6030 | 0.6007 | 0.6432 | 0.6180 | 0.6945 | 0.0253 |
| 0.1254 | 1.0 | 500 | 0.2176 | 0.4955 | 0.6287 | 0.7450 | nan | 0.7081 | 0.9094 | 0.4628 | 0.7437 | 0.5938 | 0.7126 | 0.7410 | 0.0560 | 0.3971 | 0.5239 | 0.8992 | 0.7446 | 0.8258 | 0.8028 | 0.7613 | 0.8041 | 0.0014 | 0.0 | 0.6242 | 0.7741 | 0.4367 | 0.6877 | 0.4856 | 0.6276 | 0.4823 | 0.0535 | 0.3136 | 0.3836 | 0.7687 | 0.6347 | 0.6510 | 0.6615 | 0.6529 | 0.6795 | 0.0014 |
| 0.2625 | 1.04 | 520 | 0.2270 | 0.5000 | 0.6339 | 0.7411 | nan | 0.7844 | 0.8633 | 0.6442 | 0.8202 | 0.3913 | 0.6661 | 0.7393 | 0.0533 | 0.4684 | 0.5305 | 0.8686 | 0.6858 | 0.8024 | 0.7433 | 0.7895 | 0.8522 | 0.0729 | 0.0 | 0.6637 | 0.7685 | 0.5378 | 0.7150 | 0.3328 | 0.6169 | 0.4502 | 0.0468 | 0.3310 | 0.3732 | 0.7769 | 0.6214 | 0.6602 | 0.6614 | 0.6823 | 0.6913 | 0.0714 |
| 0.2871 | 1.08 | 540 | 0.2072 | 0.5091 | 0.6337 | 0.7630 | nan | 0.7427 | 0.8718 | 0.5674 | 0.8080 | 0.6131 | 0.7855 | 0.7672 | 0.0584 | 0.3031 | 0.4535 | 0.8750 | 0.6763 | 0.8457 | 0.8027 | 0.7491 | 0.7710 | 0.0820 | 0.0 | 0.6471 | 0.7706 | 0.5092 | 0.7250 | 0.4737 | 0.6887 | 0.5152 | 0.0507 | 0.2643 | 0.3623 | 0.7788 | 0.6085 | 0.6565 | 0.6659 | 0.6633 | 0.7025 | 0.0816 |
| 0.1481 | 1.12 | 560 | 0.2250 | 0.4824 | 0.5946 | 0.7494 | nan | 0.6480 | 0.8561 | 0.5148 | 0.8637 | 0.5174 | 0.7904 | 0.6671 | 0.0029 | 0.3782 | 0.2824 | 0.8794 | 0.6807 | 0.7755 | 0.6985 | 0.7431 | 0.8058 | 0.0039 | 0.0 | 0.6099 | 0.7755 | 0.4755 | 0.7081 | 0.4454 | 0.6483 | 0.4567 | 0.0029 | 0.2864 | 0.2456 | 0.7798 | 0.6012 | 0.6408 | 0.6339 | 0.6715 | 0.6978 | 0.0039 |
| 0.0995 | 1.16 | 580 | 0.2084 | 0.5218 | 0.6570 | 0.7698 | nan | 0.7706 | 0.8532 | 0.4978 | 0.7874 | 0.7761 | 0.8102 | 0.6761 | 0.0 | 0.4886 | 0.4884 | 0.9113 | 0.7646 | 0.8476 | 0.8129 | 0.7507 | 0.7485 | 0.1856 | 0.0 | 0.6194 | 0.7661 | 0.4641 | 0.7200 | 0.5843 | 0.6730 | 0.5042 | 0.0 | 0.3497 | 0.3711 | 0.7790 | 0.6542 | 0.6835 | 0.6823 | 0.6749 | 0.6959 | 0.1715 |
| 0.2912 | 1.2 | 600 | 0.2166 | 0.5136 | 0.6304 | 0.7632 | nan | 0.6870 | 0.8862 | 0.4891 | 0.7752 | 0.6264 | 0.8143 | 0.8202 | 0.0227 | 0.2578 | 0.4830 | 0.8932 | 0.7564 | 0.7366 | 0.7746 | 0.7678 | 0.7558 | 0.1712 | 0.0 | 0.6243 | 0.7791 | 0.4579 | 0.6983 | 0.5530 | 0.6676 | 0.5248 | 0.0222 | 0.2333 | 0.3786 | 0.7820 | 0.6438 | 0.6651 | 0.6773 | 0.6749 | 0.7018 | 0.1610 |
| 0.1874 | 1.24 | 620 | 0.2280 | 0.5053 | 0.6296 | 0.7525 | nan | 0.7070 | 0.8689 | 0.5348 | 0.8275 | 0.3452 | 0.8441 | 0.7748 | 0.0643 | 0.4207 | 0.4251 | 0.8840 | 0.7698 | 0.6921 | 0.7271 | 0.7322 | 0.7544 | 0.3318 | 0.0 | 0.6387 | 0.7766 | 0.4873 | 0.7210 | 0.3283 | 0.6163 | 0.5014 | 0.0600 | 0.3252 | 0.3434 | 0.7750 | 0.6349 | 0.6336 | 0.6531 | 0.6560 | 0.6995 | 0.2448 |
| 0.1634 | 1.28 | 640 | 0.2052 | 0.5100 | 0.6350 | 0.7638 | nan | 0.7069 | 0.8648 | 0.6021 | 0.8461 | 0.6408 | 0.8499 | 0.6889 | 0.0 | 0.3772 | 0.5718 | 0.8730 | 0.7073 | 0.5765 | 0.7283 | 0.7600 | 0.7655 | 0.2362 | 0.0 | 0.6105 | 0.7777 | 0.5233 | 0.7372 | 0.5287 | 0.6565 | 0.5185 | 0.0 | 0.3063 | 0.4062 | 0.7743 | 0.5688 | 0.5413 | 0.6500 | 0.6721 | 0.6956 | 0.2133 |
| 0.1894 | 1.32 | 660 | 0.2169 | 0.5104 | 0.6553 | 0.7601 | nan | 0.7721 | 0.8902 | 0.7412 | 0.8309 | 0.9266 | 0.6974 | 0.5353 | 0.0008 | 0.4742 | 0.4474 | 0.8442 | 0.8150 | 0.7319 | 0.7803 | 0.7767 | 0.7605 | 0.1160 | 0.0 | 0.6506 | 0.7883 | 0.5373 | 0.7116 | 0.5472 | 0.6493 | 0.4321 | 0.0008 | 0.3256 | 0.3422 | 0.7644 | 0.6199 | 0.6389 | 0.6849 | 0.6873 | 0.6919 | 0.1141 |
| 0.0769 | 1.36 | 680 | 0.1993 | 0.5250 | 0.6596 | 0.7756 | nan | 0.8044 | 0.8515 | 0.6711 | 0.8456 | 0.6474 | 0.7909 | 0.7083 | 0.0630 | 0.3173 | 0.6517 | 0.9003 | 0.6833 | 0.8527 | 0.8065 | 0.8162 | 0.7165 | 0.0872 | 0.0 | 0.6318 | 0.7755 | 0.5553 | 0.7207 | 0.5836 | 0.6787 | 0.5292 | 0.0625 | 0.2650 | 0.4130 | 0.7788 | 0.6131 | 0.6713 | 0.7043 | 0.7024 | 0.6790 | 0.0866 |
| 0.2145 | 1.4 | 700 | 0.2052 | 0.5114 | 0.6438 | 0.7630 | nan | 0.7518 | 0.8628 | 0.5961 | 0.8763 | 0.9097 | 0.7924 | 0.4449 | 0.0273 | 0.4497 | 0.3682 | 0.8965 | 0.8234 | 0.6068 | 0.8065 | 0.6396 | 0.8432 | 0.2497 | 0.0 | 0.6262 | 0.7776 | 0.5260 | 0.7240 | 0.6034 | 0.6991 | 0.4150 | 0.0270 | 0.3297 | 0.3073 | 0.7805 | 0.6198 | 0.5743 | 0.6511 | 0.6071 | 0.7187 | 0.2189 |
| 0.2162 | 1.44 | 720 | 0.2290 | 0.5246 | 0.6727 | 0.7519 | nan | 0.8003 | 0.8895 | 0.7155 | 0.7305 | 0.4570 | 0.8400 | 0.8071 | 0.0599 | 0.2933 | 0.5509 | 0.8700 | 0.7052 | 0.8386 | 0.7501 | 0.8070 | 0.8038 | 0.5178 | 0.0 | 0.7009 | 0.7910 | 0.5717 | 0.6618 | 0.4195 | 0.6924 | 0.4677 | 0.0587 | 0.2536 | 0.4050 | 0.7823 | 0.6246 | 0.6658 | 0.6718 | 0.6930 | 0.7369 | 0.2463 |
| 0.1751 | 1.48 | 740 | 0.2073 | 0.5376 | 0.6734 | 0.7847 | nan | 0.8054 | 0.8711 | 0.6506 | 0.8714 | 0.7615 | 0.7720 | 0.6263 | 0.1874 | 0.4293 | 0.4568 | 0.9023 | 0.8568 | 0.7712 | 0.7206 | 0.8132 | 0.8180 | 0.1342 | 0.0 | 0.7205 | 0.7976 | 0.5541 | 0.7385 | 0.5644 | 0.6886 | 0.4901 | 0.1510 | 0.3297 | 0.3632 | 0.7814 | 0.6510 | 0.6618 | 0.6457 | 0.6798 | 0.7289 | 0.1310 |
| 0.1175 | 1.52 | 760 | 0.2123 | 0.5114 | 0.6336 | 0.7694 | nan | 0.6736 | 0.8370 | 0.6304 | 0.8724 | 0.7794 | 0.7886 | 0.6708 | 0.0890 | 0.2305 | 0.6798 | 0.9045 | 0.5193 | 0.7556 | 0.7443 | 0.7395 | 0.7734 | 0.0836 | 0.0 | 0.6314 | 0.7744 | 0.5497 | 0.7306 | 0.5991 | 0.6411 | 0.5151 | 0.0705 | 0.2169 | 0.4380 | 0.7806 | 0.4983 | 0.6112 | 0.6768 | 0.6739 | 0.7150 | 0.0824 |
| 0.1317 | 1.56 | 780 | 0.2097 | 0.5035 | 0.6318 | 0.7713 | nan | 0.3686 | 0.9006 | 0.6208 | 0.8267 | 0.8135 | 0.7586 | 0.6929 | 0.0769 | 0.5944 | 0.2629 | 0.9171 | 0.8806 | 0.6178 | 0.7197 | 0.8212 | 0.7743 | 0.0936 | 0.0 | 0.3669 | 0.7756 | 0.5497 | 0.7150 | 0.6423 | 0.6759 | 0.5331 | 0.0657 | 0.3886 | 0.2448 | 0.7772 | 0.6177 | 0.5813 | 0.6439 | 0.6832 | 0.7088 | 0.0931 |
| 0.5482 | 1.6 | 800 | 0.2511 | 0.5037 | 0.6255 | 0.7414 | nan | 0.7498 | 0.8591 | 0.6984 | 0.7940 | 0.4886 | 0.7867 | 0.8255 | 0.0677 | 0.3048 | 0.4688 | 0.8573 | 0.6227 | 0.7895 | 0.7323 | 0.7148 | 0.6241 | 0.2496 | 0.0 | 0.6732 | 0.7722 | 0.5691 | 0.6858 | 0.4315 | 0.6297 | 0.4643 | 0.0620 | 0.2595 | 0.3642 | 0.7790 | 0.5765 | 0.6519 | 0.6686 | 0.6574 | 0.6024 | 0.2200 |
| 0.0895 | 1.64 | 820 | 0.1973 | 0.5191 | 0.6552 | 0.7673 | nan | 0.6921 | 0.8844 | 0.4919 | 0.8472 | 0.6608 | 0.7842 | 0.6546 | 0.2664 | 0.4594 | 0.4925 | 0.9224 | 0.8699 | 0.6010 | 0.8740 | 0.5805 | 0.8105 | 0.2468 | 0.0 | 0.6533 | 0.7801 | 0.4672 | 0.7328 | 0.5569 | 0.6945 | 0.5016 | 0.2105 | 0.3565 | 0.3858 | 0.7737 | 0.6031 | 0.5611 | 0.5950 | 0.5277 | 0.7232 | 0.2217 |
| 0.1804 | 1.68 | 840 | 0.2026 | 0.5308 | 0.6584 | 0.7736 | nan | 0.7891 | 0.8563 | 0.6565 | 0.8528 | 0.6089 | 0.7999 | 0.7005 | 0.0741 | 0.2858 | 0.6423 | 0.9035 | 0.7926 | 0.7474 | 0.7500 | 0.7516 | 0.7824 | 0.1997 | 0.0 | 0.6848 | 0.7815 | 0.5627 | 0.7391 | 0.5112 | 0.6788 | 0.4969 | 0.0673 | 0.2622 | 0.4456 | 0.7909 | 0.6476 | 0.6569 | 0.6618 | 0.6640 | 0.7139 | 0.1888 |
| 0.1271 | 1.72 | 860 | 0.2134 | 0.5227 | 0.6505 | 0.7693 | nan | 0.7656 | 0.8645 | 0.6724 | 0.9055 | 0.6357 | 0.7807 | 0.5336 | 0.0838 | 0.5199 | 0.4139 | 0.9021 | 0.8526 | 0.7135 | 0.7894 | 0.7737 | 0.7407 | 0.1103 | 0.0 | 0.6177 | 0.7821 | 0.5747 | 0.7212 | 0.5627 | 0.6421 | 0.4449 | 0.0762 | 0.3731 | 0.3486 | 0.7872 | 0.6535 | 0.6449 | 0.6892 | 0.6914 | 0.6913 | 0.1075 |
| 0.1344 | 1.76 | 880 | 0.2099 | 0.5269 | 0.6527 | 0.7711 | nan | 0.7985 | 0.8741 | 0.6237 | 0.8356 | 0.5284 | 0.8054 | 0.7358 | 0.0469 | 0.3616 | 0.5220 | 0.9019 | 0.6880 | 0.8126 | 0.8358 | 0.7745 | 0.7948 | 0.1563 | 0.0 | 0.6922 | 0.7886 | 0.5563 | 0.7230 | 0.4772 | 0.6475 | 0.5068 | 0.0436 | 0.3041 | 0.3968 | 0.7794 | 0.6338 | 0.6822 | 0.6952 | 0.6896 | 0.7182 | 0.1498 |
| 0.2751 | 1.8 | 900 | 0.2006 | 0.5334 | 0.6488 | 0.7806 | nan | 0.7400 | 0.8550 | 0.5263 | 0.8847 | 0.6187 | 0.8032 | 0.6862 | 0.0858 | 0.4811 | 0.4224 | 0.9162 | 0.7803 | 0.7360 | 0.7854 | 0.7527 | 0.7963 | 0.1590 | 0.0 | 0.6939 | 0.7836 | 0.4954 | 0.7498 | 0.5176 | 0.6805 | 0.5075 | 0.0725 | 0.3595 | 0.3539 | 0.7824 | 0.6646 | 0.6782 | 0.6886 | 0.6885 | 0.7303 | 0.1537 |
| 0.2685 | 1.84 | 920 | 0.2153 | 0.5265 | 0.6600 | 0.7598 | nan | 0.7896 | 0.8871 | 0.4589 | 0.8001 | 0.3307 | 0.8338 | 0.7796 | 0.2192 | 0.4367 | 0.4581 | 0.9048 | 0.8316 | 0.7681 | 0.8377 | 0.7482 | 0.7620 | 0.3733 | 0.0 | 0.6760 | 0.7832 | 0.4428 | 0.7128 | 0.3263 | 0.6632 | 0.5039 | 0.1754 | 0.3545 | 0.3853 | 0.7758 | 0.6553 | 0.6665 | 0.6908 | 0.6811 | 0.6933 | 0.2913 |
| 0.5729 | 1.88 | 940 | 0.2057 | 0.5343 | 0.6737 | 0.7641 | nan | 0.8351 | 0.8681 | 0.5588 | 0.7823 | 0.5378 | 0.8769 | 0.6844 | 0.2025 | 0.4204 | 0.5736 | 0.9000 | 0.6586 | 0.8633 | 0.7572 | 0.8501 | 0.8008 | 0.2837 | 0.0 | 0.6697 | 0.7834 | 0.5193 | 0.7093 | 0.4643 | 0.6734 | 0.4657 | 0.1703 | 0.3568 | 0.4435 | 0.7947 | 0.5896 | 0.6450 | 0.6871 | 0.7106 | 0.6983 | 0.2363 |
| 0.0862 | 1.92 | 960 | 0.2208 | 0.5155 | 0.6363 | 0.7593 | nan | 0.6683 | 0.8670 | 0.6014 | 0.8336 | 0.9151 | 0.7537 | 0.6623 | 0.0948 | 0.5015 | 0.4279 | 0.8643 | 0.5706 | 0.5450 | 0.7743 | 0.7484 | 0.7914 | 0.1971 | 0.0 | 0.6179 | 0.7799 | 0.5443 | 0.7211 | 0.5925 | 0.5910 | 0.5189 | 0.0850 | 0.3944 | 0.3678 | 0.7979 | 0.5061 | 0.4893 | 0.6992 | 0.6875 | 0.7094 | 0.1772 |
| 0.0793 | 1.96 | 980 | 0.2003 | 0.5467 | 0.6820 | 0.7890 | nan | 0.8868 | 0.8560 | 0.6296 | 0.8753 | 0.5087 | 0.8319 | 0.7202 | 0.2101 | 0.3960 | 0.5827 | 0.9140 | 0.6879 | 0.8781 | 0.7924 | 0.8308 | 0.8216 | 0.1713 | 0.0 | 0.7187 | 0.7865 | 0.5556 | 0.7705 | 0.4573 | 0.6863 | 0.5364 | 0.1786 | 0.3456 | 0.4445 | 0.7817 | 0.6192 | 0.6617 | 0.7112 | 0.7034 | 0.7258 | 0.1571 |
| 0.0881 | 2.0 | 1000 | 0.2026 | 0.5430 | 0.6696 | 0.7758 | nan | 0.8055 | 0.9034 | 0.6463 | 0.8711 | 0.5281 | 0.7951 | 0.6777 | 0.2288 | 0.4737 | 0.5184 | 0.8716 | 0.7001 | 0.7681 | 0.7600 | 0.7842 | 0.8391 | 0.2115 | 0.0 | 0.7040 | 0.7865 | 0.5595 | 0.7562 | 0.4646 | 0.6923 | 0.4893 | 0.1846 | 0.3773 | 0.4039 | 0.7844 | 0.6285 | 0.6595 | 0.6914 | 0.6785 | 0.7171 | 0.1954 |
| 0.164 | 2.04 | 1020 | 0.1894 | 0.5566 | 0.6935 | 0.7948 | nan | 0.8577 | 0.8451 | 0.6489 | 0.8534 | 0.6880 | 0.8749 | 0.7212 | 0.2222 | 0.3785 | 0.5106 | 0.8963 | 0.6640 | 0.8652 | 0.8502 | 0.7722 | 0.8177 | 0.3231 | 0.0 | 0.6855 | 0.7756 | 0.5673 | 0.7557 | 0.5883 | 0.7037 | 0.5489 | 0.1773 | 0.3318 | 0.4129 | 0.7889 | 0.6126 | 0.6769 | 0.7042 | 0.6960 | 0.7334 | 0.2598 |
| 0.158 | 2.08 | 1040 | 0.2104 | 0.5418 | 0.6749 | 0.7757 | nan | 0.8476 | 0.8642 | 0.6307 | 0.8318 | 0.4601 | 0.8279 | 0.7790 | 0.1855 | 0.4350 | 0.4771 | 0.9067 | 0.7989 | 0.7718 | 0.7935 | 0.8241 | 0.7621 | 0.2772 | 0.0 | 0.6748 | 0.7851 | 0.5636 | 0.7291 | 0.4187 | 0.6812 | 0.5001 | 0.1576 | 0.3579 | 0.3982 | 0.7805 | 0.6649 | 0.6787 | 0.7120 | 0.7232 | 0.7037 | 0.2224 |
| 0.0724 | 2.12 | 1060 | 0.1818 | 0.5813 | 0.7159 | 0.8143 | nan | 0.7836 | 0.8837 | 0.6726 | 0.8872 | 0.8685 | 0.7996 | 0.6764 | 0.3285 | 0.5280 | 0.5486 | 0.9054 | 0.7857 | 0.7742 | 0.8468 | 0.7965 | 0.8587 | 0.2266 | 0.0 | 0.7030 | 0.8008 | 0.5746 | 0.7651 | 0.7179 | 0.6962 | 0.5985 | 0.2603 | 0.3984 | 0.4226 | 0.7850 | 0.6685 | 0.6898 | 0.7073 | 0.7058 | 0.7649 | 0.2040 |
| 0.0906 | 2.16 | 1080 | 0.2052 | 0.5553 | 0.6875 | 0.7897 | nan | 0.8313 | 0.8956 | 0.6559 | 0.8275 | 0.7173 | 0.8116 | 0.7495 | 0.0605 | 0.4663 | 0.5563 | 0.8829 | 0.7184 | 0.8017 | 0.8431 | 0.7774 | 0.7582 | 0.3341 | 0.0 | 0.7110 | 0.7958 | 0.5638 | 0.7280 | 0.6074 | 0.6818 | 0.5526 | 0.0575 | 0.3893 | 0.4334 | 0.7886 | 0.6394 | 0.6823 | 0.6993 | 0.6912 | 0.7073 | 0.2664 |
| 0.119 | 2.2 | 1100 | 0.1916 | 0.5489 | 0.6809 | 0.7793 | nan | 0.8171 | 0.8442 | 0.7128 | 0.8296 | 0.7356 | 0.8236 | 0.6640 | 0.1341 | 0.5456 | 0.3609 | 0.8916 | 0.8015 | 0.8096 | 0.7653 | 0.7951 | 0.8119 | 0.2322 | 0.0 | 0.6733 | 0.7745 | 0.5803 | 0.7182 | 0.5975 | 0.6999 | 0.4996 | 0.1222 | 0.4036 | 0.3207 | 0.7971 | 0.6684 | 0.6861 | 0.6890 | 0.7078 | 0.7365 | 0.2050 |
| 0.1114 | 2.24 | 1120 | 0.1905 | 0.5526 | 0.6769 | 0.7941 | nan | 0.7955 | 0.8759 | 0.6366 | 0.8947 | 0.7813 | 0.7845 | 0.6508 | 0.0994 | 0.3162 | 0.6568 | 0.9211 | 0.7643 | 0.7050 | 0.7629 | 0.8151 | 0.7977 | 0.2493 | 0.0 | 0.7142 | 0.7945 | 0.5553 | 0.7484 | 0.6236 | 0.6722 | 0.5467 | 0.0970 | 0.2894 | 0.4530 | 0.7868 | 0.6591 | 0.6571 | 0.6901 | 0.7167 | 0.7352 | 0.2069 |
| 0.0757 | 2.28 | 1140 | 0.2216 | 0.5458 | 0.6760 | 0.7809 | nan | 0.7006 | 0.8731 | 0.6414 | 0.7872 | 0.6130 | 0.8828 | 0.8184 | 0.1886 | 0.5750 | 0.4180 | 0.9033 | 0.8910 | 0.6235 | 0.7955 | 0.7737 | 0.7658 | 0.2404 | 0.0 | 0.6697 | 0.7931 | 0.5672 | 0.7090 | 0.5666 | 0.7073 | 0.5092 | 0.1636 | 0.4196 | 0.3611 | 0.7910 | 0.6391 | 0.5870 | 0.7086 | 0.7117 | 0.7096 | 0.2109 |
| 0.0551 | 2.32 | 1160 | 0.2090 | 0.5627 | 0.7010 | 0.7837 | nan | 0.8745 | 0.9012 | 0.6052 | 0.7677 | 0.6776 | 0.8074 | 0.8089 | 0.2178 | 0.4269 | 0.6106 | 0.8998 | 0.7038 | 0.8525 | 0.8516 | 0.7745 | 0.8010 | 0.3363 | 0.0 | 0.7143 | 0.7934 | 0.5484 | 0.6976 | 0.5691 | 0.7044 | 0.5204 | 0.1995 | 0.3665 | 0.4422 | 0.7764 | 0.6567 | 0.7059 | 0.7163 | 0.7137 | 0.7323 | 0.2721 |
| 0.0936 | 2.36 | 1180 | 0.2165 | 0.5574 | 0.6867 | 0.7878 | nan | 0.7461 | 0.8914 | 0.5665 | 0.8649 | 0.6354 | 0.7483 | 0.7363 | 0.1586 | 0.5903 | 0.3687 | 0.9141 | 0.8447 | 0.7667 | 0.8507 | 0.7891 | 0.7414 | 0.4599 | 0.0 | 0.7022 | 0.7991 | 0.5241 | 0.7179 | 0.5839 | 0.6630 | 0.5364 | 0.1484 | 0.4303 | 0.3375 | 0.7782 | 0.6839 | 0.6968 | 0.7225 | 0.7219 | 0.7012 | 0.2853 |
| 0.2249 | 2.4 | 1200 | 0.1985 | 0.5576 | 0.6820 | 0.7858 | nan | 0.7479 | 0.8644 | 0.6423 | 0.8948 | 0.5762 | 0.7743 | 0.6383 | 0.2730 | 0.4054 | 0.5883 | 0.9116 | 0.8846 | 0.7431 | 0.8103 | 0.7955 | 0.8559 | 0.1886 | 0.0 | 0.6950 | 0.7889 | 0.5656 | 0.7334 | 0.5212 | 0.6682 | 0.4872 | 0.2366 | 0.3478 | 0.4438 | 0.7828 | 0.6917 | 0.6892 | 0.7223 | 0.7322 | 0.7515 | 0.1796 |
| 0.1143 | 2.44 | 1220 | 0.2132 | 0.5542 | 0.6838 | 0.7695 | nan | 0.7928 | 0.8792 | 0.6912 | 0.7460 | 0.6283 | 0.8408 | 0.7820 | 0.2448 | 0.4905 | 0.4794 | 0.8976 | 0.7917 | 0.8155 | 0.8065 | 0.8147 | 0.7629 | 0.1613 | 0.0 | 0.7049 | 0.7851 | 0.5858 | 0.6884 | 0.5133 | 0.7170 | 0.4776 | 0.2212 | 0.3929 | 0.3954 | 0.7848 | 0.6841 | 0.7051 | 0.7079 | 0.7274 | 0.7252 | 0.1587 |
| 0.2771 | 2.48 | 1240 | 0.2258 | 0.5580 | 0.6880 | 0.7782 | nan | 0.8725 | 0.8834 | 0.7124 | 0.8679 | 0.4498 | 0.7580 | 0.7352 | 0.2542 | 0.4660 | 0.5536 | 0.8802 | 0.8435 | 0.7798 | 0.8040 | 0.7906 | 0.7847 | 0.2596 | 0.0 | 0.7281 | 0.7984 | 0.5992 | 0.7209 | 0.4263 | 0.6651 | 0.4859 | 0.2339 | 0.3893 | 0.4403 | 0.7874 | 0.6971 | 0.7040 | 0.7042 | 0.7258 | 0.7388 | 0.1998 |
| 0.1988 | 2.52 | 1260 | 0.2129 | 0.5508 | 0.6813 | 0.7733 | nan | 0.8449 | 0.8465 | 0.6716 | 0.7666 | 0.7912 | 0.7598 | 0.7918 | 0.1262 | 0.4035 | 0.5711 | 0.9015 | 0.7580 | 0.8154 | 0.7535 | 0.8030 | 0.7797 | 0.1979 | 0.0 | 0.6909 | 0.7793 | 0.5838 | 0.6927 | 0.5898 | 0.6771 | 0.5041 | 0.1199 | 0.3521 | 0.4372 | 0.7785 | 0.6728 | 0.6947 | 0.6964 | 0.7248 | 0.7309 | 0.1903 |
| 0.0679 | 2.56 | 1280 | 0.1937 | 0.5683 | 0.6963 | 0.7955 | nan | 0.7422 | 0.9044 | 0.6691 | 0.8294 | 0.6163 | 0.8310 | 0.7917 | 0.3324 | 0.6376 | 0.3930 | 0.9014 | 0.8285 | 0.7713 | 0.8048 | 0.8271 | 0.7844 | 0.1731 | 0.0 | 0.6872 | 0.7986 | 0.5810 | 0.7385 | 0.5481 | 0.7185 | 0.5452 | 0.2847 | 0.4488 | 0.3568 | 0.7849 | 0.6938 | 0.6977 | 0.7127 | 0.7261 | 0.7367 | 0.1710 |
| 0.0815 | 2.6 | 1300 | 0.1993 | 0.5763 | 0.7156 | 0.7826 | nan | 0.7970 | 0.8772 | 0.7409 | 0.7964 | 0.5757 | 0.8128 | 0.8230 | 0.3708 | 0.4442 | 0.6099 | 0.8871 | 0.7767 | 0.7949 | 0.8140 | 0.8029 | 0.7646 | 0.4768 | 0.0 | 0.7016 | 0.7953 | 0.5979 | 0.7150 | 0.5049 | 0.7142 | 0.5156 | 0.3068 | 0.3891 | 0.4637 | 0.7945 | 0.6853 | 0.7042 | 0.7075 | 0.7254 | 0.7177 | 0.3345 |
| 0.0705 | 2.64 | 1320 | 0.1949 | 0.5713 | 0.7021 | 0.7976 | nan | 0.7553 | 0.8927 | 0.5885 | 0.8530 | 0.6004 | 0.8552 | 0.7297 | 0.4790 | 0.6650 | 0.3765 | 0.9130 | 0.8525 | 0.7707 | 0.8690 | 0.7700 | 0.7959 | 0.1701 | 0.0 | 0.7081 | 0.8047 | 0.5361 | 0.7416 | 0.5569 | 0.7221 | 0.5327 | 0.3904 | 0.4541 | 0.3455 | 0.7975 | 0.6906 | 0.6955 | 0.6991 | 0.7043 | 0.7369 | 0.1673 |
| 0.0785 | 2.68 | 1340 | 0.2041 | 0.5795 | 0.7097 | 0.7964 | nan | 0.8035 | 0.9029 | 0.6566 | 0.8325 | 0.5972 | 0.8503 | 0.7806 | 0.4603 | 0.4654 | 0.6184 | 0.8752 | 0.8377 | 0.6987 | 0.7804 | 0.8239 | 0.8514 | 0.2307 | 0.0 | 0.7323 | 0.8038 | 0.5765 | 0.7379 | 0.5414 | 0.7289 | 0.5339 | 0.3700 | 0.3978 | 0.4754 | 0.8028 | 0.6705 | 0.6539 | 0.7093 | 0.7269 | 0.7478 | 0.2222 |
| 0.1076 | 2.72 | 1360 | 0.1929 | 0.5838 | 0.7190 | 0.8072 | nan | 0.6902 | 0.8919 | 0.6362 | 0.8790 | 0.7117 | 0.8261 | 0.6784 | 0.4480 | 0.6431 | 0.4944 | 0.9088 | 0.8265 | 0.7479 | 0.8457 | 0.8242 | 0.8532 | 0.3170 | 0.0 | 0.6566 | 0.7966 | 0.5662 | 0.7594 | 0.6488 | 0.6928 | 0.5625 | 0.3419 | 0.4482 | 0.4200 | 0.7937 | 0.6759 | 0.6761 | 0.7319 | 0.7342 | 0.7486 | 0.2551 |
| 0.1436 | 2.76 | 1380 | 0.2300 | 0.5385 | 0.6686 | 0.7745 | nan | 0.7836 | 0.9007 | 0.6214 | 0.7997 | 0.6169 | 0.8014 | 0.8452 | 0.1419 | 0.3989 | 0.6709 | 0.8971 | 0.4475 | 0.9195 | 0.7890 | 0.8211 | 0.6318 | 0.2804 | 0.0 | 0.7015 | 0.8036 | 0.5603 | 0.7213 | 0.5128 | 0.7149 | 0.5244 | 0.1311 | 0.3619 | 0.4863 | 0.7927 | 0.4435 | 0.6090 | 0.7179 | 0.7295 | 0.6180 | 0.2642 |
| 0.1067 | 2.8 | 1400 | 0.1957 | 0.5652 | 0.7049 | 0.7881 | nan | 0.8524 | 0.8639 | 0.7524 | 0.8659 | 0.6098 | 0.8053 | 0.6721 | 0.2178 | 0.4882 | 0.5218 | 0.8987 | 0.8355 | 0.7302 | 0.8198 | 0.8127 | 0.8579 | 0.3791 | 0.0 | 0.6970 | 0.7926 | 0.6030 | 0.7407 | 0.5254 | 0.7052 | 0.4947 | 0.1865 | 0.4082 | 0.4450 | 0.7945 | 0.6695 | 0.6767 | 0.7171 | 0.7172 | 0.7042 | 0.2960 |
| 0.0719 | 2.84 | 1420 | 0.2357 | 0.5517 | 0.6760 | 0.7766 | nan | 0.8245 | 0.9166 | 0.6213 | 0.8075 | 0.5353 | 0.7805 | 0.8185 | 0.1425 | 0.4855 | 0.5586 | 0.8749 | 0.7612 | 0.7448 | 0.8053 | 0.8224 | 0.7441 | 0.2490 | 0.0 | 0.7198 | 0.8016 | 0.5629 | 0.7240 | 0.4794 | 0.6637 | 0.4917 | 0.1346 | 0.4047 | 0.4592 | 0.7837 | 0.6594 | 0.6719 | 0.7211 | 0.7227 | 0.6954 | 0.2352 |
| 0.1557 | 2.88 | 1440 | 0.2600 | 0.5491 | 0.6861 | 0.7593 | nan | 0.8334 | 0.8869 | 0.6552 | 0.7548 | 0.4025 | 0.7557 | 0.8423 | 0.1417 | 0.5662 | 0.5345 | 0.9121 | 0.8045 | 0.7816 | 0.8586 | 0.7752 | 0.7765 | 0.3824 | 0.0 | 0.7396 | 0.7964 | 0.5758 | 0.6832 | 0.3855 | 0.6560 | 0.4511 | 0.1362 | 0.4422 | 0.4574 | 0.7852 | 0.6753 | 0.6876 | 0.7167 | 0.7123 | 0.7135 | 0.2702 |
| 0.0667 | 2.92 | 1460 | 0.2077 | 0.5685 | 0.7011 | 0.7889 | nan | 0.8600 | 0.9046 | 0.7236 | 0.8549 | 0.4918 | 0.7826 | 0.7566 | 0.2867 | 0.5245 | 0.5654 | 0.8922 | 0.7801 | 0.8728 | 0.7829 | 0.8062 | 0.7907 | 0.2428 | 0.0 | 0.7300 | 0.7920 | 0.5978 | 0.7410 | 0.4591 | 0.6792 | 0.5235 | 0.2351 | 0.4322 | 0.4714 | 0.7826 | 0.6802 | 0.7142 | 0.7103 | 0.7247 | 0.7266 | 0.2322 |
| 0.0599 | 2.96 | 1480 | 0.1890 | 0.5706 | 0.7078 | 0.7904 | nan | 0.8265 | 0.8570 | 0.7718 | 0.8348 | 0.7044 | 0.8015 | 0.7367 | 0.2153 | 0.3547 | 0.6748 | 0.8968 | 0.8277 | 0.7836 | 0.8193 | 0.7976 | 0.7714 | 0.3590 | 0.0 | 0.7146 | 0.7867 | 0.6005 | 0.7420 | 0.5740 | 0.7028 | 0.5212 | 0.1847 | 0.3318 | 0.4857 | 0.7959 | 0.6741 | 0.6980 | 0.7252 | 0.7153 | 0.7289 | 0.2884 |
| 0.1253 | 3.0 | 1500 | 0.2008 | 0.5730 | 0.7009 | 0.7958 | nan | 0.7983 | 0.9092 | 0.6277 | 0.8403 | 0.5076 | 0.8389 | 0.8069 | 0.2118 | 0.5775 | 0.5092 | 0.8948 | 0.8165 | 0.7955 | 0.8217 | 0.7863 | 0.7737 | 0.3995 | 0.0 | 0.7192 | 0.8033 | 0.5639 | 0.7514 | 0.4760 | 0.7203 | 0.5251 | 0.2002 | 0.4440 | 0.4414 | 0.8016 | 0.6836 | 0.7215 | 0.7145 | 0.7223 | 0.7263 | 0.3001 |
| 0.0902 | 3.04 | 1520 | 0.2002 | 0.5771 | 0.7138 | 0.7951 | nan | 0.8105 | 0.8611 | 0.6681 | 0.8355 | 0.6470 | 0.8293 | 0.7263 | 0.2985 | 0.5198 | 0.6254 | 0.9141 | 0.8738 | 0.7614 | 0.8100 | 0.8081 | 0.8212 | 0.3252 | 0.0 | 0.6917 | 0.7907 | 0.5827 | 0.7466 | 0.5515 | 0.7143 | 0.5243 | 0.2417 | 0.4221 | 0.4795 | 0.7980 | 0.6762 | 0.6961 | 0.7176 | 0.7377 | 0.7402 | 0.2770 |
| 0.0793 | 3.08 | 1540 | 0.2097 | 0.5740 | 0.6960 | 0.7942 | nan | 0.7866 | 0.8973 | 0.5933 | 0.8581 | 0.5793 | 0.8686 | 0.7112 | 0.2830 | 0.5339 | 0.5274 | 0.9094 | 0.7455 | 0.8031 | 0.8050 | 0.7807 | 0.7956 | 0.3542 | 0.0 | 0.7338 | 0.8013 | 0.5453 | 0.7551 | 0.5228 | 0.7043 | 0.5216 | 0.2388 | 0.4344 | 0.4474 | 0.8099 | 0.6517 | 0.7028 | 0.7118 | 0.7277 | 0.7302 | 0.2923 |
| 0.1151 | 3.12 | 1560 | 0.2098 | 0.5839 | 0.7069 | 0.8009 | nan | 0.7985 | 0.8944 | 0.6654 | 0.8527 | 0.5810 | 0.8246 | 0.7654 | 0.2375 | 0.5160 | 0.5706 | 0.9016 | 0.7949 | 0.8408 | 0.8249 | 0.8197 | 0.8106 | 0.3179 | 0.0 | 0.7424 | 0.8056 | 0.5829 | 0.7540 | 0.5176 | 0.7170 | 0.5205 | 0.2154 | 0.4395 | 0.4741 | 0.8142 | 0.6893 | 0.7262 | 0.7221 | 0.7486 | 0.7490 | 0.2920 |
| 0.0521 | 3.16 | 1580 | 0.2137 | 0.5824 | 0.7149 | 0.7968 | nan | 0.8334 | 0.8909 | 0.7298 | 0.8236 | 0.5910 | 0.8047 | 0.7947 | 0.2071 | 0.6304 | 0.5506 | 0.8957 | 0.7867 | 0.8203 | 0.8369 | 0.8054 | 0.8381 | 0.3143 | 0.0 | 0.7455 | 0.8052 | 0.6026 | 0.7391 | 0.5304 | 0.7111 | 0.5198 | 0.1846 | 0.4810 | 0.4572 | 0.8158 | 0.6975 | 0.7236 | 0.7188 | 0.7349 | 0.7416 | 0.2748 |
| 0.0974 | 3.2 | 1600 | 0.2145 | 0.5750 | 0.7010 | 0.7944 | nan | 0.8038 | 0.8812 | 0.5595 | 0.8303 | 0.5730 | 0.8460 | 0.7588 | 0.2021 | 0.5587 | 0.5178 | 0.9135 | 0.8271 | 0.8278 | 0.8214 | 0.8236 | 0.7844 | 0.3874 | 0.0 | 0.7228 | 0.7942 | 0.5250 | 0.7341 | 0.5138 | 0.7236 | 0.5115 | 0.1847 | 0.4478 | 0.4420 | 0.8113 | 0.6973 | 0.7192 | 0.7389 | 0.7447 | 0.7376 | 0.3004 |
| 0.0535 | 3.24 | 1620 | 0.1986 | 0.5803 | 0.7191 | 0.8025 | nan | 0.8644 | 0.8970 | 0.7361 | 0.8454 | 0.7897 | 0.7807 | 0.7109 | 0.1309 | 0.5688 | 0.5623 | 0.8898 | 0.8323 | 0.7588 | 0.8089 | 0.8493 | 0.8091 | 0.3906 | 0.0 | 0.7053 | 0.7997 | 0.6082 | 0.7580 | 0.5811 | 0.6955 | 0.5477 | 0.1201 | 0.4516 | 0.4580 | 0.8204 | 0.6752 | 0.6925 | 0.7320 | 0.7468 | 0.7445 | 0.3084 |
| 0.072 | 3.28 | 1640 | 0.1961 | 0.5782 | 0.7140 | 0.8020 | nan | 0.8503 | 0.8473 | 0.7632 | 0.8730 | 0.6862 | 0.8199 | 0.7197 | 0.1571 | 0.5890 | 0.5258 | 0.8817 | 0.8225 | 0.7920 | 0.8056 | 0.8447 | 0.7937 | 0.3655 | 0.0 | 0.7110 | 0.7839 | 0.6097 | 0.7675 | 0.5405 | 0.7156 | 0.5373 | 0.1418 | 0.4611 | 0.4439 | 0.8183 | 0.6797 | 0.7040 | 0.7167 | 0.7379 | 0.7420 | 0.2963 |
| 0.0929 | 3.32 | 1660 | 0.2014 | 0.5753 | 0.7005 | 0.8059 | nan | 0.8069 | 0.9063 | 0.6184 | 0.8649 | 0.7200 | 0.8257 | 0.7258 | 0.1376 | 0.4722 | 0.6033 | 0.9044 | 0.8147 | 0.7698 | 0.8141 | 0.8313 | 0.7646 | 0.3288 | 0.0 | 0.7399 | 0.8079 | 0.5636 | 0.7677 | 0.5656 | 0.7075 | 0.5457 | 0.1288 | 0.4001 | 0.4691 | 0.8136 | 0.6855 | 0.6978 | 0.7241 | 0.7291 | 0.7303 | 0.2799 |
| 0.0883 | 3.36 | 1680 | 0.2020 | 0.5681 | 0.6953 | 0.8032 | nan | 0.6691 | 0.8898 | 0.7268 | 0.8802 | 0.6571 | 0.8365 | 0.7110 | 0.2121 | 0.4769 | 0.6395 | 0.9106 | 0.7869 | 0.8422 | 0.8619 | 0.7270 | 0.7651 | 0.2267 | 0.0 | 0.6504 | 0.7967 | 0.6055 | 0.7711 | 0.5475 | 0.7188 | 0.5390 | 0.1922 | 0.4080 | 0.4835 | 0.8028 | 0.6882 | 0.7258 | 0.6887 | 0.6628 | 0.7315 | 0.2127 |
| 0.0795 | 3.4 | 1700 | 0.2029 | 0.5795 | 0.7073 | 0.8019 | nan | 0.7438 | 0.8881 | 0.7527 | 0.8645 | 0.6712 | 0.8071 | 0.7493 | 0.2007 | 0.5927 | 0.5268 | 0.8968 | 0.8016 | 0.8051 | 0.8163 | 0.7442 | 0.8168 | 0.3461 | 0.0 | 0.7033 | 0.8013 | 0.6111 | 0.7618 | 0.5426 | 0.7030 | 0.5380 | 0.1790 | 0.4673 | 0.4503 | 0.8021 | 0.7002 | 0.7318 | 0.6986 | 0.6781 | 0.7602 | 0.3015 |
| 0.0773 | 3.44 | 1720 | 0.1989 | 0.5812 | 0.7117 | 0.8050 | nan | 0.8647 | 0.8811 | 0.6571 | 0.8473 | 0.7655 | 0.8081 | 0.7508 | 0.2 | 0.5806 | 0.5543 | 0.8992 | 0.8711 | 0.7839 | 0.8109 | 0.7591 | 0.7706 | 0.2941 | 0.0 | 0.7410 | 0.8039 | 0.5819 | 0.7591 | 0.5928 | 0.7198 | 0.5427 | 0.1720 | 0.4644 | 0.4652 | 0.8028 | 0.7036 | 0.7189 | 0.7045 | 0.6864 | 0.7301 | 0.2720 |
| 0.0627 | 3.48 | 1740 | 0.1922 | 0.5946 | 0.7326 | 0.8082 | nan | 0.8001 | 0.9026 | 0.7357 | 0.8662 | 0.7616 | 0.7701 | 0.7071 | 0.3307 | 0.5833 | 0.5425 | 0.8858 | 0.8232 | 0.8421 | 0.8466 | 0.7911 | 0.8314 | 0.4343 | 0.0 | 0.6934 | 0.8002 | 0.6045 | 0.7542 | 0.6357 | 0.6823 | 0.5510 | 0.2671 | 0.4622 | 0.4621 | 0.8064 | 0.7109 | 0.7429 | 0.7272 | 0.7122 | 0.7564 | 0.3336 |
| 0.0901 | 3.52 | 1760 | 0.1963 | 0.5834 | 0.7287 | 0.8048 | nan | 0.7844 | 0.8874 | 0.7435 | 0.8876 | 0.7874 | 0.7760 | 0.6757 | 0.5528 | 0.4646 | 0.6739 | 0.9074 | 0.8113 | 0.7329 | 0.8419 | 0.7806 | 0.8012 | 0.2792 | 0.0 | 0.7058 | 0.8024 | 0.6052 | 0.7672 | 0.6304 | 0.6697 | 0.5552 | 0.2771 | 0.4063 | 0.4888 | 0.8120 | 0.6742 | 0.6810 | 0.7174 | 0.7099 | 0.7422 | 0.2573 |
| 0.0945 | 3.56 | 1780 | 0.2033 | 0.5814 | 0.7128 | 0.8026 | nan | 0.7737 | 0.8804 | 0.7259 | 0.8444 | 0.7017 | 0.7875 | 0.7936 | 0.2431 | 0.5968 | 0.5278 | 0.8723 | 0.8753 | 0.7400 | 0.8484 | 0.7847 | 0.8230 | 0.2984 | 0.0 | 0.6802 | 0.7959 | 0.6064 | 0.7510 | 0.6027 | 0.6942 | 0.5622 | 0.2123 | 0.4806 | 0.4601 | 0.8139 | 0.6697 | 0.6731 | 0.7165 | 0.7166 | 0.7550 | 0.2749 |
| 0.0621 | 3.6 | 1800 | 0.2150 | 0.5739 | 0.7002 | 0.7936 | nan | 0.7455 | 0.8958 | 0.6267 | 0.8290 | 0.4667 | 0.8545 | 0.7940 | 0.2158 | 0.5564 | 0.5418 | 0.9127 | 0.7723 | 0.8698 | 0.8493 | 0.8622 | 0.7568 | 0.3538 | 0.0 | 0.6987 | 0.8035 | 0.5693 | 0.7468 | 0.4405 | 0.7120 | 0.5078 | 0.1976 | 0.4466 | 0.4550 | 0.8211 | 0.6854 | 0.7335 | 0.7358 | 0.7513 | 0.7141 | 0.3113 |
| 0.2598 | 3.64 | 1820 | 0.2038 | 0.5845 | 0.7150 | 0.7998 | nan | 0.7778 | 0.8901 | 0.7231 | 0.8247 | 0.6904 | 0.7825 | 0.8005 | 0.2124 | 0.6003 | 0.5248 | 0.8983 | 0.8224 | 0.8289 | 0.8407 | 0.8113 | 0.7780 | 0.3483 | 0.0 | 0.6945 | 0.8005 | 0.6083 | 0.7402 | 0.5578 | 0.7011 | 0.5394 | 0.1800 | 0.4688 | 0.4444 | 0.8234 | 0.7047 | 0.7372 | 0.7436 | 0.7471 | 0.7255 | 0.3038 |
| 0.0579 | 3.68 | 1840 | 0.2159 | 0.5795 | 0.7123 | 0.7900 | nan | 0.8404 | 0.8889 | 0.6393 | 0.8015 | 0.7077 | 0.7805 | 0.7668 | 0.2314 | 0.5816 | 0.5545 | 0.9067 | 0.7842 | 0.8706 | 0.8527 | 0.7892 | 0.7389 | 0.3750 | 0.0 | 0.7195 | 0.8002 | 0.5789 | 0.7270 | 0.5200 | 0.6983 | 0.5056 | 0.1995 | 0.4739 | 0.4656 | 0.8146 | 0.6987 | 0.7419 | 0.7428 | 0.7333 | 0.7015 | 0.3093 |
| 0.178 | 3.72 | 1860 | 0.2051 | 0.5807 | 0.7160 | 0.7960 | nan | 0.8871 | 0.8580 | 0.7123 | 0.8313 | 0.6923 | 0.8340 | 0.7196 | 0.2726 | 0.5479 | 0.5092 | 0.9005 | 0.7924 | 0.8467 | 0.8338 | 0.8060 | 0.8261 | 0.3020 | 0.0 | 0.7153 | 0.7931 | 0.6083 | 0.7428 | 0.5218 | 0.6966 | 0.5077 | 0.2297 | 0.4433 | 0.4389 | 0.8253 | 0.7020 | 0.7463 | 0.7383 | 0.7449 | 0.7425 | 0.2560 |
| 0.0652 | 3.76 | 1880 | 0.1907 | 0.5881 | 0.7163 | 0.8079 | nan | 0.7918 | 0.9170 | 0.6292 | 0.8550 | 0.7548 | 0.8023 | 0.7000 | 0.3581 | 0.4405 | 0.6354 | 0.9116 | 0.7540 | 0.8829 | 0.8521 | 0.8078 | 0.8326 | 0.2512 | 0.0 | 0.7321 | 0.8032 | 0.5730 | 0.7583 | 0.6172 | 0.6924 | 0.5500 | 0.2969 | 0.3963 | 0.4849 | 0.8110 | 0.6878 | 0.7372 | 0.7356 | 0.7367 | 0.7462 | 0.2273 |
| 0.0909 | 3.8 | 1900 | 0.2130 | 0.5773 | 0.7080 | 0.7958 | nan | 0.8645 | 0.8670 | 0.6606 | 0.8539 | 0.6938 | 0.7894 | 0.7331 | 0.3307 | 0.5893 | 0.5149 | 0.9035 | 0.7804 | 0.8136 | 0.8174 | 0.8344 | 0.7693 | 0.2204 | 0.0 | 0.7076 | 0.7923 | 0.5894 | 0.7520 | 0.5299 | 0.6777 | 0.5221 | 0.2841 | 0.4775 | 0.4505 | 0.8169 | 0.6857 | 0.7220 | 0.7303 | 0.7335 | 0.7171 | 0.2021 |
| 0.0961 | 3.84 | 1920 | 0.2318 | 0.5699 | 0.7032 | 0.7850 | nan | 0.8585 | 0.8814 | 0.7262 | 0.8201 | 0.4649 | 0.7840 | 0.8384 | 0.2209 | 0.5943 | 0.5827 | 0.9001 | 0.8247 | 0.8078 | 0.8476 | 0.7852 | 0.7388 | 0.2795 | 0.0 | 0.7093 | 0.8043 | 0.6152 | 0.7333 | 0.4218 | 0.6994 | 0.5020 | 0.2123 | 0.4828 | 0.4840 | 0.8139 | 0.6860 | 0.7119 | 0.7325 | 0.7223 | 0.6961 | 0.2304 |
| 0.0786 | 3.88 | 1940 | 0.2128 | 0.5738 | 0.7009 | 0.7950 | nan | 0.8275 | 0.8709 | 0.7395 | 0.8610 | 0.4952 | 0.8088 | 0.7840 | 0.1940 | 0.5403 | 0.5177 | 0.9014 | 0.8490 | 0.8128 | 0.8428 | 0.7945 | 0.8037 | 0.2714 | 0.0 | 0.7236 | 0.8014 | 0.6126 | 0.7543 | 0.4507 | 0.7059 | 0.5309 | 0.1864 | 0.4458 | 0.4492 | 0.8150 | 0.6890 | 0.7151 | 0.7352 | 0.7267 | 0.7343 | 0.2527 |
| 0.0636 | 3.92 | 1960 | 0.2003 | 0.5833 | 0.7262 | 0.7998 | nan | 0.8600 | 0.9029 | 0.7461 | 0.8230 | 0.7772 | 0.7915 | 0.7836 | 0.2790 | 0.6805 | 0.5158 | 0.8845 | 0.9083 | 0.5324 | 0.8158 | 0.8110 | 0.8367 | 0.3969 | 0.0 | 0.7663 | 0.8098 | 0.6200 | 0.7428 | 0.6096 | 0.7033 | 0.5636 | 0.2286 | 0.5014 | 0.4624 | 0.8116 | 0.6112 | 0.5186 | 0.7507 | 0.7531 | 0.7431 | 0.3027 |
| 0.0589 | 3.96 | 1980 | 0.1973 | 0.5911 | 0.7251 | 0.8140 | nan | 0.8461 | 0.8977 | 0.7605 | 0.8543 | 0.7629 | 0.8871 | 0.7317 | 0.2834 | 0.4014 | 0.6770 | 0.8954 | 0.6367 | 0.8749 | 0.8640 | 0.8419 | 0.7840 | 0.3271 | 0.0 | 0.7618 | 0.8090 | 0.6166 | 0.7608 | 0.6512 | 0.7371 | 0.5648 | 0.2335 | 0.3683 | 0.4960 | 0.8055 | 0.6120 | 0.6862 | 0.7559 | 0.7535 | 0.7329 | 0.2949 |
| 0.0517 | 4.0 | 2000 | 0.1941 | 0.5891 | 0.7204 | 0.8118 | nan | 0.8225 | 0.8958 | 0.7789 | 0.8578 | 0.7435 | 0.8709 | 0.7380 | 0.2309 | 0.4791 | 0.6296 | 0.9095 | 0.6344 | 0.8537 | 0.8293 | 0.8547 | 0.7902 | 0.3280 | 0.0 | 0.7503 | 0.8103 | 0.6221 | 0.7556 | 0.6648 | 0.7287 | 0.5669 | 0.1981 | 0.4191 | 0.4888 | 0.8081 | 0.6006 | 0.6729 | 0.7420 | 0.7530 | 0.7366 | 0.2853 |
| 0.0422 | 4.04 | 2020 | 0.2032 | 0.5913 | 0.7192 | 0.8093 | nan | 0.8231 | 0.9095 | 0.7218 | 0.8538 | 0.6817 | 0.8363 | 0.7633 | 0.2917 | 0.6304 | 0.5313 | 0.8938 | 0.8721 | 0.7443 | 0.8296 | 0.8005 | 0.7821 | 0.2613 | 0.0 | 0.7468 | 0.8084 | 0.6122 | 0.7520 | 0.6243 | 0.7129 | 0.5594 | 0.2464 | 0.4930 | 0.4699 | 0.8102 | 0.6812 | 0.6865 | 0.7350 | 0.7349 | 0.7280 | 0.2428 |
| 0.0861 | 4.08 | 2040 | 0.1949 | 0.6051 | 0.7314 | 0.8172 | nan | 0.8581 | 0.8851 | 0.6496 | 0.8789 | 0.7340 | 0.8261 | 0.7216 | 0.3758 | 0.5946 | 0.6085 | 0.9150 | 0.7740 | 0.8651 | 0.8405 | 0.8456 | 0.7810 | 0.2805 | 0.0 | 0.7568 | 0.8076 | 0.5824 | 0.7632 | 0.6593 | 0.7058 | 0.5758 | 0.3100 | 0.4879 | 0.5035 | 0.8131 | 0.6936 | 0.7382 | 0.7537 | 0.7513 | 0.7339 | 0.2559 |
| 0.1004 | 4.12 | 2060 | 0.1849 | 0.6016 | 0.7348 | 0.8130 | nan | 0.8772 | 0.8872 | 0.7109 | 0.8664 | 0.7335 | 0.8124 | 0.7212 | 0.3150 | 0.5658 | 0.5974 | 0.8978 | 0.8494 | 0.8242 | 0.8454 | 0.7727 | 0.8369 | 0.3779 | 0.0 | 0.7377 | 0.8023 | 0.6101 | 0.7663 | 0.6085 | 0.7008 | 0.5652 | 0.2773 | 0.4760 | 0.5018 | 0.8146 | 0.7021 | 0.7407 | 0.7424 | 0.7256 | 0.7571 | 0.2995 |
| 0.0719 | 4.16 | 2080 | 0.1912 | 0.6032 | 0.7298 | 0.8135 | nan | 0.8346 | 0.8875 | 0.7111 | 0.8822 | 0.6972 | 0.8197 | 0.7397 | 0.3803 | 0.4940 | 0.6159 | 0.8967 | 0.7861 | 0.8263 | 0.8352 | 0.8367 | 0.7981 | 0.3657 | 0.0 | 0.7349 | 0.8040 | 0.6079 | 0.7695 | 0.6152 | 0.7048 | 0.5781 | 0.3232 | 0.4266 | 0.4933 | 0.8114 | 0.7068 | 0.7369 | 0.7475 | 0.7395 | 0.7458 | 0.3123 |
| 0.224 | 4.2 | 2100 | 0.1948 | 0.6021 | 0.7505 | 0.8035 | nan | 0.8737 | 0.8728 | 0.7274 | 0.8104 | 0.6621 | 0.8323 | 0.7839 | 0.3911 | 0.5970 | 0.5556 | 0.9130 | 0.8385 | 0.8260 | 0.8199 | 0.8032 | 0.8605 | 0.5910 | 0.0 | 0.7477 | 0.7968 | 0.6154 | 0.7411 | 0.5771 | 0.7240 | 0.5406 | 0.3181 | 0.4838 | 0.4865 | 0.8125 | 0.7163 | 0.7370 | 0.7422 | 0.7408 | 0.7673 | 0.2905 |
| 0.0466 | 4.24 | 2120 | 0.2434 | 0.5946 | 0.7268 | 0.7963 | nan | 0.8764 | 0.9095 | 0.6823 | 0.8218 | 0.4696 | 0.7933 | 0.8337 | 0.3116 | 0.5430 | 0.6394 | 0.8914 | 0.8331 | 0.8339 | 0.8381 | 0.8504 | 0.7937 | 0.4342 | 0.0 | 0.7687 | 0.8141 | 0.6015 | 0.7469 | 0.4352 | 0.7082 | 0.4933 | 0.2877 | 0.4605 | 0.5188 | 0.8125 | 0.7242 | 0.7473 | 0.7572 | 0.7617 | 0.7461 | 0.3184 |
| 0.0539 | 4.28 | 2140 | 0.1896 | 0.6050 | 0.7340 | 0.8169 | nan | 0.8388 | 0.9077 | 0.6648 | 0.8533 | 0.6652 | 0.8309 | 0.7608 | 0.3731 | 0.5600 | 0.6177 | 0.9098 | 0.8182 | 0.8691 | 0.8359 | 0.8473 | 0.8432 | 0.2830 | 0.0 | 0.7588 | 0.8153 | 0.5957 | 0.7674 | 0.5456 | 0.7155 | 0.5559 | 0.2860 | 0.4728 | 0.5089 | 0.8094 | 0.7313 | 0.7640 | 0.7594 | 0.7571 | 0.7767 | 0.2705 |
| 0.059 | 4.32 | 2160 | 0.1847 | 0.6109 | 0.7484 | 0.8196 | nan | 0.8403 | 0.8857 | 0.7280 | 0.8728 | 0.8208 | 0.8416 | 0.6962 | 0.5104 | 0.5866 | 0.5678 | 0.9112 | 0.8835 | 0.7349 | 0.8507 | 0.8213 | 0.8171 | 0.3544 | 0.0 | 0.7478 | 0.8066 | 0.6136 | 0.7724 | 0.6560 | 0.7165 | 0.5754 | 0.3698 | 0.4771 | 0.4890 | 0.8076 | 0.6971 | 0.6900 | 0.7560 | 0.7475 | 0.7570 | 0.3171 |
| 0.1197 | 4.36 | 2180 | 0.1876 | 0.6047 | 0.7393 | 0.8149 | nan | 0.8044 | 0.8933 | 0.7389 | 0.8448 | 0.6778 | 0.8412 | 0.7902 | 0.3160 | 0.5677 | 0.6155 | 0.9092 | 0.8380 | 0.8052 | 0.8398 | 0.8433 | 0.8004 | 0.4429 | 0.0 | 0.7342 | 0.8048 | 0.6188 | 0.7600 | 0.6143 | 0.7251 | 0.5925 | 0.2804 | 0.4754 | 0.5111 | 0.7982 | 0.7126 | 0.7249 | 0.7478 | 0.7272 | 0.7579 | 0.2998 |
| 0.0465 | 4.4 | 2200 | 0.1911 | 0.6054 | 0.7314 | 0.8183 | nan | 0.8259 | 0.8737 | 0.7163 | 0.8957 | 0.6328 | 0.8381 | 0.7482 | 0.3173 | 0.6658 | 0.5310 | 0.9127 | 0.8460 | 0.8064 | 0.8194 | 0.8513 | 0.7996 | 0.3532 | 0.0 | 0.7469 | 0.8076 | 0.6081 | 0.7664 | 0.5869 | 0.7234 | 0.5681 | 0.2813 | 0.5096 | 0.4736 | 0.8098 | 0.7253 | 0.7382 | 0.7474 | 0.7536 | 0.7591 | 0.2918 |
| 0.0487 | 4.44 | 2220 | 0.1965 | 0.6013 | 0.7315 | 0.8136 | nan | 0.7788 | 0.8986 | 0.7435 | 0.8289 | 0.6291 | 0.8804 | 0.8127 | 0.2571 | 0.6768 | 0.5054 | 0.9008 | 0.8404 | 0.7823 | 0.8593 | 0.8272 | 0.8242 | 0.3893 | 0.0 | 0.7376 | 0.8085 | 0.6166 | 0.7574 | 0.5702 | 0.7369 | 0.5632 | 0.2343 | 0.5060 | 0.4531 | 0.8089 | 0.7150 | 0.7207 | 0.7511 | 0.7581 | 0.7700 | 0.3161 |
| 0.1179 | 4.48 | 2240 | 0.1887 | 0.5990 | 0.7318 | 0.8132 | nan | 0.8549 | 0.8896 | 0.7258 | 0.8461 | 0.7417 | 0.8238 | 0.7644 | 0.2442 | 0.5182 | 0.6746 | 0.8932 | 0.7816 | 0.8325 | 0.8215 | 0.8220 | 0.8357 | 0.3714 | 0.0 | 0.7284 | 0.8028 | 0.6163 | 0.7562 | 0.6044 | 0.7211 | 0.5610 | 0.2192 | 0.4385 | 0.5071 | 0.8120 | 0.7167 | 0.7340 | 0.7441 | 0.7553 | 0.7684 | 0.2975 |
| 0.0534 | 4.52 | 2260 | 0.2019 | 0.5961 | 0.7289 | 0.7971 | nan | 0.7750 | 0.8870 | 0.6503 | 0.8138 | 0.6035 | 0.7839 | 0.8024 | 0.3672 | 0.6275 | 0.5181 | 0.9029 | 0.8397 | 0.8378 | 0.8522 | 0.8529 | 0.8193 | 0.4577 | 0.0 | 0.7304 | 0.8049 | 0.5836 | 0.7364 | 0.4990 | 0.6986 | 0.5223 | 0.3085 | 0.4876 | 0.4604 | 0.8131 | 0.7311 | 0.7468 | 0.7495 | 0.7642 | 0.7595 | 0.3334 |
| 0.0893 | 4.56 | 2280 | 0.2143 | 0.5987 | 0.7251 | 0.7975 | nan | 0.7382 | 0.8807 | 0.7100 | 0.8223 | 0.5582 | 0.8206 | 0.8070 | 0.4127 | 0.5589 | 0.5561 | 0.9109 | 0.8181 | 0.8803 | 0.8305 | 0.8518 | 0.7708 | 0.4003 | 0.0 | 0.6998 | 0.7978 | 0.6118 | 0.7331 | 0.5165 | 0.7194 | 0.5223 | 0.3504 | 0.4649 | 0.4763 | 0.8118 | 0.7273 | 0.7508 | 0.7484 | 0.7669 | 0.7286 | 0.3511 |
| 0.0443 | 4.6 | 2300 | 0.2107 | 0.6088 | 0.7451 | 0.8079 | nan | 0.8517 | 0.9117 | 0.7681 | 0.7944 | 0.6344 | 0.8661 | 0.8579 | 0.4570 | 0.6486 | 0.5666 | 0.8783 | 0.7970 | 0.7842 | 0.8453 | 0.8396 | 0.8066 | 0.3593 | 0.0 | 0.7495 | 0.8123 | 0.6290 | 0.7319 | 0.5771 | 0.7430 | 0.5452 | 0.3799 | 0.5021 | 0.4816 | 0.8129 | 0.6993 | 0.7201 | 0.7506 | 0.7543 | 0.7490 | 0.3210 |
| 0.0433 | 4.64 | 2320 | 0.1912 | 0.6129 | 0.7392 | 0.8284 | nan | 0.7361 | 0.8932 | 0.6950 | 0.8864 | 0.7410 | 0.8718 | 0.7345 | 0.3977 | 0.5824 | 0.6076 | 0.9056 | 0.8344 | 0.8280 | 0.8070 | 0.8582 | 0.8404 | 0.3467 | 0.0 | 0.6949 | 0.8102 | 0.6119 | 0.7813 | 0.6735 | 0.7293 | 0.6042 | 0.3380 | 0.4804 | 0.4994 | 0.8156 | 0.7139 | 0.7324 | 0.7331 | 0.7432 | 0.7583 | 0.3130 |
| 0.0651 | 4.68 | 2340 | 0.1955 | 0.5984 | 0.7331 | 0.8145 | nan | 0.7781 | 0.8997 | 0.6854 | 0.8605 | 0.7560 | 0.8705 | 0.7164 | 0.3448 | 0.4754 | 0.6191 | 0.9088 | 0.8595 | 0.7697 | 0.8969 | 0.7732 | 0.7595 | 0.4887 | 0.0 | 0.7105 | 0.8075 | 0.6069 | 0.7669 | 0.6593 | 0.7214 | 0.5752 | 0.3071 | 0.4179 | 0.4920 | 0.8140 | 0.6969 | 0.6987 | 0.7080 | 0.7072 | 0.7070 | 0.3752 |
| 0.047 | 4.72 | 2360 | 0.1974 | 0.6030 | 0.7384 | 0.8122 | nan | 0.8279 | 0.8898 | 0.7517 | 0.8304 | 0.7763 | 0.8685 | 0.7752 | 0.3255 | 0.6484 | 0.5347 | 0.9093 | 0.8206 | 0.7810 | 0.7968 | 0.7843 | 0.7683 | 0.4647 | 0.0 | 0.7301 | 0.8074 | 0.6251 | 0.7479 | 0.6533 | 0.7407 | 0.5601 | 0.2951 | 0.4976 | 0.4673 | 0.8199 | 0.6923 | 0.7070 | 0.6976 | 0.7268 | 0.7155 | 0.3707 |
| 0.0631 | 4.76 | 2380 | 0.1954 | 0.5960 | 0.7307 | 0.8121 | nan | 0.8168 | 0.8874 | 0.7811 | 0.8587 | 0.6200 | 0.8873 | 0.7910 | 0.3364 | 0.5003 | 0.5346 | 0.8992 | 0.7987 | 0.8182 | 0.8688 | 0.7974 | 0.7612 | 0.4653 | 0.0 | 0.7194 | 0.8007 | 0.6240 | 0.7744 | 0.5822 | 0.7310 | 0.5696 | 0.3095 | 0.4293 | 0.4671 | 0.8212 | 0.6866 | 0.7134 | 0.7140 | 0.7220 | 0.7142 | 0.3493 |
| 0.1457 | 4.8 | 2400 | 0.1905 | 0.6017 | 0.7349 | 0.8122 | nan | 0.8354 | 0.8926 | 0.6969 | 0.8269 | 0.7461 | 0.8505 | 0.8060 | 0.2994 | 0.5935 | 0.6066 | 0.9038 | 0.7462 | 0.7689 | 0.8211 | 0.8379 | 0.8154 | 0.4459 | 0.0 | 0.7296 | 0.8007 | 0.6096 | 0.7530 | 0.6517 | 0.7186 | 0.5810 | 0.2758 | 0.4734 | 0.4956 | 0.8201 | 0.6783 | 0.6944 | 0.7232 | 0.7516 | 0.7421 | 0.3313 |
| 0.096 | 4.84 | 2420 | 0.1839 | 0.6017 | 0.7401 | 0.8149 | nan | 0.7803 | 0.9063 | 0.6768 | 0.8360 | 0.7918 | 0.8266 | 0.7649 | 0.3966 | 0.4742 | 0.5942 | 0.9145 | 0.8588 | 0.7922 | 0.8473 | 0.8116 | 0.8137 | 0.4953 | 0.0 | 0.7268 | 0.8094 | 0.6010 | 0.7528 | 0.6775 | 0.7149 | 0.5818 | 0.3183 | 0.4211 | 0.4933 | 0.8070 | 0.7010 | 0.7037 | 0.7242 | 0.7304 | 0.7427 | 0.3250 |
| 0.1249 | 4.88 | 2440 | 0.1843 | 0.6077 | 0.7428 | 0.8183 | nan | 0.7991 | 0.8892 | 0.7353 | 0.8558 | 0.7765 | 0.8298 | 0.7553 | 0.3874 | 0.6074 | 0.5186 | 0.8991 | 0.8337 | 0.8211 | 0.8479 | 0.8120 | 0.8344 | 0.4250 | 0.0 | 0.7245 | 0.8070 | 0.6209 | 0.7615 | 0.6935 | 0.7093 | 0.5903 | 0.3295 | 0.4814 | 0.4554 | 0.8175 | 0.7059 | 0.7231 | 0.7149 | 0.7316 | 0.7606 | 0.3115 |
| 0.0401 | 4.92 | 2460 | 0.1957 | 0.5969 | 0.7328 | 0.8131 | nan | 0.8428 | 0.8672 | 0.7114 | 0.8465 | 0.7447 | 0.8701 | 0.7830 | 0.3845 | 0.4677 | 0.5891 | 0.9165 | 0.8389 | 0.7478 | 0.8294 | 0.8362 | 0.7763 | 0.4048 | 0.0 | 0.7000 | 0.7963 | 0.6113 | 0.7632 | 0.6725 | 0.7203 | 0.5890 | 0.3243 | 0.4029 | 0.4698 | 0.8106 | 0.6811 | 0.6832 | 0.7295 | 0.7424 | 0.7313 | 0.3166 |
| 0.0957 | 4.96 | 2480 | 0.1954 | 0.5970 | 0.7327 | 0.8071 | nan | 0.7625 | 0.9070 | 0.7343 | 0.8071 | 0.7656 | 0.8036 | 0.8320 | 0.3442 | 0.6363 | 0.5262 | 0.8882 | 0.8642 | 0.7561 | 0.8266 | 0.8168 | 0.7836 | 0.4017 | 0.0 | 0.7029 | 0.8052 | 0.6222 | 0.7440 | 0.6464 | 0.7212 | 0.5705 | 0.2782 | 0.4840 | 0.4610 | 0.8116 | 0.6883 | 0.6958 | 0.7341 | 0.7438 | 0.7305 | 0.3055 |
| 0.0839 | 5.0 | 2500 | 0.1927 | 0.5988 | 0.7278 | 0.8200 | nan | 0.8173 | 0.8802 | 0.6631 | 0.8705 | 0.7154 | 0.8477 | 0.7848 | 0.3481 | 0.5379 | 0.5904 | 0.9287 | 0.8472 | 0.7912 | 0.8622 | 0.7959 | 0.7803 | 0.3110 | 0.0 | 0.7022 | 0.7997 | 0.5917 | 0.7852 | 0.6572 | 0.7213 | 0.6105 | 0.3032 | 0.4454 | 0.4850 | 0.8044 | 0.6982 | 0.7167 | 0.7343 | 0.7337 | 0.7242 | 0.2656 |
| 0.0441 | 5.04 | 2520 | 0.1921 | 0.6079 | 0.7363 | 0.8239 | nan | 0.7877 | 0.9069 | 0.6990 | 0.8730 | 0.6964 | 0.8387 | 0.7980 | 0.3814 | 0.5382 | 0.6421 | 0.8931 | 0.7990 | 0.8441 | 0.8362 | 0.7911 | 0.8295 | 0.3623 | 0.0 | 0.7204 | 0.8072 | 0.6099 | 0.7831 | 0.6568 | 0.7206 | 0.6074 | 0.3140 | 0.4512 | 0.5082 | 0.8085 | 0.7050 | 0.7430 | 0.7261 | 0.7320 | 0.7559 | 0.2924 |
| 0.0679 | 5.08 | 2540 | 0.1925 | 0.6096 | 0.7439 | 0.8232 | nan | 0.8173 | 0.8865 | 0.7275 | 0.8745 | 0.7319 | 0.8373 | 0.7785 | 0.4078 | 0.6311 | 0.5003 | 0.9109 | 0.8146 | 0.8512 | 0.8179 | 0.8481 | 0.7909 | 0.4206 | 0.0 | 0.7017 | 0.7981 | 0.6187 | 0.7817 | 0.6650 | 0.7292 | 0.6078 | 0.3298 | 0.4797 | 0.4434 | 0.8036 | 0.7140 | 0.7518 | 0.7390 | 0.7513 | 0.7401 | 0.3181 |
| 0.0762 | 5.12 | 2560 | 0.1966 | 0.5916 | 0.7179 | 0.8151 | nan | 0.8240 | 0.8840 | 0.7232 | 0.8917 | 0.7024 | 0.8440 | 0.7422 | 0.2452 | 0.5112 | 0.5410 | 0.8962 | 0.8666 | 0.7568 | 0.8129 | 0.7840 | 0.8040 | 0.3755 | 0.0 | 0.7137 | 0.8025 | 0.6176 | 0.7807 | 0.6263 | 0.7113 | 0.5895 | 0.2326 | 0.4191 | 0.4490 | 0.8085 | 0.6947 | 0.6996 | 0.7263 | 0.7315 | 0.7389 | 0.3072 |
| 0.0812 | 5.16 | 2580 | 0.2026 | 0.6001 | 0.7320 | 0.8174 | nan | 0.8212 | 0.8860 | 0.7650 | 0.8756 | 0.6950 | 0.8321 | 0.7693 | 0.2653 | 0.5681 | 0.6025 | 0.8839 | 0.7922 | 0.8607 | 0.8671 | 0.8006 | 0.7756 | 0.3841 | 0.0 | 0.7167 | 0.8025 | 0.6292 | 0.7705 | 0.6289 | 0.7126 | 0.5880 | 0.2479 | 0.4657 | 0.4925 | 0.8058 | 0.7027 | 0.7396 | 0.7394 | 0.7389 | 0.7249 | 0.2954 |
| 0.0444 | 5.2 | 2600 | 0.1922 | 0.6073 | 0.7353 | 0.8240 | nan | 0.8309 | 0.8819 | 0.7276 | 0.8846 | 0.7038 | 0.8672 | 0.7492 | 0.3170 | 0.5291 | 0.6013 | 0.9216 | 0.7891 | 0.8462 | 0.8551 | 0.8235 | 0.8115 | 0.3607 | 0.0 | 0.7482 | 0.8089 | 0.6214 | 0.7816 | 0.6365 | 0.7228 | 0.5935 | 0.2867 | 0.4451 | 0.4850 | 0.8089 | 0.7069 | 0.7373 | 0.7486 | 0.7520 | 0.7531 | 0.2952 |
| 0.0723 | 5.24 | 2620 | 0.1927 | 0.6121 | 0.7415 | 0.8252 | nan | 0.8155 | 0.9101 | 0.7610 | 0.8830 | 0.7283 | 0.8631 | 0.7346 | 0.3833 | 0.5606 | 0.6069 | 0.8925 | 0.8546 | 0.7885 | 0.8422 | 0.8172 | 0.8209 | 0.3426 | 0.0 | 0.7512 | 0.8134 | 0.6279 | 0.7795 | 0.6473 | 0.7385 | 0.5807 | 0.3154 | 0.4708 | 0.5069 | 0.8119 | 0.7036 | 0.7149 | 0.7469 | 0.7491 | 0.7647 | 0.2952 |
| 0.038 | 5.28 | 2640 | 0.2019 | 0.6074 | 0.7386 | 0.8191 | nan | 0.8442 | 0.8776 | 0.6959 | 0.8620 | 0.6979 | 0.8641 | 0.7660 | 0.3409 | 0.5926 | 0.5682 | 0.9181 | 0.8056 | 0.8347 | 0.8304 | 0.8502 | 0.7998 | 0.4073 | 0.0 | 0.7348 | 0.8067 | 0.6034 | 0.7649 | 0.6384 | 0.7362 | 0.5644 | 0.2843 | 0.4902 | 0.4999 | 0.8107 | 0.7004 | 0.7260 | 0.7447 | 0.7476 | 0.7535 | 0.3277 |
| 0.0545 | 5.32 | 2660 | 0.2016 | 0.6004 | 0.7302 | 0.8180 | nan | 0.8631 | 0.8974 | 0.7166 | 0.8660 | 0.7245 | 0.8718 | 0.7548 | 0.2667 | 0.5677 | 0.6003 | 0.8980 | 0.8759 | 0.6811 | 0.8429 | 0.8213 | 0.8017 | 0.3629 | 0.0 | 0.7388 | 0.8079 | 0.6163 | 0.7700 | 0.6512 | 0.7397 | 0.5754 | 0.2448 | 0.4684 | 0.5051 | 0.8088 | 0.6704 | 0.6398 | 0.7464 | 0.7525 | 0.7572 | 0.3150 |
| 0.0644 | 5.36 | 2680 | 0.1983 | 0.6148 | 0.7467 | 0.8243 | nan | 0.8191 | 0.9042 | 0.7854 | 0.8634 | 0.7273 | 0.8680 | 0.7522 | 0.3414 | 0.5216 | 0.6624 | 0.9161 | 0.8504 | 0.7786 | 0.8585 | 0.8159 | 0.8329 | 0.3973 | 0.0 | 0.7561 | 0.8158 | 0.6249 | 0.7688 | 0.6561 | 0.7506 | 0.5695 | 0.3067 | 0.4492 | 0.5257 | 0.8140 | 0.7002 | 0.7042 | 0.7520 | 0.7539 | 0.7789 | 0.3397 |
| 0.0814 | 5.4 | 2700 | 0.2007 | 0.6073 | 0.7347 | 0.8188 | nan | 0.8194 | 0.8470 | 0.7055 | 0.8634 | 0.7134 | 0.8847 | 0.7546 | 0.3835 | 0.5528 | 0.6093 | 0.9166 | 0.8344 | 0.8307 | 0.8395 | 0.8268 | 0.8139 | 0.2941 | 0.0 | 0.7186 | 0.7897 | 0.6077 | 0.7645 | 0.6524 | 0.7458 | 0.5671 | 0.3165 | 0.4585 | 0.4999 | 0.8149 | 0.7195 | 0.7399 | 0.7455 | 0.7569 | 0.7621 | 0.2722 |
| 0.0437 | 5.44 | 2720 | 0.1966 | 0.5950 | 0.7244 | 0.8125 | nan | 0.8239 | 0.9001 | 0.7067 | 0.8549 | 0.6844 | 0.8617 | 0.7482 | 0.3604 | 0.3834 | 0.7186 | 0.8956 | 0.7357 | 0.8750 | 0.8170 | 0.8544 | 0.8115 | 0.2840 | 0.0 | 0.7154 | 0.8097 | 0.6147 | 0.7641 | 0.6176 | 0.7480 | 0.5478 | 0.3101 | 0.3551 | 0.5117 | 0.8145 | 0.6718 | 0.7199 | 0.7336 | 0.7494 | 0.7618 | 0.2643 |
| 0.0536 | 5.48 | 2740 | 0.2150 | 0.5843 | 0.7165 | 0.7959 | nan | 0.7963 | 0.8867 | 0.7123 | 0.8105 | 0.5821 | 0.8255 | 0.8201 | 0.1755 | 0.6811 | 0.4980 | 0.9111 | 0.8575 | 0.7585 | 0.8623 | 0.7805 | 0.7913 | 0.4308 | 0.0 | 0.7054 | 0.8026 | 0.6155 | 0.7356 | 0.5335 | 0.7356 | 0.5247 | 0.1583 | 0.5013 | 0.4513 | 0.8245 | 0.6981 | 0.7006 | 0.7356 | 0.7260 | 0.7410 | 0.3277 |
| 0.0715 | 5.52 | 2760 | 0.2088 | 0.6012 | 0.7312 | 0.8127 | nan | 0.8138 | 0.9035 | 0.7080 | 0.8064 | 0.6314 | 0.8808 | 0.8267 | 0.2183 | 0.5328 | 0.6335 | 0.9009 | 0.8449 | 0.8147 | 0.8598 | 0.8543 | 0.8246 | 0.3757 | 0.0 | 0.7301 | 0.8171 | 0.6143 | 0.7385 | 0.6004 | 0.7536 | 0.5403 | 0.2052 | 0.4497 | 0.5130 | 0.8184 | 0.7211 | 0.7285 | 0.7539 | 0.7559 | 0.7625 | 0.3198 |
| 0.091 | 5.56 | 2780 | 0.2041 | 0.6034 | 0.7423 | 0.8110 | nan | 0.8689 | 0.8771 | 0.7109 | 0.8244 | 0.6929 | 0.8958 | 0.7644 | 0.3538 | 0.5529 | 0.6557 | 0.9130 | 0.7627 | 0.8228 | 0.8463 | 0.8492 | 0.7885 | 0.4405 | 0.0 | 0.7032 | 0.8010 | 0.6166 | 0.7454 | 0.6173 | 0.7461 | 0.5405 | 0.2925 | 0.4647 | 0.5157 | 0.8187 | 0.6948 | 0.7173 | 0.7534 | 0.7638 | 0.7432 | 0.3271 |
| 0.0393 | 5.6 | 2800 | 0.2226 | 0.6045 | 0.7396 | 0.8036 | nan | 0.8102 | 0.8913 | 0.7321 | 0.7656 | 0.6763 | 0.8691 | 0.8480 | 0.2555 | 0.6074 | 0.6081 | 0.9126 | 0.8450 | 0.8172 | 0.8242 | 0.8333 | 0.7906 | 0.4864 | 0.0 | 0.7332 | 0.8077 | 0.6235 | 0.7098 | 0.6315 | 0.7585 | 0.5299 | 0.2295 | 0.4953 | 0.5149 | 0.8173 | 0.7228 | 0.7343 | 0.7428 | 0.7567 | 0.7462 | 0.3268 |
| 0.0414 | 5.64 | 2820 | 0.2097 | 0.6077 | 0.7418 | 0.8162 | nan | 0.8296 | 0.8941 | 0.7577 | 0.8453 | 0.6405 | 0.8695 | 0.7839 | 0.2478 | 0.5981 | 0.6425 | 0.9007 | 0.8282 | 0.8185 | 0.8512 | 0.8185 | 0.8026 | 0.4819 | 0.0 | 0.7503 | 0.8152 | 0.6313 | 0.7578 | 0.6115 | 0.7246 | 0.5618 | 0.2221 | 0.4853 | 0.5175 | 0.8186 | 0.7245 | 0.7450 | 0.7400 | 0.7506 | 0.7550 | 0.3278 |
| 0.1061 | 5.68 | 2840 | 0.2079 | 0.6085 | 0.7396 | 0.8139 | nan | 0.8036 | 0.8906 | 0.7229 | 0.8454 | 0.6381 | 0.8610 | 0.7658 | 0.3532 | 0.5529 | 0.6432 | 0.9175 | 0.8227 | 0.8296 | 0.8678 | 0.8142 | 0.8296 | 0.4152 | 0.0 | 0.7403 | 0.8125 | 0.6203 | 0.7558 | 0.6054 | 0.7119 | 0.5590 | 0.2992 | 0.4675 | 0.5195 | 0.8170 | 0.7175 | 0.7413 | 0.7384 | 0.7399 | 0.7671 | 0.3402 |
| 0.044 | 5.72 | 2860 | 0.2129 | 0.5955 | 0.7281 | 0.8073 | nan | 0.8760 | 0.8817 | 0.7239 | 0.8369 | 0.6680 | 0.8184 | 0.7773 | 0.1578 | 0.5715 | 0.6299 | 0.8995 | 0.8182 | 0.8421 | 0.8418 | 0.8206 | 0.7976 | 0.4171 | 0.0 | 0.7150 | 0.8070 | 0.6213 | 0.7422 | 0.5868 | 0.7250 | 0.5270 | 0.1529 | 0.4774 | 0.5211 | 0.8188 | 0.7080 | 0.7371 | 0.7410 | 0.7502 | 0.7567 | 0.3316 |
| 0.0832 | 5.76 | 2880 | 0.2060 | 0.6030 | 0.7359 | 0.8107 | nan | 0.8445 | 0.8972 | 0.7264 | 0.8434 | 0.6797 | 0.8604 | 0.7604 | 0.3486 | 0.6110 | 0.5234 | 0.9062 | 0.8506 | 0.7577 | 0.8396 | 0.7971 | 0.8256 | 0.4393 | 0.0 | 0.7388 | 0.8133 | 0.6226 | 0.7478 | 0.6102 | 0.7332 | 0.5351 | 0.2822 | 0.4757 | 0.4633 | 0.8212 | 0.7096 | 0.7075 | 0.7428 | 0.7475 | 0.7665 | 0.3362 |
| 0.0458 | 5.8 | 2900 | 0.2080 | 0.6049 | 0.7418 | 0.8100 | nan | 0.8212 | 0.8851 | 0.7796 | 0.8234 | 0.6697 | 0.8497 | 0.7741 | 0.3276 | 0.5372 | 0.6118 | 0.9123 | 0.8514 | 0.8086 | 0.8501 | 0.8600 | 0.8373 | 0.4115 | 0.0 | 0.7295 | 0.8059 | 0.6272 | 0.7408 | 0.6093 | 0.7425 | 0.5317 | 0.2670 | 0.4552 | 0.5113 | 0.8183 | 0.7212 | 0.7323 | 0.7519 | 0.7597 | 0.7728 | 0.3115 |
| 0.0429 | 5.84 | 2920 | 0.2081 | 0.6025 | 0.7436 | 0.8059 | nan | 0.8457 | 0.8600 | 0.7882 | 0.8348 | 0.7078 | 0.8311 | 0.7521 | 0.3579 | 0.6167 | 0.6247 | 0.9036 | 0.8151 | 0.8271 | 0.8229 | 0.8037 | 0.8150 | 0.4357 | 0.0 | 0.6773 | 0.7914 | 0.6201 | 0.7399 | 0.6141 | 0.7345 | 0.5253 | 0.2743 | 0.4960 | 0.5209 | 0.8174 | 0.7162 | 0.7385 | 0.7401 | 0.7466 | 0.7628 | 0.3298 |
| 0.054 | 5.88 | 2940 | 0.2204 | 0.5966 | 0.7370 | 0.8051 | nan | 0.7878 | 0.8990 | 0.6791 | 0.8110 | 0.6541 | 0.8227 | 0.7956 | 0.3752 | 0.5920 | 0.5842 | 0.9142 | 0.8651 | 0.7815 | 0.8965 | 0.8251 | 0.8181 | 0.4275 | 0.0 | 0.7110 | 0.8108 | 0.5928 | 0.7351 | 0.5910 | 0.7252 | 0.5343 | 0.2705 | 0.4730 | 0.4895 | 0.8139 | 0.7148 | 0.7219 | 0.7288 | 0.7308 | 0.7629 | 0.3323 |
| 0.0526 | 5.92 | 2960 | 0.2271 | 0.5921 | 0.7137 | 0.8074 | nan | 0.7305 | 0.8986 | 0.6791 | 0.8207 | 0.6357 | 0.8230 | 0.8263 | 0.1921 | 0.5933 | 0.5993 | 0.9000 | 0.7991 | 0.8748 | 0.8311 | 0.8310 | 0.8173 | 0.2809 | 0.0 | 0.7011 | 0.8120 | 0.5975 | 0.7376 | 0.5800 | 0.7360 | 0.5299 | 0.1707 | 0.4862 | 0.5073 | 0.8141 | 0.7211 | 0.7529 | 0.7340 | 0.7601 | 0.7582 | 0.2582 |
| 0.0787 | 5.96 | 2980 | 0.1975 | 0.6112 | 0.7550 | 0.8154 | nan | 0.8712 | 0.8549 | 0.7621 | 0.8253 | 0.7788 | 0.8781 | 0.7424 | 0.3999 | 0.5312 | 0.6642 | 0.8947 | 0.8300 | 0.8439 | 0.8626 | 0.8529 | 0.8194 | 0.4234 | 0.0 | 0.7091 | 0.7942 | 0.6226 | 0.7461 | 0.6634 | 0.7555 | 0.5392 | 0.2870 | 0.4502 | 0.5253 | 0.8142 | 0.7330 | 0.7496 | 0.7555 | 0.7663 | 0.7618 | 0.3277 |
| 0.077 | 6.0 | 3000 | 0.1916 | 0.6131 | 0.7349 | 0.8314 | nan | 0.7940 | 0.9065 | 0.6260 | 0.9004 | 0.8101 | 0.8706 | 0.6719 | 0.3622 | 0.5013 | 0.6468 | 0.9126 | 0.8364 | 0.8394 | 0.8486 | 0.8284 | 0.8337 | 0.3050 | 0.0 | 0.7254 | 0.8176 | 0.5706 | 0.7962 | 0.6645 | 0.7580 | 0.5719 | 0.3001 | 0.4435 | 0.5239 | 0.8170 | 0.7344 | 0.7520 | 0.7461 | 0.7545 | 0.7748 | 0.2853 |
| 0.0346 | 6.04 | 3020 | 0.2012 | 0.6083 | 0.7380 | 0.8188 | nan | 0.7745 | 0.9022 | 0.7231 | 0.8575 | 0.8261 | 0.8445 | 0.6999 | 0.3096 | 0.6325 | 0.5564 | 0.9167 | 0.8575 | 0.7878 | 0.8419 | 0.8112 | 0.8105 | 0.3936 | 0.0 | 0.7344 | 0.8100 | 0.6167 | 0.7698 | 0.6416 | 0.7527 | 0.5464 | 0.2616 | 0.5020 | 0.4926 | 0.8105 | 0.7176 | 0.7237 | 0.7446 | 0.7461 | 0.7632 | 0.3165 |
| 0.1209 | 6.08 | 3040 | 0.1980 | 0.6079 | 0.7360 | 0.8205 | nan | 0.7869 | 0.9241 | 0.7542 | 0.8579 | 0.8112 | 0.8485 | 0.7041 | 0.2721 | 0.5967 | 0.5987 | 0.8841 | 0.8261 | 0.8375 | 0.7873 | 0.8708 | 0.8015 | 0.3504 | 0.0 | 0.7410 | 0.8122 | 0.6182 | 0.7677 | 0.6410 | 0.7500 | 0.5438 | 0.2397 | 0.4894 | 0.5063 | 0.8078 | 0.7253 | 0.7425 | 0.7332 | 0.7581 | 0.7582 | 0.3084 |
| 0.0416 | 6.12 | 3060 | 0.1973 | 0.6151 | 0.7489 | 0.8206 | nan | 0.8262 | 0.8939 | 0.7506 | 0.8571 | 0.8057 | 0.8401 | 0.7037 | 0.3972 | 0.5672 | 0.6363 | 0.9234 | 0.8370 | 0.8145 | 0.8586 | 0.8284 | 0.8339 | 0.3578 | 0.0 | 0.7489 | 0.8125 | 0.6259 | 0.7666 | 0.6410 | 0.7477 | 0.5412 | 0.3161 | 0.4825 | 0.5207 | 0.8096 | 0.7224 | 0.7329 | 0.7565 | 0.7594 | 0.7769 | 0.3103 |
| 0.0439 | 6.16 | 3080 | 0.1961 | 0.6118 | 0.7440 | 0.8172 | nan | 0.7941 | 0.9156 | 0.7294 | 0.8416 | 0.8139 | 0.8435 | 0.7159 | 0.4061 | 0.5151 | 0.6792 | 0.8770 | 0.8128 | 0.8503 | 0.8483 | 0.8207 | 0.8163 | 0.3677 | 0.0 | 0.7441 | 0.8094 | 0.6217 | 0.7562 | 0.6516 | 0.7470 | 0.5382 | 0.3008 | 0.4542 | 0.5300 | 0.8056 | 0.7234 | 0.7458 | 0.7501 | 0.7595 | 0.7641 | 0.3111 |
| 0.0467 | 6.2 | 3100 | 0.1993 | 0.6138 | 0.7460 | 0.8209 | nan | 0.8212 | 0.8919 | 0.6869 | 0.8580 | 0.8067 | 0.8439 | 0.7093 | 0.4469 | 0.6316 | 0.5251 | 0.9193 | 0.8579 | 0.8226 | 0.8563 | 0.8425 | 0.8178 | 0.3439 | 0.0 | 0.7509 | 0.8102 | 0.6060 | 0.7639 | 0.6560 | 0.7453 | 0.5469 | 0.3408 | 0.4853 | 0.4688 | 0.8130 | 0.7281 | 0.7425 | 0.7528 | 0.7666 | 0.7698 | 0.3011 |
| 0.0639 | 6.24 | 3120 | 0.1939 | 0.6192 | 0.7579 | 0.8265 | nan | 0.8742 | 0.8965 | 0.7917 | 0.8737 | 0.8232 | 0.8609 | 0.6932 | 0.4729 | 0.6036 | 0.5774 | 0.8927 | 0.8442 | 0.8251 | 0.8449 | 0.8313 | 0.8289 | 0.3502 | 0.0 | 0.7351 | 0.8098 | 0.6319 | 0.7757 | 0.6619 | 0.7524 | 0.5602 | 0.3486 | 0.4854 | 0.4994 | 0.8139 | 0.7307 | 0.7493 | 0.7511 | 0.7647 | 0.7767 | 0.2985 |
| 0.051 | 6.28 | 3140 | 0.1950 | 0.6220 | 0.7483 | 0.8331 | nan | 0.7659 | 0.9159 | 0.7107 | 0.8991 | 0.8370 | 0.8677 | 0.6572 | 0.4390 | 0.5374 | 0.6454 | 0.9061 | 0.8271 | 0.8608 | 0.8353 | 0.8573 | 0.8176 | 0.3415 | 0.0 | 0.7207 | 0.8189 | 0.6197 | 0.7846 | 0.6857 | 0.7521 | 0.5636 | 0.3327 | 0.4680 | 0.5305 | 0.8165 | 0.7409 | 0.7586 | 0.7565 | 0.7750 | 0.7733 | 0.2979 |
| 0.0594 | 6.32 | 3160 | 0.1999 | 0.6118 | 0.7459 | 0.8225 | nan | 0.8510 | 0.9022 | 0.7170 | 0.8657 | 0.8162 | 0.8436 | 0.7059 | 0.3287 | 0.6434 | 0.5611 | 0.9120 | 0.8567 | 0.7685 | 0.8446 | 0.8253 | 0.8281 | 0.4108 | 0.0 | 0.7467 | 0.8156 | 0.6191 | 0.7684 | 0.6833 | 0.7346 | 0.5523 | 0.2637 | 0.4770 | 0.4749 | 0.8154 | 0.7191 | 0.7192 | 0.7495 | 0.7587 | 0.7786 | 0.3354 |
| 0.0409 | 6.36 | 3180 | 0.1963 | 0.6192 | 0.7575 | 0.8254 | nan | 0.8534 | 0.8970 | 0.7831 | 0.8714 | 0.8042 | 0.8622 | 0.6865 | 0.3991 | 0.5463 | 0.6052 | 0.8979 | 0.8318 | 0.8446 | 0.8594 | 0.8434 | 0.8354 | 0.4559 | 0.0 | 0.7419 | 0.8124 | 0.6315 | 0.7739 | 0.6809 | 0.7405 | 0.5644 | 0.3053 | 0.4624 | 0.5117 | 0.8150 | 0.7316 | 0.7465 | 0.7526 | 0.7583 | 0.7718 | 0.3453 |
| 0.0484 | 6.4 | 3200 | 0.1987 | 0.6111 | 0.7424 | 0.8209 | nan | 0.8281 | 0.9024 | 0.6257 | 0.8620 | 0.7811 | 0.8600 | 0.7204 | 0.3944 | 0.6037 | 0.5542 | 0.9109 | 0.8334 | 0.7980 | 0.8483 | 0.8021 | 0.8282 | 0.4678 | 0.0 | 0.7514 | 0.8125 | 0.5716 | 0.7692 | 0.6594 | 0.7495 | 0.5607 | 0.3106 | 0.4874 | 0.4876 | 0.8123 | 0.7212 | 0.7319 | 0.7363 | 0.7409 | 0.7658 | 0.3315 |
| 0.0487 | 6.44 | 3220 | 0.2036 | 0.6149 | 0.7462 | 0.8220 | nan | 0.8514 | 0.8878 | 0.6876 | 0.8779 | 0.7743 | 0.8645 | 0.7127 | 0.4503 | 0.6008 | 0.6170 | 0.8930 | 0.8475 | 0.7827 | 0.8425 | 0.7648 | 0.8298 | 0.4014 | 0.0 | 0.7369 | 0.8084 | 0.6070 | 0.7732 | 0.6437 | 0.7516 | 0.5569 | 0.3440 | 0.4941 | 0.5205 | 0.8114 | 0.7216 | 0.7223 | 0.7360 | 0.7266 | 0.7781 | 0.3354 |
| 0.0718 | 6.48 | 3240 | 0.2046 | 0.6133 | 0.7454 | 0.8194 | nan | 0.8476 | 0.8742 | 0.7364 | 0.8526 | 0.7709 | 0.8615 | 0.7423 | 0.3505 | 0.5951 | 0.6241 | 0.9139 | 0.8710 | 0.7696 | 0.8505 | 0.8137 | 0.8146 | 0.3840 | 0.0 | 0.7315 | 0.8026 | 0.6207 | 0.7617 | 0.6362 | 0.7511 | 0.5496 | 0.2920 | 0.4927 | 0.5264 | 0.8121 | 0.7279 | 0.7215 | 0.7561 | 0.7537 | 0.7749 | 0.3295 |
| 0.0666 | 6.52 | 3260 | 0.2018 | 0.6103 | 0.7363 | 0.8237 | nan | 0.8582 | 0.8781 | 0.6627 | 0.8734 | 0.7564 | 0.8542 | 0.7235 | 0.2790 | 0.5671 | 0.6371 | 0.9218 | 0.8576 | 0.8130 | 0.8377 | 0.8483 | 0.8246 | 0.3251 | 0.0 | 0.7225 | 0.8045 | 0.5912 | 0.7707 | 0.6436 | 0.7516 | 0.5589 | 0.2490 | 0.4777 | 0.5257 | 0.8117 | 0.7423 | 0.7456 | 0.7587 | 0.7612 | 0.7767 | 0.2931 |
| 0.055 | 6.56 | 3280 | 0.1966 | 0.6189 | 0.7470 | 0.8300 | nan | 0.8568 | 0.8922 | 0.7653 | 0.8824 | 0.7941 | 0.8632 | 0.7250 | 0.2978 | 0.5364 | 0.6410 | 0.9050 | 0.8366 | 0.8240 | 0.8570 | 0.8350 | 0.8158 | 0.3706 | 0.0 | 0.7414 | 0.8117 | 0.6337 | 0.7806 | 0.6754 | 0.7565 | 0.5760 | 0.2545 | 0.4678 | 0.5268 | 0.8145 | 0.7382 | 0.7441 | 0.7636 | 0.7652 | 0.7718 | 0.3177 |
| 0.0586 | 6.6 | 3300 | 0.1984 | 0.6196 | 0.7496 | 0.8243 | nan | 0.8386 | 0.8967 | 0.7340 | 0.8547 | 0.7187 | 0.8721 | 0.7726 | 0.3753 | 0.5738 | 0.6503 | 0.8946 | 0.8357 | 0.8508 | 0.8480 | 0.8219 | 0.8012 | 0.4052 | 0.0 | 0.7402 | 0.8120 | 0.6273 | 0.7598 | 0.6449 | 0.7617 | 0.5580 | 0.3214 | 0.4871 | 0.5336 | 0.8142 | 0.7362 | 0.7574 | 0.7550 | 0.7624 | 0.7641 | 0.3178 |
| 0.054 | 6.64 | 3320 | 0.1945 | 0.6176 | 0.7460 | 0.8294 | nan | 0.8253 | 0.8945 | 0.7383 | 0.8571 | 0.7803 | 0.8766 | 0.7617 | 0.3174 | 0.5509 | 0.6698 | 0.9057 | 0.8345 | 0.8537 | 0.8654 | 0.8013 | 0.8261 | 0.3228 | 0.0 | 0.7363 | 0.8137 | 0.6226 | 0.7705 | 0.6833 | 0.7702 | 0.5751 | 0.2722 | 0.4787 | 0.5382 | 0.8145 | 0.7380 | 0.7596 | 0.7456 | 0.7416 | 0.7759 | 0.2810 |
| 0.0918 | 6.68 | 3340 | 0.1977 | 0.6178 | 0.7486 | 0.8289 | nan | 0.8353 | 0.8952 | 0.7535 | 0.8468 | 0.7779 | 0.8714 | 0.7888 | 0.2920 | 0.6281 | 0.6273 | 0.9077 | 0.8633 | 0.8127 | 0.8589 | 0.7952 | 0.8256 | 0.3471 | 0.0 | 0.7390 | 0.8108 | 0.6278 | 0.7660 | 0.6963 | 0.7715 | 0.5818 | 0.2559 | 0.5158 | 0.5280 | 0.8138 | 0.7307 | 0.7471 | 0.7388 | 0.7326 | 0.7751 | 0.2890 |
| 0.0485 | 6.72 | 3360 | 0.1935 | 0.6151 | 0.7438 | 0.8303 | nan | 0.8458 | 0.8932 | 0.7397 | 0.8770 | 0.8135 | 0.8903 | 0.7165 | 0.3140 | 0.5889 | 0.5917 | 0.9073 | 0.8082 | 0.8552 | 0.8702 | 0.8096 | 0.7906 | 0.3327 | 0.0 | 0.7394 | 0.8087 | 0.6186 | 0.7824 | 0.6935 | 0.7730 | 0.5854 | 0.2679 | 0.4889 | 0.5122 | 0.8123 | 0.7277 | 0.7524 | 0.7443 | 0.7412 | 0.7485 | 0.2754 |
| 0.0707 | 6.76 | 3380 | 0.1956 | 0.6135 | 0.7441 | 0.8298 | nan | 0.8640 | 0.8860 | 0.7093 | 0.8739 | 0.7835 | 0.8753 | 0.7555 | 0.2561 | 0.5847 | 0.6261 | 0.9060 | 0.8611 | 0.7900 | 0.8629 | 0.7686 | 0.8284 | 0.4190 | 0.0 | 0.7419 | 0.8129 | 0.6096 | 0.7736 | 0.6967 | 0.7596 | 0.5906 | 0.2294 | 0.4890 | 0.5329 | 0.8141 | 0.7393 | 0.7399 | 0.7283 | 0.7234 | 0.7732 | 0.2894 |
| 0.0479 | 6.8 | 3400 | 0.2023 | 0.6173 | 0.7511 | 0.8284 | nan | 0.8060 | 0.8994 | 0.7386 | 0.8636 | 0.7464 | 0.8888 | 0.7598 | 0.4561 | 0.4873 | 0.6764 | 0.9131 | 0.8034 | 0.8738 | 0.8118 | 0.8396 | 0.8131 | 0.3915 | 0.0 | 0.7375 | 0.8162 | 0.6257 | 0.7735 | 0.6701 | 0.7588 | 0.5810 | 0.3186 | 0.4419 | 0.5425 | 0.8176 | 0.7365 | 0.7567 | 0.7342 | 0.7566 | 0.7620 | 0.2826 |
| 0.0681 | 6.84 | 3420 | 0.1910 | 0.6193 | 0.7555 | 0.8259 | nan | 0.8415 | 0.9146 | 0.7535 | 0.8504 | 0.8153 | 0.8551 | 0.7497 | 0.4178 | 0.6103 | 0.6438 | 0.8894 | 0.8482 | 0.8158 | 0.8471 | 0.7817 | 0.8164 | 0.3937 | 0.0 | 0.7503 | 0.8117 | 0.6351 | 0.7665 | 0.6840 | 0.7704 | 0.5730 | 0.3150 | 0.4980 | 0.5348 | 0.8161 | 0.7367 | 0.7468 | 0.7341 | 0.7374 | 0.7620 | 0.2755 |
| 0.0527 | 6.88 | 3440 | 0.2485 | 0.5992 | 0.7385 | 0.7956 | nan | 0.8583 | 0.9012 | 0.6970 | 0.8161 | 0.4887 | 0.7942 | 0.8130 | 0.4627 | 0.5456 | 0.6360 | 0.9041 | 0.8325 | 0.8547 | 0.8560 | 0.8318 | 0.8158 | 0.4471 | 0.0 | 0.7482 | 0.8062 | 0.6126 | 0.7252 | 0.4562 | 0.7181 | 0.5111 | 0.3480 | 0.4828 | 0.5308 | 0.8197 | 0.7248 | 0.7482 | 0.7423 | 0.7568 | 0.7627 | 0.2918 |
| 0.0552 | 6.92 | 3460 | 0.2340 | 0.6095 | 0.7488 | 0.8068 | nan | 0.8834 | 0.8760 | 0.7525 | 0.8465 | 0.5447 | 0.8179 | 0.7830 | 0.4823 | 0.6262 | 0.6107 | 0.9227 | 0.8547 | 0.8231 | 0.8487 | 0.8352 | 0.8306 | 0.3909 | 0.0 | 0.7352 | 0.8068 | 0.6311 | 0.7391 | 0.5054 | 0.7189 | 0.5285 | 0.3720 | 0.5219 | 0.5261 | 0.8197 | 0.7314 | 0.7472 | 0.7522 | 0.7705 | 0.7766 | 0.2888 |
| 0.0467 | 6.96 | 3480 | 0.2203 | 0.6069 | 0.7367 | 0.8145 | nan | 0.8406 | 0.8867 | 0.7886 | 0.8672 | 0.6168 | 0.8327 | 0.7707 | 0.4004 | 0.5789 | 0.6595 | 0.8940 | 0.8545 | 0.8098 | 0.8402 | 0.8144 | 0.8331 | 0.2364 | 0.0 | 0.7277 | 0.8133 | 0.6357 | 0.7570 | 0.5657 | 0.7190 | 0.5524 | 0.3152 | 0.5036 | 0.5464 | 0.8177 | 0.7252 | 0.7368 | 0.7496 | 0.7611 | 0.7712 | 0.2260 |
| 0.0439 | 7.0 | 3500 | 0.2275 | 0.6051 | 0.7303 | 0.8110 | nan | 0.8470 | 0.8943 | 0.6942 | 0.8549 | 0.6545 | 0.8176 | 0.7530 | 0.3131 | 0.6298 | 0.6255 | 0.9062 | 0.8398 | 0.8313 | 0.8247 | 0.8425 | 0.7976 | 0.2892 | 0.0 | 0.7388 | 0.8097 | 0.6109 | 0.7479 | 0.5758 | 0.7290 | 0.5326 | 0.2652 | 0.5192 | 0.5317 | 0.8174 | 0.7297 | 0.7445 | 0.7506 | 0.7710 | 0.7548 | 0.2632 |
| 0.0521 | 7.04 | 3520 | 0.2251 | 0.6088 | 0.7420 | 0.8137 | nan | 0.8732 | 0.8794 | 0.7645 | 0.8523 | 0.7060 | 0.8313 | 0.7457 | 0.3072 | 0.5490 | 0.6194 | 0.9096 | 0.7940 | 0.8878 | 0.8470 | 0.8630 | 0.7804 | 0.4046 | 0.0 | 0.7474 | 0.8070 | 0.6354 | 0.7500 | 0.6009 | 0.7335 | 0.5409 | 0.2459 | 0.4823 | 0.5253 | 0.8200 | 0.7260 | 0.7482 | 0.7637 | 0.7731 | 0.7381 | 0.3209 |
| 0.0309 | 7.08 | 3540 | 0.2404 | 0.6004 | 0.7310 | 0.8055 | nan | 0.8285 | 0.8969 | 0.7766 | 0.8295 | 0.6323 | 0.8245 | 0.7835 | 0.2006 | 0.6407 | 0.5665 | 0.9032 | 0.8318 | 0.8426 | 0.8452 | 0.8229 | 0.7760 | 0.4249 | 0.0 | 0.7453 | 0.8156 | 0.6395 | 0.7323 | 0.5505 | 0.7299 | 0.5171 | 0.1760 | 0.5113 | 0.4996 | 0.8199 | 0.7356 | 0.7584 | 0.7586 | 0.7658 | 0.7337 | 0.3173 |
| 0.041 | 7.12 | 3560 | 0.2270 | 0.6036 | 0.7300 | 0.8090 | nan | 0.8632 | 0.8931 | 0.6576 | 0.8435 | 0.6410 | 0.8345 | 0.7614 | 0.2645 | 0.5828 | 0.6233 | 0.9111 | 0.8093 | 0.8429 | 0.8509 | 0.8402 | 0.7893 | 0.4015 | 0.0 | 0.7552 | 0.8082 | 0.5947 | 0.7412 | 0.5704 | 0.7325 | 0.5289 | 0.2354 | 0.4928 | 0.5234 | 0.8194 | 0.7224 | 0.7475 | 0.7582 | 0.7656 | 0.7445 | 0.3243 |
| 0.0516 | 7.16 | 3580 | 0.2235 | 0.6068 | 0.7352 | 0.8144 | nan | 0.8617 | 0.8936 | 0.6386 | 0.8380 | 0.7164 | 0.8518 | 0.7569 | 0.3071 | 0.5462 | 0.6456 | 0.9117 | 0.8011 | 0.8581 | 0.8647 | 0.8250 | 0.7942 | 0.3875 | 0.0 | 0.7505 | 0.8082 | 0.5835 | 0.7456 | 0.6204 | 0.7463 | 0.5376 | 0.2546 | 0.4747 | 0.5257 | 0.8182 | 0.7202 | 0.7438 | 0.7604 | 0.7633 | 0.7480 | 0.3215 |
| 0.0444 | 7.2 | 3600 | 0.2259 | 0.6113 | 0.7438 | 0.8127 | nan | 0.8235 | 0.8932 | 0.7367 | 0.8187 | 0.6444 | 0.8665 | 0.8099 | 0.3617 | 0.6273 | 0.6339 | 0.9160 | 0.8431 | 0.8102 | 0.8794 | 0.7815 | 0.8072 | 0.3914 | 0.0 | 0.7410 | 0.8093 | 0.6299 | 0.7389 | 0.5965 | 0.7561 | 0.5393 | 0.2970 | 0.5100 | 0.5292 | 0.8202 | 0.7342 | 0.7461 | 0.7426 | 0.7365 | 0.7587 | 0.3185 |
| 0.0443 | 7.24 | 3620 | 0.2187 | 0.6184 | 0.7525 | 0.8190 | nan | 0.8530 | 0.8955 | 0.7771 | 0.8274 | 0.6900 | 0.8704 | 0.8047 | 0.4150 | 0.5997 | 0.6314 | 0.9052 | 0.8460 | 0.8180 | 0.8637 | 0.8151 | 0.8124 | 0.3677 | 0.0 | 0.7525 | 0.8098 | 0.6386 | 0.7475 | 0.6305 | 0.7658 | 0.5575 | 0.3230 | 0.4993 | 0.5302 | 0.8209 | 0.7393 | 0.7484 | 0.7495 | 0.7537 | 0.7600 | 0.3047 |
| 0.0773 | 7.28 | 3640 | 0.2119 | 0.6199 | 0.7516 | 0.8210 | nan | 0.8772 | 0.9028 | 0.7443 | 0.8270 | 0.7095 | 0.8537 | 0.8093 | 0.3872 | 0.6059 | 0.6146 | 0.9135 | 0.8322 | 0.8508 | 0.8241 | 0.8498 | 0.8167 | 0.3585 | 0.0 | 0.7556 | 0.8096 | 0.6315 | 0.7483 | 0.6378 | 0.7640 | 0.5590 | 0.3153 | 0.5032 | 0.5233 | 0.8201 | 0.7369 | 0.7544 | 0.7562 | 0.7717 | 0.7639 | 0.3068 |
| 0.0381 | 7.32 | 3660 | 0.2086 | 0.6088 | 0.7409 | 0.8124 | nan | 0.8592 | 0.8914 | 0.7294 | 0.8354 | 0.7693 | 0.8301 | 0.7288 | 0.3523 | 0.5901 | 0.6420 | 0.9119 | 0.8092 | 0.8492 | 0.8283 | 0.8480 | 0.8010 | 0.3202 | 0.0 | 0.7428 | 0.8083 | 0.6265 | 0.7509 | 0.6160 | 0.7504 | 0.5294 | 0.2703 | 0.4945 | 0.5303 | 0.8220 | 0.7244 | 0.7482 | 0.7515 | 0.7664 | 0.7466 | 0.2808 |
| 0.0464 | 7.36 | 3680 | 0.2155 | 0.6097 | 0.7379 | 0.8135 | nan | 0.8474 | 0.8975 | 0.7075 | 0.8456 | 0.7282 | 0.8638 | 0.7149 | 0.3864 | 0.5974 | 0.5819 | 0.9084 | 0.8256 | 0.8455 | 0.8365 | 0.8537 | 0.7817 | 0.3218 | 0.0 | 0.7408 | 0.8088 | 0.6178 | 0.7546 | 0.5922 | 0.7590 | 0.5152 | 0.3069 | 0.4931 | 0.5063 | 0.8208 | 0.7335 | 0.7535 | 0.7598 | 0.7728 | 0.7445 | 0.2955 |
| 0.0614 | 7.4 | 3700 | 0.2195 | 0.6135 | 0.7500 | 0.8110 | nan | 0.8656 | 0.8814 | 0.7297 | 0.8356 | 0.7074 | 0.8448 | 0.7365 | 0.4880 | 0.5984 | 0.5838 | 0.9176 | 0.8240 | 0.8345 | 0.8315 | 0.8677 | 0.8213 | 0.3814 | 0.0 | 0.7419 | 0.8070 | 0.6230 | 0.7469 | 0.6014 | 0.7525 | 0.5221 | 0.3509 | 0.4926 | 0.5007 | 0.8195 | 0.7314 | 0.7503 | 0.7538 | 0.7739 | 0.7641 | 0.3112 |
| 0.0387 | 7.44 | 3720 | 0.2203 | 0.6204 | 0.7548 | 0.8177 | nan | 0.8613 | 0.8878 | 0.7302 | 0.8424 | 0.7072 | 0.8624 | 0.7557 | 0.4943 | 0.6047 | 0.6229 | 0.8990 | 0.8379 | 0.8324 | 0.8634 | 0.8426 | 0.8073 | 0.3807 | 0.0 | 0.7446 | 0.8094 | 0.6272 | 0.7534 | 0.6154 | 0.7665 | 0.5337 | 0.3675 | 0.5036 | 0.5203 | 0.8211 | 0.7351 | 0.7515 | 0.7663 | 0.7764 | 0.7584 | 0.3162 |
| 0.0756 | 7.48 | 3740 | 0.2238 | 0.6159 | 0.7463 | 0.8187 | nan | 0.8548 | 0.8948 | 0.7299 | 0.8325 | 0.7072 | 0.8686 | 0.7847 | 0.3186 | 0.5954 | 0.6298 | 0.9106 | 0.8341 | 0.8262 | 0.8541 | 0.8236 | 0.8073 | 0.4144 | 0.0 | 0.7526 | 0.8121 | 0.6257 | 0.7509 | 0.6249 | 0.7643 | 0.5441 | 0.2633 | 0.5015 | 0.5210 | 0.8226 | 0.7318 | 0.7506 | 0.7612 | 0.7694 | 0.7608 | 0.3291 |
| 0.0442 | 7.52 | 3760 | 0.2139 | 0.6150 | 0.7454 | 0.8186 | nan | 0.8580 | 0.9114 | 0.7052 | 0.8456 | 0.6986 | 0.8814 | 0.7237 | 0.3424 | 0.6381 | 0.5776 | 0.9101 | 0.8323 | 0.8491 | 0.8561 | 0.8353 | 0.8024 | 0.4048 | 0.0 | 0.7541 | 0.8137 | 0.6187 | 0.7590 | 0.5916 | 0.7691 | 0.5252 | 0.2908 | 0.5133 | 0.4968 | 0.8226 | 0.7350 | 0.7548 | 0.7660 | 0.7775 | 0.7583 | 0.3228 |
| 0.0539 | 7.56 | 3780 | 0.2026 | 0.6198 | 0.7487 | 0.8260 | nan | 0.8731 | 0.8995 | 0.7449 | 0.8710 | 0.7200 | 0.8849 | 0.7157 | 0.3682 | 0.6338 | 0.6196 | 0.9113 | 0.7938 | 0.8676 | 0.8560 | 0.8503 | 0.8035 | 0.3142 | 0.0 | 0.7541 | 0.8119 | 0.6326 | 0.7762 | 0.6140 | 0.7747 | 0.5466 | 0.3147 | 0.5172 | 0.5266 | 0.8235 | 0.7179 | 0.7479 | 0.7624 | 0.7809 | 0.7632 | 0.2924 |
| 0.047 | 7.6 | 3800 | 0.2024 | 0.6212 | 0.7475 | 0.8296 | nan | 0.8603 | 0.8992 | 0.7020 | 0.8756 | 0.7303 | 0.8862 | 0.7304 | 0.3776 | 0.6126 | 0.5955 | 0.9141 | 0.8511 | 0.8107 | 0.8579 | 0.8407 | 0.8378 | 0.3254 | 0.0 | 0.7505 | 0.8158 | 0.6163 | 0.7818 | 0.6228 | 0.7744 | 0.5596 | 0.3137 | 0.5023 | 0.5141 | 0.8244 | 0.7330 | 0.7436 | 0.7663 | 0.7774 | 0.7821 | 0.3034 |
| 0.0467 | 7.64 | 3820 | 0.2028 | 0.6129 | 0.7373 | 0.8199 | nan | 0.8027 | 0.8986 | 0.6825 | 0.8596 | 0.7446 | 0.8921 | 0.7136 | 0.3488 | 0.5648 | 0.6284 | 0.8980 | 0.8360 | 0.7928 | 0.8416 | 0.8354 | 0.8113 | 0.3827 | 0.0 | 0.7326 | 0.8131 | 0.6084 | 0.7703 | 0.6213 | 0.7694 | 0.5378 | 0.2919 | 0.4774 | 0.5175 | 0.8227 | 0.7184 | 0.7291 | 0.7620 | 0.7710 | 0.7670 | 0.3217 |
| 0.0385 | 7.68 | 3840 | 0.2022 | 0.6145 | 0.7447 | 0.8220 | nan | 0.8519 | 0.8908 | 0.7347 | 0.8602 | 0.7322 | 0.8846 | 0.7235 | 0.3646 | 0.5684 | 0.5708 | 0.9190 | 0.8485 | 0.8332 | 0.8654 | 0.8127 | 0.8194 | 0.3794 | 0.0 | 0.7498 | 0.8106 | 0.6242 | 0.7719 | 0.6280 | 0.7682 | 0.5460 | 0.3105 | 0.4718 | 0.4958 | 0.8232 | 0.7229 | 0.7411 | 0.7460 | 0.7484 | 0.7711 | 0.3320 |
| 0.082 | 7.72 | 3860 | 0.2047 | 0.6180 | 0.7498 | 0.8261 | nan | 0.8602 | 0.9006 | 0.7283 | 0.8621 | 0.7385 | 0.9008 | 0.7200 | 0.3629 | 0.6560 | 0.5607 | 0.9057 | 0.8369 | 0.8220 | 0.8445 | 0.8385 | 0.8283 | 0.3802 | 0.0 | 0.7502 | 0.8141 | 0.6240 | 0.7764 | 0.6321 | 0.7699 | 0.5491 | 0.3007 | 0.5019 | 0.4872 | 0.8222 | 0.7280 | 0.7474 | 0.7510 | 0.7594 | 0.7764 | 0.3344 |
| 0.0452 | 7.76 | 3880 | 0.2026 | 0.6187 | 0.7544 | 0.8228 | nan | 0.8522 | 0.8847 | 0.7730 | 0.8698 | 0.7117 | 0.8773 | 0.7253 | 0.4656 | 0.5983 | 0.6178 | 0.9034 | 0.8591 | 0.8158 | 0.8700 | 0.7850 | 0.8353 | 0.3805 | 0.0 | 0.7390 | 0.8077 | 0.6320 | 0.7788 | 0.6067 | 0.7798 | 0.5474 | 0.3492 | 0.4907 | 0.5241 | 0.8225 | 0.7265 | 0.7491 | 0.7399 | 0.7383 | 0.7763 | 0.3284 |
| 0.0709 | 7.8 | 3900 | 0.2129 | 0.6168 | 0.7514 | 0.8228 | nan | 0.8691 | 0.8992 | 0.7177 | 0.8494 | 0.7060 | 0.8733 | 0.7717 | 0.3807 | 0.6129 | 0.5954 | 0.8941 | 0.8474 | 0.8247 | 0.8548 | 0.8000 | 0.8376 | 0.4392 | 0.0 | 0.7570 | 0.8118 | 0.6217 | 0.7666 | 0.6198 | 0.7782 | 0.5532 | 0.3023 | 0.4885 | 0.5096 | 0.8215 | 0.7249 | 0.7523 | 0.7414 | 0.7392 | 0.7806 | 0.3340 |
| 0.0445 | 7.84 | 3920 | 0.2112 | 0.6152 | 0.7479 | 0.8208 | nan | 0.8354 | 0.8968 | 0.7225 | 0.8596 | 0.7025 | 0.8762 | 0.7309 | 0.4132 | 0.5801 | 0.6012 | 0.9090 | 0.8403 | 0.8277 | 0.8304 | 0.8310 | 0.8418 | 0.4157 | 0.0 | 0.7408 | 0.8104 | 0.6227 | 0.7721 | 0.5956 | 0.7748 | 0.5390 | 0.3149 | 0.4730 | 0.5026 | 0.8231 | 0.7298 | 0.7588 | 0.7489 | 0.7601 | 0.7798 | 0.3279 |
| 0.0684 | 7.88 | 3940 | 0.2073 | 0.6162 | 0.7520 | 0.8212 | nan | 0.8597 | 0.8945 | 0.7100 | 0.8620 | 0.7031 | 0.8764 | 0.7234 | 0.4659 | 0.6066 | 0.6061 | 0.9092 | 0.8544 | 0.8132 | 0.8451 | 0.8228 | 0.8359 | 0.3964 | 0.0 | 0.7482 | 0.8133 | 0.6172 | 0.7733 | 0.5902 | 0.7734 | 0.5329 | 0.3347 | 0.4877 | 0.5064 | 0.8232 | 0.7360 | 0.7534 | 0.7511 | 0.7568 | 0.7794 | 0.3151 |
| 0.0461 | 7.92 | 3960 | 0.2076 | 0.6157 | 0.7469 | 0.8250 | nan | 0.8594 | 0.8986 | 0.6659 | 0.8770 | 0.7159 | 0.8692 | 0.7100 | 0.4604 | 0.5639 | 0.5988 | 0.9099 | 0.8512 | 0.8546 | 0.8655 | 0.8396 | 0.8200 | 0.3381 | 0.0 | 0.7589 | 0.8132 | 0.5961 | 0.7836 | 0.5913 | 0.7689 | 0.5409 | 0.3507 | 0.4729 | 0.5124 | 0.8228 | 0.7347 | 0.7600 | 0.7532 | 0.7589 | 0.7715 | 0.2926 |
| 0.053 | 7.96 | 3980 | 0.2174 | 0.6106 | 0.7430 | 0.8218 | nan | 0.8738 | 0.8890 | 0.7214 | 0.8702 | 0.7303 | 0.8785 | 0.7177 | 0.3748 | 0.5630 | 0.5626 | 0.9187 | 0.8729 | 0.7903 | 0.8706 | 0.8151 | 0.8118 | 0.3701 | 0.0 | 0.7605 | 0.8134 | 0.6223 | 0.7789 | 0.6070 | 0.7638 | 0.5417 | 0.3003 | 0.4682 | 0.4870 | 0.8225 | 0.7172 | 0.7317 | 0.7506 | 0.7546 | 0.7626 | 0.3087 |
| 0.063 | 8.0 | 4000 | 0.2192 | 0.6122 | 0.7454 | 0.8158 | nan | 0.8402 | 0.9083 | 0.7397 | 0.8477 | 0.6991 | 0.8612 | 0.7566 | 0.4382 | 0.5439 | 0.5893 | 0.8825 | 0.8527 | 0.8119 | 0.8538 | 0.8192 | 0.8023 | 0.4255 | 0.0 | 0.7532 | 0.8109 | 0.6301 | 0.7640 | 0.6155 | 0.7572 | 0.5442 | 0.3352 | 0.4609 | 0.5009 | 0.8170 | 0.7196 | 0.7373 | 0.7428 | 0.7510 | 0.7598 | 0.3202 |
| 0.0696 | 8.04 | 4020 | 0.2176 | 0.6092 | 0.7437 | 0.8174 | nan | 0.8501 | 0.8994 | 0.7617 | 0.8430 | 0.7154 | 0.8691 | 0.7603 | 0.3024 | 0.5760 | 0.6084 | 0.9050 | 0.7923 | 0.8546 | 0.8203 | 0.8350 | 0.8042 | 0.4453 | 0.0 | 0.7502 | 0.8153 | 0.6318 | 0.7643 | 0.6147 | 0.7635 | 0.5416 | 0.2431 | 0.4767 | 0.5068 | 0.8239 | 0.7155 | 0.7448 | 0.7377 | 0.7574 | 0.7632 | 0.3147 |
| 0.0716 | 8.08 | 4040 | 0.2081 | 0.6164 | 0.7460 | 0.8256 | nan | 0.8457 | 0.8875 | 0.7553 | 0.8637 | 0.7370 | 0.8820 | 0.7645 | 0.3343 | 0.6189 | 0.5919 | 0.9100 | 0.8438 | 0.8032 | 0.8669 | 0.7875 | 0.8119 | 0.3787 | 0.0 | 0.7475 | 0.8098 | 0.6328 | 0.7769 | 0.6563 | 0.7717 | 0.5780 | 0.2759 | 0.4884 | 0.5018 | 0.8258 | 0.7273 | 0.7430 | 0.7411 | 0.7404 | 0.7682 | 0.3097 |
| 0.0476 | 8.12 | 4060 | 0.2121 | 0.6152 | 0.7445 | 0.8213 | nan | 0.8776 | 0.8912 | 0.7376 | 0.8673 | 0.7077 | 0.8765 | 0.7191 | 0.3780 | 0.5497 | 0.6293 | 0.9055 | 0.8189 | 0.8572 | 0.8369 | 0.8284 | 0.8291 | 0.3461 | 0.0 | 0.7476 | 0.8102 | 0.6290 | 0.7731 | 0.6066 | 0.7692 | 0.5422 | 0.3104 | 0.4700 | 0.5254 | 0.8235 | 0.7342 | 0.7590 | 0.7401 | 0.7570 | 0.7771 | 0.2989 |
| 0.0282 | 8.16 | 4080 | 0.2227 | 0.6179 | 0.7503 | 0.8233 | nan | 0.8493 | 0.8953 | 0.7243 | 0.8609 | 0.7054 | 0.8850 | 0.7402 | 0.4689 | 0.5992 | 0.6032 | 0.9098 | 0.8674 | 0.8176 | 0.8304 | 0.8224 | 0.8261 | 0.3496 | 0.0 | 0.7464 | 0.8135 | 0.6221 | 0.7722 | 0.6173 | 0.7711 | 0.5455 | 0.3437 | 0.4873 | 0.5114 | 0.8242 | 0.7384 | 0.7545 | 0.7427 | 0.7597 | 0.7755 | 0.2974 |
| 0.066 | 8.2 | 4100 | 0.2196 | 0.6178 | 0.7515 | 0.8234 | nan | 0.8605 | 0.8867 | 0.7520 | 0.8588 | 0.6987 | 0.8821 | 0.7467 | 0.3982 | 0.5296 | 0.7016 | 0.9118 | 0.8113 | 0.8563 | 0.8405 | 0.8277 | 0.8350 | 0.3778 | 0.0 | 0.7526 | 0.8116 | 0.6271 | 0.7691 | 0.6182 | 0.7677 | 0.5441 | 0.3201 | 0.4636 | 0.5442 | 0.8241 | 0.7320 | 0.7581 | 0.7477 | 0.7625 | 0.7792 | 0.2986 |
| 0.0778 | 8.24 | 4120 | 0.2207 | 0.6158 | 0.7519 | 0.8196 | nan | 0.8662 | 0.8984 | 0.7375 | 0.8417 | 0.7046 | 0.8827 | 0.7453 | 0.4193 | 0.5823 | 0.6251 | 0.9098 | 0.8391 | 0.8376 | 0.8596 | 0.8218 | 0.8180 | 0.3927 | 0.0 | 0.7475 | 0.8082 | 0.6272 | 0.7637 | 0.6183 | 0.7644 | 0.5440 | 0.3164 | 0.4880 | 0.5196 | 0.8225 | 0.7363 | 0.7576 | 0.7433 | 0.7527 | 0.7708 | 0.3040 |
| 0.0467 | 8.28 | 4140 | 0.2348 | 0.6066 | 0.7388 | 0.8137 | nan | 0.8778 | 0.8864 | 0.7390 | 0.8421 | 0.6967 | 0.8328 | 0.7716 | 0.2713 | 0.5635 | 0.6553 | 0.9114 | 0.8487 | 0.8293 | 0.8234 | 0.8276 | 0.8004 | 0.3817 | 0.0 | 0.7537 | 0.8105 | 0.6265 | 0.7509 | 0.5995 | 0.7384 | 0.5331 | 0.2300 | 0.4803 | 0.5344 | 0.8265 | 0.7321 | 0.7541 | 0.7356 | 0.7555 | 0.7611 | 0.2958 |
| 0.0729 | 8.32 | 4160 | 0.2377 | 0.6016 | 0.7342 | 0.8092 | nan | 0.8659 | 0.9055 | 0.7306 | 0.8257 | 0.6606 | 0.8228 | 0.7871 | 0.2538 | 0.5477 | 0.6017 | 0.9047 | 0.8374 | 0.8502 | 0.8598 | 0.8237 | 0.8064 | 0.3972 | 0.0 | 0.7492 | 0.8113 | 0.6273 | 0.7462 | 0.5713 | 0.7264 | 0.5335 | 0.2263 | 0.4677 | 0.5076 | 0.8252 | 0.7278 | 0.7542 | 0.7386 | 0.7492 | 0.7609 | 0.3055 |
| 0.0314 | 8.36 | 4180 | 0.2331 | 0.6053 | 0.7385 | 0.8127 | nan | 0.8451 | 0.9049 | 0.7290 | 0.8338 | 0.6926 | 0.8417 | 0.7630 | 0.2421 | 0.5876 | 0.6142 | 0.8928 | 0.8661 | 0.8179 | 0.8467 | 0.7945 | 0.8287 | 0.4544 | 0.0 | 0.7498 | 0.8132 | 0.6277 | 0.7472 | 0.6012 | 0.7386 | 0.5316 | 0.2206 | 0.4866 | 0.5158 | 0.8222 | 0.7240 | 0.7455 | 0.7416 | 0.7438 | 0.7740 | 0.3121 |
| 0.0417 | 8.4 | 4200 | 0.2297 | 0.6117 | 0.7444 | 0.8154 | nan | 0.8657 | 0.8996 | 0.7438 | 0.8327 | 0.6827 | 0.8573 | 0.7638 | 0.3149 | 0.5832 | 0.6047 | 0.9116 | 0.8488 | 0.8428 | 0.8714 | 0.8068 | 0.8253 | 0.3989 | 0.0 | 0.7633 | 0.8123 | 0.6302 | 0.7487 | 0.6098 | 0.7502 | 0.5344 | 0.2728 | 0.4839 | 0.5104 | 0.8265 | 0.7317 | 0.7573 | 0.7467 | 0.7452 | 0.7725 | 0.3153 |
| 0.05 | 8.44 | 4220 | 0.2271 | 0.6161 | 0.7455 | 0.8215 | nan | 0.8631 | 0.9026 | 0.7511 | 0.8575 | 0.6986 | 0.8655 | 0.7491 | 0.3346 | 0.5949 | 0.6104 | 0.8962 | 0.8472 | 0.8347 | 0.8632 | 0.8054 | 0.8265 | 0.3734 | 0.0 | 0.7625 | 0.8138 | 0.6335 | 0.7622 | 0.6207 | 0.7495 | 0.5443 | 0.2922 | 0.4888 | 0.5166 | 0.8246 | 0.7395 | 0.7607 | 0.7435 | 0.7497 | 0.7785 | 0.3096 |
| 0.0541 | 8.48 | 4240 | 0.2227 | 0.6164 | 0.7388 | 0.8272 | nan | 0.8478 | 0.9055 | 0.7101 | 0.8879 | 0.6953 | 0.8455 | 0.7449 | 0.2957 | 0.6119 | 0.6019 | 0.9073 | 0.8250 | 0.8470 | 0.8558 | 0.8319 | 0.8216 | 0.3246 | 0.0 | 0.7695 | 0.8174 | 0.6182 | 0.7706 | 0.6331 | 0.7388 | 0.5698 | 0.2683 | 0.4955 | 0.5107 | 0.8253 | 0.7389 | 0.7609 | 0.7467 | 0.7556 | 0.7774 | 0.2987 |
| 0.0361 | 8.52 | 4260 | 0.2275 | 0.6168 | 0.7421 | 0.8272 | nan | 0.8536 | 0.8995 | 0.7183 | 0.8799 | 0.7048 | 0.8417 | 0.7611 | 0.3506 | 0.5552 | 0.6506 | 0.9142 | 0.8481 | 0.8468 | 0.8534 | 0.8210 | 0.8173 | 0.2988 | 0.0 | 0.7541 | 0.8131 | 0.6184 | 0.7697 | 0.6383 | 0.7402 | 0.5791 | 0.2963 | 0.4795 | 0.5348 | 0.8234 | 0.7439 | 0.7606 | 0.7444 | 0.7527 | 0.7714 | 0.2818 |
| 0.0389 | 8.56 | 4280 | 0.2229 | 0.6198 | 0.7505 | 0.8290 | nan | 0.8848 | 0.8979 | 0.7303 | 0.8820 | 0.6991 | 0.8480 | 0.7562 | 0.4229 | 0.6257 | 0.6414 | 0.9137 | 0.8404 | 0.8390 | 0.8373 | 0.8252 | 0.8380 | 0.2764 | 0.0 | 0.7545 | 0.8152 | 0.6212 | 0.7709 | 0.6410 | 0.7464 | 0.5771 | 0.3138 | 0.5133 | 0.5295 | 0.8244 | 0.7366 | 0.7597 | 0.7498 | 0.7575 | 0.7848 | 0.2609 |
| 0.0558 | 8.6 | 4300 | 0.2195 | 0.6148 | 0.7425 | 0.8239 | nan | 0.8746 | 0.8951 | 0.7349 | 0.8719 | 0.7043 | 0.8426 | 0.7614 | 0.3675 | 0.5751 | 0.6383 | 0.9055 | 0.8457 | 0.8271 | 0.8390 | 0.8284 | 0.8273 | 0.2837 | 0.0 | 0.7525 | 0.8152 | 0.6213 | 0.7658 | 0.6393 | 0.7416 | 0.5705 | 0.2937 | 0.4901 | 0.5255 | 0.8239 | 0.7295 | 0.7502 | 0.7522 | 0.7592 | 0.7772 | 0.2592 |
| 0.0518 | 8.64 | 4320 | 0.2243 | 0.6100 | 0.7395 | 0.8187 | nan | 0.8573 | 0.8882 | 0.6744 | 0.8370 | 0.7125 | 0.8549 | 0.7943 | 0.3636 | 0.5806 | 0.6465 | 0.9170 | 0.8424 | 0.8206 | 0.8424 | 0.8282 | 0.8064 | 0.3046 | 0.0 | 0.7494 | 0.8109 | 0.5947 | 0.7505 | 0.6412 | 0.7541 | 0.5576 | 0.2835 | 0.4915 | 0.5322 | 0.8231 | 0.7243 | 0.7405 | 0.7508 | 0.7564 | 0.7662 | 0.2525 |
| 0.0494 | 8.68 | 4340 | 0.2253 | 0.6195 | 0.7551 | 0.8216 | nan | 0.8610 | 0.8936 | 0.7012 | 0.8349 | 0.7050 | 0.8833 | 0.7699 | 0.4646 | 0.6088 | 0.6337 | 0.9047 | 0.8290 | 0.8393 | 0.8325 | 0.8498 | 0.8475 | 0.3772 | 0.0 | 0.7665 | 0.8150 | 0.6144 | 0.7542 | 0.6231 | 0.7692 | 0.5457 | 0.3459 | 0.5041 | 0.5377 | 0.8237 | 0.7256 | 0.7486 | 0.7537 | 0.7631 | 0.7836 | 0.2767 |
| 0.0383 | 8.72 | 4360 | 0.2340 | 0.6198 | 0.7559 | 0.8203 | nan | 0.8520 | 0.9032 | 0.6900 | 0.8180 | 0.7041 | 0.8829 | 0.7936 | 0.4585 | 0.5947 | 0.6318 | 0.9162 | 0.8363 | 0.8426 | 0.8445 | 0.8350 | 0.8253 | 0.4223 | 0.0 | 0.7709 | 0.8145 | 0.6086 | 0.7455 | 0.6360 | 0.7683 | 0.5511 | 0.3486 | 0.4953 | 0.5325 | 0.8247 | 0.7336 | 0.7517 | 0.7556 | 0.7600 | 0.7761 | 0.2841 |
| 0.0375 | 8.76 | 4380 | 0.2217 | 0.6190 | 0.7508 | 0.8206 | nan | 0.8522 | 0.8948 | 0.7449 | 0.8423 | 0.7028 | 0.8788 | 0.7530 | 0.3981 | 0.5796 | 0.6369 | 0.9089 | 0.8378 | 0.8432 | 0.8509 | 0.8432 | 0.8251 | 0.3711 | 0.0 | 0.7654 | 0.8135 | 0.6285 | 0.7568 | 0.6153 | 0.7698 | 0.5412 | 0.3309 | 0.4905 | 0.5324 | 0.8261 | 0.7353 | 0.7564 | 0.7579 | 0.7658 | 0.7739 | 0.2821 |
| 0.0367 | 8.8 | 4400 | 0.2246 | 0.6145 | 0.7416 | 0.8197 | nan | 0.8334 | 0.9068 | 0.7256 | 0.8322 | 0.7058 | 0.8781 | 0.7749 | 0.3536 | 0.6074 | 0.5935 | 0.9129 | 0.8687 | 0.8181 | 0.8378 | 0.8418 | 0.8087 | 0.3076 | 0.0 | 0.7557 | 0.8191 | 0.6192 | 0.7533 | 0.6236 | 0.7658 | 0.5453 | 0.3045 | 0.4992 | 0.5132 | 0.8244 | 0.7292 | 0.7469 | 0.7588 | 0.7727 | 0.7672 | 0.2636 |
| 0.074 | 8.84 | 4420 | 0.2326 | 0.6138 | 0.7419 | 0.8193 | nan | 0.8483 | 0.8924 | 0.7183 | 0.8400 | 0.7080 | 0.8732 | 0.7632 | 0.3716 | 0.5848 | 0.6264 | 0.9149 | 0.8326 | 0.8520 | 0.8216 | 0.8525 | 0.8141 | 0.2978 | 0.0 | 0.7572 | 0.8164 | 0.6165 | 0.7537 | 0.6143 | 0.7643 | 0.5398 | 0.2985 | 0.4928 | 0.5247 | 0.8242 | 0.7314 | 0.7556 | 0.7516 | 0.7737 | 0.7704 | 0.2632 |
| 0.038 | 8.88 | 4440 | 0.2314 | 0.6220 | 0.7566 | 0.8234 | nan | 0.8469 | 0.9163 | 0.7150 | 0.8502 | 0.6724 | 0.8791 | 0.7627 | 0.5999 | 0.6023 | 0.6458 | 0.9025 | 0.8408 | 0.8365 | 0.8592 | 0.8411 | 0.8110 | 0.2815 | 0.0 | 0.7603 | 0.8159 | 0.6218 | 0.7619 | 0.6140 | 0.7485 | 0.5529 | 0.4128 | 0.5023 | 0.5385 | 0.8229 | 0.7336 | 0.7566 | 0.7688 | 0.7776 | 0.7600 | 0.2481 |
| 0.0486 | 8.92 | 4460 | 0.2265 | 0.6176 | 0.7471 | 0.8218 | nan | 0.8489 | 0.8824 | 0.7234 | 0.8589 | 0.6716 | 0.8823 | 0.7616 | 0.4996 | 0.5337 | 0.6612 | 0.9079 | 0.8436 | 0.8342 | 0.8490 | 0.8480 | 0.8212 | 0.2740 | 0.0 | 0.7505 | 0.8106 | 0.6248 | 0.7667 | 0.6140 | 0.7534 | 0.5585 | 0.3704 | 0.4673 | 0.5368 | 0.8259 | 0.7315 | 0.7565 | 0.7639 | 0.7729 | 0.7609 | 0.2529 |
| 0.0589 | 8.96 | 4480 | 0.2335 | 0.6140 | 0.7404 | 0.8184 | nan | 0.8318 | 0.9004 | 0.7298 | 0.8342 | 0.6780 | 0.8726 | 0.7916 | 0.3401 | 0.5608 | 0.6654 | 0.9077 | 0.8507 | 0.8166 | 0.8645 | 0.8000 | 0.8166 | 0.3265 | 0.0 | 0.7470 | 0.8131 | 0.6265 | 0.7503 | 0.6308 | 0.7604 | 0.5579 | 0.2867 | 0.4791 | 0.5382 | 0.8258 | 0.7323 | 0.7529 | 0.7567 | 0.7570 | 0.7584 | 0.2784 |
| 0.0928 | 9.0 | 4500 | 0.2234 | 0.6170 | 0.7451 | 0.8261 | nan | 0.8674 | 0.8965 | 0.7326 | 0.8676 | 0.6852 | 0.8826 | 0.7584 | 0.2819 | 0.6002 | 0.6321 | 0.9084 | 0.8186 | 0.8459 | 0.8650 | 0.8278 | 0.8071 | 0.3889 | 0.0 | 0.7652 | 0.8184 | 0.6286 | 0.7709 | 0.6255 | 0.7565 | 0.5666 | 0.2459 | 0.4963 | 0.5297 | 0.8279 | 0.7332 | 0.7606 | 0.7590 | 0.7643 | 0.7585 | 0.2994 |
| 0.0573 | 9.04 | 4520 | 0.2235 | 0.6203 | 0.7464 | 0.8278 | nan | 0.8441 | 0.9048 | 0.7557 | 0.8764 | 0.6927 | 0.8730 | 0.7553 | 0.3351 | 0.5800 | 0.6431 | 0.8976 | 0.8401 | 0.8388 | 0.8349 | 0.8396 | 0.8132 | 0.3647 | 0.0 | 0.7572 | 0.8168 | 0.6361 | 0.7754 | 0.6289 | 0.7582 | 0.5684 | 0.2740 | 0.4915 | 0.5384 | 0.8271 | 0.7325 | 0.7539 | 0.7550 | 0.7734 | 0.7672 | 0.3111 |
| 0.0523 | 9.08 | 4540 | 0.2217 | 0.6225 | 0.7516 | 0.8277 | nan | 0.8399 | 0.8935 | 0.7553 | 0.8741 | 0.6888 | 0.8867 | 0.7466 | 0.4573 | 0.5676 | 0.6488 | 0.9148 | 0.8437 | 0.8369 | 0.8397 | 0.8095 | 0.8470 | 0.3272 | 0.0 | 0.7538 | 0.8140 | 0.6335 | 0.7796 | 0.6226 | 0.7658 | 0.5625 | 0.3275 | 0.4876 | 0.5414 | 0.8296 | 0.7301 | 0.7501 | 0.7519 | 0.7637 | 0.7855 | 0.3064 |
| 0.0372 | 9.12 | 4560 | 0.2219 | 0.6164 | 0.7455 | 0.8271 | nan | 0.8473 | 0.9010 | 0.7986 | 0.8733 | 0.7194 | 0.8896 | 0.7262 | 0.2736 | 0.6386 | 0.5583 | 0.9006 | 0.8329 | 0.8349 | 0.8477 | 0.8408 | 0.8291 | 0.3614 | 0.0 | 0.7641 | 0.8176 | 0.6378 | 0.7793 | 0.6240 | 0.7654 | 0.5526 | 0.2364 | 0.5000 | 0.4922 | 0.8266 | 0.7301 | 0.7500 | 0.7622 | 0.7750 | 0.7774 | 0.3053 |
| 0.0338 | 9.16 | 4580 | 0.2194 | 0.6151 | 0.7444 | 0.8235 | nan | 0.8565 | 0.9045 | 0.7748 | 0.8561 | 0.6996 | 0.8831 | 0.7412 | 0.2413 | 0.5597 | 0.6618 | 0.9050 | 0.8354 | 0.8398 | 0.8621 | 0.8231 | 0.8231 | 0.3871 | 0.0 | 0.7564 | 0.8160 | 0.6372 | 0.7708 | 0.6168 | 0.7642 | 0.5501 | 0.2192 | 0.4849 | 0.5388 | 0.8262 | 0.7314 | 0.7486 | 0.7605 | 0.7652 | 0.7703 | 0.3151 |
| 0.0257 | 9.2 | 4600 | 0.2310 | 0.6161 | 0.7447 | 0.8228 | nan | 0.8637 | 0.9010 | 0.7017 | 0.8463 | 0.6798 | 0.8983 | 0.7594 | 0.3465 | 0.5853 | 0.6059 | 0.9181 | 0.8553 | 0.8271 | 0.8657 | 0.8445 | 0.8027 | 0.3584 | 0.0 | 0.7591 | 0.8155 | 0.6141 | 0.7665 | 0.6172 | 0.7607 | 0.5539 | 0.2841 | 0.4879 | 0.5133 | 0.8245 | 0.7351 | 0.7456 | 0.7654 | 0.7720 | 0.7611 | 0.3139 |
| 0.0361 | 9.24 | 4620 | 0.2252 | 0.6177 | 0.7411 | 0.8252 | nan | 0.8602 | 0.8865 | 0.7017 | 0.8594 | 0.6979 | 0.8903 | 0.7653 | 0.2889 | 0.5940 | 0.6255 | 0.9065 | 0.8491 | 0.8159 | 0.8514 | 0.8225 | 0.8356 | 0.3481 | 0.0 | 0.7640 | 0.8156 | 0.6161 | 0.7685 | 0.6218 | 0.7700 | 0.5514 | 0.2470 | 0.4947 | 0.5280 | 0.8262 | 0.7354 | 0.7478 | 0.7640 | 0.7766 | 0.7753 | 0.3158 |
| 0.0347 | 9.28 | 4640 | 0.2147 | 0.6200 | 0.7443 | 0.8232 | nan | 0.8352 | 0.9015 | 0.6848 | 0.8728 | 0.6870 | 0.8730 | 0.7260 | 0.4264 | 0.5880 | 0.6143 | 0.9147 | 0.8463 | 0.8288 | 0.8560 | 0.8371 | 0.8136 | 0.3471 | 0.0 | 0.7601 | 0.8139 | 0.6094 | 0.7736 | 0.6179 | 0.7552 | 0.5541 | 0.3273 | 0.4945 | 0.5242 | 0.8248 | 0.7396 | 0.7573 | 0.7674 | 0.7783 | 0.7595 | 0.3036 |
| 0.0448 | 9.32 | 4660 | 0.2202 | 0.6206 | 0.7493 | 0.8224 | nan | 0.8721 | 0.8928 | 0.7461 | 0.8527 | 0.6907 | 0.8672 | 0.7654 | 0.3517 | 0.5951 | 0.6236 | 0.9228 | 0.8334 | 0.8348 | 0.8474 | 0.8318 | 0.8255 | 0.3839 | 0.0 | 0.7636 | 0.8125 | 0.6291 | 0.7633 | 0.6285 | 0.7545 | 0.5555 | 0.2887 | 0.4987 | 0.5293 | 0.8243 | 0.7380 | 0.7602 | 0.7629 | 0.7738 | 0.7699 | 0.3173 |
| 0.0461 | 9.36 | 4680 | 0.2219 | 0.6224 | 0.7525 | 0.8226 | nan | 0.8586 | 0.8968 | 0.7592 | 0.8534 | 0.6851 | 0.8649 | 0.7606 | 0.4322 | 0.5740 | 0.6244 | 0.9118 | 0.8247 | 0.8462 | 0.8574 | 0.8488 | 0.8434 | 0.3512 | 0.0 | 0.7621 | 0.8184 | 0.6386 | 0.7572 | 0.6231 | 0.7441 | 0.5521 | 0.3460 | 0.4897 | 0.5255 | 0.8259 | 0.7370 | 0.7613 | 0.7627 | 0.7814 | 0.7692 | 0.3093 |
| 0.0426 | 9.4 | 4700 | 0.2204 | 0.6179 | 0.7414 | 0.8235 | nan | 0.8537 | 0.8979 | 0.7061 | 0.8604 | 0.7016 | 0.8757 | 0.7515 | 0.3451 | 0.5808 | 0.6057 | 0.9052 | 0.8406 | 0.8397 | 0.8718 | 0.8247 | 0.8201 | 0.3240 | 0.0 | 0.7597 | 0.8162 | 0.6196 | 0.7614 | 0.6139 | 0.7480 | 0.5505 | 0.2937 | 0.4912 | 0.5175 | 0.8257 | 0.7415 | 0.7624 | 0.7689 | 0.7782 | 0.7715 | 0.3032 |
| 0.0298 | 9.44 | 4720 | 0.2229 | 0.6186 | 0.7430 | 0.8269 | nan | 0.8791 | 0.8981 | 0.6689 | 0.8638 | 0.6958 | 0.8800 | 0.7490 | 0.3231 | 0.5789 | 0.6243 | 0.9209 | 0.8405 | 0.8507 | 0.8610 | 0.8479 | 0.8245 | 0.3249 | 0.0 | 0.7687 | 0.8212 | 0.5974 | 0.7684 | 0.6145 | 0.7596 | 0.5552 | 0.2785 | 0.4865 | 0.5197 | 0.8278 | 0.7435 | 0.7616 | 0.7728 | 0.7830 | 0.7728 | 0.3035 |
| 0.0396 | 9.48 | 4740 | 0.2194 | 0.6178 | 0.7451 | 0.8249 | nan | 0.8558 | 0.8985 | 0.7329 | 0.8603 | 0.6917 | 0.8656 | 0.7544 | 0.2961 | 0.5915 | 0.6101 | 0.9182 | 0.8229 | 0.8528 | 0.8644 | 0.8321 | 0.8544 | 0.3656 | 0.0 | 0.7584 | 0.8118 | 0.6254 | 0.7689 | 0.6216 | 0.7592 | 0.5630 | 0.2490 | 0.4927 | 0.5189 | 0.8270 | 0.7312 | 0.7581 | 0.7654 | 0.7742 | 0.7813 | 0.3152 |
| 0.0376 | 9.52 | 4760 | 0.2246 | 0.6190 | 0.7453 | 0.8293 | nan | 0.8531 | 0.9008 | 0.7675 | 0.8879 | 0.6756 | 0.8653 | 0.7463 | 0.3321 | 0.5628 | 0.6402 | 0.9072 | 0.8465 | 0.8313 | 0.8571 | 0.8365 | 0.8420 | 0.3171 | 0.0 | 0.7661 | 0.8215 | 0.6346 | 0.7783 | 0.6147 | 0.7502 | 0.5700 | 0.2799 | 0.4806 | 0.5286 | 0.8280 | 0.7331 | 0.7529 | 0.7601 | 0.7741 | 0.7820 | 0.2880 |
| 0.0352 | 9.56 | 4780 | 0.2257 | 0.6170 | 0.7451 | 0.8236 | nan | 0.8482 | 0.8993 | 0.7699 | 0.8593 | 0.6632 | 0.8646 | 0.7753 | 0.3683 | 0.5849 | 0.6340 | 0.9119 | 0.8564 | 0.8098 | 0.8549 | 0.8404 | 0.8405 | 0.2851 | 0.0 | 0.7635 | 0.8183 | 0.6363 | 0.7651 | 0.6148 | 0.7525 | 0.5637 | 0.3001 | 0.4872 | 0.5264 | 0.8264 | 0.7286 | 0.7449 | 0.7577 | 0.7713 | 0.7812 | 0.2675 |
| 0.0542 | 9.6 | 4800 | 0.2272 | 0.6175 | 0.7445 | 0.8233 | nan | 0.8529 | 0.9084 | 0.7263 | 0.8714 | 0.6360 | 0.8556 | 0.7600 | 0.4009 | 0.5835 | 0.6507 | 0.9122 | 0.8492 | 0.8174 | 0.8589 | 0.8306 | 0.8385 | 0.3039 | 0.0 | 0.7682 | 0.8175 | 0.6278 | 0.7656 | 0.5900 | 0.7477 | 0.5562 | 0.3268 | 0.4917 | 0.5386 | 0.8276 | 0.7303 | 0.7475 | 0.7591 | 0.7672 | 0.7832 | 0.2697 |
| 0.0597 | 9.64 | 4820 | 0.2243 | 0.6173 | 0.7459 | 0.8209 | nan | 0.8581 | 0.8975 | 0.7392 | 0.8623 | 0.6479 | 0.8756 | 0.7467 | 0.4048 | 0.5571 | 0.6483 | 0.9147 | 0.8412 | 0.8386 | 0.8492 | 0.8357 | 0.8250 | 0.3387 | 0.0 | 0.7632 | 0.8103 | 0.6294 | 0.7655 | 0.5914 | 0.7578 | 0.5482 | 0.3298 | 0.4798 | 0.5331 | 0.8269 | 0.7378 | 0.7562 | 0.7535 | 0.7642 | 0.7758 | 0.2888 |
| 0.0855 | 9.68 | 4840 | 0.2361 | 0.6083 | 0.7346 | 0.8123 | nan | 0.8613 | 0.8959 | 0.7404 | 0.8304 | 0.6354 | 0.8824 | 0.7803 | 0.2968 | 0.5771 | 0.6293 | 0.9045 | 0.8358 | 0.8301 | 0.8307 | 0.8167 | 0.8049 | 0.3358 | 0.0 | 0.7646 | 0.8139 | 0.6307 | 0.7473 | 0.5705 | 0.7638 | 0.5246 | 0.2614 | 0.4867 | 0.5266 | 0.8259 | 0.7308 | 0.7483 | 0.7451 | 0.7598 | 0.7597 | 0.2898 |
| 0.0563 | 9.72 | 4860 | 0.2289 | 0.6154 | 0.7473 | 0.8178 | nan | 0.8695 | 0.9057 | 0.7158 | 0.8294 | 0.6774 | 0.8696 | 0.7678 | 0.3771 | 0.6135 | 0.5997 | 0.9082 | 0.8485 | 0.8368 | 0.8476 | 0.8450 | 0.8416 | 0.3509 | 0.0 | 0.7647 | 0.8150 | 0.6206 | 0.7501 | 0.6023 | 0.7646 | 0.5346 | 0.3071 | 0.4981 | 0.5153 | 0.8249 | 0.7351 | 0.7524 | 0.7541 | 0.7661 | 0.7764 | 0.2950 |
| 0.0694 | 9.76 | 4880 | 0.2276 | 0.6139 | 0.7427 | 0.8186 | nan | 0.8687 | 0.9006 | 0.7177 | 0.8340 | 0.7027 | 0.8921 | 0.7562 | 0.3572 | 0.6075 | 0.5876 | 0.9079 | 0.8441 | 0.8309 | 0.8355 | 0.8477 | 0.8100 | 0.3259 | 0.0 | 0.7621 | 0.8153 | 0.6212 | 0.7563 | 0.6080 | 0.7695 | 0.5397 | 0.2979 | 0.4909 | 0.5043 | 0.8247 | 0.7374 | 0.7541 | 0.7512 | 0.7699 | 0.7609 | 0.2868 |
| 0.0377 | 9.8 | 4900 | 0.2148 | 0.6199 | 0.7466 | 0.8302 | nan | 0.8704 | 0.8920 | 0.7402 | 0.8967 | 0.7284 | 0.8958 | 0.6951 | 0.3935 | 0.5583 | 0.6585 | 0.9177 | 0.8135 | 0.8469 | 0.8450 | 0.8428 | 0.8031 | 0.2944 | 0.0 | 0.7683 | 0.8178 | 0.6249 | 0.7924 | 0.6244 | 0.7652 | 0.5623 | 0.3204 | 0.4778 | 0.5333 | 0.8260 | 0.7276 | 0.7532 | 0.7546 | 0.7684 | 0.7598 | 0.2823 |
| 0.0534 | 9.84 | 4920 | 0.2119 | 0.6209 | 0.7478 | 0.8312 | nan | 0.8586 | 0.9098 | 0.7091 | 0.8895 | 0.7283 | 0.8786 | 0.7104 | 0.4140 | 0.6087 | 0.6257 | 0.9178 | 0.8457 | 0.8222 | 0.8478 | 0.8429 | 0.8212 | 0.2815 | 0.0 | 0.7662 | 0.8146 | 0.6182 | 0.7906 | 0.6364 | 0.7656 | 0.5698 | 0.3339 | 0.4983 | 0.5214 | 0.8250 | 0.7333 | 0.7485 | 0.7513 | 0.7668 | 0.7670 | 0.2699 |
| 0.0596 | 9.88 | 4940 | 0.2095 | 0.6206 | 0.7466 | 0.8317 | nan | 0.8512 | 0.9009 | 0.7502 | 0.8952 | 0.7235 | 0.8842 | 0.7147 | 0.3887 | 0.5872 | 0.6461 | 0.8986 | 0.8318 | 0.8380 | 0.8639 | 0.8334 | 0.8172 | 0.2676 | 0.0 | 0.7584 | 0.8165 | 0.6355 | 0.7917 | 0.6305 | 0.7697 | 0.5682 | 0.3181 | 0.4964 | 0.5364 | 0.8242 | 0.7291 | 0.7487 | 0.7529 | 0.7690 | 0.7622 | 0.2628 |
| 0.0443 | 9.92 | 4960 | 0.2174 | 0.6185 | 0.7482 | 0.8271 | nan | 0.8366 | 0.8982 | 0.7238 | 0.8692 | 0.6983 | 0.8825 | 0.7496 | 0.4489 | 0.5994 | 0.6071 | 0.9190 | 0.8424 | 0.8391 | 0.8726 | 0.8129 | 0.8225 | 0.2967 | 0.0 | 0.7460 | 0.8164 | 0.6239 | 0.7827 | 0.6206 | 0.7661 | 0.5694 | 0.3445 | 0.4996 | 0.5204 | 0.8233 | 0.7275 | 0.7472 | 0.7485 | 0.7583 | 0.7631 | 0.2748 |
| 0.0366 | 9.96 | 4980 | 0.2141 | 0.6158 | 0.7455 | 0.8229 | nan | 0.8576 | 0.8926 | 0.7784 | 0.8813 | 0.7318 | 0.8717 | 0.7171 | 0.3805 | 0.5959 | 0.6243 | 0.8987 | 0.8323 | 0.8288 | 0.8452 | 0.7942 | 0.7856 | 0.3574 | 0.0 | 0.7498 | 0.8127 | 0.6371 | 0.7817 | 0.6057 | 0.7667 | 0.5537 | 0.3075 | 0.4946 | 0.5219 | 0.8239 | 0.7303 | 0.7494 | 0.7416 | 0.7523 | 0.7455 | 0.3103 |
| 0.0378 | 10.0 | 5000 | 0.2255 | 0.6146 | 0.7467 | 0.8205 | nan | 0.8623 | 0.8960 | 0.7348 | 0.8527 | 0.7228 | 0.8557 | 0.7479 | 0.3292 | 0.6004 | 0.6126 | 0.9190 | 0.8466 | 0.8337 | 0.8469 | 0.8429 | 0.7933 | 0.3966 | 0.0 | 0.7603 | 0.8111 | 0.6260 | 0.7673 | 0.6062 | 0.7592 | 0.5469 | 0.2756 | 0.4944 | 0.5214 | 0.8248 | 0.7310 | 0.7492 | 0.7548 | 0.7687 | 0.7511 | 0.3148 |
| 0.0412 | 10.04 | 5020 | 0.2159 | 0.6145 | 0.7431 | 0.8224 | nan | 0.8334 | 0.9106 | 0.7136 | 0.8595 | 0.7208 | 0.8631 | 0.7485 | 0.3142 | 0.5852 | 0.6161 | 0.9079 | 0.8300 | 0.8400 | 0.8357 | 0.8431 | 0.7875 | 0.4234 | 0.0 | 0.7569 | 0.8186 | 0.6197 | 0.7697 | 0.6115 | 0.7634 | 0.5506 | 0.2716 | 0.4897 | 0.5235 | 0.8262 | 0.7264 | 0.7453 | 0.7509 | 0.7665 | 0.7481 | 0.3230 |
| 0.1179 | 10.08 | 5040 | 0.2071 | 0.6180 | 0.7496 | 0.8239 | nan | 0.8613 | 0.9001 | 0.7407 | 0.8686 | 0.7187 | 0.8611 | 0.7420 | 0.3679 | 0.5785 | 0.6314 | 0.9041 | 0.8371 | 0.8376 | 0.8479 | 0.8274 | 0.8013 | 0.4174 | 0.0 | 0.7594 | 0.8119 | 0.6309 | 0.7763 | 0.6182 | 0.7628 | 0.5625 | 0.2990 | 0.4925 | 0.5347 | 0.8260 | 0.7251 | 0.7413 | 0.7540 | 0.7641 | 0.7537 | 0.3123 |
| 0.0377 | 10.12 | 5060 | 0.2216 | 0.6169 | 0.7470 | 0.8237 | nan | 0.8673 | 0.8996 | 0.6967 | 0.8612 | 0.7010 | 0.8703 | 0.7586 | 0.3511 | 0.6051 | 0.6281 | 0.9198 | 0.8355 | 0.8233 | 0.8483 | 0.8428 | 0.7845 | 0.4051 | 0.0 | 0.7629 | 0.8188 | 0.6104 | 0.7721 | 0.6135 | 0.7628 | 0.5605 | 0.2929 | 0.5016 | 0.5304 | 0.8264 | 0.7279 | 0.7409 | 0.7580 | 0.7689 | 0.7454 | 0.3103 |
| 0.0445 | 10.16 | 5080 | 0.2239 | 0.6179 | 0.7467 | 0.8240 | nan | 0.8545 | 0.8958 | 0.7701 | 0.8630 | 0.7007 | 0.8702 | 0.7605 | 0.3334 | 0.6025 | 0.6255 | 0.9208 | 0.8364 | 0.8213 | 0.8593 | 0.8240 | 0.7971 | 0.3595 | 0.0 | 0.7640 | 0.8170 | 0.6357 | 0.7734 | 0.6157 | 0.7643 | 0.5647 | 0.2889 | 0.4980 | 0.5305 | 0.8266 | 0.7283 | 0.7441 | 0.7552 | 0.7653 | 0.7550 | 0.2959 |
| 0.0397 | 10.2 | 5100 | 0.2256 | 0.6182 | 0.7471 | 0.8257 | nan | 0.8602 | 0.8983 | 0.7746 | 0.8704 | 0.7085 | 0.8777 | 0.7589 | 0.3473 | 0.6178 | 0.5808 | 0.9051 | 0.8427 | 0.8164 | 0.8588 | 0.8123 | 0.7980 | 0.3731 | 0.0 | 0.7645 | 0.8199 | 0.6395 | 0.7753 | 0.6197 | 0.7651 | 0.5659 | 0.2990 | 0.4985 | 0.5049 | 0.8273 | 0.7302 | 0.7465 | 0.7551 | 0.7643 | 0.7549 | 0.2975 |
| 0.0335 | 10.24 | 5120 | 0.2156 | 0.6217 | 0.7500 | 0.8290 | nan | 0.8619 | 0.8925 | 0.7266 | 0.8851 | 0.7115 | 0.8604 | 0.7429 | 0.4009 | 0.6091 | 0.6095 | 0.9262 | 0.8338 | 0.8409 | 0.8507 | 0.8471 | 0.8052 | 0.3459 | 0.0 | 0.7638 | 0.8206 | 0.6234 | 0.7827 | 0.6255 | 0.7603 | 0.5746 | 0.3377 | 0.5021 | 0.5211 | 0.8260 | 0.7300 | 0.7501 | 0.7550 | 0.7683 | 0.7577 | 0.2923 |
| 0.048 | 10.28 | 5140 | 0.2195 | 0.6206 | 0.7457 | 0.8280 | nan | 0.8531 | 0.9014 | 0.6939 | 0.8842 | 0.7175 | 0.8655 | 0.7404 | 0.4071 | 0.6059 | 0.6196 | 0.9035 | 0.8571 | 0.8085 | 0.8516 | 0.8397 | 0.7988 | 0.3285 | 0.0 | 0.7606 | 0.8163 | 0.6127 | 0.7841 | 0.6295 | 0.7633 | 0.5770 | 0.3358 | 0.5014 | 0.5297 | 0.8262 | 0.7284 | 0.7393 | 0.7531 | 0.7629 | 0.7543 | 0.2961 |
| 0.0518 | 10.32 | 5160 | 0.2107 | 0.6254 | 0.7515 | 0.8318 | nan | 0.8493 | 0.8991 | 0.7409 | 0.8845 | 0.7223 | 0.8681 | 0.7451 | 0.3741 | 0.5943 | 0.6483 | 0.9188 | 0.8404 | 0.8384 | 0.8459 | 0.8475 | 0.8103 | 0.3483 | 0.0 | 0.7630 | 0.8202 | 0.6315 | 0.7845 | 0.6292 | 0.7674 | 0.5743 | 0.3200 | 0.5017 | 0.5441 | 0.8304 | 0.7308 | 0.7501 | 0.7621 | 0.7759 | 0.7625 | 0.3086 |
| 0.0362 | 10.36 | 5180 | 0.2180 | 0.6204 | 0.7522 | 0.8271 | nan | 0.8772 | 0.8998 | 0.7279 | 0.8720 | 0.7247 | 0.8705 | 0.7520 | 0.3289 | 0.5850 | 0.6485 | 0.9086 | 0.8084 | 0.8411 | 0.8353 | 0.8401 | 0.7921 | 0.4761 | 0.0 | 0.7615 | 0.8145 | 0.6294 | 0.7781 | 0.6348 | 0.7684 | 0.5729 | 0.2863 | 0.4947 | 0.5348 | 0.8298 | 0.7204 | 0.7510 | 0.7587 | 0.7739 | 0.7521 | 0.3060 |
| 0.053 | 10.4 | 5200 | 0.2110 | 0.6238 | 0.7492 | 0.8305 | nan | 0.8493 | 0.9017 | 0.7544 | 0.8845 | 0.7309 | 0.8746 | 0.7392 | 0.3401 | 0.5799 | 0.6198 | 0.9038 | 0.8354 | 0.8265 | 0.8521 | 0.8394 | 0.8169 | 0.3874 | 0.0 | 0.7631 | 0.8175 | 0.6393 | 0.7849 | 0.6409 | 0.7671 | 0.5779 | 0.2954 | 0.4893 | 0.5222 | 0.8297 | 0.7329 | 0.7528 | 0.7644 | 0.7747 | 0.7652 | 0.3116 |
| 0.0626 | 10.44 | 5220 | 0.2206 | 0.6222 | 0.7489 | 0.8291 | nan | 0.8490 | 0.9027 | 0.7750 | 0.8726 | 0.7048 | 0.8677 | 0.7555 | 0.2887 | 0.5839 | 0.6412 | 0.9092 | 0.8312 | 0.8575 | 0.8582 | 0.8417 | 0.8173 | 0.3746 | 0.0 | 0.7695 | 0.8209 | 0.6442 | 0.7780 | 0.6199 | 0.7659 | 0.5642 | 0.2613 | 0.4979 | 0.5377 | 0.8304 | 0.7308 | 0.7592 | 0.7671 | 0.7764 | 0.7675 | 0.3092 |
| 0.0327 | 10.48 | 5240 | 0.2259 | 0.6213 | 0.7494 | 0.8227 | nan | 0.8680 | 0.8990 | 0.7714 | 0.8542 | 0.6356 | 0.8630 | 0.8026 | 0.3758 | 0.5874 | 0.6414 | 0.9155 | 0.8420 | 0.8452 | 0.8468 | 0.8367 | 0.7930 | 0.3618 | 0.0 | 0.7686 | 0.8182 | 0.6428 | 0.7656 | 0.6033 | 0.7590 | 0.5645 | 0.3215 | 0.5024 | 0.5408 | 0.8284 | 0.7342 | 0.7579 | 0.7564 | 0.7711 | 0.7505 | 0.2988 |
| 0.0502 | 10.52 | 5260 | 0.2303 | 0.6205 | 0.7532 | 0.8192 | nan | 0.8599 | 0.9073 | 0.7546 | 0.8278 | 0.6260 | 0.8672 | 0.8299 | 0.4034 | 0.6101 | 0.6381 | 0.9083 | 0.8542 | 0.8286 | 0.8677 | 0.8222 | 0.7866 | 0.4117 | 0.0 | 0.7654 | 0.8201 | 0.6399 | 0.7542 | 0.5932 | 0.7602 | 0.5554 | 0.3344 | 0.5066 | 0.5406 | 0.8287 | 0.7359 | 0.7540 | 0.7616 | 0.7674 | 0.7443 | 0.3081 |
| 0.0261 | 10.56 | 5280 | 0.2100 | 0.6276 | 0.7585 | 0.8288 | nan | 0.8454 | 0.8949 | 0.7216 | 0.8499 | 0.7262 | 0.8815 | 0.7873 | 0.4518 | 0.5732 | 0.6507 | 0.9106 | 0.8435 | 0.8412 | 0.8713 | 0.8251 | 0.8197 | 0.4006 | 0.0 | 0.7584 | 0.8135 | 0.6246 | 0.7698 | 0.6606 | 0.7626 | 0.5794 | 0.3609 | 0.4907 | 0.5444 | 0.8275 | 0.7360 | 0.7576 | 0.7629 | 0.7689 | 0.7684 | 0.3100 |
| 0.0367 | 10.6 | 5300 | 0.2105 | 0.6286 | 0.7600 | 0.8295 | nan | 0.8311 | 0.9008 | 0.7109 | 0.8554 | 0.7369 | 0.8848 | 0.7620 | 0.4867 | 0.6178 | 0.6341 | 0.9151 | 0.8242 | 0.8420 | 0.8563 | 0.8457 | 0.8271 | 0.3897 | 0.0 | 0.7560 | 0.8176 | 0.6200 | 0.7720 | 0.6602 | 0.7608 | 0.5730 | 0.3741 | 0.5059 | 0.5350 | 0.8270 | 0.7342 | 0.7568 | 0.7657 | 0.7747 | 0.7741 | 0.3087 |
| 0.0494 | 10.64 | 5320 | 0.2101 | 0.6297 | 0.7626 | 0.8293 | nan | 0.8543 | 0.8998 | 0.7747 | 0.8539 | 0.7431 | 0.8798 | 0.7701 | 0.4706 | 0.5727 | 0.6555 | 0.9018 | 0.8355 | 0.8481 | 0.8455 | 0.8512 | 0.8174 | 0.3906 | 0.0 | 0.7598 | 0.8179 | 0.6454 | 0.7712 | 0.6626 | 0.7614 | 0.5729 | 0.3685 | 0.4892 | 0.5435 | 0.8264 | 0.7346 | 0.7580 | 0.7642 | 0.7773 | 0.7698 | 0.3125 |
| 0.032 | 10.68 | 5340 | 0.2092 | 0.6256 | 0.7525 | 0.8288 | nan | 0.8394 | 0.9041 | 0.7387 | 0.8624 | 0.7439 | 0.8801 | 0.7531 | 0.4074 | 0.5851 | 0.6353 | 0.9099 | 0.8306 | 0.8395 | 0.8385 | 0.8394 | 0.8221 | 0.3637 | 0.0 | 0.7606 | 0.8164 | 0.6359 | 0.7755 | 0.6571 | 0.7609 | 0.5714 | 0.3418 | 0.4900 | 0.5332 | 0.8272 | 0.7302 | 0.7549 | 0.7582 | 0.7714 | 0.7749 | 0.3020 |
| 0.0815 | 10.72 | 5360 | 0.2096 | 0.6262 | 0.7539 | 0.8322 | nan | 0.8455 | 0.8997 | 0.7519 | 0.8693 | 0.7435 | 0.8937 | 0.7511 | 0.3924 | 0.6073 | 0.5934 | 0.9148 | 0.8577 | 0.8196 | 0.8589 | 0.8448 | 0.8204 | 0.3518 | 0.0 | 0.7650 | 0.8207 | 0.6388 | 0.7816 | 0.6572 | 0.7617 | 0.5773 | 0.3307 | 0.4985 | 0.5189 | 0.8281 | 0.7326 | 0.7490 | 0.7657 | 0.7760 | 0.7720 | 0.2975 |
| 0.0529 | 10.76 | 5380 | 0.2130 | 0.6261 | 0.7532 | 0.8287 | nan | 0.8682 | 0.8954 | 0.7341 | 0.8578 | 0.7345 | 0.8630 | 0.7909 | 0.4212 | 0.5998 | 0.6059 | 0.9135 | 0.8545 | 0.8225 | 0.8491 | 0.8459 | 0.8118 | 0.3364 | 0.0 | 0.7678 | 0.8209 | 0.6332 | 0.7739 | 0.6654 | 0.7521 | 0.5824 | 0.3451 | 0.4929 | 0.5194 | 0.8284 | 0.7403 | 0.7554 | 0.7608 | 0.7780 | 0.7618 | 0.2918 |
| 0.0348 | 10.8 | 5400 | 0.2174 | 0.6254 | 0.7535 | 0.8270 | nan | 0.8603 | 0.8988 | 0.6850 | 0.8541 | 0.7227 | 0.8434 | 0.7972 | 0.4412 | 0.5788 | 0.6221 | 0.9185 | 0.8593 | 0.8188 | 0.8499 | 0.8463 | 0.8332 | 0.3798 | 0.0 | 0.7677 | 0.8190 | 0.6110 | 0.7707 | 0.6526 | 0.7469 | 0.5817 | 0.3509 | 0.4876 | 0.5275 | 0.8273 | 0.7360 | 0.7504 | 0.7609 | 0.7770 | 0.7691 | 0.3200 |
| 0.0424 | 10.84 | 5420 | 0.2128 | 0.6286 | 0.7594 | 0.8323 | nan | 0.8541 | 0.8904 | 0.7261 | 0.8671 | 0.7348 | 0.8700 | 0.7783 | 0.3729 | 0.5723 | 0.6372 | 0.9230 | 0.8561 | 0.8202 | 0.8570 | 0.8394 | 0.8370 | 0.4743 | 0.0 | 0.7685 | 0.8167 | 0.6291 | 0.7790 | 0.6736 | 0.7597 | 0.5928 | 0.3156 | 0.4897 | 0.5383 | 0.8277 | 0.7348 | 0.7485 | 0.7624 | 0.7729 | 0.7761 | 0.3302 |
| 0.0443 | 10.88 | 5440 | 0.2127 | 0.6280 | 0.7551 | 0.8318 | nan | 0.8285 | 0.9077 | 0.7122 | 0.8713 | 0.7365 | 0.8675 | 0.7681 | 0.3680 | 0.6071 | 0.6288 | 0.9094 | 0.8384 | 0.8312 | 0.8476 | 0.8344 | 0.8200 | 0.4596 | 0.0 | 0.7680 | 0.8184 | 0.6258 | 0.7799 | 0.6731 | 0.7608 | 0.5919 | 0.3159 | 0.5004 | 0.5312 | 0.8275 | 0.7353 | 0.7551 | 0.7588 | 0.7722 | 0.7686 | 0.3203 |
| 0.0725 | 10.92 | 5460 | 0.2146 | 0.6300 | 0.7579 | 0.8328 | nan | 0.8521 | 0.8993 | 0.7243 | 0.8694 | 0.7051 | 0.8731 | 0.7830 | 0.3837 | 0.6255 | 0.6155 | 0.9131 | 0.8557 | 0.8331 | 0.8509 | 0.8339 | 0.8381 | 0.4290 | 0.0 | 0.7717 | 0.8195 | 0.6304 | 0.7799 | 0.6599 | 0.7633 | 0.5904 | 0.3339 | 0.5067 | 0.5259 | 0.8285 | 0.7402 | 0.7604 | 0.7598 | 0.7730 | 0.7798 | 0.3168 |
| 0.0516 | 10.96 | 5480 | 0.2144 | 0.6324 | 0.7604 | 0.8355 | nan | 0.8486 | 0.9148 | 0.7692 | 0.8722 | 0.7175 | 0.8743 | 0.7817 | 0.3988 | 0.5847 | 0.6573 | 0.9090 | 0.8564 | 0.8315 | 0.8598 | 0.8257 | 0.8307 | 0.3950 | 0.0 | 0.7761 | 0.8266 | 0.6443 | 0.7816 | 0.6665 | 0.7638 | 0.5937 | 0.3506 | 0.4985 | 0.5469 | 0.8267 | 0.7378 | 0.7569 | 0.7599 | 0.7671 | 0.7812 | 0.3043 |
| 0.0542 | 11.0 | 5500 | 0.2133 | 0.6298 | 0.7572 | 0.8331 | nan | 0.8333 | 0.9010 | 0.7820 | 0.8751 | 0.7279 | 0.8879 | 0.7564 | 0.4034 | 0.5703 | 0.6596 | 0.9128 | 0.8320 | 0.8518 | 0.8707 | 0.8125 | 0.8182 | 0.3773 | 0.0 | 0.7640 | 0.8179 | 0.6455 | 0.7836 | 0.6643 | 0.7653 | 0.5916 | 0.3499 | 0.4914 | 0.5451 | 0.8265 | 0.7416 | 0.7649 | 0.7560 | 0.7595 | 0.7752 | 0.2944 |
| 0.0404 | 11.04 | 5520 | 0.2140 | 0.6325 | 0.7596 | 0.8365 | nan | 0.8663 | 0.8999 | 0.7718 | 0.8849 | 0.7341 | 0.8879 | 0.7504 | 0.4153 | 0.5794 | 0.6610 | 0.9106 | 0.8534 | 0.8390 | 0.8535 | 0.8246 | 0.8299 | 0.3507 | 0.0 | 0.7760 | 0.8215 | 0.6441 | 0.7857 | 0.6680 | 0.7666 | 0.5918 | 0.3588 | 0.4958 | 0.5472 | 0.8283 | 0.7478 | 0.7633 | 0.7584 | 0.7669 | 0.7815 | 0.2824 |
| 0.0451 | 11.08 | 5540 | 0.2135 | 0.6290 | 0.7568 | 0.8327 | nan | 0.8767 | 0.9029 | 0.7418 | 0.8730 | 0.7319 | 0.8768 | 0.7688 | 0.4331 | 0.5868 | 0.6178 | 0.9193 | 0.8594 | 0.8246 | 0.8577 | 0.8235 | 0.8097 | 0.3623 | 0.0 | 0.7778 | 0.8237 | 0.6354 | 0.7786 | 0.6702 | 0.7645 | 0.5908 | 0.3712 | 0.4864 | 0.5227 | 0.8254 | 0.7392 | 0.7573 | 0.7583 | 0.7652 | 0.7654 | 0.2896 |
| 0.0477 | 11.12 | 5560 | 0.2149 | 0.6277 | 0.7547 | 0.8314 | nan | 0.8641 | 0.8961 | 0.7527 | 0.8823 | 0.7351 | 0.8723 | 0.7534 | 0.4310 | 0.5857 | 0.6364 | 0.9045 | 0.8509 | 0.8218 | 0.8473 | 0.8141 | 0.8222 | 0.3595 | 0.0 | 0.7712 | 0.8169 | 0.6389 | 0.7823 | 0.6654 | 0.7653 | 0.5867 | 0.3619 | 0.4893 | 0.5323 | 0.8250 | 0.7381 | 0.7556 | 0.7541 | 0.7625 | 0.7697 | 0.2840 |
| 0.0373 | 11.16 | 5580 | 0.2104 | 0.6275 | 0.7564 | 0.8315 | nan | 0.8625 | 0.8935 | 0.7551 | 0.8727 | 0.7091 | 0.8845 | 0.7628 | 0.4085 | 0.5838 | 0.6345 | 0.9158 | 0.8496 | 0.8422 | 0.8586 | 0.8232 | 0.8257 | 0.3760 | 0.0 | 0.7754 | 0.8146 | 0.6345 | 0.7790 | 0.6502 | 0.7704 | 0.5822 | 0.3509 | 0.4897 | 0.5328 | 0.8257 | 0.7402 | 0.7627 | 0.7564 | 0.7639 | 0.7744 | 0.2914 |
| 0.0359 | 11.2 | 5600 | 0.2093 | 0.6279 | 0.7592 | 0.8310 | nan | 0.8657 | 0.8938 | 0.7299 | 0.8674 | 0.7094 | 0.8825 | 0.7700 | 0.4404 | 0.5819 | 0.6408 | 0.9095 | 0.8462 | 0.8487 | 0.8587 | 0.8144 | 0.8360 | 0.4117 | 0.0 | 0.7685 | 0.8183 | 0.6283 | 0.7763 | 0.6471 | 0.7696 | 0.5786 | 0.3624 | 0.4902 | 0.5349 | 0.8256 | 0.7377 | 0.7633 | 0.7569 | 0.7626 | 0.7809 | 0.3001 |
| 0.0549 | 11.24 | 5620 | 0.2080 | 0.6231 | 0.7515 | 0.8279 | nan | 0.8614 | 0.9001 | 0.7025 | 0.8620 | 0.7041 | 0.8777 | 0.7664 | 0.3873 | 0.5975 | 0.6150 | 0.9117 | 0.8499 | 0.8352 | 0.8384 | 0.8368 | 0.8320 | 0.3974 | 0.0 | 0.7629 | 0.8166 | 0.6182 | 0.7750 | 0.6366 | 0.7677 | 0.5736 | 0.3337 | 0.4940 | 0.5205 | 0.8246 | 0.7360 | 0.7591 | 0.7550 | 0.7669 | 0.7764 | 0.2982 |
| 0.0512 | 11.28 | 5640 | 0.2108 | 0.6251 | 0.7541 | 0.8314 | nan | 0.8632 | 0.9005 | 0.7296 | 0.8754 | 0.6961 | 0.8890 | 0.7573 | 0.3910 | 0.6054 | 0.6270 | 0.9131 | 0.8557 | 0.8332 | 0.8487 | 0.8269 | 0.8212 | 0.3856 | 0.0 | 0.7650 | 0.8158 | 0.6289 | 0.7828 | 0.6318 | 0.7657 | 0.5804 | 0.3362 | 0.4984 | 0.5274 | 0.8258 | 0.7400 | 0.7589 | 0.7562 | 0.7671 | 0.7733 | 0.2974 |
| 0.0329 | 11.32 | 5660 | 0.2129 | 0.6243 | 0.7561 | 0.8279 | nan | 0.8647 | 0.8870 | 0.7665 | 0.8815 | 0.6828 | 0.8908 | 0.7336 | 0.4715 | 0.5886 | 0.6307 | 0.9125 | 0.8491 | 0.8272 | 0.8533 | 0.8241 | 0.8292 | 0.3601 | 0.0 | 0.7595 | 0.8118 | 0.6378 | 0.7854 | 0.6189 | 0.7576 | 0.5749 | 0.3751 | 0.4922 | 0.5265 | 0.8249 | 0.7381 | 0.7567 | 0.7558 | 0.7647 | 0.7755 | 0.2824 |
| 0.0624 | 11.36 | 5680 | 0.2176 | 0.6276 | 0.7592 | 0.8322 | nan | 0.8666 | 0.9038 | 0.7484 | 0.8798 | 0.6784 | 0.8929 | 0.7404 | 0.4572 | 0.5800 | 0.6500 | 0.9101 | 0.8476 | 0.8426 | 0.8579 | 0.8419 | 0.8432 | 0.3653 | 0.0 | 0.7675 | 0.8213 | 0.6343 | 0.7865 | 0.6190 | 0.7568 | 0.5758 | 0.3717 | 0.4907 | 0.5365 | 0.8250 | 0.7409 | 0.7612 | 0.7636 | 0.7735 | 0.7825 | 0.2902 |
| 0.0438 | 11.4 | 5700 | 0.2145 | 0.6197 | 0.7470 | 0.8276 | nan | 0.8583 | 0.8946 | 0.7420 | 0.8716 | 0.7013 | 0.8881 | 0.7458 | 0.3413 | 0.5784 | 0.6286 | 0.9070 | 0.8443 | 0.8230 | 0.8482 | 0.8484 | 0.8255 | 0.3524 | 0.0 | 0.7606 | 0.8171 | 0.6299 | 0.7809 | 0.6282 | 0.7606 | 0.5730 | 0.2992 | 0.4899 | 0.5293 | 0.8233 | 0.7329 | 0.7486 | 0.7557 | 0.7704 | 0.7716 | 0.2840 |
| 0.0357 | 11.44 | 5720 | 0.2165 | 0.6224 | 0.7510 | 0.8290 | nan | 0.8549 | 0.9050 | 0.7354 | 0.8677 | 0.7007 | 0.8893 | 0.7488 | 0.3664 | 0.6073 | 0.6288 | 0.9029 | 0.8525 | 0.8212 | 0.8488 | 0.8396 | 0.8376 | 0.3607 | 0.0 | 0.7648 | 0.8193 | 0.6297 | 0.7792 | 0.6292 | 0.7660 | 0.5687 | 0.3147 | 0.5002 | 0.5310 | 0.8234 | 0.7338 | 0.7487 | 0.7549 | 0.7688 | 0.7767 | 0.2935 |
| 0.0476 | 11.48 | 5740 | 0.2198 | 0.6246 | 0.7552 | 0.8284 | nan | 0.8697 | 0.9019 | 0.7674 | 0.8673 | 0.6945 | 0.8877 | 0.7538 | 0.4138 | 0.5647 | 0.6587 | 0.9082 | 0.8418 | 0.8337 | 0.8504 | 0.8338 | 0.8250 | 0.3658 | 0.0 | 0.7700 | 0.8182 | 0.6393 | 0.7769 | 0.6309 | 0.7648 | 0.5706 | 0.3502 | 0.4808 | 0.5358 | 0.8261 | 0.7391 | 0.7571 | 0.7529 | 0.7638 | 0.7699 | 0.2964 |
| 0.0467 | 11.52 | 5760 | 0.2185 | 0.6216 | 0.7517 | 0.8282 | nan | 0.8730 | 0.8975 | 0.7627 | 0.8608 | 0.7052 | 0.8941 | 0.7595 | 0.3479 | 0.5988 | 0.6071 | 0.9060 | 0.8564 | 0.8250 | 0.8546 | 0.8256 | 0.8349 | 0.3691 | 0.0 | 0.7690 | 0.8174 | 0.6378 | 0.7752 | 0.6320 | 0.7646 | 0.5660 | 0.3006 | 0.4899 | 0.5149 | 0.8273 | 0.7414 | 0.7564 | 0.7554 | 0.7662 | 0.7761 | 0.2982 |
| 0.0433 | 11.56 | 5780 | 0.2111 | 0.6208 | 0.7480 | 0.8278 | nan | 0.8661 | 0.8986 | 0.7574 | 0.8706 | 0.7196 | 0.8946 | 0.7398 | 0.3789 | 0.5838 | 0.5903 | 0.9081 | 0.8516 | 0.8256 | 0.8466 | 0.8307 | 0.8173 | 0.3367 | 0.0 | 0.7611 | 0.8168 | 0.6375 | 0.7805 | 0.6338 | 0.7664 | 0.5661 | 0.3274 | 0.4832 | 0.5056 | 0.8262 | 0.7368 | 0.7542 | 0.7568 | 0.7669 | 0.7684 | 0.2871 |
| 0.0304 | 11.6 | 5800 | 0.2154 | 0.6191 | 0.7436 | 0.8277 | nan | 0.8618 | 0.8979 | 0.7209 | 0.8716 | 0.7157 | 0.8946 | 0.7407 | 0.3319 | 0.5662 | 0.6205 | 0.9098 | 0.8442 | 0.8295 | 0.8469 | 0.8375 | 0.8093 | 0.3416 | 0.0 | 0.7636 | 0.8199 | 0.6260 | 0.7789 | 0.6300 | 0.7689 | 0.5623 | 0.2928 | 0.4787 | 0.5193 | 0.8260 | 0.7348 | 0.7550 | 0.7615 | 0.7725 | 0.7631 | 0.2904 |
| 0.0456 | 11.64 | 5820 | 0.2215 | 0.6230 | 0.7521 | 0.8266 | nan | 0.8554 | 0.9081 | 0.7498 | 0.8582 | 0.7027 | 0.8900 | 0.7501 | 0.3789 | 0.5846 | 0.6315 | 0.9070 | 0.8620 | 0.8103 | 0.8540 | 0.8338 | 0.8297 | 0.3791 | 0.0 | 0.7671 | 0.8182 | 0.6374 | 0.7732 | 0.6303 | 0.7704 | 0.5589 | 0.3259 | 0.4920 | 0.5315 | 0.8259 | 0.7282 | 0.7434 | 0.7636 | 0.7698 | 0.7745 | 0.3035 |
| 0.0395 | 11.68 | 5840 | 0.2156 | 0.6267 | 0.7571 | 0.8288 | nan | 0.8395 | 0.9011 | 0.7391 | 0.8638 | 0.7053 | 0.8887 | 0.7445 | 0.4443 | 0.6131 | 0.6206 | 0.9123 | 0.8457 | 0.8456 | 0.8584 | 0.8299 | 0.8410 | 0.3778 | 0.0 | 0.7617 | 0.8185 | 0.6350 | 0.7767 | 0.6294 | 0.7724 | 0.5599 | 0.3643 | 0.5046 | 0.5287 | 0.8268 | 0.7346 | 0.7577 | 0.7628 | 0.7672 | 0.7783 | 0.3018 |
| 0.0391 | 11.72 | 5860 | 0.2238 | 0.6280 | 0.7600 | 0.8292 | nan | 0.8536 | 0.9013 | 0.7666 | 0.8641 | 0.7047 | 0.8927 | 0.7430 | 0.4564 | 0.6096 | 0.6249 | 0.9133 | 0.8358 | 0.8507 | 0.8643 | 0.8406 | 0.8269 | 0.3712 | 0.0 | 0.7668 | 0.8178 | 0.6427 | 0.7769 | 0.6300 | 0.7726 | 0.5607 | 0.3792 | 0.5012 | 0.5286 | 0.8268 | 0.7357 | 0.7595 | 0.7659 | 0.7694 | 0.7724 | 0.2980 |
| 0.0346 | 11.76 | 5880 | 0.2191 | 0.6239 | 0.7533 | 0.8262 | nan | 0.8605 | 0.9009 | 0.7339 | 0.8621 | 0.7032 | 0.8922 | 0.7436 | 0.4405 | 0.6021 | 0.6003 | 0.9150 | 0.8546 | 0.8185 | 0.8389 | 0.8408 | 0.8256 | 0.3724 | 0.0 | 0.7648 | 0.8168 | 0.6315 | 0.7751 | 0.6285 | 0.7713 | 0.5581 | 0.3704 | 0.4912 | 0.5119 | 0.8274 | 0.7354 | 0.7498 | 0.7582 | 0.7679 | 0.7729 | 0.2998 |
| 0.0428 | 11.8 | 5900 | 0.2230 | 0.6226 | 0.7544 | 0.8254 | nan | 0.8661 | 0.9018 | 0.7239 | 0.8575 | 0.7139 | 0.8850 | 0.7410 | 0.4345 | 0.5995 | 0.6129 | 0.9190 | 0.8587 | 0.8062 | 0.8652 | 0.8263 | 0.8313 | 0.3829 | 0.0 | 0.7703 | 0.8180 | 0.6275 | 0.7721 | 0.6201 | 0.7767 | 0.5547 | 0.3585 | 0.4955 | 0.5214 | 0.8283 | 0.7276 | 0.7427 | 0.7600 | 0.7599 | 0.7759 | 0.2983 |
| 0.0376 | 11.84 | 5920 | 0.2248 | 0.6199 | 0.7497 | 0.8238 | nan | 0.8727 | 0.8903 | 0.7110 | 0.8552 | 0.7067 | 0.8816 | 0.7558 | 0.4013 | 0.6114 | 0.6214 | 0.9192 | 0.8479 | 0.8203 | 0.8553 | 0.8205 | 0.8192 | 0.3547 | 0.0 | 0.7625 | 0.8181 | 0.6212 | 0.7665 | 0.6213 | 0.7749 | 0.5510 | 0.3346 | 0.5040 | 0.5291 | 0.8278 | 0.7265 | 0.7457 | 0.7574 | 0.7599 | 0.7695 | 0.2881 |
| 0.0359 | 11.88 | 5940 | 0.2267 | 0.6204 | 0.7485 | 0.8251 | nan | 0.8528 | 0.9020 | 0.7108 | 0.8586 | 0.6962 | 0.8801 | 0.7549 | 0.3779 | 0.5934 | 0.6442 | 0.9122 | 0.8469 | 0.8411 | 0.8614 | 0.8156 | 0.8121 | 0.3645 | 0.0 | 0.7618 | 0.8199 | 0.6232 | 0.7681 | 0.6200 | 0.7714 | 0.5553 | 0.3211 | 0.4962 | 0.5359 | 0.8260 | 0.7373 | 0.7558 | 0.7539 | 0.7591 | 0.7666 | 0.2956 |
| 0.0345 | 11.92 | 5960 | 0.2250 | 0.6230 | 0.7505 | 0.8262 | nan | 0.8300 | 0.9085 | 0.7175 | 0.8635 | 0.7003 | 0.8771 | 0.7477 | 0.4255 | 0.5867 | 0.6400 | 0.9049 | 0.8476 | 0.8444 | 0.8481 | 0.8222 | 0.8292 | 0.3651 | 0.0 | 0.7581 | 0.8192 | 0.6272 | 0.7707 | 0.6217 | 0.7718 | 0.5576 | 0.3485 | 0.4925 | 0.5330 | 0.8258 | 0.7390 | 0.7586 | 0.7542 | 0.7623 | 0.7761 | 0.2974 |
| 0.0374 | 11.96 | 5980 | 0.2186 | 0.6238 | 0.7521 | 0.8256 | nan | 0.8399 | 0.9082 | 0.7109 | 0.8621 | 0.7026 | 0.8810 | 0.7414 | 0.4934 | 0.6159 | 0.5969 | 0.9150 | 0.8529 | 0.8370 | 0.8347 | 0.8388 | 0.8225 | 0.3330 | 0.0 | 0.7612 | 0.8185 | 0.6248 | 0.7701 | 0.6254 | 0.7705 | 0.5559 | 0.3824 | 0.5027 | 0.5153 | 0.8279 | 0.7365 | 0.7563 | 0.7553 | 0.7685 | 0.7736 | 0.2826 |
| 0.055 | 12.0 | 6000 | 0.2175 | 0.6251 | 0.7562 | 0.8254 | nan | 0.8404 | 0.9083 | 0.6946 | 0.8566 | 0.7138 | 0.8827 | 0.7373 | 0.4973 | 0.5873 | 0.6403 | 0.9124 | 0.8417 | 0.8445 | 0.8313 | 0.8508 | 0.8241 | 0.3917 | 0.0 | 0.7637 | 0.8192 | 0.6178 | 0.7687 | 0.6261 | 0.7699 | 0.5516 | 0.3656 | 0.4957 | 0.5332 | 0.8288 | 0.7396 | 0.7604 | 0.7583 | 0.7731 | 0.7739 | 0.3052 |
| 0.0336 | 12.04 | 6020 | 0.2203 | 0.6265 | 0.7593 | 0.8256 | nan | 0.8568 | 0.8967 | 0.7212 | 0.8569 | 0.7082 | 0.8832 | 0.7463 | 0.4661 | 0.6005 | 0.6372 | 0.9132 | 0.8482 | 0.8314 | 0.8517 | 0.8351 | 0.8277 | 0.4268 | 0.0 | 0.7665 | 0.8147 | 0.6297 | 0.7679 | 0.6285 | 0.7707 | 0.5547 | 0.3604 | 0.5009 | 0.5349 | 0.8294 | 0.7401 | 0.7577 | 0.7606 | 0.7723 | 0.7758 | 0.3115 |
| 0.0286 | 12.08 | 6040 | 0.2250 | 0.6271 | 0.7585 | 0.8279 | nan | 0.8574 | 0.8988 | 0.7423 | 0.8675 | 0.7068 | 0.8874 | 0.7407 | 0.4549 | 0.6028 | 0.6397 | 0.9084 | 0.8455 | 0.8280 | 0.8531 | 0.8258 | 0.8309 | 0.4054 | 0.0 | 0.7684 | 0.8179 | 0.6376 | 0.7737 | 0.6257 | 0.7723 | 0.5564 | 0.3632 | 0.5019 | 0.5374 | 0.8298 | 0.7358 | 0.7559 | 0.7609 | 0.7717 | 0.7777 | 0.3018 |
| 0.0309 | 12.12 | 6060 | 0.2299 | 0.6233 | 0.7504 | 0.8261 | nan | 0.8402 | 0.9057 | 0.6992 | 0.8646 | 0.6978 | 0.8817 | 0.7436 | 0.4204 | 0.5674 | 0.6546 | 0.9063 | 0.8399 | 0.8438 | 0.8562 | 0.8334 | 0.8201 | 0.3814 | 0.0 | 0.7621 | 0.8182 | 0.6200 | 0.7726 | 0.6221 | 0.7671 | 0.5575 | 0.3449 | 0.4860 | 0.5407 | 0.8272 | 0.7355 | 0.7586 | 0.7605 | 0.7725 | 0.7678 | 0.3055 |
| 0.0335 | 12.16 | 6080 | 0.2293 | 0.6213 | 0.7477 | 0.8218 | nan | 0.8327 | 0.8919 | 0.7078 | 0.8492 | 0.6968 | 0.8750 | 0.7630 | 0.4157 | 0.5924 | 0.6157 | 0.9195 | 0.8414 | 0.8426 | 0.8437 | 0.8327 | 0.8217 | 0.3698 | 0.0 | 0.7595 | 0.8158 | 0.6204 | 0.7626 | 0.6262 | 0.7656 | 0.5507 | 0.3408 | 0.5001 | 0.5262 | 0.8277 | 0.7348 | 0.7566 | 0.7532 | 0.7695 | 0.7708 | 0.3035 |
| 0.0334 | 12.2 | 6100 | 0.2293 | 0.6235 | 0.7534 | 0.8234 | nan | 0.8485 | 0.9054 | 0.7384 | 0.8482 | 0.7003 | 0.8764 | 0.7602 | 0.4250 | 0.6150 | 0.6245 | 0.9104 | 0.8574 | 0.8285 | 0.8454 | 0.8390 | 0.8127 | 0.3723 | 0.0 | 0.7650 | 0.8190 | 0.6351 | 0.7630 | 0.6232 | 0.7688 | 0.5482 | 0.3464 | 0.5120 | 0.5339 | 0.8277 | 0.7326 | 0.7495 | 0.7546 | 0.7702 | 0.7689 | 0.3058 |
| 0.0413 | 12.24 | 6120 | 0.2224 | 0.6251 | 0.7572 | 0.8247 | nan | 0.8724 | 0.9004 | 0.7315 | 0.8544 | 0.7000 | 0.8835 | 0.7461 | 0.4563 | 0.5877 | 0.6541 | 0.9096 | 0.8544 | 0.8243 | 0.8548 | 0.8427 | 0.8206 | 0.3802 | 0.0 | 0.7680 | 0.8162 | 0.6332 | 0.7667 | 0.6181 | 0.7706 | 0.5492 | 0.3710 | 0.4992 | 0.5461 | 0.8275 | 0.7315 | 0.7495 | 0.7578 | 0.7706 | 0.7733 | 0.3027 |
| 0.0317 | 12.28 | 6140 | 0.2260 | 0.6248 | 0.7557 | 0.8251 | nan | 0.8752 | 0.8976 | 0.7346 | 0.8549 | 0.7024 | 0.8815 | 0.7496 | 0.4264 | 0.6123 | 0.6348 | 0.9121 | 0.8522 | 0.8280 | 0.8460 | 0.8366 | 0.8302 | 0.3733 | 0.0 | 0.7699 | 0.8190 | 0.6336 | 0.7651 | 0.6137 | 0.7748 | 0.5445 | 0.3573 | 0.5082 | 0.5388 | 0.8289 | 0.7329 | 0.7518 | 0.7561 | 0.7711 | 0.7785 | 0.3026 |
| 0.0357 | 12.32 | 6160 | 0.2295 | 0.6233 | 0.7542 | 0.8227 | nan | 0.8614 | 0.9038 | 0.7491 | 0.8420 | 0.7010 | 0.8852 | 0.7599 | 0.4142 | 0.5897 | 0.6365 | 0.9102 | 0.8520 | 0.8247 | 0.8376 | 0.8361 | 0.8309 | 0.3872 | 0.0 | 0.7686 | 0.8170 | 0.6399 | 0.7610 | 0.6167 | 0.7771 | 0.5468 | 0.3442 | 0.4971 | 0.5352 | 0.8287 | 0.7332 | 0.7538 | 0.7543 | 0.7677 | 0.7790 | 0.2991 |
| 0.0362 | 12.36 | 6180 | 0.2290 | 0.6259 | 0.7574 | 0.8260 | nan | 0.8600 | 0.9036 | 0.7575 | 0.8503 | 0.6978 | 0.8862 | 0.7541 | 0.3948 | 0.6014 | 0.6476 | 0.9111 | 0.8516 | 0.8385 | 0.8550 | 0.8375 | 0.8296 | 0.3996 | 0.0 | 0.7734 | 0.8207 | 0.6423 | 0.7641 | 0.6160 | 0.7747 | 0.5464 | 0.3382 | 0.5043 | 0.5414 | 0.8295 | 0.7401 | 0.7631 | 0.7609 | 0.7712 | 0.7805 | 0.2992 |
| 0.0484 | 12.4 | 6200 | 0.2278 | 0.6258 | 0.7550 | 0.8253 | nan | 0.8532 | 0.9050 | 0.7494 | 0.8537 | 0.6986 | 0.8866 | 0.7488 | 0.4345 | 0.5954 | 0.6401 | 0.9056 | 0.8454 | 0.8465 | 0.8529 | 0.8325 | 0.8251 | 0.3620 | 0.0 | 0.7676 | 0.8179 | 0.6411 | 0.7666 | 0.6182 | 0.7709 | 0.5495 | 0.3644 | 0.5026 | 0.5401 | 0.8280 | 0.7389 | 0.7637 | 0.7584 | 0.7688 | 0.7777 | 0.2906 |
| 0.0353 | 12.44 | 6220 | 0.2256 | 0.6294 | 0.7594 | 0.8279 | nan | 0.8645 | 0.9064 | 0.7356 | 0.8636 | 0.7006 | 0.8859 | 0.7354 | 0.4782 | 0.6007 | 0.6601 | 0.9118 | 0.8441 | 0.8395 | 0.8566 | 0.8366 | 0.8307 | 0.3597 | 0.0 | 0.7718 | 0.8221 | 0.6358 | 0.7727 | 0.6177 | 0.7719 | 0.5516 | 0.3942 | 0.5053 | 0.5472 | 0.8294 | 0.7407 | 0.7645 | 0.7622 | 0.7718 | 0.7794 | 0.2904 |
| 0.0361 | 12.48 | 6240 | 0.2236 | 0.6265 | 0.7557 | 0.8261 | nan | 0.8510 | 0.9002 | 0.7453 | 0.8569 | 0.6987 | 0.8855 | 0.7481 | 0.4498 | 0.5990 | 0.6371 | 0.9145 | 0.8531 | 0.8317 | 0.8567 | 0.8332 | 0.8344 | 0.3515 | 0.0 | 0.7644 | 0.8185 | 0.6377 | 0.7703 | 0.6220 | 0.7704 | 0.5536 | 0.3703 | 0.5037 | 0.5392 | 0.8296 | 0.7372 | 0.7584 | 0.7628 | 0.7706 | 0.7792 | 0.2882 |
| 0.0511 | 12.52 | 6260 | 0.2277 | 0.6253 | 0.7548 | 0.8242 | nan | 0.8476 | 0.8931 | 0.7597 | 0.8480 | 0.7010 | 0.8868 | 0.7604 | 0.4331 | 0.6105 | 0.6158 | 0.9159 | 0.8539 | 0.8393 | 0.8495 | 0.8376 | 0.8202 | 0.3593 | 0.0 | 0.7640 | 0.8184 | 0.6402 | 0.7621 | 0.6255 | 0.7707 | 0.5468 | 0.3641 | 0.5030 | 0.5265 | 0.8306 | 0.7393 | 0.7614 | 0.7625 | 0.7736 | 0.7731 | 0.2929 |
| 0.0586 | 12.56 | 6280 | 0.2299 | 0.6242 | 0.7543 | 0.8224 | nan | 0.8597 | 0.8940 | 0.7576 | 0.8428 | 0.7032 | 0.8725 | 0.7691 | 0.4026 | 0.6018 | 0.6374 | 0.9108 | 0.8519 | 0.8347 | 0.8484 | 0.8349 | 0.8241 | 0.3781 | 0.0 | 0.7651 | 0.8190 | 0.6397 | 0.7572 | 0.6239 | 0.7710 | 0.5454 | 0.3396 | 0.5044 | 0.5380 | 0.8308 | 0.7388 | 0.7568 | 0.7571 | 0.7711 | 0.7736 | 0.3037 |
| 0.0261 | 12.6 | 6300 | 0.2290 | 0.6244 | 0.7553 | 0.8225 | nan | 0.8704 | 0.8966 | 0.7397 | 0.8438 | 0.7034 | 0.8785 | 0.7639 | 0.4307 | 0.5786 | 0.6540 | 0.9126 | 0.8562 | 0.8144 | 0.8458 | 0.8396 | 0.8254 | 0.3871 | 0.0 | 0.7687 | 0.8189 | 0.6341 | 0.7586 | 0.6231 | 0.7710 | 0.5491 | 0.3626 | 0.4951 | 0.5432 | 0.8300 | 0.7328 | 0.7460 | 0.7561 | 0.7715 | 0.7739 | 0.3039 |
| 0.04 | 12.64 | 6320 | 0.2329 | 0.6277 | 0.7594 | 0.8252 | nan | 0.8835 | 0.8976 | 0.7452 | 0.8447 | 0.6999 | 0.8810 | 0.7746 | 0.4545 | 0.5671 | 0.6589 | 0.9143 | 0.8449 | 0.8405 | 0.8459 | 0.8404 | 0.8280 | 0.3883 | 0.0 | 0.7703 | 0.8184 | 0.6348 | 0.7600 | 0.6321 | 0.7721 | 0.5557 | 0.3785 | 0.4905 | 0.5449 | 0.8301 | 0.7400 | 0.7592 | 0.7572 | 0.7744 | 0.7767 | 0.3029 |
| 0.0781 | 12.68 | 6340 | 0.2256 | 0.6255 | 0.7551 | 0.8252 | nan | 0.8670 | 0.8966 | 0.7042 | 0.8548 | 0.7049 | 0.8694 | 0.7625 | 0.4641 | 0.5711 | 0.6488 | 0.9170 | 0.8511 | 0.8333 | 0.8529 | 0.8267 | 0.8376 | 0.3752 | 0.0 | 0.7684 | 0.8176 | 0.6185 | 0.7655 | 0.6280 | 0.7709 | 0.5596 | 0.3800 | 0.4920 | 0.5416 | 0.8285 | 0.7369 | 0.7551 | 0.7539 | 0.7680 | 0.7801 | 0.2950 |
| 0.0363 | 12.72 | 6360 | 0.2250 | 0.6249 | 0.7525 | 0.8253 | nan | 0.8345 | 0.9020 | 0.7121 | 0.8564 | 0.7004 | 0.8744 | 0.7617 | 0.4431 | 0.5829 | 0.6374 | 0.9145 | 0.8497 | 0.8377 | 0.8500 | 0.8310 | 0.8220 | 0.3834 | 0.0 | 0.7609 | 0.8184 | 0.6233 | 0.7670 | 0.6281 | 0.7684 | 0.5605 | 0.3693 | 0.4970 | 0.5384 | 0.8282 | 0.7373 | 0.7557 | 0.7550 | 0.7704 | 0.7748 | 0.2953 |
| 0.0593 | 12.76 | 6380 | 0.2211 | 0.6265 | 0.7593 | 0.8254 | nan | 0.8452 | 0.9015 | 0.7707 | 0.8558 | 0.7028 | 0.8872 | 0.7524 | 0.4794 | 0.5794 | 0.6445 | 0.9071 | 0.8471 | 0.8278 | 0.8500 | 0.8447 | 0.8158 | 0.3967 | 0.0 | 0.7626 | 0.8188 | 0.6433 | 0.7688 | 0.6237 | 0.7701 | 0.5560 | 0.3839 | 0.4912 | 0.5370 | 0.8281 | 0.7371 | 0.7547 | 0.7579 | 0.7748 | 0.7698 | 0.2995 |
| 0.0413 | 12.8 | 6400 | 0.2294 | 0.6243 | 0.7537 | 0.8258 | nan | 0.8638 | 0.9019 | 0.7530 | 0.8542 | 0.7002 | 0.8839 | 0.7623 | 0.4083 | 0.5835 | 0.6451 | 0.9085 | 0.8509 | 0.8287 | 0.8441 | 0.8519 | 0.8128 | 0.3597 | 0.0 | 0.7640 | 0.8197 | 0.6395 | 0.7671 | 0.6266 | 0.7705 | 0.5563 | 0.3461 | 0.4931 | 0.5383 | 0.8275 | 0.7364 | 0.7548 | 0.7586 | 0.7787 | 0.7688 | 0.2912 |
| 0.0643 | 12.84 | 6420 | 0.2268 | 0.6205 | 0.7460 | 0.8258 | nan | 0.8655 | 0.8930 | 0.7164 | 0.8635 | 0.7005 | 0.8766 | 0.7589 | 0.3734 | 0.5981 | 0.6227 | 0.9131 | 0.8497 | 0.8373 | 0.8601 | 0.8369 | 0.8054 | 0.3110 | 0.0 | 0.7610 | 0.8162 | 0.6249 | 0.7705 | 0.6263 | 0.7691 | 0.5590 | 0.3202 | 0.4985 | 0.5288 | 0.8268 | 0.7389 | 0.7588 | 0.7603 | 0.7768 | 0.7641 | 0.2695 |
| 0.0395 | 12.88 | 6440 | 0.2283 | 0.6245 | 0.7517 | 0.8281 | nan | 0.8563 | 0.9066 | 0.7141 | 0.8563 | 0.6995 | 0.8924 | 0.7603 | 0.4074 | 0.5881 | 0.6474 | 0.9126 | 0.8516 | 0.8405 | 0.8606 | 0.8364 | 0.8136 | 0.3343 | 0.0 | 0.7669 | 0.8196 | 0.6246 | 0.7732 | 0.6249 | 0.7803 | 0.5577 | 0.3405 | 0.4975 | 0.5420 | 0.8271 | 0.7388 | 0.7590 | 0.7615 | 0.7773 | 0.7684 | 0.2824 |
| 0.0405 | 12.92 | 6460 | 0.2262 | 0.6250 | 0.7532 | 0.8276 | nan | 0.8608 | 0.8982 | 0.7534 | 0.8616 | 0.6956 | 0.8992 | 0.7566 | 0.4366 | 0.5871 | 0.6325 | 0.9096 | 0.8538 | 0.8318 | 0.8533 | 0.8305 | 0.8112 | 0.3330 | 0.0 | 0.7663 | 0.8200 | 0.6393 | 0.7754 | 0.6220 | 0.7795 | 0.5576 | 0.3592 | 0.4954 | 0.5359 | 0.8281 | 0.7382 | 0.7560 | 0.7588 | 0.7745 | 0.7656 | 0.2786 |
| 0.0499 | 12.96 | 6480 | 0.2250 | 0.6244 | 0.7539 | 0.8266 | nan | 0.8606 | 0.8939 | 0.7448 | 0.8603 | 0.6943 | 0.8968 | 0.7500 | 0.4342 | 0.5886 | 0.6393 | 0.9134 | 0.8534 | 0.8320 | 0.8542 | 0.8384 | 0.8159 | 0.3458 | 0.0 | 0.7622 | 0.8176 | 0.6369 | 0.7764 | 0.6152 | 0.7770 | 0.5559 | 0.3563 | 0.4988 | 0.5392 | 0.8275 | 0.7375 | 0.7557 | 0.7568 | 0.7745 | 0.7651 | 0.2865 |
| 0.0759 | 13.0 | 6500 | 0.2264 | 0.6232 | 0.7504 | 0.8292 | nan | 0.8655 | 0.8962 | 0.7145 | 0.8670 | 0.6965 | 0.8953 | 0.7496 | 0.3597 | 0.6238 | 0.6121 | 0.9137 | 0.8443 | 0.8349 | 0.8655 | 0.8427 | 0.8243 | 0.3505 | 0.0 | 0.7682 | 0.8209 | 0.6255 | 0.7787 | 0.6182 | 0.7777 | 0.5565 | 0.3142 | 0.5113 | 0.5263 | 0.8282 | 0.7378 | 0.7571 | 0.7596 | 0.7752 | 0.7701 | 0.2922 |
| 0.0346 | 13.04 | 6520 | 0.2275 | 0.6243 | 0.7520 | 0.8272 | nan | 0.8592 | 0.8995 | 0.7354 | 0.8599 | 0.6961 | 0.8982 | 0.7528 | 0.4045 | 0.6214 | 0.6191 | 0.9039 | 0.8312 | 0.8476 | 0.8599 | 0.8302 | 0.8213 | 0.3431 | 0.0 | 0.7646 | 0.8169 | 0.6353 | 0.7762 | 0.6238 | 0.7778 | 0.5570 | 0.3432 | 0.5123 | 0.5295 | 0.8263 | 0.7357 | 0.7576 | 0.7561 | 0.7707 | 0.7691 | 0.2859 |
| 0.0732 | 13.08 | 6540 | 0.2215 | 0.6250 | 0.7543 | 0.8273 | nan | 0.8583 | 0.8961 | 0.7646 | 0.8582 | 0.6937 | 0.9009 | 0.7533 | 0.3897 | 0.6029 | 0.6417 | 0.9080 | 0.8392 | 0.8441 | 0.8565 | 0.8248 | 0.8273 | 0.3642 | 0.0 | 0.7647 | 0.8161 | 0.6412 | 0.7749 | 0.6255 | 0.7769 | 0.5579 | 0.3359 | 0.5064 | 0.5398 | 0.8271 | 0.7387 | 0.7568 | 0.7575 | 0.7706 | 0.7712 | 0.2897 |
| 0.0573 | 13.12 | 6560 | 0.2277 | 0.6239 | 0.7521 | 0.8278 | nan | 0.8549 | 0.9003 | 0.7490 | 0.8600 | 0.6969 | 0.8982 | 0.7494 | 0.3698 | 0.6079 | 0.6389 | 0.9136 | 0.8442 | 0.8399 | 0.8518 | 0.8394 | 0.8175 | 0.3537 | 0.0 | 0.7653 | 0.8189 | 0.6380 | 0.7747 | 0.6242 | 0.7777 | 0.5570 | 0.3218 | 0.5059 | 0.5375 | 0.8273 | 0.7397 | 0.7563 | 0.7568 | 0.7733 | 0.7680 | 0.2879 |
| 0.0778 | 13.16 | 6580 | 0.2248 | 0.6238 | 0.7522 | 0.8273 | nan | 0.8608 | 0.8912 | 0.7534 | 0.8637 | 0.7025 | 0.8966 | 0.7488 | 0.3889 | 0.5965 | 0.6424 | 0.9154 | 0.8425 | 0.8367 | 0.8508 | 0.8299 | 0.8165 | 0.3509 | 0.0 | 0.7646 | 0.8171 | 0.6389 | 0.7757 | 0.6225 | 0.7797 | 0.5567 | 0.3331 | 0.4992 | 0.5377 | 0.8284 | 0.7414 | 0.7567 | 0.7548 | 0.7699 | 0.7658 | 0.2859 |
| 0.0471 | 13.2 | 6600 | 0.2250 | 0.6262 | 0.7549 | 0.8281 | nan | 0.8596 | 0.8987 | 0.7459 | 0.8625 | 0.7008 | 0.8925 | 0.7580 | 0.4383 | 0.5730 | 0.6607 | 0.9067 | 0.8400 | 0.8446 | 0.8613 | 0.8206 | 0.8170 | 0.3530 | 0.0 | 0.7647 | 0.8188 | 0.6374 | 0.7751 | 0.6291 | 0.7785 | 0.5614 | 0.3660 | 0.4895 | 0.5442 | 0.8279 | 0.7419 | 0.7590 | 0.7556 | 0.7670 | 0.7670 | 0.2879 |
| 0.0286 | 13.24 | 6620 | 0.2275 | 0.6251 | 0.7541 | 0.8264 | nan | 0.8571 | 0.9003 | 0.7318 | 0.8554 | 0.6998 | 0.8911 | 0.7582 | 0.4283 | 0.6010 | 0.6385 | 0.9097 | 0.8407 | 0.8339 | 0.8515 | 0.8390 | 0.8200 | 0.3629 | 0.0 | 0.7634 | 0.8170 | 0.6323 | 0.7720 | 0.6288 | 0.7760 | 0.5574 | 0.3604 | 0.4999 | 0.5328 | 0.8276 | 0.7388 | 0.7557 | 0.7560 | 0.7715 | 0.7704 | 0.2911 |
| 0.0349 | 13.28 | 6640 | 0.2300 | 0.6261 | 0.7560 | 0.8281 | nan | 0.8669 | 0.8957 | 0.7340 | 0.8597 | 0.7003 | 0.8930 | 0.7522 | 0.4288 | 0.6015 | 0.6413 | 0.9139 | 0.8436 | 0.8380 | 0.8504 | 0.8430 | 0.8348 | 0.3542 | 0.0 | 0.7660 | 0.8175 | 0.6332 | 0.7744 | 0.6267 | 0.7768 | 0.5568 | 0.3611 | 0.5022 | 0.5371 | 0.8287 | 0.7393 | 0.7569 | 0.7566 | 0.7738 | 0.7787 | 0.2840 |
| 0.0306 | 13.32 | 6660 | 0.2307 | 0.6266 | 0.7564 | 0.8283 | nan | 0.8701 | 0.8999 | 0.7348 | 0.8608 | 0.6980 | 0.8911 | 0.7512 | 0.4234 | 0.6036 | 0.6437 | 0.9131 | 0.8350 | 0.8476 | 0.8492 | 0.8432 | 0.8303 | 0.3638 | 0.0 | 0.7672 | 0.8194 | 0.6338 | 0.7726 | 0.6252 | 0.7740 | 0.5581 | 0.3583 | 0.5038 | 0.5401 | 0.8289 | 0.7399 | 0.7602 | 0.7588 | 0.7746 | 0.7781 | 0.2860 |
| 0.0311 | 13.36 | 6680 | 0.2294 | 0.6266 | 0.7570 | 0.8274 | nan | 0.8626 | 0.9014 | 0.7207 | 0.8600 | 0.6993 | 0.8897 | 0.7452 | 0.4604 | 0.5968 | 0.6393 | 0.9114 | 0.8394 | 0.8461 | 0.8619 | 0.8449 | 0.8236 | 0.3669 | 0.0 | 0.7658 | 0.8194 | 0.6288 | 0.7721 | 0.6222 | 0.7735 | 0.5564 | 0.3823 | 0.4997 | 0.5362 | 0.8276 | 0.7403 | 0.7596 | 0.7609 | 0.7734 | 0.7732 | 0.2875 |
| 0.0306 | 13.4 | 6700 | 0.2276 | 0.6260 | 0.7567 | 0.8260 | nan | 0.8548 | 0.8992 | 0.7393 | 0.8555 | 0.7020 | 0.8857 | 0.7528 | 0.4614 | 0.6084 | 0.6323 | 0.9099 | 0.8456 | 0.8381 | 0.8640 | 0.8356 | 0.8217 | 0.3570 | 0.0 | 0.7620 | 0.8181 | 0.6351 | 0.7704 | 0.6199 | 0.7759 | 0.5546 | 0.3800 | 0.5050 | 0.5352 | 0.8275 | 0.7395 | 0.7570 | 0.7588 | 0.7712 | 0.7712 | 0.2867 |
| 0.039 | 13.44 | 6720 | 0.2236 | 0.6247 | 0.7550 | 0.8256 | nan | 0.8596 | 0.8948 | 0.7488 | 0.8575 | 0.7069 | 0.8837 | 0.7453 | 0.4302 | 0.6010 | 0.6397 | 0.9133 | 0.8442 | 0.8393 | 0.8567 | 0.8473 | 0.8183 | 0.3490 | 0.0 | 0.7612 | 0.8165 | 0.6382 | 0.7708 | 0.6181 | 0.7748 | 0.5527 | 0.3618 | 0.5029 | 0.5384 | 0.8277 | 0.7398 | 0.7570 | 0.7584 | 0.7745 | 0.7701 | 0.2819 |
| 0.0432 | 13.48 | 6740 | 0.2253 | 0.6248 | 0.7534 | 0.8265 | nan | 0.8610 | 0.8984 | 0.7402 | 0.8586 | 0.7057 | 0.8851 | 0.7493 | 0.4230 | 0.5866 | 0.6460 | 0.9102 | 0.8378 | 0.8436 | 0.8502 | 0.8424 | 0.8311 | 0.3393 | 0.0 | 0.7616 | 0.8183 | 0.6364 | 0.7708 | 0.6213 | 0.7751 | 0.5551 | 0.3581 | 0.4975 | 0.5416 | 0.8284 | 0.7396 | 0.7572 | 0.7562 | 0.7728 | 0.7769 | 0.2802 |
| 0.0561 | 13.52 | 6760 | 0.2249 | 0.6252 | 0.7538 | 0.8258 | nan | 0.8634 | 0.8931 | 0.7255 | 0.8613 | 0.7117 | 0.8817 | 0.7439 | 0.4569 | 0.5847 | 0.6417 | 0.9144 | 0.8428 | 0.8335 | 0.8479 | 0.8433 | 0.8290 | 0.3400 | 0.0 | 0.7629 | 0.8170 | 0.6301 | 0.7711 | 0.6232 | 0.7737 | 0.5549 | 0.3799 | 0.4953 | 0.5382 | 0.8287 | 0.7379 | 0.7536 | 0.7570 | 0.7743 | 0.7745 | 0.2810 |
| 0.0274 | 13.56 | 6780 | 0.2255 | 0.6257 | 0.7535 | 0.8276 | nan | 0.8548 | 0.9047 | 0.7118 | 0.8624 | 0.7132 | 0.8827 | 0.7408 | 0.4344 | 0.5899 | 0.6469 | 0.9102 | 0.8451 | 0.8372 | 0.8485 | 0.8431 | 0.8342 | 0.3497 | 0.0 | 0.7653 | 0.8200 | 0.6253 | 0.7725 | 0.6241 | 0.7734 | 0.5553 | 0.3660 | 0.4977 | 0.5403 | 0.8283 | 0.7404 | 0.7565 | 0.7594 | 0.7761 | 0.7769 | 0.2846 |
| 0.0351 | 13.6 | 6800 | 0.2265 | 0.6253 | 0.7529 | 0.8267 | nan | 0.8525 | 0.8998 | 0.7031 | 0.8561 | 0.7110 | 0.8882 | 0.7468 | 0.4319 | 0.6002 | 0.6402 | 0.9130 | 0.8394 | 0.8354 | 0.8608 | 0.8389 | 0.8351 | 0.3463 | 0.0 | 0.7637 | 0.8186 | 0.6208 | 0.7706 | 0.6258 | 0.7751 | 0.5545 | 0.3662 | 0.5019 | 0.5370 | 0.8282 | 0.7395 | 0.7572 | 0.7591 | 0.7740 | 0.7785 | 0.2853 |
| 0.03 | 13.64 | 6820 | 0.2249 | 0.6277 | 0.7571 | 0.8275 | nan | 0.8542 | 0.9011 | 0.7257 | 0.8581 | 0.7129 | 0.8850 | 0.7441 | 0.4520 | 0.6132 | 0.6366 | 0.9075 | 0.8438 | 0.8373 | 0.8605 | 0.8409 | 0.8409 | 0.3568 | 0.0 | 0.7643 | 0.8179 | 0.6311 | 0.7724 | 0.6256 | 0.7747 | 0.5538 | 0.3791 | 0.5082 | 0.5368 | 0.8279 | 0.7398 | 0.7573 | 0.7594 | 0.7743 | 0.7809 | 0.2953 |
| 0.054 | 13.68 | 6840 | 0.2284 | 0.6284 | 0.7573 | 0.8271 | nan | 0.8525 | 0.9009 | 0.7383 | 0.8598 | 0.7058 | 0.8868 | 0.7452 | 0.4685 | 0.6112 | 0.6215 | 0.9114 | 0.8494 | 0.8378 | 0.8523 | 0.8422 | 0.8296 | 0.3611 | 0.0 | 0.7645 | 0.8183 | 0.6366 | 0.7723 | 0.6244 | 0.7750 | 0.5526 | 0.3927 | 0.5061 | 0.5297 | 0.8286 | 0.7404 | 0.7574 | 0.7601 | 0.7754 | 0.7771 | 0.2994 |
| 0.0289 | 13.72 | 6860 | 0.2274 | 0.6297 | 0.7595 | 0.8282 | nan | 0.8596 | 0.9078 | 0.7485 | 0.8556 | 0.6974 | 0.8891 | 0.7552 | 0.4650 | 0.6101 | 0.6309 | 0.9094 | 0.8471 | 0.8419 | 0.8515 | 0.8426 | 0.8371 | 0.3631 | 0.0 | 0.7676 | 0.8199 | 0.6401 | 0.7709 | 0.6265 | 0.7744 | 0.5559 | 0.3916 | 0.5079 | 0.5359 | 0.8284 | 0.7406 | 0.7582 | 0.7617 | 0.7749 | 0.7807 | 0.2995 |
| 0.0428 | 13.76 | 6880 | 0.2275 | 0.6282 | 0.7584 | 0.8271 | nan | 0.8697 | 0.8965 | 0.7569 | 0.8585 | 0.7026 | 0.8861 | 0.7531 | 0.4632 | 0.5979 | 0.6336 | 0.9129 | 0.8470 | 0.8393 | 0.8537 | 0.8435 | 0.8265 | 0.3511 | 0.0 | 0.7661 | 0.8186 | 0.6414 | 0.7708 | 0.6242 | 0.7755 | 0.5540 | 0.3873 | 0.5025 | 0.5358 | 0.8288 | 0.7410 | 0.7598 | 0.7606 | 0.7745 | 0.7759 | 0.2906 |
| 0.0262 | 13.8 | 6900 | 0.2307 | 0.6296 | 0.7619 | 0.8271 | nan | 0.8737 | 0.9034 | 0.7519 | 0.8523 | 0.7033 | 0.8888 | 0.7561 | 0.4930 | 0.5972 | 0.6564 | 0.9107 | 0.8473 | 0.8322 | 0.8615 | 0.8355 | 0.8268 | 0.3629 | 0.0 | 0.7664 | 0.8191 | 0.6413 | 0.7697 | 0.6252 | 0.7771 | 0.5545 | 0.4006 | 0.5030 | 0.5446 | 0.8283 | 0.7406 | 0.7594 | 0.7598 | 0.7721 | 0.7765 | 0.2948 |
| 0.034 | 13.84 | 6920 | 0.2306 | 0.6306 | 0.7642 | 0.8280 | nan | 0.8723 | 0.9016 | 0.7533 | 0.8544 | 0.7030 | 0.8925 | 0.7515 | 0.5148 | 0.6102 | 0.6373 | 0.9143 | 0.8519 | 0.8318 | 0.8573 | 0.8446 | 0.8296 | 0.3707 | 0.0 | 0.7661 | 0.8199 | 0.6412 | 0.7711 | 0.6243 | 0.7772 | 0.5539 | 0.4123 | 0.5073 | 0.5376 | 0.8288 | 0.7408 | 0.7590 | 0.7619 | 0.7752 | 0.7782 | 0.2967 |
| 0.0364 | 13.88 | 6940 | 0.2279 | 0.6298 | 0.7626 | 0.8268 | nan | 0.8683 | 0.8940 | 0.7468 | 0.8531 | 0.7034 | 0.8918 | 0.7561 | 0.5135 | 0.6046 | 0.6460 | 0.9170 | 0.8475 | 0.8329 | 0.8522 | 0.8421 | 0.8244 | 0.3708 | 0.0 | 0.7630 | 0.8169 | 0.6386 | 0.7703 | 0.6253 | 0.7771 | 0.5546 | 0.4098 | 0.5054 | 0.5407 | 0.8283 | 0.7404 | 0.7592 | 0.7606 | 0.7749 | 0.7758 | 0.2953 |
| 0.0521 | 13.92 | 6960 | 0.2275 | 0.6300 | 0.7623 | 0.8271 | nan | 0.8659 | 0.8991 | 0.7397 | 0.8542 | 0.7023 | 0.8863 | 0.7566 | 0.5049 | 0.6100 | 0.6424 | 0.9156 | 0.8527 | 0.8341 | 0.8587 | 0.8405 | 0.8202 | 0.3765 | 0.0 | 0.7651 | 0.8186 | 0.6366 | 0.7705 | 0.6265 | 0.7761 | 0.5561 | 0.4079 | 0.5090 | 0.5414 | 0.8282 | 0.7402 | 0.7585 | 0.7608 | 0.7742 | 0.7734 | 0.2968 |
| 0.0303 | 13.96 | 6980 | 0.2276 | 0.6298 | 0.7618 | 0.8277 | nan | 0.8509 | 0.9057 | 0.7412 | 0.8548 | 0.7029 | 0.8858 | 0.7557 | 0.5095 | 0.6060 | 0.6347 | 0.9150 | 0.8610 | 0.8288 | 0.8581 | 0.8385 | 0.8270 | 0.3748 | 0.0 | 0.7652 | 0.8209 | 0.6376 | 0.7709 | 0.6247 | 0.7765 | 0.5552 | 0.4065 | 0.5066 | 0.5384 | 0.8286 | 0.7394 | 0.7566 | 0.7611 | 0.7738 | 0.7768 | 0.2978 |
| 0.0313 | 14.0 | 7000 | 0.2287 | 0.6287 | 0.7593 | 0.8268 | nan | 0.8446 | 0.9004 | 0.7461 | 0.8603 | 0.7037 | 0.8831 | 0.7461 | 0.5012 | 0.5885 | 0.6483 | 0.9121 | 0.8581 | 0.8307 | 0.8587 | 0.8352 | 0.8259 | 0.3648 | 0.0 | 0.7627 | 0.8190 | 0.6387 | 0.7721 | 0.6214 | 0.7759 | 0.5527 | 0.4051 | 0.5000 | 0.5437 | 0.8286 | 0.7395 | 0.7566 | 0.7596 | 0.7726 | 0.7751 | 0.2937 |
| 0.0295 | 14.04 | 7020 | 0.2245 | 0.6275 | 0.7567 | 0.8264 | nan | 0.8466 | 0.8983 | 0.7551 | 0.8597 | 0.7003 | 0.8906 | 0.7474 | 0.4686 | 0.5751 | 0.6514 | 0.9114 | 0.8521 | 0.8331 | 0.8520 | 0.8400 | 0.8209 | 0.3621 | 0.0 | 0.7624 | 0.8184 | 0.6410 | 0.7722 | 0.6226 | 0.7765 | 0.5533 | 0.3895 | 0.4938 | 0.5430 | 0.8288 | 0.7398 | 0.7575 | 0.7587 | 0.7736 | 0.7730 | 0.2917 |
| 0.0335 | 14.08 | 7040 | 0.2252 | 0.6275 | 0.7575 | 0.8272 | nan | 0.8498 | 0.9024 | 0.7555 | 0.8566 | 0.7038 | 0.8934 | 0.7482 | 0.4464 | 0.5949 | 0.6440 | 0.9122 | 0.8530 | 0.8304 | 0.8594 | 0.8340 | 0.8248 | 0.3678 | 0.0 | 0.7637 | 0.8202 | 0.6406 | 0.7716 | 0.6209 | 0.7784 | 0.5514 | 0.3733 | 0.5023 | 0.5410 | 0.8293 | 0.7405 | 0.7581 | 0.7611 | 0.7730 | 0.7750 | 0.2953 |
| 0.0308 | 14.12 | 7060 | 0.2311 | 0.6268 | 0.7569 | 0.8266 | nan | 0.8595 | 0.9011 | 0.7570 | 0.8525 | 0.7014 | 0.8929 | 0.7559 | 0.4232 | 0.6013 | 0.6404 | 0.9101 | 0.8513 | 0.8356 | 0.8590 | 0.8357 | 0.8193 | 0.3719 | 0.0 | 0.7655 | 0.8191 | 0.6411 | 0.7699 | 0.6228 | 0.7777 | 0.5522 | 0.3576 | 0.5049 | 0.5401 | 0.8288 | 0.7413 | 0.7598 | 0.7607 | 0.7727 | 0.7719 | 0.2964 |
| 0.0901 | 14.16 | 7080 | 0.2238 | 0.6248 | 0.7521 | 0.8257 | nan | 0.8481 | 0.9002 | 0.7428 | 0.8561 | 0.7035 | 0.8920 | 0.7512 | 0.4234 | 0.5920 | 0.6396 | 0.9113 | 0.8482 | 0.8325 | 0.8501 | 0.8319 | 0.8177 | 0.3453 | 0.0 | 0.7600 | 0.8177 | 0.6368 | 0.7711 | 0.6212 | 0.7770 | 0.5519 | 0.3595 | 0.5001 | 0.5397 | 0.8287 | 0.7398 | 0.7578 | 0.7585 | 0.7701 | 0.7704 | 0.2867 |
| 0.0342 | 14.2 | 7100 | 0.2280 | 0.6261 | 0.7537 | 0.8276 | nan | 0.8545 | 0.8969 | 0.7266 | 0.8636 | 0.7020 | 0.8895 | 0.7496 | 0.4283 | 0.5876 | 0.6378 | 0.9157 | 0.8480 | 0.8372 | 0.8573 | 0.8374 | 0.8164 | 0.3642 | 0.0 | 0.7629 | 0.8182 | 0.6309 | 0.7742 | 0.6218 | 0.7774 | 0.5560 | 0.3651 | 0.4989 | 0.5398 | 0.8291 | 0.7396 | 0.7580 | 0.7601 | 0.7711 | 0.7713 | 0.2960 |
| 0.0464 | 14.24 | 7120 | 0.2264 | 0.6276 | 0.7568 | 0.8275 | nan | 0.8558 | 0.9002 | 0.7335 | 0.8599 | 0.7014 | 0.8886 | 0.7512 | 0.4561 | 0.5957 | 0.6327 | 0.9154 | 0.8503 | 0.8383 | 0.8605 | 0.8382 | 0.8179 | 0.3697 | 0.0 | 0.7631 | 0.8190 | 0.6342 | 0.7730 | 0.6218 | 0.7780 | 0.5556 | 0.3813 | 0.5025 | 0.5375 | 0.8291 | 0.7401 | 0.7586 | 0.7606 | 0.7711 | 0.7717 | 0.2997 |
| 0.035 | 14.28 | 7140 | 0.2272 | 0.6279 | 0.7576 | 0.8268 | nan | 0.8576 | 0.8974 | 0.7363 | 0.8581 | 0.7020 | 0.8893 | 0.7512 | 0.4621 | 0.5983 | 0.6404 | 0.9140 | 0.8468 | 0.8391 | 0.8556 | 0.8375 | 0.8194 | 0.3736 | 0.0 | 0.7628 | 0.8179 | 0.6349 | 0.7721 | 0.6215 | 0.7788 | 0.5543 | 0.3825 | 0.5040 | 0.5402 | 0.8294 | 0.7404 | 0.7596 | 0.7597 | 0.7714 | 0.7721 | 0.3005 |
| 0.0607 | 14.32 | 7160 | 0.2220 | 0.6271 | 0.7564 | 0.8263 | nan | 0.8558 | 0.9017 | 0.7173 | 0.8597 | 0.7047 | 0.8888 | 0.7371 | 0.4717 | 0.6011 | 0.6354 | 0.9143 | 0.8470 | 0.8350 | 0.8580 | 0.8417 | 0.8224 | 0.3679 | 0.0 | 0.7621 | 0.8178 | 0.6282 | 0.7734 | 0.6183 | 0.7781 | 0.5518 | 0.3886 | 0.5048 | 0.5376 | 0.8283 | 0.7403 | 0.7586 | 0.7595 | 0.7711 | 0.7723 | 0.2973 |
| 0.0385 | 14.36 | 7180 | 0.2286 | 0.6258 | 0.7531 | 0.8268 | nan | 0.8600 | 0.9010 | 0.7351 | 0.8591 | 0.7037 | 0.8914 | 0.7511 | 0.4106 | 0.5936 | 0.6409 | 0.9094 | 0.8412 | 0.8394 | 0.8497 | 0.8356 | 0.8172 | 0.3641 | 0.0 | 0.7641 | 0.8184 | 0.6351 | 0.7720 | 0.6222 | 0.7784 | 0.5543 | 0.3494 | 0.5018 | 0.5404 | 0.8295 | 0.7407 | 0.7608 | 0.7580 | 0.7723 | 0.7711 | 0.2966 |
| 0.0249 | 14.4 | 7200 | 0.2265 | 0.6277 | 0.7564 | 0.8279 | nan | 0.8588 | 0.9019 | 0.7445 | 0.8581 | 0.7004 | 0.8924 | 0.7549 | 0.4295 | 0.5960 | 0.6456 | 0.9119 | 0.8410 | 0.8413 | 0.8534 | 0.8380 | 0.8246 | 0.3664 | 0.0 | 0.7653 | 0.8200 | 0.6387 | 0.7719 | 0.6239 | 0.7791 | 0.5555 | 0.3618 | 0.5031 | 0.5431 | 0.8301 | 0.7412 | 0.7613 | 0.7592 | 0.7726 | 0.7750 | 0.2969 |
| 0.0696 | 14.44 | 7220 | 0.2261 | 0.6251 | 0.7524 | 0.8273 | nan | 0.8546 | 0.9017 | 0.7450 | 0.8596 | 0.7046 | 0.8882 | 0.7522 | 0.3870 | 0.5925 | 0.6459 | 0.9097 | 0.8463 | 0.8409 | 0.8488 | 0.8384 | 0.8196 | 0.3559 | 0.0 | 0.7635 | 0.8198 | 0.6386 | 0.7722 | 0.6209 | 0.7789 | 0.5533 | 0.3322 | 0.5011 | 0.5428 | 0.8294 | 0.7415 | 0.7607 | 0.7582 | 0.7736 | 0.7719 | 0.2937 |
| 0.0275 | 14.48 | 7240 | 0.2313 | 0.6257 | 0.7528 | 0.8277 | nan | 0.8543 | 0.9035 | 0.7401 | 0.8612 | 0.7019 | 0.8917 | 0.7480 | 0.3991 | 0.5864 | 0.6421 | 0.9076 | 0.8444 | 0.8442 | 0.8526 | 0.8423 | 0.8194 | 0.3585 | 0.0 | 0.7642 | 0.8200 | 0.6380 | 0.7729 | 0.6208 | 0.7786 | 0.5533 | 0.3423 | 0.4979 | 0.5409 | 0.8290 | 0.7413 | 0.7612 | 0.7601 | 0.7746 | 0.7720 | 0.2953 |
| 0.0275 | 14.52 | 7260 | 0.2287 | 0.6262 | 0.7541 | 0.8272 | nan | 0.8583 | 0.8979 | 0.7486 | 0.8614 | 0.7002 | 0.8887 | 0.7501 | 0.4107 | 0.6033 | 0.6407 | 0.9106 | 0.8440 | 0.8423 | 0.8479 | 0.8377 | 0.8219 | 0.3554 | 0.0 | 0.7642 | 0.8185 | 0.6394 | 0.7725 | 0.6219 | 0.7782 | 0.5540 | 0.3498 | 0.5049 | 0.5400 | 0.8294 | 0.7409 | 0.7605 | 0.7583 | 0.7735 | 0.7729 | 0.2929 |
| 0.0289 | 14.56 | 7280 | 0.2300 | 0.6261 | 0.7551 | 0.8266 | nan | 0.8598 | 0.9003 | 0.7461 | 0.8573 | 0.7020 | 0.8874 | 0.7491 | 0.4181 | 0.5875 | 0.6462 | 0.9131 | 0.8410 | 0.8484 | 0.8535 | 0.8421 | 0.8187 | 0.3665 | 0.0 | 0.7650 | 0.8185 | 0.6386 | 0.7712 | 0.6206 | 0.7776 | 0.5530 | 0.3536 | 0.4989 | 0.5423 | 0.8287 | 0.7406 | 0.7610 | 0.7598 | 0.7737 | 0.7712 | 0.2960 |
| 0.0344 | 14.6 | 7300 | 0.2288 | 0.6249 | 0.7539 | 0.8251 | nan | 0.8592 | 0.8959 | 0.7598 | 0.8538 | 0.7016 | 0.8922 | 0.7515 | 0.4125 | 0.5852 | 0.6357 | 0.9101 | 0.8403 | 0.8440 | 0.8519 | 0.8393 | 0.8194 | 0.3634 | 0.0 | 0.7626 | 0.8163 | 0.6421 | 0.7700 | 0.6202 | 0.7781 | 0.5519 | 0.3484 | 0.4966 | 0.5370 | 0.8285 | 0.7408 | 0.7605 | 0.7584 | 0.7721 | 0.7707 | 0.2945 |
| 0.0346 | 14.64 | 7320 | 0.2338 | 0.6268 | 0.7566 | 0.8269 | nan | 0.8557 | 0.9050 | 0.7529 | 0.8560 | 0.7025 | 0.8915 | 0.7463 | 0.4320 | 0.5965 | 0.6417 | 0.9079 | 0.8469 | 0.8410 | 0.8546 | 0.8412 | 0.8252 | 0.3643 | 0.0 | 0.7642 | 0.8193 | 0.6412 | 0.7712 | 0.6191 | 0.7787 | 0.5509 | 0.3614 | 0.5017 | 0.5405 | 0.8284 | 0.7421 | 0.7605 | 0.7596 | 0.7733 | 0.7743 | 0.2955 |
| 0.0307 | 14.68 | 7340 | 0.2271 | 0.6265 | 0.7557 | 0.8265 | nan | 0.8564 | 0.9005 | 0.7511 | 0.8552 | 0.7005 | 0.8950 | 0.7497 | 0.4260 | 0.5976 | 0.6397 | 0.9100 | 0.8436 | 0.8409 | 0.8508 | 0.8406 | 0.8237 | 0.3651 | 0.0 | 0.7637 | 0.8184 | 0.6400 | 0.7708 | 0.6203 | 0.7788 | 0.5515 | 0.3581 | 0.5018 | 0.5393 | 0.8290 | 0.7419 | 0.7607 | 0.7594 | 0.7733 | 0.7741 | 0.2952 |
| 0.0336 | 14.72 | 7360 | 0.2285 | 0.6264 | 0.7548 | 0.8272 | nan | 0.8554 | 0.9010 | 0.7462 | 0.8625 | 0.7020 | 0.8938 | 0.7406 | 0.4302 | 0.5991 | 0.6354 | 0.9109 | 0.8508 | 0.8367 | 0.8526 | 0.8378 | 0.8187 | 0.3578 | 0.0 | 0.7643 | 0.8186 | 0.6385 | 0.7732 | 0.6186 | 0.7790 | 0.5506 | 0.3647 | 0.5021 | 0.5378 | 0.8292 | 0.7416 | 0.7589 | 0.7596 | 0.7736 | 0.7720 | 0.2933 |
| 0.0341 | 14.76 | 7380 | 0.2335 | 0.6266 | 0.7552 | 0.8276 | nan | 0.8532 | 0.9024 | 0.7469 | 0.8566 | 0.6991 | 0.8969 | 0.7516 | 0.4132 | 0.5960 | 0.6437 | 0.9093 | 0.8471 | 0.8419 | 0.8524 | 0.8377 | 0.8259 | 0.3640 | 0.0 | 0.7633 | 0.8190 | 0.6388 | 0.7714 | 0.6215 | 0.7792 | 0.5524 | 0.3511 | 0.5017 | 0.5419 | 0.8290 | 0.7430 | 0.7612 | 0.7601 | 0.7740 | 0.7756 | 0.2950 |
| 0.0321 | 14.8 | 7400 | 0.2308 | 0.6264 | 0.7547 | 0.8276 | nan | 0.8541 | 0.9008 | 0.7331 | 0.8581 | 0.7018 | 0.8939 | 0.7496 | 0.4216 | 0.5962 | 0.6428 | 0.9152 | 0.8488 | 0.8427 | 0.8529 | 0.8394 | 0.8179 | 0.3604 | 0.0 | 0.7644 | 0.8196 | 0.6338 | 0.7715 | 0.6202 | 0.7798 | 0.5516 | 0.3569 | 0.5020 | 0.5416 | 0.8294 | 0.7426 | 0.7612 | 0.7601 | 0.7747 | 0.7718 | 0.2938 |
| 0.0783 | 14.84 | 7420 | 0.2278 | 0.6258 | 0.7540 | 0.8272 | nan | 0.8556 | 0.9037 | 0.7446 | 0.8563 | 0.7031 | 0.8952 | 0.7497 | 0.3995 | 0.6044 | 0.6390 | 0.9105 | 0.8453 | 0.8387 | 0.8480 | 0.8397 | 0.8223 | 0.3630 | 0.0 | 0.7644 | 0.8195 | 0.6383 | 0.7710 | 0.6198 | 0.7802 | 0.5510 | 0.3419 | 0.5047 | 0.5393 | 0.8294 | 0.7428 | 0.7609 | 0.7590 | 0.7742 | 0.7735 | 0.2945 |
| 0.0259 | 14.88 | 7440 | 0.2288 | 0.6263 | 0.7549 | 0.8268 | nan | 0.8559 | 0.8999 | 0.7459 | 0.8566 | 0.7012 | 0.8953 | 0.7488 | 0.4195 | 0.6040 | 0.6386 | 0.9119 | 0.8451 | 0.8358 | 0.8513 | 0.8396 | 0.8231 | 0.3611 | 0.0 | 0.7638 | 0.8185 | 0.6384 | 0.7710 | 0.6206 | 0.7792 | 0.5513 | 0.3552 | 0.5042 | 0.5389 | 0.8296 | 0.7422 | 0.7600 | 0.7592 | 0.7734 | 0.7737 | 0.2937 |
| 0.0353 | 14.92 | 7460 | 0.2265 | 0.6264 | 0.7550 | 0.8269 | nan | 0.8508 | 0.9005 | 0.7393 | 0.8568 | 0.7007 | 0.8919 | 0.7503 | 0.4240 | 0.6047 | 0.6397 | 0.9123 | 0.8487 | 0.8358 | 0.8533 | 0.8386 | 0.8246 | 0.3624 | 0.0 | 0.7618 | 0.8188 | 0.6362 | 0.7709 | 0.6215 | 0.7790 | 0.5519 | 0.3581 | 0.5051 | 0.5396 | 0.8293 | 0.7418 | 0.7596 | 0.7598 | 0.7734 | 0.7745 | 0.2943 |
| 0.0386 | 14.96 | 7480 | 0.2278 | 0.6261 | 0.7548 | 0.8261 | nan | 0.8536 | 0.8987 | 0.7446 | 0.8552 | 0.7021 | 0.8904 | 0.7532 | 0.4292 | 0.6033 | 0.6383 | 0.9109 | 0.8457 | 0.8402 | 0.8466 | 0.8366 | 0.8216 | 0.3618 | 0.0 | 0.7620 | 0.8177 | 0.6378 | 0.7700 | 0.6215 | 0.7788 | 0.5515 | 0.3583 | 0.5046 | 0.5391 | 0.8293 | 0.7418 | 0.7605 | 0.7575 | 0.7728 | 0.7725 | 0.2940 |
| 0.0279 | 15.0 | 7500 | 0.2292 | 0.6258 | 0.7547 | 0.8256 | nan | 0.8561 | 0.8974 | 0.7540 | 0.8553 | 0.7026 | 0.8913 | 0.7525 | 0.4251 | 0.6014 | 0.6374 | 0.9094 | 0.8452 | 0.8343 | 0.8506 | 0.8287 | 0.8232 | 0.3662 | 0.0 | 0.7625 | 0.8171 | 0.6400 | 0.7700 | 0.6211 | 0.7788 | 0.5512 | 0.3564 | 0.5032 | 0.5381 | 0.8294 | 0.7412 | 0.7591 | 0.7579 | 0.7705 | 0.7729 | 0.2956 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"background",
"hat",
"hair",
"sunglasses",
"upper-clothes",
"skirt",
"pants",
"dress",
"belt",
"left-shoe",
"right-shoe",
"face",
"left-leg",
"right-leg",
"left-arm",
"right-arm",
"bag",
"scarf"
] |
zho/segformer-finetuned-sidewalk-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-sidewalk-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6468
- Mean Iou: 0.2931
- Mean Accuracy: 0.3665
- Overall Accuracy: 0.8121
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.6505
- Accuracy Flat-sidewalk: 0.9345
- Accuracy Flat-crosswalk: 0.9011
- Accuracy Flat-cyclinglane: 0.7895
- Accuracy Flat-parkingdriveway: 0.2382
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.4519
- Accuracy Human-person: 0.5536
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9509
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.7507
- Accuracy Vehicle-caravan: nan
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8681
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.6107
- Accuracy Construction-fenceguardrail: 0.3192
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.5156
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9183
- Accuracy Nature-terrain: 0.8478
- Accuracy Sky: 0.9246
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.1083
- Accuracy Void-static: 0.3940
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.5472
- Iou Flat-sidewalk: 0.8329
- Iou Flat-crosswalk: 0.7961
- Iou Flat-cyclinglane: 0.5266
- Iou Flat-parkingdriveway: 0.2013
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.2863
- Iou Human-person: 0.3887
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7872
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.4759
- Iou Vehicle-caravan: nan
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.6992
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.3924
- Iou Construction-fenceguardrail: 0.2614
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.3413
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8182
- Iou Nature-terrain: 0.7517
- Iou Sky: 0.8855
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0963
- Iou Void-static: 0.2896
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Accuracy Construction-bridge | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-fenceguardrail | Accuracy Construction-stairs | Accuracy Construction-tunnel | Accuracy Construction-wall | Accuracy Flat-crosswalk | Accuracy Flat-curb | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Human-person | Accuracy Human-rider | Accuracy Nature-terrain | Accuracy Nature-vegetation | Accuracy Object-pole | Accuracy Object-trafficlight | Accuracy Object-trafficsign | Accuracy Sky | Accuracy Unlabeled | Accuracy Vehicle-bicycle | Accuracy Vehicle-bus | Accuracy Vehicle-car | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Vehicle-motorcycle | Accuracy Vehicle-tramtrain | Accuracy Vehicle-truck | Accuracy Void-dynamic | Accuracy Void-ground | Accuracy Void-static | Accuracy Void-unclear | Iou Construction-bridge | Iou Construction-building | Iou Construction-door | Iou Construction-fenceguardrail | Iou Construction-stairs | Iou Construction-tunnel | Iou Construction-wall | Iou Flat-crosswalk | Iou Flat-curb | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-road | Iou Flat-sidewalk | Iou Human-person | Iou Human-rider | Iou Nature-terrain | Iou Nature-vegetation | Iou Object-pole | Iou Object-trafficlight | Iou Object-trafficsign | Iou Sky | Iou Unlabeled | Iou Vehicle-bicycle | Iou Vehicle-bus | Iou Vehicle-car | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Vehicle-motorcycle | Iou Vehicle-tramtrain | Iou Vehicle-truck | Iou Void-dynamic | Iou Void-ground | Iou Void-static | Iou Void-unclear | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:-----:|:-----:|:----------------------------:|:------------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:----------------------:|:---------------------:|:--------------------:|:-----------------------:|:--------------------------:|:--------------------:|:----------------------------:|:---------------------------:|:------------:|:------------------:|:------------------------:|:--------------------:|:--------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:----------------------:|:---------------------:|:--------------------:|:--------------------:|:---------------------:|:-----------------------:|:-------------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:-----------------:|:----------------:|:---------------:|:------------------:|:---------------------:|:---------------:|:-----------------------:|:----------------------:|:-------:|:-------------:|:-------------------:|:---------------:|:---------------:|:-------------------:|:----------------------:|:----------------------:|:---------------------:|:-----------------:|:----------------:|:---------------:|:---------------:|:----------------:|:---------------:|:-------------:|:--------:|:----------------:|
| 2.5227 | 1.0 | 107 | 0.0 | 0.8334 | 0.0 | 0.0 | 0.0 | nan | 0.0000 | 0.0 | 0.0 | 0.0416 | 0.0001 | nan | 0.5390 | 0.9293 | 0.0 | 0.0 | 0.2834 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.5133 | nan | 0.0 | 0.0 | 0.8875 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4909 | 0.0 | 0.0 | 0.0 | nan | 0.0000 | 0.0 | 0.0 | 0.0411 | 0.0001 | nan | 0.3808 | 0.7051 | 0.0 | 0.0 | 0.2534 | 0.5904 | 0.0 | 0.0 | 0.0 | 0.5116 | nan | 0.0 | 0.0 | 0.5403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7749 | 0.1548 | 0.1098 | 0.6606 |
| 1.7544 | 2.0 | 214 | 0.0 | 0.8141 | 0.0 | 0.0 | 0.0 | nan | 0.0024 | 0.0 | 0.0 | 0.2967 | 0.0009 | nan | 0.6039 | 0.9275 | 0.0 | 0.0 | 0.8832 | 0.8157 | 0.0 | 0.0 | 0.0 | 0.7111 | nan | 0.0 | 0.0 | 0.9009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5356 | 0.0 | 0.0 | 0.0 | nan | 0.0024 | 0.0 | 0.0 | 0.2702 | 0.0009 | nan | 0.4296 | 0.7139 | 0.0 | 0.0 | 0.5124 | 0.6367 | 0.0 | 0.0 | 0.0 | 0.7016 | nan | 0.0 | 0.0 | 0.5653 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4883 | 0.1861 | 0.1365 | 0.6975 |
| 1.523 | 3.0 | 321 | 0.0 | 0.8975 | 0.0 | 0.0 | 0.0 | nan | 0.0009 | 0.0 | 0.0003 | 0.5309 | 0.0063 | nan | 0.4954 | 0.9432 | 0.0 | 0.0 | 0.8476 | 0.8378 | 0.0 | 0.0 | 0.0 | 0.7705 | nan | 0.0 | 0.0 | 0.8567 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5155 | 0.0 | 0.0 | 0.0 | nan | 0.0009 | 0.0 | 0.0003 | 0.4164 | 0.0062 | nan | 0.4161 | 0.7219 | 0.0 | 0.0 | 0.5408 | 0.6765 | 0.0 | 0.0 | 0.0 | 0.7594 | nan | 0.0 | 0.0 | 0.6132 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2403 | 0.1934 | 0.1459 | 0.7123 |
| 1.2744 | 4.0 | 428 | 0.0 | 0.8602 | 0.0 | 0.0 | 0.0 | nan | 0.0009 | 0.0 | 0.0015 | 0.4753 | 0.0069 | nan | 0.3731 | 0.9792 | 0.0 | 0.0 | 0.7062 | 0.8948 | 0.0 | 0.0 | 0.0 | 0.7488 | nan | 0.0 | 0.0 | 0.8857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5565 | 0.0 | 0.0 | 0.0 | nan | 0.0009 | 0.0 | 0.0015 | 0.4431 | 0.0068 | nan | 0.3413 | 0.6728 | 0.0 | 0.0 | 0.5473 | 0.6788 | 0.0 | 0.0 | 0.0 | 0.7389 | nan | 0.0 | 0.0 | 0.6552 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1870 | 0.1854 | 0.1451 | 0.7068 |
| 1.1579 | 5.0 | 535 | 0.0 | 0.7388 | 0.0 | 0.0 | 0.0 | nan | 0.0008 | 0.0 | 0.0040 | 0.6937 | 0.0681 | nan | 0.5908 | 0.9639 | 0.0 | 0.0 | 0.5152 | 0.9429 | 0.0 | 0.0 | 0.0 | 0.8365 | nan | 0.0 | 0.0 | 0.9525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5687 | 0.0 | 0.0 | 0.0 | nan | 0.0008 | 0.0 | 0.0039 | 0.5783 | 0.0606 | nan | 0.4884 | 0.7434 | 0.0 | 0.0 | 0.4397 | 0.6660 | 0.0 | 0.0 | 0.0 | 0.8076 | nan | 0.0 | 0.0 | 0.5868 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0435 | 0.1971 | 0.1545 | 0.7340 |
| 1.0928 | 6.0 | 642 | 0.0 | 0.8126 | 0.0 | 0.0 | 0.0 | nan | 0.0127 | 0.1193 | 0.0326 | 0.7981 | 0.1432 | nan | 0.6767 | 0.9152 | 0.0 | 0.0 | 0.8393 | 0.8990 | 0.0115 | 0.0 | 0.0 | 0.8664 | nan | 0.0 | 0.0 | 0.9427 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0048 | 0.0 | 0.0 | 0.6031 | 0.0 | 0.0 | 0.0 | nan | 0.0126 | 0.1193 | 0.0298 | 0.6282 | 0.1206 | nan | 0.5205 | 0.7688 | 0.0 | 0.0 | 0.6037 | 0.6827 | 0.0113 | 0.0 | 0.0 | 0.8312 | nan | 0.0 | 0.0 | 0.5963 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0047 | 0.0 | 0.9777 | 0.2211 | 0.1729 | 0.7531 |
| 1.0371 | 7.0 | 749 | 0.0 | 0.8108 | 0.0 | 0.0 | 0.0 | nan | 0.0145 | 0.2878 | 0.0499 | 0.7673 | 0.1179 | nan | 0.5506 | 0.9510 | 0.0 | 0.0 | 0.8458 | 0.8788 | 0.0158 | 0.0 | 0.0 | 0.8125 | nan | 0.0 | 0.0 | 0.9351 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.5687 | 0.0 | 0.0 | 0.0 | nan | 0.0143 | 0.2871 | 0.0416 | 0.5650 | 0.1067 | nan | 0.4769 | 0.7722 | 0.0 | 0.0 | 0.5986 | 0.6729 | 0.0154 | 0.0 | 0.0 | 0.7949 | nan | 0.0 | 0.0 | 0.5910 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.9290 | 0.2200 | 0.1722 | 0.7457 |
| 0.9645 | 8.0 | 856 | 0.0 | 0.8913 | 0.0 | 0.0 | 0.0 | nan | 0.0530 | 0.3879 | 0.1304 | 0.8027 | 0.1244 | nan | 0.5733 | 0.9459 | 0.0 | 0.0 | 0.8434 | 0.8598 | 0.1344 | 0.0 | 0.0 | 0.8596 | nan | 0.0 | 0.0 | 0.9192 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0196 | 0.0 | 0.0 | 0.5899 | 0.0 | 0.0 | 0.0 | nan | 0.0518 | 0.3362 | 0.0872 | 0.6482 | 0.1137 | nan | 0.4887 | 0.7610 | 0.0 | 0.0 | 0.6153 | 0.7148 | 0.1144 | 0.0 | 0.0 | 0.8278 | nan | 0.0 | 0.0 | 0.6957 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0192 | 0.0 | 0.8855 | 0.2358 | 0.1895 | 0.7593 |
| 0.9171 | 9.0 | 963 | 0.0 | 0.8681 | 0.0 | 0.0 | 0.0 | nan | 0.2267 | 0.2895 | 0.1798 | 0.7741 | 0.2153 | nan | 0.6580 | 0.9264 | 0.0009 | 0.0 | 0.7788 | 0.8887 | 0.1800 | 0.0 | 0.0 | 0.8648 | nan | 0.0 | 0.0 | 0.9422 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0689 | 0.0 | 0.0 | 0.6112 | 0.0 | 0.0 | 0.0 | nan | 0.2013 | 0.2859 | 0.1173 | 0.6393 | 0.1769 | nan | 0.5251 | 0.7761 | 0.0009 | 0.0 | 0.6220 | 0.7328 | 0.1391 | 0.0 | 0.0 | 0.8329 | nan | 0.0 | 0.0 | 0.6550 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0622 | 0.0 | 0.8439 | 0.2457 | 0.1993 | 0.7676 |
| 0.8373 | 10.0 | 1070 | 0.0 | 0.8391 | 0.0 | 0.0000 | 0.0 | nan | 0.4409 | 0.3294 | 0.1364 | 0.7858 | 0.1023 | nan | 0.6096 | 0.9644 | 0.0756 | 0.0 | 0.6853 | 0.8993 | 0.1614 | 0.0 | 0.0 | 0.8876 | nan | 0.0 | 0.0 | 0.9315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0874 | 0.0 | 0.0 | 0.6203 | 0.0 | 0.0000 | 0.0 | nan | 0.2914 | 0.3283 | 0.1050 | 0.6096 | 0.0951 | nan | 0.5427 | 0.7678 | 0.0740 | 0.0 | 0.5665 | 0.7403 | 0.1321 | 0.0 | 0.0 | 0.8500 | nan | 0.0 | 0.0 | 0.6756 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0767 | 0.0 | 0.8317 | 0.2480 | 0.2024 | 0.7710 |
| 0.8375 | 11.0 | 1177 | 0.0 | 0.8248 | 0.0 | 0.0000 | 0.0 | nan | 0.3739 | 0.3951 | 0.2834 | 0.7626 | 0.1777 | nan | 0.4734 | 0.9515 | 0.1276 | 0.0 | 0.7447 | 0.9010 | 0.1872 | 0.0 | 0.0 | 0.9018 | nan | 0.0 | 0.0 | 0.9378 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0591 | 0.0 | 0.0 | 0.6017 | 0.0 | 0.0000 | 0.0 | nan | 0.2379 | 0.3570 | 0.1503 | 0.6432 | 0.1533 | nan | 0.4411 | 0.7743 | 0.1234 | 0.0 | 0.5987 | 0.7041 | 0.1362 | 0.0 | 0.0 | 0.8576 | nan | 0.0 | 0.0 | 0.6553 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0518 | 0.0 | 0.8539 | 0.2532 | 0.2027 | 0.7577 |
| 0.8014 | 12.0 | 1284 | 0.0 | 0.8213 | 0.0 | 0.0002 | 0.0 | nan | 0.4219 | 0.5045 | 0.3125 | 0.8556 | 0.2246 | nan | 0.6546 | 0.8896 | 0.2522 | 0.0 | 0.7563 | 0.9184 | 0.2091 | 0.0 | 0.0 | 0.8852 | nan | 0.0 | 0.0 | 0.9338 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1150 | 0.0 | 0.0 | 0.6244 | 0.0 | 0.0002 | 0.0 | nan | 0.2819 | 0.4181 | 0.1371 | 0.5936 | 0.1892 | nan | 0.5497 | 0.7848 | 0.2332 | 0.0 | 0.6418 | 0.7339 | 0.1582 | 0.0 | 0.0 | 0.8537 | nan | 0.0 | 0.0 | 0.6887 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0936 | 0.0 | 0.7821 | 0.2736 | 0.2182 | 0.7698 |
| 0.7598 | 13.0 | 1391 | 0.0 | 0.7520 | 0.0 | 0.0 | 0.0 | nan | 0.5035 | 0.5241 | 0.2865 | 0.8708 | 0.1666 | nan | 0.6404 | 0.8870 | 0.2805 | 0.0 | 0.7662 | 0.9230 | 0.3694 | 0.0 | 0.0 | 0.8932 | nan | 0.0 | 0.0 | 0.9492 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2009 | 0.0 | 0.0 | 0.6246 | 0.0 | 0.0 | 0.0 | nan | 0.3111 | 0.4894 | 0.1504 | 0.5451 | 0.1555 | nan | 0.5227 | 0.7890 | 0.2569 | 0.0 | 0.6171 | 0.7275 | 0.1555 | 0.0 | 0.0 | 0.8569 | nan | 0.0 | 0.0 | 0.6889 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1265 | 0.0 | 0.7959 | 0.2817 | 0.2193 | 0.7653 |
| 0.7333 | 14.0 | 1498 | 0.0 | 0.7852 | 0.0 | 0.0005 | 0.0 | nan | 0.6099 | 0.5852 | 0.3890 | 0.8211 | 0.2961 | nan | 0.6321 | 0.9313 | 0.3684 | 0.0 | 0.6342 | 0.9311 | 0.2435 | 0.0 | 0.0 | 0.8845 | nan | 0.0 | 0.0 | 0.9298 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1712 | 0.0 | 0.0 | 0.6312 | 0.0 | 0.0005 | 0.0 | nan | 0.2920 | 0.4813 | 0.1830 | 0.6730 | 0.2504 | nan | 0.5405 | 0.8112 | 0.3183 | 0.0 | 0.5574 | 0.7360 | 0.1553 | 0.0 | 0.0 | 0.8543 | nan | 0.0 | 0.0 | 0.7520 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1219 | 0.0 | 0.7463 | 0.2879 | 0.2300 | 0.7815 |
| 0.7128 | 15.0 | 1605 | 0.0 | 0.7547 | 0.0 | 0.0126 | 0.0 | nan | 0.6715 | 0.6477 | 0.2623 | 0.8694 | 0.1131 | 0.0 | 0.7576 | 0.9015 | 0.5131 | 0.0 | 0.8870 | 0.8915 | 0.3275 | 0.0 | 0.0 | 0.9177 | nan | 0.0008 | 0.0 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2520 | 0.0 | 0.0 | 0.5980 | 0.0 | 0.0126 | 0.0 | nan | 0.4000 | 0.3362 | 0.1721 | 0.4706 | 0.1069 | 0.0 | 0.6593 | 0.8212 | 0.2914 | 0.0 | 0.6797 | 0.7574 | 0.1981 | 0.0 | 0.0 | 0.8704 | nan | 0.0008 | 0.0 | 0.6431 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1881 | 0.0 | 0.7557 | 0.2942 | 0.2184 | 0.7786 |
| 0.6885 | 16.0 | 1712 | 0.0 | 0.8416 | 0.0 | 0.0086 | 0.0 | nan | 0.5907 | 0.7737 | 0.3100 | 0.7765 | 0.1341 | 0.0 | 0.6753 | 0.9522 | 0.5143 | 0.0 | 0.8466 | 0.8795 | 0.2986 | 0.0 | 0.0 | 0.9155 | nan | 0.0071 | 0.0 | 0.9178 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3074 | 0.0 | 0.0 | 0.6078 | 0.0 | 0.0086 | 0.0 | nan | 0.4106 | 0.3222 | 0.1815 | 0.6082 | 0.1171 | 0.0 | 0.6206 | 0.8253 | 0.2609 | 0.0 | 0.6832 | 0.7692 | 0.1957 | 0.0 | 0.0 | 0.8691 | nan | 0.0071 | 0.0 | 0.6951 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2366 | 0.0 | 0.7262 | 0.2954 | 0.2248 | 0.7882 |
| 0.6627 | 17.0 | 1819 | 0.0 | 0.7096 | 0.0 | 0.0181 | 0.0 | nan | 0.7189 | 0.6110 | 0.3654 | 0.8153 | 0.1210 | 0.0 | 0.7156 | 0.9114 | 0.5562 | 0.0 | 0.8788 | 0.9226 | 0.3042 | 0.0 | 0.0 | 0.9273 | nan | 0.0002 | 0.0 | 0.9080 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3069 | 0.0 | 0.0 | 0.5809 | 0.0 | 0.0179 | 0.0 | nan | 0.3488 | 0.3724 | 0.2149 | 0.5069 | 0.1137 | 0.0 | 0.6477 | 0.8079 | 0.2559 | 0.0 | 0.7100 | 0.7595 | 0.1837 | 0.0 | 0.0 | 0.8734 | nan | 0.0002 | 0.0 | 0.7016 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2201 | 0.0 | 0.7429 | 0.2967 | 0.2217 | 0.7786 |
| 0.6954 | 18.0 | 1926 | 0.0 | 0.8919 | 0.0 | 0.0031 | 0.0 | nan | 0.5763 | 0.5167 | 0.3013 | 0.7439 | 0.1958 | 0.0 | 0.7281 | 0.9530 | 0.4080 | 0.0 | 0.8497 | 0.8852 | 0.2874 | 0.0 | 0.0 | 0.8563 | nan | 0.0056 | 0.0 | 0.9222 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3154 | 0.0 | 0.0 | 0.5730 | 0.0 | 0.0031 | 0.0 | nan | 0.3625 | 0.4887 | 0.1980 | 0.6038 | 0.1714 | 0.0 | 0.6684 | 0.8291 | 0.2599 | 0.0 | 0.7176 | 0.7922 | 0.2045 | 0.0 | 0.0 | 0.8322 | nan | 0.0056 | 0.0 | 0.6432 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2459 | 0.0 | 0.6984 | 0.2861 | 0.2303 | 0.7947 |
| 0.6592 | 19.0 | 2033 | 0.0 | 0.8433 | 0.0 | 0.0496 | 0.0 | nan | 0.5622 | 0.6415 | 0.3618 | 0.7738 | 0.1797 | 0.0 | 0.6474 | 0.9741 | 0.6289 | 0.0 | 0.6784 | 0.9279 | 0.3132 | 0.0 | 0.0 | 0.8985 | nan | 0.0019 | 0.0 | 0.9235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2431 | 0.0 | 0.0 | 0.6155 | 0.0 | 0.0493 | 0.0 | nan | 0.3959 | 0.5424 | 0.2210 | 0.6568 | 0.1504 | 0.0 | 0.6217 | 0.8227 | 0.2586 | 0.0 | 0.6198 | 0.7658 | 0.2117 | 0.0 | 0.0 | 0.8686 | nan | 0.0019 | 0.0 | 0.6541 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1919 | 0.0 | 0.6999 | 0.2924 | 0.2318 | 0.7924 |
| 0.6682 | 20.0 | 2140 | 0.0 | 0.8071 | 0.0 | 0.0796 | 0.0 | nan | 0.5870 | 0.4899 | 0.4985 | 0.7638 | 0.2075 | 0.0 | 0.7505 | 0.9346 | 0.6505 | 0.0 | 0.8297 | 0.9187 | 0.3668 | 0.0 | 0.0 | 0.9157 | nan | 0.0082 | 0.0 | 0.9407 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2163 | 0.0 | 0.0 | 0.6144 | 0.0 | 0.0748 | 0.0 | nan | 0.3846 | 0.4807 | 0.2584 | 0.6083 | 0.1892 | 0.0 | 0.6719 | 0.8371 | 0.2436 | 0.0 | 0.7173 | 0.7842 | 0.1994 | 0.0 | 0.0 | 0.8798 | nan | 0.0082 | 0.0 | 0.6331 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1719 | 0.0 | 0.6756 | 0.3020 | 0.2351 | 0.7976 |
| 0.6249 | 21.0 | 2247 | 0.6678 | 0.2540 | 0.3195 | 0.7981 | nan | 0.6625 | 0.9563 | 0.8027 | 0.7398 | 0.1695 | 0.0 | 0.4050 | 0.7541 | 0.0 | 0.9306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0473 | nan | 0.0 | 0.8526 | 0.0 | 0.6384 | 0.1242 | 0.0 | nan | 0.0 | 0.3671 | 0.0 | 0.0 | 0.9185 | 0.7725 | 0.8706 | 0.0 | 0.0 | 0.2129 | 0.0 | nan | 0.5746 | 0.8111 | 0.7593 | 0.5842 | 0.1557 | 0.0 | 0.2176 | 0.3250 | 0.0 | 0.7386 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0473 | nan | 0.0 | 0.6693 | 0.0 | 0.3844 | 0.1188 | 0.0 | nan | 0.0 | 0.2479 | 0.0 | 0.0 | 0.7914 | 0.7105 | 0.8285 | 0.0 | 0.0 | 0.1638 | 0.0 |
| 0.6278 | 22.0 | 2354 | 0.6800 | 0.2513 | 0.3216 | 0.7949 | nan | 0.6354 | 0.9558 | 0.8656 | 0.7557 | 0.1401 | 0.0 | 0.4619 | 0.6943 | 0.0 | 0.9333 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0315 | nan | 0.0 | 0.8031 | 0.0 | 0.6422 | 0.1074 | 0.0 | nan | 0.0 | 0.4139 | 0.0 | 0.0 | 0.9114 | 0.8658 | 0.8302 | 0.0 | 0.0 | 0.2446 | 0.0 | nan | 0.5527 | 0.8215 | 0.7864 | 0.5887 | 0.1346 | 0.0 | 0.2336 | 0.3191 | 0.0 | 0.7265 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0315 | nan | 0.0 | 0.6458 | 0.0 | 0.3638 | 0.1048 | 0.0 | nan | 0.0 | 0.2338 | 0.0 | 0.0 | 0.7831 | 0.7282 | 0.8001 | 0.0 | 0.0 | 0.1868 | 0.0 |
| 0.6375 | 23.0 | 2461 | 0.6680 | 0.2563 | 0.3186 | 0.7976 | nan | 0.6355 | 0.9595 | 0.8844 | 0.6403 | 0.2228 | 0.0 | 0.3772 | 0.5620 | 0.0 | 0.9094 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0640 | nan | 0.0 | 0.8615 | 0.0 | 0.6510 | 0.1498 | 0.0 | nan | 0.0 | 0.3834 | 0.0 | 0.0 | 0.9024 | 0.8874 | 0.8627 | 0.0 | 0.0 | 0.2419 | 0.0 | nan | 0.5548 | 0.8086 | 0.7729 | 0.5236 | 0.2018 | 0.0 | 0.2287 | 0.3137 | 0.0 | 0.7398 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0634 | nan | 0.0 | 0.6603 | 0.0 | 0.3896 | 0.1381 | 0.0 | nan | 0.0 | 0.2666 | 0.0 | 0.0 | 0.7881 | 0.7394 | 0.8256 | 0.0 | 0.0 | 0.1871 | 0.0 |
| 0.6202 | 24.0 | 2568 | 0.6866 | 0.2618 | 0.3236 | 0.7961 | nan | 0.6075 | 0.9674 | 0.8360 | 0.6102 | 0.1879 | 0.0 | 0.4285 | 0.5972 | 0.0 | 0.9180 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1500 | nan | 0.0 | 0.8830 | 0.0 | 0.6661 | 0.1963 | 0.0 | nan | 0.0 | 0.4180 | 0.0 | 0.0 | 0.8918 | 0.8483 | 0.8660 | 0.0 | 0.0 | 0.2840 | 0.0 | nan | 0.5428 | 0.7997 | 0.7679 | 0.5062 | 0.1644 | 0.0 | 0.2289 | 0.3309 | 0.0 | 0.7596 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1473 | nan | 0.0 | 0.6670 | 0.0 | 0.4004 | 0.1767 | 0.0 | nan | 0.0 | 0.2836 | 0.0 | 0.0 | 0.8076 | 0.7619 | 0.8236 | 0.0 | 0.0 | 0.2079 | 0.0 |
| 0.5627 | 25.0 | 2675 | 0.6950 | 0.2551 | 0.3248 | 0.7883 | nan | 0.6233 | 0.9526 | 0.7145 | 0.7187 | 0.1813 | 0.0 | 0.3959 | 0.7039 | 0.0 | 0.9160 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1183 | nan | 0.0 | 0.8342 | 0.0 | 0.5499 | 0.2476 | 0.0 | nan | 0.0 | 0.4821 | 0.0 | 0.0 | 0.8725 | 0.8618 | 0.8633 | 0.0 | 0.0 | 0.3577 | 0.0 | nan | 0.5503 | 0.7925 | 0.6705 | 0.5845 | 0.1689 | 0.0 | 0.2198 | 0.3385 | 0.0 | 0.7322 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1174 | nan | 0.0 | 0.6527 | 0.0 | 0.3227 | 0.2119 | 0.0 | nan | 0.0 | 0.2422 | 0.0 | 0.0 | 0.7923 | 0.7260 | 0.8255 | 0.0 | 0.0 | 0.2167 | 0.0 |
| 0.5623 | 26.0 | 2782 | 0.6558 | 0.2686 | 0.3385 | 0.8010 | nan | 0.6338 | 0.9493 | 0.8134 | 0.7256 | 0.1979 | 0.0 | 0.4685 | 0.7518 | 0.0 | 0.9364 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2286 | nan | 0.0 | 0.8577 | 0.0 | 0.5809 | 0.2585 | 0.0 | nan | 0.0 | 0.4459 | 0.0 | 0.0 | 0.8951 | 0.8978 | 0.8844 | 0.0 | 0.0192 | 0.2882 | 0.0 | nan | 0.5476 | 0.8200 | 0.7429 | 0.5770 | 0.1837 | 0.0 | 0.2364 | 0.3743 | 0.0 | 0.7396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2160 | nan | 0.0 | 0.6671 | 0.0 | 0.3646 | 0.2093 | 0.0 | nan | 0.0 | 0.2863 | 0.0 | 0.0 | 0.8023 | 0.7446 | 0.8423 | 0.0 | 0.0185 | 0.2213 | 0.0 |
| 0.5882 | 27.0 | 2889 | 0.6416 | 0.2680 | 0.3280 | 0.8106 | nan | 0.7809 | 0.9232 | 0.8840 | 0.6978 | 0.2374 | 0.0 | 0.4869 | 0.4140 | 0.0 | 0.9242 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2349 | nan | 0.0 | 0.8828 | 0.0 | 0.4518 | 0.2084 | 0.0 | nan | 0.0 | 0.3889 | 0.0 | 0.0 | 0.9206 | 0.8679 | 0.8908 | 0.0 | 0.0 | 0.3012 | 0.0 | nan | 0.6265 | 0.8391 | 0.7529 | 0.6005 | 0.2168 | 0.0 | 0.2675 | 0.2729 | 0.0 | 0.7130 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2226 | nan | 0.0 | 0.6384 | 0.0 | 0.3296 | 0.1915 | 0.0 | nan | 0.0 | 0.2781 | 0.0 | 0.0 | 0.7946 | 0.7640 | 0.8488 | 0.0 | 0.0 | 0.2194 | 0.0 |
| 0.583 | 28.0 | 2996 | 0.6491 | 0.2734 | 0.3417 | 0.8046 | nan | 0.6541 | 0.9605 | 0.8786 | 0.7598 | 0.1411 | 0.0 | 0.4900 | 0.6147 | 0.0 | 0.9432 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3777 | nan | 0.0 | 0.8500 | 0.0 | 0.6605 | 0.2360 | 0.0 | nan | 0.0 | 0.4016 | 0.0 | 0.0 | 0.8786 | 0.8680 | 0.8514 | 0.0 | 0.0716 | 0.2973 | 0.0 | nan | 0.5775 | 0.8311 | 0.7770 | 0.5680 | 0.1357 | 0.0 | 0.2297 | 0.3515 | 0.0 | 0.7436 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3387 | nan | 0.0 | 0.6728 | 0.0 | 0.3790 | 0.2067 | 0.0 | nan | 0.0 | 0.2924 | 0.0 | 0.0 | 0.7950 | 0.7335 | 0.8178 | 0.0 | 0.0647 | 0.2332 | 0.0 |
| 0.5399 | 29.0 | 3103 | 0.6503 | 0.2714 | 0.3437 | 0.8027 | nan | 0.7145 | 0.9360 | 0.8554 | 0.7869 | 0.1668 | 0.0 | 0.4411 | 0.6746 | 0.0 | 0.9579 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3204 | nan | 0.0 | 0.7367 | 0.0 | 0.5891 | 0.2639 | 0.0 | nan | 0.0 | 0.4256 | 0.0 | 0.0 | 0.9170 | 0.9052 | 0.9104 | 0.0 | 0.0836 | 0.3133 | 0.0 | nan | 0.5941 | 0.8288 | 0.7852 | 0.5776 | 0.1580 | 0.0 | 0.2699 | 0.3237 | 0.0 | 0.6720 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2925 | nan | 0.0 | 0.6494 | 0.0 | 0.3454 | 0.2215 | 0.0 | nan | 0.0 | 0.2747 | 0.0 | 0.0 | 0.7852 | 0.7457 | 0.8558 | 0.0 | 0.0774 | 0.2273 | 0.0 |
| 0.5293 | 30.0 | 3210 | 0.6663 | 0.2713 | 0.3395 | 0.8042 | nan | 0.7217 | 0.9318 | 0.8745 | 0.8165 | 0.1842 | 0.0 | 0.3759 | 0.7404 | 0.0 | 0.9308 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3370 | nan | 0.0 | 0.8642 | 0.0 | 0.5393 | 0.2070 | 0.0 | nan | 0.0 | 0.3817 | 0.0 | 0.0 | 0.9030 | 0.7994 | 0.8605 | 0.0 | 0.0136 | 0.3816 | 0.0 | nan | 0.6056 | 0.8248 | 0.7837 | 0.5368 | 0.1772 | 0.0 | 0.2484 | 0.3753 | 0.0 | 0.7504 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3106 | nan | 0.0 | 0.6453 | 0.0 | 0.3263 | 0.1887 | 0.0 | nan | 0.0 | 0.2868 | 0.0 | 0.0 | 0.7993 | 0.7363 | 0.8267 | 0.0 | 0.0130 | 0.2477 | 0.0 |
| 0.5507 | 31.0 | 3317 | 0.6914 | 0.2660 | 0.3290 | 0.7919 | nan | 0.6185 | 0.9644 | 0.6731 | 0.6413 | 0.1576 | 0.0 | 0.3454 | 0.5530 | 0.0 | 0.9147 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5739 | nan | 0.0 | 0.8711 | 0.0 | 0.5920 | 0.3049 | 0.0 | nan | 0.0 | 0.4400 | 0.0 | 0.0 | 0.9047 | 0.7982 | 0.8196 | 0.0 | 0.0041 | 0.3518 | 0.0 | nan | 0.5435 | 0.7910 | 0.6258 | 0.5648 | 0.1434 | 0.0 | 0.2163 | 0.3586 | 0.0 | 0.7603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4199 | nan | 0.0 | 0.6568 | 0.0 | 0.3419 | 0.2427 | 0.0 | nan | 0.0 | 0.2974 | 0.0 | 0.0 | 0.8016 | 0.7234 | 0.7915 | 0.0 | 0.0040 | 0.2283 | 0.0 |
| 0.5602 | 32.0 | 3424 | 0.6411 | 0.2802 | 0.3472 | 0.8101 | nan | 0.6883 | 0.9485 | 0.8664 | 0.7639 | 0.1489 | 0.0 | 0.5011 | 0.6326 | 0.0 | 0.9104 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5617 | nan | 0.0 | 0.8921 | 0.0 | 0.6268 | 0.2051 | 0.0 | nan | 0.0 | 0.3632 | 0.0 | 0.0 | 0.8960 | 0.8552 | 0.8981 | 0.0 | 0.0221 | 0.3290 | 0.0 | nan | 0.5877 | 0.8330 | 0.7807 | 0.5591 | 0.1386 | 0.0 | 0.2813 | 0.3887 | 0.0 | 0.7831 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4225 | nan | 0.0 | 0.6645 | 0.0 | 0.3730 | 0.1864 | 0.0 | nan | 0.0 | 0.2938 | 0.0 | 0.0 | 0.8000 | 0.7455 | 0.8533 | 0.0 | 0.0216 | 0.2553 | 0.0 |
| 0.5403 | 33.0 | 3531 | 0.6642 | 0.2729 | 0.3431 | 0.8017 | nan | 0.7235 | 0.9123 | 0.8745 | 0.7791 | 0.1617 | 0.0 | 0.4874 | 0.5172 | 0.0 | 0.9381 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5344 | nan | 0.0 | 0.8467 | 0.0 | 0.6245 | 0.1614 | 0.0 | nan | 0.0 | 0.4356 | 0.0 | 0.0 | 0.9141 | 0.8488 | 0.9075 | 0.0 | 0.0052 | 0.3063 | 0.0 | nan | 0.5819 | 0.8258 | 0.7765 | 0.5111 | 0.1504 | 0.0 | 0.2836 | 0.3475 | 0.0 | 0.7294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4025 | nan | 0.0 | 0.6638 | 0.0 | 0.3659 | 0.1505 | 0.0 | nan | 0.0 | 0.3046 | 0.0 | 0.0 | 0.7944 | 0.7435 | 0.8602 | 0.0 | 0.0052 | 0.2349 | 0.0 |
| 0.5168 | 34.0 | 3638 | 0.6402 | 0.2810 | 0.3485 | 0.8095 | nan | 0.7201 | 0.9345 | 0.8740 | 0.7414 | 0.1833 | 0.0 | 0.5538 | 0.5357 | 0.0 | 0.9369 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5640 | nan | 0.0 | 0.8776 | 0.0 | 0.5961 | 0.2626 | 0.0 | nan | 0.0 | 0.4488 | 0.0 | 0.0 | 0.9137 | 0.7841 | 0.8616 | 0.0 | 0.0 | 0.3650 | 0.0 | nan | 0.5901 | 0.8362 | 0.7926 | 0.6243 | 0.1652 | 0.0 | 0.2893 | 0.3653 | 0.0 | 0.7485 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4192 | nan | 0.0 | 0.6649 | 0.0 | 0.3752 | 0.2284 | 0.0 | nan | 0.0 | 0.3013 | 0.0 | 0.0 | 0.7971 | 0.7158 | 0.8280 | 0.0 | 0.0 | 0.2491 | 0.0 |
| 0.522 | 35.0 | 3745 | 0.6674 | 0.2743 | 0.3458 | 0.8002 | nan | 0.5916 | 0.9608 | 0.8505 | 0.7896 | 0.1387 | 0.0 | 0.4421 | 0.7247 | 0.0 | 0.9421 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5275 | nan | 0.0 | 0.8349 | 0.0 | 0.5652 | 0.1952 | 0.0 | nan | 0.0 | 0.4814 | 0.0 | 0.0 | 0.9081 | 0.8478 | 0.8898 | 0.0 | 0.0069 | 0.3697 | 0.0 | nan | 0.5251 | 0.8163 | 0.7812 | 0.5692 | 0.1306 | 0.0 | 0.2611 | 0.3743 | 0.0 | 0.7538 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4358 | nan | 0.0 | 0.6717 | 0.0 | 0.3549 | 0.1812 | 0.0 | nan | 0.0 | 0.2812 | 0.0 | 0.0 | 0.7991 | 0.7471 | 0.8535 | 0.0 | 0.0068 | 0.2358 | 0.0 |
| 0.4947 | 36.0 | 3852 | 0.6619 | 0.2752 | 0.3503 | 0.7991 | nan | 0.6020 | 0.9553 | 0.6755 | 0.7710 | 0.2239 | 0.0 | 0.5168 | 0.6551 | 0.0 | 0.9349 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6691 | nan | 0.0 | 0.8095 | 0.0 | 0.7100 | 0.1976 | 0.0 | nan | 0.0 | 0.4787 | 0.0 | 0.0 | 0.8903 | 0.8914 | 0.8668 | 0.0 | 0.0007 | 0.3623 | 0.0 | nan | 0.5291 | 0.8115 | 0.6361 | 0.5873 | 0.1919 | 0.0 | 0.2904 | 0.4117 | 0.0 | 0.7803 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4348 | nan | 0.0 | 0.6702 | 0.0 | 0.3617 | 0.1812 | 0.0 | nan | 0.0 | 0.2947 | 0.0 | 0.0 | 0.8036 | 0.7365 | 0.8339 | 0.0 | 0.0007 | 0.2507 | 0.0 |
| 0.5073 | 37.0 | 3959 | 0.6782 | 0.2792 | 0.3508 | 0.8019 | nan | 0.6843 | 0.9206 | 0.8269 | 0.7932 | 0.2000 | 0.0 | 0.5293 | 0.6061 | 0.0 | 0.9381 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6202 | nan | 0.0 | 0.8888 | 0.0 | 0.6030 | 0.2416 | 0.0 | nan | 0.0 | 0.3985 | 0.0 | 0.0 | 0.8823 | 0.8329 | 0.8918 | 0.0 | 0.0 | 0.3687 | 0.0 | nan | 0.5649 | 0.8204 | 0.7692 | 0.5226 | 0.1828 | 0.0 | 0.3027 | 0.4019 | 0.0 | 0.7543 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4303 | nan | 0.0 | 0.6624 | 0.0 | 0.3595 | 0.2136 | 0.0 | nan | 0.0 | 0.2976 | 0.0 | 0.0 | 0.8008 | 0.7378 | 0.8484 | 0.0 | 0.0 | 0.2667 | 0.0 |
| 0.4788 | 38.0 | 4066 | 0.6694 | 0.2768 | 0.3467 | 0.8020 | nan | 0.6894 | 0.9371 | 0.8519 | 0.7659 | 0.2090 | 0.0 | 0.4494 | 0.5935 | 0.0 | 0.9331 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6390 | nan | 0.0 | 0.9029 | 0.0 | 0.4947 | 0.2279 | 0.0 | nan | 0.0 | 0.4255 | 0.0 | 0.0 | 0.8438 | 0.8985 | 0.8365 | 0.0 | 0.0 | 0.3976 | 0.0 | nan | 0.5567 | 0.8293 | 0.7865 | 0.5419 | 0.1959 | 0.0 | 0.2915 | 0.3960 | 0.0 | 0.7643 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4261 | nan | 0.0 | 0.6474 | 0.0 | 0.3359 | 0.1974 | 0.0 | nan | 0.0 | 0.3047 | 0.0 | 0.0 | 0.7876 | 0.7159 | 0.8095 | 0.0 | 0.0 | 0.2724 | 0.0 |
| 0.4627 | 39.0 | 4173 | 0.6439 | 0.2840 | 0.3563 | 0.8069 | nan | 0.6652 | 0.9293 | 0.8861 | 0.7534 | 0.2398 | 0.0 | 0.5481 | 0.5694 | 0.0 | 0.9305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6488 | nan | 0.0 | 0.8714 | 0.0 | 0.5817 | 0.3115 | 0.0 | nan | 0.0 | 0.4716 | 0.0 | 0.0 | 0.9060 | 0.8645 | 0.8991 | 0.0 | 0.0123 | 0.3128 | 0.0 | nan | 0.5453 | 0.8303 | 0.7889 | 0.5693 | 0.2107 | 0.0 | 0.3035 | 0.3784 | 0.0 | 0.7531 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4437 | nan | 0.0 | 0.6747 | 0.0 | 0.3647 | 0.2365 | 0.0 | nan | 0.0 | 0.3209 | 0.0 | 0.0 | 0.8070 | 0.7501 | 0.8626 | 0.0 | 0.0123 | 0.2376 | 0.0 |
| 0.4775 | 40.0 | 4280 | 0.6679 | 0.2808 | 0.3499 | 0.8051 | nan | 0.6127 | 0.9570 | 0.8742 | 0.8046 | 0.1980 | 0.0 | 0.4223 | 0.4104 | 0.0 | 0.8918 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7077 | nan | 0.0 | 0.8362 | 0.0 | 0.6999 | 0.3405 | 0.0 | nan | 0.0 | 0.4473 | 0.0 | 0.0 | 0.9272 | 0.7890 | 0.8870 | 0.0 | 0.0348 | 0.3578 | 0.0 | nan | 0.5307 | 0.8250 | 0.7915 | 0.5729 | 0.1789 | 0.0 | 0.2532 | 0.3154 | 0.0 | 0.7855 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4322 | nan | 0.0 | 0.6863 | 0.0 | 0.4071 | 0.2521 | 0.0 | nan | 0.0 | 0.3089 | 0.0 | 0.0 | 0.7975 | 0.7101 | 0.8518 | 0.0 | 0.0332 | 0.2520 | 0.0 |
| 0.4816 | 41.0 | 4387 | 0.6700 | 0.2812 | 0.3491 | 0.8060 | nan | 0.6497 | 0.9430 | 0.8488 | 0.7581 | 0.1492 | 0.0 | 0.5026 | 0.5415 | 0.0 | 0.9317 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5586 | nan | 0.0 | 0.8655 | 0.0 | 0.6495 | 0.3284 | 0.0 | nan | 0.0 | 0.4062 | 0.0 | 0.0 | 0.9026 | 0.8756 | 0.9041 | 0.0 | 0.0154 | 0.3409 | 0.0 | nan | 0.5483 | 0.8245 | 0.7804 | 0.5613 | 0.1444 | 0.0 | 0.2941 | 0.3765 | 0.0 | 0.7657 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4309 | nan | 0.0 | 0.6812 | 0.0 | 0.3456 | 0.2526 | 0.0 | nan | 0.0 | 0.3020 | 0.0 | 0.0 | 0.8013 | 0.7384 | 0.8651 | 0.0 | 0.0147 | 0.2719 | 0.0 |
| 0.4643 | 42.0 | 4494 | 0.6465 | 0.2865 | 0.3603 | 0.8079 | nan | 0.6087 | 0.9460 | 0.8859 | 0.8411 | 0.2736 | 0.0 | 0.5016 | 0.5636 | 0.0 | 0.9311 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6503 | nan | 0.0 | 0.8152 | 0.0 | 0.6211 | 0.3064 | 0.0 | nan | 0.0 | 0.4719 | 0.0 | 0.0 | 0.9130 | 0.8643 | 0.8988 | 0.0 | 0.0386 | 0.3972 | 0.0 | nan | 0.5283 | 0.8363 | 0.7831 | 0.5893 | 0.2376 | 0.0 | 0.2835 | 0.3871 | 0.0 | 0.7808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4435 | nan | 0.0 | 0.6630 | 0.0 | 0.3653 | 0.2468 | 0.0 | nan | 0.0 | 0.3230 | 0.0 | 0.0 | 0.8082 | 0.7553 | 0.8615 | 0.0 | 0.0352 | 0.2410 | 0.0 |
| 0.4758 | 43.0 | 4601 | 0.6531 | 0.2866 | 0.3573 | 0.8033 | nan | 0.6189 | 0.9384 | 0.8678 | 0.7635 | 0.2556 | 0.0 | 0.4631 | 0.5328 | 0.0 | 0.9354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7078 | nan | 0.0 | 0.8840 | 0.0 | 0.5168 | 0.3159 | 0.0 | nan | 0.0 | 0.5012 | 0.0 | 0.0 | 0.9003 | 0.8435 | 0.8800 | 0.0 | 0.1130 | 0.3953 | 0.0 | nan | 0.5198 | 0.8118 | 0.7952 | 0.5642 | 0.2235 | 0.0 | 0.2833 | 0.3642 | 0.0 | 0.7845 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4597 | nan | 0.0 | 0.6755 | 0.0 | 0.3530 | 0.2604 | 0.0 | nan | 0.0 | 0.3225 | 0.0 | 0.0 | 0.8104 | 0.7326 | 0.8509 | 0.0 | 0.0804 | 0.2786 | 0.0 |
| 0.4682 | 44.0 | 4708 | 0.6534 | 0.2843 | 0.3584 | 0.8035 | nan | 0.6193 | 0.9309 | 0.8952 | 0.8209 | 0.2108 | 0.0 | 0.4880 | 0.5279 | 0.0 | 0.9208 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6156 | nan | 0.0 | 0.8474 | 0.0 | 0.6475 | 0.3017 | 0.0 | nan | 0.0 | 0.5203 | 0.0 | 0.0 | 0.9113 | 0.8445 | 0.9254 | 0.0 | 0.0324 | 0.4089 | 0.0 | nan | 0.5374 | 0.8204 | 0.7932 | 0.5268 | 0.1915 | 0.0 | 0.2784 | 0.3506 | 0.0 | 0.7789 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4807 | nan | 0.0 | 0.6878 | 0.0 | 0.3576 | 0.2551 | 0.0 | nan | 0.0 | 0.3135 | 0.0 | 0.0 | 0.8111 | 0.7485 | 0.8770 | 0.0 | 0.0241 | 0.2662 | 0.0 |
| 0.4807 | 45.0 | 4815 | 0.6325 | 0.2885 | 0.3653 | 0.8075 | nan | 0.6071 | 0.9223 | 0.8977 | 0.8564 | 0.3516 | 0.0 | 0.5039 | 0.5266 | 0.0 | 0.9433 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6309 | nan | 0.0 | 0.8390 | 0.0 | 0.5600 | 0.3684 | 0.0 | nan | 0.0 | 0.4760 | 0.0 | 0.0 | 0.9242 | 0.8477 | 0.9264 | 0.0 | 0.0706 | 0.4361 | 0.0 | nan | 0.5390 | 0.8355 | 0.7773 | 0.5424 | 0.2623 | 0.0 | 0.2809 | 0.3567 | 0.0 | 0.7695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4435 | nan | 0.0 | 0.6957 | 0.0 | 0.3710 | 0.2746 | 0.0 | nan | 0.0 | 0.3253 | 0.0 | 0.0 | 0.8070 | 0.7405 | 0.8751 | 0.0 | 0.0603 | 0.2758 | 0.0 |
| 0.4611 | 46.0 | 4922 | 0.6577 | 0.2850 | 0.3588 | 0.8022 | nan | 0.6022 | 0.9292 | 0.8230 | 0.8449 | 0.2449 | 0.0 | 0.4479 | 0.5166 | 0.0 | 0.9396 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6521 | nan | 0.0 | 0.8516 | 0.0 | 0.7020 | 0.3122 | 0.0 | nan | 0.0 | 0.4822 | 0.0 | 0.0 | 0.9015 | 0.8642 | 0.9095 | 0.0 | 0.0737 | 0.3834 | 0.0 | nan | 0.5034 | 0.8172 | 0.7584 | 0.5407 | 0.2171 | 0.0 | 0.2684 | 0.3534 | 0.0 | 0.7740 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4392 | nan | 0.0 | 0.6942 | 0.0 | 0.3877 | 0.2651 | 0.0 | nan | 0.0 | 0.3266 | 0.0 | 0.0 | 0.8136 | 0.7528 | 0.8682 | 0.0 | 0.0684 | 0.2725 | 0.0 |
| 0.3966 | 47.0 | 5029 | 0.6749 | 0.2810 | 0.3530 | 0.7981 | nan | 0.5613 | 0.9379 | 0.7768 | 0.8262 | 0.2161 | 0.0 | 0.4333 | 0.4777 | 0.0 | 0.9410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7133 | nan | 0.0 | 0.8766 | 0.0 | 0.7119 | 0.3548 | 0.0 | nan | 0.0 | 0.3871 | 0.0 | 0.0 | 0.9073 | 0.8326 | 0.8935 | 0.0 | 0.1104 | 0.3367 | 0.0 | nan | 0.4867 | 0.8241 | 0.7219 | 0.4978 | 0.1759 | 0.0 | 0.2653 | 0.3573 | 0.0 | 0.7854 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4599 | nan | 0.0 | 0.6910 | 0.0 | 0.3907 | 0.2610 | 0.0 | nan | 0.0 | 0.3009 | 0.0 | 0.0 | 0.8082 | 0.7419 | 0.8593 | 0.0 | 0.0926 | 0.2732 | 0.0 |
| 0.4672 | 48.0 | 5136 | 0.6660 | 0.2784 | 0.3546 | 0.8021 | nan | 0.7292 | 0.9096 | 0.8990 | 0.8135 | 0.1493 | 0.0 | 0.5230 | 0.5946 | 0.0 | 0.9526 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7375 | nan | 0.0 | 0.8687 | 0.0 | 0.4252 | 0.2353 | 0.0 | nan | 0.0 | 0.4237 | 0.0 | 0.0 | 0.8933 | 0.8270 | 0.9183 | 0.0 | 0.0817 | 0.3646 | 0.0 | nan | 0.5942 | 0.8232 | 0.8036 | 0.5377 | 0.1347 | 0.0 | 0.2647 | 0.3728 | 0.0 | 0.7137 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4297 | nan | 0.0 | 0.6601 | 0.0 | 0.2946 | 0.2127 | 0.0 | nan | 0.0 | 0.3151 | 0.0 | 0.0 | 0.8132 | 0.7409 | 0.8699 | 0.0 | 0.0613 | 0.2675 | 0.0 |
| 0.4622 | 49.0 | 5243 | 0.7150 | 0.2767 | 0.3475 | 0.7951 | nan | 0.6718 | 0.8870 | 0.8975 | 0.8901 | 0.1529 | 0.0 | 0.4453 | 0.5462 | 0.0 | 0.9481 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6509 | nan | 0.0 | 0.9012 | 0.0 | 0.5387 | 0.2114 | 0.0 | nan | 0.0 | 0.4295 | 0.0 | 0.0 | 0.9268 | 0.7997 | 0.9010 | 0.0 | 0.0350 | 0.2863 | 0.0 | nan | 0.5624 | 0.8117 | 0.7961 | 0.4364 | 0.1414 | 0.0 | 0.2702 | 0.3711 | 0.0 | 0.7633 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4582 | nan | 0.0 | 0.6590 | 0.0 | 0.3660 | 0.1902 | 0.0 | nan | 0.0 | 0.3246 | 0.0 | 0.0 | 0.8088 | 0.7464 | 0.8666 | 0.0 | 0.0332 | 0.2487 | 0.0 |
| 0.4145 | 50.0 | 5350 | 0.6807 | 0.2818 | 0.3565 | 0.8008 | nan | 0.6541 | 0.9143 | 0.8871 | 0.8536 | 0.1956 | 0.0 | 0.4524 | 0.5023 | 0.0 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7110 | nan | 0.0 | 0.8771 | 0.0 | 0.6214 | 0.2828 | 0.0 | nan | 0.0 | 0.4773 | 0.0 | 0.0 | 0.9139 | 0.7822 | 0.9051 | 0.0 | 0.0741 | 0.3770 | 0.0 | nan | 0.5552 | 0.8258 | 0.7814 | 0.4837 | 0.1731 | 0.0 | 0.2705 | 0.3530 | 0.0 | 0.7938 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4623 | nan | 0.0 | 0.6836 | 0.0 | 0.3253 | 0.2389 | 0.0 | nan | 0.0 | 0.3381 | 0.0 | 0.0 | 0.8077 | 0.7193 | 0.8652 | 0.0 | 0.0640 | 0.2760 | 0.0 |
| 0.4544 | 51.0 | 5457 | 0.6710 | 0.2839 | 0.3635 | 0.8006 | nan | 0.6233 | 0.9087 | 0.9049 | 0.8695 | 0.2469 | 0.0 | 0.4528 | 0.5746 | 0.0 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7524 | nan | 0.0 | 0.8690 | 0.0 | 0.5925 | 0.3026 | 0.0 | nan | 0.0 | 0.4862 | 0.0 | 0.0 | 0.9113 | 0.8522 | 0.9246 | 0.0 | 0.0797 | 0.3522 | 0.0 | nan | 0.5369 | 0.8237 | 0.7538 | 0.4608 | 0.2062 | 0.0 | 0.2692 | 0.3838 | 0.0 | 0.7862 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4326 | nan | 0.0 | 0.6889 | 0.0 | 0.3838 | 0.2423 | 0.0 | nan | 0.0 | 0.3336 | 0.0 | 0.0 | 0.8112 | 0.7403 | 0.8791 | 0.0 | 0.0742 | 0.2796 | 0.0 |
| 0.4084 | 52.0 | 5564 | 0.6546 | 0.2867 | 0.3640 | 0.8059 | nan | 0.6423 | 0.9216 | 0.8728 | 0.8610 | 0.1706 | 0.0 | 0.4997 | 0.5610 | 0.0 | 0.9239 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7156 | nan | 0.0 | 0.8634 | 0.0 | 0.6920 | 0.2740 | 0.0 | nan | 0.0 | 0.4887 | 0.0 | 0.0 | 0.9069 | 0.8889 | 0.9000 | 0.0 | 0.0903 | 0.3739 | 0.0 | nan | 0.5431 | 0.8278 | 0.7981 | 0.5189 | 0.1560 | 0.0 | 0.3024 | 0.3737 | 0.0 | 0.7986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4567 | nan | 0.0 | 0.6880 | 0.0 | 0.3761 | 0.2251 | 0.0 | nan | 0.0 | 0.3343 | 0.0 | 0.0 | 0.8139 | 0.7548 | 0.8646 | 0.0 | 0.0756 | 0.2675 | 0.0 |
| 0.4475 | 53.0 | 5671 | 0.6712 | 0.2818 | 0.3527 | 0.8026 | nan | 0.6170 | 0.9199 | 0.9040 | 0.8414 | 0.2396 | 0.0 | 0.4268 | 0.4352 | 0.0 | 0.9374 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6281 | nan | 0.0 | 0.8676 | 0.0 | 0.6078 | 0.2969 | 0.0 | nan | 0.0 | 0.4899 | 0.0 | 0.0 | 0.9292 | 0.8389 | 0.9008 | 0.0 | 0.0345 | 0.3705 | 0.0 | nan | 0.5299 | 0.8287 | 0.7780 | 0.5304 | 0.1865 | 0.0 | 0.2782 | 0.3138 | 0.0 | 0.7708 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4800 | nan | 0.0 | 0.6830 | 0.0 | 0.3721 | 0.2416 | 0.0 | nan | 0.0 | 0.3294 | 0.0 | 0.0 | 0.7999 | 0.7324 | 0.8688 | 0.0 | 0.0287 | 0.2662 | 0.0 |
| 0.4077 | 54.0 | 5778 | 0.6743 | 0.2885 | 0.3600 | 0.8048 | nan | 0.5791 | 0.9423 | 0.8905 | 0.7810 | 0.2604 | 0.0 | 0.4610 | 0.5324 | 0.0 | 0.9467 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6770 | nan | 0.0 | 0.8826 | 0.0 | 0.5999 | 0.3432 | 0.0 | nan | 0.0 | 0.4846 | 0.0 | 0.0 | 0.9008 | 0.8470 | 0.9224 | 0.0 | 0.0643 | 0.4035 | 0.0 | nan | 0.5145 | 0.8210 | 0.8031 | 0.5666 | 0.1975 | 0.0 | 0.2818 | 0.3555 | 0.0 | 0.7569 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4759 | nan | 0.0 | 0.6745 | 0.0 | 0.3937 | 0.2589 | 0.0 | nan | 0.0 | 0.3445 | 0.0 | 0.0 | 0.8146 | 0.7552 | 0.8771 | 0.0 | 0.0526 | 0.2890 | 0.0 |
| 0.4334 | 55.0 | 5885 | 0.6318 | 0.2919 | 0.3684 | 0.8122 | nan | 0.6590 | 0.9261 | 0.8843 | 0.8552 | 0.2511 | 0.0 | 0.5269 | 0.6052 | 0.0 | 0.9416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6763 | nan | 0.0 | 0.8438 | 0.0 | 0.6329 | 0.3218 | 0.0 | nan | 0.0 | 0.4795 | 0.0 | 0.0 | 0.9021 | 0.9073 | 0.9129 | 0.0 | 0.0510 | 0.4103 | 0.0 | nan | 0.5659 | 0.8404 | 0.7976 | 0.5330 | 0.2067 | 0.0 | 0.2976 | 0.3918 | 0.0 | 0.7881 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4634 | nan | 0.0 | 0.6961 | 0.0 | 0.4115 | 0.2632 | 0.0 | nan | 0.0 | 0.3295 | 0.0 | 0.0 | 0.8043 | 0.7360 | 0.8742 | 0.0 | 0.0446 | 0.2963 | 0.0 |
| 0.4379 | 56.0 | 5992 | 0.6688 | 0.2871 | 0.3580 | 0.8059 | nan | 0.5682 | 0.9473 | 0.8909 | 0.8684 | 0.1827 | 0.0 | 0.4078 | 0.5539 | 0.0 | 0.9361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6815 | nan | 0.0 | 0.8838 | 0.0 | 0.6820 | 0.3338 | 0.0 | nan | 0.0 | 0.4720 | 0.0 | 0.0 | 0.9061 | 0.8482 | 0.9133 | 0.0 | 0.0386 | 0.3415 | 0.0 | nan | 0.5081 | 0.8198 | 0.8017 | 0.5046 | 0.1626 | 0.0 | 0.2799 | 0.3793 | 0.0 | 0.7869 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4692 | nan | 0.0 | 0.6965 | 0.0 | 0.4161 | 0.2613 | 0.0 | nan | 0.0 | 0.3389 | 0.0 | 0.0 | 0.8176 | 0.7576 | 0.8727 | 0.0 | 0.0347 | 0.2792 | 0.0 |
| 0.4489 | 57.0 | 6099 | 0.6413 | 0.2898 | 0.3657 | 0.8118 | nan | 0.6336 | 0.9369 | 0.8978 | 0.8637 | 0.2405 | 0.0 | 0.4683 | 0.4792 | 0.0 | 0.9456 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7398 | nan | 0.0 | 0.8757 | 0.0 | 0.6220 | 0.3338 | 0.0 | nan | 0.0 | 0.5178 | 0.0 | 0.0 | 0.8798 | 0.8909 | 0.9242 | 0.0 | 0.0371 | 0.4152 | 0.0 | nan | 0.5641 | 0.8302 | 0.7988 | 0.5222 | 0.2052 | 0.0 | 0.2923 | 0.3509 | 0.0 | 0.7819 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4626 | nan | 0.0 | 0.7010 | 0.0 | 0.4040 | 0.2609 | 0.0 | nan | 0.0 | 0.3240 | 0.0 | 0.0 | 0.8147 | 0.7572 | 0.8780 | 0.0 | 0.0348 | 0.2924 | 0.0 |
| 0.4042 | 58.0 | 6206 | 0.6378 | 0.2905 | 0.3632 | 0.8141 | nan | 0.6889 | 0.9331 | 0.8987 | 0.8277 | 0.1904 | 0.0 | 0.4609 | 0.4760 | 0.0 | 0.9308 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7672 | nan | 0.0 | 0.8689 | 0.0 | 0.6552 | 0.3481 | 0.0 | nan | 0.0 | 0.4860 | 0.0 | 0.0 | 0.9232 | 0.8152 | 0.9071 | 0.0 | 0.0922 | 0.3534 | 0.0 | nan | 0.5797 | 0.8300 | 0.7955 | 0.5497 | 0.1802 | 0.0 | 0.3002 | 0.3608 | 0.0 | 0.7923 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4430 | nan | 0.0 | 0.7010 | 0.0 | 0.3912 | 0.2586 | 0.0 | nan | 0.0 | 0.3330 | 0.0 | 0.0 | 0.8063 | 0.7389 | 0.8722 | 0.0 | 0.0842 | 0.2788 | 0.0 |
| 0.4033 | 59.0 | 6313 | 0.6393 | 0.2901 | 0.3629 | 0.8131 | nan | 0.6851 | 0.9282 | 0.8829 | 0.8307 | 0.1882 | 0.0 | 0.4846 | 0.5244 | 0.0 | 0.9433 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7355 | nan | 0.0 | 0.8673 | 0.0 | 0.6451 | 0.2991 | 0.0 | nan | 0.0 | 0.5054 | 0.0 | 0.0 | 0.9144 | 0.8542 | 0.9130 | 0.0 | 0.0306 | 0.3796 | 0.0 | nan | 0.5736 | 0.8304 | 0.8001 | 0.5264 | 0.1720 | 0.0 | 0.2962 | 0.3684 | 0.0 | 0.7884 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4725 | nan | 0.0 | 0.6993 | 0.0 | 0.3926 | 0.2552 | 0.0 | nan | 0.0 | 0.3409 | 0.0 | 0.0 | 0.8158 | 0.7611 | 0.8778 | 0.0 | 0.0283 | 0.2835 | 0.0 |
| 0.4021 | 60.0 | 6420 | 0.6501 | 0.2886 | 0.3651 | 0.8139 | nan | 0.7362 | 0.9216 | 0.9046 | 0.8150 | 0.1901 | 0.0 | 0.4200 | 0.4985 | 0.0 | 0.9507 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7714 | nan | 0.0 | 0.8632 | 0.0 | 0.6387 | 0.3715 | 0.0 | nan | 0.0 | 0.4586 | 0.0 | 0.0 | 0.9045 | 0.8397 | 0.9113 | 0.0 | 0.1205 | 0.3673 | 0.0 | nan | 0.6146 | 0.8265 | 0.7334 | 0.5541 | 0.1753 | 0.0 | 0.2840 | 0.3505 | 0.0 | 0.7546 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4427 | nan | 0.0 | 0.6866 | 0.0 | 0.3878 | 0.2644 | 0.0 | nan | 0.0 | 0.3435 | 0.0 | 0.0 | 0.8178 | 0.7580 | 0.8759 | 0.0 | 0.0918 | 0.2734 | 0.0 |
| 0.4143 | 61.0 | 6527 | 0.6427 | 0.2897 | 0.3612 | 0.8105 | nan | 0.6811 | 0.9188 | 0.8982 | 0.7937 | 0.2651 | 0.0 | 0.5039 | 0.4599 | 0.0 | 0.9477 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7194 | nan | 0.0 | 0.8837 | 0.0 | 0.5937 | 0.3117 | 0.0 | nan | 0.0 | 0.4858 | 0.0 | 0.0 | 0.9079 | 0.8499 | 0.9188 | 0.0 | 0.0464 | 0.3740 | 0.0 | nan | 0.5727 | 0.8170 | 0.7807 | 0.5701 | 0.2198 | 0.0 | 0.2939 | 0.3411 | 0.0 | 0.7690 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4610 | nan | 0.0 | 0.6847 | 0.0 | 0.3873 | 0.2523 | 0.0 | nan | 0.0 | 0.3447 | 0.0 | 0.0 | 0.8200 | 0.7614 | 0.8782 | 0.0 | 0.0412 | 0.2743 | 0.0 |
| 0.3857 | 62.0 | 6634 | 0.6568 | 0.2875 | 0.3664 | 0.8074 | nan | 0.6878 | 0.9189 | 0.8964 | 0.8039 | 0.1812 | 0.0 | 0.5164 | 0.5660 | 0.0 | 0.9535 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7389 | nan | 0.0 | 0.8524 | 0.0 | 0.6142 | 0.3820 | 0.0 | nan | 0.0 | 0.4951 | 0.0 | 0.0 | 0.8928 | 0.8760 | 0.9272 | 0.0 | 0.0857 | 0.3362 | 0.0 | nan | 0.5667 | 0.8261 | 0.7933 | 0.5405 | 0.1623 | 0.0 | 0.3019 | 0.3736 | 0.0 | 0.7409 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4574 | nan | 0.0 | 0.6916 | 0.0 | 0.3764 | 0.2648 | 0.0 | nan | 0.0 | 0.3324 | 0.0 | 0.0 | 0.8177 | 0.7557 | 0.8809 | 0.0 | 0.0753 | 0.2436 | 0.0 |
| 0.4062 | 63.0 | 6741 | 0.6513 | 0.2914 | 0.3663 | 0.8120 | nan | 0.7112 | 0.9218 | 0.8867 | 0.7747 | 0.2310 | 0.0 | 0.5184 | 0.5408 | 0.0 | 0.9502 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7454 | nan | 0.0 | 0.8541 | 0.0 | 0.5815 | 0.3421 | 0.0 | nan | 0.0 | 0.5055 | 0.0 | 0.0 | 0.9086 | 0.8560 | 0.9291 | 0.0 | 0.0971 | 0.3675 | 0.0 | nan | 0.5784 | 0.8288 | 0.8002 | 0.5326 | 0.2018 | 0.0 | 0.3257 | 0.3750 | 0.0 | 0.7532 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4492 | nan | 0.0 | 0.6895 | 0.0 | 0.3791 | 0.2637 | 0.0 | nan | 0.0 | 0.3276 | 0.0 | 0.0 | 0.8196 | 0.7602 | 0.8842 | 0.0 | 0.0878 | 0.2676 | 0.0 |
| 0.3899 | 64.0 | 6848 | 0.6511 | 0.2897 | 0.3660 | 0.8078 | nan | 0.6784 | 0.9222 | 0.8927 | 0.7620 | 0.2273 | 0.0 | 0.5211 | 0.5469 | 0.0 | 0.9366 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7375 | nan | 0.0 | 0.8515 | 0.0 | 0.6301 | 0.3594 | 0.0 | nan | 0.0 | 0.5137 | 0.0 | 0.0 | 0.9027 | 0.8641 | 0.9136 | 0.0 | 0.0311 | 0.4211 | 0.0 | nan | 0.5682 | 0.8239 | 0.8068 | 0.5166 | 0.2014 | 0.0 | 0.3059 | 0.3793 | 0.0 | 0.7849 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4731 | nan | 0.0 | 0.6751 | 0.0 | 0.3873 | 0.2718 | 0.0 | nan | 0.0 | 0.3411 | 0.0 | 0.0 | 0.8171 | 0.7490 | 0.8788 | 0.0 | 0.0271 | 0.2641 | 0.0 |
| 0.4094 | 65.0 | 6955 | 0.6321 | 0.2906 | 0.3633 | 0.8155 | nan | 0.7419 | 0.9262 | 0.8953 | 0.7420 | 0.2358 | 0.0 | 0.4796 | 0.5340 | 0.0 | 0.9593 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7218 | nan | 0.0 | 0.8464 | 0.0 | 0.5849 | 0.3341 | 0.0 | nan | 0.0 | 0.4942 | 0.0 | 0.0 | 0.9074 | 0.8709 | 0.9111 | 0.0009 | 0.0280 | 0.4123 | 0.0 | nan | 0.6028 | 0.8365 | 0.8011 | 0.5280 | 0.2101 | 0.0 | 0.3052 | 0.3724 | 0.0 | 0.7332 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4604 | nan | 0.0 | 0.6845 | 0.0 | 0.3982 | 0.2645 | 0.0 | nan | 0.0 | 0.3412 | 0.0 | 0.0 | 0.8201 | 0.7577 | 0.8759 | 0.0009 | 0.0255 | 0.2797 | 0.0 |
| 0.3902 | 66.0 | 7062 | 0.6383 | 0.2892 | 0.3622 | 0.8112 | nan | 0.6557 | 0.9316 | 0.8911 | 0.7814 | 0.2329 | 0.0 | 0.5098 | 0.4581 | 0.0 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7239 | nan | 0.0 | 0.8559 | 0.0 | 0.6460 | 0.3358 | 0.0 | nan | 0.0 | 0.5161 | 0.0 | 0.0 | 0.9274 | 0.8429 | 0.8990 | 0.0 | 0.0312 | 0.4118 | 0.0 | nan | 0.5606 | 0.8294 | 0.8023 | 0.5414 | 0.2068 | 0.0 | 0.3016 | 0.3450 | 0.0 | 0.7787 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4684 | nan | 0.0 | 0.6942 | 0.0 | 0.3908 | 0.2621 | 0.0 | nan | 0.0 | 0.3398 | 0.0 | 0.0 | 0.8126 | 0.7445 | 0.8709 | 0.0 | 0.0272 | 0.2774 | 0.0 |
| 0.3735 | 67.0 | 7169 | 0.6484 | 0.2885 | 0.3627 | 0.8076 | nan | 0.6374 | 0.9351 | 0.9035 | 0.7568 | 0.2251 | 0.0 | 0.4998 | 0.4948 | 0.0 | 0.9478 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7209 | nan | 0.0 | 0.8596 | 0.0 | 0.5804 | 0.3791 | 0.0 | nan | 0.0 | 0.4997 | 0.0 | 0.0 | 0.8999 | 0.8741 | 0.9245 | 0.0 | 0.0483 | 0.4185 | 0.0 | nan | 0.5389 | 0.8231 | 0.7871 | 0.5304 | 0.1996 | 0.0 | 0.2827 | 0.3614 | 0.0 | 0.7835 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4719 | nan | 0.0 | 0.6932 | 0.0 | 0.3775 | 0.2770 | 0.0 | nan | 0.0 | 0.3393 | 0.0 | 0.0 | 0.8216 | 0.7540 | 0.8823 | 0.0 | 0.0421 | 0.2668 | 0.0 |
| 0.3888 | 68.0 | 7276 | 0.6295 | 0.2932 | 0.3681 | 0.8124 | nan | 0.6453 | 0.9414 | 0.8924 | 0.7985 | 0.2832 | 0.0 | 0.5193 | 0.6389 | 0.0 | 0.9459 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7338 | nan | 0.0 | 0.8423 | 0.0 | 0.5126 | 0.3179 | 0.0 | nan | 0.0 | 0.5176 | 0.0 | 0.0 | 0.9164 | 0.8300 | 0.9247 | 0.0010 | 0.0627 | 0.4567 | 0.0 | nan | 0.5521 | 0.8326 | 0.7984 | 0.5384 | 0.2291 | 0.0 | 0.3097 | 0.4143 | 0.0 | 0.7877 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4724 | nan | 0.0 | 0.7028 | 0.0 | 0.3784 | 0.2540 | 0.0 | nan | 0.0 | 0.3337 | 0.0 | 0.0 | 0.8172 | 0.7398 | 0.8859 | 0.0010 | 0.0533 | 0.2830 | 0.0 |
| 0.3463 | 69.0 | 7383 | 0.6746 | 0.2916 | 0.3677 | 0.8094 | nan | 0.6515 | 0.9210 | 0.8823 | 0.8440 | 0.1789 | 0.0 | 0.5215 | 0.5737 | 0.0 | 0.9359 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7389 | nan | 0.0 | 0.8837 | 0.0 | 0.6300 | 0.3350 | 0.0 | nan | 0.0 | 0.4968 | 0.0 | 0.0 | 0.9032 | 0.8934 | 0.9017 | 0.0 | 0.0703 | 0.4058 | 0.0 | nan | 0.5528 | 0.8245 | 0.7907 | 0.5250 | 0.1632 | 0.0 | 0.3014 | 0.3934 | 0.0 | 0.8010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4788 | nan | 0.0 | 0.6967 | 0.0 | 0.3744 | 0.2605 | 0.0 | nan | 0.0 | 0.3469 | 0.0 | 0.0 | 0.8186 | 0.7642 | 0.8737 | 0.0 | 0.0613 | 0.3051 | 0.0 |
| 0.3702 | 70.0 | 7490 | 0.6890 | 0.2875 | 0.3635 | 0.8012 | nan | 0.5995 | 0.9326 | 0.8853 | 0.8029 | 0.2289 | 0.0 | 0.5002 | 0.5737 | 0.0 | 0.9451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7417 | nan | 0.0 | 0.8227 | 0.0 | 0.6097 | 0.3263 | 0.0 | nan | 0.0 | 0.5053 | 0.0 | 0.0 | 0.9192 | 0.8235 | 0.9210 | 0.0 | 0.0666 | 0.4292 | 0.0 | nan | 0.5210 | 0.8170 | 0.8010 | 0.5198 | 0.1907 | 0.0 | 0.3010 | 0.3898 | 0.0 | 0.7651 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4836 | nan | 0.0 | 0.6753 | 0.0 | 0.3649 | 0.2576 | 0.0 | nan | 0.0 | 0.3513 | 0.0 | 0.0 | 0.8151 | 0.7466 | 0.8840 | 0.0 | 0.0563 | 0.2598 | 0.0 |
| 0.3642 | 71.0 | 7597 | 0.6835 | 0.2867 | 0.3593 | 0.8038 | nan | 0.6182 | 0.9263 | 0.8897 | 0.8120 | 0.1957 | 0.0 | 0.4355 | 0.5927 | 0.0 | 0.9233 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7200 | nan | 0.0 | 0.8870 | 0.0 | 0.6023 | 0.3097 | 0.0 | nan | 0.0 | 0.4994 | 0.0 | 0.0 | 0.9270 | 0.8288 | 0.9199 | 0.0 | 0.0564 | 0.3520 | 0.0 | nan | 0.5306 | 0.8156 | 0.7929 | 0.4950 | 0.1747 | 0.0 | 0.2794 | 0.3891 | 0.0 | 0.8032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4771 | nan | 0.0 | 0.6905 | 0.0 | 0.3674 | 0.2453 | 0.0 | nan | 0.0 | 0.3447 | 0.0 | 0.0 | 0.8116 | 0.7450 | 0.8826 | 0.0 | 0.0496 | 0.2805 | 0.0 |
| 0.36 | 72.0 | 7704 | 0.6669 | 0.2901 | 0.3652 | 0.8075 | nan | 0.6434 | 0.9327 | 0.8960 | 0.7900 | 0.2190 | 0.0 | 0.4746 | 0.5706 | 0.0 | 0.9461 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7405 | nan | 0.0 | 0.8967 | 0.0 | 0.5709 | 0.3347 | 0.0 | nan | 0.0 | 0.5213 | 0.0 | 0.0 | 0.8767 | 0.8656 | 0.9185 | 0.0 | 0.0645 | 0.4230 | 0.0 | nan | 0.5397 | 0.8231 | 0.7948 | 0.5252 | 0.1971 | 0.0 | 0.2832 | 0.3853 | 0.0 | 0.7856 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4817 | nan | 0.0 | 0.6834 | 0.0 | 0.3839 | 0.2617 | 0.0 | nan | 0.0 | 0.3396 | 0.0 | 0.0 | 0.8178 | 0.7627 | 0.8720 | 0.0 | 0.0530 | 0.2933 | 0.0 |
| 0.3973 | 73.0 | 7811 | 0.6383 | 0.2949 | 0.3680 | 0.8186 | nan | 0.7241 | 0.9280 | 0.9008 | 0.7697 | 0.2577 | 0.0 | 0.5086 | 0.5711 | 0.0 | 0.9495 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7286 | nan | 0.0 | 0.8676 | 0.0 | 0.6173 | 0.3238 | 0.0 | nan | 0.0 | 0.5022 | 0.0 | 0.0 | 0.9099 | 0.8670 | 0.9130 | 0.0 | 0.0432 | 0.3933 | 0.0 | nan | 0.5943 | 0.8414 | 0.7925 | 0.5329 | 0.2288 | 0.0 | 0.3133 | 0.3883 | 0.0 | 0.7799 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4800 | nan | 0.0 | 0.6892 | 0.0 | 0.4039 | 0.2600 | 0.0 | nan | 0.0 | 0.3515 | 0.0 | 0.0 | 0.8218 | 0.7658 | 0.8779 | 0.0 | 0.0378 | 0.2778 | 0.0 |
| 0.3552 | 74.0 | 7918 | 0.6462 | 0.2937 | 0.3665 | 0.8151 | nan | 0.6810 | 0.9352 | 0.9009 | 0.7938 | 0.2200 | 0.0 | 0.4290 | 0.5985 | 0.0 | 0.9448 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7497 | nan | 0.0 | 0.8762 | 0.0 | 0.6223 | 0.3297 | 0.0 | nan | 0.0 | 0.5028 | 0.0 | 0.0 | 0.9107 | 0.8538 | 0.9194 | 0.0 | 0.0489 | 0.4105 | 0.0 | nan | 0.5681 | 0.8314 | 0.8066 | 0.5452 | 0.1979 | 0.0 | 0.2832 | 0.4003 | 0.0 | 0.7864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4794 | nan | 0.0 | 0.6941 | 0.0 | 0.4007 | 0.2634 | 0.0 | nan | 0.0 | 0.3505 | 0.0 | 0.0 | 0.8197 | 0.7579 | 0.8799 | 0.0 | 0.0428 | 0.2906 | 0.0 |
| 0.3735 | 75.0 | 8025 | 0.6607 | 0.2912 | 0.3658 | 0.8094 | nan | 0.6830 | 0.9221 | 0.8990 | 0.7703 | 0.2393 | 0.0 | 0.4768 | 0.5555 | 0.0 | 0.9397 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7627 | nan | 0.0 | 0.8774 | 0.0 | 0.5842 | 0.3146 | 0.0 | nan | 0.0 | 0.5209 | 0.0 | 0.0 | 0.9052 | 0.8376 | 0.9323 | 0.0006 | 0.0601 | 0.4251 | 0.0 | nan | 0.5616 | 0.8266 | 0.8043 | 0.4916 | 0.2068 | 0.0 | 0.2969 | 0.3852 | 0.0 | 0.7947 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4696 | nan | 0.0 | 0.6919 | 0.0 | 0.3934 | 0.2599 | 0.0 | nan | 0.0 | 0.3454 | 0.0 | 0.0 | 0.8176 | 0.7506 | 0.8838 | 0.0006 | 0.0529 | 0.2857 | 0.0 |
| 0.349 | 76.0 | 8132 | 0.6499 | 0.2920 | 0.3634 | 0.8132 | nan | 0.6815 | 0.9338 | 0.8990 | 0.7476 | 0.2275 | 0.0 | 0.4769 | 0.5225 | 0.0 | 0.9473 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7426 | nan | 0.0 | 0.8829 | 0.0 | 0.6085 | 0.3132 | 0.0 | nan | 0.0 | 0.5296 | 0.0 | 0.0 | 0.9144 | 0.8342 | 0.9098 | 0.0 | 0.0538 | 0.4042 | 0.0 | nan | 0.5611 | 0.8351 | 0.8007 | 0.5302 | 0.1879 | 0.0 | 0.2919 | 0.3759 | 0.0 | 0.7918 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4747 | nan | 0.0 | 0.6961 | 0.0 | 0.4043 | 0.2598 | 0.0 | nan | 0.0 | 0.3443 | 0.0 | 0.0 | 0.8162 | 0.7462 | 0.8769 | 0.0 | 0.0491 | 0.3031 | 0.0 |
| 0.3714 | 77.0 | 8239 | 0.6534 | 0.2926 | 0.3678 | 0.8124 | nan | 0.6790 | 0.9351 | 0.8952 | 0.7512 | 0.2106 | 0.0 | 0.5023 | 0.5752 | 0.0 | 0.9328 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7807 | nan | 0.0 | 0.8562 | 0.0 | 0.6458 | 0.3162 | 0.0 | nan | 0.0 | 0.5232 | 0.0 | 0.0 | 0.9210 | 0.8265 | 0.9273 | 0.0 | 0.0808 | 0.4113 | 0.0 | nan | 0.5593 | 0.8347 | 0.8043 | 0.5370 | 0.1833 | 0.0 | 0.2953 | 0.3971 | 0.0 | 0.7974 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4632 | nan | 0.0 | 0.6987 | 0.0 | 0.3865 | 0.2565 | 0.0 | nan | 0.0 | 0.3415 | 0.0 | 0.0 | 0.8136 | 0.7420 | 0.8860 | 0.0 | 0.0712 | 0.2942 | 0.0 |
| 0.363 | 78.0 | 8346 | 0.6516 | 0.2910 | 0.3632 | 0.8136 | nan | 0.6971 | 0.9296 | 0.8965 | 0.7702 | 0.2131 | 0.0 | 0.4759 | 0.5148 | 0.0 | 0.9332 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7724 | nan | 0.0 | 0.8932 | 0.0 | 0.5626 | 0.3029 | 0.0 | nan | 0.0 | 0.5263 | 0.0 | 0.0 | 0.9160 | 0.8210 | 0.9231 | 0.0 | 0.0554 | 0.4197 | 0.0 | nan | 0.5716 | 0.8385 | 0.7896 | 0.5483 | 0.1777 | 0.0 | 0.2883 | 0.3691 | 0.0 | 0.7908 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4736 | nan | 0.0 | 0.6864 | 0.0 | 0.3961 | 0.2512 | 0.0 | nan | 0.0 | 0.3478 | 0.0 | 0.0 | 0.8160 | 0.7383 | 0.8834 | 0.0 | 0.0501 | 0.2945 | 0.0 |
| 0.3493 | 79.0 | 8453 | 0.6702 | 0.2912 | 0.3685 | 0.8100 | nan | 0.6696 | 0.9258 | 0.9017 | 0.7644 | 0.2376 | 0.0 | 0.4962 | 0.5597 | 0.0 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7711 | nan | 0.0 | 0.8724 | 0.0 | 0.5995 | 0.3210 | 0.0 | nan | 0.0 | 0.5325 | 0.0 | 0.0 | 0.9025 | 0.8466 | 0.9381 | 0.0 | 0.0799 | 0.4247 | 0.0 | nan | 0.5541 | 0.8345 | 0.7881 | 0.5164 | 0.1987 | 0.0 | 0.2920 | 0.3835 | 0.0 | 0.7768 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4737 | nan | 0.0 | 0.6941 | 0.0 | 0.3974 | 0.2577 | 0.0 | nan | 0.0 | 0.3448 | 0.0 | 0.0 | 0.8187 | 0.7431 | 0.8877 | 0.0 | 0.0699 | 0.2870 | 0.0 |
| 0.3792 | 80.0 | 8560 | 0.6412 | 0.2946 | 0.3691 | 0.8157 | nan | 0.6826 | 0.9328 | 0.9031 | 0.7805 | 0.2240 | 0.0 | 0.5004 | 0.5717 | 0.0 | 0.9422 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7532 | nan | 0.0 | 0.8790 | 0.0 | 0.6263 | 0.3250 | 0.0 | nan | 0.0 | 0.5130 | 0.0 | 0.0 | 0.9049 | 0.8708 | 0.9215 | 0.0 | 0.0666 | 0.4137 | 0.0 | nan | 0.5668 | 0.8404 | 0.7926 | 0.5316 | 0.1912 | 0.0 | 0.3036 | 0.3948 | 0.0 | 0.7940 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4767 | nan | 0.0 | 0.6963 | 0.0 | 0.3952 | 0.2617 | 0.0 | nan | 0.0 | 0.3547 | 0.0 | 0.0 | 0.8229 | 0.7615 | 0.8830 | 0.0 | 0.0593 | 0.2996 | 0.0 |
| 0.3466 | 81.0 | 8667 | 0.6398 | 0.2949 | 0.3696 | 0.8181 | nan | 0.7198 | 0.9374 | 0.8927 | 0.7518 | 0.1953 | 0.0 | 0.5069 | 0.6073 | 0.0 | 0.9437 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7508 | nan | 0.0 | 0.8438 | 0.0 | 0.6477 | 0.3045 | 0.0 | nan | 0.0 | 0.5206 | 0.0 | 0.0 | 0.9149 | 0.8694 | 0.9313 | 0.0 | 0.0794 | 0.4091 | 0.0 | nan | 0.5959 | 0.8409 | 0.8043 | 0.5625 | 0.1746 | 0.0 | 0.2955 | 0.4016 | 0.0 | 0.7887 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4771 | nan | 0.0 | 0.6876 | 0.0 | 0.3937 | 0.2508 | 0.0 | nan | 0.0 | 0.3438 | 0.0 | 0.0 | 0.8203 | 0.7721 | 0.8882 | 0.0 | 0.0703 | 0.2696 | 0.0 |
| 0.3434 | 82.0 | 8774 | 0.6427 | 0.2948 | 0.3702 | 0.8144 | nan | 0.6701 | 0.9388 | 0.8942 | 0.7976 | 0.2036 | 0.0 | 0.4717 | 0.5793 | 0.0 | 0.9421 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7673 | nan | 0.0 | 0.8614 | 0.0 | 0.6617 | 0.3411 | 0.0 | nan | 0.0 | 0.5250 | 0.0 | 0.0 | 0.9065 | 0.8583 | 0.9214 | 0.0 | 0.1155 | 0.3911 | 0.0 | nan | 0.5615 | 0.8356 | 0.8036 | 0.5543 | 0.1765 | 0.0 | 0.2927 | 0.3998 | 0.0 | 0.7927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4756 | nan | 0.0 | 0.6983 | 0.0 | 0.3912 | 0.2617 | 0.0 | nan | 0.0 | 0.3422 | 0.0 | 0.0 | 0.8220 | 0.7609 | 0.8829 | 0.0 | 0.0994 | 0.2837 | 0.0 |
| 0.3728 | 83.0 | 8881 | 0.6632 | 0.2935 | 0.3712 | 0.8071 | nan | 0.6362 | 0.9181 | 0.8946 | 0.8165 | 0.2796 | 0.0 | 0.4980 | 0.5929 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7612 | nan | 0.0 | 0.8576 | 0.0 | 0.6222 | 0.3247 | 0.0 | nan | 0.0 | 0.5315 | 0.0 | 0.0 | 0.9206 | 0.8297 | 0.9324 | 0.0 | 0.1246 | 0.3953 | 0.0 | nan | 0.5330 | 0.8303 | 0.8021 | 0.5115 | 0.2133 | 0.0 | 0.3082 | 0.4008 | 0.0 | 0.7792 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4707 | nan | 0.0 | 0.6944 | 0.0 | 0.3960 | 0.2571 | 0.0 | nan | 0.0 | 0.3433 | 0.0 | 0.0 | 0.8166 | 0.7505 | 0.8884 | 0.0 | 0.1076 | 0.2874 | 0.0 |
| 0.3449 | 84.0 | 8988 | 0.6665 | 0.2911 | 0.3655 | 0.8080 | nan | 0.6208 | 0.9362 | 0.8933 | 0.7983 | 0.2167 | 0.0 | 0.4705 | 0.5213 | 0.0 | 0.9445 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7528 | nan | 0.0 | 0.8565 | 0.0 | 0.6339 | 0.3453 | 0.0 | nan | 0.0 | 0.5227 | 0.0 | 0.0 | 0.9203 | 0.8327 | 0.9315 | 0.0 | 0.1078 | 0.3915 | 0.0 | nan | 0.5271 | 0.8305 | 0.8038 | 0.5352 | 0.1796 | 0.0 | 0.2901 | 0.3788 | 0.0 | 0.7816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4767 | nan | 0.0 | 0.6966 | 0.0 | 0.3857 | 0.2623 | 0.0 | nan | 0.0 | 0.3403 | 0.0 | 0.0 | 0.8154 | 0.7512 | 0.8876 | 0.0 | 0.0934 | 0.2779 | 0.0 |
| 0.3677 | 85.0 | 9095 | 0.6600 | 0.2914 | 0.3667 | 0.8089 | nan | 0.6430 | 0.9281 | 0.8959 | 0.7877 | 0.2441 | 0.0 | 0.5011 | 0.5246 | 0.0 | 0.9417 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7416 | nan | 0.0 | 0.8635 | 0.0 | 0.6224 | 0.3337 | 0.0 | nan | 0.0 | 0.5238 | 0.0 | 0.0 | 0.9166 | 0.8404 | 0.9203 | 0.0 | 0.0966 | 0.4086 | 0.0 | nan | 0.5410 | 0.8368 | 0.8012 | 0.5221 | 0.1990 | 0.0 | 0.3032 | 0.3763 | 0.0 | 0.7839 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4819 | nan | 0.0 | 0.6880 | 0.0 | 0.3785 | 0.2603 | 0.0 | nan | 0.0 | 0.3469 | 0.0 | 0.0 | 0.8166 | 0.7502 | 0.8825 | 0.0 | 0.0826 | 0.2728 | 0.0 |
| 0.3479 | 86.0 | 9202 | 0.6653 | 0.2925 | 0.3659 | 0.8083 | nan | 0.6215 | 0.9364 | 0.8955 | 0.8062 | 0.2438 | 0.0 | 0.4356 | 0.5749 | 0.0 | 0.9352 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7572 | nan | 0.0 | 0.8647 | 0.0 | 0.5950 | 0.3194 | 0.0 | nan | 0.0 | 0.5181 | 0.0 | 0.0 | 0.9142 | 0.8559 | 0.9196 | 0.0010 | 0.1131 | 0.4024 | 0.0 | nan | 0.5305 | 0.8260 | 0.8026 | 0.5177 | 0.2000 | 0.0 | 0.2845 | 0.3964 | 0.0 | 0.8037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4777 | nan | 0.0 | 0.6850 | 0.0 | 0.3926 | 0.2605 | 0.0 | nan | 0.0 | 0.3443 | 0.0 | 0.0 | 0.8210 | 0.7590 | 0.8827 | 0.0010 | 0.0985 | 0.2760 | 0.0 |
| 0.373 | 87.0 | 9309 | 0.6488 | 0.2953 | 0.3681 | 0.8141 | nan | 0.6465 | 0.9404 | 0.8996 | 0.7934 | 0.2418 | 0.0 | 0.4875 | 0.5646 | 0.0 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7519 | nan | 0.0 | 0.8931 | 0.0 | 0.6325 | 0.3185 | 0.0 | nan | 0.0 | 0.5045 | 0.0 | 0.0 | 0.8982 | 0.8624 | 0.9196 | 0.0000 | 0.1086 | 0.3763 | 0.0 | nan | 0.5479 | 0.8347 | 0.7989 | 0.5439 | 0.2043 | 0.0 | 0.2952 | 0.3956 | 0.0 | 0.8041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4802 | nan | 0.0 | 0.6921 | 0.0 | 0.3919 | 0.2632 | 0.0 | nan | 0.0 | 0.3462 | 0.0 | 0.0 | 0.8219 | 0.7598 | 0.8803 | 0.0000 | 0.0954 | 0.2939 | 0.0 |
| 0.3509 | 88.0 | 9416 | 0.6508 | 0.2938 | 0.3690 | 0.8125 | nan | 0.6480 | 0.9359 | 0.8987 | 0.8023 | 0.2228 | 0.0 | 0.4828 | 0.5941 | 0.0 | 0.9355 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7617 | nan | 0.0 | 0.8669 | 0.0 | 0.5964 | 0.3253 | 0.0 | nan | 0.0 | 0.5218 | 0.0 | 0.0 | 0.9249 | 0.8344 | 0.9275 | 0.0 | 0.1256 | 0.4037 | 0.0 | nan | 0.5517 | 0.8360 | 0.7990 | 0.5289 | 0.1923 | 0.0 | 0.2911 | 0.3969 | 0.0 | 0.7989 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4790 | nan | 0.0 | 0.6967 | 0.0 | 0.3872 | 0.2572 | 0.0 | nan | 0.0 | 0.3400 | 0.0 | 0.0 | 0.8153 | 0.7499 | 0.8866 | 0.0 | 0.1061 | 0.2894 | 0.0 |
| 0.3249 | 89.0 | 9523 | 0.6380 | 0.2947 | 0.3653 | 0.8162 | nan | 0.6541 | 0.9527 | 0.9012 | 0.7578 | 0.2159 | 0.0 | 0.4779 | 0.5541 | 0.0 | 0.9496 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7475 | nan | 0.0 | 0.8613 | 0.0 | 0.6083 | 0.3103 | 0.0 | nan | 0.0 | 0.5111 | 0.0 | 0.0 | 0.9215 | 0.8387 | 0.9247 | 0.0 | 0.1075 | 0.3965 | 0.0 | nan | 0.5525 | 0.8372 | 0.8023 | 0.5649 | 0.1893 | 0.0 | 0.2923 | 0.3918 | 0.0 | 0.7877 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4774 | nan | 0.0 | 0.7001 | 0.0 | 0.3917 | 0.2583 | 0.0 | nan | 0.0 | 0.3406 | 0.0 | 0.0 | 0.8165 | 0.7519 | 0.8854 | 0.0 | 0.0954 | 0.2955 | 0.0 |
| 0.3507 | 90.0 | 9630 | 0.6552 | 0.2931 | 0.3681 | 0.8112 | nan | 0.6412 | 0.9316 | 0.9007 | 0.7940 | 0.2344 | 0.0 | 0.4845 | 0.5679 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7501 | nan | 0.0 | 0.8788 | 0.0 | 0.6209 | 0.3117 | 0.0 | nan | 0.0 | 0.5239 | 0.0 | 0.0 | 0.9155 | 0.8504 | 0.9231 | 0.0 | 0.1052 | 0.4019 | 0.0 | nan | 0.5432 | 0.8346 | 0.7967 | 0.5219 | 0.1977 | 0.0 | 0.2933 | 0.3922 | 0.0 | 0.7936 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4792 | nan | 0.0 | 0.6958 | 0.0 | 0.3913 | 0.2588 | 0.0 | nan | 0.0 | 0.3429 | 0.0 | 0.0 | 0.8188 | 0.7511 | 0.8841 | 0.0 | 0.0910 | 0.2920 | 0.0 |
| 0.3327 | 91.0 | 9737 | 0.6568 | 0.2929 | 0.3687 | 0.8102 | nan | 0.6277 | 0.9380 | 0.8989 | 0.8059 | 0.2578 | 0.0 | 0.4617 | 0.5809 | 0.0 | 0.9460 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7536 | nan | 0.0 | 0.8356 | 0.0 | 0.6285 | 0.3180 | 0.0 | nan | 0.0 | 0.5218 | 0.0 | 0.0 | 0.9181 | 0.8578 | 0.9230 | 0.0004 | 0.0976 | 0.4261 | 0.0 | nan | 0.5366 | 0.8321 | 0.7979 | 0.5259 | 0.2114 | 0.0 | 0.2900 | 0.3969 | 0.0 | 0.7969 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4798 | nan | 0.0 | 0.6966 | 0.0 | 0.3832 | 0.2618 | 0.0 | nan | 0.0 | 0.3398 | 0.0 | 0.0 | 0.8184 | 0.7523 | 0.8857 | 0.0004 | 0.0849 | 0.2836 | 0.0 |
| 0.3428 | 92.0 | 9844 | 0.6481 | 0.2933 | 0.3672 | 0.8120 | nan | 0.6540 | 0.9343 | 0.9003 | 0.7727 | 0.2264 | 0.0 | 0.4777 | 0.5473 | 0.0 | 0.9437 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7544 | nan | 0.0 | 0.8720 | 0.0 | 0.6385 | 0.3236 | 0.0 | nan | 0.0 | 0.5132 | 0.0 | 0.0 | 0.9136 | 0.8557 | 0.9224 | 0.0 | 0.1007 | 0.4012 | 0.0 | nan | 0.5486 | 0.8334 | 0.7997 | 0.5315 | 0.1937 | 0.0 | 0.2905 | 0.3891 | 0.0 | 0.7948 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4778 | nan | 0.0 | 0.6974 | 0.0 | 0.3843 | 0.2628 | 0.0 | nan | 0.0 | 0.3480 | 0.0 | 0.0 | 0.8193 | 0.7522 | 0.8844 | 0.0 | 0.0885 | 0.2890 | 0.0 |
| 0.3483 | 93.0 | 9951 | 0.6642 | 0.2923 | 0.3664 | 0.8104 | nan | 0.6314 | 0.9384 | 0.9008 | 0.7929 | 0.2027 | 0.0 | 0.4565 | 0.5687 | 0.0 | 0.9355 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7620 | nan | 0.0 | 0.8702 | 0.0 | 0.6443 | 0.3233 | 0.0 | nan | 0.0 | 0.5056 | 0.0 | 0.0 | 0.9195 | 0.8529 | 0.9224 | 0.0 | 0.1132 | 0.3833 | 0.0 | nan | 0.5395 | 0.8298 | 0.7942 | 0.5268 | 0.1771 | 0.0 | 0.2783 | 0.3974 | 0.0 | 0.8030 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4790 | nan | 0.0 | 0.7001 | 0.0 | 0.3838 | 0.2612 | 0.0 | nan | 0.0 | 0.3438 | 0.0 | 0.0 | 0.8168 | 0.7498 | 0.8846 | 0.0 | 0.0996 | 0.2879 | 0.0 |
| 0.346 | 93.46 | 10000 | 0.6468 | 0.2931 | 0.3665 | 0.8121 | nan | 0.6505 | 0.9345 | 0.9011 | 0.7895 | 0.2382 | 0.0 | 0.4519 | 0.5536 | 0.0 | 0.9509 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7507 | nan | 0.0 | 0.8681 | 0.0 | 0.6107 | 0.3192 | 0.0 | nan | 0.0 | 0.5156 | 0.0 | 0.0 | 0.9183 | 0.8478 | 0.9246 | 0.0 | 0.1083 | 0.3940 | 0.0 | nan | 0.5472 | 0.8329 | 0.7961 | 0.5266 | 0.2013 | 0.0 | 0.2863 | 0.3887 | 0.0 | 0.7872 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4759 | nan | 0.0 | 0.6992 | 0.0 | 0.3924 | 0.2614 | 0.0 | nan | 0.0 | 0.3413 | 0.0 | 0.0 | 0.8182 | 0.7517 | 0.8855 | 0.0 | 0.0963 | 0.2896 | 0.0 |
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
millionhz/segformer-b0-finetuned-flame |
# SegFormer (b0-sized) model fine-tuned on FLAME
The model was trained for a deep learning project titled [Forest Fire Detection](https://github.com/millionhz/forest-fire-detection).
## Model Description
The model is intended to be used for fire detection through image segmentation.
The provided pretrained model was finetuned on the [FLAME](https://dx.doi.org/10.21227/qad6-r683) dataset for 3 epochs with a learning rate of 1e-3 and was able to score an IOU score of **0.745** on the test examples.
# How to use
Here is how to use this model to segment an image:
```python
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
import requests
processor = AutoFeatureExtractor.from_pretrained("millionhz/segformer-b0-finetuned-flame")
model = SegformerForSemanticSegmentation.from_pretrained("millionhz/segformer-b0-finetuned-flame")
url = <add url here>
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
```
## License
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
| [
"background",
"fire"
] |
bilal01/segformer-b0-finetuned-segments-test |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-test
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the bilal01/stamp-verification-test dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"unlabeled",
"stamp"
] |
DiTo97/binarization-segformer-b3 |
# binarization-segformer-b3
This model is a fine-tuned version of [nvidia/segformer-b3-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024)
on the same ensemble of 13 datasets as the [SauvolaNet](https://arxiv.org/pdf/2105.05521.pdf) work publicly available
in their GitHub [repository](https://github.com/Leedeng/SauvolaNet#datasets).
It achieves the following results on the evaluation set on DIBCO metrics:
- loss: 0.0743
- DRD: 5.9548
- F-measure: 0.9840
- pseudo F-measure: 0.9740
- PSNR: 16.0119
with PSNR the peak signal-to-noise ratio and DRD the distance reciprocal distortion.
For more information on the above DIBCO metrics, see the 2017 introductory [paper](https://ieeexplore.ieee.org/document/8270159).
## Model description
This model is part of on-going research on pure semantic segmentation models as a formulation of document image binarization (DIBCO).
This is in contrast to the late trend of adapting classical binarization algorithms with neural networks,
such as [DeepOtsu](https://arxiv.org/abs/1901.06081) or [SauvolaNet](https://arxiv.org/pdf/2105.05521.pdf)
as extensions of Otsu's method and Sauvola thresholding algorithm, respectively.
## Intended uses & limitations
TBC
## Training and evaluation data
TBC
## Training procedure
### Training hyperparameters
TBC
### Training results
| training loss | epoch | step | validation loss | DRD | F-measure | pseudo F-measure | PSNR |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:----------------:|:-------:|
| 0.6983 | 0.26 | 10 | 0.7079 | 199.5096 | 0.5945 | 0.5801 | 3.4552 |
| 0.6657 | 0.52 | 20 | 0.6755 | 149.2346 | 0.7006 | 0.6165 | 4.6752 |
| 0.6145 | 0.77 | 30 | 0.6433 | 109.7298 | 0.7831 | 0.6520 | 5.5489 |
| 0.5553 | 1.03 | 40 | 0.5443 | 53.7149 | 0.8952 | 0.8000 | 8.1736 |
| 0.4627 | 1.29 | 50 | 0.4896 | 32.7649 | 0.9321 | 0.8603 | 9.8706 |
| 0.3969 | 1.55 | 60 | 0.4327 | 21.5508 | 0.9526 | 0.8985 | 11.3400 |
| 0.3414 | 1.81 | 70 | 0.3002 | 11.0094 | 0.9732 | 0.9462 | 13.5901 |
| 0.2898 | 2.06 | 80 | 0.2839 | 10.1064 | 0.9748 | 0.9563 | 13.9796 |
| 0.2292 | 2.32 | 90 | 0.2427 | 9.4437 | 0.9761 | 0.9584 | 14.2161 |
| 0.2153 | 2.58 | 100 | 0.2095 | 8.8696 | 0.9771 | 0.9621 | 14.4319 |
| 0.1767 | 2.84 | 110 | 0.1916 | 8.6152 | 0.9776 | 0.9646 | 14.5528 |
| 0.1509 | 3.1 | 120 | 0.1704 | 8.0761 | 0.9791 | 0.9632 | 14.7961 |
| 0.1265 | 3.35 | 130 | 0.1561 | 8.5627 | 0.9784 | 0.9655 | 14.7400 |
| 0.132 | 3.61 | 140 | 0.1318 | 8.1849 | 0.9788 | 0.9670 | 14.8469 |
| 0.1115 | 3.87 | 150 | 0.1317 | 7.8438 | 0.9790 | 0.9657 | 14.9072 |
| 0.0983 | 4.13 | 160 | 0.1273 | 7.9405 | 0.9791 | 0.9673 | 14.9701 |
| 0.1001 | 4.39 | 170 | 0.1234 | 8.4132 | 0.9788 | 0.9691 | 14.8573 |
| 0.0862 | 4.65 | 180 | 0.1147 | 8.0838 | 0.9797 | 0.9678 | 15.0433 |
| 0.0713 | 4.9 | 190 | 0.1134 | 7.6027 | 0.9806 | 0.9687 | 15.2235 |
| 0.0905 | 5.16 | 200 | 0.1061 | 7.2973 | 0.9803 | 0.9699 | 15.1646 |
| 0.0902 | 5.42 | 210 | 0.1061 | 8.4049 | 0.9787 | 0.9699 | 14.8460 |
| 0.0759 | 5.68 | 220 | 0.1062 | 7.7147 | 0.9809 | 0.9695 | 15.2426 |
| 0.0638 | 5.94 | 230 | 0.1019 | 7.7449 | 0.9806 | 0.9695 | 15.2195 |
| 0.0852 | 6.19 | 240 | 0.0962 | 7.0221 | 0.9817 | 0.9693 | 15.4730 |
| 0.0677 | 6.45 | 250 | 0.0961 | 7.2520 | 0.9814 | 0.9710 | 15.3878 |
| 0.0668 | 6.71 | 260 | 0.0972 | 6.6658 | 0.9823 | 0.9689 | 15.6106 |
| 0.0701 | 6.97 | 270 | 0.0909 | 6.9454 | 0.9820 | 0.9713 | 15.5458 |
| 0.0567 | 7.23 | 280 | 0.0925 | 6.5498 | 0.9824 | 0.9718 | 15.5965 |
| 0.0624 | 7.48 | 290 | 0.0899 | 7.3125 | 0.9813 | 0.9717 | 15.3255 |
| 0.0649 | 7.74 | 300 | 0.0932 | 7.4915 | 0.9816 | 0.9684 | 15.5666 |
| 0.0524 | 8.0 | 310 | 0.0905 | 7.1666 | 0.9815 | 0.9711 | 15.4526 |
| 0.0693 | 8.26 | 320 | 0.0901 | 6.5627 | 0.9827 | 0.9704 | 15.7335 |
| 0.0528 | 8.52 | 330 | 0.0845 | 6.6690 | 0.9826 | 0.9734 | 15.5950 |
| 0.0632 | 8.77 | 340 | 0.0822 | 6.2661 | 0.9833 | 0.9723 | 15.8631 |
| 0.0522 | 9.03 | 350 | 0.0844 | 6.0073 | 0.9836 | 0.9715 | 15.9393 |
| 0.0568 | 9.29 | 360 | 0.0817 | 5.9460 | 0.9837 | 0.9721 | 15.9523 |
| 0.057 | 9.55 | 370 | 0.0900 | 7.9726 | 0.9812 | 0.9730 | 15.1229 |
| 0.052 | 9.81 | 380 | 0.0836 | 6.5444 | 0.9822 | 0.9712 | 15.6388 |
| 0.0568 | 10.06 | 390 | 0.0810 | 6.0359 | 0.9836 | 0.9714 | 15.9796 |
| 0.0481 | 10.32 | 400 | 0.0784 | 6.2110 | 0.9835 | 0.9724 | 15.9235 |
| 0.0513 | 10.58 | 410 | 0.0803 | 6.0990 | 0.9835 | 0.9715 | 15.9502 |
| 0.0595 | 10.84 | 420 | 0.0798 | 6.0829 | 0.9835 | 0.9720 | 15.9052 |
| 0.047 | 11.1 | 430 | 0.0779 | 5.8847 | 0.9838 | 0.9725 | 16.0043 |
| 0.0406 | 11.35 | 440 | 0.0802 | 5.7944 | 0.9838 | 0.9713 | 16.0620 |
| 0.0493 | 11.61 | 450 | 0.0781 | 6.0947 | 0.9836 | 0.9731 | 15.9033 |
| 0.064 | 11.87 | 460 | 0.0769 | 6.1257 | 0.9837 | 0.9736 | 15.9080 |
| 0.0622 | 12.13 | 470 | 0.0765 | 6.2964 | 0.9835 | 0.9739 | 15.8188 |
| 0.0457 | 12.39 | 480 | 0.0773 | 5.9826 | 0.9838 | 0.9728 | 16.0119 |
| 0.0447 | 12.65 | 490 | 0.0761 | 5.7977 | 0.9841 | 0.9728 | 16.0900 |
| 0.0515 | 12.9 | 500 | 0.0750 | 5.8569 | 0.9840 | 0.9729 | 16.0633 |
| 0.0357 | 13.16 | 510 | 0.0796 | 5.7990 | 0.9837 | 0.9713 | 16.0818 |
| 0.0503 | 13.42 | 520 | 0.0749 | 5.8323 | 0.9841 | 0.9736 | 16.0510 |
| 0.0508 | 13.68 | 530 | 0.0746 | 6.0361 | 0.9839 | 0.9735 | 15.9709 |
| 0.0533 | 13.94 | 540 | 0.0768 | 6.1596 | 0.9836 | 0.9740 | 15.9193 |
| 0.0503 | 14.19 | 550 | 0.0739 | 5.5900 | 0.9843 | 0.9723 | 16.1883 |
| 0.0515 | 14.45 | 560 | 0.0740 | 5.4660 | 0.9845 | 0.9727 | 16.2745 |
| 0.0502 | 14.71 | 570 | 0.0740 | 5.5895 | 0.9844 | 0.9736 | 16.2054 |
| 0.0401 | 14.97 | 580 | 0.0741 | 5.9694 | 0.9840 | 0.9747 | 15.9603 |
| 0.0495 | 15.23 | 590 | 0.0745 | 5.9136 | 0.9841 | 0.9740 | 16.0458 |
| 0.0413 | 15.48 | 600 | 0.0743 | 5.9548 | 0.9840 | 0.9740 | 16.0119 |
### Framework versions
- transformers 4.31.0
- torch 2.0.0
- datasets 2.13.1
- tokenizers 0.13.3
| [
"background",
"text"
] |
bilal01/segformer-b0-finetuned-segments-stamp-verification |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-stamp-verification
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the bilal01/stamp-verification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0372
- Mean Iou: 0.1908
- Mean Accuracy: 0.3817
- Overall Accuracy: 0.3817
- Accuracy Unlabeled: nan
- Accuracy Stamp: 0.3817
- Iou Unlabeled: 0.0
- Iou Stamp: 0.3817
## Model description
The StampSegNet is a semantic segmentation model fine-tuned on a custom dataset specifically designed for stamp segmentation. It is based on the powerful Hugging Face framework and utilizes deep learning techniques to accurately and efficiently segment stamps from images.
The model has been trained to identify and classify different regions of an image as either belonging to a stamp or not. By leveraging its understanding of stamp-specific features such as intricate designs, borders, and distinct colors, the StampSegNet is capable of producing pixel-level segmentation maps that highlight the exact boundaries of stamps within an image.
## Intended uses & limitations
Stamp Collection Management: The StampSegNet model can be used by stamp collectors and enthusiasts to automatically segment stamps from images. It simplifies the process of organizing and cataloging stamp collections by accurately identifying and isolating stamps, saving time and effort.
E-commerce Platforms: Online marketplaces and auction platforms catering to stamp sellers and buyers can integrate the StampSegNet model to enhance their user experience. Sellers can easily upload images of stamps, and the model can automatically extract and display segmented stamps, facilitating search, categorization, and valuation for potential buyers.
While the StampSegNet exhibits high performance in stamp segmentation, it may encounter challenges in scenarios with heavily damaged or obscured stamps, unusual stamp shapes, or images with poor lighting conditions. Furthermore, as with any AI-based model, biases present in the training data could potentially influence the segmentation results, necessitating careful evaluation and mitigation of any ethical implications.
## Training and evaluation data
The dataset used was taken from kaggle. Link is provided below:
{dataset}(https://www.kaggle.com/datasets/rtatman/stamp-verification-staver-dataset)
We used 60 samples and annotated them on Segments.ai
## Training procedure
Data Collection and Preparation:
Collect a diverse dataset of stamp images along with their corresponding pixel-level annotations, indicating the regions of stamps within the images.
Ensure the dataset includes a wide variety of stamp designs, sizes, colors, backgrounds, and lighting conditions.
Split the dataset into training, validation set
Model Selection and Configuration:
Choose a semantic segmentation model architecture suitable for stamp segmentation tasks.
We used [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) as a pretrained model and fined tuned on it
Configure the model architecture and any necessary hyperparameters, such as learning rate, batch size, and optimizer.
Training:
Train the model on the labeled stamp dataset using the initialized weights.
Use a suitable loss function for semantic segmentation tasks, such as cross-entropy loss or Dice loss.
Perform mini-batch stochastic gradient descent (SGD) or an optimizer like Adam to update the model's parameters.
Monitor the training progress by calculating metrics such as pixel accuracy, mean Intersection over Union (IoU), or F1 score.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Stamp | Iou Unlabeled | Iou Stamp |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
| 0.3384 | 0.83 | 20 | 0.2769 | 0.0335 | 0.0670 | 0.0670 | nan | 0.0670 | 0.0 | 0.0670 |
| 0.2626 | 1.67 | 40 | 0.2201 | 0.1256 | 0.2512 | 0.2512 | nan | 0.2512 | 0.0 | 0.2512 |
| 0.1944 | 2.5 | 60 | 0.1918 | 0.2030 | 0.4060 | 0.4060 | nan | 0.4060 | 0.0 | 0.4060 |
| 0.2665 | 3.33 | 80 | 0.1564 | 0.1574 | 0.3148 | 0.3148 | nan | 0.3148 | 0.0 | 0.3148 |
| 0.1351 | 4.17 | 100 | 0.1194 | 0.1817 | 0.3634 | 0.3634 | nan | 0.3634 | 0.0 | 0.3634 |
| 0.1156 | 5.0 | 120 | 0.1035 | 0.1334 | 0.2668 | 0.2668 | nan | 0.2668 | 0.0 | 0.2668 |
| 0.1103 | 5.83 | 140 | 0.0895 | 0.1819 | 0.3638 | 0.3638 | nan | 0.3638 | 0.0 | 0.3638 |
| 0.0882 | 6.67 | 160 | 0.0746 | 0.0833 | 0.1665 | 0.1665 | nan | 0.1665 | 0.0 | 0.1665 |
| 0.0778 | 7.5 | 180 | 0.0655 | 0.1927 | 0.3854 | 0.3854 | nan | 0.3854 | 0.0 | 0.3854 |
| 0.0672 | 8.33 | 200 | 0.0585 | 0.1327 | 0.2654 | 0.2654 | nan | 0.2654 | 0.0 | 0.2654 |
| 0.0612 | 9.17 | 220 | 0.0615 | 0.1640 | 0.3279 | 0.3279 | nan | 0.3279 | 0.0 | 0.3279 |
| 0.0611 | 10.0 | 240 | 0.0546 | 0.2466 | 0.4933 | 0.4933 | nan | 0.4933 | 0.0 | 0.4933 |
| 0.0537 | 10.83 | 260 | 0.0499 | 0.1129 | 0.2258 | 0.2258 | nan | 0.2258 | 0.0 | 0.2258 |
| 0.0504 | 11.67 | 280 | 0.0502 | 0.1857 | 0.3713 | 0.3713 | nan | 0.3713 | 0.0 | 0.3713 |
| 0.0707 | 12.5 | 300 | 0.0442 | 0.1710 | 0.3419 | 0.3419 | nan | 0.3419 | 0.0 | 0.3419 |
| 0.0508 | 13.33 | 320 | 0.0434 | 0.2003 | 0.4006 | 0.4006 | nan | 0.4006 | 0.0 | 0.4006 |
| 0.0396 | 14.17 | 340 | 0.0420 | 0.1409 | 0.2818 | 0.2818 | nan | 0.2818 | 0.0 | 0.2818 |
| 0.0395 | 15.0 | 360 | 0.0417 | 0.1640 | 0.3280 | 0.3280 | nan | 0.3280 | 0.0 | 0.3280 |
| 0.0387 | 15.83 | 380 | 0.0397 | 0.1827 | 0.3655 | 0.3655 | nan | 0.3655 | 0.0 | 0.3655 |
| 0.0458 | 16.67 | 400 | 0.0387 | 0.1582 | 0.3165 | 0.3165 | nan | 0.3165 | 0.0 | 0.3165 |
| 0.0363 | 17.5 | 420 | 0.0390 | 0.1724 | 0.3449 | 0.3449 | nan | 0.3449 | 0.0 | 0.3449 |
| 0.0401 | 18.33 | 440 | 0.0382 | 0.2018 | 0.4036 | 0.4036 | nan | 0.4036 | 0.0 | 0.4036 |
| 0.0355 | 19.17 | 460 | 0.0382 | 0.2032 | 0.4064 | 0.4064 | nan | 0.4064 | 0.0 | 0.4064 |
| 0.0447 | 20.0 | 480 | 0.0372 | 0.1908 | 0.3817 | 0.3817 | nan | 0.3817 | 0.0 | 0.3817 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3 | [
"unlabeled",
"stamp"
] |
edwardhuang/test-carbonate-segmentation2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-carbonate-segmentation2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the edwardhuang/carbonate-thin-sections dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3642
- Mean Iou: 0.2180
- Mean Accuracy: 0.3344
- Overall Accuracy: 0.6454
- Accuracy Micrite: nan
- Accuracy Cement: nan
- Accuracy Peloid/pellet/ooid: nan
- Accuracy Biotic: 0.6660
- Accuracy Scale bar: 0.0028
- Iou Micrite: 0.0
- Iou Cement: nan
- Iou Peloid/pellet/ooid: nan
- Iou Biotic: 0.6511
- Iou Scale bar: 0.0028
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Micrite | Accuracy Cement | Accuracy Peloid/pellet/ooid | Accuracy Biotic | Accuracy Scale bar | Iou Micrite | Iou Cement | Iou Peloid/pellet/ooid | Iou Biotic | Iou Scale bar |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------:|:---------------------------:|:---------------:|:------------------:|:-----------:|:----------:|:----------------------:|:----------:|:-------------:|
| 1.2003 | 2.22 | 20 | 1.5260 | 0.4834 | 0.7334 | 0.9835 | nan | nan | nan | 1.0 | 0.4669 | 0.0 | nan | nan | 0.9834 | 0.4669 |
| 1.2006 | 4.44 | 40 | 0.8923 | 0.6346 | 0.9521 | 0.9498 | nan | nan | nan | 0.9497 | 0.9545 | 0.0 | nan | nan | 0.9494 | 0.9545 |
| 1.4233 | 6.67 | 60 | 1.0240 | 0.4417 | 0.6716 | 0.9793 | nan | nan | nan | 0.9995 | 0.3438 | 0.0 | nan | nan | 0.9814 | 0.3438 |
| 1.1735 | 8.89 | 80 | 0.7964 | 0.5230 | 0.7890 | 0.9437 | nan | nan | nan | 0.9539 | 0.6241 | 0.0 | nan | nan | 0.9449 | 0.6241 |
| 1.0242 | 11.11 | 100 | 0.8747 | 0.5322 | 0.8038 | 0.9849 | nan | nan | nan | 0.9969 | 0.6108 | 0.0 | nan | nan | 0.9859 | 0.6108 |
| 0.9161 | 13.33 | 120 | 0.9217 | 0.5133 | 0.7767 | 0.9831 | nan | nan | nan | 0.9967 | 0.5568 | 0.0 | nan | nan | 0.9832 | 0.5568 |
| 0.8102 | 15.56 | 140 | 0.7069 | 0.5923 | 0.8907 | 0.9490 | nan | nan | nan | 0.9529 | 0.8286 | 0.0 | nan | nan | 0.9484 | 0.8286 |
| 0.5436 | 17.78 | 160 | 0.5149 | 0.3206 | 0.4929 | 0.8806 | nan | nan | nan | 0.9062 | 0.0795 | 0.0 | nan | nan | 0.8823 | 0.0795 |
| 0.8517 | 20.0 | 180 | 0.5646 | 0.3748 | 0.5719 | 0.9200 | nan | nan | nan | 0.9430 | 0.2008 | 0.0 | nan | nan | 0.9236 | 0.2008 |
| 0.4532 | 22.22 | 200 | 0.6128 | 0.3133 | 0.4837 | 0.9188 | nan | nan | nan | 0.9475 | 0.0199 | 0.0 | nan | nan | 0.9201 | 0.0199 |
| 1.3133 | 24.44 | 220 | 0.3006 | 0.2391 | 0.3645 | 0.7064 | nan | nan | nan | 0.7290 | 0.0 | 0.0 | nan | nan | 0.7172 | 0.0 |
| 0.4636 | 26.67 | 240 | 0.3260 | 0.1903 | 0.2901 | 0.5259 | nan | nan | nan | 0.5414 | 0.0388 | 0.0 | nan | nan | 0.5320 | 0.0388 |
| 0.9843 | 28.89 | 260 | 0.3663 | 0.2741 | 0.4182 | 0.6986 | nan | nan | nan | 0.7171 | 0.1193 | 0.0 | nan | nan | 0.7031 | 0.1193 |
| 0.7617 | 31.11 | 280 | 0.3338 | 0.2357 | 0.3627 | 0.7030 | nan | nan | nan | 0.7255 | 0.0 | 0.0 | nan | nan | 0.7072 | 0.0 |
| 1.283 | 33.33 | 300 | 0.3395 | 0.2723 | 0.4176 | 0.7232 | nan | nan | nan | 0.7434 | 0.0919 | 0.0 | nan | nan | 0.7250 | 0.0919 |
| 0.6578 | 35.56 | 320 | 0.3382 | 0.2069 | 0.3170 | 0.6143 | nan | nan | nan | 0.6339 | 0.0 | 0.0 | nan | nan | 0.6207 | 0.0 |
| 0.2129 | 37.78 | 340 | 0.3436 | 0.2288 | 0.3525 | 0.6831 | nan | nan | nan | 0.7049 | 0.0 | 0.0 | nan | nan | 0.6863 | 0.0 |
| 0.7001 | 40.0 | 360 | 0.2998 | 0.2001 | 0.3069 | 0.5771 | nan | nan | nan | 0.5950 | 0.0189 | 0.0 | nan | nan | 0.5813 | 0.0189 |
| 0.3866 | 42.22 | 380 | 0.3162 | 0.1840 | 0.2819 | 0.5464 | nan | nan | nan | 0.5639 | 0.0 | 0.0 | nan | nan | 0.5521 | 0.0 |
| 1.2623 | 44.44 | 400 | 0.3431 | 0.2125 | 0.3254 | 0.6172 | nan | nan | nan | 0.6365 | 0.0142 | 0.0 | nan | nan | 0.6234 | 0.0142 |
| 0.6115 | 46.67 | 420 | 0.2987 | 0.2020 | 0.3095 | 0.5998 | nan | nan | nan | 0.6190 | 0.0 | 0.0 | nan | nan | 0.6060 | 0.0 |
| 0.5802 | 48.89 | 440 | 0.3642 | 0.2180 | 0.3344 | 0.6454 | nan | nan | nan | 0.6660 | 0.0028 | 0.0 | nan | nan | 0.6511 | 0.0028 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3
| [
"micrite",
"cement",
"peloid/pellet/ooid",
"biotic",
"scale bar"
] |
apple/mobilevitv2-1.0-voc-deeplabv3 |
# MobileViTv2 + DeepLabv3 (shehan97/mobilevitv2-1.0-voc-deeplabv3)
<!-- Provide a quick summary of what the model is/does. -->
MobileViTv2 model pre-trained on PASCAL VOC at resolution 512x512.
It was introduced in [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari, and first released in [this](https://github.com/apple/ml-cvnets) repository. The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE).
Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team.
### Model Description
<!-- Provide a longer summary of what this model is. -->
MobileViTv2 is constructed by replacing the multi-headed self-attention in MobileViT with separable self-attention.
The model in this repo adds a [DeepLabV3](https://arxiv.org/abs/1706.05587) head to the MobileViT backbone for semantic segmentation.
### Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=mobilevitv2) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import MobileViTv2FeatureExtractor, MobileViTv2ForSemanticSegmentation
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = MobileViTv2FeatureExtractor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
model = MobileViTv2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_mask = logits.argmax(1).squeeze(0)
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The MobileViT + DeepLabV3 model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes, and then fine-tuned on the [PASCAL VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/) dataset.
### BibTeX entry and citation info
```bibtex
@inproceedings{vision-transformer,
title = {Separable Self-attention for Mobile Vision Transformers},
author = {Sachin Mehta and Mohammad Rastegari},
year = {2022},
URL = {https://arxiv.org/abs/2206.02680}
}
```
| [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"
] |
ArturR01/segformer-b0-example-pytorch-blog |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-example-pytorch-blog
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2757
- Mean Iou: 0.1462
- Mean Accuracy: 0.2006
- Overall Accuracy: 0.7257
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8968
- Accuracy Flat-sidewalk: 0.9232
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.0013
- Accuracy Flat-parkingdriveway: 0.0024
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.8803
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8822
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0000
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.8802
- Accuracy Nature-terrain: 0.8441
- Accuracy Sky: 0.9068
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.5131
- Iou Flat-sidewalk: 0.7717
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.0013
- Iou Flat-parkingdriveway: 0.0024
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.5983
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5449
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0000
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7519
- Iou Nature-terrain: 0.5340
- Iou Sky: 0.8151
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 3.0226 | 0.05 | 20 | 3.2451 | 0.0770 | 0.1291 | 0.5814 | nan | 0.3392 | 0.9150 | 0.0007 | 0.0167 | 0.0052 | nan | 0.0281 | 0.0013 | 0.0 | 0.6316 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8880 | 0.0 | 0.0100 | 0.0 | 0.0 | nan | 0.0 | 0.0212 | 0.0 | 0.0 | 0.7776 | 0.2569 | 0.1047 | 0.0036 | 0.0021 | 0.0002 | 0.0 | 0.0 | 0.2887 | 0.6060 | 0.0006 | 0.0156 | 0.0051 | 0.0 | 0.0209 | 0.0011 | 0.0 | 0.4177 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3513 | 0.0 | 0.0087 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.6347 | 0.2251 | 0.1037 | 0.0027 | 0.0019 | 0.0002 | 0.0 |
| 2.4643 | 0.1 | 40 | 2.4748 | 0.0979 | 0.1462 | 0.6444 | nan | 0.6454 | 0.9084 | 0.0012 | 0.0002 | 0.0006 | nan | 0.0124 | 0.0000 | 0.0 | 0.6787 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8760 | 0.0 | 0.0119 | 0.0 | 0.0 | nan | 0.0 | 0.0038 | 0.0 | 0.0 | 0.9282 | 0.0365 | 0.4258 | 0.0016 | 0.0 | 0.0 | 0.0 | nan | 0.4331 | 0.6624 | 0.0012 | 0.0002 | 0.0006 | nan | 0.0114 | 0.0000 | 0.0 | 0.4718 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4327 | 0.0 | 0.0115 | 0.0 | 0.0 | nan | 0.0 | 0.0036 | 0.0 | 0.0 | 0.6481 | 0.0359 | 0.4181 | 0.0015 | 0.0 | 0.0 | 0.0 |
| 2.3866 | 0.15 | 60 | 2.0828 | 0.1129 | 0.1636 | 0.6679 | nan | 0.7570 | 0.8891 | 0.0000 | 0.0000 | 0.0002 | nan | 0.0010 | 0.0001 | 0.0 | 0.7980 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8425 | 0.0 | 0.0088 | 0.0 | 0.0 | nan | 0.0 | 0.0006 | 0.0 | 0.0 | 0.9416 | 0.3129 | 0.5187 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.4431 | 0.6874 | 0.0000 | 0.0000 | 0.0002 | nan | 0.0010 | 0.0001 | 0.0 | 0.5410 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4735 | 0.0 | 0.0087 | 0.0 | 0.0 | nan | 0.0 | 0.0006 | 0.0 | 0.0 | 0.6784 | 0.2726 | 0.5071 | 0.0000 | 0.0 | 0.0 | 0.0 |
| 2.4998 | 0.2 | 80 | 1.9122 | 0.1276 | 0.1772 | 0.6866 | nan | 0.8098 | 0.8856 | 0.0 | 0.0001 | 0.0 | nan | 0.0004 | 0.0 | 0.0 | 0.8752 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8497 | 0.0 | 0.0073 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9361 | 0.4185 | 0.7115 | 0.0000 | 0.0 | 0.0 | 0.0 | nan | 0.4611 | 0.7099 | 0.0 | 0.0001 | 0.0 | nan | 0.0004 | 0.0 | 0.0 | 0.5317 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5068 | 0.0 | 0.0072 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7000 | 0.3600 | 0.6771 | 0.0000 | 0.0 | 0.0 | 0.0 |
| 1.9775 | 0.25 | 100 | 1.7125 | 0.1344 | 0.1848 | 0.6979 | nan | 0.7868 | 0.9065 | 0.0 | 0.0002 | 0.0000 | nan | 0.0007 | 0.0 | 0.0 | 0.8211 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8331 | 0.0 | 0.0015 | 0.0 | 0.0 | nan | 0.0 | 0.0010 | 0.0 | 0.0 | 0.9286 | 0.6121 | 0.8377 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4865 | 0.7134 | 0.0 | 0.0002 | 0.0000 | nan | 0.0007 | 0.0 | 0.0 | 0.5603 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5044 | 0.0 | 0.0015 | 0.0 | 0.0 | nan | 0.0 | 0.0010 | 0.0 | 0.0 | 0.7089 | 0.4386 | 0.7511 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6408 | 0.3 | 120 | 1.6293 | 0.1379 | 0.1888 | 0.7033 | nan | 0.7671 | 0.9293 | 0.0 | 0.0020 | 0.0000 | nan | 0.0002 | 0.0 | 0.0 | 0.8367 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8499 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8888 | 0.6973 | 0.8808 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4924 | 0.7106 | 0.0 | 0.0020 | 0.0000 | nan | 0.0002 | 0.0 | 0.0 | 0.5812 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5056 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.7306 | 0.4774 | 0.7751 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.0971 | 0.35 | 140 | 1.5878 | 0.1392 | 0.1931 | 0.7067 | nan | 0.8429 | 0.9084 | 0.0 | 0.0003 | 0.0000 | nan | 0.0000 | 0.0 | 0.0 | 0.8886 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8458 | 0.0 | 0.0061 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8806 | 0.7458 | 0.8668 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4799 | 0.7350 | 0.0 | 0.0003 | 0.0000 | nan | 0.0000 | 0.0 | 0.0 | 0.5623 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5298 | 0.0 | 0.0061 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7340 | 0.4897 | 0.7783 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5524 | 0.4 | 160 | 1.5210 | 0.1416 | 0.1935 | 0.7104 | nan | 0.8431 | 0.9047 | 0.0 | 0.0054 | 0.0004 | nan | 0.0001 | 0.0 | 0.0 | 0.8147 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8864 | 0.0 | 0.0011 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8979 | 0.7542 | 0.8898 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4947 | 0.7378 | 0.0 | 0.0054 | 0.0004 | nan | 0.0001 | 0.0 | 0.0 | 0.6030 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5067 | 0.0 | 0.0011 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7376 | 0.5122 | 0.7895 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.1125 | 0.45 | 180 | 1.4662 | 0.1381 | 0.1967 | 0.7038 | nan | 0.8346 | 0.9129 | 0.0 | 0.0013 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.8720 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8763 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8097 | 0.8918 | 0.8970 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5026 | 0.7394 | 0.0 | 0.0013 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.5807 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5253 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6976 | 0.4392 | 0.7937 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7884 | 0.5 | 200 | 1.3982 | 0.1411 | 0.1928 | 0.7139 | nan | 0.8103 | 0.9245 | 0.0 | 0.0012 | 0.0007 | nan | 0.0 | 0.0 | 0.0 | 0.8626 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8615 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9163 | 0.6946 | 0.9044 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5111 | 0.7331 | 0.0 | 0.0012 | 0.0007 | nan | 0.0 | 0.0 | 0.0 | 0.5772 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5245 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7332 | 0.5028 | 0.7899 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7399 | 0.55 | 220 | 1.4060 | 0.1429 | 0.1965 | 0.7154 | nan | 0.8177 | 0.9351 | 0.0 | 0.0000 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.8868 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8743 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8626 | 0.8036 | 0.9097 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5061 | 0.7372 | 0.0 | 0.0000 | 0.0004 | nan | 0.0 | 0.0 | 0.0 | 0.5900 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5170 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7513 | 0.5264 | 0.8019 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6151 | 0.6 | 240 | 1.3772 | 0.1407 | 0.1920 | 0.7140 | nan | 0.8674 | 0.9061 | 0.0 | 0.0000 | 0.0018 | nan | 0.0 | 0.0 | 0.0 | 0.8325 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8259 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9415 | 0.6687 | 0.9074 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5026 | 0.7512 | 0.0 | 0.0000 | 0.0018 | nan | 0.0 | 0.0 | 0.0 | 0.5943 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5339 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7135 | 0.4782 | 0.7870 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.8311 | 0.65 | 260 | 1.3217 | 0.1418 | 0.1945 | 0.7189 | nan | 0.8499 | 0.9251 | 0.0 | 0.0002 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.8839 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8598 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.7105 | 0.8851 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5198 | 0.7509 | 0.0 | 0.0002 | 0.0028 | nan | 0.0 | 0.0 | 0.0 | 0.5533 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5311 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7431 | 0.4986 | 0.7975 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.215 | 0.7 | 280 | 1.3329 | 0.1434 | 0.1977 | 0.7195 | nan | 0.8756 | 0.9182 | 0.0 | 0.0003 | 0.0023 | nan | 0.0 | 0.0 | 0.0 | 0.8858 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9029 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8752 | 0.7868 | 0.8822 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5146 | 0.7624 | 0.0 | 0.0003 | 0.0023 | nan | 0.0 | 0.0 | 0.0 | 0.5919 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5143 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7533 | 0.5041 | 0.8033 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5656 | 0.75 | 300 | 1.2993 | 0.1433 | 0.1973 | 0.7170 | nan | 0.8972 | 0.9030 | 0.0 | 0.0002 | 0.0016 | nan | 0.0 | 0.0 | 0.0 | 0.8611 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8344 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9037 | 0.8070 | 0.9082 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4916 | 0.7608 | 0.0 | 0.0002 | 0.0015 | nan | 0.0 | 0.0 | 0.0 | 0.5982 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5474 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7300 | 0.5160 | 0.7977 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3712 | 0.8 | 320 | 1.2934 | 0.1445 | 0.1984 | 0.7203 | nan | 0.9047 | 0.9056 | 0.0 | 0.0004 | 0.0006 | nan | 0.0 | 0.0 | 0.0 | 0.8724 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8694 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8976 | 0.7999 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4941 | 0.7696 | 0.0 | 0.0004 | 0.0006 | nan | 0.0 | 0.0 | 0.0 | 0.5955 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5460 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7442 | 0.5189 | 0.8093 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1831 | 0.85 | 340 | 1.2771 | 0.1453 | 0.1996 | 0.7217 | nan | 0.9035 | 0.9105 | 0.0 | 0.0010 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.8679 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8874 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8812 | 0.8507 | 0.8838 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4996 | 0.7710 | 0.0 | 0.0010 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.6037 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5458 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7443 | 0.5249 | 0.8129 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.343 | 0.9 | 360 | 1.2465 | 0.1449 | 0.1989 | 0.7212 | nan | 0.9086 | 0.9032 | 0.0 | 0.0007 | 0.0022 | nan | 0.0 | 0.0 | 0.0 | 0.8650 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8673 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9040 | 0.8253 | 0.8911 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4947 | 0.7732 | 0.0 | 0.0007 | 0.0022 | nan | 0.0 | 0.0 | 0.0 | 0.5988 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5508 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7403 | 0.5220 | 0.8099 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4857 | 0.95 | 380 | 1.2733 | 0.1453 | 0.2008 | 0.7241 | nan | 0.8789 | 0.9317 | 0.0 | 0.0019 | 0.0035 | nan | 0.0 | 0.0 | 0.0 | 0.8861 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9032 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8505 | 0.8620 | 0.9060 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5280 | 0.7656 | 0.0 | 0.0019 | 0.0035 | nan | 0.0 | 0.0 | 0.0 | 0.5952 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5299 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7500 | 0.5148 | 0.8150 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1595 | 1.0 | 400 | 1.2757 | 0.1462 | 0.2006 | 0.7257 | nan | 0.8968 | 0.9232 | 0.0 | 0.0013 | 0.0024 | nan | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8822 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8802 | 0.8441 | 0.9068 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5131 | 0.7717 | 0.0 | 0.0013 | 0.0024 | nan | 0.0 | 0.0 | 0.0 | 0.5983 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5449 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7519 | 0.5340 | 0.8151 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
thesisabc/segformer-b0-finetuned-segments-sidewalk-2 | # SegFormer (b0-sized) model fine-tuned on Segments.ai sidewalk-semantic.
SegFormer model fine-tuned on [Segments.ai](https://segments.ai) [`sidewalk-semantic`](https://huggingface.co/datasets/segments/sidewalk-semantic). It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
## Model description
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
### How to use
Here is how to use this model to classify an image of the sidewalk dataset:
```python
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk")
url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
``` | [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
vimassaru/segformer-b0-finetuned-teeth-segmentation |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the vimassaru/teethsegmentation dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1880
- Mean Iou: 0.7311
- Mean Accuracy: 0.8106
- Overall Accuracy: 0.8184
- Accuracy Background: nan
- Accuracy 11: 0.8456
- Accuracy 12: 0.8351
- Accuracy 13: 0.8619
- Accuracy 14: 0.8112
- Accuracy 15: 0.8087
- Accuracy 16: 0.9141
- Accuracy 17: 0.8742
- Accuracy 18: 0.7394
- Accuracy 21: 0.8758
- Accuracy 22: 0.8579
- Accuracy 23: 0.8480
- Accuracy 24: 0.7169
- Accuracy 25: 0.8273
- Accuracy 26: 0.8481
- Accuracy 27: 0.8284
- Accuracy 28: 0.7298
- Accuracy 31: 0.7495
- Accuracy 32: 0.7987
- Accuracy 33: 0.8661
- Accuracy 34: 0.8392
- Accuracy 35: 0.7596
- Accuracy 36: 0.7482
- Accuracy 37: 0.8109
- Accuracy 38: 0.7016
- Accuracy 41: 0.7217
- Accuracy 42: 0.7480
- Accuracy 43: 0.8447
- Accuracy 44: 0.7868
- Accuracy 45: 0.8250
- Accuracy 46: 0.8762
- Accuracy 47: 0.8519
- Accuracy 48: 0.7878
- Iou Background: 0.0
- Iou 11: 0.8226
- Iou 12: 0.8155
- Iou 13: 0.8048
- Iou 14: 0.7807
- Iou 15: 0.7909
- Iou 16: 0.8609
- Iou 17: 0.8145
- Iou 18: 0.6999
- Iou 21: 0.8266
- Iou 22: 0.8160
- Iou 23: 0.8000
- Iou 24: 0.6900
- Iou 25: 0.7760
- Iou 26: 0.8065
- Iou 27: 0.7338
- Iou 28: 0.6771
- Iou 31: 0.6604
- Iou 32: 0.7394
- Iou 33: 0.7977
- Iou 34: 0.7577
- Iou 35: 0.6944
- Iou 36: 0.6774
- Iou 37: 0.7224
- Iou 38: 0.6099
- Iou 41: 0.6166
- Iou 42: 0.6741
- Iou 43: 0.7706
- Iou 44: 0.7386
- Iou 45: 0.7555
- Iou 46: 0.8271
- Iou 47: 0.8210
- Iou 48: 0.7466
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy 11 | Accuracy 12 | Accuracy 13 | Accuracy 14 | Accuracy 15 | Accuracy 16 | Accuracy 17 | Accuracy 18 | Accuracy 21 | Accuracy 22 | Accuracy 23 | Accuracy 24 | Accuracy 25 | Accuracy 26 | Accuracy 27 | Accuracy 28 | Accuracy 31 | Accuracy 32 | Accuracy 33 | Accuracy 34 | Accuracy 35 | Accuracy 36 | Accuracy 37 | Accuracy 38 | Accuracy 41 | Accuracy 42 | Accuracy 43 | Accuracy 44 | Accuracy 45 | Accuracy 46 | Accuracy 47 | Accuracy 48 | Iou Background | Iou 11 | Iou 12 | Iou 13 | Iou 14 | Iou 15 | Iou 16 | Iou 17 | Iou 18 | Iou 21 | Iou 22 | Iou 23 | Iou 24 | Iou 25 | Iou 26 | Iou 27 | Iou 28 | Iou 31 | Iou 32 | Iou 33 | Iou 34 | Iou 35 | Iou 36 | Iou 37 | Iou 38 | Iou 41 | Iou 42 | Iou 43 | Iou 44 | Iou 45 | Iou 46 | Iou 47 | Iou 48 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:--------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 1.5068 | 2.0 | 20 | 1.5257 | 0.0331 | 0.0872 | 0.1082 | nan | 0.0 | 0.0 | 0.0325 | 0.0 | 0.0 | 0.3861 | 0.7782 | 0.0 | 0.5551 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0025 | 0.5879 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1233 | 0.1058 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.2200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0298 | 0.0 | 0.0 | 0.2256 | 0.2666 | 0.0 | 0.0733 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0025 | 0.1063 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0983 | 0.0956 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.1930 | 0.0 |
| 0.6989 | 4.0 | 40 | 0.6959 | 0.0319 | 0.0406 | 0.0525 | nan | 0.0032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1235 | 0.5046 | 0.0 | 0.0025 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0821 | 0.2861 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0411 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2543 | 0.0 | 0.0 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1124 | 0.3456 | 0.0 | 0.0024 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0706 | 0.2383 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0395 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2387 | 0.0 |
| 0.5093 | 6.0 | 60 | 0.4954 | 0.1659 | 0.2494 | 0.3064 | nan | 0.4165 | 0.0 | 0.5606 | 0.2388 | 0.2757 | 0.7236 | 0.7757 | 0.0 | 0.6343 | 0.0 | 0.5877 | 0.0009 | 0.0374 | 0.7495 | 0.7771 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0323 | 0.0 | 0.0006 | 0.8019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0436 | 0.0 | 0.0556 | 0.7505 | 0.5182 | 0.0 | 0.2822 | 0.0 | 0.3631 | 0.2026 | 0.2067 | 0.4694 | 0.5250 | 0.0 | 0.3620 | 0.0 | 0.4125 | 0.0009 | 0.0358 | 0.4261 | 0.5167 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0299 | 0.0 | 0.0006 | 0.5306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0423 | 0.0 | 0.0555 | 0.5479 | 0.4643 |
| 0.3942 | 8.0 | 80 | 0.3680 | 0.3501 | 0.4658 | 0.5243 | nan | 0.5738 | 0.1433 | 0.7262 | 0.5454 | 0.5830 | 0.7900 | 0.8112 | 0.0005 | 0.7442 | 0.0533 | 0.8308 | 0.3071 | 0.5064 | 0.8316 | 0.7153 | 0.0 | 0.0000 | 0.0743 | 0.6079 | 0.4475 | 0.1634 | 0.6588 | 0.7590 | 0.2711 | 0.0 | 0.3319 | 0.4395 | 0.6430 | 0.2279 | 0.7393 | 0.6828 | 0.6962 | 0.0 | 0.4491 | 0.1389 | 0.5260 | 0.4596 | 0.5023 | 0.6223 | 0.5467 | 0.0005 | 0.5418 | 0.0531 | 0.5015 | 0.2715 | 0.4175 | 0.6065 | 0.4828 | 0.0 | 0.0000 | 0.0713 | 0.3230 | 0.3481 | 0.1586 | 0.5433 | 0.5740 | 0.2533 | 0.0 | 0.2423 | 0.3966 | 0.4280 | 0.2200 | 0.6234 | 0.6177 | 0.6324 |
| 0.2784 | 10.0 | 100 | 0.2889 | 0.4636 | 0.5684 | 0.6056 | nan | 0.7515 | 0.3831 | 0.6687 | 0.4978 | 0.5445 | 0.7171 | 0.8213 | 0.3704 | 0.8125 | 0.4238 | 0.7137 | 0.3553 | 0.3746 | 0.6771 | 0.7124 | 0.3304 | 0.2737 | 0.3675 | 0.6784 | 0.5418 | 0.5543 | 0.6343 | 0.7606 | 0.5879 | 0.0628 | 0.4605 | 0.6789 | 0.6545 | 0.4182 | 0.8261 | 0.8022 | 0.7318 | 0.0 | 0.5755 | 0.3346 | 0.5240 | 0.4448 | 0.5151 | 0.6337 | 0.6315 | 0.3573 | 0.5967 | 0.3743 | 0.5367 | 0.2860 | 0.3354 | 0.6064 | 0.5735 | 0.3130 | 0.2389 | 0.3153 | 0.5370 | 0.4762 | 0.4740 | 0.5568 | 0.6436 | 0.4934 | 0.0622 | 0.3368 | 0.5307 | 0.4908 | 0.4042 | 0.7224 | 0.7127 | 0.6656 |
| 0.2464 | 12.0 | 120 | 0.2468 | 0.5400 | 0.6505 | 0.6768 | nan | 0.7948 | 0.5458 | 0.7406 | 0.5603 | 0.6560 | 0.8367 | 0.8329 | 0.4258 | 0.8497 | 0.5678 | 0.7320 | 0.5367 | 0.6036 | 0.7622 | 0.7365 | 0.5251 | 0.4648 | 0.6275 | 0.7353 | 0.5512 | 0.6709 | 0.6991 | 0.7896 | 0.6117 | 0.2989 | 0.5592 | 0.6312 | 0.5789 | 0.6009 | 0.8589 | 0.7659 | 0.6656 | 0.0 | 0.6477 | 0.4822 | 0.5850 | 0.4886 | 0.6094 | 0.7392 | 0.6728 | 0.4202 | 0.6684 | 0.4945 | 0.6069 | 0.4492 | 0.4973 | 0.6686 | 0.6208 | 0.4915 | 0.3555 | 0.4906 | 0.5972 | 0.4926 | 0.5760 | 0.6233 | 0.6776 | 0.5277 | 0.2650 | 0.4418 | 0.5141 | 0.4982 | 0.5567 | 0.7441 | 0.6964 | 0.6216 |
| 0.1842 | 14.0 | 140 | 0.2142 | 0.6089 | 0.7198 | 0.7422 | nan | 0.7984 | 0.6803 | 0.7803 | 0.6313 | 0.7672 | 0.8662 | 0.8918 | 0.6084 | 0.8619 | 0.7294 | 0.8191 | 0.6076 | 0.7007 | 0.8122 | 0.8322 | 0.3832 | 0.5565 | 0.6651 | 0.8472 | 0.7226 | 0.7371 | 0.7750 | 0.7743 | 0.5362 | 0.5420 | 0.6400 | 0.7419 | 0.7320 | 0.6402 | 0.8401 | 0.8309 | 0.6816 | 0.0 | 0.7143 | 0.6368 | 0.7007 | 0.5825 | 0.6365 | 0.7816 | 0.7521 | 0.5826 | 0.7414 | 0.6622 | 0.7151 | 0.5453 | 0.5588 | 0.7077 | 0.6385 | 0.3652 | 0.4556 | 0.5434 | 0.7138 | 0.6374 | 0.6336 | 0.6464 | 0.6580 | 0.4844 | 0.4542 | 0.5349 | 0.6565 | 0.6279 | 0.5893 | 0.7605 | 0.7330 | 0.6423 |
| 0.1488 | 16.0 | 160 | 0.1933 | 0.6322 | 0.7373 | 0.7542 | nan | 0.7908 | 0.6508 | 0.7861 | 0.7352 | 0.7521 | 0.8892 | 0.8725 | 0.6348 | 0.8581 | 0.6927 | 0.8070 | 0.6642 | 0.7642 | 0.8278 | 0.8363 | 0.5789 | 0.6088 | 0.6556 | 0.8139 | 0.6966 | 0.6829 | 0.7853 | 0.7453 | 0.6678 | 0.5757 | 0.6036 | 0.7537 | 0.7381 | 0.7114 | 0.8446 | 0.8103 | 0.7584 | 0.0 | 0.6990 | 0.6113 | 0.7069 | 0.6612 | 0.7097 | 0.7968 | 0.7383 | 0.6079 | 0.7618 | 0.6629 | 0.7209 | 0.5896 | 0.6152 | 0.7371 | 0.6847 | 0.5395 | 0.5130 | 0.5606 | 0.6936 | 0.6153 | 0.5981 | 0.6347 | 0.6535 | 0.5868 | 0.4842 | 0.5324 | 0.6701 | 0.6410 | 0.6346 | 0.7595 | 0.7362 | 0.7052 |
| 0.1416 | 18.0 | 180 | 0.1841 | 0.6533 | 0.7530 | 0.7611 | nan | 0.8485 | 0.7657 | 0.8163 | 0.6475 | 0.6706 | 0.7889 | 0.8295 | 0.8478 | 0.8320 | 0.7455 | 0.7939 | 0.5882 | 0.6691 | 0.7761 | 0.7446 | 0.7167 | 0.5879 | 0.6785 | 0.7867 | 0.7367 | 0.7456 | 0.7522 | 0.7657 | 0.7979 | 0.6336 | 0.7404 | 0.8204 | 0.7517 | 0.6922 | 0.8420 | 0.8470 | 0.8352 | 0.0 | 0.7802 | 0.7301 | 0.7232 | 0.6005 | 0.6380 | 0.7526 | 0.7347 | 0.6939 | 0.7603 | 0.6879 | 0.6913 | 0.5221 | 0.5773 | 0.7374 | 0.6773 | 0.6223 | 0.5234 | 0.5861 | 0.7062 | 0.6492 | 0.6365 | 0.6644 | 0.6850 | 0.6211 | 0.5522 | 0.6502 | 0.7557 | 0.6860 | 0.6374 | 0.7636 | 0.7728 | 0.7395 |
| 0.1346 | 20.0 | 200 | 0.1742 | 0.6462 | 0.7375 | 0.7528 | nan | 0.8037 | 0.7862 | 0.7855 | 0.7327 | 0.7617 | 0.8752 | 0.8049 | 0.5045 | 0.8113 | 0.7420 | 0.8055 | 0.5818 | 0.6962 | 0.7828 | 0.8136 | 0.5866 | 0.5741 | 0.7100 | 0.8119 | 0.7525 | 0.6603 | 0.7224 | 0.8027 | 0.6645 | 0.6230 | 0.7702 | 0.8144 | 0.6772 | 0.7818 | 0.8084 | 0.8461 | 0.7052 | 0.0 | 0.7651 | 0.7384 | 0.7206 | 0.6790 | 0.7135 | 0.7803 | 0.6876 | 0.4954 | 0.7515 | 0.6922 | 0.7354 | 0.5483 | 0.6050 | 0.7345 | 0.6809 | 0.5512 | 0.5261 | 0.6238 | 0.7292 | 0.6495 | 0.5871 | 0.6396 | 0.7011 | 0.5818 | 0.5478 | 0.6583 | 0.7103 | 0.6303 | 0.6758 | 0.7516 | 0.7592 | 0.6734 |
| 0.1042 | 22.0 | 220 | 0.1637 | 0.6758 | 0.7706 | 0.7839 | nan | 0.8440 | 0.8257 | 0.8354 | 0.7495 | 0.7759 | 0.9255 | 0.8405 | 0.5792 | 0.8443 | 0.8035 | 0.8293 | 0.6949 | 0.8221 | 0.8176 | 0.7856 | 0.5664 | 0.6291 | 0.7734 | 0.8161 | 0.7754 | 0.6758 | 0.7612 | 0.7892 | 0.6925 | 0.6765 | 0.7656 | 0.8216 | 0.7656 | 0.7414 | 0.8543 | 0.8211 | 0.7612 | 0.0 | 0.7956 | 0.7843 | 0.7713 | 0.6988 | 0.7373 | 0.8287 | 0.7380 | 0.5596 | 0.7925 | 0.7543 | 0.7762 | 0.6417 | 0.6676 | 0.7463 | 0.6649 | 0.5328 | 0.5629 | 0.6537 | 0.7400 | 0.6748 | 0.6041 | 0.6581 | 0.6950 | 0.6081 | 0.5778 | 0.6579 | 0.7449 | 0.6918 | 0.6812 | 0.7902 | 0.7652 | 0.7059 |
| 0.1014 | 24.0 | 240 | 0.1628 | 0.6739 | 0.7704 | 0.7833 | nan | 0.8358 | 0.8065 | 0.8226 | 0.7126 | 0.7269 | 0.8906 | 0.8694 | 0.6430 | 0.8772 | 0.7933 | 0.8077 | 0.6404 | 0.7989 | 0.8127 | 0.7760 | 0.5488 | 0.7075 | 0.7579 | 0.8430 | 0.7868 | 0.7336 | 0.7986 | 0.7866 | 0.6533 | 0.6949 | 0.6935 | 0.7829 | 0.7970 | 0.7933 | 0.8418 | 0.8350 | 0.7834 | 0.0 | 0.7942 | 0.7717 | 0.7501 | 0.6543 | 0.7011 | 0.8332 | 0.7823 | 0.6183 | 0.8028 | 0.7212 | 0.7369 | 0.5974 | 0.6623 | 0.7291 | 0.6472 | 0.5168 | 0.6019 | 0.6628 | 0.7611 | 0.6877 | 0.6428 | 0.6768 | 0.6912 | 0.5835 | 0.5659 | 0.5941 | 0.7315 | 0.7195 | 0.7043 | 0.7870 | 0.7801 | 0.7295 |
| 0.1026 | 26.0 | 260 | 0.1600 | 0.7036 | 0.7975 | 0.8086 | nan | 0.8306 | 0.8021 | 0.8395 | 0.8163 | 0.8010 | 0.9308 | 0.8947 | 0.7863 | 0.8411 | 0.7763 | 0.8088 | 0.6931 | 0.8100 | 0.8361 | 0.8549 | 0.6659 | 0.6646 | 0.7211 | 0.8081 | 0.7935 | 0.7318 | 0.7776 | 0.8230 | 0.7290 | 0.6925 | 0.7631 | 0.8611 | 0.8405 | 0.7458 | 0.8987 | 0.8776 | 0.8035 | 0.0 | 0.7789 | 0.7732 | 0.7981 | 0.7548 | 0.7578 | 0.8710 | 0.8372 | 0.7335 | 0.7657 | 0.7307 | 0.7706 | 0.6434 | 0.6820 | 0.7926 | 0.7346 | 0.6132 | 0.5936 | 0.6512 | 0.7460 | 0.6843 | 0.6222 | 0.6729 | 0.7212 | 0.6212 | 0.5839 | 0.6754 | 0.8011 | 0.7558 | 0.6898 | 0.8159 | 0.8071 | 0.7388 |
| 0.084 | 28.0 | 280 | 0.1555 | 0.6998 | 0.7893 | 0.7998 | nan | 0.8122 | 0.7962 | 0.8345 | 0.7668 | 0.7207 | 0.8815 | 0.9032 | 0.7212 | 0.8329 | 0.7968 | 0.8244 | 0.7527 | 0.8032 | 0.8308 | 0.8524 | 0.7154 | 0.6876 | 0.7525 | 0.8473 | 0.8036 | 0.7202 | 0.7676 | 0.8123 | 0.7076 | 0.6789 | 0.7105 | 0.8426 | 0.8048 | 0.8069 | 0.8447 | 0.8490 | 0.7757 | 0.0 | 0.7794 | 0.7652 | 0.7627 | 0.6891 | 0.6996 | 0.8404 | 0.8134 | 0.6859 | 0.7800 | 0.7435 | 0.7758 | 0.6849 | 0.7065 | 0.7928 | 0.7470 | 0.6594 | 0.6171 | 0.6737 | 0.7581 | 0.6921 | 0.6345 | 0.6805 | 0.7251 | 0.6076 | 0.5847 | 0.6444 | 0.7949 | 0.7383 | 0.7164 | 0.7882 | 0.7837 | 0.7271 |
| 0.0833 | 30.0 | 300 | 0.1561 | 0.6956 | 0.7859 | 0.7970 | nan | 0.8366 | 0.8484 | 0.8740 | 0.7845 | 0.7260 | 0.9071 | 0.8607 | 0.7272 | 0.8362 | 0.8175 | 0.8326 | 0.7091 | 0.7824 | 0.8454 | 0.8095 | 0.6050 | 0.6899 | 0.7374 | 0.8240 | 0.7946 | 0.7254 | 0.7469 | 0.7926 | 0.7184 | 0.6670 | 0.7099 | 0.8738 | 0.8384 | 0.7947 | 0.8672 | 0.8294 | 0.7376 | 0.0 | 0.7987 | 0.8188 | 0.7940 | 0.7065 | 0.7027 | 0.8353 | 0.7950 | 0.6931 | 0.7850 | 0.7667 | 0.7680 | 0.6546 | 0.6978 | 0.7799 | 0.6885 | 0.5668 | 0.6143 | 0.6660 | 0.7517 | 0.6993 | 0.6363 | 0.6589 | 0.7118 | 0.6149 | 0.5743 | 0.6468 | 0.8047 | 0.7501 | 0.7138 | 0.7978 | 0.7651 | 0.6976 |
| 0.0824 | 32.0 | 320 | 0.1543 | 0.7109 | 0.7960 | 0.8060 | nan | 0.8509 | 0.8384 | 0.8601 | 0.7927 | 0.8072 | 0.8660 | 0.8671 | 0.7814 | 0.8639 | 0.8340 | 0.8483 | 0.7068 | 0.7814 | 0.8166 | 0.8125 | 0.7173 | 0.6564 | 0.7617 | 0.8475 | 0.7745 | 0.7266 | 0.7506 | 0.8202 | 0.6921 | 0.6683 | 0.7198 | 0.8480 | 0.8344 | 0.8031 | 0.8905 | 0.8563 | 0.7774 | 0.0 | 0.8177 | 0.8143 | 0.8060 | 0.7503 | 0.7626 | 0.8317 | 0.8088 | 0.7207 | 0.8040 | 0.7938 | 0.8027 | 0.6677 | 0.6924 | 0.7851 | 0.7154 | 0.6584 | 0.5943 | 0.6837 | 0.7704 | 0.6973 | 0.6296 | 0.6607 | 0.7231 | 0.5996 | 0.5774 | 0.6510 | 0.7985 | 0.7611 | 0.7318 | 0.8271 | 0.8028 | 0.7185 |
| 0.0723 | 34.0 | 340 | 0.1557 | 0.6945 | 0.7807 | 0.7881 | nan | 0.8142 | 0.7941 | 0.8237 | 0.7511 | 0.7073 | 0.8734 | 0.8676 | 0.8159 | 0.8608 | 0.7947 | 0.8292 | 0.7155 | 0.7700 | 0.7827 | 0.8070 | 0.7627 | 0.6978 | 0.7275 | 0.8387 | 0.7683 | 0.7554 | 0.7509 | 0.8002 | 0.6639 | 0.7231 | 0.7017 | 0.8350 | 0.7678 | 0.7631 | 0.8388 | 0.8231 | 0.7584 | 0.0 | 0.7804 | 0.7599 | 0.7532 | 0.6917 | 0.6949 | 0.8422 | 0.8220 | 0.7555 | 0.7997 | 0.7583 | 0.7800 | 0.6642 | 0.6893 | 0.7639 | 0.7098 | 0.6723 | 0.6146 | 0.6639 | 0.7536 | 0.6897 | 0.6526 | 0.6674 | 0.7148 | 0.5882 | 0.5982 | 0.6309 | 0.7618 | 0.6946 | 0.6893 | 0.7850 | 0.7720 | 0.7044 |
| 0.0698 | 36.0 | 360 | 0.1523 | 0.7141 | 0.8005 | 0.8103 | nan | 0.8578 | 0.8162 | 0.8537 | 0.8157 | 0.7768 | 0.8899 | 0.8776 | 0.7987 | 0.8764 | 0.8345 | 0.8257 | 0.7107 | 0.8293 | 0.8590 | 0.8323 | 0.6399 | 0.6852 | 0.7657 | 0.8407 | 0.8026 | 0.7116 | 0.7590 | 0.8231 | 0.7489 | 0.6981 | 0.7221 | 0.8288 | 0.8048 | 0.8054 | 0.8520 | 0.8476 | 0.8261 | 0.0 | 0.8173 | 0.7990 | 0.8041 | 0.7614 | 0.7533 | 0.8548 | 0.8267 | 0.7320 | 0.8152 | 0.7863 | 0.7887 | 0.6712 | 0.7290 | 0.8003 | 0.6995 | 0.5925 | 0.6193 | 0.6904 | 0.7656 | 0.7110 | 0.6409 | 0.6690 | 0.7318 | 0.6404 | 0.5937 | 0.6535 | 0.7776 | 0.7466 | 0.7242 | 0.8047 | 0.8067 | 0.7573 |
| 0.0634 | 38.0 | 380 | 0.1554 | 0.7284 | 0.8209 | 0.8313 | nan | 0.8666 | 0.8745 | 0.8763 | 0.8678 | 0.8072 | 0.9112 | 0.9292 | 0.6655 | 0.8992 | 0.8717 | 0.8572 | 0.7633 | 0.8456 | 0.8279 | 0.8630 | 0.7138 | 0.7027 | 0.8109 | 0.8767 | 0.8415 | 0.7641 | 0.7846 | 0.8168 | 0.7206 | 0.7123 | 0.7586 | 0.8802 | 0.8160 | 0.8257 | 0.8813 | 0.8567 | 0.7810 | 0.0 | 0.8428 | 0.8406 | 0.8132 | 0.7981 | 0.7843 | 0.8678 | 0.8113 | 0.6434 | 0.8351 | 0.8149 | 0.8119 | 0.7135 | 0.7373 | 0.7971 | 0.7440 | 0.6618 | 0.6258 | 0.7111 | 0.8028 | 0.7348 | 0.6718 | 0.6903 | 0.7266 | 0.6194 | 0.6041 | 0.6767 | 0.8105 | 0.7543 | 0.7418 | 0.8154 | 0.8005 | 0.7354 |
| 0.0713 | 40.0 | 400 | 0.1525 | 0.7218 | 0.8123 | 0.8201 | nan | 0.8704 | 0.8448 | 0.8440 | 0.8238 | 0.7767 | 0.8975 | 0.8755 | 0.7267 | 0.8803 | 0.8616 | 0.8490 | 0.7422 | 0.7974 | 0.8279 | 0.8353 | 0.7166 | 0.7667 | 0.7983 | 0.8684 | 0.8377 | 0.7420 | 0.7794 | 0.8101 | 0.7151 | 0.7616 | 0.7408 | 0.8664 | 0.8062 | 0.8180 | 0.8802 | 0.8365 | 0.7950 | 0.0 | 0.8312 | 0.8095 | 0.7830 | 0.7623 | 0.7541 | 0.8481 | 0.8065 | 0.6990 | 0.8168 | 0.8020 | 0.7944 | 0.6918 | 0.7074 | 0.7924 | 0.7342 | 0.6590 | 0.6746 | 0.7122 | 0.7795 | 0.7377 | 0.6698 | 0.6866 | 0.7207 | 0.6159 | 0.6364 | 0.6663 | 0.7890 | 0.7472 | 0.7391 | 0.8140 | 0.7936 | 0.7434 |
| 0.0643 | 42.0 | 420 | 0.1553 | 0.7148 | 0.8042 | 0.8125 | nan | 0.8499 | 0.8216 | 0.8582 | 0.8145 | 0.7421 | 0.9148 | 0.9039 | 0.7032 | 0.8476 | 0.8359 | 0.8361 | 0.6862 | 0.8163 | 0.8320 | 0.8711 | 0.6857 | 0.7295 | 0.7706 | 0.8683 | 0.8590 | 0.7374 | 0.7249 | 0.7984 | 0.7706 | 0.7609 | 0.7409 | 0.8611 | 0.8164 | 0.8064 | 0.8565 | 0.8488 | 0.7650 | 0.0 | 0.8118 | 0.7943 | 0.7992 | 0.7484 | 0.7254 | 0.8550 | 0.8101 | 0.6735 | 0.7970 | 0.7858 | 0.7818 | 0.6519 | 0.7299 | 0.7955 | 0.7341 | 0.6359 | 0.6543 | 0.7031 | 0.7862 | 0.7336 | 0.6665 | 0.6664 | 0.7158 | 0.6325 | 0.6354 | 0.6694 | 0.7977 | 0.7527 | 0.7212 | 0.8083 | 0.8006 | 0.7150 |
| 0.0736 | 44.0 | 440 | 0.1546 | 0.7082 | 0.7925 | 0.8019 | nan | 0.8349 | 0.8097 | 0.8161 | 0.7697 | 0.7851 | 0.8876 | 0.8887 | 0.7442 | 0.8519 | 0.8535 | 0.8236 | 0.7030 | 0.8141 | 0.8471 | 0.8394 | 0.6563 | 0.7174 | 0.7590 | 0.8509 | 0.8080 | 0.7455 | 0.7675 | 0.7895 | 0.7165 | 0.6985 | 0.7191 | 0.8403 | 0.7541 | 0.7865 | 0.8846 | 0.8307 | 0.7672 | 0.0 | 0.7948 | 0.7605 | 0.7549 | 0.7271 | 0.7573 | 0.8537 | 0.8262 | 0.7135 | 0.7982 | 0.7927 | 0.7788 | 0.6656 | 0.7290 | 0.8111 | 0.7311 | 0.6179 | 0.6431 | 0.6932 | 0.7715 | 0.7216 | 0.6715 | 0.6895 | 0.7092 | 0.5991 | 0.5982 | 0.6453 | 0.7688 | 0.7157 | 0.7171 | 0.8114 | 0.7870 | 0.7169 |
| 0.061 | 46.0 | 460 | 0.1509 | 0.7221 | 0.8067 | 0.8162 | nan | 0.8450 | 0.8356 | 0.8496 | 0.7940 | 0.7847 | 0.8876 | 0.9201 | 0.7856 | 0.8733 | 0.8131 | 0.8391 | 0.7294 | 0.8558 | 0.8497 | 0.8405 | 0.7322 | 0.6868 | 0.7573 | 0.8596 | 0.7881 | 0.7321 | 0.7653 | 0.8078 | 0.7268 | 0.6762 | 0.7257 | 0.8676 | 0.8073 | 0.8238 | 0.8874 | 0.8516 | 0.8170 | 0.0 | 0.8206 | 0.8087 | 0.8025 | 0.7576 | 0.7481 | 0.8499 | 0.8369 | 0.7417 | 0.8124 | 0.7749 | 0.7963 | 0.6909 | 0.7448 | 0.8059 | 0.7367 | 0.6721 | 0.6221 | 0.6917 | 0.7695 | 0.7114 | 0.6621 | 0.6866 | 0.7227 | 0.6101 | 0.5882 | 0.6541 | 0.8083 | 0.7590 | 0.7457 | 0.8294 | 0.8115 | 0.7571 |
| 0.0536 | 48.0 | 480 | 0.1521 | 0.7308 | 0.8173 | 0.8245 | nan | 0.8590 | 0.8676 | 0.8617 | 0.8409 | 0.8160 | 0.9215 | 0.8884 | 0.7822 | 0.8956 | 0.8719 | 0.8377 | 0.7602 | 0.8218 | 0.8316 | 0.8560 | 0.7428 | 0.7031 | 0.7863 | 0.8546 | 0.8231 | 0.7696 | 0.7685 | 0.8087 | 0.7229 | 0.7263 | 0.7567 | 0.8379 | 0.8288 | 0.8430 | 0.8626 | 0.8406 | 0.7670 | 0.0 | 0.8344 | 0.8360 | 0.8057 | 0.7941 | 0.7925 | 0.8777 | 0.8388 | 0.7420 | 0.8293 | 0.7991 | 0.7835 | 0.7108 | 0.7494 | 0.8075 | 0.7551 | 0.6756 | 0.6385 | 0.7085 | 0.7825 | 0.7440 | 0.6904 | 0.6901 | 0.7235 | 0.6201 | 0.6148 | 0.6691 | 0.7887 | 0.7640 | 0.7343 | 0.8044 | 0.7917 | 0.7213 |
| 0.076 | 50.0 | 500 | 0.1520 | 0.7336 | 0.8204 | 0.8296 | nan | 0.8641 | 0.8672 | 0.8854 | 0.8506 | 0.8172 | 0.8983 | 0.9032 | 0.7429 | 0.8765 | 0.8368 | 0.8308 | 0.7443 | 0.8053 | 0.8632 | 0.8471 | 0.7114 | 0.7605 | 0.7863 | 0.8809 | 0.8453 | 0.7561 | 0.7871 | 0.8335 | 0.7037 | 0.7512 | 0.7384 | 0.8678 | 0.8357 | 0.7978 | 0.8895 | 0.8628 | 0.8111 | 0.0 | 0.8336 | 0.8387 | 0.8238 | 0.7964 | 0.7937 | 0.8658 | 0.8315 | 0.7116 | 0.8165 | 0.7868 | 0.7900 | 0.6980 | 0.7288 | 0.8131 | 0.7442 | 0.6538 | 0.6699 | 0.7143 | 0.7932 | 0.7474 | 0.6859 | 0.7028 | 0.7366 | 0.6159 | 0.6315 | 0.6707 | 0.8037 | 0.7708 | 0.7340 | 0.8311 | 0.8219 | 0.7517 |
| 0.0562 | 52.0 | 520 | 0.1628 | 0.7150 | 0.8054 | 0.8084 | nan | 0.8622 | 0.8430 | 0.8413 | 0.8382 | 0.8163 | 0.8398 | 0.7818 | 0.8451 | 0.8844 | 0.8439 | 0.8295 | 0.6901 | 0.7747 | 0.8257 | 0.8079 | 0.7877 | 0.7749 | 0.7851 | 0.8438 | 0.8018 | 0.7190 | 0.7503 | 0.7810 | 0.7472 | 0.7554 | 0.7455 | 0.8367 | 0.7893 | 0.8200 | 0.8742 | 0.8448 | 0.7913 | 0.0 | 0.8255 | 0.8175 | 0.8066 | 0.7834 | 0.7810 | 0.8205 | 0.7279 | 0.6485 | 0.8254 | 0.8013 | 0.7820 | 0.6641 | 0.7145 | 0.7787 | 0.7157 | 0.6751 | 0.6732 | 0.7057 | 0.7626 | 0.7167 | 0.6539 | 0.6710 | 0.7056 | 0.6244 | 0.6314 | 0.6625 | 0.7731 | 0.7407 | 0.7382 | 0.8232 | 0.8138 | 0.7333 |
| 0.0682 | 54.0 | 540 | 0.1544 | 0.7273 | 0.8147 | 0.8239 | nan | 0.8486 | 0.8597 | 0.8338 | 0.8060 | 0.7833 | 0.9164 | 0.8783 | 0.6689 | 0.8977 | 0.8613 | 0.8336 | 0.7496 | 0.8304 | 0.8650 | 0.8593 | 0.6824 | 0.7622 | 0.7868 | 0.8478 | 0.8315 | 0.7794 | 0.7738 | 0.8061 | 0.7577 | 0.7475 | 0.7457 | 0.8716 | 0.8245 | 0.8340 | 0.8787 | 0.8517 | 0.7978 | 0.0 | 0.8216 | 0.8116 | 0.7853 | 0.7635 | 0.7660 | 0.8542 | 0.7961 | 0.6473 | 0.8352 | 0.8144 | 0.7992 | 0.7083 | 0.7510 | 0.8180 | 0.7399 | 0.6359 | 0.6697 | 0.7070 | 0.7719 | 0.7462 | 0.6891 | 0.6863 | 0.7279 | 0.6595 | 0.6366 | 0.6769 | 0.8054 | 0.7596 | 0.7396 | 0.8220 | 0.8085 | 0.7471 |
| 0.0478 | 56.0 | 560 | 0.1564 | 0.7253 | 0.8132 | 0.8223 | nan | 0.8486 | 0.8530 | 0.8762 | 0.8190 | 0.7620 | 0.9052 | 0.8812 | 0.6975 | 0.9016 | 0.8451 | 0.8575 | 0.7538 | 0.8509 | 0.8625 | 0.8264 | 0.7102 | 0.7573 | 0.7668 | 0.8688 | 0.8337 | 0.7683 | 0.7906 | 0.7989 | 0.7494 | 0.7500 | 0.7366 | 0.8623 | 0.7946 | 0.7657 | 0.8953 | 0.8399 | 0.7950 | 0.0 | 0.8231 | 0.8223 | 0.8105 | 0.7623 | 0.7461 | 0.8610 | 0.8095 | 0.6731 | 0.8305 | 0.8006 | 0.8120 | 0.7162 | 0.7677 | 0.8179 | 0.7354 | 0.6530 | 0.6614 | 0.7003 | 0.7871 | 0.7482 | 0.6905 | 0.6961 | 0.7200 | 0.6325 | 0.6232 | 0.6626 | 0.7738 | 0.7204 | 0.7057 | 0.8244 | 0.8010 | 0.7470 |
| 0.0512 | 58.0 | 580 | 0.1546 | 0.7298 | 0.8150 | 0.8235 | nan | 0.8586 | 0.8815 | 0.8680 | 0.8305 | 0.8242 | 0.9193 | 0.8879 | 0.7123 | 0.8771 | 0.8630 | 0.8356 | 0.7117 | 0.8269 | 0.8482 | 0.8489 | 0.6943 | 0.7425 | 0.7987 | 0.8770 | 0.8386 | 0.7397 | 0.7332 | 0.8208 | 0.7140 | 0.7405 | 0.7508 | 0.8443 | 0.8103 | 0.8435 | 0.8862 | 0.8513 | 0.7999 | 0.0 | 0.8338 | 0.8388 | 0.8168 | 0.7895 | 0.7902 | 0.8661 | 0.8277 | 0.6841 | 0.8246 | 0.8068 | 0.7864 | 0.6815 | 0.7506 | 0.8171 | 0.7428 | 0.6401 | 0.6576 | 0.7185 | 0.7898 | 0.7393 | 0.6714 | 0.6679 | 0.7291 | 0.6156 | 0.6306 | 0.6758 | 0.7821 | 0.7577 | 0.7551 | 0.8339 | 0.8141 | 0.7489 |
| 0.0509 | 60.0 | 600 | 0.1545 | 0.7353 | 0.8220 | 0.8302 | nan | 0.8592 | 0.8720 | 0.8776 | 0.8462 | 0.8195 | 0.9220 | 0.8871 | 0.7440 | 0.8924 | 0.8589 | 0.8449 | 0.7433 | 0.8409 | 0.8667 | 0.8295 | 0.7048 | 0.7500 | 0.7998 | 0.8735 | 0.8245 | 0.7994 | 0.7692 | 0.8092 | 0.7337 | 0.7343 | 0.7453 | 0.8745 | 0.7983 | 0.8337 | 0.8995 | 0.8459 | 0.8055 | 0.0 | 0.8356 | 0.8372 | 0.8225 | 0.7993 | 0.7965 | 0.8741 | 0.8249 | 0.7122 | 0.8357 | 0.8147 | 0.8049 | 0.7064 | 0.7649 | 0.8106 | 0.7248 | 0.6528 | 0.6648 | 0.7211 | 0.7911 | 0.7476 | 0.7076 | 0.6945 | 0.7237 | 0.6179 | 0.6177 | 0.6697 | 0.7939 | 0.7466 | 0.7526 | 0.8392 | 0.8083 | 0.7503 |
| 0.0435 | 62.0 | 620 | 0.1551 | 0.7266 | 0.8095 | 0.8188 | nan | 0.8571 | 0.8378 | 0.8806 | 0.8244 | 0.7731 | 0.8974 | 0.8916 | 0.7253 | 0.8926 | 0.8779 | 0.8292 | 0.7394 | 0.8426 | 0.8510 | 0.8405 | 0.6897 | 0.7349 | 0.7807 | 0.8512 | 0.8099 | 0.7835 | 0.7475 | 0.8269 | 0.7194 | 0.7203 | 0.7187 | 0.8435 | 0.7898 | 0.8434 | 0.8713 | 0.8395 | 0.7721 | 0.0 | 0.8293 | 0.8170 | 0.8173 | 0.7700 | 0.7571 | 0.8613 | 0.8173 | 0.6964 | 0.8389 | 0.8144 | 0.7866 | 0.7000 | 0.7620 | 0.8155 | 0.7395 | 0.6413 | 0.6535 | 0.7092 | 0.7790 | 0.7303 | 0.6927 | 0.6821 | 0.7387 | 0.6235 | 0.6178 | 0.6549 | 0.7860 | 0.7458 | 0.7499 | 0.8195 | 0.8017 | 0.7275 |
| 0.05 | 64.0 | 640 | 0.1608 | 0.7221 | 0.8067 | 0.8152 | nan | 0.8488 | 0.8286 | 0.8781 | 0.7988 | 0.7907 | 0.9218 | 0.8732 | 0.7222 | 0.8763 | 0.8504 | 0.8118 | 0.7154 | 0.7931 | 0.8343 | 0.8289 | 0.6667 | 0.7748 | 0.7844 | 0.8624 | 0.8260 | 0.7703 | 0.7547 | 0.8016 | 0.7299 | 0.7529 | 0.7077 | 0.8586 | 0.8032 | 0.8272 | 0.8605 | 0.8591 | 0.8017 | 0.0 | 0.8249 | 0.8068 | 0.8109 | 0.7560 | 0.7735 | 0.8627 | 0.8140 | 0.6892 | 0.8176 | 0.7994 | 0.7727 | 0.6770 | 0.7346 | 0.8053 | 0.7320 | 0.6090 | 0.6701 | 0.7123 | 0.7792 | 0.7336 | 0.6902 | 0.6858 | 0.7224 | 0.6134 | 0.6299 | 0.6523 | 0.7845 | 0.7433 | 0.7416 | 0.8153 | 0.8225 | 0.7489 |
| 0.0459 | 66.0 | 660 | 0.1576 | 0.7261 | 0.8120 | 0.8214 | nan | 0.8631 | 0.8474 | 0.8776 | 0.7995 | 0.8026 | 0.9172 | 0.8583 | 0.6941 | 0.8725 | 0.8579 | 0.8357 | 0.6982 | 0.8411 | 0.8560 | 0.8450 | 0.6744 | 0.7390 | 0.7989 | 0.8662 | 0.8403 | 0.7824 | 0.7822 | 0.8095 | 0.7108 | 0.7288 | 0.7710 | 0.8529 | 0.8120 | 0.8185 | 0.8926 | 0.8564 | 0.7811 | 0.0 | 0.8341 | 0.8175 | 0.8080 | 0.7581 | 0.7869 | 0.8494 | 0.7878 | 0.6688 | 0.8230 | 0.8118 | 0.7919 | 0.6771 | 0.7617 | 0.8151 | 0.7318 | 0.6268 | 0.6483 | 0.7184 | 0.7954 | 0.7654 | 0.7075 | 0.6965 | 0.7241 | 0.6160 | 0.6164 | 0.6757 | 0.7775 | 0.7471 | 0.7440 | 0.8312 | 0.8088 | 0.7404 |
| 0.0439 | 68.0 | 680 | 0.1598 | 0.7224 | 0.8018 | 0.8101 | nan | 0.8218 | 0.8233 | 0.8531 | 0.8371 | 0.7939 | 0.9067 | 0.8828 | 0.7340 | 0.8563 | 0.8277 | 0.8418 | 0.7215 | 0.8087 | 0.8318 | 0.8512 | 0.7260 | 0.7475 | 0.7617 | 0.8591 | 0.8351 | 0.7281 | 0.7451 | 0.8040 | 0.6741 | 0.7338 | 0.7377 | 0.8337 | 0.7935 | 0.7990 | 0.8600 | 0.8537 | 0.7724 | 0.0 | 0.8019 | 0.7945 | 0.8109 | 0.7917 | 0.7781 | 0.8646 | 0.8215 | 0.7020 | 0.8158 | 0.7960 | 0.7933 | 0.6862 | 0.7495 | 0.8034 | 0.7442 | 0.6638 | 0.6640 | 0.7041 | 0.7812 | 0.7349 | 0.6623 | 0.6755 | 0.7208 | 0.5887 | 0.6181 | 0.6632 | 0.7688 | 0.7450 | 0.7438 | 0.8133 | 0.8124 | 0.7250 |
| 0.0429 | 70.0 | 700 | 0.1567 | 0.7318 | 0.8169 | 0.8234 | nan | 0.8528 | 0.8642 | 0.8606 | 0.8186 | 0.7842 | 0.9068 | 0.8902 | 0.7569 | 0.8653 | 0.8556 | 0.8600 | 0.7249 | 0.8386 | 0.8292 | 0.8274 | 0.7651 | 0.7225 | 0.7881 | 0.8830 | 0.8518 | 0.7644 | 0.7596 | 0.8094 | 0.7457 | 0.7419 | 0.7706 | 0.8486 | 0.8048 | 0.8377 | 0.8595 | 0.8543 | 0.7989 | 0.0 | 0.8324 | 0.8198 | 0.7989 | 0.7664 | 0.7683 | 0.8598 | 0.8278 | 0.7256 | 0.8254 | 0.8086 | 0.8097 | 0.6964 | 0.7582 | 0.7994 | 0.7423 | 0.6893 | 0.6474 | 0.7181 | 0.8038 | 0.7661 | 0.6991 | 0.6877 | 0.7223 | 0.6216 | 0.6318 | 0.6820 | 0.7805 | 0.7464 | 0.7383 | 0.8097 | 0.8156 | 0.7518 |
| 0.0451 | 72.0 | 720 | 0.1599 | 0.7259 | 0.8108 | 0.8180 | nan | 0.8575 | 0.8445 | 0.8569 | 0.7949 | 0.7508 | 0.9182 | 0.8857 | 0.7585 | 0.8817 | 0.8459 | 0.8278 | 0.7283 | 0.8307 | 0.8325 | 0.8339 | 0.7285 | 0.7605 | 0.7848 | 0.8750 | 0.8350 | 0.7597 | 0.7324 | 0.8046 | 0.7325 | 0.7270 | 0.7560 | 0.8507 | 0.8074 | 0.8130 | 0.8853 | 0.8430 | 0.8029 | 0.0 | 0.8328 | 0.8076 | 0.7840 | 0.7446 | 0.7429 | 0.8682 | 0.8291 | 0.7225 | 0.8281 | 0.8035 | 0.7867 | 0.6942 | 0.7558 | 0.8016 | 0.7417 | 0.6661 | 0.6629 | 0.7118 | 0.7904 | 0.7454 | 0.6875 | 0.6717 | 0.7177 | 0.6107 | 0.6183 | 0.6711 | 0.7747 | 0.7439 | 0.7470 | 0.8309 | 0.8111 | 0.7506 |
| 0.0438 | 74.0 | 740 | 0.1589 | 0.7383 | 0.8252 | 0.8335 | nan | 0.8535 | 0.8510 | 0.8886 | 0.7967 | 0.8137 | 0.9233 | 0.8862 | 0.7682 | 0.8849 | 0.8755 | 0.8550 | 0.7480 | 0.8585 | 0.8498 | 0.8561 | 0.7181 | 0.7650 | 0.7855 | 0.8884 | 0.8541 | 0.7811 | 0.7735 | 0.8343 | 0.6991 | 0.7570 | 0.7538 | 0.8659 | 0.8262 | 0.8308 | 0.9056 | 0.8575 | 0.8012 | 0.0 | 0.8326 | 0.8242 | 0.8009 | 0.7576 | 0.7948 | 0.8759 | 0.8293 | 0.7336 | 0.8340 | 0.8217 | 0.8060 | 0.7140 | 0.7731 | 0.8162 | 0.7444 | 0.6609 | 0.6723 | 0.7180 | 0.7997 | 0.7656 | 0.7070 | 0.6972 | 0.7367 | 0.6091 | 0.6385 | 0.6746 | 0.7887 | 0.7608 | 0.7612 | 0.8432 | 0.8193 | 0.7545 |
| 0.0458 | 76.0 | 760 | 0.1601 | 0.7269 | 0.8121 | 0.8214 | nan | 0.8496 | 0.8397 | 0.8527 | 0.8475 | 0.7941 | 0.9220 | 0.8976 | 0.7672 | 0.8544 | 0.8667 | 0.8357 | 0.7116 | 0.8245 | 0.8729 | 0.8328 | 0.6342 | 0.7355 | 0.7903 | 0.8746 | 0.8412 | 0.7663 | 0.7404 | 0.8199 | 0.6719 | 0.7317 | 0.7733 | 0.8619 | 0.8197 | 0.8283 | 0.8852 | 0.8562 | 0.7875 | 0.0 | 0.8262 | 0.8090 | 0.8018 | 0.7990 | 0.7828 | 0.8765 | 0.8352 | 0.7289 | 0.8138 | 0.8143 | 0.7966 | 0.6834 | 0.7534 | 0.8096 | 0.7147 | 0.5933 | 0.6504 | 0.7155 | 0.7886 | 0.7423 | 0.6852 | 0.6693 | 0.7205 | 0.5887 | 0.6236 | 0.6879 | 0.7929 | 0.7577 | 0.7455 | 0.8230 | 0.8136 | 0.7431 |
| 0.0465 | 78.0 | 780 | 0.1574 | 0.7369 | 0.8213 | 0.8291 | nan | 0.8351 | 0.8481 | 0.8662 | 0.8399 | 0.8210 | 0.9261 | 0.8788 | 0.7511 | 0.8876 | 0.8659 | 0.8343 | 0.7471 | 0.8311 | 0.8514 | 0.8520 | 0.7376 | 0.7532 | 0.8092 | 0.8687 | 0.8439 | 0.7719 | 0.7718 | 0.8254 | 0.7229 | 0.7217 | 0.7521 | 0.8460 | 0.8123 | 0.8303 | 0.8966 | 0.8571 | 0.8238 | 0.0 | 0.8189 | 0.8116 | 0.8060 | 0.7959 | 0.7975 | 0.8742 | 0.8205 | 0.7198 | 0.8357 | 0.8136 | 0.7898 | 0.7078 | 0.7645 | 0.8182 | 0.7533 | 0.6787 | 0.6575 | 0.7309 | 0.7971 | 0.7619 | 0.7030 | 0.6908 | 0.7315 | 0.6232 | 0.6156 | 0.6728 | 0.7805 | 0.7588 | 0.7594 | 0.8367 | 0.8209 | 0.7706 |
| 0.0472 | 80.0 | 800 | 0.1581 | 0.7398 | 0.8240 | 0.8319 | nan | 0.8523 | 0.8478 | 0.8569 | 0.8497 | 0.8148 | 0.9077 | 0.9090 | 0.7707 | 0.8890 | 0.8710 | 0.8457 | 0.7326 | 0.8413 | 0.8534 | 0.8573 | 0.7417 | 0.7604 | 0.7896 | 0.8915 | 0.8587 | 0.7877 | 0.7637 | 0.8249 | 0.7050 | 0.7075 | 0.7400 | 0.8388 | 0.8288 | 0.8473 | 0.9037 | 0.8491 | 0.8298 | 0.0 | 0.8314 | 0.8178 | 0.8091 | 0.8070 | 0.7953 | 0.8692 | 0.8361 | 0.7350 | 0.8355 | 0.8235 | 0.7971 | 0.6969 | 0.7691 | 0.8213 | 0.7577 | 0.6832 | 0.6606 | 0.7202 | 0.8031 | 0.7647 | 0.7041 | 0.6895 | 0.7314 | 0.6169 | 0.6006 | 0.6666 | 0.7819 | 0.7754 | 0.7739 | 0.8431 | 0.8235 | 0.7715 |
| 0.0382 | 82.0 | 820 | 0.1604 | 0.7403 | 0.8266 | 0.8343 | nan | 0.8591 | 0.8582 | 0.8789 | 0.8152 | 0.8205 | 0.9297 | 0.8853 | 0.7376 | 0.9018 | 0.8919 | 0.8719 | 0.7329 | 0.8391 | 0.8647 | 0.8502 | 0.7493 | 0.7837 | 0.8071 | 0.8941 | 0.8678 | 0.7693 | 0.7661 | 0.8292 | 0.7238 | 0.7455 | 0.7454 | 0.8597 | 0.8130 | 0.8221 | 0.8851 | 0.8525 | 0.8015 | 0.0 | 0.8372 | 0.8320 | 0.8087 | 0.7724 | 0.7967 | 0.8729 | 0.8232 | 0.7083 | 0.8480 | 0.8377 | 0.8183 | 0.7049 | 0.7683 | 0.8204 | 0.7546 | 0.6896 | 0.6755 | 0.7341 | 0.8079 | 0.7696 | 0.7004 | 0.6932 | 0.7355 | 0.6306 | 0.6242 | 0.6749 | 0.7846 | 0.7499 | 0.7518 | 0.8345 | 0.8204 | 0.7512 |
| 0.0442 | 84.0 | 840 | 0.1602 | 0.7390 | 0.8225 | 0.8302 | nan | 0.8469 | 0.8636 | 0.8656 | 0.8214 | 0.8119 | 0.9160 | 0.8997 | 0.7620 | 0.8728 | 0.8538 | 0.8407 | 0.7200 | 0.8656 | 0.8623 | 0.8515 | 0.7622 | 0.7776 | 0.7777 | 0.8701 | 0.8395 | 0.7936 | 0.7658 | 0.8260 | 0.7419 | 0.7210 | 0.7438 | 0.8456 | 0.7999 | 0.8217 | 0.8964 | 0.8775 | 0.8064 | 0.0 | 0.8276 | 0.8309 | 0.8056 | 0.7837 | 0.7960 | 0.8768 | 0.8374 | 0.7284 | 0.8277 | 0.8097 | 0.7978 | 0.6942 | 0.7736 | 0.8200 | 0.7589 | 0.6973 | 0.6743 | 0.7147 | 0.7911 | 0.7617 | 0.7151 | 0.6981 | 0.7359 | 0.6366 | 0.6127 | 0.6653 | 0.7748 | 0.7463 | 0.7519 | 0.8417 | 0.8378 | 0.7623 |
| 0.045 | 86.0 | 860 | 0.1615 | 0.7351 | 0.8164 | 0.8236 | nan | 0.8602 | 0.8347 | 0.8650 | 0.8180 | 0.8123 | 0.9033 | 0.8974 | 0.7588 | 0.8922 | 0.8646 | 0.8608 | 0.7367 | 0.8179 | 0.8463 | 0.8300 | 0.7655 | 0.7742 | 0.7765 | 0.8641 | 0.8422 | 0.7663 | 0.7427 | 0.8051 | 0.7022 | 0.7413 | 0.7390 | 0.8461 | 0.8004 | 0.8476 | 0.8903 | 0.8514 | 0.7723 | 0.0 | 0.8395 | 0.8132 | 0.8107 | 0.7807 | 0.7913 | 0.8657 | 0.8293 | 0.7245 | 0.8426 | 0.8242 | 0.8086 | 0.7018 | 0.7566 | 0.8118 | 0.7474 | 0.6984 | 0.6687 | 0.7128 | 0.7916 | 0.7562 | 0.6928 | 0.6757 | 0.7181 | 0.6045 | 0.6275 | 0.6717 | 0.7856 | 0.7561 | 0.7628 | 0.8292 | 0.8143 | 0.7443 |
| 0.0372 | 88.0 | 880 | 0.1615 | 0.7345 | 0.8151 | 0.8228 | nan | 0.8501 | 0.8432 | 0.8601 | 0.8370 | 0.7936 | 0.9159 | 0.8956 | 0.7217 | 0.8874 | 0.8570 | 0.8584 | 0.7030 | 0.8326 | 0.8443 | 0.8394 | 0.7630 | 0.7447 | 0.8013 | 0.8724 | 0.8381 | 0.7680 | 0.7537 | 0.8095 | 0.7261 | 0.7406 | 0.7492 | 0.8459 | 0.7901 | 0.8240 | 0.8649 | 0.8693 | 0.7821 | 0.0 | 0.8303 | 0.8200 | 0.8122 | 0.7979 | 0.7812 | 0.8714 | 0.8228 | 0.6926 | 0.8368 | 0.8187 | 0.8106 | 0.6809 | 0.7613 | 0.8081 | 0.7474 | 0.6928 | 0.6641 | 0.7333 | 0.7950 | 0.7589 | 0.7026 | 0.6846 | 0.7242 | 0.6239 | 0.6259 | 0.6749 | 0.7725 | 0.7395 | 0.7564 | 0.8177 | 0.8299 | 0.7489 |
| 0.0374 | 90.0 | 900 | 0.1635 | 0.7259 | 0.8057 | 0.8148 | nan | 0.8591 | 0.8400 | 0.8580 | 0.7711 | 0.8184 | 0.9109 | 0.8792 | 0.7200 | 0.8711 | 0.8568 | 0.8521 | 0.7213 | 0.8264 | 0.8453 | 0.8146 | 0.7050 | 0.7370 | 0.7954 | 0.8592 | 0.8366 | 0.7650 | 0.7493 | 0.8102 | 0.6756 | 0.6970 | 0.7472 | 0.8469 | 0.7833 | 0.8377 | 0.8697 | 0.8496 | 0.7751 | 0.0 | 0.8369 | 0.8173 | 0.7969 | 0.7483 | 0.7888 | 0.8639 | 0.8139 | 0.6916 | 0.8248 | 0.8155 | 0.8037 | 0.6921 | 0.7614 | 0.8073 | 0.7249 | 0.6526 | 0.6468 | 0.7254 | 0.7886 | 0.7558 | 0.7013 | 0.6802 | 0.7164 | 0.5877 | 0.6011 | 0.6717 | 0.7772 | 0.7363 | 0.7569 | 0.8189 | 0.8122 | 0.7389 |
| 0.0384 | 92.0 | 920 | 0.1662 | 0.7294 | 0.8119 | 0.8203 | nan | 0.8282 | 0.8271 | 0.8567 | 0.8378 | 0.7946 | 0.9053 | 0.8808 | 0.7401 | 0.8701 | 0.8589 | 0.8436 | 0.7213 | 0.8308 | 0.8552 | 0.8439 | 0.6911 | 0.7356 | 0.7934 | 0.8829 | 0.8517 | 0.7629 | 0.7474 | 0.8203 | 0.7053 | 0.7211 | 0.7537 | 0.8616 | 0.8006 | 0.8185 | 0.8969 | 0.8312 | 0.8113 | 0.0 | 0.8096 | 0.8029 | 0.8050 | 0.7889 | 0.7801 | 0.8595 | 0.8151 | 0.7064 | 0.8158 | 0.8083 | 0.7966 | 0.6928 | 0.7656 | 0.8169 | 0.7399 | 0.6401 | 0.6575 | 0.7283 | 0.7965 | 0.7560 | 0.6938 | 0.6824 | 0.7235 | 0.6078 | 0.6164 | 0.6815 | 0.7879 | 0.7477 | 0.7537 | 0.8352 | 0.8107 | 0.7488 |
| 0.0438 | 94.0 | 940 | 0.1668 | 0.7331 | 0.8169 | 0.8256 | nan | 0.8588 | 0.8564 | 0.8736 | 0.8234 | 0.8153 | 0.9055 | 0.8821 | 0.7226 | 0.8809 | 0.8822 | 0.8553 | 0.7457 | 0.8471 | 0.8471 | 0.8523 | 0.7147 | 0.7399 | 0.7916 | 0.8845 | 0.8448 | 0.7651 | 0.7410 | 0.8162 | 0.6957 | 0.7298 | 0.7561 | 0.8573 | 0.8067 | 0.8185 | 0.8912 | 0.8541 | 0.7861 | 0.0 | 0.8350 | 0.8294 | 0.8091 | 0.7862 | 0.7920 | 0.8529 | 0.8077 | 0.6923 | 0.8300 | 0.8309 | 0.8144 | 0.7136 | 0.7743 | 0.8169 | 0.7471 | 0.6616 | 0.6505 | 0.7217 | 0.7928 | 0.7604 | 0.7004 | 0.6766 | 0.7234 | 0.6043 | 0.6203 | 0.6742 | 0.7783 | 0.7471 | 0.7520 | 0.8373 | 0.8209 | 0.7389 |
| 0.036 | 96.0 | 960 | 0.1674 | 0.7379 | 0.8217 | 0.8288 | nan | 0.8562 | 0.8515 | 0.8737 | 0.8185 | 0.8144 | 0.9195 | 0.8892 | 0.7625 | 0.8920 | 0.8553 | 0.8526 | 0.7277 | 0.8312 | 0.8595 | 0.8382 | 0.7206 | 0.7780 | 0.8313 | 0.8830 | 0.8468 | 0.7676 | 0.7622 | 0.8153 | 0.7412 | 0.7288 | 0.7703 | 0.8552 | 0.8082 | 0.8225 | 0.8717 | 0.8556 | 0.7941 | 0.0 | 0.8298 | 0.8227 | 0.8102 | 0.7819 | 0.7973 | 0.8743 | 0.8283 | 0.7266 | 0.8337 | 0.8152 | 0.8044 | 0.6983 | 0.7631 | 0.8144 | 0.7376 | 0.6675 | 0.6867 | 0.7528 | 0.8016 | 0.7655 | 0.7023 | 0.6916 | 0.7313 | 0.6315 | 0.6264 | 0.6847 | 0.7747 | 0.7466 | 0.7519 | 0.8261 | 0.8239 | 0.7469 |
| 0.0336 | 98.0 | 980 | 0.1666 | 0.7321 | 0.8133 | 0.8210 | nan | 0.8512 | 0.8465 | 0.8526 | 0.8285 | 0.8063 | 0.9100 | 0.8760 | 0.7369 | 0.8817 | 0.8537 | 0.8466 | 0.7324 | 0.8159 | 0.8514 | 0.8478 | 0.7347 | 0.7401 | 0.7874 | 0.8621 | 0.8562 | 0.7723 | 0.7436 | 0.8167 | 0.7125 | 0.7452 | 0.7370 | 0.8484 | 0.7910 | 0.8418 | 0.8693 | 0.8446 | 0.7867 | 0.0 | 0.8303 | 0.8223 | 0.8027 | 0.7934 | 0.7914 | 0.8688 | 0.8148 | 0.7023 | 0.8320 | 0.8147 | 0.8049 | 0.6995 | 0.7540 | 0.8128 | 0.7473 | 0.6752 | 0.6575 | 0.7213 | 0.7858 | 0.7661 | 0.6974 | 0.6766 | 0.7266 | 0.6161 | 0.6280 | 0.6708 | 0.7772 | 0.7430 | 0.7540 | 0.8177 | 0.8117 | 0.7435 |
| 0.0402 | 100.0 | 1000 | 0.1703 | 0.7283 | 0.8083 | 0.8167 | nan | 0.8417 | 0.8270 | 0.8618 | 0.8060 | 0.7990 | 0.9187 | 0.8680 | 0.7391 | 0.8604 | 0.8639 | 0.8454 | 0.7151 | 0.8381 | 0.8506 | 0.8240 | 0.7009 | 0.7356 | 0.7958 | 0.8773 | 0.8330 | 0.7522 | 0.7655 | 0.8111 | 0.6956 | 0.7258 | 0.7469 | 0.8437 | 0.7864 | 0.8300 | 0.8780 | 0.8506 | 0.7773 | 0.0 | 0.8190 | 0.8057 | 0.8047 | 0.7723 | 0.7831 | 0.8695 | 0.8148 | 0.7016 | 0.8134 | 0.8207 | 0.7982 | 0.6919 | 0.7658 | 0.8089 | 0.7312 | 0.6512 | 0.6577 | 0.7291 | 0.7901 | 0.7548 | 0.6958 | 0.6875 | 0.7229 | 0.6040 | 0.6209 | 0.6727 | 0.7701 | 0.7373 | 0.7581 | 0.8238 | 0.8180 | 0.7404 |
| 0.0347 | 102.0 | 1020 | 0.1680 | 0.7300 | 0.8095 | 0.8185 | nan | 0.8335 | 0.8526 | 0.8599 | 0.8135 | 0.8154 | 0.9168 | 0.8851 | 0.7336 | 0.8708 | 0.8607 | 0.8366 | 0.7145 | 0.8258 | 0.8478 | 0.8360 | 0.7021 | 0.7329 | 0.7911 | 0.8575 | 0.8391 | 0.7793 | 0.7499 | 0.8254 | 0.7139 | 0.6868 | 0.7281 | 0.8375 | 0.7948 | 0.8374 | 0.8808 | 0.8540 | 0.7907 | 0.0 | 0.8145 | 0.8159 | 0.8009 | 0.7799 | 0.7974 | 0.8760 | 0.8206 | 0.6990 | 0.8228 | 0.8132 | 0.7939 | 0.6895 | 0.7628 | 0.8095 | 0.7383 | 0.6521 | 0.6488 | 0.7220 | 0.7855 | 0.7690 | 0.7114 | 0.6840 | 0.7336 | 0.6189 | 0.5949 | 0.6616 | 0.7669 | 0.7456 | 0.7633 | 0.8265 | 0.8223 | 0.7484 |
| 0.035 | 104.0 | 1040 | 0.1709 | 0.7282 | 0.8072 | 0.8153 | nan | 0.8385 | 0.8355 | 0.8511 | 0.8131 | 0.8032 | 0.9103 | 0.8779 | 0.7489 | 0.8680 | 0.8531 | 0.8395 | 0.7471 | 0.8207 | 0.8457 | 0.8215 | 0.7057 | 0.7264 | 0.7784 | 0.8638 | 0.8373 | 0.7677 | 0.7568 | 0.8065 | 0.7143 | 0.7195 | 0.7515 | 0.8402 | 0.7681 | 0.8156 | 0.8734 | 0.8441 | 0.7879 | 0.0 | 0.8147 | 0.8090 | 0.7994 | 0.7804 | 0.7863 | 0.8696 | 0.8223 | 0.7123 | 0.8177 | 0.8129 | 0.8034 | 0.7119 | 0.7568 | 0.8036 | 0.7286 | 0.6583 | 0.6486 | 0.7185 | 0.7887 | 0.7588 | 0.7049 | 0.6852 | 0.7208 | 0.6119 | 0.6146 | 0.6757 | 0.7664 | 0.7245 | 0.7467 | 0.8158 | 0.8122 | 0.7505 |
| 0.0335 | 106.0 | 1060 | 0.1689 | 0.7300 | 0.8104 | 0.8182 | nan | 0.8563 | 0.8375 | 0.8646 | 0.8213 | 0.8099 | 0.9055 | 0.8828 | 0.7513 | 0.8787 | 0.8536 | 0.8481 | 0.7179 | 0.8123 | 0.8572 | 0.7962 | 0.7255 | 0.7425 | 0.7871 | 0.8624 | 0.8377 | 0.7535 | 0.7514 | 0.8050 | 0.7108 | 0.7213 | 0.7394 | 0.8308 | 0.7975 | 0.8429 | 0.8777 | 0.8517 | 0.8019 | 0.0 | 0.8308 | 0.8139 | 0.8088 | 0.7867 | 0.7939 | 0.8679 | 0.8210 | 0.7128 | 0.8253 | 0.8151 | 0.7990 | 0.6890 | 0.7583 | 0.7943 | 0.7122 | 0.6754 | 0.6602 | 0.7267 | 0.7851 | 0.7517 | 0.6909 | 0.6781 | 0.7182 | 0.6179 | 0.6152 | 0.6650 | 0.7644 | 0.7454 | 0.7630 | 0.8260 | 0.8216 | 0.7548 |
| 0.029 | 108.0 | 1080 | 0.1700 | 0.7333 | 0.8136 | 0.8212 | nan | 0.8593 | 0.8467 | 0.8682 | 0.8181 | 0.8034 | 0.9091 | 0.8770 | 0.7556 | 0.8722 | 0.8573 | 0.8582 | 0.7310 | 0.8322 | 0.8397 | 0.8298 | 0.7147 | 0.7410 | 0.8034 | 0.8671 | 0.8498 | 0.7648 | 0.7557 | 0.8068 | 0.7033 | 0.7165 | 0.7594 | 0.8566 | 0.8019 | 0.8280 | 0.8694 | 0.8471 | 0.7909 | 0.0 | 0.8341 | 0.8231 | 0.8103 | 0.7854 | 0.7882 | 0.8689 | 0.8238 | 0.7129 | 0.8249 | 0.8184 | 0.8094 | 0.7041 | 0.7673 | 0.8042 | 0.7326 | 0.6637 | 0.6579 | 0.7350 | 0.7960 | 0.7669 | 0.7013 | 0.6828 | 0.7193 | 0.6081 | 0.6149 | 0.6780 | 0.7786 | 0.7489 | 0.7559 | 0.8205 | 0.8165 | 0.7464 |
| 0.0417 | 110.0 | 1100 | 0.1772 | 0.7194 | 0.7972 | 0.8058 | nan | 0.8280 | 0.8238 | 0.8445 | 0.7908 | 0.8269 | 0.8967 | 0.8600 | 0.6878 | 0.8638 | 0.8630 | 0.8371 | 0.7040 | 0.8095 | 0.8234 | 0.8274 | 0.6681 | 0.7270 | 0.7865 | 0.8624 | 0.8220 | 0.7584 | 0.7468 | 0.7957 | 0.7270 | 0.7154 | 0.7303 | 0.8290 | 0.7464 | 0.8262 | 0.8746 | 0.8342 | 0.7745 | 0.0 | 0.8075 | 0.7958 | 0.7914 | 0.7650 | 0.8027 | 0.8522 | 0.7956 | 0.6631 | 0.8181 | 0.8149 | 0.7969 | 0.6840 | 0.7509 | 0.7863 | 0.7170 | 0.6226 | 0.6511 | 0.7267 | 0.7909 | 0.7570 | 0.7006 | 0.6756 | 0.7117 | 0.6107 | 0.6136 | 0.6580 | 0.7549 | 0.7100 | 0.7532 | 0.8196 | 0.8043 | 0.7387 |
| 0.0374 | 112.0 | 1120 | 0.1725 | 0.7319 | 0.8114 | 0.8198 | nan | 0.8322 | 0.8258 | 0.8711 | 0.8108 | 0.8157 | 0.9173 | 0.8848 | 0.7720 | 0.8807 | 0.8693 | 0.8443 | 0.7110 | 0.8353 | 0.8411 | 0.8234 | 0.7056 | 0.7309 | 0.7907 | 0.8726 | 0.8280 | 0.7818 | 0.7314 | 0.8230 | 0.6778 | 0.7216 | 0.7462 | 0.8578 | 0.7922 | 0.8357 | 0.8744 | 0.8664 | 0.7935 | 0.0 | 0.8132 | 0.8054 | 0.8010 | 0.7790 | 0.8020 | 0.8777 | 0.8298 | 0.7268 | 0.8316 | 0.8168 | 0.7957 | 0.6886 | 0.7706 | 0.8004 | 0.7338 | 0.6568 | 0.6538 | 0.7290 | 0.7916 | 0.7569 | 0.7091 | 0.6688 | 0.7263 | 0.5925 | 0.6175 | 0.6760 | 0.7787 | 0.7433 | 0.7608 | 0.8271 | 0.8359 | 0.7577 |
| 0.0297 | 114.0 | 1140 | 0.1727 | 0.7286 | 0.8091 | 0.8163 | nan | 0.8480 | 0.8568 | 0.8539 | 0.8107 | 0.8011 | 0.9095 | 0.8637 | 0.7787 | 0.8682 | 0.8601 | 0.8313 | 0.7293 | 0.8333 | 0.8472 | 0.8031 | 0.6997 | 0.7535 | 0.7978 | 0.8637 | 0.8442 | 0.7672 | 0.7536 | 0.7994 | 0.6785 | 0.7323 | 0.7394 | 0.8431 | 0.7923 | 0.8053 | 0.8831 | 0.8481 | 0.7952 | 0.0 | 0.8277 | 0.8237 | 0.8014 | 0.7776 | 0.7850 | 0.8648 | 0.8196 | 0.7270 | 0.8211 | 0.8147 | 0.7931 | 0.7001 | 0.7679 | 0.7956 | 0.7174 | 0.6506 | 0.6663 | 0.7323 | 0.7890 | 0.7627 | 0.7017 | 0.6809 | 0.7092 | 0.5732 | 0.6222 | 0.6654 | 0.7670 | 0.7410 | 0.7481 | 0.8236 | 0.8202 | 0.7549 |
| 0.0294 | 116.0 | 1160 | 0.1741 | 0.7289 | 0.8097 | 0.8181 | nan | 0.8451 | 0.8299 | 0.8669 | 0.8066 | 0.8102 | 0.9189 | 0.8663 | 0.7263 | 0.8787 | 0.8623 | 0.8572 | 0.7096 | 0.8258 | 0.8393 | 0.8254 | 0.7209 | 0.7396 | 0.7924 | 0.8813 | 0.8413 | 0.7707 | 0.7449 | 0.8108 | 0.7085 | 0.7097 | 0.7435 | 0.8482 | 0.7987 | 0.8178 | 0.8761 | 0.8525 | 0.7865 | 0.0 | 0.8209 | 0.8086 | 0.8036 | 0.7730 | 0.7910 | 0.8641 | 0.8041 | 0.6909 | 0.8297 | 0.8162 | 0.8059 | 0.6831 | 0.7628 | 0.7974 | 0.7325 | 0.6700 | 0.6527 | 0.7279 | 0.8020 | 0.7636 | 0.7085 | 0.6812 | 0.7240 | 0.6049 | 0.6047 | 0.6683 | 0.7679 | 0.7448 | 0.7561 | 0.8237 | 0.8200 | 0.7508 |
| 0.0359 | 118.0 | 1180 | 0.1696 | 0.7373 | 0.8183 | 0.8263 | nan | 0.8415 | 0.8324 | 0.8779 | 0.8223 | 0.8145 | 0.9132 | 0.8831 | 0.7632 | 0.8907 | 0.8551 | 0.8537 | 0.7395 | 0.8336 | 0.8347 | 0.8538 | 0.7489 | 0.7662 | 0.7845 | 0.8690 | 0.8365 | 0.7750 | 0.7394 | 0.8282 | 0.7179 | 0.7087 | 0.7534 | 0.8516 | 0.8153 | 0.8305 | 0.8821 | 0.8731 | 0.7971 | 0.0 | 0.8213 | 0.8147 | 0.8140 | 0.7900 | 0.7971 | 0.8686 | 0.8203 | 0.7237 | 0.8391 | 0.8161 | 0.8070 | 0.7056 | 0.7721 | 0.8014 | 0.7469 | 0.6930 | 0.6718 | 0.7250 | 0.7900 | 0.7569 | 0.7040 | 0.6781 | 0.7344 | 0.6230 | 0.6113 | 0.6740 | 0.7783 | 0.7598 | 0.7589 | 0.8341 | 0.8390 | 0.7620 |
| 0.0313 | 120.0 | 1200 | 0.1764 | 0.7273 | 0.8058 | 0.8135 | nan | 0.8369 | 0.8273 | 0.8485 | 0.8146 | 0.7969 | 0.9080 | 0.8679 | 0.7526 | 0.8618 | 0.8506 | 0.8432 | 0.7363 | 0.8113 | 0.8472 | 0.8241 | 0.7444 | 0.7278 | 0.7724 | 0.8587 | 0.8412 | 0.7388 | 0.7400 | 0.8219 | 0.7169 | 0.7267 | 0.7404 | 0.8295 | 0.7807 | 0.8083 | 0.8742 | 0.8474 | 0.7890 | 0.0 | 0.8122 | 0.8035 | 0.7992 | 0.7815 | 0.7815 | 0.8618 | 0.8129 | 0.7130 | 0.8159 | 0.8134 | 0.8015 | 0.7036 | 0.7602 | 0.8034 | 0.7366 | 0.6886 | 0.6460 | 0.7135 | 0.7851 | 0.7406 | 0.6792 | 0.6769 | 0.7315 | 0.6211 | 0.6179 | 0.6664 | 0.7607 | 0.7361 | 0.7435 | 0.8216 | 0.8177 | 0.7533 |
| 0.0329 | 122.0 | 1220 | 0.1771 | 0.7252 | 0.8059 | 0.8141 | nan | 0.8437 | 0.8362 | 0.8540 | 0.7926 | 0.8117 | 0.9154 | 0.8612 | 0.7062 | 0.8569 | 0.8485 | 0.8420 | 0.7121 | 0.8323 | 0.8448 | 0.7997 | 0.7292 | 0.7499 | 0.7871 | 0.8639 | 0.8462 | 0.7443 | 0.7533 | 0.8169 | 0.7038 | 0.7194 | 0.7506 | 0.8452 | 0.7877 | 0.8170 | 0.8761 | 0.8577 | 0.7840 | 0.0 | 0.8204 | 0.8071 | 0.7921 | 0.7643 | 0.7929 | 0.8554 | 0.7942 | 0.6749 | 0.8127 | 0.8085 | 0.8011 | 0.6862 | 0.7614 | 0.7949 | 0.7177 | 0.6742 | 0.6616 | 0.7244 | 0.7864 | 0.7570 | 0.6883 | 0.6835 | 0.7267 | 0.6077 | 0.6149 | 0.6708 | 0.7716 | 0.7383 | 0.7481 | 0.8252 | 0.8227 | 0.7478 |
| 0.0331 | 124.0 | 1240 | 0.1752 | 0.7266 | 0.8066 | 0.8152 | nan | 0.8327 | 0.8351 | 0.8520 | 0.8300 | 0.8021 | 0.9078 | 0.8735 | 0.7416 | 0.8724 | 0.8526 | 0.8503 | 0.7145 | 0.8238 | 0.8628 | 0.8091 | 0.6907 | 0.7477 | 0.7998 | 0.8757 | 0.8473 | 0.7857 | 0.7623 | 0.7796 | 0.6566 | 0.6925 | 0.7452 | 0.8477 | 0.7840 | 0.8092 | 0.8763 | 0.8595 | 0.7925 | 0.0 | 0.8133 | 0.8089 | 0.8030 | 0.7938 | 0.7893 | 0.8603 | 0.8155 | 0.7067 | 0.8229 | 0.8124 | 0.8022 | 0.6871 | 0.7651 | 0.8067 | 0.7168 | 0.6469 | 0.6612 | 0.7356 | 0.8006 | 0.7659 | 0.7079 | 0.6698 | 0.6958 | 0.5808 | 0.5977 | 0.6661 | 0.7631 | 0.7310 | 0.7430 | 0.8245 | 0.8265 | 0.7578 |
| 0.0361 | 126.0 | 1260 | 0.1760 | 0.7281 | 0.8066 | 0.8149 | nan | 0.8466 | 0.8424 | 0.8478 | 0.8209 | 0.8079 | 0.9042 | 0.8718 | 0.7475 | 0.8674 | 0.8598 | 0.8431 | 0.7180 | 0.8312 | 0.8591 | 0.8210 | 0.7164 | 0.7286 | 0.7876 | 0.8620 | 0.8371 | 0.7558 | 0.7635 | 0.8017 | 0.6584 | 0.7283 | 0.7397 | 0.8309 | 0.7813 | 0.8198 | 0.8722 | 0.8533 | 0.7845 | 0.0 | 0.8253 | 0.8165 | 0.7986 | 0.7862 | 0.7933 | 0.8552 | 0.8134 | 0.7104 | 0.8199 | 0.8164 | 0.8013 | 0.6914 | 0.7703 | 0.8109 | 0.7329 | 0.6689 | 0.6540 | 0.7295 | 0.7917 | 0.7571 | 0.6948 | 0.6801 | 0.7140 | 0.5799 | 0.6173 | 0.6632 | 0.7611 | 0.7343 | 0.7483 | 0.8242 | 0.8219 | 0.7448 |
| 0.0312 | 128.0 | 1280 | 0.1742 | 0.7341 | 0.8152 | 0.8232 | nan | 0.8516 | 0.8397 | 0.8645 | 0.8195 | 0.8220 | 0.9142 | 0.8781 | 0.7514 | 0.8924 | 0.8513 | 0.8453 | 0.7260 | 0.8381 | 0.8475 | 0.8443 | 0.7235 | 0.7607 | 0.7856 | 0.8649 | 0.8366 | 0.7681 | 0.7626 | 0.8138 | 0.7074 | 0.7219 | 0.7571 | 0.8486 | 0.7923 | 0.8338 | 0.8693 | 0.8587 | 0.7970 | 0.0 | 0.8313 | 0.8132 | 0.8057 | 0.7875 | 0.8008 | 0.8622 | 0.8182 | 0.7143 | 0.8354 | 0.8092 | 0.7986 | 0.6982 | 0.7714 | 0.8099 | 0.7470 | 0.6739 | 0.6682 | 0.7270 | 0.7921 | 0.7614 | 0.7032 | 0.6868 | 0.7228 | 0.6151 | 0.6166 | 0.6750 | 0.7740 | 0.7450 | 0.7576 | 0.8214 | 0.8268 | 0.7545 |
| 0.0352 | 130.0 | 1300 | 0.1762 | 0.7337 | 0.8138 | 0.8214 | nan | 0.8465 | 0.8373 | 0.8601 | 0.8223 | 0.8076 | 0.9237 | 0.8686 | 0.7449 | 0.8788 | 0.8631 | 0.8411 | 0.7332 | 0.8329 | 0.8459 | 0.8440 | 0.7533 | 0.7380 | 0.8051 | 0.8671 | 0.8474 | 0.7680 | 0.7653 | 0.8178 | 0.7100 | 0.7248 | 0.7397 | 0.8380 | 0.7731 | 0.8290 | 0.8703 | 0.8504 | 0.7949 | 0.0 | 0.8242 | 0.8128 | 0.8075 | 0.7872 | 0.7894 | 0.8733 | 0.8143 | 0.7046 | 0.8274 | 0.8169 | 0.8003 | 0.7033 | 0.7728 | 0.8140 | 0.7518 | 0.6947 | 0.6550 | 0.7367 | 0.7973 | 0.7702 | 0.7038 | 0.6868 | 0.7290 | 0.6183 | 0.6147 | 0.6654 | 0.7641 | 0.7300 | 0.7536 | 0.8197 | 0.8219 | 0.7516 |
| 0.0308 | 132.0 | 1320 | 0.1767 | 0.7336 | 0.8145 | 0.8229 | nan | 0.8483 | 0.8388 | 0.8638 | 0.8193 | 0.8139 | 0.9136 | 0.8830 | 0.7430 | 0.8761 | 0.8595 | 0.8565 | 0.7363 | 0.8355 | 0.8456 | 0.8410 | 0.7363 | 0.7327 | 0.7974 | 0.8752 | 0.8396 | 0.7640 | 0.7673 | 0.8122 | 0.6917 | 0.7051 | 0.7496 | 0.8453 | 0.7955 | 0.8435 | 0.8762 | 0.8540 | 0.8046 | 0.0 | 0.8244 | 0.8181 | 0.8043 | 0.7850 | 0.7983 | 0.8644 | 0.8190 | 0.7058 | 0.8264 | 0.8159 | 0.8095 | 0.7073 | 0.7770 | 0.8103 | 0.7450 | 0.6838 | 0.6462 | 0.7324 | 0.8007 | 0.7607 | 0.6988 | 0.6883 | 0.7210 | 0.6047 | 0.6040 | 0.6700 | 0.7729 | 0.7485 | 0.7593 | 0.8249 | 0.8245 | 0.7580 |
| 0.035 | 134.0 | 1340 | 0.1803 | 0.7278 | 0.8081 | 0.8162 | nan | 0.8446 | 0.8499 | 0.8584 | 0.8092 | 0.7799 | 0.9063 | 0.8774 | 0.7270 | 0.8824 | 0.8659 | 0.8517 | 0.7241 | 0.8169 | 0.8429 | 0.8405 | 0.7277 | 0.7534 | 0.8073 | 0.8616 | 0.8423 | 0.7534 | 0.7434 | 0.8055 | 0.6901 | 0.7149 | 0.7441 | 0.8304 | 0.7820 | 0.8303 | 0.8671 | 0.8533 | 0.7749 | 0.0 | 0.8253 | 0.8253 | 0.8002 | 0.7727 | 0.7689 | 0.8543 | 0.8127 | 0.6947 | 0.8321 | 0.8170 | 0.7998 | 0.6925 | 0.7684 | 0.8080 | 0.7446 | 0.6750 | 0.6590 | 0.7378 | 0.7909 | 0.7509 | 0.6843 | 0.6724 | 0.7162 | 0.6003 | 0.6115 | 0.6695 | 0.7651 | 0.7366 | 0.7534 | 0.8191 | 0.8223 | 0.7365 |
| 0.0277 | 136.0 | 1360 | 0.1799 | 0.7223 | 0.8025 | 0.8122 | nan | 0.8432 | 0.8488 | 0.8584 | 0.8239 | 0.8034 | 0.9104 | 0.8691 | 0.7429 | 0.8737 | 0.8555 | 0.8366 | 0.7177 | 0.8265 | 0.8570 | 0.8051 | 0.6303 | 0.7380 | 0.7781 | 0.8611 | 0.8211 | 0.7401 | 0.7377 | 0.8163 | 0.6755 | 0.7193 | 0.7427 | 0.8413 | 0.7722 | 0.8081 | 0.8594 | 0.8588 | 0.8084 | 0.0 | 0.8236 | 0.8221 | 0.8016 | 0.7879 | 0.7886 | 0.8592 | 0.8099 | 0.7052 | 0.8223 | 0.8106 | 0.7946 | 0.6935 | 0.7682 | 0.8002 | 0.6989 | 0.5919 | 0.6496 | 0.7201 | 0.7830 | 0.7299 | 0.6780 | 0.6707 | 0.7208 | 0.5938 | 0.6121 | 0.6670 | 0.7627 | 0.7224 | 0.7397 | 0.8182 | 0.8300 | 0.7590 |
| 0.0307 | 138.0 | 1380 | 0.1802 | 0.7245 | 0.8013 | 0.8095 | nan | 0.8385 | 0.8174 | 0.8352 | 0.8052 | 0.8034 | 0.8987 | 0.8775 | 0.7357 | 0.8731 | 0.8513 | 0.8348 | 0.7135 | 0.8138 | 0.8448 | 0.8180 | 0.7142 | 0.7243 | 0.7833 | 0.8580 | 0.8321 | 0.7576 | 0.7388 | 0.7974 | 0.7235 | 0.6939 | 0.7228 | 0.8385 | 0.7783 | 0.8230 | 0.8595 | 0.8492 | 0.7873 | 0.0 | 0.8155 | 0.7950 | 0.7886 | 0.7774 | 0.7849 | 0.8558 | 0.8145 | 0.7004 | 0.8249 | 0.8121 | 0.7952 | 0.6879 | 0.7599 | 0.8019 | 0.7250 | 0.6596 | 0.6484 | 0.7282 | 0.7865 | 0.7487 | 0.6937 | 0.6718 | 0.7151 | 0.6187 | 0.6004 | 0.6595 | 0.7698 | 0.7383 | 0.7514 | 0.8129 | 0.8199 | 0.7473 |
| 0.0283 | 140.0 | 1400 | 0.1792 | 0.7326 | 0.8125 | 0.8197 | nan | 0.8466 | 0.8472 | 0.8611 | 0.8056 | 0.8019 | 0.9130 | 0.8852 | 0.7560 | 0.8805 | 0.8542 | 0.8499 | 0.7225 | 0.8237 | 0.8454 | 0.8324 | 0.7328 | 0.7552 | 0.7947 | 0.8646 | 0.8414 | 0.7641 | 0.7516 | 0.8140 | 0.7148 | 0.7387 | 0.7463 | 0.8488 | 0.7753 | 0.8213 | 0.8729 | 0.8411 | 0.7963 | 0.0 | 0.8251 | 0.8231 | 0.8012 | 0.7725 | 0.7882 | 0.8639 | 0.8282 | 0.7158 | 0.8309 | 0.8158 | 0.8031 | 0.6937 | 0.7658 | 0.8063 | 0.7413 | 0.6777 | 0.6618 | 0.7335 | 0.7961 | 0.7604 | 0.7012 | 0.6825 | 0.7285 | 0.6238 | 0.6253 | 0.6738 | 0.7682 | 0.7284 | 0.7490 | 0.8214 | 0.8157 | 0.7530 |
| 0.032 | 142.0 | 1420 | 0.1782 | 0.7359 | 0.8148 | 0.8227 | nan | 0.8447 | 0.8586 | 0.8601 | 0.8306 | 0.8056 | 0.9163 | 0.8769 | 0.7472 | 0.8807 | 0.8624 | 0.8474 | 0.7149 | 0.8277 | 0.8526 | 0.8325 | 0.7280 | 0.7362 | 0.7980 | 0.8824 | 0.8403 | 0.7766 | 0.7512 | 0.8220 | 0.7046 | 0.7182 | 0.7597 | 0.8495 | 0.7981 | 0.8356 | 0.8716 | 0.8525 | 0.7917 | 0.0 | 0.8253 | 0.8349 | 0.8092 | 0.7952 | 0.7917 | 0.8619 | 0.8187 | 0.7090 | 0.8314 | 0.8187 | 0.7992 | 0.6885 | 0.7709 | 0.8074 | 0.7391 | 0.6736 | 0.6597 | 0.7402 | 0.8074 | 0.7667 | 0.7118 | 0.6832 | 0.7323 | 0.6161 | 0.6170 | 0.6827 | 0.7782 | 0.7522 | 0.7633 | 0.8251 | 0.8233 | 0.7493 |
| 0.029 | 144.0 | 1440 | 0.1780 | 0.7373 | 0.8182 | 0.8264 | nan | 0.8570 | 0.8497 | 0.8668 | 0.8319 | 0.8065 | 0.9194 | 0.8787 | 0.7312 | 0.8838 | 0.8607 | 0.8491 | 0.7423 | 0.8263 | 0.8604 | 0.8412 | 0.7344 | 0.7569 | 0.8025 | 0.8743 | 0.8491 | 0.7783 | 0.7626 | 0.8250 | 0.7136 | 0.7273 | 0.7537 | 0.8432 | 0.7922 | 0.8298 | 0.8805 | 0.8544 | 0.8006 | 0.0 | 0.8327 | 0.8304 | 0.8108 | 0.7923 | 0.7925 | 0.8637 | 0.8148 | 0.6967 | 0.8307 | 0.8200 | 0.8057 | 0.7088 | 0.7713 | 0.8156 | 0.7470 | 0.6800 | 0.6636 | 0.7417 | 0.8046 | 0.7709 | 0.7133 | 0.6905 | 0.7341 | 0.6251 | 0.6158 | 0.6745 | 0.7686 | 0.7426 | 0.7584 | 0.8307 | 0.8270 | 0.7567 |
| 0.0289 | 146.0 | 1460 | 0.1787 | 0.7346 | 0.8149 | 0.8229 | nan | 0.8505 | 0.8500 | 0.8619 | 0.8067 | 0.8082 | 0.9105 | 0.8871 | 0.7411 | 0.8737 | 0.8626 | 0.8506 | 0.7233 | 0.8163 | 0.8523 | 0.8352 | 0.7293 | 0.7532 | 0.8141 | 0.8757 | 0.8426 | 0.7655 | 0.7607 | 0.8212 | 0.7049 | 0.7267 | 0.7522 | 0.8479 | 0.8038 | 0.8267 | 0.8764 | 0.8507 | 0.7960 | 0.0 | 0.8249 | 0.8258 | 0.8040 | 0.7770 | 0.7921 | 0.8604 | 0.8229 | 0.7050 | 0.8246 | 0.8199 | 0.8038 | 0.6938 | 0.7631 | 0.8100 | 0.7388 | 0.6730 | 0.6690 | 0.7482 | 0.8026 | 0.7619 | 0.7020 | 0.6885 | 0.7293 | 0.6158 | 0.6216 | 0.6773 | 0.7779 | 0.7508 | 0.7559 | 0.8265 | 0.8222 | 0.7546 |
| 0.0281 | 148.0 | 1480 | 0.1775 | 0.7392 | 0.8203 | 0.8280 | nan | 0.8508 | 0.8442 | 0.8667 | 0.8302 | 0.8155 | 0.9178 | 0.8824 | 0.7545 | 0.8821 | 0.8560 | 0.8632 | 0.7410 | 0.8384 | 0.8568 | 0.8490 | 0.7439 | 0.7587 | 0.8097 | 0.8712 | 0.8525 | 0.7617 | 0.7538 | 0.8246 | 0.7197 | 0.7421 | 0.7511 | 0.8444 | 0.8008 | 0.8240 | 0.8784 | 0.8653 | 0.7978 | 0.0 | 0.8263 | 0.8225 | 0.8069 | 0.7944 | 0.7990 | 0.8648 | 0.8203 | 0.7155 | 0.8299 | 0.8172 | 0.8164 | 0.7091 | 0.7799 | 0.8189 | 0.7499 | 0.6866 | 0.6691 | 0.7456 | 0.8035 | 0.7649 | 0.6946 | 0.6838 | 0.7340 | 0.6297 | 0.6294 | 0.6793 | 0.7739 | 0.7465 | 0.7570 | 0.8306 | 0.8329 | 0.7607 |
| 0.0332 | 150.0 | 1500 | 0.1792 | 0.7336 | 0.8136 | 0.8217 | nan | 0.8568 | 0.8505 | 0.8623 | 0.8151 | 0.8078 | 0.9123 | 0.8824 | 0.7335 | 0.8848 | 0.8571 | 0.8517 | 0.7219 | 0.8249 | 0.8522 | 0.8308 | 0.7083 | 0.7610 | 0.7893 | 0.8641 | 0.8350 | 0.7722 | 0.7547 | 0.8089 | 0.7215 | 0.7347 | 0.7638 | 0.8456 | 0.7854 | 0.8360 | 0.8720 | 0.8656 | 0.7724 | 0.0 | 0.8330 | 0.8240 | 0.8081 | 0.7810 | 0.7891 | 0.8612 | 0.8186 | 0.6966 | 0.8358 | 0.8138 | 0.8052 | 0.6956 | 0.7701 | 0.8101 | 0.7335 | 0.6582 | 0.6690 | 0.7304 | 0.7977 | 0.7621 | 0.7050 | 0.6831 | 0.7228 | 0.6235 | 0.6289 | 0.6834 | 0.7737 | 0.7388 | 0.7567 | 0.8245 | 0.8295 | 0.7468 |
| 0.0291 | 152.0 | 1520 | 0.1799 | 0.7337 | 0.8141 | 0.8214 | nan | 0.8494 | 0.8450 | 0.8653 | 0.8177 | 0.8065 | 0.9123 | 0.8752 | 0.7344 | 0.8787 | 0.8574 | 0.8536 | 0.7175 | 0.8308 | 0.8506 | 0.8196 | 0.7452 | 0.7553 | 0.8132 | 0.8770 | 0.8531 | 0.7556 | 0.7567 | 0.8006 | 0.7159 | 0.7221 | 0.7552 | 0.8497 | 0.7921 | 0.8170 | 0.8732 | 0.8570 | 0.7982 | 0.0 | 0.8265 | 0.8223 | 0.8096 | 0.7854 | 0.7897 | 0.8597 | 0.8126 | 0.6968 | 0.8281 | 0.8128 | 0.8013 | 0.6905 | 0.7758 | 0.8091 | 0.7349 | 0.6885 | 0.6691 | 0.7480 | 0.8043 | 0.7622 | 0.6921 | 0.6835 | 0.7156 | 0.6130 | 0.6203 | 0.6812 | 0.7770 | 0.7415 | 0.7522 | 0.8277 | 0.8274 | 0.7545 |
| 0.0277 | 154.0 | 1540 | 0.1808 | 0.7323 | 0.8116 | 0.8195 | nan | 0.8513 | 0.8379 | 0.8606 | 0.8222 | 0.8142 | 0.9126 | 0.8771 | 0.7298 | 0.8759 | 0.8535 | 0.8461 | 0.7141 | 0.8245 | 0.8472 | 0.8311 | 0.7385 | 0.7372 | 0.7938 | 0.8634 | 0.8418 | 0.7667 | 0.7537 | 0.8095 | 0.7078 | 0.7253 | 0.7529 | 0.8392 | 0.7919 | 0.8226 | 0.8739 | 0.8571 | 0.7972 | 0.0 | 0.8285 | 0.8178 | 0.8094 | 0.7907 | 0.7973 | 0.8612 | 0.8096 | 0.6925 | 0.8260 | 0.8109 | 0.7993 | 0.6875 | 0.7680 | 0.8076 | 0.7380 | 0.6804 | 0.6574 | 0.7350 | 0.7975 | 0.7642 | 0.7014 | 0.6814 | 0.7207 | 0.6152 | 0.6193 | 0.6755 | 0.7714 | 0.7425 | 0.7518 | 0.8257 | 0.8278 | 0.7539 |
| 0.0292 | 156.0 | 1560 | 0.1859 | 0.7238 | 0.8011 | 0.8093 | nan | 0.8294 | 0.8357 | 0.8605 | 0.8069 | 0.7959 | 0.9057 | 0.8540 | 0.7322 | 0.8619 | 0.8489 | 0.8441 | 0.7070 | 0.8227 | 0.8408 | 0.8060 | 0.7021 | 0.7333 | 0.7911 | 0.8673 | 0.8255 | 0.7497 | 0.7470 | 0.8060 | 0.6920 | 0.7086 | 0.7381 | 0.8357 | 0.7860 | 0.8055 | 0.8674 | 0.8495 | 0.7777 | 0.0 | 0.8099 | 0.8138 | 0.8054 | 0.7749 | 0.7821 | 0.8557 | 0.8003 | 0.6927 | 0.8131 | 0.8067 | 0.7957 | 0.6830 | 0.7676 | 0.7967 | 0.7140 | 0.6517 | 0.6539 | 0.7342 | 0.7969 | 0.7492 | 0.6895 | 0.6757 | 0.7184 | 0.6024 | 0.6085 | 0.6675 | 0.7679 | 0.7360 | 0.7407 | 0.8194 | 0.8187 | 0.7420 |
| 0.0279 | 158.0 | 1580 | 0.1847 | 0.7279 | 0.8060 | 0.8142 | nan | 0.8367 | 0.8391 | 0.8552 | 0.8125 | 0.8153 | 0.9116 | 0.8662 | 0.7244 | 0.8689 | 0.8487 | 0.8458 | 0.7036 | 0.8311 | 0.8449 | 0.8109 | 0.7154 | 0.7376 | 0.7914 | 0.8641 | 0.8313 | 0.7614 | 0.7504 | 0.8056 | 0.6889 | 0.7204 | 0.7518 | 0.8379 | 0.7850 | 0.8219 | 0.8749 | 0.8583 | 0.7803 | 0.0 | 0.8173 | 0.8171 | 0.8043 | 0.7854 | 0.7943 | 0.8602 | 0.8086 | 0.6878 | 0.8179 | 0.8071 | 0.7973 | 0.6816 | 0.7720 | 0.8005 | 0.7206 | 0.6633 | 0.6571 | 0.7325 | 0.7954 | 0.7566 | 0.6982 | 0.6781 | 0.7175 | 0.6025 | 0.6164 | 0.6764 | 0.7686 | 0.7371 | 0.7524 | 0.8267 | 0.8253 | 0.7452 |
| 0.0298 | 160.0 | 1600 | 0.1824 | 0.7338 | 0.8144 | 0.8217 | nan | 0.8455 | 0.8396 | 0.8622 | 0.8193 | 0.8132 | 0.9161 | 0.8752 | 0.7435 | 0.8903 | 0.8611 | 0.8510 | 0.7263 | 0.8425 | 0.8508 | 0.8256 | 0.7413 | 0.7524 | 0.8004 | 0.8684 | 0.8540 | 0.7644 | 0.7460 | 0.8022 | 0.7112 | 0.7222 | 0.7507 | 0.8409 | 0.7912 | 0.8231 | 0.8810 | 0.8511 | 0.7977 | 0.0 | 0.8257 | 0.8205 | 0.8048 | 0.7884 | 0.7975 | 0.8641 | 0.8146 | 0.7048 | 0.8350 | 0.8171 | 0.8038 | 0.6999 | 0.7808 | 0.8122 | 0.7373 | 0.6832 | 0.6643 | 0.7409 | 0.8032 | 0.7667 | 0.6943 | 0.6754 | 0.7168 | 0.6070 | 0.6147 | 0.6741 | 0.7693 | 0.7405 | 0.7553 | 0.8296 | 0.8223 | 0.7522 |
| 0.0254 | 162.0 | 1620 | 0.1856 | 0.7297 | 0.8098 | 0.8177 | nan | 0.8487 | 0.8393 | 0.8513 | 0.8164 | 0.8033 | 0.9125 | 0.8814 | 0.7298 | 0.8786 | 0.8559 | 0.8537 | 0.7208 | 0.8270 | 0.8475 | 0.8300 | 0.7144 | 0.7444 | 0.7952 | 0.8683 | 0.8515 | 0.7607 | 0.7373 | 0.8042 | 0.7122 | 0.7206 | 0.7583 | 0.8391 | 0.7885 | 0.8128 | 0.8681 | 0.8472 | 0.7961 | 0.0 | 0.8252 | 0.8109 | 0.7970 | 0.7827 | 0.7869 | 0.8639 | 0.8172 | 0.6932 | 0.8278 | 0.8147 | 0.8044 | 0.6936 | 0.7733 | 0.8055 | 0.7300 | 0.6650 | 0.6587 | 0.7362 | 0.8000 | 0.7630 | 0.6908 | 0.6699 | 0.7170 | 0.6149 | 0.6166 | 0.6797 | 0.7666 | 0.7390 | 0.7466 | 0.8211 | 0.8200 | 0.7496 |
| 0.0275 | 164.0 | 1640 | 0.1851 | 0.7295 | 0.8084 | 0.8160 | nan | 0.8475 | 0.8370 | 0.8551 | 0.8002 | 0.8093 | 0.9130 | 0.8779 | 0.7404 | 0.8736 | 0.8540 | 0.8449 | 0.7173 | 0.8303 | 0.8507 | 0.8253 | 0.7393 | 0.7446 | 0.7915 | 0.8626 | 0.8431 | 0.7646 | 0.7365 | 0.8091 | 0.6926 | 0.7120 | 0.7572 | 0.8406 | 0.7791 | 0.8217 | 0.8647 | 0.8467 | 0.7854 | 0.0 | 0.8251 | 0.8155 | 0.8034 | 0.7728 | 0.7882 | 0.8621 | 0.8137 | 0.7022 | 0.8229 | 0.8112 | 0.7980 | 0.6913 | 0.7744 | 0.8073 | 0.7356 | 0.6850 | 0.6599 | 0.7334 | 0.7958 | 0.7616 | 0.6944 | 0.6678 | 0.7206 | 0.6069 | 0.6129 | 0.6772 | 0.7689 | 0.7345 | 0.7519 | 0.8166 | 0.8184 | 0.7442 |
| 0.029 | 166.0 | 1660 | 0.1840 | 0.7319 | 0.8120 | 0.8197 | nan | 0.8442 | 0.8316 | 0.8567 | 0.8064 | 0.8119 | 0.9196 | 0.8693 | 0.7249 | 0.8771 | 0.8643 | 0.8471 | 0.7223 | 0.8302 | 0.8456 | 0.8353 | 0.7415 | 0.7557 | 0.7994 | 0.8692 | 0.8477 | 0.7721 | 0.7368 | 0.8183 | 0.7002 | 0.7173 | 0.7560 | 0.8483 | 0.7923 | 0.8273 | 0.8705 | 0.8562 | 0.7885 | 0.0 | 0.8225 | 0.8129 | 0.8029 | 0.7779 | 0.7922 | 0.8616 | 0.8062 | 0.6881 | 0.8236 | 0.8180 | 0.8002 | 0.6952 | 0.7754 | 0.8064 | 0.7406 | 0.6888 | 0.6677 | 0.7397 | 0.8004 | 0.7627 | 0.6990 | 0.6710 | 0.7288 | 0.6150 | 0.6170 | 0.6768 | 0.7730 | 0.7413 | 0.7535 | 0.8219 | 0.8229 | 0.7508 |
| 0.0261 | 168.0 | 1680 | 0.1841 | 0.7311 | 0.8108 | 0.8188 | nan | 0.8462 | 0.8403 | 0.8589 | 0.8086 | 0.8042 | 0.9140 | 0.8736 | 0.7250 | 0.8793 | 0.8599 | 0.8408 | 0.7201 | 0.8344 | 0.8519 | 0.8209 | 0.7249 | 0.7517 | 0.7900 | 0.8691 | 0.8414 | 0.7688 | 0.7450 | 0.8147 | 0.7092 | 0.7171 | 0.7593 | 0.8458 | 0.7937 | 0.8229 | 0.8717 | 0.8535 | 0.7894 | 0.0 | 0.8238 | 0.8165 | 0.8046 | 0.7783 | 0.7868 | 0.8603 | 0.8095 | 0.6877 | 0.8267 | 0.8143 | 0.7973 | 0.6947 | 0.7759 | 0.8044 | 0.7286 | 0.6743 | 0.6628 | 0.7353 | 0.8006 | 0.7619 | 0.6998 | 0.6745 | 0.7272 | 0.6214 | 0.6163 | 0.6794 | 0.7738 | 0.7429 | 0.7535 | 0.8226 | 0.8213 | 0.7482 |
| 0.0245 | 170.0 | 1700 | 0.1876 | 0.7285 | 0.8066 | 0.8147 | nan | 0.8357 | 0.8356 | 0.8585 | 0.8069 | 0.8036 | 0.9098 | 0.8707 | 0.7247 | 0.8638 | 0.8570 | 0.8461 | 0.7160 | 0.8180 | 0.8456 | 0.8237 | 0.7374 | 0.7329 | 0.7946 | 0.8684 | 0.8429 | 0.7519 | 0.7456 | 0.8141 | 0.6880 | 0.7154 | 0.7514 | 0.8366 | 0.7872 | 0.8250 | 0.8723 | 0.8485 | 0.7848 | 0.0 | 0.8149 | 0.8165 | 0.8029 | 0.7754 | 0.7869 | 0.8586 | 0.8079 | 0.6861 | 0.8149 | 0.8149 | 0.7974 | 0.6883 | 0.7705 | 0.8049 | 0.7334 | 0.6821 | 0.6529 | 0.7384 | 0.8002 | 0.7576 | 0.6902 | 0.6753 | 0.7257 | 0.6044 | 0.6137 | 0.6751 | 0.7679 | 0.7407 | 0.7562 | 0.8241 | 0.8192 | 0.7435 |
| 0.0256 | 172.0 | 1720 | 0.1836 | 0.7363 | 0.8183 | 0.8267 | nan | 0.8529 | 0.8438 | 0.8728 | 0.8277 | 0.8176 | 0.9211 | 0.8840 | 0.7331 | 0.8799 | 0.8667 | 0.8582 | 0.7325 | 0.8303 | 0.8598 | 0.8328 | 0.7167 | 0.7596 | 0.8124 | 0.8778 | 0.8484 | 0.7648 | 0.7527 | 0.8207 | 0.7065 | 0.7303 | 0.7640 | 0.8577 | 0.7886 | 0.8302 | 0.8848 | 0.8643 | 0.7931 | 0.0 | 0.8307 | 0.8250 | 0.8146 | 0.7947 | 0.7984 | 0.8649 | 0.8164 | 0.6957 | 0.8281 | 0.8225 | 0.8087 | 0.7020 | 0.7792 | 0.8087 | 0.7316 | 0.6679 | 0.6669 | 0.7515 | 0.8068 | 0.7631 | 0.6983 | 0.6814 | 0.7287 | 0.6153 | 0.6229 | 0.6818 | 0.7775 | 0.7394 | 0.7584 | 0.8334 | 0.8303 | 0.7533 |
| 0.0264 | 174.0 | 1740 | 0.1903 | 0.7228 | 0.8005 | 0.8088 | nan | 0.8311 | 0.8224 | 0.8559 | 0.7999 | 0.8008 | 0.9034 | 0.8693 | 0.7272 | 0.8645 | 0.8519 | 0.8333 | 0.7081 | 0.8129 | 0.8380 | 0.8263 | 0.7127 | 0.7399 | 0.7811 | 0.8516 | 0.8377 | 0.7393 | 0.7429 | 0.8033 | 0.6958 | 0.7164 | 0.7352 | 0.8246 | 0.7811 | 0.8105 | 0.8734 | 0.8495 | 0.7764 | 0.0 | 0.8108 | 0.8055 | 0.8013 | 0.7703 | 0.7813 | 0.8546 | 0.8081 | 0.6896 | 0.8169 | 0.8091 | 0.7892 | 0.6828 | 0.7626 | 0.7990 | 0.7291 | 0.6637 | 0.6525 | 0.7266 | 0.7878 | 0.7504 | 0.6811 | 0.6734 | 0.7159 | 0.6009 | 0.6105 | 0.6637 | 0.7580 | 0.7328 | 0.7463 | 0.8242 | 0.8188 | 0.7358 |
| 0.0254 | 176.0 | 1760 | 0.1851 | 0.7329 | 0.8133 | 0.8210 | nan | 0.8454 | 0.8359 | 0.8607 | 0.8075 | 0.8079 | 0.9141 | 0.8796 | 0.7433 | 0.8770 | 0.8540 | 0.8512 | 0.7177 | 0.8306 | 0.8483 | 0.8371 | 0.7307 | 0.7700 | 0.7971 | 0.8656 | 0.8472 | 0.7533 | 0.7532 | 0.8147 | 0.7093 | 0.7321 | 0.7544 | 0.8442 | 0.7939 | 0.8231 | 0.8844 | 0.8553 | 0.7865 | 0.0 | 0.8231 | 0.8168 | 0.8074 | 0.7788 | 0.7869 | 0.8613 | 0.8164 | 0.7033 | 0.8245 | 0.8129 | 0.8027 | 0.6910 | 0.7781 | 0.8075 | 0.7378 | 0.6783 | 0.6715 | 0.7385 | 0.7993 | 0.7594 | 0.6900 | 0.6823 | 0.7255 | 0.6139 | 0.6236 | 0.6791 | 0.7742 | 0.7442 | 0.7569 | 0.8322 | 0.8235 | 0.7451 |
| 0.0308 | 178.0 | 1780 | 0.1852 | 0.7337 | 0.8138 | 0.8218 | nan | 0.8503 | 0.8397 | 0.8655 | 0.8156 | 0.8118 | 0.9154 | 0.8784 | 0.7386 | 0.8773 | 0.8570 | 0.8505 | 0.7158 | 0.8339 | 0.8476 | 0.8361 | 0.7338 | 0.7595 | 0.7961 | 0.8685 | 0.8398 | 0.7659 | 0.7532 | 0.8194 | 0.7005 | 0.7309 | 0.7517 | 0.8436 | 0.7897 | 0.8269 | 0.8776 | 0.8598 | 0.7928 | 0.0 | 0.8268 | 0.8195 | 0.8102 | 0.7848 | 0.7922 | 0.8614 | 0.8154 | 0.7008 | 0.8270 | 0.8153 | 0.8025 | 0.6906 | 0.7764 | 0.8065 | 0.7387 | 0.6817 | 0.6656 | 0.7383 | 0.7991 | 0.7626 | 0.6980 | 0.6813 | 0.7269 | 0.6126 | 0.6227 | 0.6760 | 0.7706 | 0.7422 | 0.7573 | 0.8297 | 0.8275 | 0.7506 |
| 0.0276 | 180.0 | 1800 | 0.1873 | 0.7312 | 0.8109 | 0.8189 | nan | 0.8443 | 0.8352 | 0.8662 | 0.8145 | 0.8125 | 0.9143 | 0.8711 | 0.7360 | 0.8739 | 0.8583 | 0.8472 | 0.7210 | 0.8280 | 0.8502 | 0.8326 | 0.7291 | 0.7501 | 0.7977 | 0.8652 | 0.8431 | 0.7609 | 0.7515 | 0.8124 | 0.7082 | 0.7151 | 0.7460 | 0.8429 | 0.7880 | 0.8217 | 0.8773 | 0.8523 | 0.7820 | 0.0 | 0.8220 | 0.8169 | 0.8089 | 0.7836 | 0.7938 | 0.8607 | 0.8113 | 0.6969 | 0.8228 | 0.8152 | 0.7999 | 0.6928 | 0.7756 | 0.8085 | 0.7378 | 0.6780 | 0.6600 | 0.7379 | 0.7968 | 0.7614 | 0.6951 | 0.6802 | 0.7246 | 0.6142 | 0.6103 | 0.6719 | 0.7691 | 0.7399 | 0.7546 | 0.8261 | 0.8200 | 0.7428 |
| 0.0257 | 182.0 | 1820 | 0.1877 | 0.7298 | 0.8088 | 0.8166 | nan | 0.8449 | 0.8334 | 0.8575 | 0.8103 | 0.8032 | 0.9135 | 0.8732 | 0.7342 | 0.8737 | 0.8544 | 0.8449 | 0.7154 | 0.8283 | 0.8480 | 0.8235 | 0.7249 | 0.7549 | 0.7946 | 0.8629 | 0.8491 | 0.7555 | 0.7506 | 0.8078 | 0.6947 | 0.7270 | 0.7445 | 0.8433 | 0.7819 | 0.8222 | 0.8744 | 0.8508 | 0.7826 | 0.0 | 0.8226 | 0.8132 | 0.8047 | 0.7797 | 0.7859 | 0.8607 | 0.8130 | 0.6960 | 0.8234 | 0.8133 | 0.7987 | 0.6898 | 0.7747 | 0.8050 | 0.7305 | 0.6734 | 0.6642 | 0.7372 | 0.7977 | 0.7624 | 0.6911 | 0.6786 | 0.7205 | 0.6045 | 0.6202 | 0.6722 | 0.7695 | 0.7364 | 0.7548 | 0.8250 | 0.8204 | 0.7434 |
| 0.026 | 184.0 | 1840 | 0.1863 | 0.7317 | 0.8112 | 0.8191 | nan | 0.8458 | 0.8364 | 0.8604 | 0.8130 | 0.8083 | 0.9127 | 0.8757 | 0.7385 | 0.8779 | 0.8557 | 0.8464 | 0.7177 | 0.8292 | 0.8525 | 0.8303 | 0.7248 | 0.7541 | 0.7961 | 0.8657 | 0.8440 | 0.7666 | 0.7510 | 0.8102 | 0.7000 | 0.7253 | 0.7503 | 0.8437 | 0.7840 | 0.8262 | 0.8763 | 0.8556 | 0.7829 | 0.0 | 0.8230 | 0.8154 | 0.8057 | 0.7824 | 0.7899 | 0.8607 | 0.8148 | 0.6988 | 0.8258 | 0.8163 | 0.8009 | 0.6915 | 0.7771 | 0.8084 | 0.7335 | 0.6725 | 0.6633 | 0.7387 | 0.7993 | 0.7628 | 0.6983 | 0.6794 | 0.7224 | 0.6090 | 0.6192 | 0.6759 | 0.7707 | 0.7374 | 0.7561 | 0.8284 | 0.8232 | 0.7439 |
| 0.0289 | 186.0 | 1860 | 0.1875 | 0.7302 | 0.8093 | 0.8173 | nan | 0.8412 | 0.8336 | 0.8576 | 0.8097 | 0.8073 | 0.9110 | 0.8750 | 0.7390 | 0.8742 | 0.8607 | 0.8443 | 0.7199 | 0.8323 | 0.8472 | 0.8270 | 0.7220 | 0.7408 | 0.7988 | 0.8599 | 0.8392 | 0.7653 | 0.7522 | 0.8111 | 0.7013 | 0.7143 | 0.7506 | 0.8392 | 0.7803 | 0.8271 | 0.8773 | 0.8531 | 0.7836 | 0.0 | 0.8196 | 0.8131 | 0.8034 | 0.7796 | 0.7895 | 0.8597 | 0.8148 | 0.6983 | 0.8239 | 0.8167 | 0.7992 | 0.6937 | 0.7756 | 0.8062 | 0.7326 | 0.6707 | 0.6550 | 0.7389 | 0.7958 | 0.7615 | 0.6987 | 0.6796 | 0.7237 | 0.6113 | 0.6111 | 0.6729 | 0.7675 | 0.7358 | 0.7563 | 0.8265 | 0.8213 | 0.7455 |
| 0.0258 | 188.0 | 1880 | 0.1875 | 0.7318 | 0.8117 | 0.8194 | nan | 0.8459 | 0.8376 | 0.8662 | 0.8114 | 0.8108 | 0.9142 | 0.8761 | 0.7311 | 0.8758 | 0.8572 | 0.8502 | 0.7221 | 0.8312 | 0.8503 | 0.8294 | 0.7372 | 0.7509 | 0.7980 | 0.8662 | 0.8423 | 0.7588 | 0.7480 | 0.8105 | 0.7155 | 0.7207 | 0.7486 | 0.8435 | 0.7893 | 0.8208 | 0.8752 | 0.8500 | 0.7879 | 0.0 | 0.8232 | 0.8173 | 0.8062 | 0.7807 | 0.7927 | 0.8608 | 0.8137 | 0.6929 | 0.8254 | 0.8164 | 0.8030 | 0.6946 | 0.7775 | 0.8094 | 0.7381 | 0.6829 | 0.6598 | 0.7387 | 0.7989 | 0.7613 | 0.6952 | 0.6791 | 0.7233 | 0.6162 | 0.6157 | 0.6727 | 0.7695 | 0.7393 | 0.7525 | 0.8261 | 0.8195 | 0.7471 |
| 0.0285 | 190.0 | 1900 | 0.1871 | 0.7306 | 0.8102 | 0.8183 | nan | 0.8448 | 0.8349 | 0.8621 | 0.8193 | 0.8042 | 0.9109 | 0.8756 | 0.7317 | 0.8754 | 0.8574 | 0.8481 | 0.7196 | 0.8264 | 0.8495 | 0.8323 | 0.7198 | 0.7453 | 0.7921 | 0.8648 | 0.8401 | 0.7619 | 0.7456 | 0.8120 | 0.7060 | 0.7283 | 0.7501 | 0.8450 | 0.7884 | 0.8223 | 0.8728 | 0.8511 | 0.7893 | 0.0 | 0.8222 | 0.8149 | 0.8062 | 0.7865 | 0.7884 | 0.8584 | 0.8127 | 0.6937 | 0.8258 | 0.8148 | 0.8006 | 0.6916 | 0.7753 | 0.8076 | 0.7341 | 0.6694 | 0.6588 | 0.7346 | 0.7965 | 0.7587 | 0.6946 | 0.6760 | 0.7239 | 0.6135 | 0.6213 | 0.6749 | 0.7712 | 0.7389 | 0.7522 | 0.8247 | 0.8207 | 0.7475 |
| 0.0334 | 192.0 | 1920 | 0.1871 | 0.7317 | 0.8114 | 0.8194 | nan | 0.8425 | 0.8345 | 0.8608 | 0.8102 | 0.8113 | 0.9146 | 0.8768 | 0.7392 | 0.8772 | 0.8562 | 0.8486 | 0.7204 | 0.8274 | 0.8481 | 0.8296 | 0.7253 | 0.7522 | 0.7959 | 0.8665 | 0.8412 | 0.7626 | 0.7533 | 0.8133 | 0.7042 | 0.7227 | 0.7496 | 0.8450 | 0.7897 | 0.8246 | 0.8783 | 0.8556 | 0.7859 | 0.0 | 0.8203 | 0.8136 | 0.8031 | 0.7806 | 0.7937 | 0.8613 | 0.8163 | 0.7001 | 0.8266 | 0.8148 | 0.8018 | 0.6933 | 0.7761 | 0.8068 | 0.7335 | 0.6733 | 0.6610 | 0.7373 | 0.7990 | 0.7612 | 0.6971 | 0.6811 | 0.7245 | 0.6110 | 0.6171 | 0.6751 | 0.7725 | 0.7410 | 0.7552 | 0.8289 | 0.8235 | 0.7462 |
| 0.0209 | 194.0 | 1940 | 0.1880 | 0.7311 | 0.8105 | 0.8184 | nan | 0.8476 | 0.8353 | 0.8611 | 0.8127 | 0.8063 | 0.9114 | 0.8740 | 0.7454 | 0.8760 | 0.8597 | 0.8502 | 0.7193 | 0.8253 | 0.8481 | 0.8298 | 0.7268 | 0.7446 | 0.7980 | 0.8653 | 0.8433 | 0.7607 | 0.7463 | 0.8123 | 0.7000 | 0.7201 | 0.7481 | 0.8438 | 0.7867 | 0.8235 | 0.8737 | 0.8521 | 0.7870 | 0.0 | 0.8244 | 0.8154 | 0.8046 | 0.7810 | 0.7901 | 0.8597 | 0.8154 | 0.7041 | 0.8272 | 0.8174 | 0.8014 | 0.6915 | 0.7763 | 0.8067 | 0.7342 | 0.6749 | 0.6572 | 0.7390 | 0.7983 | 0.7593 | 0.6943 | 0.6763 | 0.7235 | 0.6095 | 0.6153 | 0.6742 | 0.7707 | 0.7383 | 0.7530 | 0.8255 | 0.8211 | 0.7461 |
| 0.0274 | 196.0 | 1960 | 0.1877 | 0.7308 | 0.8101 | 0.8181 | nan | 0.8445 | 0.8356 | 0.8623 | 0.8141 | 0.8091 | 0.9131 | 0.8760 | 0.7369 | 0.8765 | 0.8584 | 0.8487 | 0.7158 | 0.8265 | 0.8497 | 0.8279 | 0.7256 | 0.7473 | 0.7972 | 0.8635 | 0.8395 | 0.7573 | 0.7462 | 0.8114 | 0.7015 | 0.7210 | 0.7511 | 0.8454 | 0.7854 | 0.8240 | 0.8745 | 0.8523 | 0.7857 | 0.0 | 0.8223 | 0.8166 | 0.8061 | 0.7833 | 0.7915 | 0.8604 | 0.8146 | 0.6981 | 0.8270 | 0.8162 | 0.8000 | 0.6891 | 0.7760 | 0.8073 | 0.7326 | 0.6736 | 0.6598 | 0.7385 | 0.7963 | 0.7567 | 0.6926 | 0.6765 | 0.7229 | 0.6099 | 0.6169 | 0.6753 | 0.7707 | 0.7378 | 0.7541 | 0.8260 | 0.8209 | 0.7453 |
| 0.0259 | 198.0 | 1980 | 0.1877 | 0.7309 | 0.8104 | 0.8184 | nan | 0.8458 | 0.8344 | 0.8619 | 0.8111 | 0.8092 | 0.9141 | 0.8752 | 0.7359 | 0.8780 | 0.8592 | 0.8490 | 0.7169 | 0.8276 | 0.8488 | 0.8287 | 0.7272 | 0.7489 | 0.7987 | 0.8668 | 0.8387 | 0.7594 | 0.7491 | 0.8117 | 0.7003 | 0.7217 | 0.7463 | 0.8436 | 0.7857 | 0.8229 | 0.8764 | 0.8517 | 0.7869 | 0.0 | 0.8231 | 0.8150 | 0.8045 | 0.7807 | 0.7914 | 0.8605 | 0.8139 | 0.6975 | 0.8282 | 0.8169 | 0.8007 | 0.6902 | 0.7764 | 0.8067 | 0.7335 | 0.6750 | 0.6600 | 0.7397 | 0.7981 | 0.7575 | 0.6945 | 0.6781 | 0.7228 | 0.6094 | 0.6163 | 0.6730 | 0.7695 | 0.7376 | 0.7544 | 0.8271 | 0.8207 | 0.7461 |
| 0.0276 | 200.0 | 2000 | 0.1880 | 0.7311 | 0.8106 | 0.8184 | nan | 0.8456 | 0.8351 | 0.8619 | 0.8112 | 0.8087 | 0.9141 | 0.8742 | 0.7394 | 0.8758 | 0.8579 | 0.8480 | 0.7169 | 0.8273 | 0.8481 | 0.8284 | 0.7298 | 0.7495 | 0.7987 | 0.8661 | 0.8392 | 0.7596 | 0.7482 | 0.8109 | 0.7016 | 0.7217 | 0.7480 | 0.8447 | 0.7868 | 0.8250 | 0.8762 | 0.8519 | 0.7878 | 0.0 | 0.8226 | 0.8155 | 0.8048 | 0.7807 | 0.7909 | 0.8609 | 0.8145 | 0.6999 | 0.8266 | 0.8160 | 0.8000 | 0.6900 | 0.7760 | 0.8065 | 0.7338 | 0.6771 | 0.6604 | 0.7394 | 0.7977 | 0.7577 | 0.6944 | 0.6774 | 0.7224 | 0.6099 | 0.6166 | 0.6741 | 0.7706 | 0.7386 | 0.7555 | 0.8271 | 0.8210 | 0.7466 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"background",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48"
] |
YIMMYCRUZ/vit-model-ojas |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-model-ojas
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0099
- Accuracy: 1.0
## Model description
You can manage to segment the images of plant leaves to be able to know if they are healthy or withered.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1457 | 3.85 | 500 | 0.0099 | 1.0 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3
| [
"angular_leaf_spot",
"bean_rust",
"healthy"
] |
iammartian0/RoadSense_High_Definition_Street_Segmentation |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5449
- Mean Iou: 0.3292
- Mean Accuracy: 0.3907
- Overall Accuracy: 0.8555
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8585
- Accuracy Flat-sidewalk: 0.9611
- Accuracy Flat-crosswalk: 0.7673
- Accuracy Flat-cyclinglane: 0.8223
- Accuracy Flat-parkingdriveway: 0.5127
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.4937
- Accuracy Human-person: 0.7164
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9332
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: nan
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.3858
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.9040
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.5848
- Accuracy Construction-fenceguardrail: 0.4417
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.3156
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9413
- Accuracy Nature-terrain: 0.8456
- Accuracy Sky: 0.9600
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.2780
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7447
- Iou Flat-sidewalk: 0.8755
- Iou Flat-crosswalk: 0.6244
- Iou Flat-cyclinglane: 0.7325
- Iou Flat-parkingdriveway: 0.3997
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.3974
- Iou Human-person: 0.4985
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7798
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: nan
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.2904
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.7233
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.4555
- Iou Construction-fenceguardrail: 0.3734
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.2484
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8451
- Iou Nature-terrain: 0.7346
- Iou Sky: 0.9161
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.2359
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 1.4172 | 1.87 | 200 | 1.2183 | 0.1696 | 0.2214 | 0.7509 | nan | 0.8882 | 0.9199 | 0.0 | 0.4200 | 0.0164 | nan | 0.0 | 0.0 | 0.0 | 0.8778 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8448 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9430 | 0.8044 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5435 | 0.8135 | 0.0 | 0.3743 | 0.0160 | nan | 0.0 | 0.0 | 0.0 | 0.6044 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5373 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7516 | 0.6550 | 0.7928 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1152 | 3.74 | 400 | 0.8946 | 0.1947 | 0.2441 | 0.7852 | nan | 0.8535 | 0.9471 | 0.0 | 0.7379 | 0.2453 | nan | 0.0398 | 0.0 | 0.0 | 0.8882 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8746 | 0.0 | 0.0061 | 0.0 | 0.0 | nan | 0.0 | 0.0014 | 0.0 | 0.0 | 0.9526 | 0.8285 | 0.9448 | 0.0 | 0.0 | 0.0019 | 0.0 | nan | 0.6355 | 0.8321 | 0.0 | 0.5529 | 0.1940 | nan | 0.0392 | 0.0 | 0.0 | 0.6807 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5913 | 0.0 | 0.0061 | 0.0 | 0.0 | nan | 0.0 | 0.0014 | 0.0 | 0.0 | 0.7701 | 0.6777 | 0.8567 | 0.0 | 0.0 | 0.0019 | 0.0 |
| 0.6637 | 5.61 | 600 | 0.7447 | 0.2349 | 0.2841 | 0.8104 | nan | 0.8589 | 0.9451 | 0.4455 | 0.8008 | 0.3753 | nan | 0.3267 | 0.0380 | 0.0 | 0.8920 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9227 | 0.0 | 0.0938 | 0.0 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.9291 | 0.8677 | 0.9557 | 0.0 | 0.0 | 0.0562 | 0.0 | nan | 0.6768 | 0.8543 | 0.4064 | 0.6414 | 0.2914 | nan | 0.2749 | 0.0376 | 0.0 | 0.7268 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6078 | 0.0 | 0.0879 | 0.0 | 0.0 | nan | 0.0 | 0.0164 | 0.0 | 0.0 | 0.8005 | 0.6817 | 0.8918 | 0.0 | 0.0 | 0.0525 | 0.0 |
| 0.673 | 7.48 | 800 | 0.6631 | 0.2691 | 0.3202 | 0.8278 | nan | 0.8387 | 0.9575 | 0.6176 | 0.7938 | 0.4208 | nan | 0.3575 | 0.3977 | 0.0 | 0.9264 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9068 | 0.0 | 0.4035 | 0.0 | 0.0 | nan | 0.0 | 0.1137 | 0.0 | 0.0 | 0.9495 | 0.8165 | 0.9453 | 0.0 | 0.0 | 0.1599 | 0.0 | nan | 0.7042 | 0.8567 | 0.5239 | 0.6600 | 0.3246 | nan | 0.3003 | 0.3212 | 0.0 | 0.7246 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6749 | 0.0 | 0.3113 | 0.0 | 0.0 | nan | 0.0 | 0.1038 | 0.0 | 0.0 | 0.8147 | 0.7070 | 0.9008 | 0.0 | 0.0 | 0.1445 | 0.0 |
| 0.502 | 9.35 | 1000 | 0.6249 | 0.2818 | 0.3371 | 0.8345 | nan | 0.8332 | 0.9538 | 0.7158 | 0.8344 | 0.4079 | nan | 0.4420 | 0.4941 | 0.0 | 0.9275 | 0.0 | nan | nan | 0.0 | 0.0172 | 0.0 | 0.0 | 0.9102 | 0.0 | 0.4787 | 0.0253 | 0.0 | nan | 0.0 | 0.1454 | 0.0 | 0.0 | 0.9460 | 0.8350 | 0.9588 | 0.0 | 0.0 | 0.1887 | 0.0 | nan | 0.7176 | 0.8635 | 0.6035 | 0.6519 | 0.3246 | nan | 0.3545 | 0.3720 | 0.0 | 0.7524 | 0.0 | nan | nan | 0.0 | 0.0172 | 0.0 | 0.0 | 0.6861 | 0.0 | 0.3286 | 0.0250 | 0.0 | nan | 0.0 | 0.1309 | 0.0 | 0.0 | 0.8335 | 0.7300 | 0.9037 | 0.0 | 0.0 | 0.1584 | 0.0 |
| 0.9687 | 11.21 | 1200 | 0.5786 | 0.3093 | 0.3675 | 0.8471 | nan | 0.8703 | 0.9504 | 0.7382 | 0.7705 | 0.5297 | nan | 0.4804 | 0.6250 | 0.0 | 0.9168 | 0.0 | nan | nan | 0.0 | 0.1397 | 0.0 | 0.0 | 0.9228 | 0.0 | 0.5710 | 0.3183 | 0.0 | nan | 0.0 | 0.2252 | 0.0 | 0.0 | 0.9314 | 0.8840 | 0.9536 | 0.0 | 0.0 | 0.1981 | 0.0 | nan | 0.7380 | 0.8743 | 0.5825 | 0.7093 | 0.3829 | nan | 0.3743 | 0.4600 | 0.0 | 0.7727 | 0.0 | nan | nan | 0.0 | 0.1372 | 0.0 | 0.0 | 0.7008 | 0.0 | 0.4315 | 0.2847 | 0.0 | nan | 0.0 | 0.1930 | 0.0 | 0.0 | 0.8397 | 0.7121 | 0.9109 | 0.0 | 0.0 | 0.1761 | 0.0 |
| 0.4681 | 13.08 | 1400 | 0.5759 | 0.3106 | 0.3665 | 0.8462 | nan | 0.8586 | 0.9572 | 0.5158 | 0.8121 | 0.5195 | nan | 0.4539 | 0.6944 | 0.0 | 0.9308 | 0.0 | nan | nan | 0.0 | 0.2759 | 0.0 | 0.0 | 0.9126 | 0.0 | 0.4927 | 0.3145 | 0.0 | nan | 0.0 | 0.2566 | 0.0 | 0.0 | 0.9396 | 0.8736 | 0.9644 | 0.0 | 0.0 | 0.2226 | 0.0 | nan | 0.7134 | 0.8742 | 0.5009 | 0.7146 | 0.4018 | nan | 0.3726 | 0.4661 | 0.0 | 0.7674 | 0.0 | nan | nan | 0.0 | 0.2501 | 0.0 | 0.0 | 0.6997 | 0.0 | 0.3933 | 0.2827 | 0.0 | nan | 0.0 | 0.2137 | 0.0 | 0.0 | 0.8377 | 0.7212 | 0.9109 | 0.0 | 0.0 | 0.1964 | 0.0 |
| 0.5374 | 14.95 | 1600 | 0.5534 | 0.3232 | 0.3823 | 0.8518 | nan | 0.8607 | 0.9545 | 0.7138 | 0.8398 | 0.5129 | nan | 0.4823 | 0.7055 | 0.0 | 0.9225 | 0.0 | nan | nan | 0.0 | 0.3058 | 0.0 | 0.0 | 0.8999 | 0.0 | 0.5436 | 0.3798 | 0.0 | nan | 0.0 | 0.2878 | 0.0 | 0.0 | 0.9485 | 0.8388 | 0.9598 | 0.0 | 0.0 | 0.3145 | 0.0 | nan | 0.7336 | 0.8788 | 0.6094 | 0.7062 | 0.3966 | nan | 0.3854 | 0.4897 | 0.0 | 0.7823 | 0.0 | nan | nan | 0.0 | 0.2782 | 0.0 | 0.0 | 0.7148 | 0.0 | 0.4182 | 0.3304 | 0.0 | nan | 0.0 | 0.2324 | 0.0 | 0.0 | 0.8415 | 0.7356 | 0.9130 | 0.0 | 0.0 | 0.2491 | 0.0 |
| 0.6115 | 16.82 | 1800 | 0.5528 | 0.3266 | 0.3849 | 0.8539 | nan | 0.8521 | 0.9611 | 0.6840 | 0.8291 | 0.5057 | nan | 0.5070 | 0.7165 | 0.0 | 0.9267 | 0.0 | nan | nan | 0.0 | 0.3659 | 0.0 | 0.0 | 0.9007 | 0.0 | 0.5844 | 0.3961 | 0.0 | nan | 0.0 | 0.2827 | 0.0 | 0.0 | 0.9517 | 0.8371 | 0.9602 | 0.0 | 0.0 | 0.2848 | 0.0 | nan | 0.7414 | 0.8721 | 0.6312 | 0.7245 | 0.3979 | nan | 0.3987 | 0.4932 | 0.0 | 0.7799 | 0.0 | nan | nan | 0.0 | 0.2788 | 0.0 | 0.0 | 0.7242 | 0.0 | 0.4542 | 0.3464 | 0.0 | nan | 0.0 | 0.2326 | 0.0 | 0.0 | 0.8384 | 0.7318 | 0.9141 | 0.0 | 0.0 | 0.2386 | 0.0 |
| 0.4766 | 18.69 | 2000 | 0.5449 | 0.3292 | 0.3907 | 0.8555 | nan | 0.8585 | 0.9611 | 0.7673 | 0.8223 | 0.5127 | nan | 0.4937 | 0.7164 | 0.0 | 0.9332 | 0.0 | nan | nan | 0.0 | 0.3858 | 0.0 | 0.0 | 0.9040 | 0.0 | 0.5848 | 0.4417 | 0.0 | nan | 0.0 | 0.3156 | 0.0 | 0.0 | 0.9413 | 0.8456 | 0.9600 | 0.0 | 0.0 | 0.2780 | 0.0 | nan | 0.7447 | 0.8755 | 0.6244 | 0.7325 | 0.3997 | nan | 0.3974 | 0.4985 | 0.0 | 0.7798 | 0.0 | nan | nan | 0.0 | 0.2904 | 0.0 | 0.0 | 0.7233 | 0.0 | 0.4555 | 0.3734 | 0.0 | nan | 0.0 | 0.2484 | 0.0 | 0.0 | 0.8451 | 0.7346 | 0.9161 | 0.0 | 0.0 | 0.2359 | 0.0 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3 | [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
blzncz/segformer-finetuned-4ss1st3r_s3gs3m-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-4ss1st3r_s3gs3m-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the blzncz/4ss1st3r_s3gs3m dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3966
- Mean Iou: 0.5967
- Mean Accuracy: 0.8460
- Overall Accuracy: 0.9344
- Accuracy Bg: nan
- Accuracy Fallo cohesivo: 0.9510
- Accuracy Fallo malla: 0.8524
- Accuracy Fallo adhesivo: 0.9362
- Accuracy Fallo burbuja: 0.6444
- Iou Bg: 0.0
- Iou Fallo cohesivo: 0.9239
- Iou Fallo malla: 0.7125
- Iou Fallo adhesivo: 0.8335
- Iou Fallo burbuja: 0.5139
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Fallo cohesivo | Accuracy Fallo malla | Accuracy Fallo adhesivo | Accuracy Fallo burbuja | Iou Bg | Iou Fallo cohesivo | Iou Fallo malla | Iou Fallo adhesivo | Iou Fallo burbuja |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-----------------------:|:--------------------:|:-----------------------:|:----------------------:|:------:|:------------------:|:---------------:|:------------------:|:-----------------:|
| 0.4796 | 1.0 | 133 | 0.4190 | 0.4518 | 0.6689 | 0.9049 | nan | 0.9277 | 0.8091 | 0.9381 | 0.0008 | 0.0 | 0.8866 | 0.6536 | 0.7179 | 0.0008 |
| 0.2665 | 2.0 | 266 | 0.3667 | 0.5096 | 0.7283 | 0.9001 | nan | 0.9111 | 0.8964 | 0.8731 | 0.2324 | 0.0 | 0.8802 | 0.6013 | 0.8467 | 0.2197 |
| 0.2158 | 3.0 | 399 | 0.3210 | 0.5505 | 0.7807 | 0.9142 | nan | 0.9250 | 0.8685 | 0.9414 | 0.3878 | 0.0 | 0.8952 | 0.6239 | 0.8901 | 0.3432 |
| 0.1737 | 4.0 | 532 | 0.3572 | 0.5370 | 0.7851 | 0.8905 | nan | 0.8905 | 0.9102 | 0.9121 | 0.4277 | 0.0 | 0.8671 | 0.5637 | 0.8777 | 0.3764 |
| 0.1602 | 5.0 | 665 | 0.6273 | 0.4086 | 0.7632 | 0.7743 | nan | 0.7333 | 0.9343 | 0.9685 | 0.4168 | 0.0 | 0.7198 | 0.4460 | 0.5324 | 0.3449 |
| 0.1707 | 6.0 | 798 | 0.3534 | 0.5442 | 0.7953 | 0.9025 | nan | 0.9056 | 0.9031 | 0.9234 | 0.4492 | 0.0 | 0.8812 | 0.5985 | 0.8629 | 0.3783 |
| 0.1376 | 7.0 | 931 | 0.3266 | 0.5513 | 0.7634 | 0.9262 | nan | 0.9434 | 0.8621 | 0.9288 | 0.3195 | 0.0 | 0.9109 | 0.6623 | 0.8866 | 0.2968 |
| 0.1346 | 8.0 | 1064 | 0.4976 | 0.4916 | 0.7900 | 0.8396 | nan | 0.8190 | 0.9133 | 0.9713 | 0.4565 | 0.0 | 0.8041 | 0.4662 | 0.7906 | 0.3970 |
| 0.1319 | 9.0 | 1197 | 0.3650 | 0.5652 | 0.8404 | 0.9043 | nan | 0.9053 | 0.8856 | 0.9593 | 0.6113 | 0.0 | 0.8829 | 0.5992 | 0.8734 | 0.4706 |
| 0.1229 | 10.0 | 1330 | 0.3201 | 0.5666 | 0.7963 | 0.9299 | nan | 0.9435 | 0.8764 | 0.9389 | 0.4265 | 0.0 | 0.9171 | 0.6896 | 0.8499 | 0.3763 |
| 0.1142 | 11.0 | 1463 | 0.3824 | 0.5576 | 0.8204 | 0.9020 | nan | 0.8988 | 0.9231 | 0.9456 | 0.5142 | 0.0 | 0.8795 | 0.6001 | 0.8711 | 0.4374 |
| 0.0983 | 12.0 | 1596 | 0.3133 | 0.5812 | 0.8297 | 0.9293 | nan | 0.9354 | 0.9046 | 0.9558 | 0.5229 | 0.0 | 0.9136 | 0.6969 | 0.8618 | 0.4335 |
| 0.1058 | 13.0 | 1729 | 0.2965 | 0.5860 | 0.8250 | 0.9364 | nan | 0.9528 | 0.8496 | 0.9598 | 0.5378 | 0.0 | 0.9253 | 0.7162 | 0.8502 | 0.4383 |
| 0.1052 | 14.0 | 1862 | 0.2839 | 0.6064 | 0.8275 | 0.9460 | nan | 0.9674 | 0.8517 | 0.9290 | 0.5621 | 0.0 | 0.9355 | 0.7492 | 0.8930 | 0.4540 |
| 0.0911 | 15.0 | 1995 | 0.3245 | 0.5853 | 0.8116 | 0.9368 | nan | 0.9565 | 0.8504 | 0.9298 | 0.5099 | 0.0 | 0.9243 | 0.7171 | 0.8534 | 0.4318 |
| 0.0889 | 16.0 | 2128 | 0.3094 | 0.5969 | 0.8225 | 0.9422 | nan | 0.9615 | 0.8559 | 0.9376 | 0.5351 | 0.0 | 0.9313 | 0.7353 | 0.8726 | 0.4451 |
| 0.0827 | 17.0 | 2261 | 0.4776 | 0.5187 | 0.8195 | 0.8547 | nan | 0.8390 | 0.9163 | 0.9440 | 0.5786 | 0.0 | 0.8207 | 0.4920 | 0.8216 | 0.4590 |
| 0.0939 | 18.0 | 2394 | 0.3923 | 0.5364 | 0.8375 | 0.8948 | nan | 0.8950 | 0.8831 | 0.9437 | 0.6282 | 0.0 | 0.8746 | 0.6268 | 0.7090 | 0.4717 |
| 0.0799 | 19.0 | 2527 | 0.3560 | 0.5776 | 0.8252 | 0.9254 | nan | 0.9337 | 0.8933 | 0.9409 | 0.5331 | 0.0 | 0.9096 | 0.6846 | 0.8519 | 0.4422 |
| 0.075 | 20.0 | 2660 | 0.3803 | 0.5796 | 0.8338 | 0.9194 | nan | 0.9249 | 0.9078 | 0.9238 | 0.5788 | 0.0 | 0.9032 | 0.6459 | 0.8821 | 0.4670 |
| 0.0844 | 21.0 | 2793 | 0.2885 | 0.6170 | 0.8334 | 0.9507 | nan | 0.9757 | 0.8296 | 0.9390 | 0.5892 | 0.0 | 0.9412 | 0.7654 | 0.8933 | 0.4852 |
| 0.0746 | 22.0 | 2926 | 0.3222 | 0.5831 | 0.8160 | 0.9331 | nan | 0.9481 | 0.8685 | 0.9370 | 0.5105 | 0.0 | 0.9193 | 0.7032 | 0.8716 | 0.4215 |
| 0.072 | 23.0 | 3059 | 0.3481 | 0.5878 | 0.8336 | 0.9266 | nan | 0.9357 | 0.8952 | 0.9271 | 0.5764 | 0.0 | 0.9123 | 0.6824 | 0.8720 | 0.4725 |
| 0.0735 | 24.0 | 3192 | 0.3196 | 0.5974 | 0.8403 | 0.9353 | nan | 0.9496 | 0.8666 | 0.9430 | 0.6018 | 0.0 | 0.9225 | 0.7165 | 0.8649 | 0.4832 |
| 0.0674 | 25.0 | 3325 | 0.3407 | 0.5927 | 0.8435 | 0.9282 | nan | 0.9401 | 0.8786 | 0.9246 | 0.6304 | 0.0 | 0.9141 | 0.6844 | 0.8696 | 0.4953 |
| 0.0712 | 26.0 | 3458 | 0.3356 | 0.5906 | 0.8420 | 0.9301 | nan | 0.9405 | 0.8895 | 0.9299 | 0.6080 | 0.0 | 0.9160 | 0.6905 | 0.8743 | 0.4722 |
| 0.072 | 27.0 | 3591 | 0.3491 | 0.5833 | 0.8372 | 0.9286 | nan | 0.9415 | 0.8636 | 0.9425 | 0.6012 | 0.0 | 0.9161 | 0.6966 | 0.8246 | 0.4790 |
| 0.0641 | 28.0 | 3724 | 0.3130 | 0.6087 | 0.8422 | 0.9473 | nan | 0.9697 | 0.8357 | 0.9427 | 0.6208 | 0.0 | 0.9386 | 0.7613 | 0.8599 | 0.4837 |
| 0.0597 | 29.0 | 3857 | 0.3828 | 0.5666 | 0.8394 | 0.9107 | nan | 0.9141 | 0.8934 | 0.9411 | 0.6092 | 0.0 | 0.8924 | 0.6327 | 0.8343 | 0.4735 |
| 0.0648 | 30.0 | 3990 | 0.3435 | 0.6001 | 0.8372 | 0.9403 | nan | 0.9569 | 0.8708 | 0.9276 | 0.5935 | 0.0 | 0.9292 | 0.7312 | 0.8779 | 0.4623 |
| 0.0618 | 31.0 | 4123 | 0.3531 | 0.5963 | 0.8521 | 0.9303 | nan | 0.9450 | 0.8621 | 0.9240 | 0.6773 | 0.0 | 0.9179 | 0.6842 | 0.8730 | 0.5063 |
| 0.0556 | 32.0 | 4256 | 0.3307 | 0.6037 | 0.8417 | 0.9401 | nan | 0.9576 | 0.8637 | 0.9271 | 0.6183 | 0.0 | 0.9298 | 0.7274 | 0.8637 | 0.4974 |
| 0.0616 | 33.0 | 4389 | 0.3510 | 0.5911 | 0.8347 | 0.9298 | nan | 0.9424 | 0.8714 | 0.9388 | 0.5863 | 0.0 | 0.9158 | 0.6914 | 0.8745 | 0.4740 |
| 0.0603 | 34.0 | 4522 | 0.3467 | 0.6022 | 0.8544 | 0.9334 | nan | 0.9487 | 0.8610 | 0.9274 | 0.6807 | 0.0 | 0.9211 | 0.7029 | 0.8738 | 0.5130 |
| 0.0587 | 35.0 | 4655 | 0.3574 | 0.6017 | 0.8407 | 0.9379 | nan | 0.9555 | 0.8541 | 0.9346 | 0.6187 | 0.0 | 0.9269 | 0.7228 | 0.8627 | 0.4962 |
| 0.0557 | 36.0 | 4788 | 0.3871 | 0.5720 | 0.8334 | 0.9178 | nan | 0.9317 | 0.8416 | 0.9374 | 0.6228 | 0.0 | 0.9051 | 0.6479 | 0.8160 | 0.4911 |
| 0.0567 | 37.0 | 4921 | 0.4425 | 0.5656 | 0.8282 | 0.9070 | nan | 0.9114 | 0.8922 | 0.9244 | 0.5848 | 0.0 | 0.8889 | 0.6100 | 0.8575 | 0.4718 |
| 0.0537 | 38.0 | 5054 | 0.3512 | 0.5946 | 0.8392 | 0.9317 | nan | 0.9463 | 0.8649 | 0.9314 | 0.6142 | 0.0 | 0.9187 | 0.6984 | 0.8637 | 0.4921 |
| 0.0559 | 39.0 | 5187 | 0.3676 | 0.5931 | 0.8437 | 0.9273 | nan | 0.9381 | 0.8798 | 0.9323 | 0.6247 | 0.0 | 0.9129 | 0.6779 | 0.8786 | 0.4959 |
| 0.0502 | 40.0 | 5320 | 0.4149 | 0.5518 | 0.8381 | 0.8984 | nan | 0.9011 | 0.8773 | 0.9368 | 0.6370 | 0.0 | 0.8793 | 0.6069 | 0.7741 | 0.4989 |
| 0.0559 | 41.0 | 5453 | 0.4042 | 0.5694 | 0.8342 | 0.9130 | nan | 0.9206 | 0.8721 | 0.9400 | 0.6041 | 0.0 | 0.8971 | 0.6319 | 0.8286 | 0.4896 |
| 0.0523 | 42.0 | 5586 | 0.3669 | 0.5903 | 0.8462 | 0.9286 | nan | 0.9414 | 0.8676 | 0.9337 | 0.6421 | 0.0 | 0.9162 | 0.6883 | 0.8370 | 0.5102 |
| 0.0525 | 43.0 | 5719 | 0.4140 | 0.5704 | 0.8531 | 0.9081 | nan | 0.9110 | 0.8867 | 0.9417 | 0.6729 | 0.0 | 0.8898 | 0.6220 | 0.8366 | 0.5035 |
| 0.0508 | 44.0 | 5852 | 0.3965 | 0.5714 | 0.8396 | 0.9141 | nan | 0.9227 | 0.8800 | 0.9147 | 0.6409 | 0.0 | 0.8989 | 0.6513 | 0.8007 | 0.5060 |
| 0.0507 | 45.0 | 5985 | 0.3793 | 0.5817 | 0.8392 | 0.9196 | nan | 0.9272 | 0.8932 | 0.9214 | 0.6148 | 0.0 | 0.9042 | 0.6627 | 0.8407 | 0.5011 |
| 0.0494 | 46.0 | 6118 | 0.3500 | 0.6020 | 0.8426 | 0.9363 | nan | 0.9524 | 0.8619 | 0.9322 | 0.6240 | 0.0 | 0.9247 | 0.7142 | 0.8653 | 0.5058 |
| 0.0462 | 47.0 | 6251 | 0.3524 | 0.6031 | 0.8435 | 0.9388 | nan | 0.9545 | 0.8668 | 0.9364 | 0.6163 | 0.0 | 0.9274 | 0.7269 | 0.8703 | 0.4909 |
| 0.0486 | 48.0 | 6384 | 0.3876 | 0.5902 | 0.8397 | 0.9308 | nan | 0.9479 | 0.8557 | 0.9161 | 0.6392 | 0.0 | 0.9203 | 0.6928 | 0.8334 | 0.5046 |
| 0.0461 | 49.0 | 6517 | 0.3674 | 0.5933 | 0.8409 | 0.9326 | nan | 0.9482 | 0.8622 | 0.9258 | 0.6274 | 0.0 | 0.9214 | 0.7053 | 0.8367 | 0.5030 |
| 0.0497 | 50.0 | 6650 | 0.4018 | 0.5838 | 0.8374 | 0.9246 | nan | 0.9390 | 0.8519 | 0.9341 | 0.6244 | 0.0 | 0.9102 | 0.6733 | 0.8361 | 0.4992 |
| 0.0491 | 51.0 | 6783 | 0.4036 | 0.5824 | 0.8513 | 0.9198 | nan | 0.9272 | 0.8805 | 0.9403 | 0.6573 | 0.0 | 0.9037 | 0.6712 | 0.8169 | 0.5203 |
| 0.046 | 52.0 | 6916 | 0.3913 | 0.5820 | 0.8395 | 0.9243 | nan | 0.9347 | 0.8771 | 0.9336 | 0.6126 | 0.0 | 0.9105 | 0.6792 | 0.8244 | 0.4960 |
| 0.0488 | 53.0 | 7049 | 0.3441 | 0.6010 | 0.8504 | 0.9362 | nan | 0.9523 | 0.8521 | 0.9457 | 0.6517 | 0.0 | 0.9250 | 0.7225 | 0.8496 | 0.5081 |
| 0.0458 | 54.0 | 7182 | 0.3784 | 0.5977 | 0.8382 | 0.9378 | nan | 0.9603 | 0.8212 | 0.9375 | 0.6337 | 0.0 | 0.9286 | 0.7157 | 0.8387 | 0.5053 |
| 0.0449 | 55.0 | 7315 | 0.3506 | 0.6068 | 0.8493 | 0.9404 | nan | 0.9579 | 0.8554 | 0.9385 | 0.6456 | 0.0 | 0.9300 | 0.7357 | 0.8549 | 0.5132 |
| 0.0482 | 56.0 | 7448 | 0.4005 | 0.5819 | 0.8414 | 0.9249 | nan | 0.9374 | 0.8642 | 0.9337 | 0.6303 | 0.0 | 0.9119 | 0.6831 | 0.8139 | 0.5006 |
| 0.0434 | 57.0 | 7581 | 0.3749 | 0.5914 | 0.8465 | 0.9294 | nan | 0.9423 | 0.8675 | 0.9339 | 0.6421 | 0.0 | 0.9171 | 0.6999 | 0.8265 | 0.5134 |
| 0.0435 | 58.0 | 7714 | 0.4195 | 0.5722 | 0.8400 | 0.9172 | nan | 0.9274 | 0.8700 | 0.9234 | 0.6392 | 0.0 | 0.9025 | 0.6588 | 0.7954 | 0.5044 |
| 0.0442 | 59.0 | 7847 | 0.3975 | 0.5828 | 0.8407 | 0.9257 | nan | 0.9398 | 0.8563 | 0.9312 | 0.6356 | 0.0 | 0.9134 | 0.6866 | 0.8103 | 0.5037 |
| 0.0442 | 60.0 | 7980 | 0.3845 | 0.5929 | 0.8457 | 0.9315 | nan | 0.9459 | 0.8603 | 0.9363 | 0.6404 | 0.0 | 0.9193 | 0.7041 | 0.8308 | 0.5103 |
| 0.0422 | 61.0 | 8113 | 0.3875 | 0.5963 | 0.8465 | 0.9338 | nan | 0.9489 | 0.8616 | 0.9340 | 0.6413 | 0.0 | 0.9226 | 0.7135 | 0.8381 | 0.5072 |
| 0.0436 | 62.0 | 8246 | 0.3859 | 0.6022 | 0.8497 | 0.9385 | nan | 0.9566 | 0.8477 | 0.9382 | 0.6562 | 0.0 | 0.9289 | 0.7300 | 0.8376 | 0.5147 |
| 0.0429 | 63.0 | 8379 | 0.3857 | 0.5956 | 0.8425 | 0.9357 | nan | 0.9534 | 0.8481 | 0.9357 | 0.6327 | 0.0 | 0.9249 | 0.7233 | 0.8283 | 0.5016 |
| 0.0446 | 64.0 | 8512 | 0.3778 | 0.5976 | 0.8495 | 0.9343 | nan | 0.9492 | 0.8602 | 0.9399 | 0.6489 | 0.0 | 0.9232 | 0.7191 | 0.8305 | 0.5153 |
| 0.0429 | 65.0 | 8645 | 0.3889 | 0.5948 | 0.8478 | 0.9330 | nan | 0.9490 | 0.8548 | 0.9325 | 0.6549 | 0.0 | 0.9225 | 0.7075 | 0.8271 | 0.5167 |
| 0.0454 | 66.0 | 8778 | 0.3915 | 0.5941 | 0.8470 | 0.9329 | nan | 0.9490 | 0.8571 | 0.9271 | 0.6547 | 0.0 | 0.9221 | 0.7087 | 0.8278 | 0.5117 |
| 0.0427 | 67.0 | 8911 | 0.3924 | 0.5967 | 0.8455 | 0.9349 | nan | 0.9518 | 0.8520 | 0.9350 | 0.6433 | 0.0 | 0.9247 | 0.7167 | 0.8290 | 0.5133 |
| 0.0425 | 68.0 | 9044 | 0.3990 | 0.5992 | 0.8491 | 0.9358 | nan | 0.9524 | 0.8545 | 0.9355 | 0.6541 | 0.0 | 0.9250 | 0.7187 | 0.8387 | 0.5136 |
| 0.0429 | 69.0 | 9177 | 0.3911 | 0.5909 | 0.8499 | 0.9303 | nan | 0.9451 | 0.8532 | 0.9394 | 0.6619 | 0.0 | 0.9192 | 0.7029 | 0.8178 | 0.5146 |
| 0.0465 | 70.0 | 9310 | 0.3840 | 0.5977 | 0.8481 | 0.9332 | nan | 0.9473 | 0.8700 | 0.9278 | 0.6473 | 0.0 | 0.9215 | 0.7079 | 0.8480 | 0.5110 |
| 0.0436 | 71.0 | 9443 | 0.3862 | 0.5974 | 0.8456 | 0.9351 | nan | 0.9518 | 0.8534 | 0.9359 | 0.6413 | 0.0 | 0.9248 | 0.7162 | 0.8338 | 0.5124 |
| 0.0435 | 72.0 | 9576 | 0.3926 | 0.5952 | 0.8448 | 0.9328 | nan | 0.9484 | 0.8585 | 0.9318 | 0.6405 | 0.0 | 0.9217 | 0.7073 | 0.8386 | 0.5084 |
| 0.0421 | 73.0 | 9709 | 0.3961 | 0.5984 | 0.8467 | 0.9348 | nan | 0.9513 | 0.8564 | 0.9309 | 0.6482 | 0.0 | 0.9243 | 0.7119 | 0.8414 | 0.5143 |
| 0.0409 | 74.0 | 9842 | 0.3973 | 0.5982 | 0.8494 | 0.9341 | nan | 0.9498 | 0.8596 | 0.9306 | 0.6578 | 0.0 | 0.9233 | 0.7094 | 0.8401 | 0.5181 |
| 0.041 | 75.0 | 9975 | 0.3898 | 0.5963 | 0.8476 | 0.9335 | nan | 0.9493 | 0.8561 | 0.9354 | 0.6498 | 0.0 | 0.9227 | 0.7108 | 0.8329 | 0.5153 |
| 0.0436 | 75.19 | 10000 | 0.3966 | 0.5967 | 0.8460 | 0.9344 | nan | 0.9510 | 0.8524 | 0.9362 | 0.6444 | 0.0 | 0.9239 | 0.7125 | 0.8335 | 0.5139 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"bg",
"fallo cohesivo",
"fallo malla",
"fallo adhesivo",
"fallo burbuja"
] |
FashionAI4Wholesale/segformer-b2-finetuned-segments-dresses-071123 |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
A SegFormer-b2 model fine tuned with private dress on mannequin datasets
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| [
"unlabeled",
"dress",
"mannequin",
"background"
] |
varcoder/segformer-b4-crack-segmentation-dataset |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b4-crack-segmentation-dataset
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0594
- Mean Iou: 0.3346
- Mean Accuracy: 0.6691
- Overall Accuracy: 0.6691
- Accuracy Background: nan
- Accuracy Crack: 0.6691
- Iou Background: 0.0
- Iou Crack: 0.6691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.2287 | 0.02 | 100 | 0.2515 | 0.1734 | 0.3468 | 0.3468 | nan | 0.3468 | 0.0 | 0.3468 |
| 0.1792 | 0.04 | 200 | 0.1594 | 0.1671 | 0.3342 | 0.3342 | nan | 0.3342 | 0.0 | 0.3342 |
| 0.1177 | 0.06 | 300 | 0.1762 | 0.1044 | 0.2088 | 0.2088 | nan | 0.2088 | 0.0 | 0.2088 |
| 0.0821 | 0.08 | 400 | 0.1706 | 0.2065 | 0.4130 | 0.4130 | nan | 0.4130 | 0.0 | 0.4130 |
| 0.0666 | 0.1 | 500 | 0.1507 | 0.1931 | 0.3863 | 0.3863 | nan | 0.3863 | 0.0 | 0.3863 |
| 0.0675 | 0.12 | 600 | 0.1374 | 0.3114 | 0.6227 | 0.6227 | nan | 0.6227 | 0.0 | 0.6227 |
| 0.0267 | 0.15 | 700 | 0.1400 | 0.2171 | 0.4342 | 0.4342 | nan | 0.4342 | 0.0 | 0.4342 |
| 0.0192 | 0.17 | 800 | 0.1067 | 0.1594 | 0.3187 | 0.3187 | nan | 0.3187 | 0.0 | 0.3187 |
| 0.0711 | 0.19 | 900 | 0.1002 | 0.2915 | 0.5830 | 0.5830 | nan | 0.5830 | 0.0 | 0.5830 |
| 0.0761 | 0.21 | 1000 | 0.0785 | 0.3099 | 0.6199 | 0.6199 | nan | 0.6199 | 0.0 | 0.6199 |
| 0.0802 | 0.23 | 1100 | 0.0829 | 0.3086 | 0.6173 | 0.6173 | nan | 0.6173 | 0.0 | 0.6173 |
| 0.1058 | 0.25 | 1200 | 0.0895 | 0.2139 | 0.4278 | 0.4278 | nan | 0.4278 | 0.0 | 0.4278 |
| 0.0409 | 0.27 | 1300 | 0.0792 | 0.3237 | 0.6475 | 0.6475 | nan | 0.6475 | 0.0 | 0.6475 |
| 0.063 | 0.29 | 1400 | 0.0739 | 0.3084 | 0.6168 | 0.6168 | nan | 0.6168 | 0.0 | 0.6168 |
| 0.0669 | 0.31 | 1500 | 0.0747 | 0.3326 | 0.6653 | 0.6653 | nan | 0.6653 | 0.0 | 0.6653 |
| 0.1277 | 0.33 | 1600 | 0.0735 | 0.3149 | 0.6297 | 0.6297 | nan | 0.6297 | 0.0 | 0.6297 |
| 0.0388 | 0.35 | 1700 | 0.0708 | 0.2525 | 0.5050 | 0.5050 | nan | 0.5050 | 0.0 | 0.5050 |
| 0.0332 | 0.37 | 1800 | 0.0726 | 0.2908 | 0.5816 | 0.5816 | nan | 0.5816 | 0.0 | 0.5816 |
| 0.0435 | 0.4 | 1900 | 0.0673 | 0.2893 | 0.5786 | 0.5786 | nan | 0.5786 | 0.0 | 0.5786 |
| 0.1297 | 0.42 | 2000 | 0.0698 | 0.3438 | 0.6877 | 0.6877 | nan | 0.6877 | 0.0 | 0.6877 |
| 0.1202 | 0.44 | 2100 | 0.0745 | 0.2899 | 0.5798 | 0.5798 | nan | 0.5798 | 0.0 | 0.5798 |
| 0.0549 | 0.46 | 2200 | 0.0657 | 0.3522 | 0.7044 | 0.7044 | nan | 0.7044 | 0.0 | 0.7044 |
| 0.0223 | 0.48 | 2300 | 0.0808 | 0.2686 | 0.5372 | 0.5372 | nan | 0.5372 | 0.0 | 0.5372 |
| 0.0464 | 0.5 | 2400 | 0.0631 | 0.3221 | 0.6442 | 0.6442 | nan | 0.6442 | 0.0 | 0.6442 |
| 0.0364 | 0.52 | 2500 | 0.0778 | 0.3410 | 0.6820 | 0.6820 | nan | 0.6820 | 0.0 | 0.6820 |
| 0.047 | 0.54 | 2600 | 0.0689 | 0.3489 | 0.6978 | 0.6978 | nan | 0.6978 | 0.0 | 0.6978 |
| 0.0322 | 0.56 | 2700 | 0.0640 | 0.2863 | 0.5727 | 0.5727 | nan | 0.5727 | 0.0 | 0.5727 |
| 0.0453 | 0.58 | 2800 | 0.0574 | 0.3340 | 0.6681 | 0.6681 | nan | 0.6681 | 0.0 | 0.6681 |
| 0.0347 | 0.6 | 2900 | 0.0611 | 0.3289 | 0.6578 | 0.6578 | nan | 0.6578 | 0.0 | 0.6578 |
| 0.0916 | 0.62 | 3000 | 0.0609 | 0.3357 | 0.6714 | 0.6714 | nan | 0.6714 | 0.0 | 0.6714 |
| 0.0523 | 0.65 | 3100 | 0.0557 | 0.3318 | 0.6637 | 0.6637 | nan | 0.6637 | 0.0 | 0.6637 |
| 0.1246 | 0.67 | 3200 | 0.0558 | 0.3294 | 0.6588 | 0.6588 | nan | 0.6588 | 0.0 | 0.6588 |
| 0.0501 | 0.69 | 3300 | 0.0697 | 0.2955 | 0.5910 | 0.5910 | nan | 0.5910 | 0.0 | 0.5910 |
| 0.0312 | 0.71 | 3400 | 0.0604 | 0.3414 | 0.6827 | 0.6827 | nan | 0.6827 | 0.0 | 0.6827 |
| 0.0449 | 0.73 | 3500 | 0.0612 | 0.3305 | 0.6611 | 0.6611 | nan | 0.6611 | 0.0 | 0.6611 |
| 0.0111 | 0.75 | 3600 | 0.0617 | 0.2930 | 0.5860 | 0.5860 | nan | 0.5860 | 0.0 | 0.5860 |
| 0.0206 | 0.77 | 3700 | 0.0627 | 0.3663 | 0.7326 | 0.7326 | nan | 0.7326 | 0.0 | 0.7326 |
| 0.051 | 0.79 | 3800 | 0.0649 | 0.3159 | 0.6318 | 0.6318 | nan | 0.6318 | 0.0 | 0.6318 |
| 0.0243 | 0.81 | 3900 | 0.0600 | 0.3370 | 0.6740 | 0.6740 | nan | 0.6740 | 0.0 | 0.6740 |
| 0.0108 | 0.83 | 4000 | 0.0614 | 0.3595 | 0.7190 | 0.7190 | nan | 0.7190 | 0.0 | 0.7190 |
| 0.0951 | 0.85 | 4100 | 0.0564 | 0.3571 | 0.7142 | 0.7142 | nan | 0.7142 | 0.0 | 0.7142 |
| 0.0731 | 0.87 | 4200 | 0.0597 | 0.3497 | 0.6994 | 0.6994 | nan | 0.6994 | 0.0 | 0.6994 |
| 0.0307 | 0.9 | 4300 | 0.0636 | 0.3468 | 0.6937 | 0.6937 | nan | 0.6937 | 0.0 | 0.6937 |
| 0.1039 | 0.92 | 4400 | 0.0594 | 0.3397 | 0.6795 | 0.6795 | nan | 0.6795 | 0.0 | 0.6795 |
| 0.0083 | 0.94 | 4500 | 0.0606 | 0.3512 | 0.7024 | 0.7024 | nan | 0.7024 | 0.0 | 0.7024 |
| 0.0113 | 0.96 | 4600 | 0.0597 | 0.3288 | 0.6576 | 0.6576 | nan | 0.6576 | 0.0 | 0.6576 |
| 0.0417 | 0.98 | 4700 | 0.0595 | 0.3405 | 0.6811 | 0.6811 | nan | 0.6811 | 0.0 | 0.6811 |
| 0.1944 | 1.0 | 4800 | 0.0594 | 0.3346 | 0.6691 | 0.6691 | nan | 0.6691 | 0.0 | 0.6691 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3 | [
"background",
"crack"
] |
mccaly/test2 | # A Large-Scale Benchmark for Food Image Segmentation
By [Xiongwei Wu](http://xiongweiwu.github.io/), [Xin Fu](https://xinfu607.github.io/), Ying Liu, [Ee-Peng Lim](http://www.mysmu.edu/faculty/eplim/), [Steven C.H. Hoi](https://sites.google.com/view/stevenhoi/home/), [Qianru Sun](https://qianrusun.com/).
<div align="center">
<img src="resources/foodseg103.png" width="800"/>
</div>
<br />
## Introduction
We build a new food image dataset FoodSeg103 containing 7,118 images. We annotate these images with 104 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks.
In addition, we propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge.
In this software, we use three popular semantic segmentation methods (i.e., Dilated Convolution based, Feature Pyramid based, and Vision Transformer based) as baselines, and evaluate them as well as ReLeM on our new datasets. We believe that the FoodSeg103 and the pre-trained models using ReLeM can serve as a benchmark to facilitate future works on fine-grained food image understanding.
Please refer our [paper](https://arxiv.org/abs/2105.05409) and our [homepage](https://xiongweiwu.github.io/foodseg103.html) for more details.
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Installation
Please refer to [get_started.md](docs/get_started.md#installation) for installation.
## Dataset
Please download the file from [url](https://research.larc.smu.edu.sg/downloads/datarepo/FoodSeg103.zip) and unzip the data in ./data folder (./data/FoodSeg103/), with passwd: LARCdataset9947
## Leaderboard
Please refer to [leaderboard](https://paperswithcode.com/dataset/foodseg103) in paperwithcode website.
## Benchmark and model zoo
:exclamation::exclamation::exclamation: **We have finished the course so the models are available again. Please download the trained models from THIS [link](https://smu-my.sharepoint.com/:u:/g/personal/xwwu_smu_edu_sg/EWBcCC3QrO9LthKX66QCzyoBhFU7PHXKcHhh1lgIC98uKw?e=bHT7vM):eyes: .**
Encoder | Decoder | Crop Size | Batch Size |mIoU | mAcc | Link
--- |:---:|:---:|:---:|:---:|:---:|:---:
R-50 | [FPN](https://arxiv.org/abs/1901.02446) | 512x1024 | 8 | 27.8 | 38.2 | [Model+Config](https://drive.google.com/drive/folders/1CQ5CXxASAoobj7bKqyuvazkeusqMAM4F?usp=sharing)
ReLeM-R-50 | FPN | 512x1024 | 8 | 29.1 | 39.8 | [Model+Config](https://drive.google.com/drive/folders/1m7N2EE8jkX67a0lD6GZ4NQgr4gEcWpDU?usp=sharing)
R-50 | [CCNet](https://arxiv.org/abs/1811.11721) | 512x1024 | 8 | 35.5 | 45.3 | [Model+Config](https://drive.google.com/drive/folders/1pNPbtrGqCq_Zlina2PCs6X8bIvY9ZZxG?usp=sharing)
ReLeM-R-50 | CCNet | 512x1024 | 8 | 36.8 | 47.4 | [Model+Config](https://drive.google.com/drive/folders/1FWwxAsZzDnBbDBEbohqOA8htyWgMLM4U?usp=sharing)
[PVT-S](https://arxiv.org/abs/2102.12122) | FPN | 512x1024 | 8 | 31.3 | 43.0 | Model+Config
ReLeM-PVT-S | FPN | 512x1024 | 8 | 32.0 | 44.1 | Model+Config
[ViT-16/B](https://openreview.net/forum?id=YicbFdNTTy) | [Naive](https://arxiv.org/abs/2012.15840) | 768x768 | 4 | 41.3 | 52.7 | [Model+Config](https://drive.google.com/drive/folders/19b3VG906CA-5kQFaJVk5U6kDxnw9HcWL?usp=sharing)
ReLeM-ViT-16/B | Naive | 768x768 | 4 | 43.9 | 57.0 | [Model+Config](https://drive.google.com/drive/folders/10yKiu8aMeTGphU2CKT2ybeAC3ezgDnXP?usp=sharing)
ViT-16/B | PUP | 768x768 | 4 | 38.5 | 49.1 | Model+Config
ReLeM-ViT-16/B | PUP | 768x768 | 4 | 42.5 | 53.9 | Model+Config
ViT-16/B | [MLA](https://arxiv.org/abs/2012.15840) | 768x768 | 4 | 45.1 | 57.4 | [Model+Config](https://drive.google.com/drive/folders/17Ht1HQDaBJmS0FXaXGjHk0VQNhAJxrlF?usp=sharing)
ReLeM-ViT-16/B | MLA | 768x768 | 4 | 43.3 | 55.9 | [Model+Config](https://drive.google.com/drive/folders/12OlkStefNmELNLo-xJqc-lE-kPZ7DvPV?usp=sharing)
[ViT-16/L](https://openreview.net/forum?id=YicbFdNTTy) | MLA | 768x768 | 4 | 44.5 | 56.6 | [Model+Config](https://drive.google.com/drive/folders/1PS4uh2zktNc0hh-mSLZkRTqgNnkfh7xu?usp=sharing)
[Swin-S](https://arxiv.org/abs/2103.14030) | [UperNet](https://arxiv.org/abs/1807.10221) | 512x1024 | 8 | 41.6 | 53.6 | [Model+Config](https://drive.google.com/drive/folders/1E5fZga8h65dNZCX1m8zywvB8MwrleFNg?usp=sharing)
[Swin-B](https://arxiv.org/abs/2103.14030) | UperNet | 512x1024 | 8 | 41.2 | 53.9 | [Model+Config](https://drive.google.com/drive/folders/1kqOsH51h1pa-88tbFVUV3mmzTNCGzqd0?usp=sharing)
[1] *We do not include the implementation of [swin](https://arxiv.org/abs/2103.14030) in this software. You can use the official [implementation](https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation) based on our provided models.* \
[2] *We use Step-wise learning policy to train PVT model since we found this policy can yield higher performance, and for other baselines we adopt the default settings.* \
[3] *We use Recipe1M to train ReLeM-PVT-S while other ReLeM models are trained with Recipe1M+ due to time limitation.*
## Train & Test
Train script:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-300} tools/train.py --config [config] --work-dir [work-dir] --launcher pytorch
```
Exmaple:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-300} tools/train.py --config configs/foodnet/SETR_Naive_768x768_80k_base_RM.py --work-dir checkpoints/SETR_Naive_ReLeM --launcher pytorch
```
Test script:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-999} tools/test.py [config] [weights] --launcher pytorch --eval mIoU
```
Example:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-999} tools/test.py checkpoints/SETR_Naive_ReLeM/SETR_Naive_768x768_80k_base_RM.py checkpoints/SETR_Naive_ReLeM/iter_80000.pth --launcher pytorch --eval mIoU
```
## ReLeM
We train recipe information based on the implementation of [im2recipe](https://github.com/torralba-lab/im2recipe-Pytorch) with small modifications, which is trained on [Recipe1M+](http://pic2recipe.csail.mit.edu/) dataset (test images of FoodSeg103 are removed). I may upload the lmdb file later due to the huge datasize (>35G).
It takes about 2~3 weeks to train a ReLeM ViT-Base model with 8 Tesla-V100 cards, so I strongly recommend you use my pre-trained models([link](https://drive.google.com/drive/folders/1LRCHxeMuCXMb68I1XFI8q-aQ2cCyUx_r?usp=sharing)).
## Citation
If you find this project useful in your research, please consider cite:
```latex
@inproceedings{wu2021foodseg,
title={A Large-Scale Benchmark for Food Image Segmentation},
author={Wu, Xiongwei and Fu, Xin and Liu, Ying and Lim, Ee-Peng and Hoi, Steven CH and Sun, Qianru},
booktitle={Proceedings of ACM international conference on Multimedia},
year={2021}
}
```
## Other Issues
If you meet other issues in using the software, you can check the original mmsegmentation (see [doc](https://mmsegmentation.readthedocs.io/) for more details).
## Acknowledgement
The segmentation software in this project was developed mainly by extending the [segmentation](https://github.com/open-mmlab/mmsegmentation/). | [
"background",
"candy",
"egg tart",
"french fries",
"chocolate",
"biscuit",
"popcorn",
"pudding",
"ice cream",
"cheese butter",
"cake",
"wine",
"milkshake",
"coffee",
"juice",
"milk",
"tea",
"almond",
"red beans",
"cashew",
"dried cranberries",
"soy",
"walnut",
"peanut",
"egg",
"apple",
"date",
"apricot",
"avocado",
"banana",
"strawberry",
"cherry",
"blueberry",
"raspberry",
"mango",
"olives",
"peach",
"lemon",
"pear",
"fig",
"pineapple",
"grape",
"kiwi",
"melon",
"orange",
"watermelon",
"steak",
"pork",
"chicken duck",
"sausage",
"fried meat",
"lamb",
"sauce",
"crab",
"fish",
"shellfish",
"shrimp",
"soup",
"bread",
"corn",
"hamburg",
"pizza",
"hanamaki baozi",
"wonton dumplings",
"pasta",
"noodles",
"rice",
"pie",
"tofu",
"eggplant",
"potato",
"garlic",
"cauliflower",
"tomato",
"kelp",
"seaweed",
"spring onion",
"rape",
"ginger",
"okra",
"lettuce",
"pumpkin",
"cucumber",
"white radish",
"carrot",
"asparagus",
"bamboo shoots",
"broccoli",
"celery stick",
"cilantro mint",
"snow peas",
"cabbage",
"bean sprouts",
"onion",
"pepper",
"green beans",
"french beans",
"king oyster mushroom",
"shiitake",
"enoki mushroom",
"oyster mushroom",
"white button mushroom",
"salad",
"other ingredients"
] |
Lexic0n/segformer-b0-finetuned-human-parsing |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-human-parsing
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9476
- Mean Iou: 0.0726
- Mean Accuracy: 0.1221
- Overall Accuracy: 0.3575
- Accuracy Background: nan
- Accuracy Hat: 0.0048
- Accuracy Hair: 0.4813
- Accuracy Sunglasses: 0.0
- Accuracy Upper-clothes: 0.9405
- Accuracy Skirt: 0.0000
- Accuracy Pants: 0.0631
- Accuracy Dress: 0.1031
- Accuracy Belt: 0.0
- Accuracy Left-shoe: 0.0011
- Accuracy Right-shoe: 0.0010
- Accuracy Face: 0.4406
- Accuracy Left-leg: 0.0291
- Accuracy Right-leg: 0.0
- Accuracy Left-arm: 0.0
- Accuracy Right-arm: 0.0001
- Accuracy Bag: 0.0114
- Accuracy Scarf: 0.0
- Iou Background: 0.0
- Iou Hat: 0.0043
- Iou Hair: 0.4221
- Iou Sunglasses: 0.0
- Iou Upper-clothes: 0.3239
- Iou Skirt: 0.0000
- Iou Pants: 0.0559
- Iou Dress: 0.0728
- Iou Belt: 0.0
- Iou Left-shoe: 0.0011
- Iou Right-shoe: 0.0009
- Iou Face: 0.3872
- Iou Left-leg: 0.0271
- Iou Right-leg: 0.0
- Iou Left-arm: 0.0
- Iou Right-arm: 0.0001
- Iou Bag: 0.0106
- Iou Scarf: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
| 2.5768 | 0.4 | 20 | 2.7812 | 0.0726 | 0.1332 | 0.2876 | nan | 0.0178 | 0.3204 | 0.0004 | 0.5548 | 0.0004 | 0.2555 | 0.2373 | 0.0 | 0.0103 | 0.0003 | 0.5637 | 0.0287 | 0.0302 | 0.0001 | 0.0008 | 0.2435 | 0.0 | 0.0 | 0.0166 | 0.2759 | 0.0001 | 0.2781 | 0.0004 | 0.1710 | 0.1295 | 0.0 | 0.0098 | 0.0003 | 0.3251 | 0.0260 | 0.0248 | 0.0001 | 0.0007 | 0.0491 | 0.0 |
| 2.2093 | 0.8 | 40 | 2.5166 | 0.0563 | 0.1052 | 0.3288 | nan | 0.0 | 0.1994 | 0.0 | 0.9447 | 0.0015 | 0.0435 | 0.1164 | 0.0 | 0.0008 | 0.0000 | 0.4655 | 0.0007 | 0.0003 | 0.0 | 0.0 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.1946 | 0.0 | 0.3037 | 0.0015 | 0.0417 | 0.0842 | 0.0 | 0.0008 | 0.0000 | 0.3726 | 0.0007 | 0.0003 | 0.0 | 0.0 | 0.0124 | 0.0 |
| 1.8804 | 1.2 | 60 | 2.0209 | 0.0632 | 0.1110 | 0.3374 | nan | 0.0087 | 0.3724 | 0.0 | 0.9475 | 0.0014 | 0.0162 | 0.0528 | 0.0 | 0.0001 | 0.0008 | 0.4257 | 0.0561 | 0.0001 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0077 | 0.3472 | 0.0 | 0.3086 | 0.0014 | 0.0156 | 0.0403 | 0.0 | 0.0001 | 0.0008 | 0.3597 | 0.0515 | 0.0001 | 0.0 | 0.0 | 0.0052 | 0.0 |
| 1.8776 | 1.6 | 80 | 2.0016 | 0.0665 | 0.1154 | 0.3454 | nan | 0.0056 | 0.4172 | 0.0 | 0.9412 | 0.0000 | 0.0490 | 0.0697 | 0.0 | 0.0002 | 0.0006 | 0.4349 | 0.0329 | 0.0000 | 0.0 | 0.0000 | 0.0100 | 0.0 | 0.0 | 0.0048 | 0.3791 | 0.0 | 0.3138 | 0.0000 | 0.0438 | 0.0542 | 0.0 | 0.0002 | 0.0006 | 0.3608 | 0.0304 | 0.0000 | 0.0 | 0.0000 | 0.0093 | 0.0 |
| 1.8471 | 2.0 | 100 | 1.9476 | 0.0726 | 0.1221 | 0.3575 | nan | 0.0048 | 0.4813 | 0.0 | 0.9405 | 0.0000 | 0.0631 | 0.1031 | 0.0 | 0.0011 | 0.0010 | 0.4406 | 0.0291 | 0.0 | 0.0 | 0.0001 | 0.0114 | 0.0 | 0.0 | 0.0043 | 0.4221 | 0.0 | 0.3239 | 0.0000 | 0.0559 | 0.0728 | 0.0 | 0.0011 | 0.0009 | 0.3872 | 0.0271 | 0.0 | 0.0 | 0.0001 | 0.0106 | 0.0 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"background",
"hat",
"hair",
"sunglasses",
"upper-clothes",
"skirt",
"pants",
"dress",
"belt",
"left-shoe",
"right-shoe",
"face",
"left-leg",
"right-leg",
"left-arm",
"right-arm",
"bag",
"scarf"
] |
Isaacks/segformer-finetuned-ihc |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-ihc
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the Isaacks/ihc_slide_tissue dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0326
- eval_mean_iou: 0.0
- eval_mean_accuracy: nan
- eval_overall_accuracy: nan
- eval_accuracy_background: nan
- eval_accuracy_tissue: nan
- eval_iou_background: 0.0
- eval_iou_tissue: 0.0
- eval_runtime: 19.1281
- eval_samples_per_second: 0.784
- eval_steps_per_second: 0.105
- epoch: 9.15
- step: 183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
| [
"background",
"tissue"
] |
Isaacks/test_push |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_push
This model is a fine-tuned version of [Isaacks/test_push](https://huggingface.co/Isaacks/test_push) on the Isaacks/ihc_slide_tissue dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.3
- Tokenizers 0.13.3
| [
"background",
"tissue"
] |
univers1123/segformer-b0-scene-parse-150 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-scene-parse-150
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3431
- Mean Iou: 0.0959
- Mean Accuracy: 0.1537
- Overall Accuracy: 0.5496
- Per Category Iou: [0.44824978876617866, 0.7548671615728508, 0.7119201505944329, 0.5304481563680256, 0.5684691275095736, 0.33051502835188457, 0.6982393617021276, 0.0, 0.3703529914609331, 0.6659141206351092, 0.028823893043720683, 0.17181416221210322, 0.052153820762502065, 0.0, 0.0, 0.0005543923800536699, 0.40565901784724534, 0.05230759173712194, 0.0, 0.07225859019823891, 0.29980315155352005, nan, 0.003601361102652032, 0.0, 0.0, nan, 0.0, 0.0, 0.38898705304076847, 0.05940808241958817, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0]
- Per Category Accuracy: [0.8427949438202247, 0.9402615186644498, 0.7846678763016725, 0.7286579984703183, 0.8303175022736334, 0.469325820621132, 0.9020126572710594, nan, 0.5974398752913491, 0.9683369330453564, 0.05725843345934362, 0.24220857754209693, 0.12377594986290638, 0.0, 0.0, 0.0005611873291065182, 0.9580213623749935, 0.08566177782535773, 0.0, 0.16335928996064641, 0.43531591571750716, nan, 0.0036190907034607555, 0.0, 0.0, nan, nan, 0.0, 0.45750991876062724, 0.24276243093922653, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 4.9918 | 0.5 | 20 | 4.8969 | 0.0108 | 0.0487 | 0.1875 | [0.18900717264720193, 0.17829851112253592, 0.40144144917749963, 0.1885612981412077, 0.11895876927062042, 0.09866217819019046, 0.0057814729592400894, 0.0, 0.0, 0.0, 0.009622579129617706, 0.022129523898301137, 0.0037298450062015365, 0.0, 0.0, 0.0, 0.06277911646586345, 0.0, 0.0, 0.003906402593851322, 0.012887091043266734, nan, 0.0019786836291242806, 0.0, 0.0, 0.0, 0.0, 0.0, 0.015807537456273512, 0.016491354532320934, 0.0, 0.0, 0.0, nan, 0.001438298321545445, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.025794247180438844, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.012904182735093445, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0] | [0.2067212858926342, 0.2463388525747603, 0.8113718838750394, 0.515406462102938, 0.1316758582686337, 0.11907251217424253, 0.007544887960475232, nan, 0.0, 0.0, 0.013315354795213214, 0.22085775420969392, 0.054576315445880666, 0.0, 0.0, 0.0, 0.07673176606105031, 0.0, 0.0, 0.004186552792430713, 0.013544374703761687, nan, 0.0021687933259709673, 0.0, 0.0, nan, nan, 0.0, 0.01809937653504629, 0.30082872928176796, 0.0, nan, 0.0, nan, 0.0019430975470621792, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.3248302818350134, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.05007914807886027, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 4.551 | 1.0 | 40 | 4.5955 | 0.0202 | 0.0640 | 0.3442 | [0.3519414971273263, 0.3937735618735424, 0.42161939446421154, 0.21975617697678057, 0.3809140886893701, 0.09030492572322127, 0.005777833411293457, 0.0, 0.0, 0.0, 0.0, 0.02885598249784122, 0.0, 0.0, 0.0, 0.0, 0.0573680633208358, 0.0, 0.0011308737583006134, 0.006298751950078003, 0.057306667023884476, nan, 0.0014234124996705063, 0.0, 0.0, 0.0, nan, 0.0, 0.017088433502956954, 0.023128390596745027, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0052120890103356235, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0] | [0.5003401997503121, 0.785197975265903, 0.952571789207952, 0.4632600048849975, 0.5973921536125012, 0.09887449654069073, 0.006026290292656446, nan, 0.0, 0.0, 0.0, 0.4399013861754582, 0.0, 0.0, 0.0, 0.0, 0.06849835069898948, 0.0, 0.0098046905639658, 0.0067612827597756005, 0.06144521207072375, nan, 0.0014369918969623589, 0.0, 0.0, nan, nan, 0.0, 0.018779520120914415, 0.07066298342541437, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.01695124459987657, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 4.3293 | 1.5 | 60 | 4.2491 | 0.0352 | 0.0776 | 0.4184 | [0.3871309742960387, 0.45006666311952553, 0.6112315905191344, 0.3032571607536305, 0.44533070206501846, 0.063346836376098, 0.022528980712202534, 0.0, 0.0, 0.0, 0.0, 0.029790687595074403, 0.0019532612486920127, 0.0, 0.0, 0.0, 0.24116048081196448, 0.0, 0.0, 0.0003640114056907116, 0.2558965972702686, nan, 0.0005833454863642993, 0.0, 0.0, nan, 0.0, 0.0, 0.002751498247333308, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7088701622971286, 0.8308114309791149, 0.8838434837488167, 0.5903983055833383, 0.8704499330230141, 0.06874412338436925, 0.02526644174013427, nan, 0.0, 0.0, 0.0, 0.3261233603125872, 0.0036558297427862646, 0.0, 0.0, 0.0, 0.305421749829834, 0.0, 0.0, 0.00037678975131876413, 0.350616893842552, nan, 0.0005854411432068869, 0.0, 0.0, nan, nan, 0.0, 0.0027583600982429624, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.9435 | 2.0 | 80 | 4.1371 | 0.0349 | 0.0760 | 0.4181 | [0.35782571228523724, 0.4339785275779836, 0.33734326770427064, 0.3463785302488506, 0.485148026657255, 0.060373176138162864, 0.25141442893216265, 0.0, 0.0, 0.0, 0.0, 0.03557946863062567, 0.0016987542468856172, 0.0, 0.0, 0.0, 0.07208336234305739, 0.0, 0.0, 0.0, 0.23636984914447706, nan, 0.0012355355980390855, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0013693940431359123, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.5806023720349563, 0.8385180609014508, 0.9781397917324077, 0.6769715154724274, 0.8375259283816657, 0.06956509535905245, 0.3441307230861203, nan, 0.0, 0.0, 0.0, 0.18348218438924552, 0.0019584802193497847, 0.0, 0.0, 0.0, 0.08131315775695062, 0.0, 0.0, 0.0, 0.26825905232466285, nan, 0.0012374096890509201, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0026519337016574587, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.951 | 2.5 | 100 | 3.7658 | 0.0401 | 0.0786 | 0.4477 | [0.405717317146636, 0.4086408628919567, 0.46930568969097103, 0.3717459827442089, 0.4797755033427323, 0.09497839561115337, 0.3326272962505519, 0.0, 0.0, 0.0, 0.0, 0.042534003647694614, 0.0014730878186968838, 0.0, 0.0, 0.0, 0.0077221054763652935, 0.0, 0.0, 0.0, 0.1928527248986324, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.6074812734082397, 0.8766682989045027, 0.9717970968759861, 0.7857572013599547, 0.917421184439835, 0.10295479742341103, 0.40897690494678035, nan, 0.0, 0.0, 0.0, 0.14699041771327565, 0.00169734952343648, 0.0, 0.0, 0.0, 0.007984711241426252, 0.0, 0.0, 0.0, 0.2015282306134467, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.7065 | 3.0 | 120 | 3.6117 | 0.0484 | 0.0779 | 0.4436 | [0.30003355195190606, 0.6100469285116588, 0.7166468505013384, 0.2808355790192315, 0.4914731888407471, 0.004109398150913026, 0.3171473942892336, 0.0, 0.0, 0.0, 0.0, 0.0061059528193994845, 0.0, 0.0, 0.0, 0.0, 0.29060069752832357, 0.0, 0.0, 0.0, 0.17904034375746, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8819553682896379, 0.8053072403033685, 0.8891882297254654, 0.6263173002009267, 0.8730573314039183, 0.005069677365030804, 0.3609246267067045, nan, 0.0, 0.0, 0.0, 0.007326262908177505, 0.0, 0.0, 0.0, 0.0, 0.351196397717158, 0.0, 0.0, 0.0, 0.1831291383594502, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.2097 | 3.5 | 140 | 3.5176 | 0.0525 | 0.0915 | 0.4632 | [0.33578357247667373, 0.5622071180819789, 0.5852978266414613, 0.30513441309066625, 0.47613907301517233, 0.11756483464192244, 0.4294152765583846, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.31985655288181825, 0.0, 0.0, 0.0, 0.2843118911299879, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7485081148564294, 0.7992375930944952, 0.9684679709687598, 0.6516123166120225, 0.9277790969083065, 0.15255694177414147, 0.8402174137113565, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4389758626106079, 0.0, 0.0, 0.0, 0.32737744710799593, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.2266 | 4.0 | 160 | 3.2810 | 0.0575 | 0.0941 | 0.4847 | [0.3992063720223229, 0.4874371519350326, 0.6386934837529401, 0.33463546895473684, 0.5312770971534357, 0.1190245013596048, 0.667785108591032, 0.0, 1.4805712043706462e-05, 0.0, 0.0, 0.0017248288238061224, 0.0, 0.0, 0.0, 0.0, 0.30151870601308806, 0.0, 0.0, 0.0, 0.2782594792704375, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.033659066232356136, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.6934503745318352, 0.9230902817318423, 0.9254102240454402, 0.8022610050614992, 0.8948483721680384, 0.14665927557994302, 0.8533694315222395, nan, 1.4989020542452654e-05, 0.0, 0.0, 0.0023025397711415015, 0.0, 0.0, 0.0, 0.0, 0.35161526781506885, 0.0, 0.0, 0.0, 0.32496445140255376, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.1061878453038674, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.9497 | 4.5 | 180 | 3.1974 | 0.0642 | 0.1033 | 0.5107 | [0.3818606056702946, 0.646717576231877, 0.6893883610101498, 0.35965565930008286, 0.515791148910165, 0.1709952263303293, 0.5905499827668784, 0.0, 0.0, 0.00023758099352051836, 0.0, 0.006708633919955889, 0.0, 0.0, 0.0, 0.0, 0.41776764937787264, 0.0, 0.0, 0.0, 0.3965531191844, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8420318352059926, 0.9034080556631061, 0.9232289365730514, 0.7692872717288791, 0.9074888782362877, 0.22193959891659767, 0.9065753217571756, nan, 0.0, 0.00023758099352051836, 0.0, 0.006791329425993115, 0.0, 0.0, 0.0, 0.0, 0.5687077857479449, 0.0, 0.0, 0.0, 0.563147235827241, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.6589 | 5.0 | 200 | 2.9663 | 0.0613 | 0.1024 | 0.5079 | [0.42472276030924794, 0.5137600415836002, 0.5653029156997235, 0.3946772310334331, 0.48347829428413946, 0.27808625336927223, 0.5484221892074007, 0.0, 0.0, 0.028530701280749877, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.40734839451719446, 0.0, 0.0, 0.0, 0.3426947471859925, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7298252184769038, 0.931391919283941, 0.9522049542442411, 0.7744040392154765, 0.9018775956382078, 0.3619644385814727, 0.9283785362367638, nan, 0.0, 0.02853131749460043, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5053144143672443, 0.0, 0.0, 0.0, 0.4407882452637778, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.0452 | 5.5 | 220 | 2.9555 | 0.0726 | 0.1078 | 0.5230 | [0.41914107733008765, 0.6093066343751574, 0.8022820448088637, 0.37087502661273153, 0.5109690014151442, 0.285823996633528, 0.6652541677829964, 0.0, 0.08014894937494459, 0.02611231101511879, 0.0, 0.00470151136389698, 0.0, 0.0, 0.0, 0.0, 0.583424459802292, 0.0, 0.0, 0.009707533967511648, 0.3496014880350035, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0003960101972625795, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7738607990012485, 0.9296880337987109, 0.8900007888923951, 0.8633894394911045, 0.8759447339064831, 0.3812818389772233, 0.8360464237368497, nan, 0.08807548470745179, 0.02611231101511879, 0.0, 0.004767885384686948, 0.0, 0.0, 0.0, 0.0, 0.6983742604324834, 0.0, 0.0, 0.011471154651260152, 0.5210203524697299, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0008839779005524862, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.2101 | 6.0 | 240 | 2.9536 | 0.0660 | 0.1036 | 0.5149 | [0.4210730477967065, 0.6183098808624755, 0.6734301776779076, 0.35971565731735283, 0.4806664840057538, 0.27224325054511417, 0.7002499830387291, 0.0, 0.011102840450618944, 0.14168103448275862, 0.0, 0.04930317875757779, 0.00026014568158168577, 0.0, 0.0, 0.0, 0.34496024621697874, 0.0, 0.0, 0.0071056371387967785, 0.272962729746106, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.003966609436978272, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7978604868913858, 0.8565931969845355, 0.9539720732092143, 0.8333395732936828, 0.9431322829072044, 0.35000070168544845, 0.921994928845797, nan, 0.01330275573142673, 0.14198704103671705, 0.0, 0.05126058237975625, 0.0002611306959133046, 0.0, 0.0, 0.0, 0.4225352112676056, 0.0, 0.0, 0.007849786485807586, 0.3299915257888916, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.007403314917127072, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.1038 | 6.5 | 260 | 2.8714 | 0.0713 | 0.1055 | 0.5121 | [0.333925564423404, 0.752032134611127, 0.736398567000167, 0.33990449010114204, 0.5520605777794296, 0.21890770835546186, 0.7222780908403896, 0.0, 7.871071843208248e-05, 0.07598360127927194, 0.0, 0.060659762997758084, 0.0, 0.0, 0.0, 0.0, 0.5471373300677954, 0.0, 0.0, 0.0, 0.29813009355328596, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.926833645443196, 0.9138335003530189, 0.938908172925213, 0.6401967548640491, 0.8983786641339361, 0.281996856449191, 0.8340674367308234, nan, 8.993412325471592e-05, 0.07645788336933046, 0.0, 0.0660759140385152, 0.0, 0.0, 0.0, 0.0, 0.8070841405309178, 0.0, 0.0, 0.0, 0.3693750628384298, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.7936 | 7.0 | 280 | 2.7721 | 0.0696 | 0.1104 | 0.5252 | [0.4010650933145876, 0.6469693944006977, 0.6760729291497917, 0.3905446292113494, 0.5370746026129916, 0.3149111124917947, 0.4465377195337425, 0.0, 0.0015380273740651898, 0.29528359209671673, 0.0, 0.0016221666885878382, 0.0, 0.0, 0.0, 0.0, 0.4981196507305265, 0.0, 0.0, 0.0028347369074468746, 0.31121040158284957, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0025029983834802105, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8289122971285893, 0.9177295192110597, 0.9145945093089303, 0.7626461710711873, 0.9180707940020877, 0.4089984141908865, 0.9829174941077036, nan, 0.0016338032391273393, 0.3043844492440605, 0.0, 0.0017210903339845568, 0.0, 0.0, 0.0, 0.0, 0.603356196659511, 0.0, 0.0, 0.002867788662815038, 0.4111715955934102, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.005303867403314917, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.7945 | 7.5 | 300 | 2.7396 | 0.0686 | 0.1095 | 0.5169 | [0.3938437827362631, 0.5819843893842082, 0.6473757929342038, 0.36969978588499103, 0.5214727294114572, 0.32975030466734545, 0.5638207004122257, 0.0, 0.01157430251082007, 0.20381216057927803, 0.0, 0.0004631023224581471, 0.0, 0.0, 0.0, 0.0, 0.5491695655139486, 0.0, 0.0, 0.0, 0.2884391553243545, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.836646379525593, 0.9250916710319539, 0.8823840328179237, 0.6836981927291982, 0.8937373158132887, 0.43858498112466143, 0.9389056476715981, nan, 0.01230598586535363, 0.20669546436285097, 0.0, 0.00046515954972555586, 0.0, 0.0, 0.0, 0.0, 0.8431200586418137, 0.0, 0.0, 0.0, 0.34882151013314566, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.7413 | 8.0 | 320 | 2.6350 | 0.0787 | 0.1150 | 0.5338 | [0.39834735692948187, 0.6935465113678552, 0.6795960676787267, 0.39310146783541766, 0.49596738777838023, 0.32174356359928624, 0.7683469195364054, 0.0, 0.007555978330533573, 0.47093784418445167, 0.0, 0.0837117604058215, 0.0, 0.0, 0.0, 0.0, 0.4067670846627588, 0.0, 0.0, 0.03581658980557869, 0.3532967032967033, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0038626609442060085, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8854556803995006, 0.8828632108775366, 0.9219233196591985, 0.785858823571361, 0.9486830846150055, 0.39855031786350814, 0.9520851514131204, nan, 0.008393851503773486, 0.4894600431965443, 0.0, 0.08789189692064378, 0.0, 0.0, 0.0, 0.0, 0.5023037855385099, 0.0, 0.0, 0.03690446286527673, 0.4525372362581331, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.007955801104972376, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 3.1279 | 8.5 | 340 | 2.7466 | 0.0803 | 0.1261 | 0.5379 | [0.4732868837154453, 0.5795366043613707, 0.6346097819782593, 0.44734531422398605, 0.5925445006034769, 0.33420482145366226, 0.5418888704389498, 0.0, 0.07466121037607358, 0.5396965892015397, 0.0, 0.0583367158255536, 0.0, 0.0, 0.0, 0.0, 0.5034441615738396, 0.0, 0.0, 0.034642576590730556, 0.38949905000231705, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.013078260869565218, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.7515792759051186, 0.9406003029129751, 0.9365375512780056, 0.8283761305471019, 0.8555873142452657, 0.4673154918113308, 0.9642545472036501, nan, 0.08997159580607206, 0.5662850971922246, 0.0, 0.06016838775700065, 0.0, 0.0, 0.0, 0.0, 0.9499842923713283, 0.0, 0.0, 0.03692539562923888, 0.603608003102423, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.020773480662983426, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.92 | 9.0 | 360 | 2.6091 | 0.0828 | 0.1284 | 0.5504 | [0.40748999734012986, 0.7308994689832818, 0.6897258549098384, 0.4145929905545104, 0.5999534865692469, 0.34933757496681506, 0.6454950667228029, 0.0, 0.06552173666609987, 0.6525195767828322, 0.0, 0.09638426690376392, 0.0, 0.0, 0.0, 0.0, 0.3726748249924363, 0.0, 0.0, 0.02772521596051008, 0.4127414994395235, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.9037031835205992, 0.9192924818366092, 0.9290785736825496, 0.8003123545866383, 0.8667919591776391, 0.4330416660819288, 0.9692295006493551, nan, 0.0779728848618387, 0.7073002159827214, 0.0, 0.10589357149502279, 0.0, 0.0, 0.0, 0.0, 0.9351798523482905, 0.0, 0.0, 0.028217365820983, 0.5394338077934016, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.3087 | 9.5 | 380 | 2.6150 | 0.0814 | 0.1198 | 0.5299 | [0.3815018185439071, 0.7057178358063663, 0.7535985879427576, 0.3887717278415141, 0.5256222584858059, 0.34564103730405565, 0.5961295113764614, 0.0, 0.07287089141198226, 0.5505775075987842, 0.0, 0.012498381038725553, 0.0, 0.0, 0.0, 0.0, 0.6003507871321013, 0.0, 0.0, 0.02191998411595354, 0.333831518774682, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0007605753528845938, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.9088030586766542, 0.9184341335094632, 0.9228818239192175, 0.6333363641712174, 0.924981295724673, 0.42656160096551915, 0.8384170852544853, nan, 0.10986202606590673, 0.5868466522678186, 0.0, 0.013466368964554842, 0.0, 0.0, 0.0, 0.0, 0.9184904968846537, 0.0, 0.0, 0.023109771414217533, 0.4395242951323557, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0018784530386740331, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.1879 | 10.0 | 400 | 2.5502 | 0.0829 | 0.1264 | 0.5403 | [0.42541993453087873, 0.623683983411115, 0.7597304629844778, 0.4205088170462895, 0.5924400522095842, 0.34972647970735005, 0.542108695993839, 0.0, 0.10089223190785503, 0.6533185760423849, 0.0, 0.06435332551516167, 0.0, 0.0, 0.0, 0.0, 0.5496072567949156, 0.0, 0.0, 0.04006614926155156, 0.3497377708876208, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8211766541822721, 0.9566740496959483, 0.9156831808141369, 0.734648360405847, 0.8896447755710964, 0.4752831300784484, 0.9480653340571296, nan, 0.1252557501630056, 0.7776889848812095, 0.0, 0.07147176481533166, 0.0, 0.0, 0.0, 0.0, 0.8636839625111262, 0.0, 0.0, 0.05122247341538977, 0.4568748833000589, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.7904 | 10.5 | 420 | 2.5607 | 0.0847 | 0.1294 | 0.5527 | [0.4089931781192911, 0.6850029861356511, 0.7236868938816361, 0.44801602679367497, 0.6048018807233796, 0.3552823794275764, 0.7384593465045592, 0.0, 0.08126260723073171, 0.6861535314971366, 0.0, 0.07176723173949993, 0.0, 0.0, 0.0, 0.0, 0.5202545409432902, 0.0, 0.0, 0.03092656227494393, 0.31232833178217145, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0070865882197831175, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8964903245942571, 0.9436849477304302, 0.9098295992426633, 0.8017938994581931, 0.8528925545784034, 0.4667366013163619, 0.9616021548969621, nan, 0.10989949861726285, 0.8695032397408208, 0.0, 0.07463484975346543, 0.0, 0.0, 0.0, 0.0, 0.9331771296926541, 0.0, 0.0, 0.03146194423511681, 0.39524295132355686, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0356353591160221, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.0716 | 11.0 | 440 | 2.5680 | 0.0847 | 0.1296 | 0.5415 | [0.41481850137628407, 0.7203849284695957, 0.6669945193799962, 0.4362842862741063, 0.5323843818628085, 0.3475532762707128, 0.7414915042691402, 0.0, 0.1676274467627447, 0.6863883910106163, 0.0, 0.07245906603508316, 0.0, 0.0, 0.0, 0.0, 0.42361977248072585, 0.0, 0.0, 0.03842720421848077, 0.3414301980308544, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8675733458177278, 0.9120399366843556, 0.944245029977911, 0.7105906389897683, 0.8862332053527828, 0.47125545560436166, 0.8980959121549656, nan, 0.23361887417466706, 0.860194384449244, 0.0, 0.0779142245790306, 0.0, 0.0, 0.0, 0.0, 0.9558615634326405, 0.0, 0.0, 0.038746546093946246, 0.43930884908722695, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.0188 | 11.5 | 460 | 2.5824 | 0.0882 | 0.1300 | 0.5276 | [0.37841752646478294, 0.7626005273875548, 0.7449055407856049, 0.4290295891463663, 0.42924333297292483, 0.3342814382591885, 0.7440181926043109, 0.0, 0.2021076120669866, 0.6599823849517159, 0.0, 0.08257497897785668, 0.0, 0.0, 0.0, 0.0, 0.5392052554536042, 0.0, 0.0, 0.07886073041880408, 0.3480013762317715, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8847003745318353, 0.9254219145011046, 0.8344193751972231, 0.7922913312687979, 0.604714821402171, 0.46469820508862286, 0.879034419256643, nan, 0.2837346643583575, 0.906328293736501, 0.0, 0.10277700251186157, 0.0, 0.0, 0.0, 0.0, 0.9884418032357715, 0.0, 0.0, 0.08624298752407268, 0.566580009479626, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.0354 | 12.0 | 480 | 2.5691 | 0.0858 | 0.1256 | 0.5228 | [0.388647954155662, 0.7558385896911918, 0.7917491167908167, 0.41462958598007127, 0.49312579910285853, 0.34302476815200184, 0.6070355141984659, 0.0, 0.17537265388996187, 0.683955223880597, 0.0, 0.06567059698554022, 0.0, 0.0, 0.0, 0.0, 0.5733892374517374, 0.0, 0.0, 0.0970983628377479, 0.2620320855614973, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.010986863532732602, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.9077652933832709, 0.8871478351971211, 0.9043310192489744, 0.7432737684546827, 0.7205357262858909, 0.4256459014552956, 0.6939098049186073, nan, 0.2654030922349379, 0.910561555075594, 0.0, 0.06982044841380594, 0.0, 0.0, 0.0, 0.0, 0.9952877113985026, 0.0, 0.0, 0.15270451310391023, 0.3314852850351177, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.027955801104972377, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.1633 | 12.5 | 500 | 2.5259 | 0.0848 | 0.1259 | 0.5158 | [0.34497610745189206, 0.7463073107565349, 0.854543520288191, 0.42463992477652146, 0.3850483703078828, 0.3376058072128456, 0.7316751525159396, 0.0, 0.1667267825954894, 0.7156769039332023, 0.0, 0.1001707892767362, 0.0, 0.0, 0.0, 0.0, 0.45019734202157285, 0.0, 0.0, 0.042506510283171685, 0.28340423893583844, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.013840120972909245, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.9170614856429463, 0.9196654292026328, 0.9188466393183969, 0.714963959771867, 0.5245171608926084, 0.4617756851958404, 0.8768699022188018, nan, 0.2632821458281809, 0.8571274298056155, 0.0, 0.12140664247837007, 0.0, 0.0, 0.0, 0.0, 0.9839389496832295, 0.0, 0.0, 0.043393619693544334, 0.42290622351809026, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.02983425414364641, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.5483 | 13.0 | 520 | 2.4923 | 0.0896 | 0.1335 | 0.5398 | [0.4049279962132016, 0.7282255784140709, 0.8169033163371633, 0.46268063074208626, 0.566813817579484, 0.32839844004056473, 0.7444598645497946, 0.0, 0.19716698176235625, 0.6840045841519319, 0.0, 0.0826003003647286, 0.0, 0.0, 0.0, 0.0, 0.4191962626156142, 0.0, 0.0, 0.06262263410511064, 0.3241681763952101, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.002826652155511216, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8330243445692884, 0.9274802423303801, 0.9277098453770906, 0.7134342780633303, 0.8171125078961162, 0.47830739436125574, 0.9215139250596102, nan, 0.41581041886817904, 0.902354211663067, 0.0, 0.09849753465438646, 0.0, 0.0, 0.0, 0.0, 0.9889653908581602, 0.0, 0.0, 0.08685003767897513, 0.42148427962024043, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.010331491712707183, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.9456 | 13.5 | 540 | 2.4341 | 0.0888 | 0.1350 | 0.5530 | [0.4220915846224215, 0.7247157964309319, 0.830505564319672, 0.4851139449459602, 0.5575769305206115, 0.3589983865973501, 0.6960131553803293, 0.0, 0.17180970380326335, 0.5458583575361728, 0.0, 0.059761036448993575, 0.0, 0.0, 0.0, 0.0, 0.5318637215410267, 0.0005402141790333344, 0.0, 0.0806004398126016, 0.39301167361406775, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8784550561797753, 0.9364921880337987, 0.9157739034395709, 0.7188452151092617, 0.909948434440955, 0.4637123370335546, 0.9510475575314886, nan, 0.2806993876985108, 0.8971058315334773, 0.0, 0.06898316122429994, 0.0, 0.0, 0.0, 0.0, 0.9436619718309859, 0.0006066445419833708, 0.0, 0.10587792012057272, 0.5701133246197377, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.1989 | 14.0 | 560 | 2.4261 | 0.0929 | 0.1401 | 0.5574 | [0.43310794022368454, 0.7737883098855011, 0.8060680007048083, 0.489362410594968, 0.610805991884693, 0.3470086891880301, 0.6952947225347309, 0.0, 0.24357075198103878, 0.6835668749605504, 0.0, 0.1061102667862963, 0.0, 0.0, 0.0, 0.0, 0.45462912605112327, 0.0, 0.0, 0.1259496932719323, 0.33998677576659225, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.023312883435582823, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8650249687890137, 0.895028127633407, 0.9563663616282739, 0.7860460223818464, 0.8794078248831823, 0.4683925789746972, 0.9385277161253084, nan, 0.4374620590417519, 0.9356155507559395, 0.0, 0.13477997953297982, 0.0, 0.0, 0.0, 0.0, 0.9957196711869731, 0.0, 0.0, 0.1585866197772754, 0.47265989687315973, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.03988950276243094, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.759 | 14.5 | 580 | 2.4448 | 0.0892 | 0.1338 | 0.5493 | [0.4089707662271852, 0.7381139623935532, 0.8059721309871557, 0.4820201034873249, 0.609475169473329, 0.34888232677538816, 0.7307581018518519, 0.0, 0.18989091820207427, 0.6821615899138637, 0.0, 0.10031948881789138, 0.0, 0.0, 0.0, 0.0, 0.4281578977124959, 0.0, 0.0, 0.035161336998987124, 0.3180350017944225, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.008382156737629792, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8979978152309613, 0.9191857220944268, 0.9098532660145157, 0.7118261511389711, 0.8901667032538719, 0.4567902100846233, 0.9371121906973868, nan, 0.3180745104211165, 0.9185313174946005, 0.0, 0.11684807889105964, 0.0, 0.0, 0.0, 0.0, 0.9912822660872297, 0.0, 0.0, 0.045779954785229844, 0.4327592893153125, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.01596685082872928, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.072 | 15.0 | 600 | 2.5027 | 0.0906 | 0.1397 | 0.5482 | [0.44100427698407574, 0.7311103048313435, 0.7543839224188112, 0.4799902126596585, 0.6074534907993699, 0.31991640494013746, 0.6473536180005114, 0.0, 0.2340784880166992, 0.580419398818412, 0.0, 0.10936251189343482, 0.0, 0.0, 0.0, 0.0, 0.6328263382425094, 0.0, 0.0, 0.0914391513824814, 0.31230421658155033, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.03962762162933371, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.756437265917603, 0.9035276265743504, 0.9456847585989271, 0.8358712143497694, 0.8604459457643217, 0.47530418064190183, 0.9568470888963712, nan, 0.3874362029813162, 0.9654643628509719, 0.0, 0.13366359661363847, 0.0, 0.0, 0.0, 0.0, 0.9960992722132049, 0.0, 0.0, 0.1871179770576907, 0.47254499231575775, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.06138121546961326, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.2554 | 15.5 | 620 | 2.4405 | 0.0887 | 0.1312 | 0.5334 | [0.3809029194882498, 0.7608027733964248, 0.7083251720737159, 0.42916048469757884, 0.5873085910806192, 0.3468435260718393, 0.7091692465883562, 0.0, 0.18719278445710874, 0.6750140822402833, 0.0, 0.10760567447568856, 0.0, 0.0, 0.0, 0.0, 0.5381403956788087, 0.0, 0.0, 0.06071958043072803, 0.3247804716408019, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.03655427552761218, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.9219366416978777, 0.9227984717698773, 0.8130680025244557, 0.6539050563290135, 0.8259001572503147, 0.45392733345495884, 0.8720117639783136, nan, 0.30082214777675353, 0.9058747300215982, 0.0, 0.1386640617731882, 0.0, 0.0, 0.0, 0.0, 0.981988585789832, 0.0, 0.0, 0.07973289793184292, 0.42233170073108023, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.10535911602209945, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.0588 | 16.0 | 640 | 2.4574 | 0.0902 | 0.1345 | 0.5342 | [0.41010385424628426, 0.7977529216153805, 0.8340696293159445, 0.48971245825550463, 0.4919749346259328, 0.3272816966190114, 0.6597098182842653, 0.0, 0.2774115424895272, 0.5641758131609281, 0.0, 0.051266510616953684, 0.0, 0.0, 0.0, 0.0, 0.5074328777519622, 0.0, 0.004271625102079277, 0.1204259768046877, 0.3244459964513572, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.00036442367467684196, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8264341448189763, 0.9063033798710912, 0.9167363521615651, 0.802086286171713, 0.69115545380828, 0.48181582160349157, 0.8045269327762852, nan, 0.4446867669432141, 0.9725269978401728, 0.0, 0.05705181877383943, 0.0, 0.0, 0.0, 0.0, 0.9977223938426095, 0.0, 0.005333751666797396, 0.2073599598090932, 0.49375924622610345, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0009392265193370166, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.6455 | 16.5 | 660 | 2.4313 | 0.0867 | 0.1369 | 0.5498 | [0.4264700319086269, 0.6718440123427368, 0.7997752877640454, 0.49715012632283856, 0.5883438717881697, 0.36612418224363996, 0.6399541890021792, 0.0, 0.2783565401956925, 0.6650282147881061, 0.0, 0.0636950146627566, 0.0, 0.0, 0.0, 0.0, 0.33662366696414886, 0.0016348511804587201, 0.0, 0.046494402214828666, 0.42791272943155395, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8620318352059925, 0.9229707108205981, 0.929366519406753, 0.6988416850745497, 0.8974938511094883, 0.4622037133193932, 0.8293604711088511, nan, 0.5140409649931426, 0.8883369330453563, 0.0, 0.07577449065029306, 0.0, 0.0, 0.0, 0.0, 0.9775904497617677, 0.0018199336259501124, 0.0, 0.080151553211086, 0.6211596742455797, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1235 | 17.0 | 680 | 2.4456 | 0.0871 | 0.1344 | 0.5283 | [0.3931975460054607, 0.7312132393646948, 0.752251080518649, 0.48870145905866136, 0.4924137639251856, 0.32257473443500867, 0.6552130418265605, 0.0, 0.23244626064529095, 0.6940257824525398, 0.0, 0.0777659332785768, 0.0, 0.0, 0.0, 0.0, 0.48322164719046834, 0.0, 0.0, 0.08978965642537043, 0.3441371440991089, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.07899262429777965, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8845521223470661, 0.9212796365044298, 0.8897404544020195, 0.6964580202210372, 0.6778451778810184, 0.46323519092861054, 0.8177545368964262, nan, 0.416072726727672, 0.9348812095032397, 0.0, 0.10349799981393618, 0.0, 0.0, 0.0, 0.0, 0.9948688413005916, 0.0, 0.0, 0.13966340115548856, 0.545811010729213, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.11419889502762431, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.8286 | 17.5 | 700 | 2.4301 | 0.0920 | 0.1407 | 0.5505 | [0.4526525403911307, 0.7425194076825603, 0.7298432909571285, 0.5114968994416101, 0.5950013338508995, 0.35561215385364114, 0.6371370923132846, 0.0, 0.2790519814464187, 0.6854922770776083, 0.0, 0.11547506230037556, 0.0, 0.0, 0.0, 0.0, 0.5099499129213863, 0.0, 0.0, 0.05601597473277561, 0.38623015388905346, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.10698106201262532, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8729900124843946, 0.924192042271164, 0.8564373619438309, 0.7564632617877308, 0.834356281724467, 0.46144940146231245, 0.8310508558431653, nan, 0.5058869378180483, 0.937451403887689, 0.0, 0.15303749185970789, 0.0, 0.0, 0.0, 0.0, 0.9888606733336824, 0.0, 0.0, 0.08984342292556309, 0.6366143372161498, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.15917127071823203, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.0479 | 18.0 | 720 | 2.4075 | 0.0898 | 0.1414 | 0.5436 | [0.4374213467259567, 0.6982741654601179, 0.8058703485110762, 0.49490116233697407, 0.5458747562993242, 0.34662800424368545, 0.6675288926019943, 0.0, 0.25922904558504306, 0.6564580958665787, 0.0, 0.06828609986504723, 0.0, 0.0, 0.0, 0.0, 0.5524867235515245, 0.004030176361849884, 0.0, 0.06495693639766788, 0.3537035899505954, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.05760272180057577, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8255727215980025, 0.9343384881681737, 0.9236707163142948, 0.75750800943482, 0.7457316171694047, 0.4768549054829701, 0.8564959561324547, nan, 0.5549010349918685, 0.9453563714902807, 0.0, 0.08237975625639594, 0.0, 0.0, 0.0, 0.0, 0.9695926488297817, 0.004317881739999287, 0.0, 0.14855982583940383, 0.5789322494003418, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.24320441988950275, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.5913 | 18.5 | 740 | 2.3742 | 0.0890 | 0.1390 | 0.5469 | [0.454543608042716, 0.7561710883076548, 0.6476174668581449, 0.5068105753496513, 0.5979298898988566, 0.31709395674098895, 0.63015072260012, 0.0, 0.27305328355515024, 0.6493838093129658, 0.0, 0.09270533141210374, 0.0, 0.0, 0.0, 0.0, 0.5510527590433066, 0.0022979287796301723, 0.0, 0.10461312981465264, 0.3512229542899809, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.030816640986132512, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8730727215980025, 0.9087019154121211, 0.70795992426633, 0.7923769078678768, 0.8732051735801551, 0.4568919544746481, 0.8377299369885041, nan, 0.43083691196198787, 0.9503023758099352, 0.0, 0.1197088101218718, 0.0, 0.0, 0.0, 0.0, 0.9828655950573328, 0.0026585304928094778, 0.0, 0.2450389349409696, 0.6148255605187941, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.10276243093922652, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.1711 | 19.0 | 760 | 2.4791 | 0.0828 | 0.1303 | 0.5109 | [0.3990185372974579, 0.7262255396409119, 0.6844075233528706, 0.4626738323314395, 0.4562280397881922, 0.3094077256824913, 0.6116278156029165, 0.0, 0.28992189510205096, 0.7007724513972282, 0.0, 0.07657237409565386, 0.0, 0.0, 0.0, 0.0, 0.43612176002746467, 0.0, 0.0, 0.06802583124299515, 0.29350917328309334, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.03117790351476407, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8633583021223471, 0.9223785501172934, 0.7493846639318397, 0.6603001242643532, 0.6401767834022517, 0.46511570793044893, 0.7487648509918985, nan, 0.5235589930376, 0.9326781857451404, 0.0, 0.1011722020653084, 0.0, 0.0, 0.0, 0.0, 0.9977093041520498, 0.0, 0.0, 0.13340450473080465, 0.46990218749551155, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.13364640883977902, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.24 | 19.5 | 780 | 2.3946 | 0.0901 | 0.1394 | 0.5429 | [0.4548092562154161, 0.6318103867369477, 0.72163513476081, 0.49794478543154436, 0.5991916108852994, 0.3383029823036611, 0.6064419856631512, 0.0, 0.28341717835243485, 0.7149914761855061, 0.0, 0.1054460128055879, 0.0, 0.0, 0.0, 0.0, 0.5981121440422982, 0.0010851791288836034, 0.0, 0.05393735796858018, 0.3585824286192549, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.007273887382357633, 0.06396948848339815, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8247534332084894, 0.939783235019473, 0.822081098138214, 0.7006298794261376, 0.8882873155892854, 0.46158272169751746, 0.8684935648564891, nan, 0.5053997946504186, 0.8877321814254859, 0.0, 0.13482649548795236, 0.0, 0.0, 0.0, 0.0, 0.9861772867689408, 0.001302501516611355, 0.0, 0.11427195846939629, 0.5384427559858093, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.00861515208766295, 0.23629834254143647, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.232 | 20.0 | 800 | 2.3526 | 0.0948 | 0.1466 | 0.5590 | [0.4425789938260126, 0.6937296397977262, 0.8186584931612056, 0.5324322624613841, 0.599114348804341, 0.35870491493331946, 0.6951078135868305, 0.0, 0.2920867935913111, 0.6704938805785635, 0.0, 0.12268269987831938, 0.0, 0.0, 0.0, 0.0, 0.6003949350977511, 0.02812804473375789, 0.0, 0.07798367783487177, 0.3614614438784472, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.05487663750405036, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8505259051186017, 0.9330459835561528, 0.9250078889239508, 0.7396011060775431, 0.8982756226171649, 0.45928470185385295, 0.9270317256354403, nan, 0.5514385712465619, 0.9371274298056156, 0.0, 0.15945669364592055, 0.0, 0.0, 0.0, 0.0, 0.8397560081679669, 0.03554223316561396, 0.0, 0.1404169806581261, 0.5911264955546299, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.39298342541436465, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.6883 | 20.5 | 820 | 2.3970 | 0.0945 | 0.1446 | 0.5412 | [0.4141798017429065, 0.7802581769922772, 0.7493453021254498, 0.5208791649277187, 0.5111936316209107, 0.33498169560972163, 0.676565287832489, 0.0, 0.27079508232840294, 0.6661949111273435, 0.0, 0.17192469151507442, 0.0, 0.0, 0.0, 0.0, 0.6279362521715048, 0.00806402808036795, 0.00468899769436025, 0.11971994860328412, 0.3208761133473644, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.061126428514345084, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8716338951310861, 0.9071987382421938, 0.7968444304196908, 0.7876915890683026, 0.7295921795968837, 0.4658173933788961, 0.9067608517889905, nan, 0.4145063740809857, 0.9455075593952483, 0.0, 0.2514652525816355, 0.0, 0.0, 0.0, 0.0, 0.979409916749568, 0.009510045319915783, 0.02839438387324496, 0.2476973959641631, 0.5759160047685391, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.3380662983425414, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.5655 | 21.0 | 840 | 2.3849 | 0.0913 | 0.1451 | 0.5354 | [0.39695922222126684, 0.7761112626124897, 0.7398181021041216, 0.4805221133856404, 0.5447557296135301, 0.31805360331269233, 0.6925109462912826, 0.0, 0.2604956962542102, 0.6627857938970388, 0.0, 0.10330072264341897, 0.0, 0.0, 0.0, 0.0, 0.6444934523198961, 0.025419071173399286, 0.017420612885313224, 0.10974960558281793, 0.27499042512447336, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0692949397844124, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8645162297128589, 0.9115146787528184, 0.8852516566740296, 0.6803517911360472, 0.7708670271626399, 0.46996786280646113, 0.8770485607679569, nan, 0.4590687321536974, 0.9504319654427645, 0.0, 0.1353149130151642, 0.0, 0.0, 0.0, 0.0, 0.9869364888214043, 0.029707740070656248, 0.10581222056631892, 0.23735661056685925, 0.41250736107320857, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.508950276243094, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.7399 | 21.5 | 860 | 2.3781 | 0.0906 | 0.1404 | 0.5386 | [0.39331511754852533, 0.7754545465515764, 0.627463766072637, 0.49043222556163374, 0.5995606151388057, 0.3503685192626312, 0.6888485650165912, 0.0, 0.2431310643278037, 0.672429906542056, 0.0, 0.19986591689583932, 0.0, 0.0, 0.0, 0.0, 0.47157075191286174, 0.03745141914968791, 0.006777572396796057, 0.09541783908677053, 0.26727518593644356, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.059640638046389575, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.9091011235955057, 0.9147260117976632, 0.7021891763963395, 0.6874546488596027, 0.8809198471401499, 0.44664033007283493, 0.8373451339595545, nan, 0.40169076151718863, 0.9323974082073434, 0.0, 0.339752535119546, 0.0, 0.0, 0.0, 0.0, 0.9656657416618671, 0.045391285729579275, 0.04486626402070751, 0.17462111697228502, 0.3974405009838703, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.30386740331491713, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.0019 | 22.0 | 880 | 2.3395 | 0.0911 | 0.1433 | 0.5513 | [0.4387708086453384, 0.7685412462908012, 0.6613413573765997, 0.5320871602231129, 0.6142786316311354, 0.3506061584145633, 0.6823298195461854, 0.0, 0.2801467728991371, 0.5419867613663816, 0.0, 0.20394669475285615, 0.0, 0.0, 0.0, 0.0, 0.5595260358614912, 0.05133376806539179, 0.008706221182936335, 0.09404473644106541, 0.30720067771084336, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.010004950903539896, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8470755305867665, 0.9216867469879518, 0.7230277690123067, 0.7916833808461743, 0.8742512689786793, 0.476377759378026, 0.8922345374461448, nan, 0.507535730077718, 0.9691144708423326, 0.0, 0.324262722113685, 0.0, 0.0, 0.0, 0.0, 0.9790826744855752, 0.06039681690040324, 0.0516903286532277, 0.23252114209160177, 0.4687675049911667, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.05359116022099448, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.8521 | 22.5 | 900 | 2.3802 | 0.0876 | 0.1388 | 0.5362 | [0.40506840771806973, 0.762763967794697, 0.6071606249102668, 0.49263320443279435, 0.6002160001991933, 0.34321369615548336, 0.6813770136393861, 0.0, 0.24928234799638715, 0.678501833581391, 0.0, 0.09633167687878934, 0.0, 0.0, 0.0, 0.0, 0.5182393876130829, 0.03320218227559274, 0.0051270619705751225, 0.07954303070635713, 0.25899725617360936, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0592231628370207, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8929666042446941, 0.9253792106042317, 0.7172767434521932, 0.6768271049614816, 0.8639672775983263, 0.463926351095331, 0.8379360814682985, nan, 0.41782644213113895, 0.9550755939524838, 0.0, 0.13931528514280397, 0.0, 0.0, 0.0, 0.0, 0.9748023456725483, 0.04050244442065446, 0.03968938740293356, 0.19515615841915768, 0.3728365626301653, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.3679558011049724, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.5347 | 23.0 | 920 | 2.3594 | 0.0896 | 0.1371 | 0.5433 | [0.39949160354707997, 0.75373807284121, 0.7333642959538925, 0.4879978829522525, 0.6027853892837028, 0.350799823813156, 0.6891289925125581, 0.0, 0.24400705662596422, 0.6809165526675787, 0.0, 0.12095083841463415, 0.0, 0.0, 0.0, 0.0, 0.5479324171283401, 0.022911594700760235, 0.0011939628340799852, 0.04572868845080565, 0.2617659886602434, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0573588139827495, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.906206304619226, 0.9375654793085385, 0.791010571158094, 0.7101413618446036, 0.8534772031844309, 0.4582497158173934, 0.8493633571315683, nan, 0.3700639281726136, 0.9460475161987041, 0.0, 0.17715601451297794, 0.0, 0.0, 0.0, 0.0, 0.9373003822189644, 0.027370374335367376, 0.00917719036787199, 0.07443690864941807, 0.3792999439840283, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.34756906077348065, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.3155 | 23.5 | 940 | 2.3369 | 0.0918 | 0.1460 | 0.5511 | [0.4381093224801547, 0.8019171553204106, 0.6937287734535938, 0.5437472809894092, 0.6018169036088111, 0.32174778667344434, 0.6733454960577836, 0.0, 0.30267400925831817, 0.5778369520688242, 0.0, 0.20820499281293087, 0.0, 0.0, 0.0, 0.0, 0.5123551354359162, 0.039373532158116634, 0.02494658298933897, 0.09779724088519773, 0.29932684073211047, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.01698146624022003, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8335440074906367, 0.9182462363632222, 0.7863718838750394, 0.7955147165007729, 0.8629122220679089, 0.47966866413124326, 0.8673460272523003, nan, 0.4910028404193928, 0.9748596112311015, 0.0, 0.3301469904177133, 0.0, 0.0, 0.0, 0.0, 0.9762553013246766, 0.04965564000999179, 0.1749156796611499, 0.28001758352172823, 0.43173951136836963, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.09005524861878453, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.3405 | 24.0 | 960 | 2.3595 | 0.0879 | 0.1398 | 0.5410 | [0.43989517732610944, 0.7150986100442155, 0.6360758191098184, 0.5255540722395773, 0.5869049715503682, 0.3234512702432299, 0.7026329783033322, 0.0, 0.30250286746010635, 0.5443713495235167, 0.0, 0.17120688775076143, 0.0, 0.0, 0.0, 0.0, 0.5297883536014967, 0.047709467851342315, 0.0, 0.07997174381054897, 0.25611794662468174, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.008733939656416919, 0.01860040062401344, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8427184769038701, 0.9395156239324026, 0.7314570842537078, 0.697656092608143, 0.8659945074391495, 0.4741148238067839, 0.9170405898480715, nan, 0.5198417159430717, 0.9561771058315335, 0.0, 0.23402176946692715, 0.0, 0.0, 0.0, 0.0, 0.948897848054872, 0.07128073368304606, 0.0, 0.2488277652181194, 0.37850997515188944, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.009144152654449273, 0.11132596685082873, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.333 | 24.5 | 980 | 2.4020 | 0.0880 | 0.1418 | 0.5423 | [0.4585738127457231, 0.6275648067447941, 0.6314083697244316, 0.5392521405984272, 0.5951768537916903, 0.3282610533434779, 0.6981764940769333, 0.0, 0.3272000900292595, 0.7247379174063033, 0.0, 0.14323702298385843, 0.0, 0.0, 0.0, 0.0, 0.3870775652021896, 0.04730719166937846, 0.0, 0.06134763660744217, 0.3309438242948247, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.08457718344245922, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8159987515605494, 0.9603864417974355, 0.7277335121489429, 0.715686012326596, 0.8718297933345579, 0.4631895813744615, 0.9010918785946443, nan, 0.5229669267261731, 0.9347084233261339, 0.0, 0.21422923062610474, 0.0, 0.0, 0.0, 0.0, 0.9274438452274988, 0.062252435499411195, 0.0, 0.12258226576237126, 0.4986426899156888, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.3368508287292818, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.2894 | 25.0 | 1000 | 2.3864 | 0.0895 | 0.1462 | 0.5330 | [0.39820238483984177, 0.796022219535693, 0.6640978857302814, 0.5145788754543814, 0.5063150858146147, 0.31625115083674027, 0.6810959828963655, 0.0, 0.26113527257733576, 0.6726899445979198, 0.0, 0.22906033835073447, 0.0, 0.0, 0.0, 0.0, 0.526772925150962, 0.03492519015909281, 0.018926486228376706, 0.08876722490545956, 0.2864895938888456, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.002796029637914162, 0.08532477102852933, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8886953807740324, 0.9091574236454324, 0.7767079520353424, 0.7472976514572091, 0.7041050844268427, 0.4567516173849587, 0.8318479478317037, nan, 0.39870045191896936, 0.9624406047516199, 0.0, 0.4112708158898502, 0.0, 0.0, 0.0, 0.0, 0.9820278548615111, 0.044731113728009135, 0.13679504274845086, 0.23044879845934857, 0.422317337661405, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0030228603816361234, 0.44779005524861876, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1434 | 25.5 | 1020 | 2.3808 | 0.0870 | 0.1430 | 0.5415 | [0.4312894090280853, 0.7514860907423327, 0.6238930671133326, 0.5171519380411355, 0.6101057211497077, 0.3008154566626281, 0.6915124668035739, 0.0, 0.2912826758689131, 0.5666113040414716, 0.0, 0.16547638988290111, 0.00046409096182851837, 0.0, 0.0, 0.0, 0.4371475202267487, 0.05034426295515858, 0.002705062738472636, 0.06979845880260818, 0.38125408011248557, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.025401436479253397, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8541401373283396, 0.9307228915662651, 0.7375433890817292, 0.6814250643161628, 0.8732186137779948, 0.4590636709375921, 0.8838856860144714, nan, 0.4839430117438976, 0.9726133909287257, 0.0, 0.25274444134338075, 0.0005222613918266092, 0.0, 0.0, 0.0, 0.9851955599769622, 0.06692716696998893, 0.022354694485842028, 0.16760864104496356, 0.6542809129167085, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.12270718232044199, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.4152 | 26.0 | 1040 | 2.3638 | 0.0936 | 0.1532 | 0.5505 | [0.4390581433407791, 0.7964640058941477, 0.7072400355967855, 0.5218684081011842, 0.5850293135240993, 0.3303222917660343, 0.6725471140032113, 0.0, 0.27670817596368846, 0.6731058554492387, 0.0, 0.20708020499863622, 0.008931439953736426, 0.0, 0.0, 0.0, 0.5095680959455151, 0.03638896025746778, 0.02076316003579855, 0.08472208194458472, 0.2849621516471434, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.12568393434230313, 0.08349886634964586, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8352512484394506, 0.917123123875464, 0.8275757336699274, 0.7732077496741849, 0.8478457602895915, 0.47623391386109437, 0.8749596300393736, nan, 0.4952672167637206, 0.9663066954643629, 0.0, 0.3354963252395572, 0.01814858336597467, 0.0, 0.0, 0.0, 0.9832844651552437, 0.048014131249330905, 0.2001725625539258, 0.21070920204303775, 0.3871421800267153, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.14842244473833366, 0.4598342541436464, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1933 | 26.5 | 1060 | 2.3583 | 0.0945 | 0.1501 | 0.5469 | [0.42529111600331887, 0.6990144112716127, 0.7540950160303118, 0.5036250399233472, 0.6048482256574182, 0.3278464408631659, 0.6501386244117096, 0.0, 0.3309863153710749, 0.6701461061127885, 0.0, 0.16068823815424188, 0.0759493670886076, 0.0, 0.0, 0.0, 0.6276421330982812, 0.03285733530917419, 0.0, 0.06674753570299997, 0.41239939395531733, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.005582040914851246, 0.0798621109529647, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8582896379525593, 0.9401120550253946, 0.8164405175134112, 0.6747073012884627, 0.868055337774572, 0.45685687020222576, 0.9055720852888428, nan, 0.4805405040807608, 0.9539956803455724, 0.0, 0.238277979346916, 0.07833920877399138, 0.0, 0.0, 0.0, 0.9320645059950783, 0.04351782464404239, 0.0, 0.13706773842418152, 0.676342587937894, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.006990364632533535, 0.5362983425414365, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.7676 | 27.0 | 1080 | 2.3567 | 0.0926 | 0.1509 | 0.5459 | [0.41386442762131637, 0.7960055724879699, 0.7218561977621083, 0.5168035299390555, 0.5880580526892997, 0.3300573993396712, 0.6781909579446623, 0.0, 0.2845297119281992, 0.7012563536971325, 0.0, 0.1888364952297401, 0.039780521262002745, 0.0, 0.0, 0.0, 0.4978975535168196, 0.04567537266951792, 0.02838107928047968, 0.10232412915208916, 0.279087459984982, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.00678570204599198, 0.07854484909880542, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8624313358302123, 0.9312766187623841, 0.836683496371095, 0.7154007569963327, 0.8227730712196083, 0.46541743267328123, 0.8862632190147668, nan, 0.4713822125293223, 0.9475593952483802, 0.0, 0.28035166061959255, 0.06058232145188667, 0.0, 0.0, 0.0, 0.9547620294256244, 0.05888020554544481, 0.2506078908149659, 0.2675416562002847, 0.40571362911681486, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.007481579444549405, 0.43265193370165744, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.5575 | 27.5 | 1100 | 2.3697 | 0.0901 | 0.1457 | 0.5435 | [0.4330449058471925, 0.7415496484649239, 0.6582991510224409, 0.5107206399916884, 0.5919085961931496, 0.32152780787548696, 0.68747208399237, 0.0, 0.2695065829717953, 0.6896950020291575, 0.0034094166276947215, 0.17989194664865776, 0.023761959835979393, 0.0, 0.0, 0.0, 0.43100931316176777, 0.05545048793403434, 0.00019565120725688115, 0.08220297718419588, 0.35493738896832616, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.023562421824819987, 0.06554660197672603, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8504338327091137, 0.9337022001047669, 0.7716708740927738, 0.7011219448708418, 0.8615346017893384, 0.4684978317919643, 0.8989823334180816, nan, 0.42924807578448787, 0.954341252699784, 0.0054417182345717656, 0.2478137501162899, 0.05901553727640684, 0.0, 0.0, 0.0, 0.9468427666369967, 0.0784712557542019, 0.001725625539257981, 0.1978983504981998, 0.5882826077589303, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.026336671075004724, 0.30154696132596687, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.2554 | 28.0 | 1120 | 2.3600 | 0.0908 | 0.1478 | 0.5396 | [0.4245870411963722, 0.7870399701396511, 0.6743924693680554, 0.5037828604923488, 0.6021610759004483, 0.3176424244260717, 0.6686784469885515, 0.0, 0.3011351900484342, 0.664582242501309, 0.0020511317852172, 0.1970743537790876, 0.032291965224037454, 0.0, 0.0, 0.0, 0.46678139857369255, 0.06349432185632616, 0.0, 0.06986375791100168, 0.31471513785167443, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.010739894166640574, 0.07464363872952032, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8389887640449438, 0.9124555879472521, 0.7550844114862733, 0.6772710335692038, 0.8725779643476352, 0.4781074140084483, 0.8861738897401893, nan, 0.5353928247558664, 0.9594816414686825, 0.0033709758975223325, 0.2986091729463206, 0.04413108760934848, 0.0, 0.0, 0.0, 0.9869888475836431, 0.0875887663704814, 0.0, 0.20727622875324458, 0.48120592332993406, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.012960513886264877, 0.4183425414364641, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 2.2107 | 28.5 | 1140 | 2.3688 | 0.0905 | 0.1456 | 0.5420 | [0.41859370389806955, 0.7667516378963897, 0.6755595944797275, 0.5229827746052027, 0.5762823201665176, 0.3283558940003052, 0.7027730340733512, 0.0, 0.28120109546165883, 0.6846517626827171, 0.0, 0.1786280502754033, 0.03361994840928633, 0.0, 0.0, 0.0, 0.4284454994324958, 0.06547736706859063, 0.012462958100453881, 0.06991453779704264, 0.266741758305561, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.06730802868637398, 0.07145529791938318, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8700889513108614, 0.9342488099847405, 0.7711857052698012, 0.7180785914091792, 0.8155400047488699, 0.46050212610690877, 0.890750297191625, nan, 0.4740277746550652, 0.9630669546436285, 0.0, 0.25418643594753, 0.05105105105105105, 0.0, 0.0, 0.0, 0.9734017487826587, 0.09456517860329015, 0.1042434700760844, 0.19042535376371095, 0.3299340735101906, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.07269979217834877, 0.3481767955801105, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.7361 | 29.0 | 1160 | 2.3508 | 0.0918 | 0.1483 | 0.5436 | [0.41654288665276806, 0.7925411643174287, 0.6930136805331298, 0.5061774346683199, 0.5923356779044385, 0.3230293544867808, 0.6895139627440876, 0.0, 0.2363788767812238, 0.6377222182874142, 0.0, 0.2168449899419842, 0.033075299085151305, 0.0, 0.0, 0.0, 0.5181226765799256, 0.05391543657743308, 0.012268226822682268, 0.07735822505746048, 0.28361562718329275, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.07860554988996833, 0.08121365560346533, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8848845193508115, 0.9195430113649304, 0.744907699589776, 0.7394870039454378, 0.847944321740416, 0.4446124591268226, 0.8642744745033636, nan, 0.35505991860961844, 0.9723542116630669, 0.0, 0.3459856730858685, 0.03681942812377595, 0.0, 0.0, 0.0, 0.9778653332635217, 0.08459122863362238, 0.10691034590948309, 0.1726115716319183, 0.43146661304453987, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.11067447572265256, 0.45370165745856356, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.0032 | 29.5 | 1180 | 2.3543 | 0.0922 | 0.1512 | 0.5443 | [0.42172693105885056, 0.7906304092636438, 0.6995716766885557, 0.5235794280056563, 0.5966555557905998, 0.31724619307417273, 0.6576375643470949, 0.0, 0.2830730969646176, 0.6118519315903495, 0.0, 0.18571861492575403, 0.05163853028798411, 0.0, 0.0, 0.0, 0.5885383948663714, 0.04839595441856208, 0.016447623896516314, 0.08342743868257928, 0.26942911340520653, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.047753564702717244, 0.0753557388848901, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8540121722846442, 0.9050464618397978, 0.7975702114231619, 0.7089807292195949, 0.8845330203260592, 0.46881709867100774, 0.88135698039566, nan, 0.4657613298259025, 0.9820950323974083, 0.0, 0.27081588985021865, 0.06110458284371328, 0.0, 0.0, 0.0, 0.9688203570867585, 0.0754737180173429, 0.14950192171935053, 0.21495855312735493, 0.4059721643709694, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.05365577177404118, 0.526353591160221, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.4753 | 30.0 | 1200 | 2.3802 | 0.0906 | 0.1452 | 0.5353 | [0.4182968446268334, 0.7245614420751814, 0.7399438662308484, 0.5222310167082108, 0.5399183829320097, 0.320465614650302, 0.7037323784638214, 0.0, 0.28915533720845393, 0.6621481788079471, 0.007442458767859604, 0.15757803044508464, 0.04727904284060208, 0.0, 0.0, 0.0, 0.480756707265963, 0.045882830155878775, 0.0017206593322928166, 0.06188961172578628, 0.2852105120765736, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.07911695693843154, 0.07258344037351928, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8311267166042446, 0.9383555014006878, 0.8340012622278321, 0.7093176870784684, 0.7601843099130419, 0.461694991369269, 0.8994083653429901, nan, 0.4455186575833202, 0.967451403887689, 0.015602802725674797, 0.21499674388315193, 0.06397702049875963, 0.0, 0.0, 0.0, 0.9759935075134824, 0.07063840416800485, 0.01772688053965017, 0.16369421418404087, 0.43910776611177343, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.09045909692046099, 0.39337016574585637, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1907 | 30.5 | 1220 | 2.3697 | 0.0901 | 0.1445 | 0.5424 | [0.4251599503270035, 0.765785046340057, 0.6581471380414344, 0.5261900558188807, 0.5930662858860665, 0.3183352326985647, 0.6964540996606768, 0.0, 0.30089709108924906, 0.6814073297137216, 0.0, 0.18263983917017215, 0.05210697720319747, 0.0, 0.0, 0.0, 0.3354583969276623, 0.055768695462742206, 0.0005001955309802923, 0.05114433011928644, 0.34335973445510715, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.08411629143768835, 0.05435565940905418, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8500405742821473, 0.916817079281208, 0.7662590722625434, 0.6907439993867011, 0.8838430901702873, 0.4596320361508343, 0.8871152828645837, nan, 0.5097915776693572, 0.95414686825054, 0.0, 0.25144199460414923, 0.06893850372111242, 0.0, 0.0, 0.0, 0.9752997539138175, 0.08221817792527567, 0.004314063848144953, 0.09926316670853219, 0.6002470447984143, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.10757604383147554, 0.13751381215469613, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.0148 | 31.0 | 1240 | 2.3644 | 0.0922 | 0.1475 | 0.5320 | [0.39348806932490793, 0.7835452714344651, 0.7081997736482787, 0.4780721893372995, 0.5336730686426202, 0.29837125871030734, 0.6930428493344302, 0.0, 0.29924119164509083, 0.6571159339203156, 0.0, 0.2044692058961942, 0.06489203701588027, 0.0, 0.0, 0.0, 0.4866554648118479, 0.044145581642732315, 0.0, 0.06382143649425778, 0.2935269694364677, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.19617771013814095, 0.07329523564915885, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8640839575530587, 0.9192028036531761, 0.7651585673714105, 0.6830973736898311, 0.75793979687381, 0.4706590229731816, 0.8625497323557504, nan, 0.4755416657298529, 0.9639308855291576, 0.0, 0.3132616987626756, 0.07416111763937851, 0.0, 0.0, 0.0, 0.9781140373841563, 0.06219890803982443, 0.0, 0.15657707443690866, 0.46099708429685593, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.25327791422633666, 0.3783977900552486, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.4776 | 31.5 | 1260 | 2.3296 | 0.0927 | 0.1495 | 0.5486 | [0.4542888767818597, 0.7347226902082351, 0.7218922155688623, 0.5378129096513363, 0.583355831137352, 0.3442385557337257, 0.6746452615225272, 0.0, 0.29534572862973707, 0.6409269162210338, 0.0010316812105059536, 0.19597793646577183, 0.035507354033575994, 0.0, 0.0, 0.0, 0.47966749487016436, 0.05985256395442886, 0.0005085775011386064, 0.05393716324508912, 0.2532068763509282, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.1537234330214699, 0.08031746031746032, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8223876404494382, 0.9311627417040563, 0.8321749763332281, 0.7307118368482138, 0.8906035096836625, 0.46621384565726876, 0.8951755320245449, nan, 0.49512482106856726, 0.9707343412526998, 0.0017336447472971997, 0.29170155363289607, 0.0624102363232798, 0.0, 0.0, 0.0, 0.9577464788732394, 0.09242408021981943, 0.00525531414228567, 0.1401867202545424, 0.3600677936888672, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.214812015870017, 0.40535911602209945, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.6071 | 32.0 | 1280 | 2.3263 | 0.0926 | 0.1478 | 0.5431 | [0.44611914667788144, 0.6906991054003323, 0.6866730381225443, 0.5074964861193935, 0.5781552048719472, 0.32377948368416076, 0.6837998986219906, 0.0, 0.3208871482320843, 0.6827765565497383, 0.0025829619013119556, 0.16798124067363035, 0.04280860702151756, 0.0, 0.0, 0.0, 0.5491364944705348, 0.05461611175296713, 0.0, 0.04500268780538684, 0.2887424974381496, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.1499665551839465, 0.07299177849774834, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8343305243445693, 0.9491154599494386, 0.7651940675291891, 0.7267646162156958, 0.8200178306624674, 0.4566568898494183, 0.8991609919672368, nan, 0.5464996889778237, 0.9526133909287257, 0.003948857479954732, 0.2382547213694297, 0.07403055229142186, 0.0, 0.0, 0.0, 0.9489632965076705, 0.0835028369553581, 0.0, 0.11741187306371934, 0.4249457794119759, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.1694313243907047, 0.4468508287292818, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.9074 | 32.5 | 1300 | 2.3673 | 0.0920 | 0.1471 | 0.5351 | [0.3967544010551064, 0.7805696445736764, 0.7306059291494311, 0.50022581423016, 0.5067946749880464, 0.3351793597162349, 0.7093531658204227, 0.0, 0.3347792611677796, 0.6612333363023664, 0.0, 0.1795758966804837, 0.06716556373306945, 0.0, 0.0, 0.0, 0.4484492323879669, 0.045980321574274056, 0.0, 0.09171652606934483, 0.2733365472780724, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.13645581028558554, 0.05806729939603106, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8853901373283396, 0.9281820097023253, 0.8436809719154308, 0.6694193806037072, 0.7217744645201177, 0.45419397392536875, 0.8985494300105134, nan, 0.4985872848138738, 0.9620302375809935, 0.0, 0.2438366359661364, 0.1417939678809244, 0.0, 0.0, 0.0, 0.9818969579559139, 0.06837240837883167, 0.0, 0.25831030729297494, 0.4153225227295578, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.1830719818628377, 0.26027624309392267, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.2064 | 33.0 | 1320 | 2.3523 | 0.0919 | 0.1456 | 0.5390 | [0.4014502191538961, 0.7878413260529862, 0.6706802808459629, 0.5061977421770346, 0.5603734397105256, 0.32183266872206184, 0.7139795096759863, 0.0, 0.32093588479813073, 0.6589957542162991, 0.0, 0.18433973921243457, 0.06545315821025668, 0.0, 0.0, 0.0, 0.45807238916454507, 0.04980389715495238, 0.0036028209321340965, 0.0826925852860511, 0.29005297723748164, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.11148026315789474, 0.05935588082356976, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8927543695380774, 0.9379996355934134, 0.7415154622909436, 0.6966131278068679, 0.7923332631456335, 0.4493663780400522, 0.8835146259508414, nan, 0.46116719502964076, 0.9654643628509719, 0.0, 0.2636989487394176, 0.15680898289593942, 0.0, 0.0, 0.0, 0.9679564375098173, 0.07136994611569068, 0.03317907286846027, 0.17987524072678557, 0.40027002570989473, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.12805592291706028, 0.2964088397790055, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.903 | 33.5 | 1340 | 2.3609 | 0.0927 | 0.1487 | 0.5370 | [0.4075733622834502, 0.7542732883284411, 0.6648988920602986, 0.5248570716781542, 0.509697676245945, 0.3181806033068896, 0.6797000421349064, 0.0, 0.3447921257529014, 0.6636860554928405, 0.0, 0.16469173965309977, 0.06162012462497115, 0.0, 0.0, 0.0, 0.4308227696583617, 0.05094559030540425, 0.004221586775181469, 0.08378457218910099, 0.31144272714711513, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.25169195240080827, 0.07541807044410413, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8694319600499376, 0.9455311795385701, 0.7378431681918586, 0.7324358487504925, 0.7119922405257806, 0.4594355642252691, 0.8756948786839737, nan, 0.5100988525904775, 0.9650539956803456, 0.0, 0.24534840450274445, 0.1045828437132785, 0.0, 0.0, 0.0, 0.965809728258024, 0.07426042893337616, 0.03914032473135148, 0.1923930335761534, 0.4532410266722204, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.2965048176837332, 0.3401104972375691, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.2941 | 34.0 | 1360 | 2.3475 | 0.0927 | 0.1528 | 0.5455 | [0.4208584637279458, 0.8046875292830021, 0.6522785851757649, 0.5324975634251897, 0.5918016998899351, 0.3248033646493336, 0.676478485049397, 0.0, 0.33967654387607726, 0.5946243841546818, 0.00020294561057636554, 0.20067689467574787, 0.07388928486576384, 0.0, 0.0, 0.0, 0.38386995936230073, 0.049376613390454224, 0.01695264241592313, 0.09430783002474856, 0.3106020836698433, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.1503295656087037, 0.08701964014014713, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8805149812734082, 0.916788610016626, 0.7566503628905017, 0.7032809711517719, 0.8671906850468839, 0.45898297711102065, 0.8483395062152561, nan, 0.4811925264743575, 0.9671058315334773, 0.0003370975897522333, 0.3337287189506001, 0.1218174696435566, 0.0, 0.0, 0.0, 0.9805225404471438, 0.0802019769475074, 0.15499254843517138, 0.22494348153730218, 0.44190856469844736, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.2145853013413943, 0.3444198895027624, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.14 | 34.5 | 1380 | 2.3476 | 0.0930 | 0.1484 | 0.5484 | [0.4507045961653645, 0.6939744427313351, 0.640811892188368, 0.5383862308542555, 0.5913912741715294, 0.3223392970447658, 0.6843672644334188, 0.0, 0.37972545527132023, 0.6784252016621853, 0.0, 0.16304582959918415, 0.06193293885601578, 0.0, 0.0, 0.0, 0.38587078842822076, 0.05217989804916869, 0.0, 0.060556068189655976, 0.33883223066477913, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2243663294044018, 0.056978303099948016, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8548813982521848, 0.945048625503906, 0.7189215840959293, 0.7294549305492413, 0.8665455555505777, 0.46162482282442424, 0.8700877488335658, nan, 0.5560177170222812, 0.9591144708423326, 0.0, 0.24541817843520328, 0.12299255777516648, 0.0, 0.0, 0.0, 0.9649850777527619, 0.0865717446383328, 0.0, 0.1360001674621117, 0.505350243454031, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.24383147553372378, 0.23011049723756907, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.3208 | 35.0 | 1400 | 2.3157 | 0.0941 | 0.1493 | 0.5541 | [0.4444540497720132, 0.7645915345192558, 0.6473698095654649, 0.5409062259439483, 0.5856129155450979, 0.33085967470669236, 0.703044209235194, 0.0, 0.3400476510847957, 0.6569651741293532, 0.0012611017199280904, 0.16309550359403682, 0.04457278246705168, 0.0, 0.0, 0.0, 0.36734724425949766, 0.05026343639405077, 0.0007944532717030189, 0.07843816285009307, 0.32638752925162456, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.30151397646424116, 0.049744167895238924, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8825561797752809, 0.9378074680574852, 0.7356145471757652, 0.7604140481118772, 0.8518621394106921, 0.45690598818361705, 0.9137560211366806, nan, 0.5038034639626474, 0.9696976241900648, 0.0022633695311935664, 0.22111359196204297, 0.07860033946990469, 0.0, 0.0, 0.0, 0.9637022880779098, 0.07881026299825143, 0.006902502157031924, 0.18965084149711128, 0.5028223431911868, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.33788021915737765, 0.15845303867403315, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.3582 | 35.5 | 1420 | 2.3832 | 0.0909 | 0.1445 | 0.5306 | [0.4051867678695122, 0.7980607418502008, 0.7580956363529654, 0.5205549496763452, 0.4407461812951589, 0.33508630761833824, 0.6726644846774493, 0.0, 0.34557420044197285, 0.6784928828883866, 0.0034325347676846312, 0.17634282975345256, 0.0457234409662312, 0.0, 0.0, 0.0, 0.3998636834450521, 0.04623497669855286, 0.005790456783834268, 0.08466625590470322, 0.2743658403155682, nan, 0.00023949864949372648, 0.0, 0.0, nan, 0.0, 0.0, 0.14829105358633995, 0.04160713176368267, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8635549313358302, 0.9268468011934315, 0.8151980119911644, 0.7514195909795133, 0.6122861328518756, 0.4719115314986598, 0.8713452301603117, nan, 0.5332493948182956, 0.9595032397408207, 0.007006814186992848, 0.27381616894594846, 0.09687948818383602, 0.0, 0.0, 0.0, 0.975273574532698, 0.06726617421403847, 0.05349439171699741, 0.21573306539395462, 0.4105970728064002, nan, 0.00023949864949372648, 0.0, 0.0, nan, nan, 0.0, 0.19459663706782543, 0.1480110497237569, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.386 | 36.0 | 1440 | 2.3824 | 0.0934 | 0.1488 | 0.5302 | [0.39236390712040153, 0.8145851925312122, 0.7558239703806888, 0.4900571399155771, 0.48914028430650736, 0.33919614966813755, 0.6652323001411955, 0.0, 0.3456263625131779, 0.6560158432230317, 0.001601036396079294, 0.18811622781579862, 0.05869991594284113, 0.0, 0.0, 0.0, 0.4797751879268533, 0.046657224133211134, 0.00930281474682576, 0.07758739097589451, 0.3090916412471183, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.1549231307719232, 0.07425068119891008, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8881335830212235, 0.9108228756234769, 0.8132888923950773, 0.6788969889517045, 0.696477772152806, 0.45792694051110766, 0.8158373932343381, nan, 0.5430072471914322, 0.9587041036717062, 0.0031542703041101826, 0.3017489999069681, 0.10941376158767463, 0.0, 0.0, 0.0, 0.9866616053196502, 0.06994254719337686, 0.0763197113499098, 0.1891903206899439, 0.4409893282392313, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.21741923294917817, 0.36734806629834255, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.851 | 36.5 | 1460 | 2.3500 | 0.0967 | 0.1573 | 0.5450 | [0.41524299726375297, 0.8009912665364631, 0.6891513755788327, 0.5282791330311297, 0.5382617997822409, 0.3209485427756586, 0.6855615317723598, 0.0, 0.34495694031815277, 0.6450787627917672, 0.00034193392126971464, 0.18070362473347548, 0.05615745756590827, 0.0, 0.0, 0.0, 0.5498109654736161, 0.04774509910281306, 0.01089028271073159, 0.08318980206500814, 0.3353840629016406, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.36103354423668305, 0.07984250543084721, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.860379213483146, 0.9282332543785728, 0.7684206374250552, 0.7450690941895272, 0.7596713423621596, 0.4702380117041133, 0.877598279380742, nan, 0.5499621527231303, 0.9693736501079914, 0.0005778815824323999, 0.2838403572425342, 0.1218174696435566, 0.0, 0.0, 0.0, 0.9784412796481491, 0.07852478321378867, 0.10173346929170915, 0.18906472410617098, 0.5097309797049826, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.385943699225392, 0.48734806629834254, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.3517 | 37.0 | 1480 | 2.3574 | 0.0943 | 0.1502 | 0.5440 | [0.4228595354346009, 0.7748181297538302, 0.6949422948852119, 0.5342279860915328, 0.5451333645297145, 0.3215454815990477, 0.6760519655457277, 0.0, 0.3373484782973615, 0.6933557004891509, 0.00421865306403805, 0.17283593452607537, 0.04307984578420965, 0.0, 0.0, 0.0, 0.40725727575039666, 0.04887517311320241, 0.0043186259216079085, 0.07464663207256432, 0.27873249635393826, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.29052538571331477, 0.08985310669244755, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8557943196004993, 0.9320908397294281, 0.7491243294414642, 0.7601234442441714, 0.7828579236686364, 0.4776478100397154, 0.882868706580819, nan, 0.4970284266774588, 0.9551835853131749, 0.007367990176013099, 0.26400130244673925, 0.10066588327457893, 0.0, 0.0, 0.0, 0.9810723074506519, 0.0799700246226314, 0.04125813789316809, 0.18759943062882023, 0.3925426942246097, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.3230304175325902, 0.3440331491712707, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.351 | 37.5 | 1500 | 2.3734 | 0.0904 | 0.1459 | 0.5398 | [0.4358926457706038, 0.767827928071386, 0.6770891494509585, 0.5237361027822186, 0.5741180617280167, 0.3277300764927676, 0.6693217782875592, 0.0, 0.33305621947417646, 0.6817848186433421, 0.019828058775553863, 0.16795366795366795, 0.06148850895439095, 0.0, 0.0, 0.0, 0.3150709636290431, 0.05170151342839647, 0.0038583458742915693, 0.09165746801200231, 0.29477336063242904, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.09638852753515456, 0.05374195633649693, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8666073657927591, 0.9266076593709431, 0.731847585989271, 0.6897794798012483, 0.8391947529467634, 0.45651304433248663, 0.8661091603735338, nan, 0.5284379192241683, 0.9629805615550756, 0.03570826611446871, 0.2569773932458833, 0.1582452017234626, 0.0, 0.0, 0.0, 0.9833368239174826, 0.08435927630874639, 0.03780688681465213, 0.24681821987775265, 0.4466627407609554, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.11758926884564519, 0.10104972375690607, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.9016 | 38.0 | 1520 | 2.3797 | 0.0922 | 0.1468 | 0.5361 | [0.3979803210771621, 0.8215521095152025, 0.7240312356453835, 0.4978367086289089, 0.5282189976939653, 0.32252930323024087, 0.6956390892056101, 0.0, 0.3261938294162919, 0.6670155189426786, 0.0, 0.2158865285041332, 0.04337220080987462, 0.0, 0.0, 0.0, 0.3376964639840277, 0.041506735010132315, 0.013210224784063633, 0.08663169738888706, 0.27028534152603007, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.23038631423964104, 0.046741210839125615, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8922659176029962, 0.9077510419750837, 0.7771655096244873, 0.7171782542730357, 0.7511793773604347, 0.4642596516833434, 0.841818469171093, nan, 0.4669379679384851, 0.963585313174946, 0.0, 0.3869197134617174, 0.1160725943334639, 0.0, 0.0, 0.0, 0.9874469867532332, 0.06212753809370874, 0.11828378696368343, 0.21918697144770996, 0.3689728968875228, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.24832798035140752, 0.10254143646408839, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.6249 | 38.5 | 1540 | 2.3389 | 0.0948 | 0.1506 | 0.5476 | [0.44896937443748053, 0.7327870092041515, 0.702833401443945, 0.5179074282523701, 0.5741124663766068, 0.3256582936711242, 0.6919663902831313, 0.0, 0.3850746129757246, 0.6641039748985085, 0.018652642790573826, 0.17898514779259433, 0.05360252503265128, 0.0, 0.0, 0.0, 0.3991114932645457, 0.048388596939961864, 0.0, 0.06818984365021526, 0.2746326684658415, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.28833227198754685, 0.0698983248825294, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8578636079900125, 0.9518485093493065, 0.7326522562322499, 0.7243221174503165, 0.8299837373606139, 0.46163183967890875, 0.8573205340516323, nan, 0.6202156920056059, 0.9645572354211663, 0.03373383737449134, 0.28532886780165595, 0.1286068677373025, 0.0, 0.0, 0.0, 0.9478244934289753, 0.07426042893337616, 0.0, 0.18998576572050574, 0.38148313057466643, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.30795390137918005, 0.290939226519337, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.0949 | 39.0 | 1560 | 2.3474 | 0.0965 | 0.1556 | 0.5483 | [0.4252860384788539, 0.800874486291488, 0.7321616393418507, 0.5220628125928689, 0.563952966520061, 0.32862220717670954, 0.6963647914920424, 0.0, 0.3485466160598535, 0.6593487333215776, 0.019300024474668716, 0.18426230540383132, 0.06387929740279237, 0.0, 0.0, 0.0, 0.5084594403754829, 0.049878946007568814, 0.011522930116515343, 0.08760321624528901, 0.26784043386101936, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.3098973395026027, 0.07873112577800342, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8682943196004994, 0.928452467715854, 0.7852832123698328, 0.7360104546078542, 0.8162993759268137, 0.4631895813744615, 0.8962749692501151, nan, 0.5017199901072464, 0.9691144708423326, 0.039873829187835594, 0.2722578844543678, 0.1111111111111111, 0.0, 0.0, 0.0, 0.9614246819205194, 0.07572351282874781, 0.10542003294376029, 0.23695888805157833, 0.4029128305301409, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.323937275647081, 0.46265193370165747, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.2577 | 39.5 | 1580 | 2.3334 | 0.0944 | 0.1513 | 0.5470 | [0.4402755503484393, 0.7402331985677358, 0.6773202538216256, 0.5072853858237666, 0.5930683129436178, 0.33015401415690654, 0.7049174176186468, 0.0, 0.357822011528309, 0.6655650925621318, 0.011452232625806693, 0.1390162139974003, 0.07664071894183913, 0.0, 0.0, 0.0, 0.44731726767513147, 0.04801383619727739, 0.0, 0.05874611150993061, 0.31305863769456005, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.2304008152173913, 0.07994399179722385, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8585455680399501, 0.9481503518801102, 0.756591195960871, 0.6730278605315376, 0.8680822181702514, 0.47095723928877165, 0.903572483834837, nan, 0.5973649301886368, 0.9613174946004319, 0.022176205725843345, 0.1890408410084659, 0.15811463637550593, 0.0, 0.0, 0.0, 0.9398136028064297, 0.07677621953395425, 0.0, 0.13361383237042618, 0.4668428536546831, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.2563007746079728, 0.4006077348066298, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1701 | 40.0 | 1600 | 2.3302 | 0.0953 | 0.1541 | 0.5490 | [0.4259301389453817, 0.8066144094268355, 0.7156322044500044, 0.5189784024862559, 0.5884532221551915, 0.32656141740077205, 0.7052324253246934, 0.0, 0.3676639641819942, 0.683115567087869, 0.010315416018662519, 0.17511329024589556, 0.06753026120195371, 0.0, 0.0, 0.0, 0.44391109193439166, 0.0498715279315997, 0.006932507840821148, 0.07890224309460545, 0.27097698845413726, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.25831137078080846, 0.07708268849376941, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.867730961298377, 0.9171031953902566, 0.789744398863995, 0.7061905755204573, 0.8827365138814843, 0.4630071431578652, 0.8697441747005752, nan, 0.546507183488095, 0.9609503239740821, 0.020442560978546145, 0.2741185226532701, 0.16607912260086174, 0.0, 0.0, 0.0, 0.9696188282109011, 0.08034471683973879, 0.06675033335947918, 0.21382818387339864, 0.38833431480976116, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.3073871150576233, 0.37149171270718234, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1454 | 40.5 | 1620 | 2.3452 | 0.0937 | 0.1484 | 0.5472 | [0.41590111896925575, 0.7956456544034374, 0.7433866866772062, 0.5075708130433674, 0.5719918487860337, 0.3325156545780296, 0.7216679076693969, 0.0, 0.34159443418760627, 0.692085970298891, 0.0007803923124743727, 0.18136915775078433, 0.05085877283486071, 0.0, 0.0, 0.0, 0.4747165401851638, 0.044398764313752816, 8.663109016563865e-06, 0.0787716253878109, 0.2466963662712683, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.1938508839354343, 0.07160791623266269, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.887791822721598, 0.9320481358325552, 0.804970022088987, 0.7098739349724817, 0.8305863062304277, 0.46035828058997713, 0.899078534175319, nan, 0.49087543374478193, 0.9542116630669546, 0.001420625556812983, 0.26218718020280957, 0.10941376158767463, 0.0, 0.0, 0.0, 0.9678386302947798, 0.06821182600007138, 7.84375245117264e-05, 0.18814368249183622, 0.3300777042069431, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.23823918382769696, 0.36082872928176796, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.3269 | 41.0 | 1640 | 2.3383 | 0.0968 | 0.1571 | 0.5504 | [0.44117825990446985, 0.7865425366699565, 0.6838256139003621, 0.5341472651761701, 0.5823088792515934, 0.3153129970992795, 0.6957088082357267, 0.0, 0.35667411972151025, 0.655019170442663, 0.02082355913241185, 0.18702265053922051, 0.04257827852744661, 0.0, 0.0, 0.0, 0.4492152762756267, 0.0543782136318288, 0.005244184722801958, 0.08332128659197686, 0.2751865862386259, nan, 0.0033214205051216306, 0.0, 0.0, nan, 0.0, 0.0, 0.42900848740048686, 0.07639193083573487, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8374469413233459, 0.9335982872890427, 0.7516606184916378, 0.741781526508243, 0.847881600817164, 0.4729009079809703, 0.910169107188258, nan, 0.588199144126927, 0.9741252699784018, 0.041679709132936844, 0.2653967810959159, 0.127301214257736, 0.0, 0.0, 0.0, 0.9786114456254255, 0.08849873318345644, 0.05420032943760295, 0.19304194925898016, 0.3865963833790558, nan, 0.003326370131857312, 0.0, 0.0, nan, nan, 0.0, 0.4927640279614585, 0.36613259668508286, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.8185 | 41.5 | 1660 | 2.3574 | 0.0927 | 0.1490 | 0.5449 | [0.4211759415401911, 0.7995945186741249, 0.6978932238632433, 0.5148802388613652, 0.5681032954662072, 0.3273415115720924, 0.709560116667298, 0.0, 0.34431855998331107, 0.6651933866095212, 0.0010200958890135673, 0.17970467088875502, 0.05918037206794284, 0.0, 0.0, 0.0, 0.3746546582488056, 0.048634381455129674, 0.00826594929383612, 0.06770428015564202, 0.28484075132707226, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.26019523473123113, 0.062167810304256964, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8769569288389513, 0.93192998838454, 0.77183654149574, 0.7083478189555733, 0.8184229271854881, 0.4641614157205608, 0.901030035250706, nan, 0.5195344410219515, 0.9654211663066955, 0.001926271941441333, 0.25672155549353426, 0.11463637550594072, 0.0, 0.0, 0.0, 0.9834022723702812, 0.07561645790957428, 0.08290846340889481, 0.14751318764129615, 0.4007727331485285, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.30617797090496884, 0.2087292817679558, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.4443 | 42.0 | 1680 | 2.3533 | 0.0946 | 0.1519 | 0.5481 | [0.4556085209645064, 0.7171990698571566, 0.6706899591548882, 0.5366851043897921, 0.5814569413194934, 0.32244517492484903, 0.7128303140195261, 0.0, 0.3762961100986615, 0.6560768647576836, 0.0015664352847226488, 0.1634929226328134, 0.07514845403044161, 0.0, 0.0, 0.0, 0.4917144503278554, 0.0537456789043014, 0.0, 0.06913935598983319, 0.28430204378382745, nan, 0.0016475121238291371, 0.0, 0.0, nan, 0.0, 0.0, 0.2811459027315123, 0.07812873178887031, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.86375, 0.952699740360307, 0.7202350899337331, 0.7272228075899312, 0.8399698043555202, 0.4587514209130331, 0.899559537961506, nan, 0.538525530049239, 0.9719006479481641, 0.0024559967253376994, 0.23183551958321705, 0.14375244810027418, 0.0, 0.0, 0.0, 0.9383999162259804, 0.08766013631659708, 0.0, 0.17196265594909152, 0.4043922267066917, nan, 0.0016498795854012268, 0.0, 0.0, nan, nan, 0.0, 0.3348573587757415, 0.43375690607734807, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.8899 | 42.5 | 1700 | 2.3360 | 0.0951 | 0.1534 | 0.5492 | [0.42846571344838863, 0.8007632484952961, 0.6826133744392173, 0.5345972402179221, 0.5726169929331992, 0.32029962113543686, 0.7003049806266755, 0.0, 0.36421663255308623, 0.6963148209314396, 0.003372704496021585, 0.18627909013928226, 0.06906686260102865, 0.0, 0.0, 0.0, 0.4428928219783387, 0.0483309094598708, 0.004074604060051903, 0.09843533548822506, 0.27695480393257854, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.25219468979032994, 0.08084125389588646, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8647097378277153, 0.9310033138223973, 0.7406161249605554, 0.7436873886835644, 0.8338477942395313, 0.46626998049314455, 0.8867510942836135, nan, 0.5627777652869274, 0.9561771058315335, 0.005899207820664082, 0.29674853474741836, 0.12273142707925316, 0.0, 0.0, 0.0, 0.965626472590188, 0.07649073974949148, 0.03953251235391011, 0.23203968852047224, 0.389641354150209, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.3549593803136218, 0.3467955801104972, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.8087 | 43.0 | 1720 | 2.3284 | 0.0972 | 0.1525 | 0.5505 | [0.43836696729880237, 0.7567624699912359, 0.6673363858428416, 0.5294658081291947, 0.5873144378689118, 0.3192053517516581, 0.7007850338821053, 0.0, 0.3705301979871153, 0.6521739130434783, 0.004574081111895325, 0.17451251689297895, 0.06082198753022013, 0.0, 0.0, 0.0, 0.38038830433546184, 0.04935740581531204, 0.0, 0.06753617165955196, 0.28932680972698915, nan, 0.0011563613163910894, 0.0, 0.0, nan, 0.0, 0.0, 0.5113006396588486, 0.04920763681664107, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8605243445692884, 0.9427440385359965, 0.7467813190280845, 0.7202411833817376, 0.8547674621770432, 0.46924512679456054, 0.896797201932261, nan, 0.5888061994588963, 0.9732181425485961, 0.008114420553321615, 0.2522792817936552, 0.1248204726465596, 0.0, 0.0, 0.0, 0.9629954447876852, 0.07989865467651572, 0.0, 0.14969019509336012, 0.3983453743734111, nan, 0.0011575768058863446, 0.0, 0.0, nan, nan, 0.0, 0.5436614396372568, 0.1876795580110497, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.8746 | 43.5 | 1740 | 2.3485 | 0.0936 | 0.1477 | 0.5446 | [0.4272191745573527, 0.7504909199535571, 0.6849456177073291, 0.5154349225261836, 0.5841193162988642, 0.32693051310406657, 0.7123769775246045, 0.0, 0.36178099163105865, 0.6689666526971203, 0.0011928429423459245, 0.16990881915548814, 0.07231482641935079, 0.0, 0.0, 0.0, 0.3994246685770762, 0.04632826297499003, 0.0, 0.06954148268216795, 0.2777953386437392, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.22221839120091025, 0.07084158351774922, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.00014685048892574548, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8757553058676654, 0.947696267110028, 0.7370108867150521, 0.6910399517918492, 0.8488716953913562, 0.4657086321343868, 0.8679232317957246, nan, 0.5361872428446163, 0.9653347732181425, 0.0019503503407093496, 0.2630709833472881, 0.15067241154197675, 0.0, 0.0, 0.0, 0.946921304780355, 0.07254755022659957, 0.0, 0.15626308297747635, 0.37868233198799245, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.24352918949556018, 0.3024309392265193, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.00014685048892574548, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.831 | 44.0 | 1760 | 2.3582 | 0.0946 | 0.1529 | 0.5471 | [0.44862804953591057, 0.7731316248333944, 0.7137798359999303, 0.5272975648440227, 0.5739832784018088, 0.33877220463425345, 0.6904242373379212, 0.0, 0.35824641385185696, 0.6585803739545475, 0.030590522028878193, 0.1564589009798778, 0.08286701777485188, 0.0, 0.0, 0.00017225505627988476, 0.47857741082439215, 0.049684259435257346, 0.0, 0.0840623961777595, 0.2905621537623233, nan, 0.005873482022382729, 0.0, 0.0, nan, 0.0, 0.0, 0.19286701322629465, 0.07456105895753957, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8476591760299625, 0.9429447468512994, 0.808591038182392, 0.6923022066282641, 0.8336529113708554, 0.4681645312039519, 0.9044795195459324, nan, 0.5830354265500521, 0.9745140388768898, 0.06366328766463605, 0.2150200018606382, 0.13147930539234887, 0.0, 0.0, 0.00017313226110733006, 0.9499319336090895, 0.08394889911858117, 0.0, 0.22245248262580591, 0.4135845912988524, nan, 0.0059076333541785864, 0.0, 0.0, nan, nan, 0.0, 0.22150009446438693, 0.4195027624309392, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.7194 | 44.5 | 1780 | 2.3640 | 0.0941 | 0.1514 | 0.5428 | [0.43350567785320054, 0.7731674676783076, 0.7072758223454915, 0.5135186808138796, 0.547413130716231, 0.3328523221188296, 0.7025313371416195, 0.0, 0.3597874653923118, 0.656186049231129, 0.018551556209166084, 0.17703048675137825, 0.05200519330640508, 0.0, 0.0, 0.0002494209869944771, 0.41845855107227503, 0.04923929580525973, 0.0, 0.0882416325448005, 0.28095806107692145, nan, 0.004210693572733773, 0.0, 0.0, nan, 0.0, 0.0, 0.3001928924052702, 0.0747682335502349, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8531023720349563, 0.9457575101919967, 0.7604331019248974, 0.7134948948210112, 0.7740008332922661, 0.47098881513395174, 0.8915542606628232, nan, 0.5902001783693445, 0.9695680345572354, 0.037056656473477646, 0.262140664247837, 0.09413761587674631, 0.0, 0.0, 0.00025074327470716765, 0.9590816273103304, 0.08084430646254862, 0.0, 0.22285020514108683, 0.3822874624764805, nan, 0.004231142807722501, 0.0, 0.0, nan, nan, 0.0, 0.34694880030228603, 0.32883977900552486, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.5284 | 45.0 | 1800 | 2.3472 | 0.0964 | 0.1553 | 0.5461 | [0.4203439092672654, 0.8073401576234241, 0.7243798955613577, 0.5223530028573675, 0.549703015370608, 0.3335615466389159, 0.7053615999830061, 0.0, 0.36481394845791265, 0.6520617809846707, 0.01039811419591409, 0.16680997420464316, 0.05976206359795419, 0.0, 0.0, 0.0005878964589630457, 0.401571427796257, 0.050430558139025965, 0.008387202676400928, 0.09611780899155901, 0.2984873714963755, nan, 0.0018627672738400947, 0.0, 0.0, nan, 0.0, 0.0, 0.4031013001083424, 0.07301291288745726, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.00019868007325247918, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8653043071161048, 0.9231756895255882, 0.8054354686020827, 0.7105068452365034, 0.8006281052457093, 0.4700660987692437, 0.9126771983590899, nan, 0.5435093793796044, 0.9720086393088553, 0.01911824901880523, 0.23011442924923248, 0.14035774905340123, 0.0, 0.0, 0.0005910377189526096, 0.9687156395622808, 0.08223602041180458, 0.08416346380108244, 0.2426525998492841, 0.4299584907286385, nan, 0.0018627672738400947, 0.0, 0.0, nan, nan, 0.0, 0.449877196296996, 0.28552486187845305, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.00019868007325247918, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.6914 | 45.5 | 1820 | 2.3321 | 0.0985 | 0.1570 | 0.5504 | [0.44062770914279387, 0.761767946650595, 0.7469356134927128, 0.5301679169197479, 0.5513342308861576, 0.33925065755065226, 0.6870311731837669, 0.0, 0.3704766251548543, 0.6613854686143843, 0.023482004567768357, 0.17349297705785757, 0.048038547649177456, 0.0, 0.0, 0.0005811919178740236, 0.4371920436798586, 0.05251944968520128, 0.0, 0.07658178836605475, 0.28944202056980234, nan, 0.00536928767450185, 0.0, 0.0, nan, 0.0, 0.0, 0.5335586990055466, 0.0678812913945492, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8510736579275905, 0.9427739312638076, 0.8138687283054591, 0.7329546568824088, 0.7962286804861768, 0.47108003424224987, 0.8930522438826626, nan, 0.5961733030555119, 0.971036717062635, 0.043076256290481806, 0.25309331100567495, 0.12886799843321584, 0.0, 0.0, 0.0005850676409833912, 0.945402900675428, 0.08840952075081183, 0.0, 0.17596081386586285, 0.39733995949614354, nan, 0.005388719613608845, 0.0, 0.0, nan, nan, 0.0, 0.6142830153032307, 0.32502762430939225, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.9363 | 46.0 | 1840 | 2.3603 | 0.0957 | 0.1533 | 0.5448 | [0.4307641160941553, 0.7948637865598526, 0.7199057146569164, 0.5296008038661645, 0.5420462362516328, 0.3320313857919698, 0.7084345558217591, 0.0, 0.37007814061503613, 0.6535473021947754, 0.030037394170060253, 0.18495110006140575, 0.0516514213726242, 0.0, 0.0, 0.0002496077592354871, 0.39646599039893343, 0.0522977819099482, 0.0039492332436262875, 0.08375527426160338, 0.2983843452082288, nan, 0.0018980117331634414, 0.0, 0.0, nan, 0.0, 0.0, 0.3670740429766458, 0.05197259285971872, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8532927590511861, 0.9310360534766666, 0.7649850110444936, 0.7348105993749342, 0.785460841983594, 0.4691433824045357, 0.8716681898453229, nan, 0.5828180857521865, 0.9737149028077754, 0.0651802268185211, 0.28721276397804446, 0.12312312312312312, 0.0, 0.0, 0.00025074327470716765, 0.9653777684695534, 0.08430574884915962, 0.0389050121578163, 0.2077576823243741, 0.42707151372391305, nan, 0.0019026837154223824, 0.0, 0.0, nan, nan, 0.0, 0.44602304931041, 0.19906077348066298, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.1896 | 46.5 | 1860 | 2.3470 | 0.0961 | 0.1539 | 0.5448 | [0.4302888708712368, 0.7840775863614363, 0.7197212972507954, 0.5239124080169796, 0.5361995966189897, 0.33269042907597124, 0.686007758583737, 0.0, 0.36299630377477604, 0.6463129034100645, 0.020041912745284815, 0.18784904637894959, 0.04363136176066025, 0.0, 0.0, 0.00018989520158562494, 0.4620590700154913, 0.051365775665998606, 6.591794863343853e-05, 0.08219591952797327, 0.2808638539463431, nan, 0.0025166562909784496, 0.0, 0.0, nan, 0.0, 0.0, 0.4082182774490467, 0.06904881516081106, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0002159566013613904, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8596551186017478, 0.9338957911039242, 0.765592458188703, 0.7349425299651811, 0.7801295635071748, 0.46598930631376567, 0.8797627964185832, nan, 0.564523986180123, 0.9775377969762419, 0.037995714044930295, 0.2902363010512606, 0.10353832092962528, 0.0, 0.0, 0.00019104249501498489, 0.9526414995549505, 0.08139742354494522, 0.0006275001960938112, 0.19362806664992047, 0.39861827269724087, nan, 0.002528041300211557, 0.0, 0.0, nan, nan, 0.0, 0.4692235027394672, 0.3569060773480663, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0002159566013613904, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.0699 | 47.0 | 1880 | 2.3703 | 0.0966 | 0.1545 | 0.5362 | [0.39480193878006337, 0.8176080694917801, 0.7219032652986643, 0.505227403004498, 0.5027757960037987, 0.3315813337318605, 0.7109051055395131, 0.0, 0.361499711633177, 0.6554905325530573, 0.0046006010462657215, 0.19404779798587105, 0.05704644062349349, 0.0, 0.0, 0.0005837952588748673, 0.45511712954766076, 0.04679955428995914, 0.011199338690575546, 0.08728850172372749, 0.28654787628263345, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.4469559109919229, 0.07303409090909091, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8836860174781523, 0.9216653950395154, 0.7791811296939097, 0.6976899666786117, 0.7151058863586472, 0.45926715971764176, 0.8847514928296079, nan, 0.5308286680006895, 0.9652699784017279, 0.008957164527702198, 0.3002604893478463, 0.09270139704922313, 0.0, 0.0, 0.0005910377189526096, 0.9757709827739672, 0.07418905898726047, 0.11051847203702252, 0.20723436322532027, 0.3942806256553151, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.5290005667863216, 0.3550828729281768, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.2962 | 47.5 | 1900 | 2.3289 | 0.1004 | 0.1610 | 0.5506 | [0.43813563391067495, 0.7919837442756195, 0.7229490864037844, 0.530693124964866, 0.5619734040268292, 0.32844023814193124, 0.6849341364586738, 0.0, 0.37461864366255104, 0.6442053497825407, 0.03035054317392765, 0.19145526513998173, 0.035979926516712966, 0.0, 0.0, 0.00031904334262891713, 0.5248448757220687, 0.053110580747812254, 0.005331374546833164, 0.09117176661865672, 0.2788984917106411, nan, 0.003947699603905308, 0.0, 0.0, nan, 0.0, 0.0, 0.5592105263157895, 0.07566214768571534, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.840165418227216, 0.929310816043, 0.7848611549384664, 0.7405620599713675, 0.8205464784441627, 0.4759392059727465, 0.9071662692659195, nan, 0.5871274291581416, 0.9789416846652268, 0.05872721581469264, 0.2778630570285608, 0.1048439744091918, 0.0, 0.0, 0.000322384210337787, 0.9621446149013038, 0.08933733005031581, 0.052945329045415324, 0.21598425856150047, 0.38563405771081394, nan, 0.003965033197173916, 0.0, 0.0, nan, nan, 0.0, 0.632722463631211, 0.45265193370165746, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.6174 | 48.0 | 1920 | 2.3525 | 0.0971 | 0.1552 | 0.5450 | [0.4086238986289587, 0.8169527171190324, 0.7147347588187357, 0.5193104998447364, 0.5504920947069307, 0.3318776638002968, 0.7144779541250872, 0.0, 0.36262716401927536, 0.646572972972973, 0.007966049455890372, 0.1963503761004562, 0.055534229046705054, 0.0, 0.0, 0.0007429201478764866, 0.4022438568103258, 0.04821108340987622, 0.008825570478017717, 0.0758365001390305, 0.2995559310508258, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.46843680853833136, 0.0690767784745311, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8733270911360799, 0.9145737012321498, 0.7991401072893657, 0.7125892091474253, 0.8032534238903997, 0.46606649171309483, 0.886551821286479, nan, 0.5329571089177177, 0.9688120950323974, 0.016180684308107197, 0.29930691227090894, 0.1133307220263742, 0.0, 0.0, 0.000752229824121503, 0.9794360961306875, 0.07866752310602006, 0.08479096399717626, 0.17127187473834046, 0.4175918877382474, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.5439637256754204, 0.2720441988950276, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.5171 | 48.5 | 1940 | 2.3309 | 0.0949 | 0.1514 | 0.5467 | [0.4272610254871079, 0.7765229274757001, 0.7065223827054288, 0.521725648381944, 0.5604860198244929, 0.33056051974210365, 0.6943983809185744, 0.0, 0.3654088019294603, 0.6576679731653968, 0.011089910230634277, 0.17749015194147438, 0.05580952380952381, 0.0, 0.0, 0.0008791054223222449, 0.37348308478564973, 0.04977036796996346, 0.0, 0.06882807742697396, 0.28323033982427753, nan, 0.0009555788551634438, 0.0, 0.0, nan, 0.0, 0.0, 0.43712612163509473, 0.05106490021801107, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8619444444444444, 0.9342046826246384, 0.8001577784790155, 0.7139192121247778, 0.8127914842906487, 0.46984155942574063, 0.900624617773777, nan, 0.5552457824643449, 0.9676241900647948, 0.020851893766102428, 0.25674481347102057, 0.11476694085389738, 0.0, 0.0, 0.0008955116953827417, 0.968061155034295, 0.07947043499982158, 0.0, 0.15615841915766557, 0.3745744940608707, nan, 0.0009579945979749059, 0.0, 0.0, nan, nan, 0.0, 0.5301341394294351, 0.16823204419889504, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.3054 | 49.0 | 1960 | 2.3445 | 0.0965 | 0.1510 | 0.5448 | [0.42060555530518123, 0.775225963597999, 0.7057189441614043, 0.5143286771089474, 0.5549782193785344, 0.3272389694170118, 0.7080437975404985, 0.0, 0.3697319477914729, 0.6593277211985636, 0.006849495508311599, 0.1797058129473767, 0.06041899257897156, 0.0, 0.0, 0.0004667182616812491, 0.398030812628838, 0.0480704205053159, 0.0, 0.06379430807210397, 0.3090374985213517, nan, 0.0003989096469649624, 0.0, 0.0, nan, 0.0, 0.0, 0.3985289200936142, 0.05904316085708713, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.873859238451935, 0.9350786890473045, 0.7665785736825497, 0.7055487510273649, 0.8096352778312896, 0.46129503066365407, 0.887802431130565, nan, 0.541575795729628, 0.9676025917926566, 0.012520767619368664, 0.2656758768257512, 0.12012012012012012, 0.0, 0.0, 0.000471636159568244, 0.960429865437981, 0.0773650215894087, 0.0, 0.1433475676128276, 0.4502822343191187, nan, 0.00039916441582287746, 0.0, 0.0, nan, nan, 0.0, 0.45040619686378236, 0.23414364640883978, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 1.0223 | 49.5 | 1980 | 2.3584 | 0.0957 | 0.1510 | 0.5439 | [0.4080709894226452, 0.8048750591212661, 0.7407096572019292, 0.507544480008525, 0.5479745676250415, 0.3399907521254348, 0.7024147379086071, 0.0, 0.36409692514711495, 0.6423189649009936, 0.001532833552309555, 0.19033508092090268, 0.06216861081654295, 0.0, 0.0, 0.0008764396550709975, 0.39762865306209805, 0.04659518329310054, 0.0, 0.058694683342657476, 0.28469598076262453, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.4455286771981303, 0.05693710068296982, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8836360799001248, 0.9253464709499625, 0.811143105080467, 0.6963029126352066, 0.7988741594276267, 0.4540255694177414, 0.8860776889829518, nan, 0.543464412317977, 0.9703455723542117, 0.0028653295128939827, 0.29130616801562936, 0.12247029638333987, 0.0, 0.0, 0.0008895416174135234, 0.9727734436357924, 0.07404631909502908, 0.0, 0.12957380892573056, 0.3809086077876564, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.4934063857925562, 0.22845303867403316, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
| 0.5046 | 50.0 | 2000 | 2.3431 | 0.0959 | 0.1537 | 0.5496 | [0.44824978876617866, 0.7548671615728508, 0.7119201505944329, 0.5304481563680256, 0.5684691275095736, 0.33051502835188457, 0.6982393617021276, 0.0, 0.3703529914609331, 0.6659141206351092, 0.028823893043720683, 0.17181416221210322, 0.052153820762502065, 0.0, 0.0, 0.0005543923800536699, 0.40565901784724534, 0.05230759173712194, 0.0, 0.07225859019823891, 0.29980315155352005, nan, 0.003601361102652032, 0.0, 0.0, nan, 0.0, 0.0, 0.38898705304076847, 0.05940808241958817, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] | [0.8427949438202247, 0.9402615186644498, 0.7846678763016725, 0.7286579984703183, 0.8303175022736334, 0.469325820621132, 0.9020126572710594, nan, 0.5974398752913491, 0.9683369330453564, 0.05725843345934362, 0.24220857754209693, 0.12377594986290638, 0.0, 0.0, 0.0005611873291065182, 0.9580213623749935, 0.08566177782535773, 0.0, 0.16335928996064641, 0.43531591571750716, nan, 0.0036190907034607555, 0.0, 0.0, nan, nan, 0.0, 0.45750991876062724, 0.24276243093922653, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0] |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
rishitunu/ecc_segformerv1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ecc_segformerv1
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0351
- Mean Iou: 0.9171
- Mean Accuracy: 0.8041
- Overall Accuracy: 0.8041
- Accuracy Background: nan
- Accuracy Crack: 0.8041
- Iou Background: 0.0
- Iou Crack: 0.9171
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"crack"
] |
rishitunu/ecc_segformerv2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ecc_segformerv2
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3478
- Mean Iou: 0.0862
- Mean Accuracy: 0.1924
- Overall Accuracy: 0.1924
- Accuracy Background: nan
- Accuracy Crack: 0.1924
- Iou Background: 0.0
- Iou Crack: 0.1723
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.1019 | 1.0 | 251 | 0.5116 | 0.1490 | 0.3280 | 0.3280 | nan | 0.3280 | 0.0 | 0.2979 |
| 0.0938 | 2.0 | 502 | 0.4725 | 0.1144 | 0.2400 | 0.2400 | nan | 0.2400 | 0.0 | 0.2287 |
| 0.098 | 3.0 | 753 | 0.5117 | 0.1276 | 0.2748 | 0.2748 | nan | 0.2748 | 0.0 | 0.2552 |
| 0.1018 | 4.0 | 1004 | 0.3870 | 0.1053 | 0.2254 | 0.2254 | nan | 0.2254 | 0.0 | 0.2106 |
| 0.0928 | 5.0 | 1255 | 0.2907 | 0.0772 | 0.1630 | 0.1630 | nan | 0.1630 | 0.0 | 0.1544 |
| 0.0936 | 6.0 | 1506 | 0.5220 | 0.1193 | 0.2544 | 0.2544 | nan | 0.2544 | 0.0 | 0.2385 |
| 0.077 | 7.0 | 1757 | 0.1608 | 0.0617 | 0.1308 | 0.1308 | nan | 0.1308 | 0.0 | 0.1235 |
| 0.0963 | 8.0 | 2008 | 0.1756 | 0.0456 | 0.0923 | 0.0923 | nan | 0.0923 | 0.0 | 0.0912 |
| 0.0958 | 9.0 | 2259 | 0.2027 | 0.0862 | 0.1813 | 0.1813 | nan | 0.1813 | 0.0 | 0.1725 |
| 0.0755 | 10.0 | 2510 | 0.2327 | 0.0888 | 0.1832 | 0.1832 | nan | 0.1832 | 0.0 | 0.1776 |
| 0.0632 | 11.0 | 2761 | 0.2169 | 0.0846 | 0.1863 | 0.1863 | nan | 0.1863 | 0.0 | 0.1693 |
| 0.0638 | 12.0 | 3012 | 0.2309 | 0.0852 | 0.1957 | 0.1957 | nan | 0.1957 | 0.0 | 0.1704 |
| 0.0509 | 13.0 | 3263 | 0.3209 | 0.1236 | 0.2910 | 0.2910 | nan | 0.2910 | 0.0 | 0.2472 |
| 0.0497 | 14.0 | 3514 | 0.3274 | 0.1045 | 0.2354 | 0.2354 | nan | 0.2354 | 0.0 | 0.2089 |
| 0.0396 | 15.0 | 3765 | 0.3415 | 0.1005 | 0.2257 | 0.2257 | nan | 0.2257 | 0.0 | 0.2010 |
| 0.0373 | 16.0 | 4016 | 0.3530 | 0.1122 | 0.2486 | 0.2486 | nan | 0.2486 | 0.0 | 0.2244 |
| 0.0388 | 17.0 | 4267 | 0.3312 | 0.0889 | 0.1974 | 0.1974 | nan | 0.1974 | 0.0 | 0.1778 |
| 0.0346 | 18.0 | 4518 | 0.3061 | 0.0903 | 0.2125 | 0.2125 | nan | 0.2125 | 0.0 | 0.1807 |
| 0.0296 | 19.0 | 4769 | 0.3223 | 0.1000 | 0.2315 | 0.2315 | nan | 0.2315 | 0.0 | 0.2000 |
| 0.0311 | 20.0 | 5020 | 0.3458 | 0.0943 | 0.2237 | 0.2237 | nan | 0.2237 | 0.0 | 0.1887 |
| 0.0303 | 21.0 | 5271 | 0.3283 | 0.0975 | 0.2255 | 0.2255 | nan | 0.2255 | 0.0 | 0.1951 |
| 0.0249 | 22.0 | 5522 | 0.3387 | 0.0998 | 0.2327 | 0.2327 | nan | 0.2327 | 0.0 | 0.1996 |
| 0.0298 | 23.0 | 5773 | 0.3332 | 0.0973 | 0.2242 | 0.2242 | nan | 0.2242 | 0.0 | 0.1946 |
| 0.0239 | 24.0 | 6024 | 0.3778 | 0.1146 | 0.2634 | 0.2634 | nan | 0.2634 | 0.0 | 0.2292 |
| 0.0238 | 25.0 | 6275 | 0.3250 | 0.0909 | 0.2081 | 0.2081 | nan | 0.2081 | 0.0 | 0.1818 |
| 0.0242 | 26.0 | 6526 | 0.3826 | 0.1002 | 0.2285 | 0.2285 | nan | 0.2285 | 0.0 | 0.2004 |
| 0.017 | 27.0 | 6777 | 0.3543 | 0.1058 | 0.2367 | 0.2367 | nan | 0.2367 | 0.0 | 0.2115 |
| 0.0241 | 28.0 | 7028 | 0.3491 | 0.0915 | 0.2069 | 0.2069 | nan | 0.2069 | 0.0 | 0.1830 |
| 0.0203 | 29.0 | 7279 | 0.3354 | 0.0899 | 0.2056 | 0.2056 | nan | 0.2056 | 0.0 | 0.1798 |
| 0.0206 | 30.0 | 7530 | 0.3592 | 0.0944 | 0.2165 | 0.2165 | nan | 0.2165 | 0.0 | 0.1888 |
| 0.0211 | 31.0 | 7781 | 0.3200 | 0.0943 | 0.2100 | 0.2100 | nan | 0.2100 | 0.0 | 0.1886 |
| 0.0209 | 32.0 | 8032 | 0.3401 | 0.0850 | 0.1941 | 0.1941 | nan | 0.1941 | 0.0 | 0.1701 |
| 0.0172 | 33.0 | 8283 | 0.3326 | 0.0879 | 0.1986 | 0.1986 | nan | 0.1986 | 0.0 | 0.1759 |
| 0.0187 | 34.0 | 8534 | 0.3343 | 0.0869 | 0.1960 | 0.1960 | nan | 0.1960 | 0.0 | 0.1739 |
| 0.0181 | 35.0 | 8785 | 0.3223 | 0.0824 | 0.1835 | 0.1835 | nan | 0.1835 | 0.0 | 0.1648 |
| 0.0168 | 36.0 | 9036 | 0.3461 | 0.0864 | 0.1933 | 0.1933 | nan | 0.1933 | 0.0 | 0.1727 |
| 0.0169 | 37.0 | 9287 | 0.3438 | 0.0848 | 0.1888 | 0.1888 | nan | 0.1888 | 0.0 | 0.1695 |
| 0.0182 | 38.0 | 9538 | 0.3506 | 0.0865 | 0.1933 | 0.1933 | nan | 0.1933 | 0.0 | 0.1730 |
| 0.0167 | 39.0 | 9789 | 0.3535 | 0.0869 | 0.1946 | 0.1946 | nan | 0.1946 | 0.0 | 0.1739 |
| 0.0174 | 39.84 | 10000 | 0.3478 | 0.0862 | 0.1924 | 0.1924 | nan | 0.1924 | 0.0 | 0.1723 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"crack"
] |
pamixsun/segformer_for_optic_disc_cup_segmentation | # Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This SegFormer model has undergone specialized fine-tuning on the [REFUGE challenge dataset](https://refuge.grand-challenge.org/),
a public benchmark for semantic segmentation of anatomical structures in retinal fundus images.
The fine-tuning enables expert-level segmentation of the optic disc and optic cup, two critical structures for ophthalmological diagnosis.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Xu Sun](https://pamixsun.github.io)
- **Shared by:** [Xu Sun](https://pamixsun.github.io)
- **Model type:** Image segmentation
- **License:** Apache-2.0
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
This pretrained model enables semantic segmentation of key anatomical structures, namely, the optic disc and optic cup, in retinal fundus images.
It takes fundus images as input and outputs the segmentation results.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The model has undergone specialized training and fine-tuning exclusively using retinal fundus images,
with the objective to perform semantic segmentation of anatomical structures including the optic disc and optic cup.
Therefore, in order to derive optimal segmentation performance, it is imperative to ensure that only fundus images are entered as inputs to this model.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import cv2
import torch
import numpy as np
from torch import nn
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
image = cv2.imread('./example.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
processor = AutoImageProcessor.from_pretrained("pamixsun/segformer_for_optic_disc_cup_segmentation")
model = SegformerForSemanticSegmentation.from_pretrained("pamixsun/segformer_for_optic_disc_cup_segmentation")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.shape[:2],
mode="bilinear",
align_corners=False,
)
pred_disc_cup = upsampled_logits.argmax(dim=1)[0].numpy().astype(np.uint8)
```
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Model Card Contact
- [email protected] | [
"background",
"optic disc",
"optic cup"
] |
baconseason/oneformer_coco_swin_large |
# OneFormer
OneFormer model trained on the COCO dataset (large-sized version, Swin backbone). It was introduced in the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jain et al. and first released in [this repository](https://github.com/SHI-Labs/OneFormer).

## Model description
OneFormer is the first multi-task universal image segmentation framework. It needs to be trained only once with a single universal architecture, a single model, and on a single dataset, to outperform existing specialized models across semantic, instance, and panoptic segmentation tasks. OneFormer uses a task token to condition the model on the task in focus, making the architecture task-guided for training, and task-dynamic for inference, all with a single model.

## Intended uses & limitations
You can use this particular checkpoint for semantic, instance and panoptic segmentation. See the [model hub](https://huggingface.co/models?search=oneformer) to look for other fine-tuned versions on a different dataset.
### How to use
Here is how to use this model:
```python
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
from PIL import Image
import requests
url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/coco.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Loading a single model for all three tasks
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_swin_large")
# Semantic Segmentation
semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
semantic_outputs = model(**semantic_inputs)
# pass through image_processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# Instance Segmentation
instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
instance_outputs = model(**instance_inputs)
# pass through image_processor for postprocessing
predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
# Panoptic Segmentation
panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
panoptic_outputs = model(**panoptic_inputs)
# pass through image_processor for postprocessing
predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
```
For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).
### Citation
```bibtex
@article{jain2022oneformer,
title={{OneFormer: One Transformer to Rule Universal Image Segmentation}},
author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi},
journal={arXiv},
year={2022}
}
```
| [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
"banner",
"blanket",
"bridge",
"cardboard",
"counter",
"curtain",
"door-stuff",
"floor-wood",
"flower",
"fruit",
"gravel",
"house",
"light",
"mirror-stuff",
"net",
"pillow",
"platform",
"playingfield",
"railroad",
"river",
"road",
"roof",
"sand",
"sea",
"shelf",
"snow",
"stairs",
"tent",
"towel",
"wall-brick",
"wall-stone",
"wall-tile",
"wall-wood",
"water-other",
"window-blind",
"window-other",
"tree-merged",
"fence-merged",
"ceiling-merged",
"sky-other-merged",
"cabinet-merged",
"table-merged",
"floor-other-merged",
"pavement-merged",
"mountain-merged",
"grass-merged",
"dirt-merged",
"paper-merged",
"food-other-merged",
"building-other-merged",
"rock-merged",
"wall-other-merged",
"rug-merged"
] |
rishitunu/ecc_segformerv3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ecc_segformerv3
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1344
- Mean Iou: 0.0005
- Mean Accuracy: 0.0010
- Overall Accuracy: 0.0010
- Accuracy Background: nan
- Accuracy Crack: 0.0010
- Iou Background: 0.0
- Iou Crack: 0.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.1306 | 1.0 | 1001 | 0.1114 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.107 | 2.0 | 2002 | 0.1238 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
| 0.1285 | 3.0 | 3003 | 0.1631 | 0.0024 | 0.0049 | 0.0049 | nan | 0.0049 | 0.0 | 0.0048 |
| 0.0887 | 4.0 | 4004 | 0.1083 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 |
| 0.0828 | 5.0 | 5000 | 0.1344 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"crack"
] |
nomsgadded/Segments |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Segments
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
rishitunu/ecc_segformer_main |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ecc_segformer_main
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector_dataset_main dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1918
- Mean Iou: 0.2329
- Mean Accuracy: 0.4658
- Overall Accuracy: 0.4658
- Accuracy Background: nan
- Accuracy Crack: 0.4658
- Iou Background: 0.0
- Iou Crack: 0.4658
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.1069 | 1.0 | 172 | 0.1376 | 0.1660 | 0.3320 | 0.3320 | nan | 0.3320 | 0.0 | 0.3320 |
| 0.0682 | 2.0 | 344 | 0.1327 | 0.2298 | 0.4596 | 0.4596 | nan | 0.4596 | 0.0 | 0.4596 |
| 0.0666 | 3.0 | 516 | 0.2478 | 0.1200 | 0.2401 | 0.2401 | nan | 0.2401 | 0.0 | 0.2401 |
| 0.0639 | 4.0 | 688 | 0.1732 | 0.1538 | 0.3076 | 0.3076 | nan | 0.3076 | 0.0 | 0.3076 |
| 0.0624 | 5.0 | 860 | 0.1027 | 0.2334 | 0.4668 | 0.4668 | nan | 0.4668 | 0.0 | 0.4668 |
| 0.0557 | 6.0 | 1032 | 0.1003 | 0.1851 | 0.3703 | 0.3703 | nan | 0.3703 | 0.0 | 0.3703 |
| 0.0563 | 7.0 | 1204 | 0.1512 | 0.2007 | 0.4014 | 0.4014 | nan | 0.4014 | 0.0 | 0.4014 |
| 0.054 | 8.0 | 1376 | 0.1000 | 0.2401 | 0.4802 | 0.4802 | nan | 0.4802 | 0.0 | 0.4802 |
| 0.0546 | 9.0 | 1548 | 0.0933 | 0.2238 | 0.4475 | 0.4475 | nan | 0.4475 | 0.0 | 0.4475 |
| 0.0498 | 10.0 | 1720 | 0.0964 | 0.2303 | 0.4606 | 0.4606 | nan | 0.4606 | 0.0 | 0.4606 |
| 0.0515 | 11.0 | 1892 | 0.1107 | 0.2258 | 0.4516 | 0.4516 | nan | 0.4516 | 0.0 | 0.4516 |
| 0.0453 | 12.0 | 2064 | 0.0961 | 0.2557 | 0.5115 | 0.5115 | nan | 0.5115 | 0.0 | 0.5115 |
| 0.0431 | 13.0 | 2236 | 0.1027 | 0.2396 | 0.4792 | 0.4792 | nan | 0.4792 | 0.0 | 0.4792 |
| 0.0418 | 14.0 | 2408 | 0.1027 | 0.2521 | 0.5042 | 0.5042 | nan | 0.5042 | 0.0 | 0.5042 |
| 0.0426 | 15.0 | 2580 | 0.1059 | 0.2561 | 0.5123 | 0.5123 | nan | 0.5123 | 0.0 | 0.5123 |
| 0.0377 | 16.0 | 2752 | 0.1193 | 0.2281 | 0.4561 | 0.4561 | nan | 0.4561 | 0.0 | 0.4561 |
| 0.0369 | 17.0 | 2924 | 0.1161 | 0.2486 | 0.4972 | 0.4972 | nan | 0.4972 | 0.0 | 0.4972 |
| 0.036 | 18.0 | 3096 | 0.1058 | 0.2515 | 0.5029 | 0.5029 | nan | 0.5029 | 0.0 | 0.5029 |
| 0.034 | 19.0 | 3268 | 0.1176 | 0.2434 | 0.4868 | 0.4868 | nan | 0.4868 | 0.0 | 0.4868 |
| 0.0337 | 20.0 | 3440 | 0.1162 | 0.2254 | 0.4509 | 0.4509 | nan | 0.4509 | 0.0 | 0.4509 |
| 0.0281 | 21.0 | 3612 | 0.1203 | 0.2213 | 0.4426 | 0.4426 | nan | 0.4426 | 0.0 | 0.4426 |
| 0.0354 | 22.0 | 3784 | 0.1266 | 0.2384 | 0.4768 | 0.4768 | nan | 0.4768 | 0.0 | 0.4768 |
| 0.0323 | 23.0 | 3956 | 0.1223 | 0.2409 | 0.4818 | 0.4818 | nan | 0.4818 | 0.0 | 0.4818 |
| 0.0299 | 24.0 | 4128 | 0.1356 | 0.2195 | 0.4390 | 0.4390 | nan | 0.4390 | 0.0 | 0.4390 |
| 0.0294 | 25.0 | 4300 | 0.1285 | 0.2318 | 0.4636 | 0.4636 | nan | 0.4636 | 0.0 | 0.4636 |
| 0.0295 | 26.0 | 4472 | 0.1274 | 0.2559 | 0.5119 | 0.5119 | nan | 0.5119 | 0.0 | 0.5119 |
| 0.0252 | 27.0 | 4644 | 0.1387 | 0.2413 | 0.4827 | 0.4827 | nan | 0.4827 | 0.0 | 0.4827 |
| 0.029 | 28.0 | 4816 | 0.1468 | 0.2236 | 0.4472 | 0.4472 | nan | 0.4472 | 0.0 | 0.4472 |
| 0.0218 | 29.0 | 4988 | 0.1448 | 0.2433 | 0.4866 | 0.4866 | nan | 0.4866 | 0.0 | 0.4866 |
| 0.0275 | 30.0 | 5160 | 0.1478 | 0.2318 | 0.4635 | 0.4635 | nan | 0.4635 | 0.0 | 0.4635 |
| 0.0233 | 31.0 | 5332 | 0.1377 | 0.2502 | 0.5005 | 0.5005 | nan | 0.5005 | 0.0 | 0.5005 |
| 0.0252 | 32.0 | 5504 | 0.1458 | 0.2399 | 0.4797 | 0.4797 | nan | 0.4797 | 0.0 | 0.4797 |
| 0.0245 | 33.0 | 5676 | 0.1431 | 0.2480 | 0.4960 | 0.4960 | nan | 0.4960 | 0.0 | 0.4960 |
| 0.0225 | 34.0 | 5848 | 0.1562 | 0.2439 | 0.4879 | 0.4879 | nan | 0.4879 | 0.0 | 0.4879 |
| 0.0242 | 35.0 | 6020 | 0.1633 | 0.2323 | 0.4646 | 0.4646 | nan | 0.4646 | 0.0 | 0.4646 |
| 0.0213 | 36.0 | 6192 | 0.1666 | 0.2274 | 0.4549 | 0.4549 | nan | 0.4549 | 0.0 | 0.4549 |
| 0.0256 | 37.0 | 6364 | 0.1665 | 0.2340 | 0.4680 | 0.4680 | nan | 0.4680 | 0.0 | 0.4680 |
| 0.0237 | 38.0 | 6536 | 0.1658 | 0.2410 | 0.4819 | 0.4819 | nan | 0.4819 | 0.0 | 0.4819 |
| 0.0192 | 39.0 | 6708 | 0.1705 | 0.2286 | 0.4572 | 0.4572 | nan | 0.4572 | 0.0 | 0.4572 |
| 0.0198 | 40.0 | 6880 | 0.1688 | 0.2322 | 0.4644 | 0.4644 | nan | 0.4644 | 0.0 | 0.4644 |
| 0.0214 | 41.0 | 7052 | 0.1717 | 0.2315 | 0.4630 | 0.4630 | nan | 0.4630 | 0.0 | 0.4630 |
| 0.0197 | 42.0 | 7224 | 0.1764 | 0.2338 | 0.4677 | 0.4677 | nan | 0.4677 | 0.0 | 0.4677 |
| 0.0187 | 43.0 | 7396 | 0.1764 | 0.2437 | 0.4874 | 0.4874 | nan | 0.4874 | 0.0 | 0.4874 |
| 0.0212 | 44.0 | 7568 | 0.1874 | 0.2259 | 0.4519 | 0.4519 | nan | 0.4519 | 0.0 | 0.4519 |
| 0.0188 | 45.0 | 7740 | 0.1854 | 0.2362 | 0.4725 | 0.4725 | nan | 0.4725 | 0.0 | 0.4725 |
| 0.0188 | 46.0 | 7912 | 0.1772 | 0.2320 | 0.4641 | 0.4641 | nan | 0.4641 | 0.0 | 0.4641 |
| 0.0228 | 47.0 | 8084 | 0.1783 | 0.2385 | 0.4770 | 0.4770 | nan | 0.4770 | 0.0 | 0.4770 |
| 0.0199 | 48.0 | 8256 | 0.1850 | 0.2317 | 0.4634 | 0.4634 | nan | 0.4634 | 0.0 | 0.4634 |
| 0.0202 | 49.0 | 8428 | 0.1872 | 0.2336 | 0.4672 | 0.4672 | nan | 0.4672 | 0.0 | 0.4672 |
| 0.0181 | 50.0 | 8600 | 0.1803 | 0.2405 | 0.4810 | 0.4810 | nan | 0.4810 | 0.0 | 0.4810 |
| 0.0157 | 51.0 | 8772 | 0.1874 | 0.2349 | 0.4697 | 0.4697 | nan | 0.4697 | 0.0 | 0.4697 |
| 0.0162 | 52.0 | 8944 | 0.1889 | 0.2332 | 0.4665 | 0.4665 | nan | 0.4665 | 0.0 | 0.4665 |
| 0.0178 | 53.0 | 9116 | 0.1948 | 0.2357 | 0.4715 | 0.4715 | nan | 0.4715 | 0.0 | 0.4715 |
| 0.0166 | 54.0 | 9288 | 0.1911 | 0.2333 | 0.4666 | 0.4666 | nan | 0.4666 | 0.0 | 0.4666 |
| 0.0193 | 55.0 | 9460 | 0.1959 | 0.2306 | 0.4611 | 0.4611 | nan | 0.4611 | 0.0 | 0.4611 |
| 0.0199 | 56.0 | 9632 | 0.1999 | 0.2330 | 0.4659 | 0.4659 | nan | 0.4659 | 0.0 | 0.4659 |
| 0.0177 | 57.0 | 9804 | 0.1943 | 0.2319 | 0.4639 | 0.4639 | nan | 0.4639 | 0.0 | 0.4639 |
| 0.019 | 58.0 | 9976 | 0.1926 | 0.2327 | 0.4653 | 0.4653 | nan | 0.4653 | 0.0 | 0.4653 |
| 0.0187 | 58.14 | 10000 | 0.1918 | 0.2329 | 0.4658 | 0.4658 | nan | 0.4658 | 0.0 | 0.4658 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"crack"
] |
JCAI2000/segformer-b0-finetuned-segments-sidewalk-2-segformer-tutourial |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2-segformer-tutourial
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5818
- Mean Iou: 0.3011
- Mean Accuracy: 0.3610
- Overall Accuracy: 0.8444
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8364
- Accuracy Flat-sidewalk: 0.9386
- Accuracy Flat-crosswalk: 0.7005
- Accuracy Flat-cyclinglane: 0.7745
- Accuracy Flat-parkingdriveway: 0.4695
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.5463
- Accuracy Human-person: 0.6230
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9128
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: nan
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.4478
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8809
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.5418
- Accuracy Construction-fenceguardrail: 0.5574
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.3278
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9459
- Accuracy Nature-terrain: 0.8600
- Accuracy Sky: 0.9662
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.2230
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7395
- Iou Flat-sidewalk: 0.8314
- Iou Flat-crosswalk: 0.6251
- Iou Flat-cyclinglane: 0.7160
- Iou Flat-parkingdriveway: 0.3216
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.4206
- Iou Human-person: 0.3351
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7711
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: nan
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.3854
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.6893
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.4039
- Iou Construction-fenceguardrail: 0.4696
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.2496
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8583
- Iou Nature-terrain: 0.7294
- Iou Sky: 0.9135
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.1745
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.488 | 0.12 | 50 | 2.3203 | 0.1076 | 0.1555 | 0.6454 | nan | 0.5629 | 0.8917 | 0.0 | 0.1457 | 0.0025 | 0.0 | 0.0001 | 0.0004 | 0.0 | 0.7999 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7386 | 0.0 | 0.0013 | 0.0002 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9632 | 0.0660 | 0.8030 | 0.0001 | 0.0 | 0.0003 | 0.0 | nan | 0.3879 | 0.6486 | 0.0 | 0.1312 | 0.0025 | 0.0 | 0.0001 | 0.0004 | 0.0 | 0.5250 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4739 | 0.0 | 0.0013 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6159 | 0.0553 | 0.7082 | 0.0001 | 0.0 | 0.0003 | 0.0 |
| 1.6299 | 0.25 | 100 | 1.7345 | 0.1218 | 0.1659 | 0.6685 | nan | 0.5674 | 0.9286 | 0.0 | 0.0107 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8298 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8395 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9407 | 0.3829 | 0.8087 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.4093 | 0.6497 | 0.0 | 0.0107 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5763 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4921 | 0.0 | 0.0002 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7001 | 0.3104 | 0.7495 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 1.4309 | 0.38 | 150 | 1.5198 | 0.1271 | 0.1734 | 0.6897 | nan | 0.7282 | 0.9071 | 0.0 | 0.0079 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8531 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8527 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9456 | 0.3840 | 0.8690 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4687 | 0.7008 | 0.0 | 0.0079 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5573 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5187 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7035 | 0.3237 | 0.7861 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2814 | 0.5 | 200 | 1.3563 | 0.1450 | 0.1908 | 0.7158 | nan | 0.6789 | 0.9448 | 0.0 | 0.2102 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8591 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8588 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9132 | 0.7877 | 0.8520 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4965 | 0.6981 | 0.0 | 0.2093 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6055 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5147 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7683 | 0.5627 | 0.7841 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6945 | 0.62 | 250 | 1.2967 | 0.1469 | 0.1971 | 0.7191 | nan | 0.7823 | 0.8949 | 0.0 | 0.2470 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9344 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8313 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9041 | 0.8094 | 0.9029 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.4942 | 0.7283 | 0.0 | 0.2448 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5256 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5211 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7719 | 0.6074 | 0.8072 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 1.5522 | 0.75 | 300 | 1.1943 | 0.1523 | 0.1953 | 0.7277 | nan | 0.7414 | 0.9365 | 0.0 | 0.2922 | 0.0116 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8427 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9099 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9003 | 0.7090 | 0.9066 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5376 | 0.7180 | 0.0 | 0.2825 | 0.0114 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6281 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4879 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7785 | 0.6144 | 0.8143 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7093 | 0.88 | 350 | 1.1594 | 0.1561 | 0.2008 | 0.7326 | nan | 0.6502 | 0.9568 | 0.0 | 0.3765 | 0.0155 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8670 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8770 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9201 | 0.8412 | 0.9199 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5117 | 0.7083 | 0.0 | 0.3374 | 0.0152 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6334 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5252 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7934 | 0.6433 | 0.8275 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1445 | 1.0 | 400 | 1.1201 | 0.1552 | 0.2009 | 0.7320 | nan | 0.7249 | 0.9356 | 0.0 | 0.3739 | 0.0354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7810 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9016 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8938 | 0.8789 | 0.9039 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5260 | 0.7265 | 0.0 | 0.3324 | 0.0341 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6367 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5198 | 0.0 | 0.0008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7766 | 0.5818 | 0.8319 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5762 | 1.12 | 450 | 1.0649 | 0.1578 | 0.2040 | 0.7385 | nan | 0.7259 | 0.9512 | 0.0 | 0.3550 | 0.0466 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8674 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8840 | 0.0 | 0.0099 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8861 | 0.8572 | 0.9454 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.5448 | 0.7259 | 0.0 | 0.3299 | 0.0441 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6460 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5402 | 0.0 | 0.0098 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7752 | 0.5983 | 0.8354 | 0.0 | 0.0 | 0.0003 | 0.0 |
| 1.1724 | 1.25 | 500 | 1.0340 | 0.1636 | 0.2095 | 0.7431 | nan | 0.7165 | 0.9284 | 0.0 | 0.5125 | 0.0790 | 0.0 | 0.0277 | 0.0 | 0.0 | 0.8230 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9039 | 0.0 | 0.0086 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9127 | 0.8649 | 0.9269 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.5347 | 0.7461 | 0.0 | 0.3799 | 0.0718 | 0.0 | 0.0264 | 0.0 | 0.0 | 0.6598 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5231 | 0.0 | 0.0085 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8016 | 0.6426 | 0.8395 | 0.0 | 0.0 | 0.0003 | 0.0 |
| 1.7008 | 1.38 | 550 | 0.9811 | 0.1662 | 0.2101 | 0.7502 | nan | 0.8048 | 0.9259 | 0.0 | 0.3869 | 0.1217 | 0.0 | 0.0361 | 0.0 | 0.0 | 0.8697 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8510 | 0.0 | 0.0281 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9411 | 0.8227 | 0.9355 | 0.0 | 0.0 | 0.0006 | 0.0 | nan | 0.5594 | 0.7493 | 0.0 | 0.3700 | 0.0972 | 0.0 | 0.0346 | 0.0 | 0.0 | 0.6461 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5481 | 0.0 | 0.0272 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7903 | 0.6704 | 0.8245 | 0.0 | 0.0 | 0.0006 | 0.0 |
| 0.5924 | 1.5 | 600 | 0.9687 | 0.1691 | 0.2121 | 0.7520 | nan | 0.7776 | 0.9355 | 0.0 | 0.4147 | 0.1552 | 0.0 | 0.0571 | 0.0 | 0.0 | 0.8155 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9139 | 0.0 | 0.0114 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9159 | 0.8587 | 0.9297 | 0.0 | 0.0 | 0.0010 | 0.0 | nan | 0.5641 | 0.7466 | 0.0 | 0.3827 | 0.1214 | 0.0 | 0.0526 | 0.0 | 0.0 | 0.6719 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5389 | 0.0 | 0.0112 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8124 | 0.6586 | 0.8511 | 0.0 | 0.0 | 0.0010 | 0.0 |
| 1.9075 | 1.62 | 650 | 0.9413 | 0.1721 | 0.2149 | 0.7567 | nan | 0.7972 | 0.9268 | 0.0 | 0.4365 | 0.1483 | 0.0 | 0.1357 | 0.0 | 0.0 | 0.8640 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8842 | 0.0 | 0.0222 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9492 | 0.7697 | 0.9410 | 0.0 | 0.0 | 0.0021 | 0.0 | nan | 0.5851 | 0.7521 | 0.0 | 0.3986 | 0.1187 | 0.0 | 0.1185 | 0.0 | 0.0 | 0.6666 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5508 | 0.0 | 0.0215 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7905 | 0.6580 | 0.8459 | 0.0 | 0.0 | 0.0021 | 0.0 |
| 1.1035 | 1.75 | 700 | 0.9646 | 0.1720 | 0.2138 | 0.7547 | nan | 0.7370 | 0.9564 | 0.0 | 0.4065 | 0.1380 | 0.0 | 0.1129 | 0.0 | 0.0 | 0.8711 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8830 | 0.0 | 0.0262 | 0.0 | 0.0 | nan | 0.0 | 0.0077 | 0.0 | 0.0 | 0.9277 | 0.8131 | 0.9589 | 0.0 | 0.0 | 0.0024 | 0.0 | nan | 0.5860 | 0.7301 | 0.0 | 0.3914 | 0.1090 | 0.0 | 0.1019 | 0.0 | 0.0 | 0.6809 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5383 | 0.0 | 0.0256 | 0.0 | 0.0 | nan | 0.0 | 0.0076 | 0.0 | 0.0 | 0.8127 | 0.6754 | 0.8428 | 0.0 | 0.0 | 0.0024 | 0.0 |
| 0.6372 | 1.88 | 750 | 0.8958 | 0.1813 | 0.2262 | 0.7636 | nan | 0.7484 | 0.9387 | 0.0 | 0.4605 | 0.2077 | 0.0 | 0.2876 | 0.0 | 0.0 | 0.9013 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9166 | 0.0 | 0.0551 | 0.0 | 0.0 | nan | 0.0 | 0.0033 | 0.0 | 0.0 | 0.9241 | 0.8566 | 0.9364 | 0.0 | 0.0 | 0.0030 | 0.0 | nan | 0.5909 | 0.7555 | 0.0 | 0.4116 | 0.1516 | 0.0 | 0.2190 | 0.0 | 0.0 | 0.6771 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5549 | 0.0 | 0.0523 | 0.0 | 0.0 | nan | 0.0 | 0.0033 | 0.0 | 0.0 | 0.8228 | 0.6811 | 0.8775 | 0.0 | 0.0 | 0.0029 | 0.0 |
| 0.5682 | 2.0 | 800 | 0.8480 | 0.1900 | 0.2386 | 0.7738 | nan | 0.7474 | 0.9230 | 0.0 | 0.6150 | 0.3295 | 0.0 | 0.3338 | 0.0 | 0.0 | 0.9118 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9131 | 0.0 | 0.1108 | 0.0 | 0.0 | nan | 0.0 | 0.0085 | 0.0 | 0.0 | 0.9308 | 0.8564 | 0.9532 | 0.0 | 0.0 | 0.0020 | 0.0 | nan | 0.6101 | 0.7761 | 0.0 | 0.5059 | 0.2038 | 0.0 | 0.2501 | 0.0 | 0.0 | 0.6655 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5699 | 0.0 | 0.0966 | 0.0 | 0.0 | nan | 0.0 | 0.0085 | 0.0 | 0.0 | 0.8209 | 0.6909 | 0.8803 | 0.0 | 0.0 | 0.0020 | 0.0 |
| 0.725 | 2.12 | 850 | 0.8578 | 0.1879 | 0.2359 | 0.7747 | nan | 0.7804 | 0.9279 | 0.0 | 0.5716 | 0.2711 | 0.0 | 0.2857 | 0.0 | 0.0 | 0.9158 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8883 | 0.0 | 0.1206 | 0.0 | 0.0 | nan | 0.0 | 0.0090 | 0.0 | 0.0 | 0.9294 | 0.8843 | 0.9572 | 0.0 | 0.0 | 0.0087 | 0.0 | nan | 0.6250 | 0.7717 | 0.0 | 0.5054 | 0.1887 | 0.0 | 0.2134 | 0.0 | 0.0 | 0.6573 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5817 | 0.0 | 0.1049 | 0.0 | 0.0 | nan | 0.0 | 0.0090 | 0.0 | 0.0 | 0.8161 | 0.6510 | 0.8790 | 0.0 | 0.0 | 0.0085 | 0.0 |
| 0.51 | 2.25 | 900 | 0.8616 | 0.1941 | 0.2441 | 0.7678 | nan | 0.6722 | 0.9332 | 0.0 | 0.5630 | 0.4052 | 0.0 | 0.3876 | 0.0 | 0.0 | 0.8768 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8580 | 0.0 | 0.3540 | 0.0 | 0.0 | nan | 0.0 | 0.0175 | 0.0 | 0.0 | 0.9522 | 0.8271 | 0.9557 | 0.0 | 0.0 | 0.0083 | 0.0 | nan | 0.5804 | 0.7650 | 0.0 | 0.4572 | 0.1984 | 0.0 | 0.2696 | 0.0 | 0.0 | 0.6993 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5980 | 0.0 | 0.2558 | 0.0 | 0.0 | nan | 0.0 | 0.0173 | 0.0 | 0.0 | 0.8087 | 0.6755 | 0.8764 | 0.0 | 0.0 | 0.0080 | 0.0 |
| 0.9404 | 2.38 | 950 | 0.8303 | 0.1965 | 0.2458 | 0.7781 | nan | 0.7834 | 0.9231 | 0.0 | 0.5345 | 0.3098 | 0.0 | 0.3520 | 0.0 | 0.0 | 0.9111 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8712 | 0.0 | 0.3564 | 0.0 | 0.0 | nan | 0.0 | 0.0286 | 0.0 | 0.0 | 0.9357 | 0.8818 | 0.9543 | 0.0 | 0.0 | 0.0227 | 0.0 | nan | 0.6167 | 0.7711 | 0.0 | 0.4738 | 0.2072 | 0.0 | 0.2605 | 0.0 | 0.0 | 0.6721 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6204 | 0.0 | 0.2520 | 0.0 | 0.0 | nan | 0.0 | 0.0281 | 0.0 | 0.0 | 0.8179 | 0.6627 | 0.8842 | 0.0 | 0.0 | 0.0213 | 0.0 |
| 0.4844 | 2.5 | 1000 | 0.8113 | 0.1952 | 0.2431 | 0.7762 | nan | 0.7824 | 0.9354 | 0.0 | 0.4556 | 0.3144 | 0.0 | 0.3925 | 0.0 | 0.0 | 0.9023 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8776 | 0.0 | 0.3066 | 0.0 | 0.0 | nan | 0.0 | 0.0409 | 0.0 | 0.0 | 0.9265 | 0.8766 | 0.9575 | 0.0 | 0.0 | 0.0111 | 0.0 | nan | 0.6253 | 0.7656 | 0.0 | 0.4358 | 0.2015 | 0.0 | 0.2825 | 0.0 | 0.0 | 0.6866 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5965 | 0.0 | 0.2222 | 0.0 | 0.0 | nan | 0.0 | 0.0405 | 0.0 | 0.0 | 0.8217 | 0.6857 | 0.8731 | 0.0 | 0.0 | 0.0107 | 0.0 |
| 0.5377 | 2.62 | 1050 | 0.8262 | 0.1955 | 0.2429 | 0.7755 | nan | 0.7408 | 0.9399 | 0.0 | 0.4855 | 0.3249 | 0.0 | 0.4112 | 0.0013 | 0.0 | 0.9104 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8662 | 0.0 | 0.3181 | 0.0 | 0.0 | nan | 0.0 | 0.0144 | 0.0 | 0.0 | 0.9553 | 0.8099 | 0.9541 | 0.0 | 0.0 | 0.0409 | 0.0 | nan | 0.6230 | 0.7603 | 0.0 | 0.4479 | 0.2190 | 0.0 | 0.2781 | 0.0013 | 0.0 | 0.6791 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6198 | 0.0 | 0.2235 | 0.0 | 0.0 | nan | 0.0 | 0.0143 | 0.0 | 0.0 | 0.8064 | 0.6616 | 0.8858 | 0.0 | 0.0 | 0.0363 | 0.0 |
| 0.5133 | 2.75 | 1100 | 0.8080 | 0.1985 | 0.2479 | 0.7775 | nan | 0.7620 | 0.9341 | 0.0 | 0.5057 | 0.3786 | 0.0 | 0.3555 | 0.0025 | 0.0 | 0.9024 | 0.0 | nan | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.8409 | 0.0 | 0.4094 | 0.0 | 0.0 | nan | 0.0 | 0.0365 | 0.0 | 0.0 | 0.9372 | 0.8735 | 0.9667 | 0.0 | 0.0 | 0.0286 | 0.0 | nan | 0.6150 | 0.7703 | 0.0 | 0.4541 | 0.2155 | 0.0 | 0.2686 | 0.0025 | 0.0 | 0.6940 | 0.0 | nan | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6231 | 0.0 | 0.2665 | 0.0 | 0.0 | nan | 0.0 | 0.0358 | 0.0 | 0.0 | 0.8177 | 0.6785 | 0.8857 | 0.0 | 0.0 | 0.0258 | 0.0 |
| 0.9712 | 2.88 | 1150 | 0.8097 | 0.1928 | 0.2371 | 0.7741 | nan | 0.8580 | 0.9160 | 0.0 | 0.4079 | 0.2468 | 0.0 | 0.2023 | 0.0377 | 0.0 | 0.9173 | 0.0 | nan | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8780 | 0.0 | 0.2836 | 0.0000 | 0.0 | nan | 0.0 | 0.0766 | 0.0 | 0.0 | 0.9411 | 0.8324 | 0.9629 | 0.0 | 0.0 | 0.0272 | 0.0 | nan | 0.5977 | 0.7718 | 0.0 | 0.3912 | 0.1778 | 0.0 | 0.1669 | 0.0371 | 0.0 | 0.6803 | 0.0 | nan | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6186 | 0.0 | 0.2094 | 0.0000 | 0.0 | nan | 0.0 | 0.0748 | 0.0 | 0.0 | 0.8252 | 0.7069 | 0.8861 | 0.0 | 0.0 | 0.0254 | 0.0 |
| 0.5065 | 3.0 | 1200 | 0.7834 | 0.2004 | 0.2494 | 0.7787 | nan | 0.8491 | 0.8819 | 0.0 | 0.5845 | 0.3527 | 0.0 | 0.3553 | 0.0501 | 0.0 | 0.9198 | 0.0 | nan | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.2436 | 0.0001 | 0.0 | nan | 0.0 | 0.0703 | 0.0 | 0.0 | 0.9449 | 0.8381 | 0.9622 | 0.0 | 0.0 | 0.0309 | 0.0 | nan | 0.6049 | 0.7791 | 0.0 | 0.5258 | 0.2196 | 0.0 | 0.2507 | 0.0488 | 0.0 | 0.6789 | 0.0 | nan | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.6144 | 0.0 | 0.1886 | 0.0001 | 0.0 | nan | 0.0 | 0.0683 | 0.0 | 0.0 | 0.8257 | 0.7028 | 0.8773 | 0.0 | 0.0 | 0.0278 | 0.0 |
| 1.7304 | 3.12 | 1250 | 0.7721 | 0.2066 | 0.2535 | 0.7869 | nan | 0.7783 | 0.9325 | 0.0 | 0.5908 | 0.3273 | 0.0 | 0.3851 | 0.0578 | 0.0 | 0.9025 | 0.0 | nan | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.8995 | 0.0 | 0.3196 | 0.0018 | 0.0 | nan | 0.0 | 0.0869 | 0.0 | 0.0 | 0.9345 | 0.8763 | 0.9682 | 0.0 | 0.0 | 0.0501 | 0.0 | nan | 0.6235 | 0.7751 | 0.0 | 0.5379 | 0.2078 | 0.0 | 0.2945 | 0.0566 | 0.0 | 0.7051 | 0.0 | nan | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.6258 | 0.0 | 0.2442 | 0.0018 | 0.0 | nan | 0.0 | 0.0844 | 0.0 | 0.0 | 0.8338 | 0.7019 | 0.8736 | 0.0 | 0.0 | 0.0437 | 0.0 |
| 0.66 | 3.25 | 1300 | 0.7819 | 0.2112 | 0.2587 | 0.7855 | nan | 0.7894 | 0.9367 | 0.0000 | 0.5252 | 0.3014 | 0.0 | 0.3633 | 0.1003 | 0.0 | 0.9086 | 0.0 | nan | 0.0 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.4998 | 0.0015 | 0.0 | nan | 0.0 | 0.1663 | 0.0 | 0.0 | 0.9162 | 0.8732 | 0.9374 | 0.0 | 0.0 | 0.0512 | 0.0 | nan | 0.6323 | 0.7652 | 0.0000 | 0.4811 | 0.1876 | 0.0 | 0.2850 | 0.0919 | 0.0 | 0.7142 | 0.0 | nan | 0.0 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.6492 | 0.0 | 0.3148 | 0.0015 | 0.0 | nan | 0.0 | 0.1523 | 0.0 | 0.0 | 0.8382 | 0.6970 | 0.8927 | 0.0 | 0.0 | 0.0448 | 0.0 |
| 0.5002 | 3.38 | 1350 | 0.8003 | 0.2076 | 0.2558 | 0.7818 | nan | 0.7802 | 0.9357 | 0.0 | 0.4772 | 0.2416 | 0.0 | 0.4454 | 0.1361 | 0.0 | 0.9488 | 0.0 | nan | 0.0 | 0.0 | 0.0395 | 0.0 | 0.0 | 0.8563 | 0.0 | 0.3519 | 0.0025 | 0.0 | nan | 0.0 | 0.1423 | 0.0 | 0.0 | 0.9454 | 0.8564 | 0.9638 | 0.0 | 0.0 | 0.0626 | 0.0 | nan | 0.6277 | 0.7656 | 0.0 | 0.4501 | 0.1628 | 0.0 | 0.3162 | 0.1202 | 0.0 | 0.6544 | 0.0 | nan | 0.0 | 0.0 | 0.0389 | 0.0 | 0.0 | 0.6397 | 0.0 | 0.2495 | 0.0025 | 0.0 | nan | 0.0 | 0.1350 | 0.0 | 0.0 | 0.8330 | 0.7017 | 0.8916 | 0.0 | 0.0 | 0.0540 | 0.0 |
| 1.7687 | 3.5 | 1400 | 0.7399 | 0.2183 | 0.2679 | 0.7923 | nan | 0.8339 | 0.9184 | 0.0016 | 0.5828 | 0.2395 | 0.0 | 0.4439 | 0.2259 | 0.0 | 0.9229 | 0.0 | nan | 0.0 | 0.0 | 0.0371 | 0.0 | 0.0 | 0.8792 | 0.0 | 0.4739 | 0.0005 | 0.0 | nan | 0.0 | 0.1879 | 0.0 | 0.0 | 0.9344 | 0.8787 | 0.9571 | 0.0 | 0.0 | 0.0551 | 0.0 | nan | 0.6405 | 0.7799 | 0.0016 | 0.5199 | 0.1753 | 0.0 | 0.3078 | 0.1909 | 0.0 | 0.7149 | 0.0 | nan | 0.0 | 0.0 | 0.0367 | 0.0 | 0.0 | 0.6442 | 0.0 | 0.3149 | 0.0005 | 0.0 | nan | 0.0 | 0.1680 | 0.0 | 0.0 | 0.8413 | 0.7054 | 0.8945 | 0.0 | 0.0 | 0.0493 | 0.0 |
| 0.5413 | 3.62 | 1450 | 0.7299 | 0.2217 | 0.2713 | 0.7940 | nan | 0.8010 | 0.9389 | 0.0110 | 0.5446 | 0.3857 | 0.0 | 0.4218 | 0.2719 | 0.0 | 0.8834 | 0.0 | nan | 0.0 | 0.0 | 0.0176 | 0.0 | 0.0 | 0.8653 | 0.0 | 0.5323 | 0.0011 | 0.0 | nan | 0.0 | 0.1796 | 0.0 | 0.0 | 0.9424 | 0.8469 | 0.9612 | 0.0 | 0.0 | 0.0766 | 0.0 | nan | 0.6441 | 0.7806 | 0.0110 | 0.5222 | 0.2475 | 0.0 | 0.3136 | 0.2070 | 0.0 | 0.7395 | 0.0 | nan | 0.0 | 0.0 | 0.0175 | 0.0 | 0.0 | 0.6481 | 0.0 | 0.3265 | 0.0011 | 0.0 | nan | 0.0 | 0.1629 | 0.0 | 0.0 | 0.8348 | 0.6880 | 0.8869 | 0.0 | 0.0 | 0.0627 | 0.0 |
| 1.2082 | 3.75 | 1500 | 0.6959 | 0.2248 | 0.2729 | 0.7982 | nan | 0.8119 | 0.9199 | 0.0999 | 0.6762 | 0.4158 | 0.0 | 0.3494 | 0.2189 | 0.0 | 0.8810 | 0.0 | nan | 0.0 | 0.0 | 0.0351 | 0.0 | 0.0 | 0.9162 | 0.0 | 0.4066 | 0.0013 | 0.0 | nan | 0.0 | 0.2105 | 0.0 | 0.0 | 0.9437 | 0.8118 | 0.9608 | 0.0 | 0.0 | 0.0740 | 0.0 | nan | 0.6593 | 0.7930 | 0.0999 | 0.5882 | 0.2617 | 0.0 | 0.2944 | 0.1709 | 0.0 | 0.7215 | 0.0 | nan | 0.0 | 0.0 | 0.0349 | 0.0 | 0.0 | 0.6180 | 0.0 | 0.2757 | 0.0013 | 0.0 | nan | 0.0 | 0.1849 | 0.0 | 0.0 | 0.8332 | 0.6978 | 0.8980 | 0.0 | 0.0 | 0.0603 | 0.0 |
| 0.4615 | 3.88 | 1550 | 0.7529 | 0.2224 | 0.2737 | 0.7893 | nan | 0.7573 | 0.9446 | 0.0228 | 0.5131 | 0.3968 | 0.0 | 0.3926 | 0.3763 | 0.0 | 0.8950 | 0.0 | nan | 0.0 | 0.0 | 0.0468 | 0.0 | 0.0 | 0.8758 | 0.0 | 0.4520 | 0.0006 | 0.0 | nan | 0.0 | 0.1823 | 0.0 | 0.0 | 0.9391 | 0.8892 | 0.9592 | 0.0 | 0.0 | 0.1149 | 0.0 | nan | 0.6296 | 0.7708 | 0.0228 | 0.4801 | 0.2393 | 0.0 | 0.2962 | 0.2472 | 0.0 | 0.7382 | 0.0 | nan | 0.0 | 0.0 | 0.0464 | 0.0 | 0.0 | 0.6456 | 0.0 | 0.2974 | 0.0006 | 0.0 | nan | 0.0 | 0.1669 | 0.0 | 0.0 | 0.8403 | 0.7010 | 0.9013 | 0.0 | 0.0 | 0.0922 | 0.0 |
| 2.1925 | 4.0 | 1600 | 0.7518 | 0.2245 | 0.2783 | 0.7905 | nan | 0.6996 | 0.9509 | 0.0877 | 0.6004 | 0.3108 | 0.0 | 0.4915 | 0.4171 | 0.0 | 0.9078 | 0.0 | nan | 0.0 | 0.0 | 0.0642 | 0.0 | 0.0 | 0.8704 | 0.0 | 0.4508 | 0.0048 | 0.0 | nan | 0.0 | 0.1670 | 0.0 | 0.0 | 0.9501 | 0.8806 | 0.9638 | 0.0 | 0.0 | 0.0885 | 0.0 | nan | 0.6114 | 0.7724 | 0.0877 | 0.5295 | 0.2241 | 0.0 | 0.3105 | 0.2501 | 0.0 | 0.7289 | 0.0 | nan | 0.0 | 0.0 | 0.0634 | 0.0 | 0.0 | 0.6496 | 0.0 | 0.2917 | 0.0047 | 0.0 | nan | 0.0 | 0.1524 | 0.0 | 0.0 | 0.8370 | 0.7004 | 0.8949 | 0.0 | 0.0 | 0.0747 | 0.0 |
| 0.8398 | 4.12 | 1650 | 0.7374 | 0.2325 | 0.2856 | 0.7960 | nan | 0.7649 | 0.9445 | 0.0382 | 0.5803 | 0.4033 | 0.0 | 0.4096 | 0.4098 | 0.0 | 0.9223 | 0.0 | nan | 0.0 | 0.0 | 0.0928 | 0.0 | 0.0 | 0.8409 | 0.0 | 0.4956 | 0.0605 | 0.0 | nan | 0.0 | 0.2303 | 0.0 | 0.0 | 0.9465 | 0.8428 | 0.9687 | 0.0 | 0.0 | 0.1883 | 0.0 | nan | 0.6447 | 0.7801 | 0.0382 | 0.5260 | 0.2328 | 0.0 | 0.3170 | 0.2554 | 0.0 | 0.7296 | 0.0 | nan | 0.0 | 0.0 | 0.0916 | 0.0 | 0.0 | 0.6593 | 0.0 | 0.3201 | 0.0596 | 0.0 | nan | 0.0 | 0.1986 | 0.0 | 0.0 | 0.8423 | 0.7166 | 0.8943 | 0.0 | 0.0 | 0.1326 | 0.0 |
| 0.6942 | 4.25 | 1700 | 0.7359 | 0.2283 | 0.2831 | 0.7935 | nan | 0.7659 | 0.9438 | 0.0883 | 0.5150 | 0.3600 | 0.0 | 0.4102 | 0.4644 | 0.0 | 0.9176 | 0.0 | nan | 0.0 | 0.0 | 0.0778 | 0.0 | 0.0 | 0.8748 | 0.0 | 0.4698 | 0.0312 | 0.0 | nan | 0.0 | 0.2085 | 0.0 | 0.0 | 0.9358 | 0.9040 | 0.9597 | 0.0 | 0.0 | 0.1319 | 0.0 | nan | 0.6459 | 0.7740 | 0.0882 | 0.4742 | 0.2239 | 0.0 | 0.3101 | 0.2523 | 0.0 | 0.7376 | 0.0 | nan | 0.0 | 0.0 | 0.0768 | 0.0 | 0.0 | 0.6628 | 0.0 | 0.3118 | 0.0309 | 0.0 | nan | 0.0 | 0.1826 | 0.0 | 0.0 | 0.8401 | 0.6910 | 0.8990 | 0.0 | 0.0 | 0.1043 | 0.0 |
| 0.4449 | 4.38 | 1750 | 0.7015 | 0.2391 | 0.2890 | 0.8038 | nan | 0.7983 | 0.9354 | 0.1658 | 0.5990 | 0.3891 | 0.0 | 0.4565 | 0.3812 | 0.0 | 0.8791 | 0.0 | nan | 0.0 | 0.0 | 0.1167 | 0.0 | 0.0 | 0.9121 | 0.0 | 0.3766 | 0.1337 | 0.0 | nan | 0.0 | 0.2224 | 0.0 | 0.0 | 0.9440 | 0.8811 | 0.9606 | 0.0 | 0.0 | 0.0969 | 0.0 | nan | 0.6789 | 0.7810 | 0.1654 | 0.5370 | 0.2592 | 0.0 | 0.3467 | 0.2309 | 0.0 | 0.7455 | 0.0 | nan | 0.0 | 0.0 | 0.1150 | 0.0 | 0.0 | 0.6470 | 0.0 | 0.2824 | 0.1306 | 0.0 | nan | 0.0 | 0.1949 | 0.0 | 0.0 | 0.8393 | 0.7158 | 0.9010 | 0.0 | 0.0 | 0.0793 | 0.0 |
| 0.3577 | 4.5 | 1800 | 0.7060 | 0.2380 | 0.2900 | 0.8042 | nan | 0.8066 | 0.9443 | 0.1282 | 0.5640 | 0.3782 | 0.0 | 0.4202 | 0.4983 | 0.0 | 0.9135 | 0.0 | nan | 0.0 | 0.0 | 0.1158 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.4212 | 0.1594 | 0.0 | nan | 0.0 | 0.1916 | 0.0 | 0.0 | 0.9433 | 0.8580 | 0.9553 | 0.0 | 0.0 | 0.0871 | 0.0 | nan | 0.6721 | 0.7847 | 0.1280 | 0.5383 | 0.2420 | 0.0 | 0.3305 | 0.2508 | 0.0 | 0.7383 | 0.0 | nan | 0.0 | 0.0 | 0.1131 | 0.0 | 0.0 | 0.6585 | 0.0 | 0.2968 | 0.1542 | 0.0 | nan | 0.0 | 0.1737 | 0.0 | 0.0 | 0.8444 | 0.7157 | 0.9020 | 0.0 | 0.0 | 0.0739 | 0.0 |
| 0.4443 | 4.62 | 1850 | 0.6722 | 0.2509 | 0.3035 | 0.8143 | nan | 0.8160 | 0.9397 | 0.3917 | 0.6472 | 0.3310 | 0.0 | 0.4674 | 0.4023 | 0.0 | 0.9087 | 0.0 | nan | 0.0 | 0.0 | 0.1512 | 0.0 | 0.0 | 0.8799 | 0.0 | 0.4608 | 0.1119 | 0.0 | nan | 0.0 | 0.2761 | 0.0 | 0.0 | 0.9351 | 0.9025 | 0.9701 | 0.0 | 0.0 | 0.1213 | 0.0 | nan | 0.6963 | 0.8011 | 0.3870 | 0.5855 | 0.2383 | 0.0 | 0.3398 | 0.2508 | 0.0 | 0.7382 | 0.0 | nan | 0.0 | 0.0 | 0.1479 | 0.0 | 0.0 | 0.6587 | 0.0 | 0.3103 | 0.1097 | 0.0 | nan | 0.0 | 0.2211 | 0.0 | 0.0 | 0.8499 | 0.7010 | 0.8999 | 0.0 | 0.0 | 0.0938 | 0.0 |
| 1.0 | 4.75 | 1900 | 0.6912 | 0.2484 | 0.3023 | 0.8114 | nan | 0.7584 | 0.9451 | 0.3347 | 0.6729 | 0.3085 | 0.0 | 0.5324 | 0.5104 | 0.0 | 0.8877 | 0.0 | nan | 0.0 | 0.0 | 0.1254 | 0.0 | 0.0 | 0.9136 | 0.0 | 0.4858 | 0.1048 | 0.0 | nan | 0.0 | 0.2013 | 0.0 | 0.0 | 0.9525 | 0.8531 | 0.9638 | 0.0 | 0.0 | 0.1224 | 0.0 | nan | 0.6755 | 0.7882 | 0.3247 | 0.6017 | 0.2234 | 0.0 | 0.3783 | 0.2464 | 0.0 | 0.7472 | 0.0 | nan | 0.0 | 0.0 | 0.1230 | 0.0 | 0.0 | 0.6713 | 0.0 | 0.3498 | 0.1035 | 0.0 | nan | 0.0 | 0.1774 | 0.0 | 0.0 | 0.8385 | 0.6933 | 0.9049 | 0.0 | 0.0 | 0.1010 | 0.0 |
| 0.8306 | 4.88 | 1950 | 0.6655 | 0.2546 | 0.3060 | 0.8163 | nan | 0.8323 | 0.9347 | 0.4204 | 0.6135 | 0.3336 | 0.0 | 0.4604 | 0.4942 | 0.0 | 0.9134 | 0.0 | nan | 0.0 | 0.0 | 0.1336 | 0.0 | 0.0 | 0.9069 | 0.0 | 0.4913 | 0.1178 | 0.0 | nan | 0.0 | 0.2380 | 0.0 | 0.0 | 0.9446 | 0.8621 | 0.9584 | 0.0 | 0.0 | 0.1373 | 0.0 | nan | 0.6862 | 0.7964 | 0.4167 | 0.5900 | 0.2364 | 0.0 | 0.3536 | 0.2819 | 0.0 | 0.7324 | 0.0 | nan | 0.0 | 0.0 | 0.1299 | 0.0 | 0.0 | 0.6780 | 0.0 | 0.3565 | 0.1162 | 0.0 | nan | 0.0 | 0.1977 | 0.0 | 0.0 | 0.8435 | 0.7134 | 0.9057 | 0.0 | 0.0 | 0.1143 | 0.0 |
| 0.5413 | 5.0 | 2000 | 0.6798 | 0.2549 | 0.3053 | 0.8161 | nan | 0.8131 | 0.9486 | 0.3975 | 0.6113 | 0.3320 | 0.0 | 0.4642 | 0.4823 | 0.0 | 0.8911 | 0.0 | nan | 0.0 | 0.0 | 0.1604 | 0.0 | 0.0 | 0.9040 | 0.0 | 0.5306 | 0.1225 | 0.0 | nan | 0.0 | 0.2572 | 0.0 | 0.0 | 0.9378 | 0.8772 | 0.9580 | 0.0 | 0.0 | 0.0807 | 0.0 | nan | 0.6921 | 0.7895 | 0.3820 | 0.5914 | 0.2289 | 0.0 | 0.3709 | 0.2736 | 0.0 | 0.7475 | 0.0 | nan | 0.0 | 0.0 | 0.1553 | 0.0 | 0.0 | 0.6739 | 0.0 | 0.3688 | 0.1197 | 0.0 | nan | 0.0 | 0.2122 | 0.0 | 0.0 | 0.8485 | 0.7278 | 0.9050 | 0.0 | 0.0 | 0.0700 | 0.0 |
| 0.5256 | 5.12 | 2050 | 0.6704 | 0.2561 | 0.3118 | 0.8139 | nan | 0.7844 | 0.9341 | 0.3012 | 0.6551 | 0.4701 | 0.0 | 0.4866 | 0.5064 | 0.0 | 0.9148 | 0.0 | nan | 0.0 | 0.0 | 0.1733 | 0.0 | 0.0 | 0.9118 | 0.0 | 0.5235 | 0.1756 | 0.0 | nan | 0.0 | 0.2735 | 0.0 | 0.0 | 0.9372 | 0.8601 | 0.9652 | 0.0 | 0.0 | 0.1035 | 0.0 | nan | 0.6849 | 0.7987 | 0.2964 | 0.5979 | 0.2575 | 0.0 | 0.3739 | 0.2968 | 0.0 | 0.7392 | 0.0 | nan | 0.0 | 0.0 | 0.1670 | 0.0 | 0.0 | 0.6695 | 0.0 | 0.3530 | 0.1687 | 0.0 | nan | 0.0 | 0.2251 | 0.0 | 0.0 | 0.8533 | 0.7200 | 0.9032 | 0.0 | 0.0 | 0.0889 | 0.0 |
| 1.5354 | 5.25 | 2100 | 0.6749 | 0.2574 | 0.3114 | 0.8129 | nan | 0.7795 | 0.9479 | 0.2673 | 0.6263 | 0.3309 | 0.0 | 0.4880 | 0.5526 | 0.0 | 0.9229 | 0.0 | nan | 0.0 | 0.0 | 0.1946 | 0.0 | 0.0 | 0.9058 | 0.0 | 0.4747 | 0.2891 | 0.0 | nan | 0.0 | 0.2789 | 0.0 | 0.0 | 0.9296 | 0.8926 | 0.9724 | 0.0 | 0.0 | 0.1123 | 0.0 | nan | 0.6664 | 0.7862 | 0.2666 | 0.5673 | 0.2425 | 0.0 | 0.3705 | 0.2926 | 0.0 | 0.7436 | 0.0 | nan | 0.0 | 0.0 | 0.1875 | 0.0 | 0.0 | 0.6739 | 0.0 | 0.3639 | 0.2774 | 0.0 | nan | 0.0 | 0.2256 | 0.0 | 0.0 | 0.8535 | 0.7312 | 0.8955 | 0.0 | 0.0 | 0.0935 | 0.0 |
| 0.9066 | 5.38 | 2150 | 0.6420 | 0.2692 | 0.3288 | 0.8231 | nan | 0.8027 | 0.9289 | 0.5349 | 0.6724 | 0.4873 | 0.0 | 0.5372 | 0.5813 | 0.0 | 0.9129 | 0.0 | nan | 0.0 | 0.0 | 0.1965 | 0.0 | 0.0 | 0.8827 | 0.0 | 0.4897 | 0.2717 | 0.0 | nan | 0.0 | 0.2897 | 0.0 | 0.0 | 0.9517 | 0.8653 | 0.9718 | 0.0 | 0.0 | 0.1459 | 0.0 | nan | 0.7041 | 0.8076 | 0.5014 | 0.6246 | 0.3067 | 0.0 | 0.3802 | 0.2714 | 0.0 | 0.7480 | 0.0 | nan | 0.0 | 0.0 | 0.1893 | 0.0 | 0.0 | 0.6796 | 0.0 | 0.3739 | 0.2635 | 0.0 | nan | 0.0 | 0.2207 | 0.0 | 0.0 | 0.8412 | 0.6891 | 0.8949 | 0.0 | 0.0 | 0.1171 | 0.0 |
| 0.5222 | 5.5 | 2200 | 0.6669 | 0.2669 | 0.3248 | 0.8163 | nan | 0.7671 | 0.9418 | 0.3374 | 0.6925 | 0.4213 | 0.0 | 0.5016 | 0.5665 | 0.0 | 0.9186 | 0.0 | nan | 0.0 | 0.0 | 0.2600 | 0.0 | 0.0 | 0.8706 | 0.0 | 0.5646 | 0.3602 | 0.0 | nan | 0.0 | 0.2850 | 0.0 | 0.0 | 0.9355 | 0.8649 | 0.9657 | 0.0 | 0.0 | 0.1400 | 0.0 | nan | 0.6713 | 0.7977 | 0.3192 | 0.6194 | 0.2542 | 0.0 | 0.3945 | 0.2906 | 0.0 | 0.7521 | 0.0 | nan | 0.0 | 0.0 | 0.2461 | 0.0 | 0.0 | 0.6642 | 0.0 | 0.3736 | 0.3327 | 0.0 | nan | 0.0 | 0.2250 | 0.0 | 0.0 | 0.8543 | 0.7271 | 0.9034 | 0.0 | 0.0 | 0.1157 | 0.0 |
| 0.7196 | 5.62 | 2250 | 0.6619 | 0.2715 | 0.3274 | 0.8231 | nan | 0.8077 | 0.9509 | 0.4463 | 0.6637 | 0.3284 | 0.0 | 0.5066 | 0.5578 | 0.0 | 0.9055 | 0.0 | nan | 0.0 | 0.0 | 0.2320 | 0.0 | 0.0 | 0.8483 | 0.0 | 0.5559 | 0.2812 | 0.0 | nan | 0.0 | 0.3302 | 0.0 | 0.0 | 0.9439 | 0.8596 | 0.9613 | 0.0 | 0.0 | 0.2981 | 0.0 | nan | 0.7066 | 0.7987 | 0.4347 | 0.6179 | 0.2538 | 0.0 | 0.3744 | 0.2811 | 0.0 | 0.7641 | 0.0 | nan | 0.0 | 0.0 | 0.2227 | 0.0 | 0.0 | 0.6750 | 0.0 | 0.3648 | 0.2705 | 0.0 | nan | 0.0 | 0.2409 | 0.0 | 0.0 | 0.8479 | 0.7241 | 0.9075 | 0.0 | 0.0 | 0.2042 | 0.0 |
| 0.4246 | 5.75 | 2300 | 0.6761 | 0.2599 | 0.3149 | 0.8137 | nan | 0.7550 | 0.9532 | 0.3430 | 0.6596 | 0.3628 | 0.0 | 0.4682 | 0.4827 | 0.0 | 0.9109 | 0.0 | nan | 0.0 | 0.0 | 0.2185 | 0.0 | 0.0 | 0.8738 | 0.0 | 0.5448 | 0.2315 | 0.0 | nan | 0.0 | 0.3239 | 0.0 | 0.0 | 0.9358 | 0.8866 | 0.9666 | 0.0 | 0.0 | 0.1596 | 0.0 | nan | 0.6763 | 0.7903 | 0.3378 | 0.6097 | 0.2436 | 0.0 | 0.3451 | 0.2708 | 0.0 | 0.7474 | 0.0 | nan | 0.0 | 0.0 | 0.2118 | 0.0 | 0.0 | 0.6605 | 0.0 | 0.3625 | 0.2241 | 0.0 | nan | 0.0 | 0.2374 | 0.0 | 0.0 | 0.8534 | 0.7154 | 0.9062 | 0.0 | 0.0 | 0.1249 | 0.0 |
| 0.5324 | 5.88 | 2350 | 0.6352 | 0.2711 | 0.3279 | 0.8266 | nan | 0.8153 | 0.9320 | 0.4755 | 0.7299 | 0.5061 | 0.0 | 0.5260 | 0.5623 | 0.0 | 0.9085 | 0.0 | nan | 0.0 | 0.0 | 0.2232 | 0.0 | 0.0 | 0.8919 | 0.0 | 0.4953 | 0.2723 | 0.0 | nan | 0.0 | 0.2771 | 0.0 | 0.0 | 0.9456 | 0.8615 | 0.9550 | 0.0 | 0.0 | 0.1150 | 0.0 | nan | 0.7132 | 0.8098 | 0.4590 | 0.6675 | 0.3239 | 0.0 | 0.3802 | 0.2740 | 0.0 | 0.7602 | 0.0 | nan | 0.0 | 0.0 | 0.2151 | 0.0 | 0.0 | 0.6651 | 0.0 | 0.3498 | 0.2602 | 0.0 | nan | 0.0 | 0.2236 | 0.0 | 0.0 | 0.8521 | 0.7209 | 0.9063 | 0.0 | 0.0 | 0.0948 | 0.0 |
| 0.4106 | 6.0 | 2400 | 0.6168 | 0.2805 | 0.3382 | 0.8286 | nan | 0.8140 | 0.9366 | 0.5348 | 0.7391 | 0.4551 | 0.0 | 0.4434 | 0.5715 | 0.0 | 0.9105 | 0.0 | nan | 0.0 | 0.0 | 0.3385 | 0.0 | 0.0 | 0.8631 | 0.0 | 0.5545 | 0.4411 | 0.0 | nan | 0.0 | 0.2978 | 0.0 | 0.0 | 0.9408 | 0.8805 | 0.9625 | 0.0 | 0.0 | 0.1385 | 0.0 | nan | 0.7068 | 0.8102 | 0.5070 | 0.6757 | 0.2917 | 0.0 | 0.3503 | 0.2908 | 0.0 | 0.7596 | 0.0 | nan | 0.0 | 0.0 | 0.3190 | 0.0 | 0.0 | 0.6776 | 0.0 | 0.3889 | 0.3781 | 0.0 | nan | 0.0 | 0.2281 | 0.0 | 0.0 | 0.8501 | 0.7196 | 0.9076 | 0.0 | 0.0 | 0.1149 | 0.0 |
| 0.5797 | 6.12 | 2450 | 0.6297 | 0.2816 | 0.3393 | 0.8296 | nan | 0.7974 | 0.9383 | 0.4647 | 0.7903 | 0.4007 | 0.0 | 0.5064 | 0.5728 | 0.0 | 0.9213 | 0.0 | nan | 0.0 | 0.0 | 0.3479 | 0.0 | 0.0 | 0.8703 | 0.0 | 0.5732 | 0.4362 | 0.0 | nan | 0.0 | 0.3033 | 0.0 | 0.0 | 0.9375 | 0.8832 | 0.9683 | 0.0 | 0.0 | 0.1466 | 0.0 | nan | 0.6881 | 0.8134 | 0.4564 | 0.6750 | 0.3033 | 0.0 | 0.3764 | 0.3047 | 0.0 | 0.7563 | 0.0 | nan | 0.0 | 0.0 | 0.3199 | 0.0 | 0.0 | 0.6791 | 0.0 | 0.4054 | 0.3939 | 0.0 | nan | 0.0 | 0.2370 | 0.0 | 0.0 | 0.8557 | 0.7179 | 0.9056 | 0.0 | 0.0 | 0.1222 | 0.0 |
| 0.3407 | 6.25 | 2500 | 0.6193 | 0.2818 | 0.3399 | 0.8306 | nan | 0.7883 | 0.9404 | 0.5966 | 0.7679 | 0.4412 | 0.0 | 0.4553 | 0.5684 | 0.0 | 0.9199 | 0.0 | nan | 0.0 | 0.0 | 0.2922 | 0.0 | 0.0 | 0.8774 | 0.0 | 0.5497 | 0.4408 | 0.0 | nan | 0.0 | 0.2956 | 0.0 | 0.0 | 0.9447 | 0.8645 | 0.9658 | 0.0 | 0.0 | 0.1667 | 0.0 | nan | 0.7001 | 0.8173 | 0.5101 | 0.6671 | 0.3084 | 0.0 | 0.3634 | 0.3133 | 0.0 | 0.7495 | 0.0 | nan | 0.0 | 0.0 | 0.2726 | 0.0 | 0.0 | 0.6788 | 0.0 | 0.4024 | 0.4009 | 0.0 | nan | 0.0 | 0.2325 | 0.0 | 0.0 | 0.8498 | 0.7106 | 0.9076 | 0.0 | 0.0 | 0.1343 | 0.0 |
| 0.4585 | 6.38 | 2550 | 0.6187 | 0.2836 | 0.3416 | 0.8315 | nan | 0.8295 | 0.9356 | 0.6898 | 0.6526 | 0.4324 | 0.0 | 0.5160 | 0.5700 | 0.0 | 0.9143 | 0.0 | nan | 0.0 | 0.0 | 0.3278 | 0.0 | 0.0 | 0.8751 | 0.0 | 0.5383 | 0.4159 | 0.0 | nan | 0.0 | 0.2798 | 0.0 | 0.0 | 0.9539 | 0.8512 | 0.9627 | 0.0 | 0.0 | 0.1863 | 0.0 | nan | 0.7158 | 0.8176 | 0.5366 | 0.6200 | 0.3121 | 0.0 | 0.3932 | 0.3097 | 0.0 | 0.7531 | 0.0 | nan | 0.0 | 0.0 | 0.3010 | 0.0 | 0.0 | 0.6800 | 0.0 | 0.4010 | 0.3900 | 0.0 | nan | 0.0 | 0.2275 | 0.0 | 0.0 | 0.8458 | 0.7183 | 0.9100 | 0.0 | 0.0 | 0.1447 | 0.0 |
| 0.6642 | 6.5 | 2600 | 0.6327 | 0.2802 | 0.3352 | 0.8295 | nan | 0.7982 | 0.9375 | 0.5459 | 0.7388 | 0.4326 | 0.0 | 0.5516 | 0.5326 | 0.0 | 0.9274 | 0.0 | nan | 0.0 | 0.0 | 0.2682 | 0.0 | 0.0 | 0.8894 | 0.0 | 0.5355 | 0.3860 | 0.0 | nan | 0.0 | 0.2825 | 0.0 | 0.0 | 0.9413 | 0.8768 | 0.9586 | 0.0 | 0.0 | 0.1224 | 0.0 | nan | 0.7054 | 0.8105 | 0.5189 | 0.6692 | 0.2936 | 0.0 | 0.3925 | 0.3331 | 0.0 | 0.7412 | 0.0 | nan | 0.0 | 0.0 | 0.2434 | 0.0 | 0.0 | 0.6716 | 0.0 | 0.3941 | 0.3668 | 0.0 | nan | 0.0 | 0.2289 | 0.0 | 0.0 | 0.8546 | 0.7260 | 0.9097 | 0.0 | 0.0 | 0.1057 | 0.0 |
| 0.3263 | 6.62 | 2650 | 0.6187 | 0.2829 | 0.3430 | 0.8300 | nan | 0.7874 | 0.9330 | 0.5562 | 0.7970 | 0.4492 | 0.0 | 0.5546 | 0.5622 | 0.0 | 0.9371 | 0.0 | nan | 0.0 | 0.0 | 0.3517 | 0.0 | 0.0 | 0.8711 | 0.0 | 0.5865 | 0.3811 | 0.0 | nan | 0.0 | 0.2937 | 0.0 | 0.0 | 0.9318 | 0.8735 | 0.9725 | 0.0 | 0.0 | 0.1375 | 0.0 | nan | 0.6953 | 0.8209 | 0.5405 | 0.6682 | 0.2987 | 0.0 | 0.4080 | 0.3427 | 0.0 | 0.7412 | 0.0 | nan | 0.0 | 0.0 | 0.3012 | 0.0 | 0.0 | 0.6758 | 0.0 | 0.3928 | 0.3508 | 0.0 | nan | 0.0 | 0.2326 | 0.0 | 0.0 | 0.8543 | 0.7108 | 0.9033 | 0.0 | 0.0 | 0.1166 | 0.0 |
| 0.2918 | 6.75 | 2700 | 0.6222 | 0.2872 | 0.3498 | 0.8277 | nan | 0.7842 | 0.9381 | 0.6136 | 0.7238 | 0.4618 | 0.0 | 0.5182 | 0.5812 | 0.0 | 0.9045 | 0.0 | nan | 0.0 | 0.0 | 0.4309 | 0.0 | 0.0 | 0.8353 | 0.0 | 0.5853 | 0.4976 | 0.0 | nan | 0.0 | 0.3383 | 0.0 | 0.0 | 0.9423 | 0.8831 | 0.9709 | 0.0 | 0.0 | 0.1847 | 0.0 | nan | 0.6937 | 0.8114 | 0.5527 | 0.6574 | 0.3008 | 0.0 | 0.3913 | 0.3018 | 0.0 | 0.7703 | 0.0 | nan | 0.0 | 0.0 | 0.3806 | 0.0 | 0.0 | 0.6696 | 0.0 | 0.3834 | 0.4173 | 0.0 | nan | 0.0 | 0.2506 | 0.0 | 0.0 | 0.8509 | 0.7104 | 0.9029 | 0.0 | 0.0 | 0.1467 | 0.0 |
| 0.8647 | 6.88 | 2750 | 0.6397 | 0.2835 | 0.3383 | 0.8277 | nan | 0.7927 | 0.9560 | 0.5292 | 0.6732 | 0.3404 | 0.0 | 0.4745 | 0.5981 | 0.0 | 0.9258 | 0.0 | nan | 0.0 | 0.0 | 0.3488 | 0.0 | 0.0 | 0.8603 | 0.0 | 0.5484 | 0.5227 | 0.0 | nan | 0.0 | 0.3289 | 0.0 | 0.0 | 0.9511 | 0.8297 | 0.9629 | 0.0 | 0.0 | 0.1840 | 0.0 | nan | 0.6999 | 0.7965 | 0.5125 | 0.6472 | 0.2531 | 0.0 | 0.3711 | 0.3133 | 0.0 | 0.7565 | 0.0 | nan | 0.0 | 0.0 | 0.3100 | 0.0 | 0.0 | 0.6869 | 0.0 | 0.3958 | 0.4342 | 0.0 | nan | 0.0 | 0.2517 | 0.0 | 0.0 | 0.8506 | 0.7355 | 0.9087 | 0.0 | 0.0 | 0.1471 | 0.0 |
| 0.7004 | 7.0 | 2800 | 0.6274 | 0.2874 | 0.3482 | 0.8305 | nan | 0.7888 | 0.9403 | 0.5878 | 0.7560 | 0.4348 | 0.0 | 0.5041 | 0.5891 | 0.0 | 0.9200 | 0.0 | nan | 0.0 | 0.0 | 0.3797 | 0.0 | 0.0 | 0.8462 | 0.0 | 0.5907 | 0.4789 | 0.0 | nan | 0.0 | 0.3490 | 0.0 | 0.0 | 0.9451 | 0.8642 | 0.9649 | 0.0 | 0.0 | 0.2023 | 0.0 | nan | 0.7027 | 0.8129 | 0.5522 | 0.6624 | 0.2862 | 0.0 | 0.3848 | 0.3115 | 0.0 | 0.7656 | 0.0 | nan | 0.0 | 0.0 | 0.3405 | 0.0 | 0.0 | 0.6866 | 0.0 | 0.3918 | 0.4008 | 0.0 | nan | 0.0 | 0.2539 | 0.0 | 0.0 | 0.8526 | 0.7267 | 0.9086 | 0.0 | 0.0 | 0.1584 | 0.0 |
| 0.4585 | 7.12 | 2850 | 0.6071 | 0.2919 | 0.3501 | 0.8403 | nan | 0.8647 | 0.9271 | 0.5548 | 0.7557 | 0.4746 | 0.0 | 0.5295 | 0.5841 | 0.0 | 0.9200 | 0.0 | nan | 0.0 | 0.0 | 0.3762 | 0.0 | 0.0 | 0.9060 | 0.0 | 0.5504 | 0.4677 | 0.0 | nan | 0.0 | 0.3497 | 0.0 | 0.0 | 0.9375 | 0.8628 | 0.9623 | 0.0 | 0.0 | 0.1786 | 0.0 | nan | 0.7391 | 0.8300 | 0.5397 | 0.7073 | 0.3054 | 0.0 | 0.4055 | 0.3090 | 0.0 | 0.7608 | 0.0 | nan | 0.0 | 0.0 | 0.3416 | 0.0 | 0.0 | 0.6935 | 0.0 | 0.4100 | 0.4183 | 0.0 | nan | 0.0 | 0.2544 | 0.0 | 0.0 | 0.8556 | 0.7156 | 0.9094 | 0.0 | 0.0 | 0.1445 | 0.0 |
| 0.5376 | 7.25 | 2900 | 0.6132 | 0.2882 | 0.3473 | 0.8338 | nan | 0.8155 | 0.9337 | 0.6034 | 0.7660 | 0.4710 | 0.0 | 0.4848 | 0.5751 | 0.0 | 0.9343 | 0.0 | nan | 0.0 | 0.0 | 0.3926 | 0.0 | 0.0 | 0.8519 | 0.0 | 0.6031 | 0.4158 | 0.0 | nan | 0.0 | 0.3384 | 0.0 | 0.0 | 0.9504 | 0.8445 | 0.9681 | 0.0 | 0.0 | 0.1651 | 0.0 | nan | 0.7171 | 0.8186 | 0.5670 | 0.6853 | 0.3079 | 0.0 | 0.3894 | 0.3251 | 0.0 | 0.7538 | 0.0 | nan | 0.0 | 0.0 | 0.3447 | 0.0 | 0.0 | 0.6852 | 0.0 | 0.3932 | 0.3749 | 0.0 | nan | 0.0 | 0.2500 | 0.0 | 0.0 | 0.8496 | 0.7157 | 0.9100 | 0.0 | 0.0 | 0.1362 | 0.0 |
| 0.8122 | 7.38 | 2950 | 0.5909 | 0.2962 | 0.3554 | 0.8392 | nan | 0.8091 | 0.9412 | 0.6466 | 0.7718 | 0.4751 | 0.0 | 0.5177 | 0.6016 | 0.0 | 0.9080 | 0.0 | nan | 0.0 | 0.0 | 0.4417 | 0.0 | 0.0 | 0.8859 | 0.0 | 0.5373 | 0.5146 | 0.0 | nan | 0.0 | 0.3196 | 0.0 | 0.0 | 0.9460 | 0.8538 | 0.9662 | 0.0 | 0.0 | 0.2365 | 0.0 | nan | 0.7260 | 0.8224 | 0.5813 | 0.7010 | 0.3154 | 0.0 | 0.3948 | 0.3090 | 0.0 | 0.7724 | 0.0 | nan | 0.0 | 0.0 | 0.3926 | 0.0 | 0.0 | 0.6921 | 0.0 | 0.4100 | 0.4498 | 0.0 | nan | 0.0 | 0.2447 | 0.0 | 0.0 | 0.8537 | 0.7256 | 0.9103 | 0.0 | 0.0 | 0.1782 | 0.0 |
| 0.3453 | 7.5 | 3000 | 0.5974 | 0.2921 | 0.3480 | 0.8385 | nan | 0.8227 | 0.9410 | 0.6648 | 0.7513 | 0.4138 | 0.0 | 0.5276 | 0.5763 | 0.0 | 0.9103 | 0.0 | nan | 0.0 | 0.0 | 0.3788 | 0.0 | 0.0 | 0.8851 | 0.0 | 0.5094 | 0.5078 | 0.0 | nan | 0.0 | 0.2979 | 0.0 | 0.0 | 0.9538 | 0.8589 | 0.9633 | 0.0 | 0.0 | 0.1738 | 0.0 | nan | 0.7255 | 0.8212 | 0.5890 | 0.6919 | 0.3014 | 0.0 | 0.4090 | 0.3098 | 0.0 | 0.7660 | 0.0 | nan | 0.0 | 0.0 | 0.3425 | 0.0 | 0.0 | 0.6849 | 0.0 | 0.3964 | 0.4477 | 0.0 | nan | 0.0 | 0.2358 | 0.0 | 0.0 | 0.8483 | 0.7257 | 0.9112 | 0.0 | 0.0 | 0.1416 | 0.0 |
| 0.4628 | 7.62 | 3050 | 0.5971 | 0.2919 | 0.3514 | 0.8371 | nan | 0.8185 | 0.9402 | 0.6444 | 0.7747 | 0.3999 | 0.0 | 0.5277 | 0.5876 | 0.0 | 0.9099 | 0.0 | nan | 0.0 | 0.0 | 0.4217 | 0.0 | 0.0 | 0.8667 | 0.0 | 0.5486 | 0.5637 | 0.0 | nan | 0.0 | 0.3187 | 0.0 | 0.0 | 0.9444 | 0.8713 | 0.9631 | 0.0 | 0.0 | 0.1452 | 0.0 | nan | 0.7199 | 0.8225 | 0.5822 | 0.6970 | 0.2991 | 0.0 | 0.4052 | 0.3179 | 0.0 | 0.7652 | 0.0 | nan | 0.0 | 0.0 | 0.3749 | 0.0 | 0.0 | 0.6743 | 0.0 | 0.3871 | 0.4440 | 0.0 | nan | 0.0 | 0.2444 | 0.0 | 0.0 | 0.8556 | 0.7193 | 0.9118 | 0.0 | 0.0 | 0.1215 | 0.0 |
| 1.6032 | 7.75 | 3100 | 0.6105 | 0.2925 | 0.3547 | 0.8333 | nan | 0.8138 | 0.9386 | 0.6522 | 0.7084 | 0.4581 | 0.0 | 0.5056 | 0.6305 | 0.0 | 0.9079 | 0.0 | nan | 0.0 | 0.0 | 0.4763 | 0.0 | 0.0 | 0.8483 | 0.0 | 0.5818 | 0.5395 | 0.0 | nan | 0.0 | 0.3222 | 0.0 | 0.0 | 0.9458 | 0.8723 | 0.9676 | 0.0 | 0.0 | 0.1810 | 0.0 | nan | 0.7112 | 0.8156 | 0.5762 | 0.6682 | 0.3138 | 0.0 | 0.3962 | 0.3092 | 0.0 | 0.7700 | 0.0 | nan | 0.0 | 0.0 | 0.4116 | 0.0 | 0.0 | 0.6719 | 0.0 | 0.3836 | 0.4498 | 0.0 | nan | 0.0 | 0.2464 | 0.0 | 0.0 | 0.8550 | 0.7242 | 0.9102 | 0.0 | 0.0 | 0.1482 | 0.0 |
| 0.2408 | 7.88 | 3150 | 0.5932 | 0.2955 | 0.3586 | 0.8381 | nan | 0.8021 | 0.9346 | 0.6598 | 0.7938 | 0.5279 | 0.0 | 0.5633 | 0.6333 | 0.0 | 0.9050 | 0.0 | nan | 0.0 | 0.0 | 0.4273 | 0.0 | 0.0 | 0.8611 | 0.0 | 0.5607 | 0.5245 | 0.0 | nan | 0.0 | 0.3308 | 0.0 | 0.0 | 0.9497 | 0.8486 | 0.9692 | 0.0 | 0.0 | 0.1826 | 0.0 | nan | 0.7185 | 0.8279 | 0.5987 | 0.7105 | 0.3205 | 0.0 | 0.4141 | 0.2957 | 0.0 | 0.7709 | 0.0 | nan | 0.0 | 0.0 | 0.3758 | 0.0 | 0.0 | 0.6796 | 0.0 | 0.3960 | 0.4542 | 0.0 | nan | 0.0 | 0.2473 | 0.0 | 0.0 | 0.8530 | 0.7347 | 0.9100 | 0.0 | 0.0 | 0.1486 | 0.0 |
| 0.5243 | 8.0 | 3200 | 0.5799 | 0.2979 | 0.3597 | 0.8435 | nan | 0.8682 | 0.9230 | 0.6693 | 0.8014 | 0.4804 | 0.0 | 0.5210 | 0.6297 | 0.0 | 0.9214 | 0.0 | nan | 0.0 | 0.0 | 0.4416 | 0.0 | 0.0 | 0.8687 | 0.0 | 0.5426 | 0.5655 | 0.0 | nan | 0.0 | 0.3073 | 0.0 | 0.0 | 0.9424 | 0.8744 | 0.9677 | 0.0 | 0.0 | 0.1860 | 0.0 | nan | 0.7427 | 0.8376 | 0.6361 | 0.7198 | 0.3149 | 0.0 | 0.3952 | 0.3306 | 0.0 | 0.7625 | 0.0 | nan | 0.0 | 0.0 | 0.3724 | 0.0 | 0.0 | 0.6834 | 0.0 | 0.3969 | 0.4529 | 0.0 | nan | 0.0 | 0.2406 | 0.0 | 0.0 | 0.8569 | 0.7294 | 0.9109 | 0.0 | 0.0 | 0.1505 | 0.0 |
| 0.7106 | 8.12 | 3250 | 0.5898 | 0.2938 | 0.3551 | 0.8390 | nan | 0.8028 | 0.9358 | 0.6853 | 0.8185 | 0.4355 | 0.0 | 0.5430 | 0.6255 | 0.0 | 0.9128 | 0.0 | nan | 0.0 | 0.0 | 0.4179 | 0.0 | 0.0 | 0.8797 | 0.0 | 0.5200 | 0.5480 | 0.0 | nan | 0.0 | 0.2941 | 0.0 | 0.0 | 0.9499 | 0.8647 | 0.9643 | 0.0 | 0.0 | 0.1668 | 0.0 | nan | 0.7124 | 0.8312 | 0.6000 | 0.7053 | 0.2940 | 0.0 | 0.4078 | 0.3024 | 0.0 | 0.7677 | 0.0 | nan | 0.0 | 0.0 | 0.3681 | 0.0 | 0.0 | 0.6838 | 0.0 | 0.3989 | 0.4578 | 0.0 | nan | 0.0 | 0.2355 | 0.0 | 0.0 | 0.8532 | 0.7319 | 0.9131 | 0.0 | 0.0 | 0.1374 | 0.0 |
| 0.3865 | 8.25 | 3300 | 0.5789 | 0.2964 | 0.3607 | 0.8419 | nan | 0.8309 | 0.9310 | 0.7078 | 0.7971 | 0.4823 | 0.0 | 0.5610 | 0.6033 | 0.0 | 0.9205 | 0.0 | nan | 0.0 | 0.0 | 0.4831 | 0.0 | 0.0 | 0.8636 | 0.0 | 0.5286 | 0.5814 | 0.0 | nan | 0.0 | 0.3079 | 0.0 | 0.0 | 0.9487 | 0.8607 | 0.9688 | 0.0 | 0.0 | 0.1672 | 0.0 | nan | 0.7273 | 0.8400 | 0.5976 | 0.7206 | 0.3247 | 0.0 | 0.4121 | 0.3307 | 0.0 | 0.7657 | 0.0 | nan | 0.0 | 0.0 | 0.3897 | 0.0 | 0.0 | 0.6828 | 0.0 | 0.3820 | 0.4413 | 0.0 | nan | 0.0 | 0.2445 | 0.0 | 0.0 | 0.8532 | 0.7225 | 0.9115 | 0.0 | 0.0 | 0.1392 | 0.0 |
| 0.5896 | 8.38 | 3350 | 0.6025 | 0.2943 | 0.3538 | 0.8375 | nan | 0.8034 | 0.9395 | 0.6203 | 0.7912 | 0.4404 | 0.0 | 0.5404 | 0.6167 | 0.0 | 0.9121 | 0.0 | nan | 0.0 | 0.0 | 0.4611 | 0.0 | 0.0 | 0.8900 | 0.0 | 0.5326 | 0.5242 | 0.0 | nan | 0.0 | 0.3185 | 0.0 | 0.0 | 0.9474 | 0.8322 | 0.9662 | 0.0 | 0.0 | 0.1859 | 0.0 | nan | 0.7142 | 0.8253 | 0.5802 | 0.6994 | 0.2989 | 0.0 | 0.4128 | 0.3161 | 0.0 | 0.7676 | 0.0 | nan | 0.0 | 0.0 | 0.3812 | 0.0 | 0.0 | 0.6786 | 0.0 | 0.3960 | 0.4637 | 0.0 | nan | 0.0 | 0.2466 | 0.0 | 0.0 | 0.8527 | 0.7224 | 0.9117 | 0.0 | 0.0 | 0.1499 | 0.0 |
| 1.6879 | 8.5 | 3400 | 0.5871 | 0.2966 | 0.3589 | 0.8414 | nan | 0.8057 | 0.9414 | 0.6753 | 0.8033 | 0.4564 | 0.0 | 0.5567 | 0.6269 | 0.0 | 0.9270 | 0.0 | nan | 0.0 | 0.0 | 0.3957 | 0.0 | 0.0 | 0.8722 | 0.0 | 0.5594 | 0.5370 | 0.0 | nan | 0.0 | 0.3143 | 0.0 | 0.0 | 0.9407 | 0.8642 | 0.9686 | 0.0 | 0.0 | 0.2395 | 0.0 | nan | 0.7284 | 0.8327 | 0.6046 | 0.7031 | 0.3060 | 0.0 | 0.4110 | 0.3216 | 0.0 | 0.7609 | 0.0 | nan | 0.0 | 0.0 | 0.3409 | 0.0 | 0.0 | 0.6896 | 0.0 | 0.4035 | 0.4605 | 0.0 | nan | 0.0 | 0.2464 | 0.0 | 0.0 | 0.8586 | 0.7306 | 0.9114 | 0.0 | 0.0 | 0.1818 | 0.0 |
| 0.6102 | 8.62 | 3450 | 0.5856 | 0.3002 | 0.3654 | 0.8415 | nan | 0.8138 | 0.9321 | 0.6827 | 0.7914 | 0.5197 | 0.0 | 0.5760 | 0.6360 | 0.0 | 0.9170 | 0.0 | nan | 0.0 | 0.0 | 0.4329 | 0.0 | 0.0 | 0.8645 | 0.0 | 0.5720 | 0.5589 | 0.0 | nan | 0.0 | 0.3342 | 0.0 | 0.0 | 0.9411 | 0.8703 | 0.9668 | 0.0 | 0.0 | 0.2819 | 0.0 | nan | 0.7285 | 0.8326 | 0.6223 | 0.7048 | 0.3289 | 0.0 | 0.4190 | 0.3168 | 0.0 | 0.7722 | 0.0 | nan | 0.0 | 0.0 | 0.3742 | 0.0 | 0.0 | 0.6903 | 0.0 | 0.3949 | 0.4580 | 0.0 | nan | 0.0 | 0.2568 | 0.0 | 0.0 | 0.8579 | 0.7263 | 0.9125 | 0.0 | 0.0 | 0.2096 | 0.0 |
| 0.5784 | 8.75 | 3500 | 0.5754 | 0.3011 | 0.3608 | 0.8461 | nan | 0.8669 | 0.9306 | 0.6895 | 0.7825 | 0.5161 | 0.0 | 0.5344 | 0.5997 | 0.0 | 0.9154 | 0.0 | nan | 0.0 | 0.0 | 0.4049 | 0.0 | 0.0 | 0.8770 | 0.0 | 0.5577 | 0.5588 | 0.0 | nan | 0.0 | 0.3366 | 0.0 | 0.0 | 0.9399 | 0.8514 | 0.9688 | 0.0 | 0.0 | 0.2159 | 0.0 | nan | 0.7534 | 0.8392 | 0.6345 | 0.7241 | 0.3294 | 0.0 | 0.4154 | 0.3472 | 0.0 | 0.7644 | 0.0 | nan | 0.0 | 0.0 | 0.3513 | 0.0 | 0.0 | 0.6833 | 0.0 | 0.4003 | 0.4627 | 0.0 | nan | 0.0 | 0.2555 | 0.0 | 0.0 | 0.8589 | 0.7317 | 0.9111 | 0.0 | 0.0 | 0.1713 | 0.0 |
| 1.7496 | 8.88 | 3550 | 0.5936 | 0.2977 | 0.3537 | 0.8416 | nan | 0.8368 | 0.9449 | 0.6772 | 0.7436 | 0.4208 | 0.0 | 0.5329 | 0.5842 | 0.0 | 0.9125 | 0.0 | nan | 0.0 | 0.0 | 0.4109 | 0.0 | 0.0 | 0.8839 | 0.0 | 0.5324 | 0.5578 | 0.0 | nan | 0.0 | 0.3259 | 0.0 | 0.0 | 0.9427 | 0.8489 | 0.9690 | 0.0 | 0.0 | 0.1938 | 0.0 | nan | 0.7350 | 0.8241 | 0.6306 | 0.6945 | 0.2953 | 0.0 | 0.4129 | 0.3417 | 0.0 | 0.7659 | 0.0 | nan | 0.0 | 0.0 | 0.3593 | 0.0 | 0.0 | 0.6860 | 0.0 | 0.4051 | 0.4630 | 0.0 | nan | 0.0 | 0.2501 | 0.0 | 0.0 | 0.8582 | 0.7381 | 0.9112 | 0.0 | 0.0 | 0.1560 | 0.0 |
| 0.6411 | 9.0 | 3600 | 0.5782 | 0.3001 | 0.3602 | 0.8450 | nan | 0.8407 | 0.9365 | 0.6861 | 0.7895 | 0.4828 | 0.0 | 0.5688 | 0.5980 | 0.0 | 0.9231 | 0.0 | nan | 0.0 | 0.0 | 0.4029 | 0.0 | 0.0 | 0.8744 | 0.0 | 0.5688 | 0.5442 | 0.0 | nan | 0.0 | 0.3323 | 0.0 | 0.0 | 0.9423 | 0.8588 | 0.9623 | 0.0 | 0.0 | 0.2144 | 0.0 | nan | 0.7472 | 0.8364 | 0.6280 | 0.7149 | 0.3246 | 0.0 | 0.4239 | 0.3428 | 0.0 | 0.7609 | 0.0 | nan | 0.0 | 0.0 | 0.3477 | 0.0 | 0.0 | 0.6867 | 0.0 | 0.4030 | 0.4632 | 0.0 | nan | 0.0 | 0.2531 | 0.0 | 0.0 | 0.8580 | 0.7279 | 0.9144 | 0.0 | 0.0 | 0.1700 | 0.0 |
| 0.2624 | 9.12 | 3650 | 0.5766 | 0.3008 | 0.3624 | 0.8455 | nan | 0.8574 | 0.9342 | 0.6988 | 0.7744 | 0.4983 | 0.0 | 0.5394 | 0.6314 | 0.0 | 0.9148 | 0.0 | nan | 0.0 | 0.0 | 0.4402 | 0.0 | 0.0 | 0.8562 | 0.0 | 0.5510 | 0.5560 | 0.0 | nan | 0.0 | 0.3273 | 0.0 | 0.0 | 0.9469 | 0.8694 | 0.9709 | 0.0 | 0.0 | 0.2311 | 0.0 | nan | 0.7491 | 0.8379 | 0.6241 | 0.7221 | 0.3229 | 0.0 | 0.4173 | 0.3273 | 0.0 | 0.7682 | 0.0 | nan | 0.0 | 0.0 | 0.3773 | 0.0 | 0.0 | 0.6890 | 0.0 | 0.4010 | 0.4651 | 0.0 | nan | 0.0 | 0.2490 | 0.0 | 0.0 | 0.8544 | 0.7306 | 0.9108 | 0.0 | 0.0 | 0.1799 | 0.0 |
| 0.5411 | 9.25 | 3700 | 0.5959 | 0.2991 | 0.3590 | 0.8420 | nan | 0.8243 | 0.9438 | 0.6836 | 0.7438 | 0.4344 | 0.0 | 0.5621 | 0.6202 | 0.0 | 0.9143 | 0.0 | nan | 0.0 | 0.0 | 0.4442 | 0.0 | 0.0 | 0.8901 | 0.0 | 0.5455 | 0.5510 | 0.0 | nan | 0.0 | 0.3440 | 0.0 | 0.0 | 0.9400 | 0.8591 | 0.9693 | 0.0 | 0.0 | 0.2192 | 0.0 | nan | 0.7328 | 0.8259 | 0.6144 | 0.7018 | 0.3058 | 0.0 | 0.4202 | 0.3204 | 0.0 | 0.7710 | 0.0 | nan | 0.0 | 0.0 | 0.3832 | 0.0 | 0.0 | 0.6900 | 0.0 | 0.4063 | 0.4782 | 0.0 | nan | 0.0 | 0.2535 | 0.0 | 0.0 | 0.8589 | 0.7253 | 0.9120 | 0.0 | 0.0 | 0.1724 | 0.0 |
| 0.4142 | 9.38 | 3750 | 0.5848 | 0.3006 | 0.3620 | 0.8433 | nan | 0.8309 | 0.9357 | 0.6855 | 0.7703 | 0.5115 | 0.0 | 0.5599 | 0.6165 | 0.0 | 0.9205 | 0.0 | nan | 0.0 | 0.0 | 0.4350 | 0.0 | 0.0 | 0.8814 | 0.0 | 0.5538 | 0.5682 | 0.0 | nan | 0.0 | 0.3382 | 0.0 | 0.0 | 0.9411 | 0.8575 | 0.9667 | 0.0 | 0.0 | 0.2110 | 0.0 | nan | 0.7370 | 0.8313 | 0.6229 | 0.7160 | 0.3284 | 0.0 | 0.4230 | 0.3381 | 0.0 | 0.7636 | 0.0 | nan | 0.0 | 0.0 | 0.3743 | 0.0 | 0.0 | 0.6905 | 0.0 | 0.4047 | 0.4693 | 0.0 | nan | 0.0 | 0.2534 | 0.0 | 0.0 | 0.8589 | 0.7273 | 0.9130 | 0.0 | 0.0 | 0.1678 | 0.0 |
| 0.1631 | 9.5 | 3800 | 0.5809 | 0.3004 | 0.3613 | 0.8442 | nan | 0.8349 | 0.9352 | 0.6964 | 0.7850 | 0.4969 | 0.0 | 0.5560 | 0.6125 | 0.0 | 0.9205 | 0.0 | nan | 0.0 | 0.0 | 0.4223 | 0.0 | 0.0 | 0.8734 | 0.0 | 0.5475 | 0.5597 | 0.0 | nan | 0.0 | 0.3284 | 0.0 | 0.0 | 0.9443 | 0.8656 | 0.9681 | 0.0 | 0.0 | 0.2162 | 0.0 | nan | 0.7388 | 0.8335 | 0.6233 | 0.7213 | 0.3269 | 0.0 | 0.4226 | 0.3368 | 0.0 | 0.7658 | 0.0 | nan | 0.0 | 0.0 | 0.3673 | 0.0 | 0.0 | 0.6888 | 0.0 | 0.4010 | 0.4662 | 0.0 | nan | 0.0 | 0.2488 | 0.0 | 0.0 | 0.8584 | 0.7272 | 0.9126 | 0.0 | 0.0 | 0.1724 | 0.0 |
| 0.2142 | 9.62 | 3850 | 0.5863 | 0.3005 | 0.3612 | 0.8431 | nan | 0.8182 | 0.9396 | 0.6847 | 0.7896 | 0.4772 | 0.0 | 0.5550 | 0.6190 | 0.0 | 0.9196 | 0.0 | nan | 0.0 | 0.0 | 0.4422 | 0.0 | 0.0 | 0.8868 | 0.0 | 0.5410 | 0.5606 | 0.0 | nan | 0.0 | 0.3348 | 0.0 | 0.0 | 0.9402 | 0.8630 | 0.9681 | 0.0 | 0.0 | 0.2181 | 0.0 | nan | 0.7320 | 0.8301 | 0.6246 | 0.7106 | 0.3221 | 0.0 | 0.4228 | 0.3343 | 0.0 | 0.7649 | 0.0 | nan | 0.0 | 0.0 | 0.3806 | 0.0 | 0.0 | 0.6901 | 0.0 | 0.4065 | 0.4717 | 0.0 | nan | 0.0 | 0.2530 | 0.0 | 0.0 | 0.8602 | 0.7283 | 0.9126 | 0.0 | 0.0 | 0.1703 | 0.0 |
| 0.3553 | 9.75 | 3900 | 0.5858 | 0.3001 | 0.3609 | 0.8427 | nan | 0.8141 | 0.9397 | 0.6925 | 0.7829 | 0.4822 | 0.0 | 0.5729 | 0.6157 | 0.0 | 0.9203 | 0.0 | nan | 0.0 | 0.0 | 0.4383 | 0.0 | 0.0 | 0.8819 | 0.0 | 0.5435 | 0.5580 | 0.0 | nan | 0.0 | 0.3288 | 0.0 | 0.0 | 0.9440 | 0.8589 | 0.9674 | 0.0 | 0.0 | 0.2090 | 0.0 | nan | 0.7311 | 0.8296 | 0.6192 | 0.7106 | 0.3215 | 0.0 | 0.4236 | 0.3390 | 0.0 | 0.7656 | 0.0 | nan | 0.0 | 0.0 | 0.3775 | 0.0 | 0.0 | 0.6901 | 0.0 | 0.4062 | 0.4686 | 0.0 | nan | 0.0 | 0.2500 | 0.0 | 0.0 | 0.8589 | 0.7322 | 0.9129 | 0.0 | 0.0 | 0.1658 | 0.0 |
| 0.2847 | 9.88 | 3950 | 0.5819 | 0.3003 | 0.3605 | 0.8437 | nan | 0.8261 | 0.9406 | 0.6928 | 0.7874 | 0.4766 | 0.0 | 0.5505 | 0.6122 | 0.0 | 0.9229 | 0.0 | nan | 0.0 | 0.0 | 0.4291 | 0.0 | 0.0 | 0.8708 | 0.0 | 0.5581 | 0.5595 | 0.0 | nan | 0.0 | 0.3340 | 0.0 | 0.0 | 0.9449 | 0.8500 | 0.9671 | 0.0 | 0.0 | 0.2120 | 0.0 | nan | 0.7365 | 0.8308 | 0.6246 | 0.7127 | 0.3233 | 0.0 | 0.4204 | 0.3362 | 0.0 | 0.7647 | 0.0 | nan | 0.0 | 0.0 | 0.3718 | 0.0 | 0.0 | 0.6897 | 0.0 | 0.4051 | 0.4663 | 0.0 | nan | 0.0 | 0.2519 | 0.0 | 0.0 | 0.8588 | 0.7346 | 0.9130 | 0.0 | 0.0 | 0.1681 | 0.0 |
| 0.4745 | 10.0 | 4000 | 0.5818 | 0.3011 | 0.3610 | 0.8444 | nan | 0.8364 | 0.9386 | 0.7005 | 0.7745 | 0.4695 | 0.0 | 0.5463 | 0.6230 | 0.0 | 0.9128 | 0.0 | nan | 0.0 | 0.0 | 0.4478 | 0.0 | 0.0 | 0.8809 | 0.0 | 0.5418 | 0.5574 | 0.0 | nan | 0.0 | 0.3278 | 0.0 | 0.0 | 0.9459 | 0.8600 | 0.9662 | 0.0 | 0.0 | 0.2230 | 0.0 | nan | 0.7395 | 0.8314 | 0.6251 | 0.7160 | 0.3216 | 0.0 | 0.4206 | 0.3351 | 0.0 | 0.7711 | 0.0 | nan | 0.0 | 0.0 | 0.3854 | 0.0 | 0.0 | 0.6893 | 0.0 | 0.4039 | 0.4696 | 0.0 | nan | 0.0 | 0.2496 | 0.0 | 0.0 | 0.8583 | 0.7294 | 0.9135 | 0.0 | 0.0 | 0.1745 | 0.0 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
JCAI2000/segformer-b0-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the JCAI2000/100By100BranchPNG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1491
- Mean Iou: 0.4520
- Mean Accuracy: 0.9041
- Overall Accuracy: 0.9041
- Accuracy Background: nan
- Accuracy Branch: 0.9041
- Iou Background: 0.0
- Iou Branch: 0.9041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Branch | Iou Background | Iou Branch |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
| 0.5951 | 1.05 | 20 | 0.6067 | 0.4897 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 | 0.9793 |
| 0.4531 | 2.11 | 40 | 0.4117 | 0.4717 | 0.9435 | 0.9435 | nan | 0.9435 | 0.0 | 0.9435 |
| 0.4396 | 3.16 | 60 | 0.3235 | 0.4750 | 0.9499 | 0.9499 | nan | 0.9499 | 0.0 | 0.9499 |
| 0.2327 | 4.21 | 80 | 0.2603 | 0.4703 | 0.9405 | 0.9405 | nan | 0.9405 | 0.0 | 0.9405 |
| 0.1971 | 5.26 | 100 | 0.2336 | 0.4786 | 0.9572 | 0.9572 | nan | 0.9572 | 0.0 | 0.9572 |
| 0.1768 | 6.32 | 120 | 0.2441 | 0.4776 | 0.9552 | 0.9552 | nan | 0.9552 | 0.0 | 0.9552 |
| 0.2005 | 7.37 | 140 | 0.1811 | 0.4597 | 0.9194 | 0.9194 | nan | 0.9194 | 0.0 | 0.9194 |
| 0.1818 | 8.42 | 160 | 0.2437 | 0.4805 | 0.9610 | 0.9610 | nan | 0.9610 | 0.0 | 0.9610 |
| 0.2163 | 9.47 | 180 | 0.1803 | 0.4774 | 0.9548 | 0.9548 | nan | 0.9548 | 0.0 | 0.9548 |
| 0.1436 | 10.53 | 200 | 0.1897 | 0.4807 | 0.9615 | 0.9615 | nan | 0.9615 | 0.0 | 0.9615 |
| 0.0957 | 11.58 | 220 | 0.1682 | 0.4578 | 0.9157 | 0.9157 | nan | 0.9157 | 0.0 | 0.9157 |
| 0.1614 | 12.63 | 240 | 0.1603 | 0.4422 | 0.8844 | 0.8844 | nan | 0.8844 | 0.0 | 0.8844 |
| 0.0952 | 13.68 | 260 | 0.1732 | 0.4738 | 0.9477 | 0.9477 | nan | 0.9477 | 0.0 | 0.9477 |
| 0.1243 | 14.74 | 280 | 0.1432 | 0.4569 | 0.9139 | 0.9139 | nan | 0.9139 | 0.0 | 0.9139 |
| 0.0943 | 15.79 | 300 | 0.1539 | 0.4725 | 0.9451 | 0.9451 | nan | 0.9451 | 0.0 | 0.9451 |
| 0.0833 | 16.84 | 320 | 0.1176 | 0.4570 | 0.9140 | 0.9140 | nan | 0.9140 | 0.0 | 0.9140 |
| 0.1817 | 17.89 | 340 | 0.1270 | 0.4623 | 0.9246 | 0.9246 | nan | 0.9246 | 0.0 | 0.9246 |
| 0.0939 | 18.95 | 360 | 0.1561 | 0.4715 | 0.9431 | 0.9431 | nan | 0.9431 | 0.0 | 0.9431 |
| 0.0849 | 20.0 | 380 | 0.1496 | 0.4682 | 0.9363 | 0.9363 | nan | 0.9363 | 0.0 | 0.9363 |
| 0.1155 | 21.05 | 400 | 0.1204 | 0.4547 | 0.9094 | 0.9094 | nan | 0.9094 | 0.0 | 0.9094 |
| 0.0507 | 22.11 | 420 | 0.1323 | 0.4667 | 0.9335 | 0.9335 | nan | 0.9335 | 0.0 | 0.9335 |
| 0.0631 | 23.16 | 440 | 0.1219 | 0.4593 | 0.9185 | 0.9185 | nan | 0.9185 | 0.0 | 0.9185 |
| 0.0509 | 24.21 | 460 | 0.1178 | 0.4673 | 0.9346 | 0.9346 | nan | 0.9346 | 0.0 | 0.9346 |
| 0.0594 | 25.26 | 480 | 0.1193 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
| 0.0633 | 26.32 | 500 | 0.1321 | 0.4717 | 0.9434 | 0.9434 | nan | 0.9434 | 0.0 | 0.9434 |
| 0.0739 | 27.37 | 520 | 0.1361 | 0.4587 | 0.9174 | 0.9174 | nan | 0.9174 | 0.0 | 0.9174 |
| 0.0894 | 28.42 | 540 | 0.1286 | 0.4658 | 0.9317 | 0.9317 | nan | 0.9317 | 0.0 | 0.9317 |
| 0.0528 | 29.47 | 560 | 0.1296 | 0.4644 | 0.9288 | 0.9288 | nan | 0.9288 | 0.0 | 0.9288 |
| 0.0683 | 30.53 | 580 | 0.1434 | 0.4705 | 0.9410 | 0.9410 | nan | 0.9410 | 0.0 | 0.9410 |
| 0.0343 | 31.58 | 600 | 0.1154 | 0.4598 | 0.9196 | 0.9196 | nan | 0.9196 | 0.0 | 0.9196 |
| 0.0436 | 32.63 | 620 | 0.1417 | 0.4527 | 0.9053 | 0.9053 | nan | 0.9053 | 0.0 | 0.9053 |
| 0.0369 | 33.68 | 640 | 0.1185 | 0.4365 | 0.8730 | 0.8730 | nan | 0.8730 | 0.0 | 0.8730 |
| 0.0537 | 34.74 | 660 | 0.1369 | 0.4660 | 0.9319 | 0.9319 | nan | 0.9319 | 0.0 | 0.9319 |
| 0.0642 | 35.79 | 680 | 0.1351 | 0.4514 | 0.9027 | 0.9027 | nan | 0.9027 | 0.0 | 0.9027 |
| 0.0597 | 36.84 | 700 | 0.1441 | 0.4590 | 0.9180 | 0.9180 | nan | 0.9180 | 0.0 | 0.9180 |
| 0.0382 | 37.89 | 720 | 0.1413 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
| 0.0488 | 38.95 | 740 | 0.1369 | 0.4626 | 0.9252 | 0.9252 | nan | 0.9252 | 0.0 | 0.9252 |
| 0.0652 | 40.0 | 760 | 0.1477 | 0.4653 | 0.9306 | 0.9306 | nan | 0.9306 | 0.0 | 0.9306 |
| 0.0376 | 41.05 | 780 | 0.1320 | 0.4579 | 0.9158 | 0.9158 | nan | 0.9158 | 0.0 | 0.9158 |
| 0.0387 | 42.11 | 800 | 0.1298 | 0.4536 | 0.9071 | 0.9071 | nan | 0.9071 | 0.0 | 0.9071 |
| 0.0791 | 43.16 | 820 | 0.1431 | 0.4498 | 0.8997 | 0.8997 | nan | 0.8997 | 0.0 | 0.8997 |
| 0.0304 | 44.21 | 840 | 0.1368 | 0.4426 | 0.8852 | 0.8852 | nan | 0.8852 | 0.0 | 0.8852 |
| 0.0301 | 45.26 | 860 | 0.1523 | 0.4681 | 0.9363 | 0.9363 | nan | 0.9363 | 0.0 | 0.9363 |
| 0.0743 | 46.32 | 880 | 0.1396 | 0.4505 | 0.9009 | 0.9009 | nan | 0.9009 | 0.0 | 0.9009 |
| 0.1028 | 47.37 | 900 | 0.1354 | 0.4463 | 0.8926 | 0.8926 | nan | 0.8926 | 0.0 | 0.8926 |
| 0.0399 | 48.42 | 920 | 0.1497 | 0.4568 | 0.9136 | 0.9136 | nan | 0.9136 | 0.0 | 0.9136 |
| 0.0282 | 49.47 | 940 | 0.1489 | 0.4672 | 0.9343 | 0.9343 | nan | 0.9343 | 0.0 | 0.9343 |
| 0.0266 | 50.53 | 960 | 0.1574 | 0.4564 | 0.9128 | 0.9128 | nan | 0.9128 | 0.0 | 0.9128 |
| 0.0328 | 51.58 | 980 | 0.1540 | 0.4536 | 0.9072 | 0.9072 | nan | 0.9072 | 0.0 | 0.9072 |
| 0.0273 | 52.63 | 1000 | 0.1624 | 0.4572 | 0.9144 | 0.9144 | nan | 0.9144 | 0.0 | 0.9144 |
| 0.0311 | 53.68 | 1020 | 0.1459 | 0.4386 | 0.8771 | 0.8771 | nan | 0.8771 | 0.0 | 0.8771 |
| 0.0481 | 54.74 | 1040 | 0.1607 | 0.4597 | 0.9194 | 0.9194 | nan | 0.9194 | 0.0 | 0.9194 |
| 0.0384 | 55.79 | 1060 | 0.1718 | 0.4596 | 0.9192 | 0.9192 | nan | 0.9192 | 0.0 | 0.9192 |
| 0.0299 | 56.84 | 1080 | 0.1708 | 0.4589 | 0.9178 | 0.9178 | nan | 0.9178 | 0.0 | 0.9178 |
| 0.0315 | 57.89 | 1100 | 0.1458 | 0.4539 | 0.9078 | 0.9078 | nan | 0.9078 | 0.0 | 0.9078 |
| 0.2086 | 58.95 | 1120 | 0.1428 | 0.4590 | 0.9181 | 0.9181 | nan | 0.9181 | 0.0 | 0.9181 |
| 0.0355 | 60.0 | 1140 | 0.1575 | 0.4478 | 0.8957 | 0.8957 | nan | 0.8957 | 0.0 | 0.8957 |
| 0.0236 | 61.05 | 1160 | 0.1610 | 0.4471 | 0.8941 | 0.8941 | nan | 0.8941 | 0.0 | 0.8941 |
| 0.0775 | 62.11 | 1180 | 0.1688 | 0.4478 | 0.8955 | 0.8955 | nan | 0.8955 | 0.0 | 0.8955 |
| 0.026 | 63.16 | 1200 | 0.1513 | 0.4558 | 0.9117 | 0.9117 | nan | 0.9117 | 0.0 | 0.9117 |
| 0.03 | 64.21 | 1220 | 0.1583 | 0.4630 | 0.9260 | 0.9260 | nan | 0.9260 | 0.0 | 0.9260 |
| 0.0255 | 65.26 | 1240 | 0.1595 | 0.4565 | 0.9131 | 0.9131 | nan | 0.9131 | 0.0 | 0.9131 |
| 0.079 | 66.32 | 1260 | 0.1485 | 0.4503 | 0.9005 | 0.9005 | nan | 0.9005 | 0.0 | 0.9005 |
| 0.0366 | 67.37 | 1280 | 0.1658 | 0.4561 | 0.9123 | 0.9123 | nan | 0.9123 | 0.0 | 0.9123 |
| 0.0286 | 68.42 | 1300 | 0.1890 | 0.4667 | 0.9334 | 0.9334 | nan | 0.9334 | 0.0 | 0.9334 |
| 0.0303 | 69.47 | 1320 | 0.1469 | 0.4526 | 0.9052 | 0.9052 | nan | 0.9052 | 0.0 | 0.9052 |
| 0.0215 | 70.53 | 1340 | 0.1559 | 0.4548 | 0.9095 | 0.9095 | nan | 0.9095 | 0.0 | 0.9095 |
| 0.028 | 71.58 | 1360 | 0.1616 | 0.4598 | 0.9195 | 0.9195 | nan | 0.9195 | 0.0 | 0.9195 |
| 0.0228 | 72.63 | 1380 | 0.1445 | 0.4521 | 0.9041 | 0.9041 | nan | 0.9041 | 0.0 | 0.9041 |
| 0.0216 | 73.68 | 1400 | 0.1526 | 0.4542 | 0.9085 | 0.9085 | nan | 0.9085 | 0.0 | 0.9085 |
| 0.0202 | 74.74 | 1420 | 0.1525 | 0.4643 | 0.9285 | 0.9285 | nan | 0.9285 | 0.0 | 0.9285 |
| 0.0297 | 75.79 | 1440 | 0.1471 | 0.4590 | 0.9180 | 0.9180 | nan | 0.9180 | 0.0 | 0.9180 |
| 0.0237 | 76.84 | 1460 | 0.1603 | 0.4604 | 0.9208 | 0.9208 | nan | 0.9208 | 0.0 | 0.9208 |
| 0.0601 | 77.89 | 1480 | 0.1526 | 0.4581 | 0.9161 | 0.9161 | nan | 0.9161 | 0.0 | 0.9161 |
| 0.0299 | 78.95 | 1500 | 0.1625 | 0.4579 | 0.9159 | 0.9159 | nan | 0.9159 | 0.0 | 0.9159 |
| 0.0316 | 80.0 | 1520 | 0.1702 | 0.4593 | 0.9185 | 0.9185 | nan | 0.9185 | 0.0 | 0.9185 |
| 0.0274 | 81.05 | 1540 | 0.1741 | 0.4607 | 0.9214 | 0.9214 | nan | 0.9214 | 0.0 | 0.9214 |
| 0.0274 | 82.11 | 1560 | 0.1609 | 0.4594 | 0.9188 | 0.9188 | nan | 0.9188 | 0.0 | 0.9188 |
| 0.0345 | 83.16 | 1580 | 0.1652 | 0.4581 | 0.9163 | 0.9163 | nan | 0.9163 | 0.0 | 0.9163 |
| 0.018 | 84.21 | 1600 | 0.1645 | 0.4588 | 0.9176 | 0.9176 | nan | 0.9176 | 0.0 | 0.9176 |
| 0.0352 | 85.26 | 1620 | 0.1579 | 0.4588 | 0.9176 | 0.9176 | nan | 0.9176 | 0.0 | 0.9176 |
| 0.0202 | 86.32 | 1640 | 0.1741 | 0.4620 | 0.9239 | 0.9239 | nan | 0.9239 | 0.0 | 0.9239 |
| 0.0315 | 87.37 | 1660 | 0.1587 | 0.4543 | 0.9086 | 0.9086 | nan | 0.9086 | 0.0 | 0.9086 |
| 0.0208 | 88.42 | 1680 | 0.1610 | 0.4579 | 0.9158 | 0.9158 | nan | 0.9158 | 0.0 | 0.9158 |
| 0.0174 | 89.47 | 1700 | 0.1685 | 0.4596 | 0.9193 | 0.9193 | nan | 0.9193 | 0.0 | 0.9193 |
| 0.0278 | 90.53 | 1720 | 0.1698 | 0.4586 | 0.9173 | 0.9173 | nan | 0.9173 | 0.0 | 0.9173 |
| 0.0259 | 91.58 | 1740 | 0.1674 | 0.4593 | 0.9186 | 0.9186 | nan | 0.9186 | 0.0 | 0.9186 |
| 0.0642 | 92.63 | 1760 | 0.1586 | 0.4572 | 0.9144 | 0.9144 | nan | 0.9144 | 0.0 | 0.9144 |
| 0.0543 | 93.68 | 1780 | 0.1636 | 0.4591 | 0.9182 | 0.9182 | nan | 0.9182 | 0.0 | 0.9182 |
| 0.0264 | 94.74 | 1800 | 0.1572 | 0.4586 | 0.9172 | 0.9172 | nan | 0.9172 | 0.0 | 0.9172 |
| 0.0239 | 95.79 | 1820 | 0.1687 | 0.4596 | 0.9191 | 0.9191 | nan | 0.9191 | 0.0 | 0.9191 |
| 0.0238 | 96.84 | 1840 | 0.1595 | 0.4569 | 0.9137 | 0.9137 | nan | 0.9137 | 0.0 | 0.9137 |
| 0.0181 | 97.89 | 1860 | 0.1552 | 0.4552 | 0.9103 | 0.9103 | nan | 0.9103 | 0.0 | 0.9103 |
| 0.0354 | 98.95 | 1880 | 0.1645 | 0.4573 | 0.9146 | 0.9146 | nan | 0.9146 | 0.0 | 0.9146 |
| 0.0897 | 100.0 | 1900 | 0.1491 | 0.4520 | 0.9041 | 0.9041 | nan | 0.9041 | 0.0 | 0.9041 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"branch"
] |
JCAI2000/segformer-b5-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b3-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the JCAI2000/100By100BranchPNG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1497
- Mean Iou: 0.8933
- Mean Accuracy: 0.9531
- Overall Accuracy: 0.9662
- Accuracy Background: 0.9732
- Accuracy Branch: 0.9330
- Iou Background: 0.9597
- Iou Branch: 0.8270
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Branch | Iou Background | Iou Branch |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
| 0.2055 | 1.05 | 20 | 0.2925 | 0.8151 | 0.9469 | 0.9320 | 0.9242 | 0.9695 | 0.9183 | 0.7118 |
| 0.1549 | 2.11 | 40 | 0.1328 | 0.8802 | 0.9311 | 0.9628 | 0.9796 | 0.8825 | 0.9561 | 0.8043 |
| 0.0735 | 3.16 | 60 | 0.1178 | 0.8804 | 0.9512 | 0.9613 | 0.9666 | 0.9357 | 0.9538 | 0.8070 |
| 0.0636 | 4.21 | 80 | 0.0844 | 0.8966 | 0.9368 | 0.9686 | 0.9854 | 0.8881 | 0.9629 | 0.8303 |
| 0.0546 | 5.26 | 100 | 0.1099 | 0.8969 | 0.9526 | 0.9676 | 0.9756 | 0.9297 | 0.9614 | 0.8325 |
| 0.0567 | 6.32 | 120 | 0.1012 | 0.8996 | 0.9500 | 0.9688 | 0.9788 | 0.9213 | 0.9629 | 0.8364 |
| 0.0515 | 7.37 | 140 | 0.1137 | 0.8935 | 0.9462 | 0.9668 | 0.9777 | 0.9147 | 0.9605 | 0.8265 |
| 0.052 | 8.42 | 160 | 0.0987 | 0.8914 | 0.9317 | 0.9670 | 0.9858 | 0.8776 | 0.9611 | 0.8217 |
| 0.0358 | 9.47 | 180 | 0.1167 | 0.8978 | 0.9581 | 0.9676 | 0.9726 | 0.9435 | 0.9613 | 0.8344 |
| 0.0254 | 10.53 | 200 | 0.0767 | 0.9111 | 0.9519 | 0.9729 | 0.9840 | 0.9197 | 0.9678 | 0.8545 |
| 0.0483 | 11.58 | 220 | 0.0953 | 0.9037 | 0.9524 | 0.9701 | 0.9795 | 0.9253 | 0.9645 | 0.8429 |
| 0.0285 | 12.63 | 240 | 0.0904 | 0.9026 | 0.9490 | 0.9700 | 0.9811 | 0.9169 | 0.9643 | 0.8409 |
| 0.0389 | 13.68 | 260 | 0.0902 | 0.9025 | 0.9472 | 0.9701 | 0.9821 | 0.9123 | 0.9644 | 0.8406 |
| 0.0473 | 14.74 | 280 | 0.0852 | 0.9084 | 0.9522 | 0.9719 | 0.9823 | 0.9220 | 0.9665 | 0.8502 |
| 0.0266 | 15.79 | 300 | 0.0983 | 0.8985 | 0.9409 | 0.9690 | 0.9839 | 0.8979 | 0.9633 | 0.8337 |
| 0.0233 | 16.84 | 320 | 0.0965 | 0.9052 | 0.9601 | 0.9702 | 0.9756 | 0.9447 | 0.9644 | 0.8460 |
| 0.0257 | 17.89 | 340 | 0.0941 | 0.9039 | 0.9550 | 0.9701 | 0.9781 | 0.9319 | 0.9643 | 0.8434 |
| 0.0352 | 18.95 | 360 | 0.0855 | 0.9043 | 0.9483 | 0.9706 | 0.9824 | 0.9142 | 0.9651 | 0.8435 |
| 0.1941 | 20.0 | 380 | 0.0946 | 0.9045 | 0.9509 | 0.9706 | 0.9809 | 0.9210 | 0.9650 | 0.8441 |
| 0.0325 | 21.05 | 400 | 0.0972 | 0.8973 | 0.9449 | 0.9683 | 0.9807 | 0.9092 | 0.9624 | 0.8323 |
| 0.0159 | 22.11 | 420 | 0.0828 | 0.9081 | 0.9528 | 0.9717 | 0.9817 | 0.9239 | 0.9664 | 0.8498 |
| 0.0175 | 23.16 | 440 | 0.1061 | 0.8995 | 0.9491 | 0.9688 | 0.9793 | 0.9188 | 0.9629 | 0.8360 |
| 0.0281 | 24.21 | 460 | 0.1090 | 0.8969 | 0.9516 | 0.9677 | 0.9761 | 0.9271 | 0.9615 | 0.8323 |
| 0.0177 | 25.26 | 480 | 0.1122 | 0.8983 | 0.9547 | 0.9680 | 0.9750 | 0.9343 | 0.9618 | 0.8347 |
| 0.0228 | 26.32 | 500 | 0.1088 | 0.8957 | 0.9546 | 0.9670 | 0.9736 | 0.9357 | 0.9606 | 0.8307 |
| 0.0348 | 27.37 | 520 | 0.0933 | 0.9059 | 0.9524 | 0.9710 | 0.9808 | 0.9241 | 0.9654 | 0.8464 |
| 0.0177 | 28.42 | 540 | 0.1053 | 0.9025 | 0.9527 | 0.9697 | 0.9787 | 0.9268 | 0.9639 | 0.8411 |
| 0.0182 | 29.47 | 560 | 0.1039 | 0.8992 | 0.9473 | 0.9688 | 0.9802 | 0.9143 | 0.9630 | 0.8355 |
| 0.0171 | 30.53 | 580 | 0.1117 | 0.8991 | 0.9555 | 0.9682 | 0.9750 | 0.9360 | 0.9621 | 0.8361 |
| 0.0275 | 31.58 | 600 | 0.1142 | 0.8935 | 0.9497 | 0.9665 | 0.9754 | 0.9241 | 0.9601 | 0.8268 |
| 0.0186 | 32.63 | 620 | 0.1065 | 0.9024 | 0.9524 | 0.9697 | 0.9788 | 0.9261 | 0.9639 | 0.8408 |
| 0.0173 | 33.68 | 640 | 0.1081 | 0.8986 | 0.9529 | 0.9682 | 0.9764 | 0.9294 | 0.9621 | 0.8351 |
| 0.015 | 34.74 | 660 | 0.1243 | 0.8935 | 0.9530 | 0.9663 | 0.9733 | 0.9327 | 0.9598 | 0.8272 |
| 0.0183 | 35.79 | 680 | 0.1120 | 0.9005 | 0.9500 | 0.9691 | 0.9792 | 0.9209 | 0.9633 | 0.8377 |
| 0.0248 | 36.84 | 700 | 0.1185 | 0.8962 | 0.9517 | 0.9674 | 0.9757 | 0.9277 | 0.9611 | 0.8312 |
| 0.0104 | 37.89 | 720 | 0.1136 | 0.8975 | 0.9506 | 0.9680 | 0.9771 | 0.9241 | 0.9619 | 0.8332 |
| 0.0481 | 38.95 | 740 | 0.1127 | 0.9010 | 0.9528 | 0.9691 | 0.9778 | 0.9277 | 0.9632 | 0.8388 |
| 0.0153 | 40.0 | 760 | 0.1101 | 0.9019 | 0.9537 | 0.9694 | 0.9777 | 0.9297 | 0.9635 | 0.8402 |
| 0.0143 | 41.05 | 780 | 0.1105 | 0.9032 | 0.9558 | 0.9698 | 0.9771 | 0.9345 | 0.9639 | 0.8425 |
| 0.0104 | 42.11 | 800 | 0.1122 | 0.8986 | 0.9428 | 0.9689 | 0.9827 | 0.9028 | 0.9631 | 0.8340 |
| 0.0172 | 43.16 | 820 | 0.1097 | 0.9041 | 0.9540 | 0.9702 | 0.9788 | 0.9291 | 0.9645 | 0.8437 |
| 0.0371 | 44.21 | 840 | 0.1064 | 0.9011 | 0.9503 | 0.9693 | 0.9794 | 0.9212 | 0.9635 | 0.8387 |
| 0.0221 | 45.26 | 860 | 0.1150 | 0.9004 | 0.9515 | 0.9690 | 0.9783 | 0.9247 | 0.9631 | 0.8377 |
| 0.0186 | 46.32 | 880 | 0.1228 | 0.8958 | 0.9518 | 0.9672 | 0.9754 | 0.9282 | 0.9610 | 0.8306 |
| 0.0119 | 47.37 | 900 | 0.1205 | 0.8980 | 0.9525 | 0.9680 | 0.9762 | 0.9288 | 0.9619 | 0.8340 |
| 0.0113 | 48.42 | 920 | 0.1133 | 0.8998 | 0.9502 | 0.9688 | 0.9787 | 0.9216 | 0.9629 | 0.8366 |
| 0.0121 | 49.47 | 940 | 0.1145 | 0.8993 | 0.9490 | 0.9688 | 0.9792 | 0.9188 | 0.9629 | 0.8358 |
| 0.0263 | 50.53 | 960 | 0.1168 | 0.8977 | 0.9542 | 0.9678 | 0.9750 | 0.9334 | 0.9616 | 0.8338 |
| 0.0093 | 51.58 | 980 | 0.1213 | 0.8940 | 0.9534 | 0.9664 | 0.9733 | 0.9334 | 0.9600 | 0.8280 |
| 0.0193 | 52.63 | 1000 | 0.1241 | 0.8971 | 0.9507 | 0.9678 | 0.9769 | 0.9246 | 0.9617 | 0.8326 |
| 0.0139 | 53.68 | 1020 | 0.1263 | 0.8962 | 0.9546 | 0.9672 | 0.9739 | 0.9353 | 0.9609 | 0.8316 |
| 0.012 | 54.74 | 1040 | 0.1252 | 0.8952 | 0.9504 | 0.9671 | 0.9760 | 0.9247 | 0.9609 | 0.8296 |
| 0.008 | 55.79 | 1060 | 0.1219 | 0.8986 | 0.9516 | 0.9683 | 0.9772 | 0.9260 | 0.9623 | 0.8349 |
| 0.0092 | 56.84 | 1080 | 0.1290 | 0.8995 | 0.9552 | 0.9684 | 0.9754 | 0.9349 | 0.9623 | 0.8366 |
| 0.015 | 57.89 | 1100 | 0.1243 | 0.8989 | 0.9545 | 0.9682 | 0.9755 | 0.9335 | 0.9621 | 0.8358 |
| 0.0126 | 58.95 | 1120 | 0.1214 | 0.8977 | 0.9541 | 0.9678 | 0.9751 | 0.9331 | 0.9616 | 0.8337 |
| 0.0212 | 60.0 | 1140 | 0.1298 | 0.8953 | 0.9542 | 0.9669 | 0.9736 | 0.9347 | 0.9605 | 0.8301 |
| 0.0192 | 61.05 | 1160 | 0.1341 | 0.8930 | 0.9518 | 0.9661 | 0.9737 | 0.9299 | 0.9597 | 0.8262 |
| 0.0136 | 62.11 | 1180 | 0.1327 | 0.8970 | 0.9528 | 0.9676 | 0.9754 | 0.9302 | 0.9614 | 0.8325 |
| 0.0131 | 63.16 | 1200 | 0.1233 | 0.8997 | 0.9549 | 0.9685 | 0.9757 | 0.9340 | 0.9624 | 0.8369 |
| 0.0135 | 64.21 | 1220 | 0.1301 | 0.8957 | 0.9542 | 0.9670 | 0.9738 | 0.9345 | 0.9607 | 0.8307 |
| 0.0228 | 65.26 | 1240 | 0.1274 | 0.8979 | 0.9524 | 0.9680 | 0.9762 | 0.9285 | 0.9618 | 0.8339 |
| 0.0138 | 66.32 | 1260 | 0.1336 | 0.8965 | 0.9520 | 0.9675 | 0.9757 | 0.9283 | 0.9613 | 0.8318 |
| 0.0127 | 67.37 | 1280 | 0.1278 | 0.8980 | 0.9519 | 0.9681 | 0.9767 | 0.9271 | 0.9620 | 0.8341 |
| 0.0107 | 68.42 | 1300 | 0.1293 | 0.8970 | 0.9530 | 0.9676 | 0.9753 | 0.9308 | 0.9614 | 0.8327 |
| 0.0278 | 69.47 | 1320 | 0.1413 | 0.8926 | 0.9534 | 0.9659 | 0.9725 | 0.9343 | 0.9593 | 0.8258 |
| 0.0159 | 70.53 | 1340 | 0.1360 | 0.8953 | 0.9522 | 0.9670 | 0.9748 | 0.9296 | 0.9607 | 0.8298 |
| 0.0105 | 71.58 | 1360 | 0.1319 | 0.8972 | 0.9537 | 0.9676 | 0.9750 | 0.9324 | 0.9614 | 0.8330 |
| 0.0168 | 72.63 | 1380 | 0.1343 | 0.8942 | 0.9533 | 0.9665 | 0.9735 | 0.9331 | 0.9601 | 0.8283 |
| 0.0156 | 73.68 | 1400 | 0.1357 | 0.8950 | 0.9516 | 0.9669 | 0.9751 | 0.9281 | 0.9606 | 0.8294 |
| 0.0109 | 74.74 | 1420 | 0.1446 | 0.8905 | 0.9524 | 0.9652 | 0.9719 | 0.9328 | 0.9585 | 0.8226 |
| 0.0168 | 75.79 | 1440 | 0.1339 | 0.8958 | 0.9533 | 0.9671 | 0.9745 | 0.9320 | 0.9608 | 0.8308 |
| 0.0252 | 76.84 | 1460 | 0.1355 | 0.8935 | 0.9532 | 0.9662 | 0.9731 | 0.9333 | 0.9597 | 0.8272 |
| 0.0109 | 77.89 | 1480 | 0.1388 | 0.8932 | 0.9533 | 0.9661 | 0.9729 | 0.9338 | 0.9596 | 0.8267 |
| 0.0109 | 78.95 | 1500 | 0.1404 | 0.8924 | 0.9519 | 0.9659 | 0.9734 | 0.9305 | 0.9594 | 0.8255 |
| 0.0112 | 80.0 | 1520 | 0.1424 | 0.8921 | 0.9535 | 0.9657 | 0.9722 | 0.9349 | 0.9591 | 0.8251 |
| 0.0094 | 81.05 | 1540 | 0.1451 | 0.8924 | 0.9524 | 0.9659 | 0.9730 | 0.9317 | 0.9593 | 0.8254 |
| 0.007 | 82.11 | 1560 | 0.1457 | 0.8931 | 0.9527 | 0.9661 | 0.9732 | 0.9322 | 0.9596 | 0.8266 |
| 0.0119 | 83.16 | 1580 | 0.1424 | 0.8927 | 0.9520 | 0.9661 | 0.9735 | 0.9306 | 0.9595 | 0.8259 |
| 0.0153 | 84.21 | 1600 | 0.1535 | 0.8909 | 0.9530 | 0.9653 | 0.9718 | 0.9342 | 0.9586 | 0.8233 |
| 0.0104 | 85.26 | 1620 | 0.1452 | 0.8921 | 0.9529 | 0.9658 | 0.9725 | 0.9333 | 0.9592 | 0.8251 |
| 0.0101 | 86.32 | 1640 | 0.1503 | 0.8910 | 0.9536 | 0.9653 | 0.9714 | 0.9358 | 0.9586 | 0.8235 |
| 0.009 | 87.37 | 1660 | 0.1508 | 0.8925 | 0.9532 | 0.9659 | 0.9725 | 0.9339 | 0.9593 | 0.8257 |
| 0.0073 | 88.42 | 1680 | 0.1419 | 0.8949 | 0.9528 | 0.9668 | 0.9742 | 0.9315 | 0.9604 | 0.8293 |
| 0.0137 | 89.47 | 1700 | 0.1437 | 0.8942 | 0.9526 | 0.9666 | 0.9739 | 0.9313 | 0.9601 | 0.8282 |
| 0.0061 | 90.53 | 1720 | 0.1474 | 0.8928 | 0.9523 | 0.9660 | 0.9733 | 0.9313 | 0.9595 | 0.8260 |
| 0.0132 | 91.58 | 1740 | 0.1408 | 0.8935 | 0.9522 | 0.9663 | 0.9738 | 0.9306 | 0.9598 | 0.8271 |
| 0.0089 | 92.63 | 1760 | 0.1468 | 0.8933 | 0.9527 | 0.9662 | 0.9734 | 0.9320 | 0.9597 | 0.8268 |
| 0.0141 | 93.68 | 1780 | 0.1458 | 0.8930 | 0.9529 | 0.9661 | 0.9731 | 0.9328 | 0.9596 | 0.8265 |
| 0.0132 | 94.74 | 1800 | 0.1442 | 0.8934 | 0.9528 | 0.9662 | 0.9733 | 0.9324 | 0.9597 | 0.8270 |
| 0.0109 | 95.79 | 1820 | 0.1445 | 0.8928 | 0.9529 | 0.9660 | 0.9730 | 0.9327 | 0.9595 | 0.8262 |
| 0.0248 | 96.84 | 1840 | 0.1391 | 0.8938 | 0.9529 | 0.9664 | 0.9736 | 0.9322 | 0.9599 | 0.8276 |
| 0.0074 | 97.89 | 1860 | 0.1424 | 0.8938 | 0.9531 | 0.9664 | 0.9735 | 0.9327 | 0.9599 | 0.8277 |
| 0.0072 | 98.95 | 1880 | 0.1465 | 0.8931 | 0.9534 | 0.9661 | 0.9728 | 0.9339 | 0.9596 | 0.8266 |
| 0.0183 | 100.0 | 1900 | 0.1497 | 0.8933 | 0.9531 | 0.9662 | 0.9732 | 0.9330 | 0.9597 | 0.8270 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"branch"
] |
Pavarissy/segformer-b0-finetuned-v0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-v0
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the tontokoton/artery-ultrasound-siit dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"artery",
"vein",
"nerve",
"muscle1",
"muscle2",
"muscle3",
"muscle4",
"unknown"
] |
Davidadel66/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9530
- Mean Iou: 0.1712
- Mean Accuracy: 0.2121
- Overall Accuracy: 0.7831
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8549
- Accuracy Flat-sidewalk: 0.9623
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.5957
- Accuracy Flat-parkingdriveway: 0.0956
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0075
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9053
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.9017
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: 0.0
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9152
- Accuracy Nature-terrain: 0.8300
- Accuracy Sky: 0.9299
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.6261
- Iou Flat-sidewalk: 0.8045
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.5253
- Iou Flat-parkingdriveway: 0.0861
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.0075
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.6945
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5817
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7847
- Iou Nature-terrain: 0.6656
- Iou Sky: 0.8751
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.7688 | 0.1 | 20 | 3.0043 | 0.0900 | 0.1326 | 0.6099 | nan | 0.2649 | 0.9602 | 0.0002 | 0.0001 | 0.0040 | nan | 0.0 | 0.0055 | 0.0 | 0.8361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7673 | 0.0054 | 0.0021 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7635 | 0.0259 | 0.7359 | 0.0 | 0.0036 | 0.0 | 0.0 | nan | 0.2274 | 0.6135 | 0.0002 | 0.0001 | 0.0039 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.5402 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3692 | 0.0018 | 0.0021 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6087 | 0.0247 | 0.6591 | 0.0 | 0.0020 | 0.0 | 0.0 |
| 2.2362 | 0.2 | 40 | 2.2122 | 0.1016 | 0.1476 | 0.6596 | nan | 0.5986 | 0.9497 | 0.0000 | 0.0002 | 0.0010 | nan | 0.0 | 0.0 | 0.0 | 0.8828 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7864 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8463 | 0.0423 | 0.7626 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4075 | 0.6846 | 0.0000 | 0.0002 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5190 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4231 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6493 | 0.0415 | 0.7290 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.9229 | 0.3 | 60 | 1.9323 | 0.1109 | 0.1552 | 0.6790 | nan | 0.7454 | 0.9277 | 0.0002 | 0.0006 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.8370 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8759 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8641 | 0.0240 | 0.8450 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4388 | 0.7425 | 0.0002 | 0.0006 | 0.0012 | nan | 0.0 | 0.0 | 0.0 | 0.5825 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4447 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6474 | 0.0237 | 0.7787 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.8943 | 0.4 | 80 | 1.6697 | 0.1102 | 0.1565 | 0.6866 | nan | 0.6675 | 0.9567 | 0.0 | 0.0005 | 0.0029 | nan | 0.0 | 0.0 | 0.0 | 0.8692 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8957 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8753 | 0.0270 | 0.8696 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4490 | 0.7236 | 0.0 | 0.0005 | 0.0029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6018 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4761 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6626 | 0.0268 | 0.8032 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.9991 | 0.5 | 100 | 1.6000 | 0.1166 | 0.1629 | 0.7001 | nan | 0.8482 | 0.9229 | 0.0 | 0.0024 | 0.0013 | nan | 0.0 | 0.0000 | 0.0 | 0.9172 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9390 | 0.0378 | 0.8872 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4629 | 0.7702 | 0.0 | 0.0024 | 0.0013 | nan | 0.0 | 0.0000 | 0.0 | 0.5626 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5357 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6573 | 0.0375 | 0.8165 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5725 | 0.6 | 120 | 1.5214 | 0.1250 | 0.1686 | 0.7146 | nan | 0.8401 | 0.9399 | 0.0 | 0.0415 | 0.0017 | nan | 0.0000 | 0.0 | 0.0 | 0.8705 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9241 | 0.1360 | 0.9159 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4995 | 0.7742 | 0.0 | 0.0413 | 0.0017 | nan | 0.0000 | 0.0 | 0.0 | 0.6375 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5282 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6744 | 0.1315 | 0.8355 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4764 | 0.7 | 140 | 1.4602 | 0.1327 | 0.1750 | 0.7245 | nan | 0.8603 | 0.9330 | 0.0 | 0.0371 | 0.0026 | nan | 0.0000 | 0.0 | 0.0 | 0.8552 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9104 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.3764 | 0.8728 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4935 | 0.7879 | 0.0 | 0.0369 | 0.0026 | nan | 0.0000 | 0.0 | 0.0 | 0.6449 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5233 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7071 | 0.3529 | 0.8309 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.9994 | 0.8 | 160 | 1.3414 | 0.1439 | 0.1867 | 0.7418 | nan | 0.8373 | 0.9468 | 0.0 | 0.0849 | 0.0051 | nan | 0.0 | 0.0 | 0.0 | 0.8907 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8805 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9226 | 0.6707 | 0.9236 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5211 | 0.7762 | 0.0 | 0.0842 | 0.0051 | nan | 0.0 | 0.0 | 0.0 | 0.6352 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5546 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7427 | 0.5786 | 0.8500 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2919 | 0.9 | 180 | 1.3036 | 0.1401 | 0.1822 | 0.7365 | nan | 0.8860 | 0.9322 | 0.0 | 0.0832 | 0.0067 | nan | 0.0000 | 0.0 | 0.0 | 0.8551 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8824 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9462 | 0.5071 | 0.9144 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4969 | 0.8018 | 0.0 | 0.0814 | 0.0067 | nan | 0.0000 | 0.0 | 0.0 | 0.6676 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5458 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7185 | 0.4640 | 0.8420 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2882 | 1.0 | 200 | 1.2697 | 0.1466 | 0.1914 | 0.7471 | nan | 0.8344 | 0.9563 | 0.0 | 0.1067 | 0.0068 | nan | 0.0 | 0.0 | 0.0 | 0.9191 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8746 | 0.8138 | 0.9034 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5319 | 0.7814 | 0.0 | 0.1053 | 0.0068 | nan | 0.0 | 0.0 | 0.0 | 0.6284 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5583 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7614 | 0.6179 | 0.8480 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1952 | 1.1 | 220 | 1.2088 | 0.1497 | 0.1917 | 0.7499 | nan | 0.8263 | 0.9565 | 0.0 | 0.1384 | 0.0093 | nan | 0.0 | 0.0 | 0.0 | 0.8891 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8945 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9050 | 0.7813 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5518 | 0.7648 | 0.0 | 0.1374 | 0.0092 | nan | 0.0 | 0.0 | 0.0 | 0.6640 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5651 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7604 | 0.6254 | 0.8607 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1901 | 1.2 | 240 | 1.1659 | 0.1508 | 0.1941 | 0.7546 | nan | 0.8903 | 0.9465 | 0.0 | 0.1520 | 0.0136 | nan | 0.0000 | 0.0 | 0.0 | 0.9018 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8951 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9068 | 0.7657 | 0.9340 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5301 | 0.8032 | 0.0 | 0.1479 | 0.0135 | nan | 0.0000 | 0.0 | 0.0 | 0.6624 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5553 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7704 | 0.6415 | 0.8526 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5003 | 1.3 | 260 | 1.1250 | 0.1582 | 0.1977 | 0.7625 | nan | 0.8352 | 0.9605 | 0.0 | 0.3475 | 0.0185 | nan | 0.0000 | 0.0006 | 0.0 | 0.8674 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8876 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9278 | 0.7537 | 0.9255 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5715 | 0.7817 | 0.0 | 0.3299 | 0.0182 | nan | 0.0000 | 0.0006 | 0.0 | 0.6920 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5613 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7639 | 0.6390 | 0.8616 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0678 | 1.4 | 280 | 1.1183 | 0.1595 | 0.2042 | 0.7680 | nan | 0.8673 | 0.9506 | 0.0 | 0.4007 | 0.0276 | nan | 0.0000 | 0.0001 | 0.0 | 0.9294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8812 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9051 | 0.8502 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5684 | 0.8048 | 0.0 | 0.3824 | 0.0270 | nan | 0.0000 | 0.0001 | 0.0 | 0.6348 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5821 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7698 | 0.6311 | 0.8630 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0902 | 1.5 | 300 | 1.0917 | 0.1642 | 0.2070 | 0.7718 | nan | 0.8710 | 0.9473 | 0.0 | 0.5234 | 0.0382 | nan | 0.0001 | 0.0 | 0.0 | 0.8855 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9072 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8980 | 0.8378 | 0.9211 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5662 | 0.8125 | 0.0 | 0.4669 | 0.0370 | nan | 0.0001 | 0.0 | 0.0 | 0.6874 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5623 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7753 | 0.6467 | 0.8642 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0474 | 1.6 | 320 | 1.0803 | 0.1645 | 0.2080 | 0.7736 | nan | 0.8752 | 0.9445 | 0.0 | 0.5435 | 0.0427 | nan | 0.0001 | 0.0001 | 0.0 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8937 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9148 | 0.7931 | 0.9432 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5693 | 0.8150 | 0.0 | 0.4817 | 0.0411 | nan | 0.0001 | 0.0001 | 0.0 | 0.6565 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5710 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7761 | 0.6556 | 0.8619 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.814 | 1.7 | 340 | 1.0579 | 0.1655 | 0.2100 | 0.7740 | nan | 0.8714 | 0.9443 | 0.0 | 0.5910 | 0.0501 | nan | 0.0002 | 0.0 | 0.0 | 0.9037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8918 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8947 | 0.8552 | 0.9273 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5724 | 0.8148 | 0.0 | 0.4928 | 0.0478 | nan | 0.0002 | 0.0 | 0.0 | 0.6809 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5749 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7711 | 0.6423 | 0.8650 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3638 | 1.8 | 360 | 1.0449 | 0.1641 | 0.2055 | 0.7708 | nan | 0.7817 | 0.9653 | 0.0 | 0.5410 | 0.0607 | nan | 0.0010 | 0.0000 | 0.0 | 0.9017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9180 | 0.7825 | 0.9291 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5960 | 0.7909 | 0.0 | 0.4226 | 0.0572 | nan | 0.0010 | 0.0000 | 0.0 | 0.6764 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5664 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7769 | 0.6636 | 0.8631 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2779 | 1.9 | 380 | 1.0227 | 0.1667 | 0.2074 | 0.7745 | nan | 0.8069 | 0.9631 | 0.0 | 0.5564 | 0.0757 | nan | 0.0019 | 0.0000 | 0.0 | 0.8764 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8981 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9214 | 0.8241 | 0.9197 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6092 | 0.7941 | 0.0 | 0.4529 | 0.0701 | nan | 0.0019 | 0.0000 | 0.0 | 0.6993 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5686 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7724 | 0.6635 | 0.8689 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0811 | 2.0 | 400 | 0.9893 | 0.1672 | 0.2089 | 0.7794 | nan | 0.8730 | 0.9570 | 0.0 | 0.5573 | 0.0561 | nan | 0.0013 | 0.0 | 0.0 | 0.9041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8843 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9289 | 0.7991 | 0.9315 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6005 | 0.8145 | 0.0 | 0.4776 | 0.0532 | nan | 0.0013 | 0.0 | 0.0 | 0.6819 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5802 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7736 | 0.6686 | 0.8671 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.005 | 2.1 | 420 | 0.9977 | 0.1680 | 0.2082 | 0.7783 | nan | 0.8414 | 0.9628 | 0.0 | 0.5530 | 0.0624 | nan | 0.0015 | 0.0 | 0.0 | 0.8958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8909 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.8101 | 0.9248 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6081 | 0.8005 | 0.0 | 0.4885 | 0.0582 | nan | 0.0014 | 0.0 | 0.0 | 0.6984 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5775 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7744 | 0.6669 | 0.8710 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1406 | 2.2 | 440 | 0.9950 | 0.1688 | 0.2118 | 0.7810 | nan | 0.8863 | 0.9485 | 0.0 | 0.5892 | 0.0719 | nan | 0.0020 | 0.0 | 0.0 | 0.9067 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8789 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9261 | 0.8432 | 0.9362 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5949 | 0.8221 | 0.0 | 0.5206 | 0.0665 | nan | 0.0020 | 0.0 | 0.0 | 0.6859 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7685 | 0.6580 | 0.8695 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0543 | 2.3 | 460 | 0.9919 | 0.1675 | 0.2111 | 0.7794 | nan | 0.8561 | 0.9568 | 0.0 | 0.5935 | 0.0637 | nan | 0.0044 | 0.0 | 0.0 | 0.9143 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8675 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9190 | 0.8489 | 0.9415 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6062 | 0.8089 | 0.0 | 0.5003 | 0.0600 | nan | 0.0044 | 0.0 | 0.0 | 0.6668 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5922 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7687 | 0.6544 | 0.8671 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0831 | 2.4 | 480 | 0.9767 | 0.1686 | 0.2107 | 0.7797 | nan | 0.8387 | 0.9593 | 0.0 | 0.6142 | 0.0727 | nan | 0.0043 | 0.0 | 0.0 | 0.9063 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8895 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9216 | 0.8086 | 0.9375 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6101 | 0.8042 | 0.0 | 0.4901 | 0.0678 | nan | 0.0042 | 0.0 | 0.0 | 0.6846 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5854 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7796 | 0.6671 | 0.8714 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0854 | 2.5 | 500 | 0.9623 | 0.1708 | 0.2138 | 0.7830 | nan | 0.8582 | 0.9533 | 0.0 | 0.6350 | 0.1068 | nan | 0.0074 | 0.0 | 0.0 | 0.9125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8950 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9187 | 0.8375 | 0.9325 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6113 | 0.8175 | 0.0 | 0.5387 | 0.0943 | nan | 0.0073 | 0.0 | 0.0 | 0.6782 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5824 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7791 | 0.6587 | 0.8701 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9507 | 2.6 | 520 | 0.9477 | 0.1706 | 0.2132 | 0.7834 | nan | 0.8834 | 0.9526 | 0.0 | 0.5999 | 0.0910 | nan | 0.0063 | 0.0 | 0.0 | 0.9084 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8915 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9170 | 0.8497 | 0.9341 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6044 | 0.8194 | 0.0 | 0.5368 | 0.0825 | nan | 0.0062 | 0.0 | 0.0 | 0.6840 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5855 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7806 | 0.6592 | 0.8710 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2475 | 2.7 | 540 | 0.9406 | 0.1710 | 0.2129 | 0.7839 | nan | 0.8619 | 0.9584 | 0.0 | 0.6319 | 0.0836 | nan | 0.0067 | 0.0000 | 0.0 | 0.9037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8810 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9258 | 0.8315 | 0.9419 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6158 | 0.8110 | 0.0 | 0.5375 | 0.0770 | nan | 0.0066 | 0.0000 | 0.0 | 0.6905 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5898 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7781 | 0.6668 | 0.8708 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1332 | 2.8 | 560 | 0.9532 | 0.1721 | 0.2141 | 0.7852 | nan | 0.8774 | 0.9543 | 0.0 | 0.6470 | 0.0940 | nan | 0.0065 | 0.0 | 0.0 | 0.9043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8968 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9194 | 0.8224 | 0.9417 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6092 | 0.8193 | 0.0 | 0.5542 | 0.0848 | nan | 0.0064 | 0.0 | 0.0 | 0.6936 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5837 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7845 | 0.6707 | 0.8731 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9905 | 2.9 | 580 | 0.9639 | 0.1719 | 0.2137 | 0.7845 | nan | 0.8574 | 0.9590 | 0.0 | 0.6292 | 0.1033 | nan | 0.0097 | 0.0 | 0.0 | 0.9041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8990 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9170 | 0.8356 | 0.9374 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6231 | 0.8120 | 0.0 | 0.5398 | 0.0920 | nan | 0.0096 | 0.0 | 0.0 | 0.6950 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5820 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7835 | 0.6635 | 0.8737 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1681 | 3.0 | 600 | 0.9530 | 0.1712 | 0.2121 | 0.7831 | nan | 0.8549 | 0.9623 | 0.0 | 0.5957 | 0.0956 | nan | 0.0075 | 0.0 | 0.0 | 0.9053 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9152 | 0.8300 | 0.9299 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6261 | 0.8045 | 0.0 | 0.5253 | 0.0861 | nan | 0.0075 | 0.0 | 0.0 | 0.6945 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5817 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7847 | 0.6656 | 0.8751 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
dbaek111/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the segments/sidewalk-semantic dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
dwang-LI/segformer-b-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7733
- Mean Iou: 0.2394
- Mean Accuracy: 0.2885
- Overall Accuracy: 0.8145
- Accuarcy Unlabeled: nan
- Accuarcy Flat-road: 0.9002
- Accuarcy Flat-sidewalk: 0.9256
- Accuarcy Flat-crosswalk: 0.6731
- Accuarcy Flat-cyclinglane: 0.7624
- Accuarcy Flat-parkingdriveway: 0.3720
- Accuarcy Flat-railtrack: nan
- Accuarcy Flat-curb: 0.3753
- Accuarcy Human-person: 0.0482
- Accuarcy Human-rider: 0.0
- Accuarcy Vehicle-car: 0.9125
- Accuarcy Vehicle-truck: 0.0
- Accuarcy Vehicle-bus: 0.0
- Accuarcy Vehicle-tramtrain: nan
- Accuarcy Vehicle-motorcycle: 0.0
- Accuarcy Vehicle-bicycle: 0.0
- Accuarcy Vehicle-caravan: 0.0
- Accuarcy Vehicle-cartrailer: 0.0
- Accuarcy Construction-building: 0.8988
- Accuarcy Construction-door: 0.0
- Accuarcy Construction-wall: 0.3240
- Accuarcy Construction-fenceguardrail: 0.0009
- Accuarcy Construction-bridge: 0.0
- Accuarcy Construction-tunnel: nan
- Accuarcy Construction-stairs: 0.0
- Accuarcy Object-pole: 0.0228
- Accuarcy Object-trafficsign: 0.0
- Accuarcy Object-trafficlight: 0.0
- Accuarcy Nature-vegetation: 0.9283
- Accuarcy Nature-terrain: 0.8528
- Accuarcy Sky: 0.9460
- Accuarcy Void-ground: 0.0
- Accuarcy Void-dynamic: 0.0
- Accuarcy Void-static: 0.0014
- Accuarcy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7132
- Iou Flat-sidewalk: 0.8399
- Iou Flat-crosswalk: 0.5677
- Iou Flat-cyclinglane: 0.6711
- Iou Flat-parkingdriveway: 0.2585
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.3157
- Iou Human-person: 0.0474
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7025
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.6194
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.2615
- Iou Construction-fenceguardrail: 0.0009
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0227
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7851
- Iou Nature-terrain: 0.7352
- Iou Sky: 0.8791
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0014
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuarcy Unlabeled | Accuarcy Flat-road | Accuarcy Flat-sidewalk | Accuarcy Flat-crosswalk | Accuarcy Flat-cyclinglane | Accuarcy Flat-parkingdriveway | Accuarcy Flat-railtrack | Accuarcy Flat-curb | Accuarcy Human-person | Accuarcy Human-rider | Accuarcy Vehicle-car | Accuarcy Vehicle-truck | Accuarcy Vehicle-bus | Accuarcy Vehicle-tramtrain | Accuarcy Vehicle-motorcycle | Accuarcy Vehicle-bicycle | Accuarcy Vehicle-caravan | Accuarcy Vehicle-cartrailer | Accuarcy Construction-building | Accuarcy Construction-door | Accuarcy Construction-wall | Accuarcy Construction-fenceguardrail | Accuarcy Construction-bridge | Accuarcy Construction-tunnel | Accuarcy Construction-stairs | Accuarcy Object-pole | Accuarcy Object-trafficsign | Accuarcy Object-trafficlight | Accuarcy Nature-vegetation | Accuarcy Nature-terrain | Accuarcy Sky | Accuarcy Void-ground | Accuarcy Void-dynamic | Accuarcy Void-static | Accuarcy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.2728 | 0.59 | 20 | 2.3946 | 0.1035 | 0.1549 | 0.6540 | nan | 0.6440 | 0.9384 | 0.0 | 0.0006 | 0.0001 | nan | 0.0001 | 0.0 | 0.0 | 0.9243 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6269 | 0.0 | 0.0000 | 0.0002 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9320 | 0.0116 | 0.7234 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4920 | 0.6851 | 0.0 | 0.0006 | 0.0001 | nan | 0.0001 | 0.0 | 0.0 | 0.3557 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4837 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5828 | 0.0115 | 0.7007 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.9006 | 1.18 | 40 | 1.7230 | 0.1153 | 0.1706 | 0.6814 | nan | 0.8635 | 0.8762 | 0.0 | 0.0003 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8614 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8115 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9315 | 0.0405 | 0.9034 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4876 | 0.7405 | 0.0 | 0.0003 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.5225 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6069 | 0.0399 | 0.7696 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6721 | 1.76 | 60 | 1.4574 | 0.1289 | 0.1783 | 0.6968 | nan | 0.8799 | 0.8822 | 0.0 | 0.0528 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8812 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8573 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9298 | 0.1473 | 0.8959 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4937 | 0.7555 | 0.0 | 0.0519 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.5454 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5547 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6303 | 0.1427 | 0.8205 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4066 | 2.35 | 80 | 1.3422 | 0.1589 | 0.2055 | 0.7457 | nan | 0.8230 | 0.9475 | 0.0 | 0.3015 | 0.0047 | nan | 0.0000 | 0.0 | 0.0 | 0.8977 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9091 | 0.6841 | 0.9322 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6093 | 0.7599 | 0.0 | 0.2787 | 0.0046 | nan | 0.0000 | 0.0 | 0.0 | 0.5489 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5596 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7275 | 0.6092 | 0.8285 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3429 | 2.94 | 100 | 1.1795 | 0.1653 | 0.2103 | 0.7562 | nan | 0.8569 | 0.9495 | 0.0 | 0.3507 | 0.0066 | nan | 0.0000 | 0.0 | 0.0 | 0.8981 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9026 | 0.7728 | 0.8950 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6153 | 0.7730 | 0.0 | 0.3326 | 0.0065 | nan | 0.0000 | 0.0 | 0.0 | 0.5899 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5742 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7403 | 0.6481 | 0.8448 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2661 | 3.53 | 120 | 1.1008 | 0.1712 | 0.2174 | 0.7629 | nan | 0.8484 | 0.9495 | 0.0 | 0.4917 | 0.0181 | nan | 0.0001 | 0.0 | 0.0 | 0.8996 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9043 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8869 | 0.8036 | 0.9371 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6100 | 0.7894 | 0.0 | 0.4346 | 0.0175 | nan | 0.0001 | 0.0 | 0.0 | 0.6153 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5608 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7533 | 0.6752 | 0.8508 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2166 | 4.12 | 140 | 1.0514 | 0.1771 | 0.2232 | 0.7695 | nan | 0.8815 | 0.9342 | 0.0 | 0.5539 | 0.0713 | nan | 0.0030 | 0.0 | 0.0 | 0.9014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9029 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9068 | 0.8398 | 0.9225 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6195 | 0.7981 | 0.0 | 0.5017 | 0.0642 | nan | 0.0030 | 0.0 | 0.0 | 0.6222 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5694 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7585 | 0.6979 | 0.8546 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0262 | 4.71 | 160 | 1.0025 | 0.1782 | 0.2236 | 0.7665 | nan | 0.9188 | 0.9111 | 0.0 | 0.5462 | 0.1006 | nan | 0.0031 | 0.0 | 0.0 | 0.8814 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8881 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9260 | 0.8130 | 0.9404 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5776 | 0.8071 | 0.0 | 0.5005 | 0.0888 | nan | 0.0031 | 0.0 | 0.0 | 0.6651 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5803 | 0.0 | 0.0027 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7415 | 0.7028 | 0.8558 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0928 | 5.29 | 180 | 0.9698 | 0.1852 | 0.2308 | 0.7778 | nan | 0.8513 | 0.9428 | 0.0 | 0.6760 | 0.1497 | nan | 0.0419 | 0.0 | 0.0 | 0.8856 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9132 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9134 | 0.8535 | 0.9219 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6410 | 0.8062 | 0.0 | 0.5617 | 0.1228 | nan | 0.0405 | 0.0 | 0.0 | 0.6597 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5705 | 0.0 | 0.0056 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7603 | 0.7081 | 0.8642 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8736 | 5.88 | 200 | 0.9250 | 0.1906 | 0.2370 | 0.7850 | nan | 0.9149 | 0.9249 | 0.0001 | 0.7226 | 0.1944 | nan | 0.0715 | 0.0027 | 0.0 | 0.8853 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8917 | 0.0 | 0.0153 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.9353 | 0.8470 | 0.9402 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6511 | 0.8250 | 0.0001 | 0.5978 | 0.1516 | nan | 0.0682 | 0.0027 | 0.0 | 0.6817 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5862 | 0.0 | 0.0152 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.7477 | 0.7159 | 0.8635 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7832 | 6.47 | 220 | 0.8852 | 0.1961 | 0.2421 | 0.7875 | nan | 0.8962 | 0.9385 | 0.0642 | 0.6975 | 0.2064 | nan | 0.1581 | 0.0003 | 0.0 | 0.8995 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9011 | 0.0 | 0.0392 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.8974 | 0.8728 | 0.9342 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6576 | 0.8222 | 0.0624 | 0.6239 | 0.1577 | nan | 0.1421 | 0.0003 | 0.0 | 0.6802 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5989 | 0.0 | 0.0383 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.7547 | 0.6706 | 0.8700 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7822 | 7.06 | 240 | 0.8621 | 0.2145 | 0.2598 | 0.7992 | nan | 0.8827 | 0.9398 | 0.4415 | 0.7426 | 0.2656 | nan | 0.2218 | 0.0023 | 0.0 | 0.8967 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9092 | 0.0 | 0.0558 | 0.0000 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.9249 | 0.8259 | 0.9429 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6911 | 0.8250 | 0.3902 | 0.6320 | 0.2017 | nan | 0.1950 | 0.0023 | 0.0 | 0.6915 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5886 | 0.0 | 0.0540 | 0.0000 | 0.0 | nan | 0.0 | 0.0020 | 0.0 | 0.0 | 0.7732 | 0.7329 | 0.8703 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.6742 | 7.65 | 260 | 0.8371 | 0.2193 | 0.2667 | 0.8027 | nan | 0.8766 | 0.9312 | 0.3983 | 0.7724 | 0.2975 | nan | 0.2975 | 0.0055 | 0.0 | 0.9111 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9086 | 0.0 | 0.1602 | 0.0001 | 0.0 | nan | 0.0 | 0.0034 | 0.0 | 0.0 | 0.9371 | 0.8321 | 0.9353 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.6894 | 0.8388 | 0.3591 | 0.6398 | 0.2119 | nan | 0.2519 | 0.0055 | 0.0 | 0.6754 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6033 | 0.0 | 0.1492 | 0.0001 | 0.0 | nan | 0.0 | 0.0034 | 0.0 | 0.0 | 0.7671 | 0.7293 | 0.8750 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 0.8116 | 8.24 | 280 | 0.8277 | 0.2314 | 0.2819 | 0.8087 | nan | 0.8894 | 0.9207 | 0.6812 | 0.7773 | 0.3594 | nan | 0.3120 | 0.0109 | 0.0 | 0.9016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8885 | 0.0 | 0.2424 | 0.0005 | 0.0 | nan | 0.0 | 0.0107 | 0.0 | 0.0 | 0.9398 | 0.8575 | 0.9461 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.7112 | 0.8407 | 0.5738 | 0.6399 | 0.2424 | nan | 0.2666 | 0.0108 | 0.0 | 0.6924 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6145 | 0.0 | 0.2148 | 0.0005 | 0.0 | nan | 0.0 | 0.0106 | 0.0 | 0.0 | 0.7579 | 0.7244 | 0.8738 | 0.0 | 0.0 | 0.0003 | 0.0 |
| 0.7791 | 8.82 | 300 | 0.8059 | 0.2255 | 0.2723 | 0.8077 | nan | 0.8684 | 0.9414 | 0.4680 | 0.7998 | 0.2901 | nan | 0.3174 | 0.0107 | 0.0 | 0.8846 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.2193 | 0.0000 | 0.0 | nan | 0.0 | 0.0099 | 0.0 | 0.0 | 0.9290 | 0.8439 | 0.9465 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.7039 | 0.8383 | 0.4188 | 0.6308 | 0.2131 | nan | 0.2698 | 0.0106 | 0.0 | 0.7114 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6008 | 0.0 | 0.1942 | 0.0000 | 0.0 | nan | 0.0 | 0.0099 | 0.0 | 0.0 | 0.7791 | 0.7343 | 0.8760 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 0.7334 | 9.41 | 320 | 0.7962 | 0.2342 | 0.2830 | 0.8117 | nan | 0.8921 | 0.9332 | 0.6837 | 0.7454 | 0.3381 | nan | 0.3264 | 0.0298 | 0.0 | 0.9198 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9018 | 0.0 | 0.2712 | 0.0003 | 0.0 | nan | 0.0 | 0.0182 | 0.0 | 0.0 | 0.9194 | 0.8508 | 0.9434 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.7121 | 0.8388 | 0.5627 | 0.6590 | 0.2316 | nan | 0.2794 | 0.0296 | 0.0 | 0.6884 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6204 | 0.0 | 0.2324 | 0.0003 | 0.0 | nan | 0.0 | 0.0182 | 0.0 | 0.0 | 0.7820 | 0.7278 | 0.8762 | 0.0 | 0.0 | 0.0008 | 0.0 |
| 0.7645 | 10.0 | 340 | 0.7783 | 0.2342 | 0.2809 | 0.8133 | nan | 0.8999 | 0.9347 | 0.5997 | 0.7491 | 0.3278 | nan | 0.3613 | 0.0164 | 0.0 | 0.9043 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9156 | 0.0 | 0.2684 | 0.0003 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.9235 | 0.8454 | 0.9455 | 0.0 | 0.0 | 0.0007 | 0.0 | nan | 0.7218 | 0.8409 | 0.5162 | 0.6738 | 0.2390 | nan | 0.3039 | 0.0162 | 0.0 | 0.7015 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6019 | 0.0 | 0.2260 | 0.0003 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.7860 | 0.7381 | 0.8764 | 0.0 | 0.0 | 0.0007 | 0.0 |
| 0.6792 | 10.59 | 360 | 0.7774 | 0.2358 | 0.2841 | 0.8141 | nan | 0.8954 | 0.9341 | 0.6272 | 0.7826 | 0.3543 | nan | 0.3360 | 0.0300 | 0.0 | 0.9162 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.2909 | 0.0005 | 0.0 | nan | 0.0 | 0.0199 | 0.0 | 0.0 | 0.9226 | 0.8558 | 0.9443 | 0.0 | 0.0 | 0.0010 | 0.0 | nan | 0.7198 | 0.8402 | 0.5426 | 0.6699 | 0.2489 | nan | 0.2900 | 0.0297 | 0.0 | 0.6966 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6186 | 0.0 | 0.2450 | 0.0005 | 0.0 | nan | 0.0 | 0.0199 | 0.0 | 0.0 | 0.7835 | 0.7251 | 0.8784 | 0.0 | 0.0 | 0.0010 | 0.0 |
| 0.8047 | 11.18 | 380 | 0.7734 | 0.2388 | 0.2878 | 0.8147 | nan | 0.8924 | 0.9265 | 0.6512 | 0.7739 | 0.3846 | nan | 0.3762 | 0.0383 | 0.0 | 0.9122 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9053 | 0.0 | 0.3142 | 0.0005 | 0.0 | nan | 0.0 | 0.0216 | 0.0 | 0.0 | 0.9303 | 0.8513 | 0.9427 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.7171 | 0.8421 | 0.5575 | 0.6761 | 0.2609 | nan | 0.3165 | 0.0376 | 0.0 | 0.6982 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6155 | 0.0 | 0.2551 | 0.0005 | 0.0 | nan | 0.0 | 0.0215 | 0.0 | 0.0 | 0.7854 | 0.7377 | 0.8797 | 0.0 | 0.0 | 0.0014 | 0.0 |
| 0.7136 | 11.76 | 400 | 0.7733 | 0.2394 | 0.2885 | 0.8145 | nan | 0.9002 | 0.9256 | 0.6731 | 0.7624 | 0.3720 | nan | 0.3753 | 0.0482 | 0.0 | 0.9125 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8988 | 0.0 | 0.3240 | 0.0009 | 0.0 | nan | 0.0 | 0.0228 | 0.0 | 0.0 | 0.9283 | 0.8528 | 0.9460 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.7132 | 0.8399 | 0.5677 | 0.6711 | 0.2585 | nan | 0.3157 | 0.0474 | 0.0 | 0.7025 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6194 | 0.0 | 0.2615 | 0.0009 | 0.0 | nan | 0.0 | 0.0227 | 0.0 | 0.0 | 0.7851 | 0.7352 | 0.8791 | 0.0 | 0.0 | 0.0014 | 0.0 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
TristanPermentier/segformer-b0-scene-parse-150 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-scene-parse-150
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6339
- Mean Iou: 0.1200
- Mean Accuracy: 0.1669
- Overall Accuracy: 0.6123
- Per Category Iou: [0.5349505300503856, nan, nan, 0.7662725216601061, nan, 0.5326853699336921, nan, nan, 0.34424006183640854, nan, 0.4690602972950636, nan, 0.0, nan, 0.43864150176543804, nan, nan, 0.0, 0.03116323751411952, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11546494517491812, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.21709821831740012, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2656179069036561, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.004383351344800073, nan, nan, nan, nan, nan, nan, 0.27573695030755746, 0.0, 0.0, nan, nan, 0.1730424387328153, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2699536864879483, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan]
- Per Category Accuracy: [0.7970510497742438, nan, nan, 0.9333683660650987, nan, 0.5709001366216121, nan, nan, 0.5022173025701339, nan, 0.5997946735914005, nan, 0.0, nan, 0.6798811830944017, nan, nan, 0.0, 0.03494731857464189, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18674548490489992, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.4055014699503591, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.399427626224171, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.005731113077237973, nan, nan, nan, nan, nan, nan, 0.3817023254759232, 0.0, 0.0, nan, nan, 0.18656355727404544, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.49311473385204396, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 3.6823 | 1.0 | 20 | 3.5003 | 0.0586 | 0.1033 | 0.4973 | [0.49515664733932946, nan, nan, 0.5775935923663784, nan, 0.04596206382865156, nan, nan, 0.26871056425122297, nan, 0.11369973679410002, nan, 0.0, 0.0, 0.3107990029966113, nan, nan, 0.07862248213125406, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.034315093061257025, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.01068727200680629, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.11023414367115379, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.000786938713592233, nan, nan, nan, nan, nan, nan, 0.05070892559181233, 0.0, 0.0, nan, nan, 0.015040183696900114, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.11313313426108514, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7426263023684041, nan, nan, 0.9727086727777018, nan, 0.05114940356296204, nan, nan, 0.47199142135667094, nan, 0.13174104716468385, nan, 0.0, nan, 0.4854913009051258, nan, nan, 0.08009119658748254, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.08262480087518953, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.011048725239770591, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.5815895187334261, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0010960423626975848, nan, nan, nan, nan, nan, nan, 0.06443529825277504, 0.0, 0.0, nan, nan, 0.021105203802158853, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.12399654192910954, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 3.4276 | 2.0 | 40 | 3.1882 | 0.0710 | 0.1169 | 0.4890 | [0.43876531073668484, nan, nan, 0.5793460668074677, nan, 0.30489642184557436, nan, nan, 0.32595816708983194, nan, 0.14653798821167174, nan, 0.0, nan, 0.2911432340397004, nan, nan, 0.060054857802800635, 0.002022419470540954, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.024744866592893152, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.07467207433837308, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.12499059372413274, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.004522511609125783, nan, nan, nan, nan, nan, nan, 0.09628943874020461, 0.0, 0.0, nan, nan, 0.029982363315696647, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.12235712170565591, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.5900893611665498, nan, nan, 0.9783242745736993, nan, 0.3846789392114827, nan, nan, 0.559548929399149, nan, 0.17078325985868711, nan, 0.0, nan, 0.6459378704825733, nan, nan, 0.06118996837537692, 0.002770214277258198, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.06180066406924745, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.10514964576606102, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.47971748890697613, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0059159876926327465, nan, nan, nan, nan, nan, nan, 0.11675000283456353, 0.0, 0.0, nan, nan, 0.0356049621395199, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.1275781153513647, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.9493 | 3.0 | 60 | 3.0877 | 0.0780 | 0.1289 | 0.5137 | [0.45940221778653784, nan, nan, 0.6494007938527302, nan, 0.4439837201805287, nan, nan, 0.34639082849373676, nan, 0.22427847777966967, nan, 0.000308090455357693, nan, 0.34777956821568423, nan, nan, 0.004698282190574071, 0.0031407729433002986, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.03480888089115643, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0913573016991002, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.14217375469266544, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.001518325086206108, nan, nan, nan, nan, nan, nan, 0.09802372235537879, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.04033963860518523, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.582026866520922, nan, nan, 0.952329573015261, nan, 0.5949736206887242, nan, nan, 0.6362931958905531, nan, 0.3181804456790869, nan, 0.000308090455357693, nan, 0.7024633946812373, nan, nan, 0.0047069206442597634, 0.0040369361903634425, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.13068345392779687, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.13909104053207383, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.5329640034657495, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0021920847253951697, nan, nan, nan, nan, nan, nan, 0.12659160742428882, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.041218969988884774, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 3.0162 | 4.0 | 80 | 2.8616 | 0.0814 | 0.1232 | 0.5420 | [0.4910465857166263, nan, nan, 0.6443584008757899, nan, 0.45141247019724007, nan, nan, 0.32257705190056235, nan, 0.26924304549583833, nan, 0.0, nan, 0.3331696608404026, nan, nan, 0.0, 0.001900597974698759, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.020747307143488526, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.13337046977599973, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.13325950535252862, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0017460871773707102, nan, nan, nan, nan, nan, nan, 0.1319458915051747, 0.0, 0.0, nan, nan, 0.009900990099009901, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.06578507371941024, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7132203547582256, nan, nan, 0.8931325481026355, nan, 0.5735731681633843, nan, nan, 0.581002455982566, nan, 0.33111902892686756, nan, 0.0, nan, 0.611482717739854, nan, nan, 0.0, 0.002995146205753522, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.03153369287756943, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.19039471781772616, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.37913198729225195, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0021788793957241144, nan, nan, nan, nan, nan, nan, 0.1723074480991417, 0.0, 0.0, nan, nan, 0.01031093926212341, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.06681486970482894, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 3.0263 | 5.0 | 100 | 2.7084 | 0.0843 | 0.1324 | 0.5396 | [0.49507208751747933, nan, nan, 0.6203053779437833, nan, 0.4485318235941677, nan, nan, 0.3407940967092522, nan, 0.2978191928406968, nan, 0.0, nan, 0.3557274457037466, nan, nan, 0.0, 0.0022259234469125043, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.026368862501178023, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.12652470809007507, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.14366688649397702, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006174898362074405, nan, nan, nan, nan, nan, nan, 0.19123126092560874, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.06350128408951938, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.6526707344030444, nan, nan, 0.9749474509023519, nan, 0.5390505607966174, nan, nan, 0.6160157736345083, nan, 0.414004468868893, nan, 0.0, nan, 0.639577053813209, nan, nan, 0.0, 0.003385817449982242, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.05370132238066906, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.23396308255819556, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.45186021477144434, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009045650824672838, nan, nan, nan, nan, nan, nan, 0.2455865845777067, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.06412868963813759, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 3.0192 | 6.0 | 120 | 2.5853 | 0.0834 | 0.1228 | 0.5584 | [0.513016303842118, nan, nan, 0.6309294285637532, nan, 0.35611384488558007, nan, nan, 0.2789754627300978, nan, 0.33300786268564675, nan, 0.0, nan, 0.39549797351503974, nan, nan, 0.0, 0.0006107421807796855, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.009196650667414078, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.13424914500097224, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.12323683312478671, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.004757876929583422, nan, nan, nan, nan, nan, nan, 0.24288385441579335, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.06377284193687319, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7580542978289542, nan, nan, 0.9493663014141616, nan, 0.37790185924193903, nan, nan, 0.49498772008717007, nan, 0.3913279787426777, nan, 0.0, nan, 0.6642459982413698, nan, nan, 0.0, 0.0008405351012193679, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.01007619522868165, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2828329076100053, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.22755795940872214, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.005942398351974857, nan, nan, nan, nan, nan, nan, 0.31665476149982424, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.06400518710633568, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.7891 | 7.0 | 140 | 2.4388 | 0.0948 | 0.1331 | 0.5748 | [0.5154656376508916, nan, nan, 0.6863149964423734, nan, 0.49124725952151366, nan, nan, 0.31201516142142743, nan, 0.35972157545158207, nan, 0.0, nan, 0.39671683424856585, nan, nan, 0.0, 2.370192459627722e-05, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.009904517600114009, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.163059324189356, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.14525411857851944, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.3573847356082313, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.07118873794781752, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7711226677412429, nan, nan, 0.9177684357159737, nan, 0.5529665250049951, nan, nan, 0.4886298384586115, nan, 0.44317289691406486, nan, 0.0, nan, 0.594793229711226, nan, nan, 0.0, 3.551556765715639e-05, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.02134234113198856, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.31670200973540896, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.25047916611967336, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.49779470957062033, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.07135358774854884, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.3603 | 8.0 | 160 | 2.5459 | 0.0923 | 0.1381 | 0.5408 | [0.4582064985086822, nan, nan, 0.6929509551025913, nan, 0.5612155620675559, nan, nan, 0.3518851291071376, nan, 0.3123848723909702, nan, 0.0, nan, 0.38656074482619035, nan, nan, 0.0, 0.00632781961916225, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.019509625712633233, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.16056645540831488, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.14847856488402372, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.003485354097144976, nan, nan, nan, nan, nan, nan, 0.2711320589476366, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.04329675572519084, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.6156433337669713, nan, nan, 0.8946001915399062, nan, 0.7932261600686888, nan, nan, 0.5757653325953855, nan, 0.3712482637840449, nan, 0.0, nan, 0.6684194639240202, nan, nan, 0.0, 0.012821119924233456, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.036255110070437406, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3827895320256398, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3233649276656077, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006206504945395962, nan, nan, nan, nan, nan, nan, 0.3861242445888182, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0448314190440904, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 3.0505 | 9.0 | 180 | 2.4342 | 0.0895 | 0.1374 | 0.5334 | [0.4674035619688911, nan, nan, 0.6469130452725848, nan, 0.5407835854397331, nan, nan, 0.30876943112205757, nan, 0.29598515286429283, nan, 0.0, nan, 0.36881671052279913, nan, nan, 0.0, 0.008017672665843675, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.03279170249121165, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.13950156171504707, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.14746426631847753, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.013165291208746446, nan, nan, nan, nan, nan, nan, 0.23331071375064993, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.10953377620044287, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.6058283068338183, nan, nan, 0.9748230743398714, nan, 0.6179778921391272, nan, nan, 0.5429381853402054, nan, 0.4526692433117942, nan, 0.0, nan, 0.6640578860565124, nan, nan, 0.0, 0.01460873682964366, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.057827764236224405, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.38476553086895754, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.33507495996009135, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.021339812748425266, nan, nan, nan, nan, nan, nan, 0.30016893998662086, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.11149191058416698, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.3854 | 10.0 | 200 | 2.3098 | 0.0939 | 0.1364 | 0.5669 | [0.5145572933835421, nan, nan, 0.7030505688292765, nan, 0.5830553297262949, nan, nan, 0.33253154963919734, nan, 0.3190317923926545, nan, 0.0, nan, 0.40605592944383456, nan, nan, 0.0, 0.008330498485004311, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.03189938344253368, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.15208814114494157, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.11716706900020117, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006876583423814694, nan, nan, nan, nan, nan, nan, 0.23581319835736797, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0643412965149726, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7016591414601333, nan, nan, 0.9361823857912215, nan, 0.6738685516489095, nan, nan, 0.5585526998512574, nan, 0.43041548402681323, nan, 0.0, nan, 0.6699024878930123, nan, nan, 0.0, 0.012465964247661892, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.06970807822966048, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39385030603884524, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2446766613280122, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.01103965560500218, nan, nan, nan, nan, nan, nan, 0.2799641711169314, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0656107200197604, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.0245 | 11.0 | 220 | 2.2548 | 0.0955 | 0.1378 | 0.5719 | [0.5220301378484757, nan, nan, 0.6900779538662102, nan, 0.597003770439182, nan, nan, 0.34494446136750745, nan, 0.33220376279018593, nan, 0.0, nan, 0.40090961340118253, nan, nan, 0.0, 0.018837390442916883, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.024534003530502946, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.16223235412939344, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.10163486902644009, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006591395652521519, nan, nan, nan, nan, nan, nan, 0.2809388993745605, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.05083676351290448, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.6982873412593906, nan, nan, 0.9678051268019054, nan, 0.6729127403703363, nan, nan, 0.5562281642395102, nan, 0.4558548221510961, nan, 0.0, nan, 0.6682925975667907, nan, nan, 0.0, 0.029489759677992188, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.06295222923823963, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.4064292255048436, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.17399637671646492, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009798354615922987, nan, nan, nan, nan, nan, nan, 0.34428608682835016, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.05224157095220452, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.1305 | 12.0 | 240 | 2.1615 | 0.0891 | 0.1287 | 0.5754 | [0.52909209668855, nan, nan, 0.6817600912725086, nan, 0.4928497692494535, nan, nan, 0.3053400490721222, nan, 0.30149677514104933, nan, 0.0, nan, 0.44020401115949986, nan, nan, 0.0, 0.02650747496108321, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.009345088921766961, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.14166860984376856, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.06272879674296075, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0049727527815997315, nan, nan, nan, nan, nan, nan, 0.22690293924815086, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.07303471847454578, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7419261355764054, nan, nan, 0.9587598412955063, nan, 0.5259392060826318, nan, nan, 0.48901726106056936, nan, 0.3719276526360287, nan, 0.0, nan, 0.7751709414796117, nan, nan, 0.0, 0.04273706641411152, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.011880313993436078, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.38797050460263144, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.09627957045711134, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006061246319014354, nan, nan, nan, nan, nan, nan, 0.27860358062065604, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.07521304186735828, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.5724 | 13.0 | 260 | 2.2083 | 0.0989 | 0.1513 | 0.5531 | [0.4800847622248986, nan, nan, 0.6970880808658071, nan, 0.6182665130888115, nan, nan, 0.3425863757467936, nan, 0.3713486637663145, nan, 0.0, nan, 0.3765884611771054, nan, nan, 0.0, 0.04581278147115591, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.07627658417610414, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.17206178086451746, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.13439901892281148, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.021518798527206638, nan, nan, nan, nan, nan, nan, 0.2281, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.09575841263170534, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.6012010716147941, nan, nan, 0.9709518538326638, nan, 0.7217455165970958, nan, nan, 0.5542080321007299, nan, 0.6314541940938463, nan, 0.0, nan, 0.6838665365921947, nan, nan, 0.0, 0.08092814016810702, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18847283265838818, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.49998795122656514, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.24745976317378632, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.03619580862836241, nan, nan, nan, nan, nan, nan, 0.2844881345170471, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.09849326911201679, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.9126 | 14.0 | 280 | 2.1922 | 0.0937 | 0.1380 | 0.5619 | [0.5009904092834208, nan, nan, 0.6698610538672513, nan, 0.4589843172431468, nan, nan, 0.31517044265103583, nan, 0.3104306789045372, nan, 0.0, nan, 0.4116696414534222, nan, nan, 0.0, 0.05665320608660416, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.04817434748097306, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.15597353569249542, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.1482680934947902, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007848093824402574, nan, nan, nan, nan, nan, nan, 0.27710322432627993, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.10443950498618286, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.6797244600413119, nan, nan, 0.9652398602007438, nan, 0.5028917341224627, nan, nan, 0.5103670137327476, nan, 0.37837429796485295, nan, 0.0, nan, 0.7789463092826802, nan, nan, 0.0, 0.09599857937729371, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.07920849087384603, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39425996433563065, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.24882505841888308, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.010577469066515246, nan, nan, nan, nan, nan, nan, 0.3560551946211322, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.10735457576880326, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.184 | 15.0 | 300 | 2.0821 | 0.1054 | 0.1492 | 0.5959 | [0.5445153487483887, nan, nan, 0.7363123727181161, nan, 0.6148226937061888, nan, nan, 0.3475879173137814, nan, 0.35835575524286467, nan, 0.0, nan, 0.46660818479509436, nan, nan, 0.0, 0.05904185462228059, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.04270497506100011, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.16342478251978165, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.11624580295233743, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.01957395899106045, nan, nan, nan, nan, nan, nan, 0.33294472694199845, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.09641039746939899, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7237905464791236, nan, nan, 0.9342327831743387, nan, 0.7085585609910197, nan, nan, 0.5992113182745857, nan, 0.42025484630714416, nan, 0.0, nan, 0.7143757081548819, nan, nan, 0.0, 0.08568722623416597, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.08364201677446596, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.5006867800857873, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.15362197075117495, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.03111175670500614, nan, nan, nan, nan, nan, nan, 0.45656881753347617, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.10821909349141658, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.0809 | 16.0 | 320 | 2.0044 | 0.1016 | 0.1366 | 0.6038 | [0.5521032535171966, nan, nan, 0.6849303109873625, nan, 0.5608681131846335, nan, nan, 0.3286185445379954, nan, 0.3117324722344537, nan, 0.0, nan, 0.5007412271537872, nan, nan, 0.0, 0.00896535470186189, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.02470879973127575, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.13202960663906452, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.13535477440870933, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006964332796916055, nan, nan, nan, nan, nan, nan, 0.3258174090559218, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.18590681790462252, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8265849734899084, nan, nan, 0.927053146105148, nan, 0.5985484628718619, nan, nan, 0.5087204676744267, nan, 0.3847756507035449, nan, 0.0, nan, 0.6605231268619826, nan, nan, 0.0, 0.011258434947318575, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.04800107479415772, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2624222854113451, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.18541759655525508, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.010115282528028312, nan, nan, nan, nan, nan, nan, 0.44154563080376885, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.18824873409904902, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.9142 | 17.0 | 340 | 1.9659 | 0.0994 | 0.1374 | 0.5807 | [0.5146286979691347, nan, nan, 0.6905745271536221, nan, 0.5591977800201816, nan, nan, 0.34355018631476514, nan, 0.3433540309960119, nan, 0.0, nan, 0.44078672618377784, nan, nan, 0.0, 0.018210173845236457, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.02063863329589597, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.13463592284853793, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.14175516133652527, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007641975925278458, nan, nan, nan, nan, nan, nan, 0.34504392589348754, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.11831867388362652, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7304971289988567, nan, nan, 0.9420685066106143, nan, 0.5985052623620959, nan, nan, 0.5007022034660487, nan, 0.41074340237937074, nan, 0.0, nan, 0.7711024686443236, nan, nan, 0.0, 0.02819936071978217, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.03844308389152256, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3037857246132344, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.1818993357313519, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.012122492638028708, nan, nan, nan, nan, nan, nan, 0.4377473156683334, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.1295850314931456, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.4201 | 18.0 | 360 | 1.9076 | 0.1058 | 0.1420 | 0.6090 | [0.544585393186956, nan, nan, 0.7251707754198404, nan, 0.5891181339724741, nan, nan, 0.35175747599947543, nan, 0.3768437454607878, nan, 0.0, nan, 0.46080424972867995, nan, nan, 0.0, 0.007712058173094944, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.03192860684184432, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.12968165867755327, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.17963202065848935, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006236042242325599, nan, nan, nan, nan, nan, nan, 0.3516538062361807, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.15892993199198577, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8058972658592538, nan, nan, 0.9410890411810798, nan, 0.6437469962145553, nan, nan, 0.5381576671624754, nan, 0.43085331239809166, nan, 0.0, nan, 0.7058406646047238, nan, nan, 0.0, 0.009743104060613236, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.04944053125539796, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.27250710877632656, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.23378055504502848, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.008702312253225401, nan, nan, nan, nan, nan, nan, 0.44179507239475263, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.17389156477707793, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.3918 | 19.0 | 380 | 1.9192 | 0.1037 | 0.1492 | 0.6023 | [0.5442973237949046, nan, nan, 0.7038453617346788, nan, 0.5574274701550656, nan, nan, 0.33109252617100604, nan, 0.3536195549984331, nan, 0.0, 0.0, 0.48958630952380955, nan, nan, 0.0, 0.03185425185390533, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.04555193844332643, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.15959564598020237, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.1401469153743555, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007048748992689108, nan, nan, nan, nan, nan, nan, 0.360631823315347, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2158580356918752, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7598110607315368, nan, nan, 0.9670246638723399, nan, 0.6107040063072744, nan, nan, 0.517921754470926, nan, 0.4259013225436319, nan, 0.0, nan, 0.7196428493308893, nan, nan, 0.0, 0.04353024742512134, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.07385371283803235, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.42115282664224785, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.18483997164386798, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009587069341186102, nan, nan, nan, nan, nan, nan, 0.5213556016644557, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.26553044337408915, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.3816 | 20.0 | 400 | 1.9099 | 0.1005 | 0.1444 | 0.5801 | [0.5240378547065215, nan, nan, 0.7084459171029648, nan, 0.3005648391621819, nan, nan, 0.3284451404977932, nan, 0.3888894787696032, nan, 0.0, nan, 0.44350835438817365, nan, nan, 0.0, 0.05071873461975799, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0850628575506369, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.16232786173696878, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.18652889399158057, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009414690469846346, nan, nan, nan, nan, nan, nan, 0.34993112721786757, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.179512063620434, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7640533099803383, nan, nan, 0.9546740712180197, nan, 0.3043043907918113, nan, nan, 0.5266733543187243, nan, 0.5529621353946494, nan, 0.0, nan, 0.6750033903940295, nan, nan, 0.0, 0.07075884929560791, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.13726656814386887, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39653718251482, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.25594034710006036, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.013997649451318553, nan, nan, nan, nan, nan, nan, 0.4839053482544758, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.20560083981721625, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.5018 | 21.0 | 420 | 1.8815 | 0.1059 | 0.1428 | 0.5995 | [0.5311212203406633, nan, nan, 0.7177711289807998, nan, 0.42651481922426215, nan, nan, 0.36451006234358574, nan, 0.39474432552608446, nan, 0.0, nan, 0.506004935402564, nan, nan, 0.0, 0.009084462502635261, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0965560638446633, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.12773542545580144, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.15052972972972972, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0073552816083549116, nan, nan, nan, nan, nan, nan, 0.36122781305976226, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.22668064473856636, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8159745909259652, nan, nan, 0.8884248952127461, nan, 0.4410826047747363, nan, nan, 0.510878965028192, nan, 0.4610634700163053, nan, 0.0, nan, 0.7544086059137222, nan, nan, 0.0, 0.011222919379661418, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18553634147745812, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2495300978360403, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.18279202877622286, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.011290556868752228, nan, nan, nan, nan, nan, nan, 0.5030329829812805, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2670433493886625, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.301 | 22.0 | 440 | 1.8606 | 0.1127 | 0.1557 | 0.6116 | [0.5454706673579958, nan, nan, 0.740255244679598, nan, 0.5893461091012621, nan, nan, 0.35433112960421975, nan, 0.4003983065708059, nan, 0.0, nan, 0.4706902103290056, nan, nan, 0.0, 0.04674946512433085, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0878654677869828, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.15571204204604946, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.18811653609669202, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009186660517126157, nan, nan, nan, nan, nan, nan, 0.3597557228452911, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.22036818018203322, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7677466369254428, nan, nan, 0.9575160756707006, nan, 0.6483370503771945, nan, nan, 0.5502507869521602, nan, 0.4826227429192584, nan, 0.0, nan, 0.7162393311955623, nan, nan, 0.0, 0.062341659760861846, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.14310116500009595, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3655356884669141, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2578570115787539, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.012888401758949912, nan, nan, nan, nan, nan, nan, 0.5310044559338754, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2646350500185254, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.2921 | 23.0 | 460 | 1.8113 | 0.1057 | 0.1532 | 0.5913 | [0.5357758165202247, nan, nan, 0.7178963332622186, nan, 0.5757493868768706, nan, nan, 0.34088809244481116, nan, 0.3888587007438775, nan, 0.0, nan, 0.45940927020073186, nan, nan, 0.0, 0.030332067631465825, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11186966640806827, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.1507442372917972, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.16361404207313027, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.012473057193938078, nan, nan, nan, nan, nan, nan, 0.215706225981412, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2064475531245462, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7239290991222531, nan, nan, 0.9626030770761558, nan, 0.6097751953473051, nan, nan, 0.548791033934069, nan, 0.6266380820097832, nan, 0.0, nan, 0.7326969600195987, nan, nan, 0.0, 0.04009707588492956, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.19373164693011918, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.42036965636898166, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2589334943681571, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.01971555719888547, nan, nan, nan, nan, nan, nan, 0.26920416794222024, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2633691490675559, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.3405 | 24.0 | 480 | 1.7822 | 0.1085 | 0.1534 | 0.6043 | [0.5414566325029534, nan, nan, 0.7173153879237804, nan, 0.5310126078829097, nan, nan, 0.36009260637040796, nan, 0.42939053817714906, nan, 0.0, nan, 0.4722188917670218, nan, nan, 0.0, 0.015322674081798169, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.09576263304056658, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.16420095890288652, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.15819497832665413, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.00890486944807639, nan, nan, nan, nan, nan, nan, 0.3031977891827872, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.21783933256127247, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7591235857847104, nan, nan, 0.9542138779368415, nan, 0.576780806013511, nan, nan, 0.5692275761873465, nan, 0.5856633854701371, nan, 0.0, nan, 0.7408907768158294, nan, nan, 0.0, 0.018787735290635727, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.13832216954877838, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.44317798448117984, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.20314017906372253, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.01187159137427866, nan, nan, nan, nan, nan, nan, 0.39185006292731045, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2845807089045325, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.1149 | 25.0 | 500 | 1.7731 | 0.1119 | 0.1561 | 0.5990 | [0.5230321816508672, nan, nan, 0.7190935580028947, nan, 0.5684881046052994, nan, nan, 0.34178000606892306, nan, 0.4634889254146504, nan, 0.0, nan, 0.44083260578388256, nan, nan, 0.0, 0.02177948393993877, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.12256739536552475, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.1628205567158558, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.22133767103626448, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.008860431486295587, nan, nan, nan, nan, nan, nan, 0.31208343518292186, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.23465598343498908, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7538289710403823, nan, nan, 0.9331196129401376, nan, 0.6125346279086094, nan, nan, 0.5220796291812239, nan, 0.608792801497675, nan, 0.0, nan, 0.7112696697537481, nan, nan, 0.0, 0.026530129039895822, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.19014260215342688, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.34378765241698395, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3036731693228661, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.013997649451318553, nan, nan, nan, nan, nan, nan, 0.43427780990283116, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.3219093491416574, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.8525 | 26.0 | 520 | 1.7599 | 0.1083 | 0.1499 | 0.6013 | [0.5330932644142036, nan, nan, 0.7374629122911739, nan, 0.4196436832420096, nan, nan, 0.36779568174556077, nan, 0.45034522075125105, nan, 0.0, nan, 0.46970559257831385, nan, nan, 0.0, 0.02651167431650369, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10133904279732192, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.18001012682076706, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.23047192839707079, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0010134792743488395, nan, nan, nan, nan, nan, nan, 0.2836160821897313, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.20646839213054238, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8119925245031936, nan, nan, 0.9142890013805799, nan, 0.4408612021621855, nan, nan, 0.55742502334913, nan, 0.536686998007126, nan, 0.0, nan, 0.6715692493448884, nan, nan, 0.0, 0.03145495442168817, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.164424313379268, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.36837919899754207, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.35697219523722007, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0014525862638160763, nan, nan, nan, nan, nan, nan, 0.38687256936176967, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.30393973076448066, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.9834 | 27.0 | 540 | 1.7425 | 0.1113 | 0.1546 | 0.6117 | [0.5468403256324604, nan, nan, 0.729015596924764, nan, 0.5298170927901393, nan, nan, 0.34659036444853436, nan, 0.4062670332731743, nan, 0.0, nan, 0.48170900134657657, nan, nan, 0.0, 0.014311797485688203, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.12100421456475167, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.1711757925072046, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2214201588085559, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.008457097567346056, nan, nan, nan, nan, nan, nan, 0.2971870505293438, 0.0, 0.0, nan, nan, 0.0020491803278688526, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.24086284086284085, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7922990114110264, nan, nan, 0.9550098879367172, nan, 0.5779742200957971, nan, nan, 0.5002871078210938, nan, 0.5063862552086479, nan, 0.0, nan, 0.7323994802854056, nan, nan, 0.0, 0.017816976441340122, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1658637698405082, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.35783652224203577, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.30603618032399504, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.012399804561120869, nan, nan, nan, nan, nan, nan, 0.42872206537637336, 0.0, 0.0, nan, nan, 0.0020944095376188173, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.36544399160182783, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.255 | 28.0 | 560 | 1.7499 | 0.1118 | 0.1587 | 0.6071 | [0.5398339756892974, nan, nan, 0.7287949661640746, nan, 0.5465474100530702, nan, nan, 0.35925200783154193, nan, 0.4258153855837521, nan, 0.0, nan, 0.4534640119071021, nan, nan, 0.0, 0.036095939206839234, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11804747854405662, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.17905852894391455, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.23849347211359123, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.010316461996506883, nan, nan, nan, nan, nan, nan, 0.2574594613283546, 0.0, 0.0, nan, nan, 0.0006444337038827131, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.24188155544359455, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7703357733405677, nan, nan, 0.9543786768821283, nan, 0.5850483035699822, nan, nan, 0.5598187415683697, nan, 0.6128087444894015, nan, 0.0, nan, 0.7064006264573226, nan, nan, 0.0, 0.044986385699064754, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1850565226570447, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3567039375391585, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.41631002704334813, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.01505407582500297, nan, nan, nan, nan, nan, nan, 0.33772123768382145, 0.0, 0.0, nan, nan, 0.0006444337038827131, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.32610843522292204, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.0002 | 29.0 | 580 | 1.7234 | 0.1123 | 0.1537 | 0.6115 | [0.5343806524346499, nan, nan, 0.7577406122804516, nan, 0.5857621508154368, nan, nan, 0.35288204865605544, nan, 0.44074177356385946, nan, 0.0, nan, 0.47477546800043285, nan, nan, 0.0, 0.0070126227208976155, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.09253997097454784, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.18628156919220204, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.22707481198047236, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006903668258650132, nan, nan, nan, nan, nan, nan, 0.2662933416415916, 0.0, 0.0, nan, nan, 0.0022658610271903325, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.21873956020201624, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8161723721798985, nan, nan, 0.8926101665402172, nan, 0.6268609969597642, nan, nan, 0.5148984745235048, nan, 0.5249562171628721, nan, 0.0, nan, 0.6910016755108558, nan, nan, 0.0, 0.007991002722860187, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.14563460837187878, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3366427297701094, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.4066741932942999, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.00998322923131776, nan, nan, nan, nan, nan, nan, 0.3682551560710682, 0.0, 0.0, nan, nan, 0.002416626389560174, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.3436766703717426, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.9107 | 30.0 | 600 | 1.7110 | 0.1109 | 0.1570 | 0.6061 | [0.5409093005757184, nan, nan, 0.7473723058754059, nan, 0.4555303180966537, nan, nan, 0.35164493806392416, nan, 0.4320491085773804, nan, 0.0, nan, 0.4522083206870581, nan, nan, 0.0, 0.049725487125786595, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10475239334604404, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.20116130177364758, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.22513841831253614, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007068769172369218, nan, nan, nan, nan, nan, nan, 0.27485750958849686, 0.0, 0.0, nan, nan, 0.005144694533762058, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.25437975947734176, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7937723231047638, nan, nan, 0.9445218343055435, nan, 0.4700215462542458, nan, nan, 0.5090525441903906, nan, 0.588682891478954, nan, 0.0, nan, 0.703942043948256, nan, nan, 0.0, 0.060151533088670536, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.19929754524691476, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3823557761819847, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.35765484285976845, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009098472143357059, nan, nan, nan, nan, nan, nan, 0.40789369252922436, 0.0, 0.0, nan, nan, 0.005155469631061705, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.3774854884525133, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.7442 | 31.0 | 620 | 1.7138 | 0.1100 | 0.1550 | 0.6051 | [0.538370914627848, nan, nan, 0.7400080228868461, nan, 0.5135815722017948, nan, nan, 0.3400483665949275, nan, 0.4300165958900766, nan, 0.0, nan, 0.44986347393882015, nan, nan, 0.0, 0.014369577640396904, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.12100166291695197, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.178307206329525, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.24067469406452457, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.009674143184204637, nan, nan, nan, nan, nan, nan, 0.2674093087779633, 0.0, 0.0, nan, nan, 0.00589171974522293, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2204903647326626, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7883031954893183, nan, nan, 0.9579234089128245, nan, 0.5528747239217423, nan, nan, 0.5126638763014978, nan, 0.5320218612235038, nan, 0.0, nan, 0.6818279254725772, nan, nan, 0.0, 0.016372676689949094, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.16619004663838935, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.36386090895946793, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3862472759734292, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.014842790550266088, nan, nan, nan, nan, nan, nan, 0.36498973888000724, 0.0, 0.0, nan, nan, 0.005961011760915096, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.39178090650858344, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.0674 | 32.0 | 640 | 1.7114 | 0.1093 | 0.1518 | 0.6065 | [0.5322687824138417, nan, nan, 0.746921322690992, nan, 0.4844228791969084, nan, nan, 0.3539657487456126, nan, 0.4188551233102879, nan, 0.0, nan, 0.47029302899444786, nan, nan, 0.0, 0.01652062987515423, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1012081708348106, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.1694733773920492, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.24721294631389673, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0029394296298533304, nan, nan, nan, nan, nan, nan, 0.272253692089824, 0.0, 0.0, nan, nan, 0.000778816199376947, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.22813668906453632, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8149825116950065, nan, nan, 0.936937973408291, nan, 0.5164782944438744, nan, nan, 0.5197758483517244, nan, 0.4902620931215653, nan, 0.0, nan, 0.667006435186603, nan, nan, 0.0, 0.01870486563276903, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.14244861140433374, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3432695551592848, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.37902696458109064, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0038559562639481296, nan, nan, nan, nan, nan, nan, 0.36620293207251947, 0.0, 0.0, nan, nan, 0.0008055421298533913, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.41617265653945906, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.0873 | 33.0 | 660 | 1.6653 | 0.1172 | 0.1696 | 0.6123 | [0.5445668589613619, nan, nan, 0.7524007642536803, nan, 0.6080308328342638, nan, nan, 0.37522726462514705, nan, 0.47058505928341576, nan, 0.0, nan, 0.45211562654289134, nan, nan, 0.0020577643859778054, 0.03698548214138415, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0874434081492265, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2220118553720846, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.25600388486667847, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.008400085393133278, nan, nan, nan, nan, nan, nan, 0.2727300819665799, 0.0, 0.0, nan, nan, 0.008752387014640357, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2377502658088699, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7471054660604195, nan, nan, 0.9379485329784455, nan, 0.6798356220603403, nan, nan, 0.5825452281296482, nan, 0.657935261791171, nan, 0.0, nan, 0.7090648199591403, nan, nan, 0.0020592777818636463, 0.04246478039540665, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.20981517379037676, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.42103233890789915, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.45677002651823456, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.01195082335230499, nan, nan, nan, nan, nan, nan, 0.40027438575008223, 0.0, 0.0, nan, nan, 0.008860963428387304, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.40734222551562305, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.0019 | 34.0 | 680 | 1.7047 | 0.1082 | 0.1516 | 0.5976 | [0.5252909077146455, nan, nan, 0.7573782099101035, nan, 0.41441033016508255, nan, nan, 0.31164553601714706, nan, 0.4709121646818984, nan, 0.0, nan, 0.4513100730570853, nan, nan, 0.0, 0.026121796557054672, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10214383984573885, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.18893875968482826, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.24868639840372464, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.005485878410722834, nan, nan, nan, nan, nan, nan, 0.2657905577984675, 0.0, 0.0, nan, nan, 0.010289694475225581, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.22569361498822646, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8073684622454624, nan, nan, 0.9312974962997973, nan, 0.42945086752023676, nan, nan, 0.4385762219378048, nan, 0.571939730660064, nan, 0.0, nan, 0.6894005345885812, nan, nan, 0.0, 0.02940689002012549, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18096846630712243, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.34641428502578436, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3926799170320582, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0075666539015146516, nan, nan, nan, nan, nan, nan, 0.36576074016122995, 0.0, 0.0, nan, nan, 0.010472047688094087, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.40839199703593926, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.9344 | 35.0 | 700 | 1.6748 | 0.1150 | 0.1627 | 0.6151 | [0.5505830958687438, nan, nan, 0.7562419986190323, nan, 0.5978540319640836, nan, nan, 0.32995695112686757, nan, 0.43084969246068283, nan, 0.0, nan, 0.44413403674818086, nan, nan, 0.0, 0.02120224146714213, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11930022573363432, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.19550674411022423, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2520041329675419, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.011823153016352289, nan, nan, nan, nan, nan, nan, 0.2816350837545237, 0.0, 0.0, nan, nan, 0.02907822041291073, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2345825635611859, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7886077997734505, nan, nan, 0.9569563811395381, nan, 0.6730801423456797, nan, nan, 0.5048116503511018, nan, 0.5298327193671115, nan, 0.0, nan, 0.6544510405228644, nan, nan, 0.0, 0.024635965431514147, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.16229391781663244, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39015133259434187, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.37141281802189724, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.017787579066911405, nan, nan, nan, nan, nan, nan, 0.4182455185550529, 0.0, 0.0, nan, nan, 0.03222168519413565, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4939792515746573, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.8097 | 36.0 | 720 | 1.6860 | 0.1136 | 0.1585 | 0.6079 | [0.5370921761611701, nan, nan, 0.7534232274902132, nan, 0.45051163633070723, nan, nan, 0.3470158614454695, nan, 0.4514947692232571, nan, 0.0, nan, 0.4472259023583447, nan, nan, 0.0, 0.02574732931747514, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.12124562847150792, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.19888801475595164, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.25768922637500435, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0058514509006449555, nan, nan, nan, nan, nan, nan, 0.27173447017804997, 0.0, 0.0, nan, nan, 0.09133667121832802, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.24511241015135193, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8068195399417656, nan, nan, 0.9425286998917924, nan, 0.48357570619333307, nan, nan, 0.5071984503095922, nan, 0.55839724621052, nan, 0.0, nan, 0.6896455178990931, nan, nan, 0.0, 0.029702853083935124, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18098765905993897, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.36247530001445855, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.38847900858560663, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007751528516909425, nan, nan, nan, nan, nan, nan, 0.3808632946698867, 0.0, 0.0, nan, nan, 0.09698727243434832, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.42852290971964924, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.7117 | 37.0 | 740 | 1.7075 | 0.1119 | 0.1543 | 0.6082 | [0.5316191267085415, nan, nan, 0.7572815533980582, nan, 0.4538160469667319, nan, nan, 0.30431906153724625, nan, 0.4471088739555919, nan, 0.0, nan, 0.458622625619912, nan, nan, 0.0, 0.02901237764772904, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.13063645830046386, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2073772833894836, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.24302394240109712, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0018472226405244507, nan, nan, nan, nan, nan, nan, 0.3016653313939469, 0.0, 0.0, nan, nan, 0.04694976076555024, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.228434381603097, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8287383565541218, nan, nan, 0.942003208915312, nan, 0.488387162968523, nan, nan, 0.42642775606212596, nan, 0.5283682589528353, nan, 0.0, nan, 0.6432518034708885, nan, nan, 0.0, 0.03315970166923168, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.15891599332092202, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.37601812135524604, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3349961929267204, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.002429780659474164, nan, nan, nan, nan, nan, nan, 0.43973151014206835, 0.0, 0.0, nan, nan, 0.050588045754792976, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4572989996294924, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.8903 | 38.0 | 760 | 1.6940 | 0.1141 | 0.1612 | 0.6022 | [0.5272388914176183, nan, nan, 0.7550644430962281, nan, 0.41146235695229855, nan, nan, 0.3325270522067029, nan, 0.45052910362931103, nan, 0.0, nan, 0.45438585937030007, nan, nan, 0.0, 0.01657318470885357, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.12229517410520399, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.20662691942053804, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2590023063760137, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.004992486554887694, nan, nan, nan, nan, nan, nan, 0.2898555496110951, 0.0, 0.0, nan, nan, 0.145993083746805, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.24471294419777534, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7889726903221508, nan, nan, 0.9519750998121914, nan, 0.43142189077831117, nan, nan, 0.46793040229686256, nan, 0.5804245425448397, nan, 0.0, nan, 0.726935477520594, nan, nan, 0.0, 0.019344145850597846, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1837514154655202, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39544074413224733, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.365610313230236, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006668691483882895, nan, nan, nan, nan, nan, nan, 0.3992879576402826, 0.0, 0.0, nan, nan, 0.1564362816175286, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4883907620106212, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.9552 | 39.0 | 780 | 1.6641 | 0.1162 | 0.1625 | 0.6098 | [0.5310598686250333, nan, nan, 0.7601430490832172, nan, 0.5429095366706864, nan, nan, 0.3445406417268712, nan, 0.4568477729996307, nan, 0.0, nan, 0.46530970057255566, nan, nan, 0.0, 0.014359563469270534, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1130773272197545, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.19405725628857665, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26618730518560496, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.008357285392600187, nan, nan, nan, nan, nan, nan, 0.26465747015031377, 0.0, 0.0, nan, nan, 0.08871089617651504, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2501878158721486, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.778973631634001, nan, nan, 0.9464372333677442, nan, 0.58833694237592, nan, nan, 0.4889619149745754, nan, 0.5790053747206957, nan, 0.0, nan, 0.7430518795907028, nan, nan, 0.0, 0.016277968509530012, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18175536917260043, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.37692177936286086, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.394622837188542, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.012056465989673432, nan, nan, nan, nan, nan, nan, 0.3591391997460231, 0.0, 0.0, nan, nan, 0.09457064604478814, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4524206496233173, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.7998 | 40.0 | 800 | 1.6491 | 0.1195 | 0.1656 | 0.6204 | [0.5467238209227602, nan, nan, 0.7600965442912115, nan, 0.582928686810868, nan, nan, 0.36155701416782127, nan, 0.47812036649811807, nan, 0.0, nan, 0.4596212555550058, nan, nan, 0.0, 0.031148168454591535, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1197557612763443, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.20817175700676152, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26782302664655605, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.006440314647170281, nan, nan, nan, nan, nan, nan, 0.269295792964432, 0.0, 0.0, nan, nan, 0.08404112650871703, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2449240499941124, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8010172513905502, nan, nan, 0.9341768137212224, nan, 0.6489202572590357, nan, nan, 0.5361859628489398, nan, 0.5695996135032309, nan, 0.0, nan, 0.6908966826634936, nan, nan, 0.0, 0.03564579140523263, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18670709939926683, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3809701672369753, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.4195919867671384, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.008887186868620176, nan, nan, nan, nan, nan, nan, 0.37565903602163336, 0.0, 0.0, nan, nan, 0.09086515224746254, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.44954921575892304, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.9118 | 41.0 | 820 | 1.6721 | 0.1160 | 0.1601 | 0.6090 | [0.5327482521002724, nan, nan, 0.7521480816985193, nan, 0.42348318514250716, nan, nan, 0.34787290807664323, nan, 0.46125081085206243, nan, 0.0, nan, 0.46282223820683577, nan, nan, 0.0, 0.05095456865747831, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.125455933497328, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.206567621664828, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.25872563801865195, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.001967741277706409, nan, nan, nan, nan, nan, nan, 0.2845250835300749, 0.0, 0.0, nan, nan, 0.14583025830258303, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.23884811742182516, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8171168569914615, nan, nan, 0.9333372719244786, nan, 0.4405749987849857, nan, nan, 0.4961361513715452, nan, 0.5474968295186907, nan, 0.0, nan, 0.6980711938999156, nan, nan, 0.0, 0.05908606605895584, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.17031648849394468, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.37676514530820765, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3649276656076877, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.002548628626513661, nan, nan, nan, nan, nan, nan, 0.39490005328979444, 0.0, 0.0, nan, nan, 0.15917512485903013, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4622391009015685, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.9207 | 42.0 | 840 | 1.6454 | 0.1206 | 0.1676 | 0.6162 | [0.5379120232752981, nan, nan, 0.7568729914559748, nan, 0.5613482715887681, nan, nan, 0.364717070851165, nan, 0.4756806178795279, nan, 0.0, nan, 0.4550448462618563, nan, nan, 0.0, 0.018526924741625934, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10926136363636364, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.22021430139209439, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26463688376567485, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.00584039493119801, nan, nan, nan, nan, nan, nan, 0.2793764799974909, 0.0, 0.0, nan, nan, 0.16214200477326968, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.25246816795602955, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.793135615538626, nan, nan, 0.9439590303603189, nan, 0.6017345004671055, nan, nan, 0.5147116814832751, nan, 0.5969563379431125, nan, 0.0, nan, 0.6946895492744557, nan, nan, 0.0, 0.020776607079436488, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1845383183309982, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39892283965492314, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.4116890277522514, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007936403132304199, nan, nan, nan, nan, nan, nan, 0.40398199485243264, 0.0, 0.0, nan, nan, 0.17512485903012728, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4524206496233173, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.7207 | 43.0 | 860 | 1.6300 | 0.1199 | 0.1681 | 0.6145 | [0.5406610748788059, nan, nan, 0.7575992381390396, nan, 0.5760206511115009, nan, nan, 0.36015884868644354, nan, 0.46500148540871594, nan, 0.0, nan, 0.45176054716285924, nan, nan, 0.0, 0.016866204578869986, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10816986644407346, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.212614696784591, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26724166862435816, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0068089889710963485, nan, nan, nan, nan, nan, nan, 0.2704699429190119, 0.0, 0.0, nan, nan, 0.14349508782375708, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2593716106290672, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7870149732043419, nan, nan, 0.94244785512618, nan, 0.6205699227250882, nan, nan, 0.5138676536718669, nan, 0.6144090826740746, nan, 0.0, nan, 0.6865569783058529, nan, nan, 0.0, 0.019012667219131054, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.19897126844903365, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.39421176924189116, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.41814792448867066, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.00975873862690982, nan, nan, nan, nan, nan, nan, 0.38520584600383234, 0.0, 0.0, nan, nan, 0.15530852263573386, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.4725515623070273, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 2.398 | 44.0 | 880 | 1.6485 | 0.1167 | 0.1611 | 0.6100 | [0.5311814850668972, nan, nan, 0.7555542115237289, nan, 0.49150431547087375, nan, nan, 0.3397112053113447, nan, 0.4711908444169502, nan, 0.0, nan, 0.4483007218044239, nan, nan, 0.0, 0.03373223867894174, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11456464920822017, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2039065290799167, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26244981334084666, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0015820003515556336, nan, nan, nan, nan, nan, nan, 0.2779898701320591, 0.0, 0.0, nan, nan, 0.12441350083245044, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2633676630662313, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8130575818438924, nan, nan, 0.9322520864168357, nan, 0.5200099361172462, nan, nan, 0.4856757411186828, nan, 0.5749743341989251, nan, 0.0, nan, 0.6746446648322083, nan, nan, 0.0, 0.038475198295252755, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.17162159568546917, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3645115427249506, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3913146217869614, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0020204154396714514, nan, nan, nan, nan, nan, nan, 0.37400365091783166, 0.0, 0.0, nan, nan, 0.13243112614789754, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.48558107941212797, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.8206 | 45.0 | 900 | 1.6576 | 0.1195 | 0.1659 | 0.6121 | [0.53605344484101, nan, nan, 0.75744198726446, nan, 0.5238418818047587, nan, nan, 0.34436174115825924, nan, 0.47195355574245396, nan, 0.0, nan, 0.4475797404376424, nan, nan, 0.0, 0.031364722184879165, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11128700706471659, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2101074907833958, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2651975284871611, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.003919791994957454, nan, nan, nan, nan, nan, nan, 0.2761731199707084, 0.0, 0.0, nan, nan, 0.18027666220437305, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2635211174367801, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8053821884760162, nan, nan, 0.9416705016106764, nan, 0.5536685332886928, nan, nan, 0.47402539001694977, nan, 0.6099855063711577, nan, 0.0, nan, 0.6632310673835345, nan, nan, 0.0, 0.035906238901385105, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1807957315317736, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.40720034700467495, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.397799774201171, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.005255721209079985, nan, nan, nan, nan, nan, nan, 0.3762939782532286, 0.0, 0.0, nan, nan, 0.19526341227646207, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.49163270347042115, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.7685 | 46.0 | 920 | 1.6461 | 0.1193 | 0.1663 | 0.6126 | [0.5362561433981403, nan, nan, 0.755636163506279, nan, 0.5130186358137029, nan, nan, 0.3490519469206423, nan, 0.4808415970463636, nan, 0.0, nan, 0.4444587000590182, nan, nan, 0.0, 0.020957206264131983, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.116132422490804, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.22112223959036903, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2681155616217824, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0022679869590749853, nan, nan, nan, nan, nan, nan, 0.2762335846152573, 0.0, 0.0, nan, nan, 0.1578549848942598, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2707515143446715, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8006661103407866, nan, nan, 0.9392233927438713, nan, 0.5449744306982822, nan, nan, 0.4989864748002352, nan, 0.6134730358113413, nan, 0.0, nan, 0.6819679159357269, nan, nan, 0.0, 0.023700722149875696, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18238873001554612, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.41417658682346137, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.4022894951033161, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0029579938463163732, nan, nan, nan, nan, nan, nan, 0.37849359955554046, 0.0, 0.0, nan, nan, 0.1683583051393588, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5023465481042362, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.6151 | 47.0 | 940 | 1.6422 | 0.1200 | 0.1665 | 0.6132 | [0.5358835584937998, nan, nan, 0.762341181032713, nan, 0.5249996207965295, nan, nan, 0.3548468717459638, nan, 0.46979561119539376, nan, 0.0, nan, 0.4530588733189128, nan, nan, 0.0, 0.03589317260729502, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11116243437507041, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.21348365421889132, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26835906741072957, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.003541333542608815, nan, nan, nan, nan, nan, nan, 0.2757877170662393, 0.0, 0.0, nan, nan, 0.16579458812976527, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2644075185700632, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.8022811476389466, nan, nan, 0.9352619992288653, nan, 0.5607210165079948, nan, nan, 0.5045210833996333, nan, 0.5937556615737666, nan, 0.0, nan, 0.674386557415776, nan, nan, 0.0, 0.040890256895939385, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1893748920407654, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.3981276206082221, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.41161026071888046, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0047671240112509405, nan, nan, nan, nan, nan, nan, 0.3785049378096761, 0.0, 0.0, nan, nan, 0.17866924440148219, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.48687785599604794, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.8132 | 48.0 | 960 | 1.6362 | 0.1198 | 0.1671 | 0.6154 | [0.537670140668603, nan, nan, 0.7574703715767583, nan, 0.5503381293520359, nan, nan, 0.34713318137716853, nan, 0.475125748502994, nan, 0.0, nan, 0.44345926718928064, nan, nan, 0.0, 0.033251751202633135, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11910377358490566, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.2160315408647757, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26936717663421417, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0015017990300881265, nan, nan, nan, nan, nan, nan, 0.27478974836286274, 0.0, 0.0, nan, nan, 0.13573573573573575, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2718448199272799, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7988205045219987, nan, nan, 0.940019402743747, nan, 0.592386990166484, nan, nan, 0.5173267840464907, nan, 0.5989643094389758, nan, 0.0, nan, 0.6741197005953969, nan, nan, 0.0, 0.03731502308511898, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.1822159952401973, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.40074220444358766, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.4068054716832515, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0019015674726319542, nan, nan, nan, nan, nan, nan, 0.3749107112486819, 0.0, 0.0, nan, nan, 0.14564201707749316, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5101580832407064, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 0.532 | 49.0 | 980 | 1.6296 | 0.1197 | 0.1664 | 0.6143 | [0.5366108905436184, nan, nan, 0.7597294770713172, nan, 0.5423197964192679, nan, nan, 0.3459790436344114, nan, 0.4667733595962083, nan, 0.0, nan, 0.4468324476435224, nan, nan, 0.0, 0.036688775081857104, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11978368520371332, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.21549309194854693, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.26910547396528706, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.004184269572072527, nan, nan, nan, nan, nan, nan, 0.2764878305832757, 0.0, 0.0, nan, nan, 0.14281490242460082, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2663475049834973, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7993852916321608, nan, nan, 0.9375101055957016, nan, 0.5834660848998018, nan, nan, 0.5171745823100072, nan, 0.5724379491515188, nan, 0.0, nan, 0.67241356682576, nan, nan, 0.0, 0.04138747484313958, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.181525056138802, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.40874259000433755, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.3969070811563, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0054670064838168685, nan, nan, nan, nan, nan, nan, 0.3807385738743948, 0.0, 0.0, nan, nan, 0.1556307394876752, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.5033036927257009, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
| 1.0631 | 50.0 | 1000 | 1.6339 | 0.1200 | 0.1669 | 0.6123 | [0.5349505300503856, nan, nan, 0.7662725216601061, nan, 0.5326853699336921, nan, nan, 0.34424006183640854, nan, 0.4690602972950636, nan, 0.0, nan, 0.43864150176543804, nan, nan, 0.0, 0.03116323751411952, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.11546494517491812, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.21709821831740012, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.2656179069036561, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.004383351344800073, nan, nan, nan, nan, nan, nan, 0.27573695030755746, 0.0, 0.0, nan, nan, 0.1730424387328153, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.2699536864879483, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] | [0.7970510497742438, nan, nan, 0.9333683660650987, nan, 0.5709001366216121, nan, nan, 0.5022173025701339, nan, 0.5997946735914005, nan, 0.0, nan, 0.6798811830944017, nan, nan, 0.0, 0.03494731857464189, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.18674548490489992, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.4055014699503591, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.399427626224171, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.005731113077237973, nan, nan, nan, nan, nan, nan, 0.3817023254759232, 0.0, 0.0, nan, nan, 0.18656355727404544, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.49311473385204396, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan] |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3 | [
"wall",
"building",
"sky",
"floor",
"tree",
"ceiling",
"road",
"bed ",
"windowpane",
"grass",
"cabinet",
"sidewalk",
"person",
"earth",
"door",
"table",
"mountain",
"plant",
"curtain",
"chair",
"car",
"water",
"painting",
"sofa",
"shelf",
"house",
"sea",
"mirror",
"rug",
"field",
"armchair",
"seat",
"fence",
"desk",
"rock",
"wardrobe",
"lamp",
"bathtub",
"railing",
"cushion",
"base",
"box",
"column",
"signboard",
"chest of drawers",
"counter",
"sand",
"sink",
"skyscraper",
"fireplace",
"refrigerator",
"grandstand",
"path",
"stairs",
"runway",
"case",
"pool table",
"pillow",
"screen door",
"stairway",
"river",
"bridge",
"bookcase",
"blind",
"coffee table",
"toilet",
"flower",
"book",
"hill",
"bench",
"countertop",
"stove",
"palm",
"kitchen island",
"computer",
"swivel chair",
"boat",
"bar",
"arcade machine",
"hovel",
"bus",
"towel",
"light",
"truck",
"tower",
"chandelier",
"awning",
"streetlight",
"booth",
"television receiver",
"airplane",
"dirt track",
"apparel",
"pole",
"land",
"bannister",
"escalator",
"ottoman",
"bottle",
"buffet",
"poster",
"stage",
"van",
"ship",
"fountain",
"conveyer belt",
"canopy",
"washer",
"plaything",
"swimming pool",
"stool",
"barrel",
"basket",
"waterfall",
"tent",
"bag",
"minibike",
"cradle",
"oven",
"ball",
"food",
"step",
"tank",
"trade name",
"microwave",
"pot",
"animal",
"bicycle",
"lake",
"dishwasher",
"screen",
"blanket",
"sculpture",
"hood",
"sconce",
"vase",
"traffic light",
"tray",
"ashcan",
"fan",
"pier",
"crt screen",
"plate",
"monitor",
"bulletin board",
"shower",
"radiator",
"glass",
"clock",
"flag"
] |
dwang-LI/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7413
- Mean Iou: 0.4159
- Mean Accuracy: 0.4945
- Overall Accuracy: 0.8774
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8388
- Accuracy Flat-sidewalk: 0.9573
- Accuracy Flat-crosswalk: 0.8007
- Accuracy Flat-cyclinglane: 0.8552
- Accuracy Flat-parkingdriveway: 0.5279
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.7175
- Accuracy Human-person: 0.8243
- Accuracy Human-rider: 0.0845
- Accuracy Vehicle-car: 0.9557
- Accuracy Vehicle-truck: 0.1300
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.6660
- Accuracy Vehicle-motorcycle: 0.0883
- Accuracy Vehicle-bicycle: 0.7186
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0195
- Accuracy Construction-building: 0.9361
- Accuracy Construction-door: 0.1788
- Accuracy Construction-wall: 0.6178
- Accuracy Construction-fenceguardrail: 0.3916
- Accuracy Construction-bridge: 0.5516
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.2882
- Accuracy Object-pole: 0.6120
- Accuracy Object-trafficsign: 0.5812
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9537
- Accuracy Nature-terrain: 0.8377
- Accuracy Sky: 0.9844
- Accuracy Void-ground: 0.0132
- Accuracy Void-dynamic: 0.2116
- Accuracy Void-static: 0.4815
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7575
- Iou Flat-sidewalk: 0.8765
- Iou Flat-crosswalk: 0.6860
- Iou Flat-cyclinglane: 0.7491
- Iou Flat-parkingdriveway: 0.4030
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.5916
- Iou Human-person: 0.6521
- Iou Human-rider: 0.0488
- Iou Vehicle-car: 0.8662
- Iou Vehicle-truck: 0.1122
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.4442
- Iou Vehicle-motorcycle: 0.0883
- Iou Vehicle-bicycle: 0.5874
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0193
- Iou Construction-building: 0.7672
- Iou Construction-door: 0.1600
- Iou Construction-wall: 0.5304
- Iou Construction-fenceguardrail: 0.3282
- Iou Construction-bridge: 0.3920
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.2410
- Iou Object-pole: 0.5084
- Iou Object-trafficsign: 0.3941
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8872
- Iou Nature-terrain: 0.7611
- Iou Sky: 0.9529
- Iou Void-ground: 0.0098
- Iou Void-dynamic: 0.1155
- Iou Void-static: 0.3780
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 1.6058 | 0.1 | 20 | 2.0687 | 0.0800 | 0.1356 | 0.6081 | nan | 0.4527 | 0.9100 | 0.0 | 0.0 | 0.0027 | nan | 0.0016 | 0.0075 | 0.0 | 0.8602 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9256 | 0.0 | 0.0197 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8878 | 0.0039 | 0.2678 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.3225 | 0.6221 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0015 | 0.0075 | 0.0 | 0.4904 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4424 | 0.0 | 0.0196 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6175 | 0.0039 | 0.2675 | 0.0 | 0.0 | 0.0009 | 0.0 |
| 1.0866 | 0.2 | 40 | 1.2653 | 0.1408 | 0.1825 | 0.6924 | nan | 0.5482 | 0.9667 | 0.0 | 0.0 | 0.0041 | nan | 0.0008 | 0.0357 | 0.0 | 0.8373 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9144 | 0.0 | 0.0653 | 0.0 | 0.0 | nan | 0.0 | 0.0022 | 0.0 | 0.0 | 0.9105 | 0.6945 | 0.8432 | 0.0 | 0.0 | 0.0178 | 0.0 | nan | 0.4138 | 0.6618 | 0.0 | 0.0 | 0.0041 | nan | 0.0008 | 0.0352 | 0.0 | 0.6599 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5239 | 0.0 | 0.0645 | 0.0 | 0.0 | nan | 0.0 | 0.0022 | 0.0 | 0.0 | 0.7587 | 0.5554 | 0.8085 | 0.0 | 0.0 | 0.0172 | 0.0 |
| 0.8624 | 0.3 | 60 | 1.0931 | 0.1666 | 0.2119 | 0.7183 | nan | 0.5402 | 0.9777 | 0.0 | 0.2995 | 0.0167 | nan | 0.0017 | 0.1723 | 0.0 | 0.9303 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8316 | 0.0 | 0.0853 | 0.0016 | 0.0 | nan | 0.0 | 0.2050 | 0.0 | 0.0 | 0.9005 | 0.8119 | 0.9414 | 0.0 | 0.0 | 0.0648 | 0.0 | nan | 0.4592 | 0.6670 | 0.0 | 0.2883 | 0.0163 | nan | 0.0017 | 0.1657 | 0.0 | 0.6319 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5774 | 0.0 | 0.0838 | 0.0016 | 0.0 | nan | 0.0 | 0.1763 | 0.0 | 0.0 | 0.7505 | 0.5903 | 0.8594 | 0.0 | 0.0 | 0.0622 | 0.0 |
| 1.1933 | 0.4 | 80 | 0.9780 | 0.1780 | 0.2241 | 0.7326 | nan | 0.5494 | 0.9759 | 0.0 | 0.4403 | 0.0635 | nan | 0.0928 | 0.1458 | 0.0 | 0.9218 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9418 | 0.0 | 0.1182 | 0.0043 | 0.0 | nan | 0.0 | 0.2582 | 0.0 | 0.0 | 0.8457 | 0.8430 | 0.9439 | 0.0 | 0.0 | 0.0278 | 0.0 | nan | 0.4827 | 0.6919 | 0.0 | 0.3890 | 0.0580 | nan | 0.0852 | 0.1389 | 0.0 | 0.6634 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5628 | 0.0 | 0.1040 | 0.0043 | 0.0 | nan | 0.0 | 0.2140 | 0.0 | 0.0 | 0.7901 | 0.6139 | 0.8700 | 0.0 | 0.0 | 0.0276 | 0.0 |
| 0.8678 | 0.5 | 100 | 0.8980 | 0.2055 | 0.2559 | 0.7586 | nan | 0.7035 | 0.9240 | 0.0 | 0.5471 | 0.2248 | nan | 0.1919 | 0.4983 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.8942 | 0.0 | 0.1942 | 0.0415 | 0.0 | nan | 0.0 | 0.3669 | 0.0 | 0.0 | 0.9329 | 0.7145 | 0.9508 | 0.0 | 0.0 | 0.0486 | 0.0 | nan | 0.5343 | 0.7617 | 0.0 | 0.4561 | 0.1464 | nan | 0.1592 | 0.4375 | 0.0 | 0.6418 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.5930 | 0.0 | 0.1698 | 0.0408 | 0.0 | nan | 0.0 | 0.2674 | 0.0 | 0.0 | 0.8039 | 0.6337 | 0.8700 | 0.0 | 0.0 | 0.0478 | 0.0 |
| 0.8691 | 0.6 | 120 | 0.8161 | 0.2164 | 0.2640 | 0.7752 | nan | 0.7915 | 0.9325 | 0.0 | 0.5391 | 0.2122 | nan | 0.1662 | 0.4892 | 0.0 | 0.8716 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1287 | 0.0 | 0.0 | 0.9406 | 0.0 | 0.0777 | 0.1205 | 0.0 | nan | 0.0 | 0.3821 | 0.0 | 0.0 | 0.9227 | 0.8422 | 0.9483 | 0.0 | 0.0 | 0.0846 | 0.0 | nan | 0.5700 | 0.7869 | 0.0 | 0.4869 | 0.1733 | nan | 0.1470 | 0.3997 | 0.0 | 0.7279 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1273 | 0.0 | 0.0 | 0.5747 | 0.0 | 0.0749 | 0.1087 | 0.0 | nan | 0.0 | 0.2806 | 0.0 | 0.0 | 0.8250 | 0.6766 | 0.8837 | 0.0 | 0.0 | 0.0806 | 0.0 |
| 0.5554 | 0.7 | 140 | 0.8194 | 0.2308 | 0.2859 | 0.7661 | nan | 0.5964 | 0.9383 | 0.0 | 0.5685 | 0.2664 | nan | 0.4518 | 0.6607 | 0.0 | 0.9273 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1700 | 0.0 | 0.0 | 0.9297 | 0.0 | 0.2699 | 0.1437 | 0.0 | nan | 0.0 | 0.3847 | 0.0 | 0.0 | 0.9183 | 0.8642 | 0.9349 | 0.0 | 0.0 | 0.1238 | 0.0 | nan | 0.4999 | 0.7466 | 0.0 | 0.4657 | 0.1921 | nan | 0.2892 | 0.4987 | 0.0 | 0.7165 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1661 | 0.0 | 0.0 | 0.6027 | 0.0 | 0.2471 | 0.1317 | 0.0 | nan | 0.0 | 0.2981 | 0.0 | 0.0 | 0.8326 | 0.6980 | 0.8876 | 0.0 | 0.0 | 0.1145 | 0.0 |
| 0.794 | 0.8 | 160 | 0.7478 | 0.2403 | 0.2971 | 0.7860 | nan | 0.6689 | 0.9516 | 0.0000 | 0.6487 | 0.2353 | nan | 0.2907 | 0.7860 | 0.0 | 0.9162 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1873 | 0.0 | 0.0 | 0.8967 | 0.0 | 0.4288 | 0.1785 | 0.0 | nan | 0.0 | 0.3825 | 0.0 | 0.0 | 0.9359 | 0.8514 | 0.9644 | 0.0 | 0.0 | 0.1844 | 0.0 | nan | 0.5519 | 0.7755 | 0.0000 | 0.4870 | 0.1750 | nan | 0.2347 | 0.4389 | 0.0 | 0.7562 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1836 | 0.0 | 0.0 | 0.6576 | 0.0 | 0.3686 | 0.1488 | 0.0 | nan | 0.0 | 0.3083 | 0.0 | 0.0 | 0.8332 | 0.7090 | 0.9028 | 0.0 | 0.0 | 0.1575 | 0.0 |
| 0.6339 | 0.9 | 180 | 0.7390 | 0.2411 | 0.2973 | 0.7876 | nan | 0.8110 | 0.9249 | 0.0209 | 0.5771 | 0.3073 | nan | 0.3368 | 0.7894 | 0.0 | 0.8493 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5413 | 0.0 | 0.0 | 0.9288 | 0.0 | 0.1732 | 0.1312 | 0.0 | nan | 0.0 | 0.3136 | 0.0 | 0.0 | 0.9477 | 0.7834 | 0.9502 | 0.0 | 0.0 | 0.1273 | 0.0 | nan | 0.5789 | 0.8126 | 0.0209 | 0.4832 | 0.2278 | nan | 0.2592 | 0.3822 | 0.0 | 0.7646 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4843 | 0.0 | 0.0 | 0.6012 | 0.0 | 0.1659 | 0.1198 | 0.0 | nan | 0.0 | 0.2735 | 0.0 | 0.0 | 0.8253 | 0.7060 | 0.8938 | 0.0 | 0.0 | 0.1164 | 0.0 |
| 0.8587 | 1.0 | 200 | 0.7084 | 0.2675 | 0.3230 | 0.8018 | nan | 0.7580 | 0.9389 | 0.3724 | 0.5680 | 0.3650 | nan | 0.3542 | 0.7193 | 0.0 | 0.9144 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5573 | 0.0 | 0.0 | 0.9250 | 0.0 | 0.3356 | 0.2530 | 0.0 | nan | 0.0 | 0.2509 | 0.0 | 0.0 | 0.9308 | 0.8555 | 0.9539 | 0.0 | 0.0 | 0.2823 | 0.0 | nan | 0.6263 | 0.7931 | 0.3623 | 0.5008 | 0.2209 | nan | 0.2872 | 0.4916 | 0.0 | 0.7620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4623 | 0.0 | 0.0 | 0.6392 | 0.0 | 0.3075 | 0.1780 | 0.0 | nan | 0.0 | 0.2203 | 0.0 | 0.0 | 0.8510 | 0.7357 | 0.9055 | 0.0 | 0.0 | 0.2151 | 0.0 |
| 0.5614 | 1.1 | 220 | 0.7561 | 0.2601 | 0.3206 | 0.7938 | nan | 0.6713 | 0.9499 | 0.2579 | 0.6298 | 0.3682 | nan | 0.3742 | 0.7721 | 0.0 | 0.9318 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5424 | 0.0 | 0.0 | 0.8845 | 0.0 | 0.4127 | 0.1613 | 0.0 | nan | 0.0 | 0.2406 | 0.0 | 0.0 | 0.9196 | 0.8874 | 0.9724 | 0.0 | 0.0 | 0.2822 | 0.0 | nan | 0.5910 | 0.7841 | 0.2544 | 0.4716 | 0.2352 | nan | 0.2894 | 0.4556 | 0.0 | 0.7663 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4722 | 0.0 | 0.0 | 0.6528 | 0.0 | 0.3492 | 0.1422 | 0.0 | nan | 0.0 | 0.2133 | 0.0 | 0.0 | 0.8336 | 0.6845 | 0.9031 | 0.0 | 0.0 | 0.2248 | 0.0 |
| 0.6716 | 1.2 | 240 | 0.7154 | 0.2718 | 0.3453 | 0.7967 | nan | 0.6683 | 0.9515 | 0.6023 | 0.6991 | 0.3307 | nan | 0.4583 | 0.7933 | 0.0 | 0.9318 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5865 | 0.0 | 0.0 | 0.8739 | 0.0 | 0.3943 | 0.2839 | 0.0 | nan | 0.0 | 0.4104 | 0.0 | 0.0 | 0.8423 | 0.9039 | 0.9740 | 0.0 | 0.0 | 0.3438 | 0.0 | nan | 0.6036 | 0.8231 | 0.5148 | 0.4430 | 0.2387 | nan | 0.3350 | 0.4530 | 0.0 | 0.7768 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4575 | 0.0 | 0.0 | 0.6788 | 0.0 | 0.3633 | 0.1930 | 0.0 | nan | 0.0 | 0.3109 | 0.0 | 0.0 | 0.7773 | 0.5568 | 0.9052 | 0.0 | 0.0 | 0.2673 | 0.0 |
| 0.5977 | 1.3 | 260 | 0.6926 | 0.2792 | 0.3446 | 0.8034 | nan | 0.6946 | 0.9427 | 0.6251 | 0.5124 | 0.4221 | nan | 0.4001 | 0.8085 | 0.0 | 0.8952 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5728 | 0.0 | 0.0 | 0.8277 | 0.0 | 0.6152 | 0.2122 | 0.0 | nan | 0.0 | 0.3902 | 0.0 | 0.0 | 0.9603 | 0.8804 | 0.9529 | 0.0 | 0.0 | 0.3160 | 0.0 | nan | 0.6006 | 0.7857 | 0.5078 | 0.4729 | 0.2514 | nan | 0.3110 | 0.4450 | 0.0 | 0.7790 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4750 | 0.0 | 0.0 | 0.6803 | 0.0 | 0.4791 | 0.1668 | 0.0 | nan | 0.0 | 0.2995 | 0.0 | 0.0 | 0.8278 | 0.7035 | 0.9083 | 0.0 | 0.0 | 0.2401 | 0.0 |
| 0.323 | 1.4 | 280 | 0.6871 | 0.2769 | 0.3368 | 0.8095 | nan | 0.9001 | 0.8911 | 0.5783 | 0.5414 | 0.3860 | nan | 0.2742 | 0.7728 | 0.0 | 0.9198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5951 | 0.0 | 0.0 | 0.9161 | 0.0 | 0.3427 | 0.1982 | 0.0 | nan | 0.0 | 0.3783 | 0.0 | 0.0 | 0.9283 | 0.8808 | 0.9731 | 0.0 | 0.0 | 0.3014 | 0.0 | nan | 0.6163 | 0.8266 | 0.5474 | 0.4864 | 0.2627 | nan | 0.2177 | 0.4875 | 0.0 | 0.7824 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4786 | 0.0 | 0.0 | 0.6533 | 0.0 | 0.3035 | 0.1736 | 0.0 | nan | 0.0 | 0.3035 | 0.0 | 0.0 | 0.8537 | 0.7231 | 0.9064 | 0.0 | 0.0 | 0.2376 | 0.0 |
| 0.4141 | 1.5 | 300 | 0.6476 | 0.2867 | 0.3494 | 0.8218 | nan | 0.7932 | 0.9491 | 0.6643 | 0.6611 | 0.2548 | nan | 0.4516 | 0.7783 | 0.0 | 0.9142 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6078 | 0.0 | 0.0 | 0.8901 | 0.0 | 0.3304 | 0.2616 | 0.0 | nan | 0.0 | 0.4842 | 0.0 | 0.0 | 0.9445 | 0.7866 | 0.9691 | 0.0 | 0.0 | 0.4399 | 0.0 | nan | 0.6531 | 0.8299 | 0.5304 | 0.5258 | 0.2096 | nan | 0.3576 | 0.4954 | 0.0 | 0.7931 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4708 | 0.0 | 0.0 | 0.6738 | 0.0 | 0.2988 | 0.1819 | 0.0 | nan | 0.0 | 0.3425 | 0.0 | 0.0 | 0.8504 | 0.7206 | 0.9123 | 0.0 | 0.0 | 0.3267 | 0.0 |
| 0.3646 | 1.6 | 320 | 0.6528 | 0.2763 | 0.3318 | 0.8139 | nan | 0.7482 | 0.9494 | 0.6282 | 0.6090 | 0.3414 | nan | 0.5601 | 0.7720 | 0.0 | 0.8964 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5823 | 0.0 | 0.0 | 0.9521 | 0.0 | 0.2277 | 0.0532 | 0.0 | nan | 0.0 | 0.3867 | 0.0 | 0.0 | 0.9466 | 0.8266 | 0.9693 | 0.0 | 0.0 | 0.1695 | 0.0 | nan | 0.6420 | 0.8276 | 0.5175 | 0.5250 | 0.2451 | nan | 0.3864 | 0.5556 | 0.0 | 0.7824 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5152 | 0.0 | 0.0 | 0.6083 | 0.0 | 0.2015 | 0.0523 | 0.0 | nan | 0.0 | 0.3181 | 0.0 | 0.0 | 0.8566 | 0.7311 | 0.9165 | 0.0 | 0.0 | 0.1596 | 0.0 |
| 0.9788 | 1.7 | 340 | 0.7683 | 0.2612 | 0.3304 | 0.7955 | nan | 0.5996 | 0.9751 | 0.3832 | 0.6502 | 0.2049 | nan | 0.4099 | 0.8274 | 0.0 | 0.9395 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7249 | 0.0 | 0.0 | 0.9074 | 0.0 | 0.2946 | 0.1679 | 0.0 | nan | 0.0 | 0.4672 | 0.0 | 0.0 | 0.9432 | 0.8381 | 0.9654 | 0.0 | 0.0 | 0.2729 | 0.0 | nan | 0.5599 | 0.7533 | 0.3669 | 0.5210 | 0.1659 | nan | 0.3300 | 0.3950 | 0.0 | 0.7744 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3063 | 0.0 | 0.0 | 0.6650 | 0.0 | 0.2691 | 0.1526 | 0.0 | nan | 0.0 | 0.3416 | 0.0 | 0.0 | 0.8595 | 0.7511 | 0.9171 | 0.0 | 0.0 | 0.2307 | 0.0 |
| 0.6605 | 1.8 | 360 | 0.6275 | 0.2884 | 0.3441 | 0.8263 | nan | 0.8420 | 0.9395 | 0.5045 | 0.6022 | 0.2955 | nan | 0.4330 | 0.7870 | 0.0 | 0.8991 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6139 | 0.0 | 0.0 | 0.9320 | 0.0 | 0.5533 | 0.1601 | 0.0 | nan | 0.0 | 0.3684 | 0.0 | 0.0 | 0.9458 | 0.8448 | 0.9551 | 0.0 | 0.0 | 0.3342 | 0.0 | nan | 0.6410 | 0.8340 | 0.4894 | 0.5314 | 0.2450 | nan | 0.3572 | 0.4974 | 0.0 | 0.7906 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4876 | 0.0 | 0.0 | 0.6881 | 0.0 | 0.4509 | 0.1472 | 0.0 | nan | 0.0 | 0.3078 | 0.0 | 0.0 | 0.8575 | 0.7292 | 0.9075 | 0.0 | 0.0 | 0.2676 | 0.0 |
| 0.7524 | 1.9 | 380 | 0.6273 | 0.2919 | 0.3560 | 0.8269 | nan | 0.8081 | 0.9440 | 0.6296 | 0.6118 | 0.3642 | nan | 0.4947 | 0.8006 | 0.0 | 0.9350 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6406 | 0.0 | 0.0 | 0.8665 | 0.0 | 0.4322 | 0.1933 | 0.0 | nan | 0.0 | 0.3940 | 0.0 | 0.0 | 0.9558 | 0.8249 | 0.9678 | 0.0 | 0.0 | 0.5301 | 0.0 | nan | 0.6452 | 0.8301 | 0.5816 | 0.5276 | 0.2781 | nan | 0.3737 | 0.4358 | 0.0 | 0.7892 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4562 | 0.0 | 0.0 | 0.6994 | 0.0 | 0.3982 | 0.1730 | 0.0 | nan | 0.0 | 0.3147 | 0.0 | 0.0 | 0.8553 | 0.7263 | 0.9197 | 0.0 | 0.0 | 0.3361 | 0.0 |
| 1.2079 | 2.0 | 400 | 0.6490 | 0.2897 | 0.3486 | 0.8215 | nan | 0.7698 | 0.9312 | 0.5400 | 0.7152 | 0.5081 | nan | 0.4067 | 0.7781 | 0.0 | 0.8939 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6318 | 0.0 | 0.0 | 0.9512 | 0.0 | 0.4015 | 0.1934 | 0.0 | nan | 0.0 | 0.3986 | 0.0 | 0.0 | 0.9288 | 0.8495 | 0.9746 | 0.0 | 0.0 | 0.2818 | 0.0 | nan | 0.6377 | 0.8292 | 0.5056 | 0.5954 | 0.2895 | nan | 0.3449 | 0.5046 | 0.0 | 0.7963 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5140 | 0.0 | 0.0 | 0.6506 | 0.0 | 0.3486 | 0.1627 | 0.0 | nan | 0.0 | 0.3316 | 0.0 | 0.0 | 0.8600 | 0.7487 | 0.9086 | 0.0 | 0.0 | 0.2415 | 0.0 |
| 0.405 | 2.1 | 420 | 0.6384 | 0.2937 | 0.3622 | 0.8234 | nan | 0.7031 | 0.9520 | 0.6652 | 0.7688 | 0.3272 | nan | 0.4249 | 0.7941 | 0.0 | 0.9555 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6440 | 0.0 | 0.0 | 0.8782 | 0.0 | 0.5263 | 0.2536 | 0.0 | nan | 0.0 | 0.4750 | 0.0 | 0.0 | 0.9257 | 0.8877 | 0.9717 | 0.0 | 0.0204 | 0.4167 | 0.0 | nan | 0.6183 | 0.8256 | 0.5422 | 0.5549 | 0.2588 | nan | 0.3615 | 0.4897 | 0.0 | 0.7693 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4770 | 0.0 | 0.0 | 0.6953 | 0.0 | 0.4538 | 0.1952 | 0.0 | nan | 0.0 | 0.3494 | 0.0 | 0.0 | 0.8578 | 0.7154 | 0.9221 | 0.0 | 0.0178 | 0.2943 | 0.0 |
| 0.3988 | 2.2 | 440 | 0.5934 | 0.2969 | 0.3613 | 0.8282 | nan | 0.8282 | 0.9065 | 0.6606 | 0.7416 | 0.4514 | nan | 0.3391 | 0.8057 | 0.0 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6561 | 0.0 | 0.0 | 0.9058 | 0.0 | 0.5015 | 0.2832 | 0.0 | nan | 0.0 | 0.3546 | 0.0 | 0.0 | 0.9493 | 0.8867 | 0.9751 | 0.0 | 0.0271 | 0.3634 | 0.0 | nan | 0.6390 | 0.8430 | 0.6169 | 0.5474 | 0.2994 | nan | 0.2954 | 0.4906 | 0.0 | 0.8041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4835 | 0.0 | 0.0 | 0.7002 | 0.0 | 0.4378 | 0.2141 | 0.0 | nan | 0.0 | 0.3096 | 0.0 | 0.0 | 0.8614 | 0.7253 | 0.9219 | 0.0 | 0.0236 | 0.2891 | 0.0 |
| 0.3143 | 2.3 | 460 | 0.6416 | 0.2938 | 0.3609 | 0.8219 | nan | 0.6598 | 0.9464 | 0.7305 | 0.7885 | 0.4049 | nan | 0.5647 | 0.7899 | 0.0 | 0.9416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6645 | 0.0 | 0.0 | 0.9118 | 0.0 | 0.3080 | 0.1446 | 0.0 | nan | 0.0 | 0.4547 | 0.0013 | 0.0 | 0.9516 | 0.8457 | 0.9714 | 0.0 | 0.0180 | 0.4518 | 0.0 | nan | 0.6057 | 0.8265 | 0.6098 | 0.5589 | 0.2849 | nan | 0.4108 | 0.5416 | 0.0 | 0.7952 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4605 | 0.0 | 0.0 | 0.6670 | 0.0 | 0.2780 | 0.1332 | 0.0 | nan | 0.0 | 0.3446 | 0.0013 | 0.0 | 0.8621 | 0.7526 | 0.9232 | 0.0 | 0.0166 | 0.3277 | 0.0 |
| 0.2928 | 2.4 | 480 | 0.6131 | 0.2982 | 0.3799 | 0.8252 | nan | 0.8027 | 0.9202 | 0.7321 | 0.6574 | 0.5363 | nan | 0.4619 | 0.8093 | 0.0 | 0.9384 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6897 | 0.0 | 0.0 | 0.7726 | 0.0 | 0.6742 | 0.3453 | 0.0 | nan | 0.0 | 0.5261 | 0.0073 | 0.0 | 0.9268 | 0.9278 | 0.9714 | 0.0 | 0.0291 | 0.4292 | 0.0 | nan | 0.6613 | 0.8264 | 0.5482 | 0.6088 | 0.3040 | nan | 0.3857 | 0.4958 | 0.0 | 0.7986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3815 | 0.0 | 0.0 | 0.6863 | 0.0 | 0.4553 | 0.2230 | 0.0 | nan | 0.0 | 0.3542 | 0.0072 | 0.0 | 0.8510 | 0.6960 | 0.9259 | 0.0 | 0.0247 | 0.3074 | 0.0 |
| 0.4599 | 2.5 | 500 | 0.6091 | 0.3002 | 0.3624 | 0.8349 | nan | 0.7736 | 0.9424 | 0.7071 | 0.7431 | 0.3981 | nan | 0.5366 | 0.7966 | 0.0 | 0.9173 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6335 | 0.0 | 0.0 | 0.9459 | 0.0 | 0.4041 | 0.2116 | 0.0 | nan | 0.0 | 0.4241 | 0.0093 | 0.0 | 0.9330 | 0.9141 | 0.9820 | 0.0 | 0.0143 | 0.3110 | 0.0 | nan | 0.6768 | 0.8398 | 0.5669 | 0.6214 | 0.2799 | nan | 0.4125 | 0.5186 | 0.0 | 0.8087 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4910 | 0.0 | 0.0 | 0.6632 | 0.0 | 0.3655 | 0.1828 | 0.0 | nan | 0.0 | 0.3481 | 0.0093 | 0.0 | 0.8663 | 0.7557 | 0.9166 | 0.0 | 0.0129 | 0.2718 | 0.0 |
| 0.4748 | 2.6 | 520 | 0.6341 | 0.2957 | 0.3561 | 0.8299 | nan | 0.8109 | 0.9485 | 0.4931 | 0.6152 | 0.3592 | nan | 0.5488 | 0.8282 | 0.0 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6551 | 0.0 | 0.0 | 0.9281 | 0.0 | 0.4952 | 0.1922 | 0.0 | nan | 0.0 | 0.4332 | 0.0063 | 0.0 | 0.9320 | 0.8761 | 0.9674 | 0.0 | 0.0217 | 0.3563 | 0.0 | nan | 0.6506 | 0.8292 | 0.4840 | 0.5546 | 0.2594 | nan | 0.4223 | 0.4598 | 0.0 | 0.8118 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4897 | 0.0 | 0.0 | 0.6874 | 0.0 | 0.4248 | 0.1705 | 0.0 | nan | 0.0 | 0.3533 | 0.0063 | 0.0 | 0.8680 | 0.7591 | 0.9237 | 0.0 | 0.0187 | 0.2890 | 0.0 |
| 0.3089 | 2.7 | 540 | 0.6322 | 0.3046 | 0.3687 | 0.8342 | nan | 0.7583 | 0.9454 | 0.4860 | 0.7492 | 0.4990 | nan | 0.4709 | 0.8254 | 0.0 | 0.9293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6323 | 0.0 | 0.0 | 0.8981 | 0.0107 | 0.5664 | 0.2286 | 0.0 | nan | 0.0 | 0.4848 | 0.0162 | 0.0 | 0.9488 | 0.8615 | 0.9829 | 0.0 | 0.0939 | 0.4090 | 0.0 | nan | 0.6480 | 0.8330 | 0.4586 | 0.6005 | 0.3357 | nan | 0.3928 | 0.4786 | 0.0 | 0.8041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5014 | 0.0 | 0.0 | 0.7103 | 0.0106 | 0.4791 | 0.2035 | 0.0 | nan | 0.0 | 0.3768 | 0.0159 | 0.0 | 0.8618 | 0.7505 | 0.9134 | 0.0 | 0.0524 | 0.3200 | 0.0 |
| 1.2466 | 2.8 | 560 | 0.6182 | 0.3016 | 0.3657 | 0.8295 | nan | 0.8185 | 0.9364 | 0.4282 | 0.6726 | 0.4169 | nan | 0.5586 | 0.8235 | 0.0 | 0.9237 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6627 | 0.0 | 0.0 | 0.9047 | 0.0223 | 0.4594 | 0.3392 | 0.0 | nan | 0.0 | 0.4488 | 0.0188 | 0.0 | 0.9480 | 0.7482 | 0.9804 | 0.0000 | 0.0888 | 0.5031 | 0.0 | nan | 0.6578 | 0.8283 | 0.4222 | 0.6020 | 0.3158 | nan | 0.4153 | 0.5162 | 0.0 | 0.8096 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4946 | 0.0 | 0.0 | 0.7006 | 0.0211 | 0.4068 | 0.2277 | 0.0 | nan | 0.0 | 0.3612 | 0.0184 | 0.0 | 0.8493 | 0.6842 | 0.9195 | 0.0000 | 0.0515 | 0.3479 | 0.0 |
| 0.3471 | 2.9 | 580 | 0.6088 | 0.3130 | 0.3846 | 0.8405 | nan | 0.7740 | 0.9325 | 0.8216 | 0.7382 | 0.5086 | nan | 0.5655 | 0.8194 | 0.0 | 0.9507 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6233 | 0.0 | 0.0 | 0.9001 | 0.0216 | 0.5836 | 0.3403 | 0.0 | nan | 0.0 | 0.3942 | 0.0267 | 0.0 | 0.9301 | 0.8750 | 0.9710 | 0.0 | 0.0167 | 0.5157 | 0.0 | nan | 0.6756 | 0.8458 | 0.4939 | 0.6495 | 0.3248 | nan | 0.4361 | 0.5502 | 0.0 | 0.7944 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4773 | 0.0 | 0.0 | 0.7238 | 0.0215 | 0.4953 | 0.2605 | 0.0 | nan | 0.0 | 0.3396 | 0.0261 | 0.0 | 0.8604 | 0.7330 | 0.9247 | 0.0 | 0.0149 | 0.3694 | 0.0 |
| 0.447 | 3.0 | 600 | 0.6063 | 0.3064 | 0.3674 | 0.8408 | nan | 0.7719 | 0.9575 | 0.7510 | 0.7675 | 0.3209 | nan | 0.5208 | 0.8243 | 0.0 | 0.9409 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6379 | 0.0 | 0.0 | 0.8865 | 0.0032 | 0.4287 | 0.1902 | 0.0 | nan | 0.0 | 0.4460 | 0.0301 | 0.0 | 0.9650 | 0.8454 | 0.9800 | 0.0000 | 0.0084 | 0.4821 | 0.0 | nan | 0.6733 | 0.8440 | 0.6036 | 0.6185 | 0.2724 | nan | 0.4230 | 0.4980 | 0.0 | 0.8106 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5051 | 0.0 | 0.0 | 0.7000 | 0.0032 | 0.3955 | 0.1754 | 0.0 | nan | 0.0 | 0.3558 | 0.0298 | 0.0 | 0.8493 | 0.7531 | 0.9206 | 0.0000 | 0.0075 | 0.3646 | 0.0 |
| 0.3025 | 3.1 | 620 | 0.6267 | 0.3100 | 0.3841 | 0.8346 | nan | 0.7058 | 0.9394 | 0.7532 | 0.8210 | 0.4279 | nan | 0.5254 | 0.8072 | 0.0 | 0.9292 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6649 | 0.0 | 0.0 | 0.8850 | 0.0367 | 0.6998 | 0.3119 | 0.0 | nan | 0.0 | 0.4649 | 0.0061 | 0.0 | 0.9281 | 0.8715 | 0.9689 | 0.0019 | 0.0069 | 0.5364 | 0.0 | nan | 0.6314 | 0.8461 | 0.5290 | 0.5602 | 0.3011 | nan | 0.4210 | 0.5059 | 0.0 | 0.8239 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4858 | 0.0 | 0.0 | 0.7287 | 0.0366 | 0.5161 | 0.2431 | 0.0 | nan | 0.0 | 0.3731 | 0.0061 | 0.0 | 0.8683 | 0.7459 | 0.9288 | 0.0018 | 0.0063 | 0.3594 | 0.0 |
| 0.5402 | 3.2 | 640 | 0.6114 | 0.3148 | 0.3742 | 0.8413 | nan | 0.8162 | 0.9555 | 0.7193 | 0.6148 | 0.4400 | nan | 0.5070 | 0.8157 | 0.0 | 0.9328 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.0 | 0.9089 | 0.0828 | 0.4958 | 0.3236 | 0.0 | nan | 0.0 | 0.3724 | 0.0483 | 0.0 | 0.9490 | 0.8336 | 0.9762 | 0.0 | 0.0212 | 0.5066 | 0.0 | nan | 0.6801 | 0.8399 | 0.6177 | 0.5636 | 0.3160 | nan | 0.4129 | 0.5409 | 0.0 | 0.8207 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5088 | 0.0 | 0.0 | 0.7141 | 0.0751 | 0.4367 | 0.2617 | 0.0 | nan | 0.0 | 0.3152 | 0.0471 | 0.0 | 0.8678 | 0.7556 | 0.9279 | 0.0 | 0.0185 | 0.3540 | 0.0 |
| 0.3071 | 3.3 | 660 | 0.6226 | 0.3122 | 0.3814 | 0.8409 | nan | 0.7812 | 0.9437 | 0.7351 | 0.7543 | 0.4146 | nan | 0.5299 | 0.8407 | 0.0 | 0.9495 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7120 | 0.0 | 0.0 | 0.9031 | 0.0202 | 0.4934 | 0.3704 | 0.0 | nan | 0.0 | 0.3671 | 0.0979 | 0.0 | 0.9470 | 0.8862 | 0.9775 | 0.0 | 0.0764 | 0.4034 | 0.0 | nan | 0.6701 | 0.8389 | 0.5992 | 0.6383 | 0.3214 | nan | 0.4274 | 0.5242 | 0.0 | 0.8016 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4534 | 0.0 | 0.0 | 0.7129 | 0.0199 | 0.4292 | 0.2599 | 0.0 | nan | 0.0 | 0.2979 | 0.0930 | 0.0 | 0.8654 | 0.7525 | 0.9216 | 0.0 | 0.0545 | 0.3106 | 0.0 |
| 0.2812 | 3.4 | 680 | 0.5891 | 0.3154 | 0.3853 | 0.8385 | nan | 0.7691 | 0.9259 | 0.7320 | 0.7075 | 0.6098 | nan | 0.6156 | 0.8274 | 0.0 | 0.9228 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6670 | 0.0 | 0.0 | 0.8950 | 0.0003 | 0.7067 | 0.2373 | 0.0 | nan | 0.0 | 0.3845 | 0.0771 | 0.0 | 0.9436 | 0.8482 | 0.9784 | 0.0002 | 0.0573 | 0.4248 | 0.0 | nan | 0.6809 | 0.8459 | 0.6360 | 0.6308 | 0.2685 | nan | 0.4481 | 0.5109 | 0.0 | 0.8121 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4987 | 0.0 | 0.0 | 0.7307 | 0.0003 | 0.5476 | 0.1996 | 0.0 | nan | 0.0 | 0.3162 | 0.0746 | 0.0 | 0.8696 | 0.7530 | 0.9245 | 0.0002 | 0.0378 | 0.3082 | 0.0 |
| 0.4997 | 3.5 | 700 | 0.5982 | 0.3166 | 0.3801 | 0.8448 | nan | 0.8607 | 0.9301 | 0.7868 | 0.6661 | 0.4482 | nan | 0.5705 | 0.7812 | 0.0 | 0.9462 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6700 | 0.0 | 0.0 | 0.9333 | 0.0002 | 0.4569 | 0.2193 | 0.0 | nan | 0.0 | 0.4467 | 0.1375 | 0.0 | 0.9381 | 0.8742 | 0.9743 | 0.0 | 0.0891 | 0.4326 | 0.0 | nan | 0.7075 | 0.8577 | 0.6178 | 0.5973 | 0.2946 | nan | 0.4482 | 0.5701 | 0.0 | 0.8044 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4950 | 0.0 | 0.0 | 0.6931 | 0.0002 | 0.4124 | 0.1985 | 0.0 | nan | 0.0 | 0.3601 | 0.1275 | 0.0 | 0.8717 | 0.7650 | 0.9302 | 0.0 | 0.0483 | 0.3308 | 0.0 |
| 0.3472 | 3.6 | 720 | 0.6052 | 0.3213 | 0.3866 | 0.8432 | nan | 0.7653 | 0.9485 | 0.7447 | 0.7379 | 0.4858 | nan | 0.6064 | 0.8020 | 0.0 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6426 | 0.0 | 0.0 | 0.9297 | 0.0 | 0.6149 | 0.3437 | 0.0 | nan | 0.0 | 0.5040 | 0.1435 | 0.0 | 0.9358 | 0.8249 | 0.9786 | 0.0 | 0.1058 | 0.3279 | 0.0 | nan | 0.6746 | 0.8433 | 0.6430 | 0.6389 | 0.3082 | nan | 0.4471 | 0.5350 | 0.0 | 0.8149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5024 | 0.0 | 0.0 | 0.7226 | 0.0 | 0.4948 | 0.2599 | 0.0 | nan | 0.0 | 0.3883 | 0.1319 | 0.0 | 0.8688 | 0.7569 | 0.9257 | 0.0 | 0.0589 | 0.2650 | 0.0 |
| 0.4252 | 3.7 | 740 | 0.6622 | 0.3123 | 0.3891 | 0.8234 | nan | 0.6217 | 0.9484 | 0.7138 | 0.8309 | 0.4263 | nan | 0.5506 | 0.8600 | 0.0 | 0.9525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6234 | 0.0 | 0.0 | 0.8508 | 0.0084 | 0.5880 | 0.3145 | 0.0 | nan | 0.0 | 0.4943 | 0.2299 | 0.0 | 0.9380 | 0.9003 | 0.9850 | 0.0 | 0.2103 | 0.4036 | 0.0 | nan | 0.5607 | 0.8413 | 0.6569 | 0.4842 | 0.3210 | nan | 0.4427 | 0.4777 | 0.0 | 0.7951 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4647 | 0.0 | 0.0 | 0.7209 | 0.0084 | 0.5126 | 0.2370 | 0.0 | nan | 0.0 | 0.3795 | 0.2061 | 0.0 | 0.8637 | 0.7505 | 0.9223 | 0.0 | 0.0647 | 0.2846 | 0.0 |
| 0.3308 | 3.8 | 760 | 0.6377 | 0.3127 | 0.3808 | 0.8289 | nan | 0.6214 | 0.9625 | 0.5946 | 0.8099 | 0.4454 | nan | 0.5188 | 0.8494 | 0.0 | 0.9136 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6696 | 0.0 | 0.0 | 0.9263 | 0.0024 | 0.6152 | 0.2950 | 0.0 | nan | 0.0027 | 0.4453 | 0.1733 | 0.0 | 0.9520 | 0.8743 | 0.9699 | 0.0004 | 0.1977 | 0.3462 | 0.0 | nan | 0.5763 | 0.8251 | 0.5772 | 0.5411 | 0.3457 | nan | 0.4107 | 0.4836 | 0.0 | 0.8239 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5117 | 0.0 | 0.0 | 0.7262 | 0.0024 | 0.5110 | 0.2294 | 0.0 | nan | 0.0026 | 0.3668 | 0.1574 | 0.0 | 0.8705 | 0.7696 | 0.9339 | 0.0004 | 0.0602 | 0.2801 | 0.0 |
| 0.4693 | 3.9 | 780 | 0.5859 | 0.3216 | 0.3778 | 0.8472 | nan | 0.7901 | 0.9565 | 0.7815 | 0.7387 | 0.4418 | nan | 0.5939 | 0.8066 | 0.0 | 0.9374 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5633 | 0.0 | 0.0 | 0.9404 | 0.0047 | 0.4300 | 0.1846 | 0.0 | nan | 0.0062 | 0.5028 | 0.1681 | 0.0 | 0.9364 | 0.8907 | 0.9751 | 0.0 | 0.0659 | 0.3760 | 0.0 | nan | 0.6844 | 0.8378 | 0.6638 | 0.6608 | 0.3533 | nan | 0.4678 | 0.5651 | 0.0 | 0.8096 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5098 | 0.0 | 0.0 | 0.7056 | 0.0047 | 0.4085 | 0.1746 | 0.0 | nan | 0.0060 | 0.3747 | 0.1550 | 0.0 | 0.8729 | 0.7620 | 0.9327 | 0.0 | 0.0350 | 0.3067 | 0.0 |
| 0.4175 | 4.0 | 800 | 0.5300 | 0.3304 | 0.3990 | 0.8474 | nan | 0.8728 | 0.9146 | 0.8169 | 0.6208 | 0.5492 | nan | 0.5932 | 0.8393 | 0.0 | 0.9432 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6227 | 0.0 | 0.0 | 0.8618 | 0.0183 | 0.7515 | 0.3741 | 0.0 | nan | 0.0 | 0.4608 | 0.2043 | 0.0 | 0.9611 | 0.8383 | 0.9787 | 0.0 | 0.1044 | 0.4406 | 0.0 | nan | 0.7017 | 0.8579 | 0.6370 | 0.5716 | 0.3295 | nan | 0.4682 | 0.5922 | 0.0 | 0.8053 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5317 | 0.0 | 0.0 | 0.7427 | 0.0183 | 0.5577 | 0.2733 | 0.0 | nan | 0.0 | 0.3651 | 0.1856 | 0.0 | 0.8612 | 0.7375 | 0.9269 | 0.0 | 0.0746 | 0.3346 | 0.0 |
| 0.2417 | 4.1 | 820 | 0.6240 | 0.3189 | 0.3775 | 0.8361 | nan | 0.8131 | 0.9538 | 0.7682 | 0.4531 | 0.4900 | nan | 0.5241 | 0.8388 | 0.0 | 0.9496 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5933 | 0.0 | 0.0 | 0.9136 | 0.0182 | 0.4895 | 0.2692 | 0.0 | nan | 0.0003 | 0.4741 | 0.2422 | 0.0 | 0.9537 | 0.8414 | 0.9750 | 0.0 | 0.0438 | 0.4760 | 0.0 | nan | 0.6420 | 0.8400 | 0.6500 | 0.4374 | 0.3497 | nan | 0.4397 | 0.5665 | 0.0 | 0.8008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5243 | 0.0 | 0.0 | 0.7188 | 0.0182 | 0.4395 | 0.2415 | 0.0 | nan | 0.0003 | 0.3859 | 0.2129 | 0.0 | 0.8699 | 0.7533 | 0.9329 | 0.0 | 0.0325 | 0.3490 | 0.0 |
| 0.2375 | 4.2 | 840 | 0.5756 | 0.3343 | 0.4028 | 0.8498 | nan | 0.8028 | 0.9399 | 0.7560 | 0.8128 | 0.5208 | nan | 0.5758 | 0.8137 | 0.0 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6480 | 0.0 | 0.0 | 0.9155 | 0.0155 | 0.5142 | 0.4670 | 0.0 | nan | 0.0 | 0.4630 | 0.3347 | 0.0 | 0.9205 | 0.8892 | 0.9875 | 0.0 | 0.1196 | 0.4656 | 0.0 | nan | 0.7055 | 0.8568 | 0.6719 | 0.6537 | 0.3342 | nan | 0.4664 | 0.5856 | 0.0 | 0.8130 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5293 | 0.0 | 0.0 | 0.7177 | 0.0154 | 0.4507 | 0.2814 | 0.0 | nan | 0.0 | 0.3815 | 0.2734 | 0.0 | 0.8704 | 0.7453 | 0.9204 | 0.0 | 0.0711 | 0.3540 | 0.0 |
| 0.4241 | 4.3 | 860 | 0.5682 | 0.3289 | 0.3927 | 0.8526 | nan | 0.8019 | 0.9477 | 0.7645 | 0.7864 | 0.4614 | nan | 0.6374 | 0.8213 | 0.0 | 0.9414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6449 | 0.0 | 0.0 | 0.9389 | 0.0015 | 0.5075 | 0.1875 | 0.0 | nan | 0.0060 | 0.4489 | 0.3299 | 0.0 | 0.9467 | 0.8621 | 0.9705 | 0.0 | 0.1149 | 0.4442 | 0.0 | nan | 0.7105 | 0.8518 | 0.6212 | 0.6864 | 0.3408 | nan | 0.4810 | 0.5663 | 0.0 | 0.8198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4875 | 0.0 | 0.0 | 0.7131 | 0.0015 | 0.4607 | 0.1773 | 0.0 | nan | 0.0057 | 0.3741 | 0.2755 | 0.0 | 0.8731 | 0.7626 | 0.9348 | 0.0 | 0.0422 | 0.3375 | 0.0 |
| 0.5282 | 4.4 | 880 | 0.6106 | 0.3241 | 0.3981 | 0.8456 | nan | 0.7704 | 0.9356 | 0.8287 | 0.8018 | 0.5745 | nan | 0.5025 | 0.7925 | 0.0 | 0.9564 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6370 | 0.0 | 0.0 | 0.9097 | 0.0360 | 0.5623 | 0.4363 | 0.0 | nan | 0.0 | 0.4484 | 0.2753 | 0.0 | 0.9503 | 0.7920 | 0.9724 | 0.0009 | 0.1229 | 0.4328 | 0.0 | nan | 0.7081 | 0.8635 | 0.4271 | 0.6627 | 0.3582 | nan | 0.4362 | 0.6102 | 0.0 | 0.8004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4666 | 0.0 | 0.0 | 0.7321 | 0.0353 | 0.4640 | 0.2690 | 0.0 | nan | 0.0 | 0.3772 | 0.2455 | 0.0 | 0.8642 | 0.7079 | 0.9363 | 0.0009 | 0.0663 | 0.3381 | 0.0 |
| 0.3367 | 4.5 | 900 | 0.5852 | 0.3273 | 0.3859 | 0.8544 | nan | 0.8327 | 0.9558 | 0.6822 | 0.7709 | 0.3897 | nan | 0.6299 | 0.7857 | 0.0 | 0.9039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6906 | 0.0 | 0.0 | 0.9428 | 0.0104 | 0.4495 | 0.3420 | 0.0 | nan | 0.0 | 0.4741 | 0.2323 | 0.0 | 0.9426 | 0.8893 | 0.9785 | 0.0 | 0.0100 | 0.4372 | 0.0 | nan | 0.7217 | 0.8512 | 0.6538 | 0.6746 | 0.3280 | nan | 0.4868 | 0.5682 | 0.0 | 0.8238 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4554 | 0.0 | 0.0 | 0.7065 | 0.0103 | 0.4132 | 0.2616 | 0.0 | nan | 0.0 | 0.3935 | 0.2107 | 0.0 | 0.8720 | 0.7465 | 0.9320 | 0.0 | 0.0089 | 0.3559 | 0.0 |
| 0.1462 | 4.6 | 920 | 0.5898 | 0.3302 | 0.3945 | 0.8517 | nan | 0.8338 | 0.9321 | 0.7807 | 0.7720 | 0.5273 | nan | 0.5959 | 0.8227 | 0.0 | 0.9378 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7047 | 0.0 | 0.0 | 0.9415 | 0.0315 | 0.4600 | 0.3444 | 0.0 | nan | 0.0 | 0.4654 | 0.2423 | 0.0 | 0.9457 | 0.8191 | 0.9787 | 0.0002 | 0.0175 | 0.4721 | 0.0 | nan | 0.7254 | 0.8518 | 0.6417 | 0.6844 | 0.3375 | nan | 0.4761 | 0.5773 | 0.0 | 0.8160 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4945 | 0.0 | 0.0 | 0.7011 | 0.0308 | 0.4212 | 0.2757 | 0.0 | nan | 0.0 | 0.3946 | 0.2157 | 0.0 | 0.8680 | 0.7422 | 0.9321 | 0.0002 | 0.0144 | 0.3644 | 0.0 |
| 0.4018 | 4.7 | 940 | 0.6261 | 0.3313 | 0.4006 | 0.8471 | nan | 0.7361 | 0.9560 | 0.8252 | 0.7443 | 0.4880 | nan | 0.5874 | 0.7623 | 0.0 | 0.9292 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6837 | 0.0 | 0.0 | 0.9315 | 0.0560 | 0.5691 | 0.3433 | 0.0 | nan | 0.0 | 0.4978 | 0.3762 | 0.0 | 0.9313 | 0.9096 | 0.9814 | 0.0004 | 0.0463 | 0.4639 | 0.0 | nan | 0.6786 | 0.8459 | 0.4753 | 0.6694 | 0.3442 | nan | 0.4817 | 0.6111 | 0.0 | 0.8128 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4944 | 0.0 | 0.0 | 0.7258 | 0.0547 | 0.4986 | 0.2692 | 0.0 | nan | 0.0 | 0.3990 | 0.3001 | 0.0 | 0.8752 | 0.7656 | 0.9259 | 0.0004 | 0.0314 | 0.3436 | 0.0 |
| 0.4323 | 4.8 | 960 | 0.6071 | 0.3369 | 0.4009 | 0.8527 | nan | 0.8909 | 0.9288 | 0.7706 | 0.7429 | 0.3946 | nan | 0.5634 | 0.8032 | 0.0 | 0.9419 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6484 | 0.0 | 0.0 | 0.8991 | 0.1415 | 0.6081 | 0.2444 | 0.0 | nan | 0.0739 | 0.5198 | 0.4198 | 0.0 | 0.9632 | 0.7166 | 0.9803 | 0.0110 | 0.0255 | 0.5409 | 0.0 | nan | 0.7203 | 0.8627 | 0.6071 | 0.6653 | 0.3017 | nan | 0.4226 | 0.5991 | 0.0 | 0.8170 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4908 | 0.0 | 0.0 | 0.7391 | 0.1318 | 0.5113 | 0.2209 | 0.0 | nan | 0.0611 | 0.4137 | 0.3238 | 0.0 | 0.8530 | 0.6852 | 0.9328 | 0.0093 | 0.0178 | 0.3944 | 0.0 |
| 0.2333 | 4.9 | 980 | 0.6312 | 0.3291 | 0.4049 | 0.8368 | nan | 0.6661 | 0.9599 | 0.7668 | 0.8162 | 0.4021 | nan | 0.5460 | 0.8279 | 0.0 | 0.9377 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6167 | 0.0 | 0.0 | 0.8637 | 0.0490 | 0.7147 | 0.3548 | 0.0 | nan | 0.0487 | 0.4632 | 0.4447 | 0.0 | 0.9449 | 0.8856 | 0.9798 | 0.0024 | 0.2556 | 0.4098 | 0.0 | nan | 0.6061 | 0.8459 | 0.6123 | 0.5262 | 0.3227 | nan | 0.4682 | 0.5298 | 0.0 | 0.8213 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4777 | 0.0 | 0.0 | 0.7401 | 0.0488 | 0.5668 | 0.2560 | 0.0 | nan | 0.0474 | 0.3885 | 0.3212 | 0.0 | 0.8738 | 0.7688 | 0.9317 | 0.0021 | 0.0662 | 0.3102 | 0.0 |
| 0.322 | 5.0 | 1000 | 0.5919 | 0.3324 | 0.3983 | 0.8527 | nan | 0.8795 | 0.9454 | 0.7501 | 0.6501 | 0.4403 | nan | 0.6006 | 0.8655 | 0.0 | 0.9171 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6457 | 0.0 | 0.0 | 0.9125 | 0.0151 | 0.4907 | 0.2739 | 0.0 | nan | 0.0 | 0.5307 | 0.4038 | 0.0 | 0.9539 | 0.8585 | 0.9824 | 0.0017 | 0.2231 | 0.4063 | 0.0 | nan | 0.7358 | 0.8591 | 0.6885 | 0.6124 | 0.2908 | nan | 0.4820 | 0.5026 | 0.0 | 0.8247 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5430 | 0.0 | 0.0 | 0.7227 | 0.0151 | 0.4502 | 0.2349 | 0.0 | nan | 0.0 | 0.4150 | 0.3229 | 0.0 | 0.8710 | 0.7707 | 0.9332 | 0.0017 | 0.0580 | 0.3015 | 0.0 |
| 0.3299 | 5.1 | 1020 | 0.5630 | 0.3381 | 0.4067 | 0.8554 | nan | 0.8362 | 0.9417 | 0.7732 | 0.7712 | 0.4461 | nan | 0.6305 | 0.8050 | 0.0042 | 0.9430 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.6503 | 0.0 | 0.0 | 0.9244 | 0.0045 | 0.5766 | 0.3341 | 0.0 | nan | 0.0 | 0.5153 | 0.4275 | 0.0 | 0.9401 | 0.8734 | 0.9810 | 0.0002 | 0.2593 | 0.3754 | 0.0 | nan | 0.7239 | 0.8683 | 0.6261 | 0.6428 | 0.3037 | nan | 0.5023 | 0.6126 | 0.0030 | 0.8145 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.5157 | 0.0 | 0.0 | 0.7251 | 0.0044 | 0.4858 | 0.2659 | 0.0 | nan | 0.0 | 0.4109 | 0.3378 | 0.0 | 0.8759 | 0.7719 | 0.9339 | 0.0002 | 0.0783 | 0.3135 | 0.0 |
| 0.2486 | 5.2 | 1040 | 0.5781 | 0.3354 | 0.4008 | 0.8553 | nan | 0.8114 | 0.9444 | 0.7999 | 0.8031 | 0.4525 | nan | 0.5980 | 0.7806 | 0.0264 | 0.9194 | 0.0031 | 0.0 | 0.0 | 0.0 | 0.6433 | 0.0 | 0.0 | 0.9335 | 0.0814 | 0.5906 | 0.2020 | 0.0 | nan | 0.0002 | 0.4619 | 0.4333 | 0.0 | 0.9473 | 0.8681 | 0.9758 | 0.0013 | 0.0796 | 0.4692 | 0.0 | nan | 0.7074 | 0.8746 | 0.5776 | 0.6471 | 0.3072 | nan | 0.4838 | 0.5905 | 0.0113 | 0.8288 | 0.0031 | 0.0 | 0.0 | 0.0 | 0.5141 | 0.0 | 0.0 | 0.7319 | 0.0772 | 0.4996 | 0.1780 | 0.0 | nan | 0.0002 | 0.3924 | 0.3248 | 0.0 | 0.8743 | 0.7747 | 0.9360 | 0.0012 | 0.0425 | 0.3553 | 0.0 |
| 0.2187 | 5.3 | 1060 | 0.5951 | 0.3310 | 0.3996 | 0.8521 | nan | 0.8741 | 0.9406 | 0.7747 | 0.6985 | 0.4974 | nan | 0.5988 | 0.7802 | 0.0157 | 0.9384 | 0.0049 | 0.0 | 0.0 | 0.0 | 0.6773 | 0.0 | 0.0 | 0.9064 | 0.1097 | 0.4512 | 0.2733 | 0.0 | nan | 0.0080 | 0.3901 | 0.4226 | 0.0 | 0.9569 | 0.8016 | 0.9778 | 0.0022 | 0.2137 | 0.4736 | 0.0 | nan | 0.7341 | 0.8672 | 0.6043 | 0.6460 | 0.3411 | nan | 0.4676 | 0.5519 | 0.0038 | 0.8196 | 0.0048 | 0.0 | 0.0 | 0.0 | 0.5047 | 0.0 | 0.0 | 0.7232 | 0.1031 | 0.4142 | 0.2260 | 0.0 | nan | 0.0077 | 0.3316 | 0.3239 | 0.0 | 0.8641 | 0.7379 | 0.9360 | 0.0020 | 0.0542 | 0.3228 | 0.0 |
| 1.1803 | 5.4 | 1080 | 0.6495 | 0.3336 | 0.3988 | 0.8391 | nan | 0.6558 | 0.9554 | 0.7805 | 0.8250 | 0.5203 | nan | 0.5736 | 0.8174 | 0.0056 | 0.9396 | 0.0066 | 0.0 | 0.0 | 0.0 | 0.6255 | 0.0 | 0.0 | 0.9273 | 0.0083 | 0.5809 | 0.3201 | 0.0 | nan | 0.0 | 0.5183 | 0.4578 | 0.0 | 0.9433 | 0.8644 | 0.9790 | 0.0010 | 0.0665 | 0.3882 | 0.0 | nan | 0.6035 | 0.8349 | 0.6789 | 0.5849 | 0.3641 | nan | 0.4660 | 0.5953 | 0.0038 | 0.8272 | 0.0064 | 0.0 | 0.0 | 0.0 | 0.5366 | 0.0 | 0.0 | 0.7289 | 0.0081 | 0.4550 | 0.2526 | 0.0 | nan | 0.0 | 0.4133 | 0.3445 | 0.0 | 0.8748 | 0.7729 | 0.9337 | 0.0010 | 0.0502 | 0.3385 | 0.0 |
| 0.2229 | 5.5 | 1100 | 0.5565 | 0.3363 | 0.4115 | 0.8594 | nan | 0.8699 | 0.9352 | 0.8052 | 0.7833 | 0.4652 | nan | 0.6304 | 0.7524 | 0.0693 | 0.9367 | 0.0196 | 0.0 | 0.0 | 0.0 | 0.7243 | 0.0 | 0.0 | 0.9247 | 0.0419 | 0.5269 | 0.3136 | 0.0 | nan | 0.0 | 0.5243 | 0.4829 | 0.0 | 0.9406 | 0.9026 | 0.9807 | 0.0009 | 0.1594 | 0.3776 | 0.0 | nan | 0.7612 | 0.8653 | 0.5482 | 0.6938 | 0.3423 | nan | 0.4929 | 0.5383 | 0.0143 | 0.8332 | 0.0188 | 0.0 | 0.0 | 0.0 | 0.5054 | 0.0 | 0.0 | 0.7323 | 0.0410 | 0.4596 | 0.2366 | 0.0 | nan | 0.0 | 0.4012 | 0.3332 | 0.0 | 0.8753 | 0.7496 | 0.9344 | 0.0009 | 0.0710 | 0.3135 | 0.0 |
| 0.3822 | 5.6 | 1120 | 0.5669 | 0.3459 | 0.4115 | 0.8612 | nan | 0.8962 | 0.9368 | 0.7621 | 0.7845 | 0.5097 | nan | 0.4860 | 0.8278 | 0.0 | 0.9454 | 0.0269 | 0.0 | 0.0 | 0.0 | 0.6764 | 0.0 | 0.0 | 0.9072 | 0.1391 | 0.5740 | 0.2863 | 0.0 | nan | 0.0011 | 0.5018 | 0.4754 | 0.0 | 0.9440 | 0.8610 | 0.9885 | 0.0011 | 0.1953 | 0.4424 | 0.0 | nan | 0.7435 | 0.8646 | 0.7032 | 0.6904 | 0.3584 | nan | 0.4298 | 0.5766 | 0.0 | 0.8297 | 0.0261 | 0.0 | 0.0 | 0.0 | 0.5415 | 0.0 | 0.0 | 0.7357 | 0.1221 | 0.4772 | 0.2503 | 0.0 | nan | 0.0010 | 0.4117 | 0.3376 | 0.0 | 0.8797 | 0.7681 | 0.9209 | 0.0010 | 0.0649 | 0.3353 | 0.0 |
| 0.2649 | 5.7 | 1140 | 0.5898 | 0.3381 | 0.4023 | 0.8563 | nan | 0.7976 | 0.9442 | 0.7650 | 0.7640 | 0.5549 | nan | 0.6973 | 0.8434 | 0.0 | 0.9444 | 0.0094 | 0.0 | 0.0 | 0.0 | 0.6017 | 0.0 | 0.0 | 0.9358 | 0.0022 | 0.5838 | 0.3365 | 0.0 | nan | 0.0000 | 0.4293 | 0.3976 | 0.0 | 0.9468 | 0.8714 | 0.9810 | 0.0012 | 0.0478 | 0.4181 | 0.0 | nan | 0.7151 | 0.8569 | 0.7113 | 0.6623 | 0.3494 | nan | 0.5183 | 0.5293 | 0.0 | 0.8284 | 0.0093 | 0.0 | 0.0 | 0.0 | 0.5048 | 0.0 | 0.0 | 0.7321 | 0.0022 | 0.4675 | 0.2713 | 0.0 | nan | 0.0000 | 0.3827 | 0.3276 | 0.0 | 0.8788 | 0.7549 | 0.9334 | 0.0012 | 0.0408 | 0.3430 | 0.0 |
| 0.36 | 5.8 | 1160 | 0.5610 | 0.3374 | 0.4024 | 0.8560 | nan | 0.8640 | 0.9259 | 0.7671 | 0.7668 | 0.6144 | nan | 0.5556 | 0.8438 | 0.0 | 0.9443 | 0.0083 | 0.0 | 0.0 | 0.0 | 0.6159 | 0.0 | 0.0 | 0.9392 | 0.0182 | 0.5002 | 0.2419 | 0.0 | nan | 0.0076 | 0.5526 | 0.4234 | 0.0 | 0.9436 | 0.8715 | 0.9810 | 0.0 | 0.1199 | 0.3711 | 0.0 | nan | 0.7443 | 0.8662 | 0.6964 | 0.6839 | 0.2997 | nan | 0.4887 | 0.5272 | 0.0 | 0.8304 | 0.0082 | 0.0 | 0.0 | 0.0 | 0.5343 | 0.0 | 0.0 | 0.7226 | 0.0181 | 0.4603 | 0.2237 | 0.0 | nan | 0.0071 | 0.4219 | 0.3267 | 0.0 | 0.8794 | 0.7650 | 0.9339 | 0.0 | 0.0503 | 0.3097 | 0.0 |
| 0.1851 | 5.9 | 1180 | 0.5901 | 0.3316 | 0.4029 | 0.8500 | nan | 0.7504 | 0.9589 | 0.7043 | 0.8477 | 0.4014 | nan | 0.5987 | 0.8495 | 0.0 | 0.9416 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.7332 | 0.0 | 0.0 | 0.9259 | 0.0010 | 0.5587 | 0.3454 | 0.0 | nan | 0.0001 | 0.5006 | 0.4310 | 0.0 | 0.9551 | 0.8353 | 0.9730 | 0.0 | 0.2293 | 0.3470 | 0.0 | nan | 0.6760 | 0.8659 | 0.6777 | 0.5612 | 0.3372 | nan | 0.5049 | 0.4991 | 0.0 | 0.8348 | 0.0057 | 0.0 | 0.0 | 0.0 | 0.4929 | 0.0 | 0.0 | 0.7364 | 0.0010 | 0.4741 | 0.2656 | 0.0 | nan | 0.0001 | 0.4060 | 0.3345 | 0.0 | 0.8720 | 0.7557 | 0.9380 | 0.0 | 0.0757 | 0.2966 | 0.0 |
| 0.2929 | 6.0 | 1200 | 0.5772 | 0.3361 | 0.4214 | 0.8502 | nan | 0.7678 | 0.9437 | 0.8101 | 0.7995 | 0.5434 | nan | 0.6081 | 0.8514 | 0.0 | 0.9448 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.7424 | 0.0 | 0.0 | 0.8567 | 0.1035 | 0.7333 | 0.3929 | 0.0 | nan | 0.1165 | 0.4942 | 0.4598 | 0.0 | 0.9381 | 0.8854 | 0.9776 | 0.0 | 0.1032 | 0.4068 | 0.0 | nan | 0.6929 | 0.8728 | 0.5952 | 0.6048 | 0.3191 | nan | 0.4872 | 0.4926 | 0.0 | 0.8332 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.4247 | 0.0 | 0.0 | 0.7432 | 0.1007 | 0.5006 | 0.3004 | 0.0 | nan | 0.0834 | 0.4060 | 0.3476 | 0.0 | 0.8751 | 0.7607 | 0.9382 | 0.0 | 0.0532 | 0.3191 | 0.0 |
| 0.1837 | 6.1 | 1220 | 0.5619 | 0.3425 | 0.4019 | 0.8599 | nan | 0.8292 | 0.9577 | 0.7582 | 0.7946 | 0.4884 | nan | 0.5736 | 0.8172 | 0.0 | 0.9262 | 0.0073 | 0.0 | 0.0 | 0.0 | 0.6724 | 0.0 | 0.0 | 0.9509 | 0.0249 | 0.4688 | 0.4031 | 0.0 | nan | 0.0112 | 0.4901 | 0.4293 | 0.0 | 0.9458 | 0.8549 | 0.9790 | 0.0001 | 0.0968 | 0.3822 | 0.0 | nan | 0.7390 | 0.8602 | 0.6756 | 0.6938 | 0.3610 | nan | 0.4749 | 0.5803 | 0.0 | 0.8379 | 0.0071 | 0.0 | 0.0 | 0.0 | 0.5735 | 0.0 | 0.0 | 0.7104 | 0.0247 | 0.4235 | 0.2840 | 0.0 | nan | 0.0101 | 0.4083 | 0.3263 | 0.0 | 0.8765 | 0.7763 | 0.9354 | 0.0001 | 0.0555 | 0.3266 | 0.0 |
| 0.2823 | 6.2 | 1240 | 0.5561 | 0.3477 | 0.4153 | 0.8616 | nan | 0.8684 | 0.9325 | 0.7535 | 0.7614 | 0.5858 | nan | 0.6483 | 0.8377 | 0.0 | 0.9540 | 0.0172 | 0.0 | 0.0 | 0.0 | 0.6799 | 0.0 | 0.0 | 0.9022 | 0.0421 | 0.6256 | 0.2876 | 0.0 | nan | 0.0021 | 0.5645 | 0.4458 | 0.0 | 0.9561 | 0.8393 | 0.9661 | 0.0 | 0.1596 | 0.4593 | 0.0 | nan | 0.7564 | 0.8604 | 0.6944 | 0.6911 | 0.3387 | nan | 0.5181 | 0.5511 | 0.0 | 0.8288 | 0.0169 | 0.0 | 0.0 | 0.0 | 0.5345 | 0.0 | 0.0 | 0.7512 | 0.0414 | 0.5198 | 0.2474 | 0.0 | nan | 0.0020 | 0.4409 | 0.3486 | 0.0 | 0.8731 | 0.7634 | 0.9364 | 0.0 | 0.0737 | 0.3371 | 0.0 |
| 0.1737 | 6.3 | 1260 | 0.5944 | 0.3440 | 0.4109 | 0.8589 | nan | 0.8164 | 0.9394 | 0.7514 | 0.8265 | 0.5133 | nan | 0.5731 | 0.8081 | 0.0049 | 0.9528 | 0.0190 | 0.0 | 0.0 | 0.0 | 0.6786 | 0.0 | 0.0 | 0.9077 | 0.0189 | 0.6365 | 0.4641 | 0.0 | nan | 0.0003 | 0.5127 | 0.4451 | 0.0 | 0.9562 | 0.8655 | 0.9817 | 0.0 | 0.0706 | 0.4066 | 0.0 | nan | 0.7103 | 0.8631 | 0.6924 | 0.6440 | 0.3634 | nan | 0.4701 | 0.5896 | 0.0033 | 0.8266 | 0.0181 | 0.0 | 0.0 | 0.0 | 0.4933 | 0.0 | 0.0 | 0.7567 | 0.0189 | 0.5532 | 0.2877 | 0.0 | nan | 0.0003 | 0.4161 | 0.3459 | 0.0 | 0.8718 | 0.7740 | 0.9335 | 0.0 | 0.0414 | 0.3359 | 0.0 |
| 0.2331 | 6.4 | 1280 | 0.5757 | 0.3439 | 0.4080 | 0.8642 | nan | 0.8474 | 0.9577 | 0.7499 | 0.8125 | 0.3469 | nan | 0.6753 | 0.8720 | 0.0 | 0.9422 | 0.0256 | 0.0 | 0.0 | 0.0 | 0.6022 | 0.0 | 0.0 | 0.9147 | 0.0303 | 0.6387 | 0.2659 | 0.0 | nan | 0.0033 | 0.5037 | 0.5161 | 0.0 | 0.9533 | 0.8503 | 0.9761 | 0.0 | 0.1375 | 0.4339 | 0.0 | nan | 0.7464 | 0.8625 | 0.7014 | 0.6901 | 0.2919 | nan | 0.5113 | 0.4932 | 0.0 | 0.8415 | 0.0242 | 0.0 | 0.0 | 0.0 | 0.5310 | 0.0 | 0.0 | 0.7484 | 0.0301 | 0.5440 | 0.2362 | 0.0 | nan | 0.0031 | 0.4189 | 0.3563 | 0.0 | 0.8716 | 0.7666 | 0.9388 | 0.0 | 0.0665 | 0.3304 | 0.0 |
| 0.2482 | 6.5 | 1300 | 0.5652 | 0.3439 | 0.4139 | 0.8565 | nan | 0.8961 | 0.9318 | 0.7939 | 0.6718 | 0.5130 | nan | 0.6420 | 0.8713 | 0.0 | 0.9445 | 0.0252 | 0.0 | 0.0 | 0.0 | 0.6115 | 0.0 | 0.0 | 0.9118 | 0.1801 | 0.5194 | 0.3921 | 0.0 | nan | 0.0787 | 0.5022 | 0.4451 | 0.0 | 0.9485 | 0.8205 | 0.9784 | 0.0000 | 0.1026 | 0.4647 | 0.0 | nan | 0.7433 | 0.8670 | 0.6723 | 0.6234 | 0.3394 | nan | 0.4819 | 0.4912 | 0.0 | 0.8309 | 0.0242 | 0.0 | 0.0 | 0.0 | 0.5364 | 0.0 | 0.0 | 0.7400 | 0.1646 | 0.4697 | 0.2621 | 0.0 | nan | 0.0725 | 0.4230 | 0.3409 | 0.0 | 0.8691 | 0.7309 | 0.9383 | 0.0000 | 0.0509 | 0.3325 | 0.0 |
| 0.2564 | 6.6 | 1320 | 0.5605 | 0.3430 | 0.4096 | 0.8605 | nan | 0.8574 | 0.9411 | 0.7728 | 0.7655 | 0.5374 | nan | 0.6314 | 0.8056 | 0.0 | 0.9448 | 0.0233 | 0.0 | 0.0 | 0.0 | 0.6626 | 0.0 | 0.0 | 0.9296 | 0.0727 | 0.5102 | 0.3465 | 0.0 | nan | 0.0388 | 0.5049 | 0.4320 | 0.0 | 0.9485 | 0.8772 | 0.9762 | 0.0105 | 0.1357 | 0.3834 | 0.0 | nan | 0.7479 | 0.8716 | 0.6437 | 0.6747 | 0.3443 | nan | 0.5198 | 0.5438 | 0.0 | 0.8378 | 0.0228 | 0.0 | 0.0 | 0.0 | 0.5055 | 0.0 | 0.0 | 0.7366 | 0.0677 | 0.4568 | 0.2458 | 0.0 | nan | 0.0316 | 0.4134 | 0.3461 | 0.0 | 0.8717 | 0.7620 | 0.9386 | 0.0074 | 0.0703 | 0.3169 | 0.0 |
| 0.2327 | 6.7 | 1340 | 0.5858 | 0.3514 | 0.4217 | 0.8616 | nan | 0.8699 | 0.9510 | 0.7048 | 0.7627 | 0.4538 | nan | 0.6080 | 0.7268 | 0.1376 | 0.9419 | 0.0359 | 0.0 | 0.0 | 0.0 | 0.7361 | 0.0 | 0.0 | 0.8837 | 0.2082 | 0.6157 | 0.3706 | 0.0 | nan | 0.0909 | 0.4611 | 0.4802 | 0.0 | 0.9503 | 0.8700 | 0.9807 | 0.0210 | 0.1612 | 0.4738 | 0.0 | nan | 0.7492 | 0.8674 | 0.6835 | 0.6819 | 0.3450 | nan | 0.5073 | 0.5297 | 0.0222 | 0.8360 | 0.0342 | 0.0 | 0.0 | 0.0 | 0.5117 | 0.0 | 0.0 | 0.7413 | 0.1671 | 0.4875 | 0.2640 | 0.0 | nan | 0.0776 | 0.4006 | 0.3457 | 0.0 | 0.8775 | 0.7710 | 0.9368 | 0.0109 | 0.0734 | 0.3249 | 0.0 |
| 0.242 | 6.8 | 1360 | 0.5879 | 0.3377 | 0.4038 | 0.8588 | nan | 0.8580 | 0.9459 | 0.6603 | 0.7829 | 0.5026 | nan | 0.6233 | 0.6993 | 0.1826 | 0.9596 | 0.0324 | 0.0 | 0.0 | 0.0 | 0.6813 | 0.0 | 0.0 | 0.8888 | 0.0606 | 0.6100 | 0.2078 | 0.0 | nan | 0.0106 | 0.5106 | 0.4489 | 0.0 | 0.9608 | 0.8217 | 0.9807 | 0.0013 | 0.0424 | 0.4508 | 0.0 | nan | 0.7297 | 0.8711 | 0.6473 | 0.6682 | 0.3661 | nan | 0.5064 | 0.4987 | 0.0245 | 0.8177 | 0.0323 | 0.0 | 0.0 | 0.0 | 0.4811 | 0.0 | 0.0 | 0.7394 | 0.0582 | 0.4697 | 0.1953 | 0.0 | nan | 0.0093 | 0.4198 | 0.3574 | 0.0 | 0.8634 | 0.7439 | 0.9376 | 0.0010 | 0.0280 | 0.3386 | 0.0 |
| 0.2912 | 6.9 | 1380 | 0.6065 | 0.3460 | 0.4119 | 0.8580 | nan | 0.8233 | 0.9491 | 0.7514 | 0.8086 | 0.4890 | nan | 0.6596 | 0.7872 | 0.0 | 0.9363 | 0.0347 | 0.0 | 0.0 | 0.0 | 0.6847 | 0.0 | 0.0 | 0.9520 | 0.0737 | 0.5223 | 0.3596 | 0.0 | nan | 0.0359 | 0.5441 | 0.4222 | 0.0 | 0.9219 | 0.8838 | 0.9741 | 0.0026 | 0.2035 | 0.3599 | 0.0 | nan | 0.7319 | 0.8655 | 0.6413 | 0.6811 | 0.3626 | nan | 0.5255 | 0.5864 | 0.0 | 0.8358 | 0.0330 | 0.0 | 0.0 | 0.0 | 0.5516 | 0.0 | 0.0 | 0.7090 | 0.0674 | 0.4307 | 0.2864 | 0.0 | nan | 0.0250 | 0.4413 | 0.3338 | 0.0 | 0.8745 | 0.7683 | 0.9393 | 0.0022 | 0.0863 | 0.2947 | 0.0 |
| 0.343 | 7.0 | 1400 | 0.5567 | 0.3432 | 0.4134 | 0.8604 | nan | 0.8250 | 0.9528 | 0.7195 | 0.8020 | 0.5162 | nan | 0.6391 | 0.8356 | 0.0060 | 0.9500 | 0.0391 | 0.0 | 0.0 | 0.0 | 0.7280 | 0.0 | 0.0 | 0.8962 | 0.0651 | 0.6283 | 0.3323 | 0.0 | nan | 0.0065 | 0.5047 | 0.4910 | 0.0 | 0.9584 | 0.8309 | 0.9817 | 0.0008 | 0.1522 | 0.3661 | 0.0 | nan | 0.7363 | 0.8592 | 0.6737 | 0.6849 | 0.3638 | nan | 0.5259 | 0.5049 | 0.0037 | 0.8376 | 0.0377 | 0.0 | 0.0 | 0.0 | 0.4747 | 0.0 | 0.0 | 0.7459 | 0.0630 | 0.4846 | 0.2764 | 0.0 | nan | 0.0052 | 0.4170 | 0.3515 | 0.0 | 0.8684 | 0.7582 | 0.9370 | 0.0007 | 0.0725 | 0.3003 | 0.0 |
| 0.2914 | 7.1 | 1420 | 0.5773 | 0.3455 | 0.4101 | 0.8628 | nan | 0.8788 | 0.9472 | 0.7366 | 0.7511 | 0.4820 | nan | 0.6145 | 0.8190 | 0.0 | 0.9357 | 0.0365 | 0.0 | 0.0 | 0.0 | 0.6832 | 0.0 | 0.0 | 0.9259 | 0.0426 | 0.5416 | 0.2700 | 0.0 | nan | 0.0390 | 0.5164 | 0.4809 | 0.0 | 0.9462 | 0.8881 | 0.9822 | 0.0007 | 0.1845 | 0.4210 | 0.0 | nan | 0.7424 | 0.8681 | 0.6758 | 0.6744 | 0.3689 | nan | 0.5043 | 0.5500 | 0.0 | 0.8381 | 0.0355 | 0.0 | 0.0 | 0.0 | 0.5276 | 0.0 | 0.0 | 0.7309 | 0.0420 | 0.4570 | 0.2420 | 0.0 | nan | 0.0278 | 0.4148 | 0.3608 | 0.0 | 0.8780 | 0.7737 | 0.9370 | 0.0007 | 0.0782 | 0.3276 | 0.0 |
| 0.2474 | 7.2 | 1440 | 0.5986 | 0.3456 | 0.4083 | 0.8604 | nan | 0.8241 | 0.9533 | 0.7590 | 0.8042 | 0.4869 | nan | 0.6086 | 0.7678 | 0.0 | 0.9578 | 0.0176 | 0.0 | 0.0 | 0.0 | 0.6546 | 0.0 | 0.0 | 0.9157 | 0.0721 | 0.5568 | 0.2897 | 0.0 | nan | 0.0205 | 0.4932 | 0.4753 | 0.0 | 0.9612 | 0.8364 | 0.9759 | 0.0003 | 0.2280 | 0.4053 | 0.0 | nan | 0.7370 | 0.8694 | 0.6417 | 0.6868 | 0.3282 | nan | 0.5111 | 0.6177 | 0.0 | 0.8225 | 0.0173 | 0.0 | 0.0 | 0.0 | 0.5195 | 0.0 | 0.0 | 0.7384 | 0.0702 | 0.4737 | 0.2533 | 0.0 | nan | 0.0171 | 0.4074 | 0.3697 | 0.0 | 0.8687 | 0.7579 | 0.9399 | 0.0003 | 0.0826 | 0.3284 | 0.0 |
| 0.2505 | 7.3 | 1460 | 0.5985 | 0.3471 | 0.4082 | 0.8566 | nan | 0.7938 | 0.9652 | 0.7313 | 0.7649 | 0.4475 | nan | 0.6260 | 0.8675 | 0.0020 | 0.9491 | 0.0379 | 0.0 | 0.0 | 0.0 | 0.6807 | 0.0 | 0.0 | 0.9081 | 0.1519 | 0.6030 | 0.2748 | 0.0 | nan | 0.0039 | 0.5783 | 0.46 | 0.0 | 0.9587 | 0.8108 | 0.9788 | 0.0001 | 0.0826 | 0.3844 | 0.0 | nan | 0.7066 | 0.8387 | 0.6786 | 0.6773 | 0.3727 | nan | 0.5193 | 0.5468 | 0.0016 | 0.8359 | 0.0354 | 0.0 | 0.0 | 0.0 | 0.5663 | 0.0 | 0.0 | 0.7500 | 0.1320 | 0.4856 | 0.2477 | 0.0 | nan | 0.0034 | 0.4339 | 0.3538 | 0.0 | 0.8699 | 0.7449 | 0.9397 | 0.0001 | 0.0558 | 0.3117 | 0.0 |
| 0.2611 | 7.4 | 1480 | 0.5702 | 0.3476 | 0.4143 | 0.8581 | nan | 0.7707 | 0.9551 | 0.7422 | 0.8445 | 0.4893 | nan | 0.6655 | 0.8344 | 0.0 | 0.9515 | 0.0443 | 0.0 | 0.0 | 0.0 | 0.6860 | 0.0 | 0.0 | 0.9232 | 0.1644 | 0.6029 | 0.3108 | 0.0 | nan | 0.0147 | 0.5112 | 0.4610 | 0.0 | 0.9478 | 0.8592 | 0.9807 | 0.0065 | 0.0864 | 0.4052 | 0.0 | nan | 0.7017 | 0.8700 | 0.6427 | 0.6132 | 0.3791 | nan | 0.5387 | 0.5832 | 0.0 | 0.8422 | 0.0404 | 0.0 | 0.0 | 0.0 | 0.5270 | 0.0 | 0.0 | 0.7452 | 0.1416 | 0.4843 | 0.2549 | 0.0 | nan | 0.0129 | 0.4183 | 0.3607 | 0.0 | 0.8781 | 0.7718 | 0.9388 | 0.0049 | 0.0451 | 0.3281 | 0.0 |
| 0.1479 | 7.5 | 1500 | 0.5701 | 0.3439 | 0.4035 | 0.8595 | nan | 0.8494 | 0.9474 | 0.7318 | 0.7205 | 0.5444 | nan | 0.6775 | 0.8485 | 0.0 | 0.9484 | 0.0252 | 0.0 | 0.0 | 0.0 | 0.6319 | 0.0 | 0.0 | 0.9298 | 0.0287 | 0.5318 | 0.2629 | 0.0 | nan | 0.0034 | 0.4961 | 0.4789 | 0.0 | 0.9603 | 0.8198 | 0.9658 | 0.0029 | 0.0514 | 0.4563 | 0.0 | nan | 0.7411 | 0.8677 | 0.6846 | 0.6476 | 0.3372 | nan | 0.5484 | 0.5975 | 0.0 | 0.8345 | 0.0246 | 0.0 | 0.0 | 0.0 | 0.5414 | 0.0 | 0.0 | 0.7303 | 0.0280 | 0.4573 | 0.2322 | 0.0 | nan | 0.0030 | 0.4152 | 0.3618 | 0.0 | 0.8665 | 0.7385 | 0.9396 | 0.0027 | 0.0370 | 0.3666 | 0.0 |
| 0.2073 | 7.6 | 1520 | 0.6279 | 0.3474 | 0.4175 | 0.8507 | nan | 0.7556 | 0.9561 | 0.7696 | 0.7821 | 0.4914 | nan | 0.6223 | 0.8651 | 0.0 | 0.9547 | 0.0416 | 0.0 | 0.0 | 0.0 | 0.6631 | 0.0 | 0.0 | 0.9289 | 0.1014 | 0.5414 | 0.3211 | 0.0 | nan | 0.1147 | 0.5668 | 0.5320 | 0.0 | 0.9357 | 0.8535 | 0.9849 | 0.0320 | 0.1488 | 0.3977 | 0.0 | nan | 0.6791 | 0.8419 | 0.6776 | 0.6390 | 0.3672 | nan | 0.5206 | 0.5841 | 0.0 | 0.8318 | 0.0399 | 0.0 | 0.0 | 0.0 | 0.5261 | 0.0 | 0.0 | 0.7370 | 0.0923 | 0.4608 | 0.2570 | 0.0 | nan | 0.0822 | 0.4361 | 0.3484 | 0.0 | 0.8778 | 0.7638 | 0.9356 | 0.0195 | 0.0696 | 0.3278 | 0.0 |
| 0.3208 | 7.7 | 1540 | 0.5902 | 0.3443 | 0.4097 | 0.8625 | nan | 0.8514 | 0.9559 | 0.8170 | 0.7319 | 0.4577 | nan | 0.6391 | 0.8315 | 0.0 | 0.9341 | 0.0208 | 0.0 | 0.0 | 0.0 | 0.6960 | 0.0 | 0.0 | 0.9322 | 0.0069 | 0.5405 | 0.3043 | 0.0 | nan | 0.0195 | 0.4643 | 0.5060 | 0.0 | 0.9447 | 0.8907 | 0.9827 | 0.0075 | 0.1400 | 0.4345 | 0.0 | nan | 0.7546 | 0.8646 | 0.6123 | 0.6707 | 0.3476 | nan | 0.5256 | 0.6086 | 0.0 | 0.8453 | 0.0198 | 0.0 | 0.0 | 0.0 | 0.5410 | 0.0 | 0.0 | 0.7307 | 0.0068 | 0.4733 | 0.2653 | 0.0 | nan | 0.0173 | 0.4133 | 0.3411 | 0.0 | 0.8744 | 0.7639 | 0.9379 | 0.0062 | 0.0566 | 0.3404 | 0.0 |
| 0.3173 | 7.8 | 1560 | 0.5700 | 0.3494 | 0.4171 | 0.8633 | nan | 0.8505 | 0.9393 | 0.7827 | 0.8097 | 0.4909 | nan | 0.6613 | 0.8247 | 0.0331 | 0.9473 | 0.0464 | 0.0 | 0.0 | 0.0 | 0.6595 | 0.0 | 0.0 | 0.9329 | 0.0327 | 0.5948 | 0.2566 | 0.0 | nan | 0.0584 | 0.5498 | 0.5224 | 0.0 | 0.9481 | 0.8445 | 0.9784 | 0.0012 | 0.1162 | 0.4649 | 0.0 | nan | 0.7463 | 0.8649 | 0.6431 | 0.6921 | 0.3346 | nan | 0.5205 | 0.5660 | 0.0149 | 0.8430 | 0.0429 | 0.0 | 0.0 | 0.0 | 0.5391 | 0.0 | 0.0 | 0.7422 | 0.0322 | 0.5000 | 0.2370 | 0.0 | nan | 0.0506 | 0.4451 | 0.3526 | 0.0 | 0.8779 | 0.7619 | 0.9406 | 0.0011 | 0.0622 | 0.3703 | 0.0 |
| 0.1863 | 7.9 | 1580 | 0.6211 | 0.3514 | 0.4297 | 0.8592 | nan | 0.8506 | 0.9447 | 0.8257 | 0.7064 | 0.4736 | nan | 0.6324 | 0.8422 | 0.0 | 0.9651 | 0.0536 | 0.0 | 0.0 | 0.0 | 0.6058 | 0.0 | 0.0 | 0.9151 | 0.1508 | 0.5574 | 0.4391 | 0.0 | nan | 0.1478 | 0.5624 | 0.5315 | 0.0 | 0.9451 | 0.8766 | 0.9861 | 0.0010 | 0.3727 | 0.3650 | 0.0 | nan | 0.7333 | 0.8714 | 0.5576 | 0.6480 | 0.3506 | nan | 0.5172 | 0.6009 | 0.0 | 0.8275 | 0.0493 | 0.0 | 0.0 | 0.0 | 0.5273 | 0.0 | 0.0 | 0.7444 | 0.1344 | 0.4871 | 0.3098 | 0.0 | nan | 0.1057 | 0.4511 | 0.3565 | 0.0 | 0.8806 | 0.7541 | 0.9369 | 0.0008 | 0.0878 | 0.3123 | 0.0 |
| 0.2516 | 8.0 | 1600 | 0.5767 | 0.3501 | 0.4204 | 0.8653 | nan | 0.8572 | 0.9601 | 0.7830 | 0.7746 | 0.4109 | nan | 0.6479 | 0.7926 | 0.0650 | 0.9358 | 0.0504 | 0.0 | 0.0 | 0.0 | 0.7195 | 0.0 | 0.0 | 0.9099 | 0.0133 | 0.5805 | 0.3600 | 0.0 | nan | 0.0194 | 0.5341 | 0.5156 | 0.0 | 0.9602 | 0.8242 | 0.9783 | 0.0 | 0.3244 | 0.4364 | 0.0 | nan | 0.7522 | 0.8696 | 0.6293 | 0.6857 | 0.3462 | nan | 0.5311 | 0.5778 | 0.0151 | 0.8472 | 0.0474 | 0.0 | 0.0 | 0.0 | 0.5229 | 0.0 | 0.0 | 0.7538 | 0.0132 | 0.5060 | 0.2932 | 0.0 | nan | 0.0177 | 0.4476 | 0.3751 | 0.0 | 0.8715 | 0.7523 | 0.9414 | 0.0 | 0.0762 | 0.3314 | 0.0 |
| 0.2206 | 8.1 | 1620 | 0.6162 | 0.3546 | 0.4307 | 0.8563 | nan | 0.8299 | 0.9257 | 0.7671 | 0.8026 | 0.4752 | nan | 0.6825 | 0.7886 | 0.0158 | 0.9459 | 0.0448 | 0.0 | 0.0 | 0.0 | 0.6966 | 0.0 | 0.0 | 0.9133 | 0.1368 | 0.6901 | 0.3385 | 0.0 | nan | 0.2352 | 0.5165 | 0.5090 | 0.0 | 0.9412 | 0.8623 | 0.9821 | 0.0369 | 0.2019 | 0.4425 | 0.0 | nan | 0.7445 | 0.8644 | 0.6314 | 0.6645 | 0.3391 | nan | 0.5353 | 0.5417 | 0.0075 | 0.8451 | 0.0427 | 0.0 | 0.0 | 0.0 | 0.4609 | 0.0 | 0.0 | 0.7530 | 0.1226 | 0.5129 | 0.2932 | 0.0 | nan | 0.1710 | 0.4440 | 0.3757 | 0.0 | 0.8807 | 0.7562 | 0.9398 | 0.0078 | 0.0675 | 0.3445 | 0.0 |
| 0.189 | 8.2 | 1640 | 0.5740 | 0.3467 | 0.4147 | 0.8648 | nan | 0.8577 | 0.9535 | 0.7585 | 0.7673 | 0.4784 | nan | 0.6893 | 0.8107 | 0.0637 | 0.9507 | 0.0421 | 0.0 | 0.0 | 0.0 | 0.6907 | 0.0 | 0.0 | 0.9336 | 0.0316 | 0.5791 | 0.2895 | 0.0 | nan | 0.0854 | 0.5458 | 0.5167 | 0.0 | 0.9507 | 0.8159 | 0.9754 | 0.0 | 0.0640 | 0.4187 | 0.0 | nan | 0.7502 | 0.8706 | 0.6532 | 0.6880 | 0.3630 | nan | 0.5298 | 0.4944 | 0.0264 | 0.8465 | 0.0401 | 0.0 | 0.0 | 0.0 | 0.5009 | 0.0 | 0.0 | 0.7409 | 0.0303 | 0.4910 | 0.2531 | 0.0 | nan | 0.0716 | 0.4439 | 0.3748 | 0.0 | 0.8713 | 0.7383 | 0.9429 | 0.0 | 0.0365 | 0.3374 | 0.0 |
| 0.2028 | 8.3 | 1660 | 0.6399 | 0.3438 | 0.4078 | 0.8578 | nan | 0.8066 | 0.9687 | 0.7532 | 0.8068 | 0.3267 | nan | 0.6167 | 0.7656 | 0.0031 | 0.9349 | 0.0451 | 0.0 | 0.0 | 0.0 | 0.7131 | 0.0 | 0.0 | 0.9415 | 0.0212 | 0.5982 | 0.3048 | 0.0 | nan | 0.0864 | 0.5129 | 0.4953 | 0.0 | 0.9371 | 0.8768 | 0.9825 | 0.0 | 0.2933 | 0.2605 | 0.0 | nan | 0.7242 | 0.8444 | 0.7154 | 0.6779 | 0.2892 | nan | 0.5380 | 0.5381 | 0.0014 | 0.8407 | 0.0419 | 0.0 | 0.0 | 0.0 | 0.5174 | 0.0 | 0.0 | 0.7326 | 0.0193 | 0.4840 | 0.2500 | 0.0 | nan | 0.0719 | 0.4295 | 0.3630 | 0.0 | 0.8772 | 0.7656 | 0.9371 | 0.0 | 0.1074 | 0.2369 | 0.0 |
| 0.2783 | 8.4 | 1680 | 0.5473 | 0.3515 | 0.4219 | 0.8664 | nan | 0.8826 | 0.9387 | 0.7571 | 0.8127 | 0.5269 | nan | 0.6741 | 0.8037 | 0.0 | 0.9550 | 0.0350 | 0.0 | 0.0 | 0.0 | 0.6732 | 0.0 | 0.0 | 0.9218 | 0.0816 | 0.5645 | 0.3347 | 0.0 | nan | 0.0116 | 0.5560 | 0.5146 | 0.0 | 0.9369 | 0.8790 | 0.9825 | 0.0009 | 0.2686 | 0.3906 | 0.0 | nan | 0.7608 | 0.8771 | 0.7013 | 0.6885 | 0.3555 | nan | 0.5491 | 0.5221 | 0.0 | 0.8338 | 0.0347 | 0.0 | 0.0 | 0.0 | 0.5370 | 0.0 | 0.0 | 0.7435 | 0.0750 | 0.5028 | 0.2650 | 0.0 | nan | 0.0099 | 0.4431 | 0.3785 | 0.0 | 0.8797 | 0.7654 | 0.9401 | 0.0007 | 0.0687 | 0.3162 | 0.0 |
| 0.199 | 8.5 | 1700 | 0.5928 | 0.3595 | 0.4303 | 0.8670 | nan | 0.8255 | 0.9598 | 0.7983 | 0.8581 | 0.4141 | nan | 0.6636 | 0.8888 | 0.0 | 0.9441 | 0.0413 | 0.0 | 0.0132 | 0.0 | 0.6113 | 0.0 | 0.0 | 0.8697 | 0.2663 | 0.7008 | 0.3577 | 0.0 | nan | 0.2193 | 0.5255 | 0.4762 | 0.0 | 0.9526 | 0.8591 | 0.9803 | 0.0 | 0.0804 | 0.4627 | 0.0 | nan | 0.7395 | 0.8762 | 0.6573 | 0.7119 | 0.3497 | nan | 0.5446 | 0.5005 | 0.0 | 0.8375 | 0.0407 | 0.0 | 0.0131 | 0.0 | 0.5413 | 0.0 | 0.0 | 0.7524 | 0.2323 | 0.4987 | 0.2915 | 0.0 | nan | 0.1353 | 0.4328 | 0.3726 | 0.0 | 0.8722 | 0.7516 | 0.9419 | 0.0 | 0.0540 | 0.3573 | 0.0 |
| 0.1591 | 8.6 | 1720 | 0.5927 | 0.3568 | 0.4274 | 0.8632 | nan | 0.8250 | 0.9475 | 0.7706 | 0.8347 | 0.5623 | nan | 0.6601 | 0.8675 | 0.0 | 0.9547 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.6326 | 0.0 | 0.0 | 0.9278 | 0.1591 | 0.5080 | 0.3138 | 0.0 | nan | 0.2364 | 0.5457 | 0.5151 | 0.0 | 0.9625 | 0.7945 | 0.9821 | 0.0 | 0.2648 | 0.3730 | 0.0 | nan | 0.7411 | 0.8788 | 0.6746 | 0.7028 | 0.3475 | nan | 0.5438 | 0.5751 | 0.0 | 0.8345 | 0.0370 | 0.0 | 0.0 | 0.0 | 0.5548 | 0.0 | 0.0 | 0.7334 | 0.1370 | 0.4510 | 0.2575 | 0.0 | nan | 0.1640 | 0.4431 | 0.3603 | 0.0 | 0.8660 | 0.7312 | 0.9409 | 0.0 | 0.1150 | 0.3292 | 0.0 |
| 0.1553 | 8.7 | 1740 | 0.5695 | 0.3598 | 0.4404 | 0.8679 | nan | 0.8717 | 0.9483 | 0.7673 | 0.7990 | 0.5361 | nan | 0.6620 | 0.7190 | 0.1766 | 0.9412 | 0.0958 | 0.0 | 0.0079 | 0.0 | 0.7929 | 0.0 | 0.0 | 0.8975 | 0.1616 | 0.6552 | 0.3511 | 0.0 | nan | 0.0630 | 0.5369 | 0.5200 | 0.0 | 0.9408 | 0.8779 | 0.9758 | 0.0004 | 0.3845 | 0.4103 | 0.0 | nan | 0.7609 | 0.8754 | 0.6801 | 0.7116 | 0.3771 | nan | 0.5357 | 0.5635 | 0.0429 | 0.8473 | 0.0878 | 0.0 | 0.0078 | 0.0 | 0.4463 | 0.0 | 0.0 | 0.7517 | 0.1464 | 0.5156 | 0.2927 | 0.0 | nan | 0.0538 | 0.4402 | 0.3753 | 0.0 | 0.8760 | 0.7600 | 0.9433 | 0.0003 | 0.0908 | 0.3304 | 0.0 |
| 0.1498 | 8.8 | 1760 | 0.5841 | 0.3633 | 0.4338 | 0.8642 | nan | 0.8380 | 0.9265 | 0.7928 | 0.9074 | 0.5189 | nan | 0.6488 | 0.8137 | 0.0 | 0.9494 | 0.0536 | 0.0 | 0.0085 | 0.0 | 0.7206 | 0.0 | 0.0 | 0.9184 | 0.2066 | 0.6024 | 0.4015 | 0.0 | nan | 0.0487 | 0.5791 | 0.5140 | 0.0 | 0.9414 | 0.8646 | 0.9797 | 0.0054 | 0.1717 | 0.4690 | 0.0 | nan | 0.7476 | 0.8657 | 0.6433 | 0.6603 | 0.3790 | nan | 0.5424 | 0.6239 | 0.0 | 0.8431 | 0.0509 | 0.0 | 0.0084 | 0.0 | 0.5871 | 0.0 | 0.0 | 0.7513 | 0.1678 | 0.5091 | 0.3164 | 0.0 | nan | 0.0414 | 0.4595 | 0.3703 | 0.0 | 0.8827 | 0.7695 | 0.9422 | 0.0033 | 0.0879 | 0.3730 | 0.0 |
| 0.1828 | 8.9 | 1780 | 0.6037 | 0.3609 | 0.4253 | 0.8654 | nan | 0.8656 | 0.9520 | 0.7476 | 0.7937 | 0.4616 | nan | 0.6561 | 0.8421 | 0.0 | 0.9473 | 0.0502 | 0.0 | 0.0 | 0.0 | 0.7023 | 0.0 | 0.0 | 0.8957 | 0.1736 | 0.6450 | 0.3825 | 0.0 | nan | 0.0666 | 0.5406 | 0.5340 | 0.0 | 0.9570 | 0.7497 | 0.9826 | 0.0161 | 0.1262 | 0.5220 | 0.0 | nan | 0.7611 | 0.8645 | 0.7076 | 0.7248 | 0.3637 | nan | 0.5355 | 0.5979 | 0.0 | 0.8396 | 0.0462 | 0.0 | 0.0 | 0.0 | 0.5541 | 0.0 | 0.0 | 0.7555 | 0.1530 | 0.4978 | 0.3036 | 0.0 | nan | 0.0557 | 0.4552 | 0.3779 | 0.0 | 0.8626 | 0.6957 | 0.9399 | 0.0079 | 0.0662 | 0.3827 | 0.0 |
| 0.2588 | 9.0 | 1800 | 0.5867 | 0.3597 | 0.4377 | 0.8588 | nan | 0.8202 | 0.9224 | 0.7975 | 0.8144 | 0.6519 | nan | 0.6872 | 0.7382 | 0.0319 | 0.9508 | 0.0736 | 0.0 | 0.0036 | 0.0 | 0.7372 | 0.0 | 0.0 | 0.9216 | 0.2294 | 0.5725 | 0.3596 | 0.0 | nan | 0.0690 | 0.5450 | 0.5389 | 0.0 | 0.9345 | 0.8713 | 0.9842 | 0.0037 | 0.2376 | 0.5116 | 0.0 | nan | 0.7439 | 0.8635 | 0.6600 | 0.7027 | 0.3202 | nan | 0.5441 | 0.6061 | 0.0136 | 0.8412 | 0.0651 | 0.0 | 0.0036 | 0.0 | 0.4753 | 0.0 | 0.0 | 0.7408 | 0.1843 | 0.4959 | 0.3006 | 0.0 | nan | 0.0559 | 0.4579 | 0.3852 | 0.0 | 0.8822 | 0.7645 | 0.9387 | 0.0026 | 0.0771 | 0.3845 | 0.0 |
| 0.2303 | 9.1 | 1820 | 0.5980 | 0.3532 | 0.4292 | 0.8599 | nan | 0.8094 | 0.9427 | 0.8150 | 0.7852 | 0.4762 | nan | 0.7417 | 0.7367 | 0.0162 | 0.9494 | 0.0567 | 0.0 | 0.0859 | 0.0 | 0.7208 | 0.0 | 0.0 | 0.9223 | 0.0887 | 0.6457 | 0.3506 | 0.0 | nan | 0.0485 | 0.5267 | 0.5245 | 0.0 | 0.9494 | 0.8379 | 0.9815 | 0.0079 | 0.2876 | 0.4272 | 0.0 | nan | 0.7148 | 0.8715 | 0.6250 | 0.6618 | 0.3683 | nan | 0.5072 | 0.6077 | 0.0080 | 0.8445 | 0.0527 | 0.0 | 0.0836 | 0.0 | 0.4327 | 0.0 | 0.0 | 0.7509 | 0.0843 | 0.5323 | 0.2819 | 0.0 | nan | 0.0407 | 0.4408 | 0.3615 | 0.0 | 0.8794 | 0.7633 | 0.9411 | 0.0036 | 0.0975 | 0.3483 | 0.0 |
| 0.1926 | 9.2 | 1840 | 0.6364 | 0.3523 | 0.4171 | 0.8567 | nan | 0.8013 | 0.9537 | 0.7411 | 0.7849 | 0.4775 | nan | 0.6554 | 0.8531 | 0.0 | 0.9392 | 0.0431 | 0.0 | 0.0162 | 0.0 | 0.6634 | 0.0 | 0.0 | 0.9319 | 0.1200 | 0.4821 | 0.3603 | 0.0 | nan | 0.0067 | 0.4962 | 0.5323 | 0.0 | 0.9510 | 0.8484 | 0.9816 | 0.0133 | 0.2473 | 0.4469 | 0.0 | nan | 0.7045 | 0.8678 | 0.6994 | 0.6142 | 0.3742 | nan | 0.5336 | 0.6132 | 0.0 | 0.8493 | 0.0400 | 0.0 | 0.0161 | 0.0 | 0.5747 | 0.0 | 0.0 | 0.7271 | 0.1111 | 0.4372 | 0.3011 | 0.0 | nan | 0.0058 | 0.4273 | 0.3716 | 0.0 | 0.8753 | 0.7585 | 0.9391 | 0.0073 | 0.0719 | 0.3542 | 0.0 |
| 0.1283 | 9.3 | 1860 | 0.6048 | 0.3556 | 0.4276 | 0.8652 | nan | 0.8396 | 0.9455 | 0.7744 | 0.8039 | 0.5487 | nan | 0.6756 | 0.7530 | 0.0430 | 0.9380 | 0.0847 | 0.0 | 0.0 | 0.0 | 0.7757 | 0.0 | 0.0 | 0.9322 | 0.1295 | 0.5577 | 0.2965 | 0.0 | nan | 0.1061 | 0.5510 | 0.5570 | 0.0 | 0.9408 | 0.8590 | 0.9812 | 0.0007 | 0.0445 | 0.5457 | 0.0 | nan | 0.7397 | 0.8676 | 0.7034 | 0.6899 | 0.3817 | nan | 0.5452 | 0.5603 | 0.0131 | 0.8537 | 0.0754 | 0.0 | 0.0 | 0.0 | 0.4386 | 0.0 | 0.0 | 0.7376 | 0.1184 | 0.4767 | 0.2647 | 0.0 | nan | 0.0761 | 0.4534 | 0.3578 | 0.0 | 0.8771 | 0.7525 | 0.9408 | 0.0006 | 0.0278 | 0.4266 | 0.0 |
| 0.242 | 9.4 | 1880 | 0.6183 | 0.3537 | 0.4259 | 0.8652 | nan | 0.8536 | 0.9574 | 0.7653 | 0.7996 | 0.4903 | nan | 0.6016 | 0.8441 | 0.0 | 0.9293 | 0.1477 | 0.0 | 0.0374 | 0.0 | 0.7279 | 0.0 | 0.0 | 0.9335 | 0.0248 | 0.5401 | 0.3316 | 0.0 | nan | 0.0044 | 0.5457 | 0.5598 | 0.0 | 0.9513 | 0.8410 | 0.9830 | 0.0017 | 0.4150 | 0.3431 | 0.0 | nan | 0.7464 | 0.8714 | 0.7064 | 0.6863 | 0.3932 | nan | 0.5200 | 0.5922 | 0.0 | 0.8531 | 0.1256 | 0.0 | 0.0368 | 0.0 | 0.5249 | 0.0 | 0.0 | 0.7372 | 0.0233 | 0.4739 | 0.2831 | 0.0 | nan | 0.0039 | 0.4503 | 0.3367 | 0.0 | 0.8766 | 0.7550 | 0.9400 | 0.0011 | 0.0830 | 0.2982 | 0.0 |
| 0.1308 | 9.5 | 1900 | 0.6292 | 0.3489 | 0.4163 | 0.8593 | nan | 0.7832 | 0.9470 | 0.7857 | 0.8231 | 0.5413 | nan | 0.6989 | 0.8729 | 0.0 | 0.9641 | 0.0627 | 0.0 | 0.0080 | 0.0 | 0.5577 | 0.0 | 0.0 | 0.9156 | 0.0280 | 0.5252 | 0.3589 | 0.0 | nan | 0.0166 | 0.5069 | 0.5345 | 0.0 | 0.9496 | 0.8725 | 0.9817 | 0.0001 | 0.0829 | 0.5056 | 0.0 | nan | 0.7085 | 0.8673 | 0.6933 | 0.6324 | 0.3683 | nan | 0.5443 | 0.5951 | 0.0 | 0.8239 | 0.0577 | 0.0 | 0.0080 | 0.0 | 0.5004 | 0.0 | 0.0 | 0.7442 | 0.0277 | 0.4713 | 0.2897 | 0.0 | nan | 0.0152 | 0.4401 | 0.3716 | 0.0 | 0.8759 | 0.7625 | 0.9409 | 0.0001 | 0.0449 | 0.3823 | 0.0 |
| 0.2915 | 9.6 | 1920 | 0.6007 | 0.3634 | 0.4343 | 0.8576 | nan | 0.8409 | 0.9099 | 0.7642 | 0.8886 | 0.6304 | nan | 0.6444 | 0.8280 | 0.0 | 0.9398 | 0.1026 | 0.0 | 0.1016 | 0.0 | 0.6896 | 0.0 | 0.0 | 0.9341 | 0.1520 | 0.5981 | 0.3620 | 0.0 | nan | 0.0959 | 0.5529 | 0.5185 | 0.0 | 0.9471 | 0.7731 | 0.9769 | 0.0006 | 0.2137 | 0.4315 | 0.0 | nan | 0.7414 | 0.8598 | 0.7123 | 0.6627 | 0.3403 | nan | 0.5468 | 0.6359 | 0.0 | 0.8490 | 0.0906 | 0.0 | 0.0997 | 0.0 | 0.5503 | 0.0 | 0.0 | 0.7453 | 0.1337 | 0.5070 | 0.2869 | 0.0 | nan | 0.0682 | 0.4524 | 0.3722 | 0.0 | 0.8685 | 0.7152 | 0.9420 | 0.0005 | 0.0906 | 0.3574 | 0.0 |
| 0.1619 | 9.7 | 1940 | 0.5878 | 0.3652 | 0.4320 | 0.8669 | nan | 0.8511 | 0.9478 | 0.7936 | 0.7795 | 0.5206 | nan | 0.6435 | 0.8479 | 0.0 | 0.9404 | 0.0867 | 0.0 | 0.0883 | 0.0 | 0.6922 | 0.0 | 0.0 | 0.9222 | 0.1750 | 0.6193 | 0.3488 | 0.0 | nan | 0.1099 | 0.5323 | 0.4732 | 0.0 | 0.9485 | 0.8684 | 0.9788 | 0.0002 | 0.1708 | 0.4845 | 0.0 | nan | 0.7496 | 0.8625 | 0.7050 | 0.6968 | 0.3725 | nan | 0.5267 | 0.5723 | 0.0 | 0.8505 | 0.0783 | 0.0 | 0.0870 | 0.0 | 0.5447 | 0.0 | 0.0 | 0.7519 | 0.1509 | 0.5221 | 0.3030 | 0.0 | nan | 0.0797 | 0.4446 | 0.3724 | 0.0 | 0.8815 | 0.7715 | 0.9416 | 0.0002 | 0.0589 | 0.3618 | 0.0 |
| 0.2238 | 9.8 | 1960 | 0.5750 | 0.3620 | 0.4280 | 0.8640 | nan | 0.8034 | 0.9497 | 0.8037 | 0.8240 | 0.5548 | nan | 0.6514 | 0.7874 | 0.0 | 0.9436 | 0.0789 | 0.0 | 0.0050 | 0.0 | 0.6596 | 0.0 | 0.0 | 0.9175 | 0.1363 | 0.5863 | 0.2951 | 0.0 | nan | 0.1792 | 0.5565 | 0.5238 | 0.0 | 0.9600 | 0.8624 | 0.9827 | 0.0002 | 0.2023 | 0.4319 | 0.0 | nan | 0.7282 | 0.8672 | 0.7068 | 0.6609 | 0.3731 | nan | 0.5422 | 0.6318 | 0.0 | 0.8465 | 0.0714 | 0.0 | 0.0050 | 0.0 | 0.5472 | 0.0 | 0.0 | 0.7508 | 0.1235 | 0.4912 | 0.2610 | 0.0 | nan | 0.1251 | 0.4525 | 0.3775 | 0.0 | 0.8787 | 0.7697 | 0.9406 | 0.0002 | 0.0868 | 0.3471 | 0.0 |
| 0.181 | 9.9 | 1980 | 0.6077 | 0.3659 | 0.4361 | 0.8660 | nan | 0.8058 | 0.9632 | 0.8071 | 0.8176 | 0.4577 | nan | 0.6573 | 0.8114 | 0.0016 | 0.9514 | 0.0731 | 0.0 | 0.0823 | 0.0 | 0.6843 | 0.0 | 0.0 | 0.9176 | 0.2187 | 0.5992 | 0.4228 | 0.0 | nan | 0.0728 | 0.5537 | 0.5348 | 0.0 | 0.9523 | 0.8465 | 0.9807 | 0.0004 | 0.3214 | 0.4197 | 0.0 | nan | 0.7249 | 0.8696 | 0.6807 | 0.6553 | 0.3866 | nan | 0.5360 | 0.6245 | 0.0011 | 0.8409 | 0.0679 | 0.0 | 0.0811 | 0.0 | 0.5402 | 0.0 | 0.0 | 0.7561 | 0.1858 | 0.5035 | 0.3159 | 0.0 | nan | 0.0618 | 0.4582 | 0.3643 | 0.0 | 0.8823 | 0.7655 | 0.9433 | 0.0003 | 0.1145 | 0.3475 | 0.0 |
| 0.1723 | 10.0 | 2000 | 0.5698 | 0.3647 | 0.4371 | 0.8676 | nan | 0.8435 | 0.9415 | 0.7988 | 0.8204 | 0.5753 | nan | 0.6608 | 0.8658 | 0.0004 | 0.9529 | 0.0692 | 0.0 | 0.0399 | 0.0 | 0.6560 | 0.0 | 0.0 | 0.9084 | 0.2922 | 0.6382 | 0.2656 | 0.0 | nan | 0.1818 | 0.5671 | 0.4989 | 0.0 | 0.9476 | 0.8513 | 0.9835 | 0.0000 | 0.1109 | 0.5181 | 0.0 | nan | 0.7495 | 0.8765 | 0.6768 | 0.6880 | 0.3644 | nan | 0.5321 | 0.5254 | 0.0002 | 0.8442 | 0.0641 | 0.0 | 0.0396 | 0.0 | 0.5579 | 0.0 | 0.0 | 0.7536 | 0.2312 | 0.5268 | 0.2439 | 0.0 | nan | 0.1472 | 0.4636 | 0.3572 | 0.0 | 0.8827 | 0.7725 | 0.9408 | 0.0000 | 0.0551 | 0.3764 | 0.0 |
| 0.1796 | 10.1 | 2020 | 0.6002 | 0.3561 | 0.4173 | 0.8698 | nan | 0.8854 | 0.9622 | 0.7805 | 0.7688 | 0.4451 | nan | 0.6674 | 0.7923 | 0.0049 | 0.9383 | 0.0769 | 0.0 | 0.0 | 0.0 | 0.6885 | 0.0 | 0.0 | 0.9317 | 0.1050 | 0.4506 | 0.3630 | 0.0 | nan | 0.0482 | 0.5843 | 0.5063 | 0.0 | 0.9593 | 0.8249 | 0.9777 | 0.0114 | 0.1671 | 0.4151 | 0.0 | nan | 0.7746 | 0.8784 | 0.6935 | 0.6923 | 0.3830 | nan | 0.5434 | 0.5779 | 0.0020 | 0.8516 | 0.0677 | 0.0 | 0.0 | 0.0 | 0.5666 | 0.0 | 0.0 | 0.7279 | 0.1004 | 0.4194 | 0.2902 | 0.0 | nan | 0.0433 | 0.4666 | 0.3417 | 0.0 | 0.8740 | 0.7591 | 0.9439 | 0.0088 | 0.0505 | 0.3390 | 0.0 |
| 0.1796 | 10.2 | 2040 | 0.6191 | 0.3570 | 0.4340 | 0.8510 | nan | 0.7408 | 0.9279 | 0.7743 | 0.8695 | 0.5925 | nan | 0.7097 | 0.7978 | 0.0060 | 0.9488 | 0.1261 | 0.0 | 0.0286 | 0.0 | 0.6876 | 0.0 | 0.0 | 0.9216 | 0.1616 | 0.5833 | 0.3228 | 0.0 | nan | 0.1482 | 0.5801 | 0.5649 | 0.0 | 0.9540 | 0.8119 | 0.9782 | 0.0149 | 0.1834 | 0.4523 | 0.0 | nan | 0.6754 | 0.8756 | 0.7088 | 0.5711 | 0.3412 | nan | 0.5429 | 0.5913 | 0.0021 | 0.8415 | 0.1061 | 0.0 | 0.0284 | 0.0 | 0.5505 | 0.0 | 0.0 | 0.7490 | 0.1510 | 0.4931 | 0.2742 | 0.0 | nan | 0.1126 | 0.4679 | 0.3353 | 0.0 | 0.8774 | 0.7492 | 0.9425 | 0.0090 | 0.0610 | 0.3659 | 0.0 |
| 0.2422 | 10.3 | 2060 | 0.5916 | 0.3663 | 0.4314 | 0.8704 | nan | 0.8751 | 0.9613 | 0.7615 | 0.7939 | 0.4967 | nan | 0.6193 | 0.8196 | 0.0002 | 0.9310 | 0.1808 | 0.0 | 0.0156 | 0.0 | 0.6595 | 0.0 | 0.0 | 0.9255 | 0.2948 | 0.5006 | 0.2877 | 0.0 | nan | 0.1222 | 0.5373 | 0.5146 | 0.0 | 0.9422 | 0.8742 | 0.9779 | 0.0004 | 0.2006 | 0.5132 | 0.0 | nan | 0.7712 | 0.8737 | 0.7154 | 0.7130 | 0.3837 | nan | 0.5275 | 0.5635 | 0.0001 | 0.8538 | 0.1490 | 0.0 | 0.0155 | 0.0 | 0.5508 | 0.0 | 0.0 | 0.7359 | 0.2405 | 0.4500 | 0.2541 | 0.0 | nan | 0.0939 | 0.4606 | 0.3456 | 0.0 | 0.8812 | 0.7705 | 0.9437 | 0.0003 | 0.0603 | 0.3672 | 0.0 |
| 0.2026 | 10.4 | 2080 | 0.5646 | 0.3630 | 0.4326 | 0.8686 | nan | 0.8538 | 0.9433 | 0.7673 | 0.8307 | 0.5518 | nan | 0.6772 | 0.8276 | 0.0011 | 0.9554 | 0.1327 | 0.0 | 0.0814 | 0.0 | 0.6519 | 0.0 | 0.0 | 0.9182 | 0.0747 | 0.5815 | 0.3975 | 0.0 | nan | 0.0813 | 0.5442 | 0.5356 | 0.0 | 0.9545 | 0.8541 | 0.9815 | 0.0002 | 0.2292 | 0.4163 | 0.0 | nan | 0.7587 | 0.8724 | 0.6988 | 0.7286 | 0.3550 | nan | 0.5457 | 0.5709 | 0.0006 | 0.8423 | 0.1143 | 0.0 | 0.0805 | 0.0 | 0.5323 | 0.0 | 0.0 | 0.7452 | 0.0723 | 0.5020 | 0.2997 | 0.0 | nan | 0.0661 | 0.4535 | 0.3444 | 0.0 | 0.8810 | 0.7710 | 0.9428 | 0.0001 | 0.0852 | 0.3510 | 0.0 |
| 0.0985 | 10.5 | 2100 | 0.6142 | 0.3533 | 0.4256 | 0.8627 | nan | 0.8371 | 0.9483 | 0.8197 | 0.7611 | 0.5121 | nan | 0.6438 | 0.8376 | 0.0129 | 0.9141 | 0.1704 | 0.0 | 0.0046 | 0.0 | 0.7401 | 0.0 | 0.0 | 0.9358 | 0.0800 | 0.6162 | 0.3199 | 0.0 | nan | 0.0784 | 0.4951 | 0.4927 | 0.0 | 0.9401 | 0.8604 | 0.9809 | 0.0009 | 0.1092 | 0.5067 | 0.0 | nan | 0.7385 | 0.8643 | 0.6029 | 0.6977 | 0.3564 | nan | 0.5397 | 0.4815 | 0.0045 | 0.8455 | 0.1454 | 0.0 | 0.0046 | 0.0 | 0.5542 | 0.0 | 0.0 | 0.7474 | 0.0779 | 0.5220 | 0.2741 | 0.0 | nan | 0.0691 | 0.4378 | 0.3395 | 0.0 | 0.8814 | 0.7696 | 0.9414 | 0.0006 | 0.0474 | 0.3636 | 0.0 |
| 0.129 | 10.6 | 2120 | 0.5970 | 0.3600 | 0.4274 | 0.8712 | nan | 0.8555 | 0.9481 | 0.8121 | 0.8462 | 0.4839 | nan | 0.6820 | 0.7683 | 0.0 | 0.9493 | 0.0611 | 0.0 | 0.0 | 0.0 | 0.7116 | 0.0 | 0.0 | 0.9261 | 0.0578 | 0.5941 | 0.3243 | 0.0 | nan | 0.2018 | 0.5643 | 0.5253 | 0.0 | 0.9469 | 0.8967 | 0.9830 | 0.0139 | 0.0910 | 0.4330 | 0.0 | nan | 0.7628 | 0.8796 | 0.6506 | 0.7280 | 0.3696 | nan | 0.5534 | 0.5205 | 0.0 | 0.8490 | 0.0568 | 0.0 | 0.0 | 0.0 | 0.5488 | 0.0 | 0.0 | 0.7399 | 0.0564 | 0.5002 | 0.2847 | 0.0 | nan | 0.1699 | 0.4503 | 0.3859 | 0.0 | 0.8830 | 0.7681 | 0.9423 | 0.0101 | 0.0500 | 0.3604 | 0.0 |
| 0.2195 | 10.7 | 2140 | 0.5875 | 0.3673 | 0.4346 | 0.8706 | nan | 0.8730 | 0.9515 | 0.7622 | 0.8346 | 0.5210 | nan | 0.6573 | 0.8155 | 0.0 | 0.9442 | 0.0891 | 0.0 | 0.2017 | 0.0 | 0.7272 | 0.0 | 0.0 | 0.9272 | 0.1671 | 0.5758 | 0.2867 | 0.0 | nan | 0.1521 | 0.5740 | 0.4965 | 0.0 | 0.9551 | 0.7943 | 0.9859 | 0.0004 | 0.2049 | 0.4082 | 0.0 | nan | 0.7686 | 0.8777 | 0.7037 | 0.7166 | 0.3780 | nan | 0.5573 | 0.5395 | 0.0 | 0.8537 | 0.0818 | 0.0 | 0.1935 | 0.0 | 0.5376 | 0.0 | 0.0 | 0.7443 | 0.1575 | 0.5101 | 0.2481 | 0.0 | nan | 0.1143 | 0.4611 | 0.3603 | 0.0 | 0.8727 | 0.7406 | 0.9378 | 0.0004 | 0.0644 | 0.3343 | 0.0 |
| 0.1582 | 10.8 | 2160 | 0.6342 | 0.3674 | 0.4391 | 0.8630 | nan | 0.8124 | 0.9575 | 0.7501 | 0.7968 | 0.5084 | nan | 0.6739 | 0.8201 | 0.0 | 0.9606 | 0.0620 | 0.0 | 0.1560 | 0.0 | 0.6487 | 0.0 | 0.0 | 0.8970 | 0.2414 | 0.6243 | 0.3606 | 0.0 | nan | 0.1296 | 0.5946 | 0.5022 | 0.0 | 0.9500 | 0.8442 | 0.9796 | 0.0014 | 0.3767 | 0.4047 | 0.0 | nan | 0.7290 | 0.8592 | 0.6867 | 0.6946 | 0.3653 | nan | 0.5461 | 0.5826 | 0.0 | 0.8365 | 0.0584 | 0.0 | 0.1430 | 0.0 | 0.5369 | 0.0 | 0.0 | 0.7539 | 0.2097 | 0.5298 | 0.2998 | 0.0 | nan | 0.1009 | 0.4661 | 0.3656 | 0.0 | 0.8808 | 0.7576 | 0.9442 | 0.0009 | 0.0815 | 0.3260 | 0.0 |
| 0.141 | 10.9 | 2180 | 0.5708 | 0.3747 | 0.4457 | 0.8710 | nan | 0.8407 | 0.9478 | 0.7710 | 0.8542 | 0.5662 | nan | 0.6839 | 0.8254 | 0.0 | 0.9435 | 0.0333 | 0.0 | 0.0817 | 0.0 | 0.7243 | 0.0 | 0.0008 | 0.9160 | 0.2876 | 0.6263 | 0.4032 | 0.0 | nan | 0.1865 | 0.6024 | 0.5075 | 0.0 | 0.9494 | 0.8427 | 0.9741 | 0.0032 | 0.2235 | 0.4666 | 0.0 | nan | 0.7579 | 0.8806 | 0.6630 | 0.7200 | 0.3798 | nan | 0.5666 | 0.6190 | 0.0 | 0.8524 | 0.0318 | 0.0 | 0.0809 | 0.0 | 0.5689 | 0.0 | 0.0007 | 0.7592 | 0.2481 | 0.5451 | 0.3295 | 0.0 | nan | 0.1405 | 0.4706 | 0.3839 | 0.0 | 0.8806 | 0.7427 | 0.9450 | 0.0021 | 0.0652 | 0.3562 | 0.0 |
| 0.3199 | 11.0 | 2200 | 0.5767 | 0.3700 | 0.4486 | 0.8663 | nan | 0.8247 | 0.9515 | 0.8180 | 0.8596 | 0.5109 | nan | 0.5983 | 0.8435 | 0.0015 | 0.9562 | 0.0444 | 0.0 | 0.1568 | 0.0 | 0.7398 | 0.0 | 0.0 | 0.9145 | 0.3573 | 0.6270 | 0.3562 | 0.0 | nan | 0.1856 | 0.5679 | 0.5520 | 0.0 | 0.9489 | 0.7975 | 0.9869 | 0.0110 | 0.3207 | 0.4260 | 0.0 | nan | 0.7408 | 0.8811 | 0.6150 | 0.7041 | 0.3718 | nan | 0.5332 | 0.5834 | 0.0008 | 0.8431 | 0.0424 | 0.0 | 0.1501 | 0.0 | 0.5590 | 0.0 | 0.0 | 0.7555 | 0.2712 | 0.5466 | 0.2982 | 0.0 | nan | 0.1552 | 0.4603 | 0.3707 | 0.0 | 0.8720 | 0.7199 | 0.9373 | 0.0073 | 0.0800 | 0.3409 | 0.0 |
| 0.3278 | 11.1 | 2220 | 0.6226 | 0.3555 | 0.4225 | 0.8637 | nan | 0.8071 | 0.9370 | 0.7867 | 0.8534 | 0.6282 | nan | 0.6651 | 0.8242 | 0.0 | 0.9478 | 0.0697 | 0.0 | 0.0220 | 0.0 | 0.7002 | 0.0 | 0.0007 | 0.9362 | 0.0432 | 0.5970 | 0.2850 | 0.0 | nan | 0.0440 | 0.5153 | 0.5356 | 0.0 | 0.9503 | 0.8485 | 0.9854 | 0.0018 | 0.0713 | 0.4643 | 0.0 | nan | 0.7277 | 0.8729 | 0.6498 | 0.7103 | 0.3589 | nan | 0.5541 | 0.5788 | 0.0 | 0.8502 | 0.0648 | 0.0 | 0.0218 | 0.0 | 0.5862 | 0.0 | 0.0006 | 0.7406 | 0.0431 | 0.5097 | 0.2525 | 0.0 | nan | 0.0372 | 0.4472 | 0.3750 | 0.0 | 0.8800 | 0.7613 | 0.9395 | 0.0014 | 0.0410 | 0.3711 | 0.0 |
| 0.1683 | 11.2 | 2240 | 0.6238 | 0.3707 | 0.4469 | 0.8674 | nan | 0.8060 | 0.9628 | 0.7842 | 0.8534 | 0.4724 | nan | 0.6818 | 0.8545 | 0.0 | 0.9610 | 0.0733 | 0.0 | 0.2164 | 0.0 | 0.6961 | 0.0 | 0.0 | 0.9128 | 0.3061 | 0.5964 | 0.3623 | 0.0 | nan | 0.2198 | 0.5741 | 0.5310 | 0.0 | 0.9357 | 0.8772 | 0.9830 | 0.0016 | 0.1934 | 0.4458 | 0.0 | nan | 0.7305 | 0.8713 | 0.6423 | 0.7167 | 0.3767 | nan | 0.5533 | 0.5352 | 0.0 | 0.8412 | 0.0703 | 0.0 | 0.2041 | 0.0 | 0.5618 | 0.0 | 0.0 | 0.7557 | 0.2336 | 0.5064 | 0.2999 | 0.0 | nan | 0.1291 | 0.4647 | 0.3650 | 0.0 | 0.8804 | 0.7569 | 0.9428 | 0.0015 | 0.0728 | 0.3509 | 0.0 |
| 0.1605 | 11.3 | 2260 | 0.5795 | 0.3728 | 0.4441 | 0.8687 | nan | 0.8542 | 0.9531 | 0.7614 | 0.8369 | 0.5294 | nan | 0.6406 | 0.7638 | 0.0 | 0.9529 | 0.1167 | 0.0 | 0.3061 | 0.0 | 0.7072 | 0.0 | 0.0 | 0.9357 | 0.1757 | 0.5333 | 0.3332 | 0.0 | nan | 0.2005 | 0.5990 | 0.5629 | 0.0 | 0.9396 | 0.8592 | 0.9558 | 0.0038 | 0.2350 | 0.4551 | 0.0 | nan | 0.7537 | 0.8742 | 0.6982 | 0.7383 | 0.3793 | nan | 0.5505 | 0.6206 | 0.0 | 0.8509 | 0.1002 | 0.0 | 0.2371 | 0.0 | 0.5679 | 0.0 | 0.0 | 0.7413 | 0.1622 | 0.4769 | 0.2774 | 0.0 | nan | 0.1264 | 0.4381 | 0.3432 | 0.0 | 0.8818 | 0.7618 | 0.9269 | 0.0031 | 0.0698 | 0.3487 | 0.0 |
| 0.1396 | 11.4 | 2280 | 0.5767 | 0.3647 | 0.4384 | 0.8682 | nan | 0.8746 | 0.9356 | 0.8180 | 0.8394 | 0.4808 | nan | 0.6852 | 0.7584 | 0.0 | 0.9572 | 0.1009 | 0.0 | 0.3371 | 0.0 | 0.6918 | 0.0 | 0.0 | 0.9334 | 0.0883 | 0.5746 | 0.3300 | 0.0 | nan | 0.1219 | 0.5086 | 0.5141 | 0.0 | 0.9436 | 0.8834 | 0.9812 | 0.0021 | 0.2657 | 0.4033 | 0.0 | nan | 0.7602 | 0.8805 | 0.5760 | 0.7281 | 0.3592 | nan | 0.5368 | 0.6123 | 0.0 | 0.8479 | 0.0859 | 0.0 | 0.2574 | 0.0 | 0.5466 | 0.0 | 0.0 | 0.7417 | 0.0864 | 0.4825 | 0.2789 | 0.0 | nan | 0.0901 | 0.4440 | 0.3503 | 0.0 | 0.8823 | 0.7613 | 0.9418 | 0.0021 | 0.0847 | 0.3331 | 0.0 |
| 0.1348 | 11.5 | 2300 | 0.6258 | 0.3692 | 0.4448 | 0.8655 | nan | 0.8082 | 0.9612 | 0.7932 | 0.8424 | 0.4898 | nan | 0.6678 | 0.8474 | 0.0 | 0.9463 | 0.1012 | 0.0 | 0.5633 | 0.0 | 0.6651 | 0.0 | 0.0 | 0.9174 | 0.1172 | 0.5338 | 0.3249 | 0.0 | nan | 0.1375 | 0.5718 | 0.5233 | 0.0 | 0.9462 | 0.8342 | 0.9834 | 0.0045 | 0.1324 | 0.5217 | 0.0 | nan | 0.7343 | 0.8648 | 0.6512 | 0.7241 | 0.3822 | nan | 0.5542 | 0.5387 | 0.0 | 0.8505 | 0.0884 | 0.0 | 0.3417 | 0.0 | 0.5591 | 0.0 | 0.0 | 0.7463 | 0.1116 | 0.4585 | 0.2749 | 0.0 | nan | 0.1039 | 0.4578 | 0.3698 | 0.0 | 0.8810 | 0.7603 | 0.9383 | 0.0037 | 0.0536 | 0.3669 | 0.0 |
| 0.1144 | 11.6 | 2320 | 0.6251 | 0.3706 | 0.4457 | 0.8656 | nan | 0.8156 | 0.9497 | 0.8051 | 0.8338 | 0.5297 | nan | 0.7026 | 0.8641 | 0.0015 | 0.9475 | 0.0807 | 0.0 | 0.5249 | 0.0 | 0.7219 | 0.0 | 0.0 | 0.9244 | 0.1660 | 0.5631 | 0.2868 | 0.0 | nan | 0.0826 | 0.5438 | 0.5127 | 0.0 | 0.9554 | 0.8453 | 0.9789 | 0.0003 | 0.1870 | 0.4395 | 0.0 | nan | 0.7347 | 0.8709 | 0.6465 | 0.7180 | 0.3731 | nan | 0.5482 | 0.5144 | 0.0008 | 0.8519 | 0.0725 | 0.0 | 0.4376 | 0.0 | 0.5665 | 0.0 | 0.0 | 0.7457 | 0.1464 | 0.4915 | 0.2523 | 0.0 | nan | 0.0738 | 0.4565 | 0.3591 | 0.0 | 0.8778 | 0.7599 | 0.9440 | 0.0003 | 0.0663 | 0.3493 | 0.0 |
| 0.1364 | 11.7 | 2340 | 0.6131 | 0.3674 | 0.4372 | 0.8665 | nan | 0.8147 | 0.9550 | 0.7895 | 0.8548 | 0.4751 | nan | 0.6712 | 0.7707 | 0.0073 | 0.9493 | 0.0768 | 0.0 | 0.0791 | 0.0 | 0.7509 | 0.0 | 0.0 | 0.9269 | 0.2658 | 0.5650 | 0.3656 | 0.0 | nan | 0.1236 | 0.5760 | 0.5266 | 0.0 | 0.9430 | 0.8617 | 0.9851 | 0.0006 | 0.2049 | 0.4518 | 0.0 | nan | 0.7291 | 0.8676 | 0.6741 | 0.6949 | 0.3800 | nan | 0.5491 | 0.5884 | 0.0023 | 0.8533 | 0.0695 | 0.0 | 0.0772 | 0.0 | 0.5511 | 0.0 | 0.0 | 0.7475 | 0.2158 | 0.4930 | 0.2880 | 0.0 | nan | 0.1135 | 0.4663 | 0.3732 | 0.0 | 0.8833 | 0.7754 | 0.9408 | 0.0006 | 0.0709 | 0.3511 | 0.0 |
| 0.2197 | 11.8 | 2360 | 0.5734 | 0.3734 | 0.4465 | 0.8701 | nan | 0.8327 | 0.9541 | 0.7742 | 0.8469 | 0.5193 | nan | 0.6696 | 0.7860 | 0.0435 | 0.9492 | 0.0867 | 0.0 | 0.1161 | 0.0 | 0.7444 | 0.0 | 0.0 | 0.9244 | 0.2077 | 0.6531 | 0.3496 | 0.0 | nan | 0.2229 | 0.5427 | 0.5329 | 0.0 | 0.9429 | 0.8597 | 0.9803 | 0.0501 | 0.2688 | 0.4307 | 0.0 | nan | 0.7428 | 0.8713 | 0.6954 | 0.7325 | 0.3784 | nan | 0.5642 | 0.5273 | 0.0127 | 0.8512 | 0.0784 | 0.0 | 0.1132 | 0.0 | 0.5606 | 0.0 | 0.0 | 0.7609 | 0.1806 | 0.5258 | 0.2898 | 0.0 | nan | 0.1667 | 0.4618 | 0.3730 | 0.0 | 0.8832 | 0.7786 | 0.9455 | 0.0381 | 0.0867 | 0.3316 | 0.0 |
| 0.2554 | 11.9 | 2380 | 0.5918 | 0.3705 | 0.4438 | 0.8689 | nan | 0.8391 | 0.9453 | 0.7625 | 0.8541 | 0.5608 | nan | 0.7264 | 0.8564 | 0.0 | 0.9460 | 0.1626 | 0.0 | 0.1483 | 0.0 | 0.7141 | 0.0 | 0.0 | 0.9265 | 0.1750 | 0.5530 | 0.3455 | 0.0 | nan | 0.1034 | 0.5706 | 0.5443 | 0.0 | 0.9554 | 0.8439 | 0.9802 | 0.0052 | 0.3029 | 0.3817 | 0.0 | nan | 0.7510 | 0.8732 | 0.6893 | 0.7540 | 0.3691 | nan | 0.5639 | 0.5705 | 0.0 | 0.8499 | 0.1376 | 0.0 | 0.1311 | 0.0 | 0.5748 | 0.0 | 0.0 | 0.7445 | 0.1558 | 0.4815 | 0.2829 | 0.0 | nan | 0.0955 | 0.4686 | 0.3581 | 0.0 | 0.8806 | 0.7759 | 0.9447 | 0.0045 | 0.0779 | 0.3222 | 0.0 |
| 0.2711 | 12.0 | 2400 | 0.6319 | 0.3632 | 0.4330 | 0.8671 | nan | 0.8422 | 0.9554 | 0.7821 | 0.8127 | 0.5184 | nan | 0.6174 | 0.6287 | 0.2510 | 0.9395 | 0.1899 | 0.0 | 0.0304 | 0.0 | 0.7609 | 0.0 | 0.0 | 0.9433 | 0.1254 | 0.5463 | 0.3575 | 0.0 | nan | 0.0987 | 0.5525 | 0.4929 | 0.0 | 0.9425 | 0.8727 | 0.9788 | 0.0021 | 0.1966 | 0.4170 | 0.0 | nan | 0.7427 | 0.8662 | 0.6861 | 0.7240 | 0.3806 | nan | 0.5351 | 0.5373 | 0.0305 | 0.8533 | 0.1544 | 0.0 | 0.0300 | 0.0 | 0.5271 | 0.0 | 0.0 | 0.7409 | 0.1153 | 0.4812 | 0.2847 | 0.0 | nan | 0.0876 | 0.4611 | 0.3645 | 0.0 | 0.8860 | 0.7777 | 0.9444 | 0.0015 | 0.0678 | 0.3417 | 0.0 |
| 0.1332 | 12.1 | 2420 | 0.6043 | 0.3666 | 0.4293 | 0.8684 | nan | 0.8262 | 0.9548 | 0.7555 | 0.8478 | 0.5225 | nan | 0.6493 | 0.8324 | 0.0038 | 0.9513 | 0.1307 | 0.0 | 0.0527 | 0.0 | 0.6916 | 0.0 | 0.0 | 0.9388 | 0.1511 | 0.5920 | 0.3121 | 0.0 | nan | 0.0948 | 0.5519 | 0.4701 | 0.0 | 0.9443 | 0.8559 | 0.9821 | 0.0002 | 0.1775 | 0.4472 | 0.0 | nan | 0.7376 | 0.8679 | 0.7048 | 0.7237 | 0.3671 | nan | 0.5495 | 0.5856 | 0.0021 | 0.8509 | 0.1173 | 0.0 | 0.0517 | 0.0 | 0.5722 | 0.0 | 0.0 | 0.7460 | 0.1402 | 0.5015 | 0.2701 | 0.0 | nan | 0.0822 | 0.4603 | 0.3715 | 0.0 | 0.8849 | 0.7750 | 0.9458 | 0.0002 | 0.0680 | 0.3565 | 0.0 |
| 0.2308 | 12.2 | 2440 | 0.5906 | 0.3718 | 0.4328 | 0.8706 | nan | 0.8531 | 0.9513 | 0.7697 | 0.7995 | 0.5138 | nan | 0.6808 | 0.8252 | 0.0 | 0.9505 | 0.1204 | 0.0 | 0.1194 | 0.0 | 0.6586 | 0.0 | 0.0 | 0.9241 | 0.0845 | 0.5784 | 0.3090 | 0.0 | nan | 0.1074 | 0.5745 | 0.5363 | 0.0 | 0.9534 | 0.8744 | 0.9838 | 0.0069 | 0.1622 | 0.5118 | 0.0 | nan | 0.7502 | 0.8699 | 0.7013 | 0.7250 | 0.3777 | nan | 0.5536 | 0.6461 | 0.0 | 0.8491 | 0.1068 | 0.0 | 0.1119 | 0.0 | 0.5816 | 0.0 | 0.0 | 0.7484 | 0.0827 | 0.5018 | 0.2731 | 0.0 | nan | 0.0941 | 0.4679 | 0.3875 | 0.0 | 0.8832 | 0.7777 | 0.9435 | 0.0049 | 0.0723 | 0.3883 | 0.0 |
| 0.1515 | 12.3 | 2460 | 0.5838 | 0.3799 | 0.4509 | 0.8692 | nan | 0.8421 | 0.9520 | 0.7778 | 0.8411 | 0.5345 | nan | 0.6488 | 0.8483 | 0.0140 | 0.9347 | 0.1763 | 0.0 | 0.4235 | 0.0 | 0.6691 | 0.0 | 0.0 | 0.9141 | 0.1371 | 0.6244 | 0.3622 | 0.0 | nan | 0.1605 | 0.5416 | 0.5749 | 0.0 | 0.9604 | 0.8121 | 0.9781 | 0.0010 | 0.2560 | 0.4436 | 0.0 | nan | 0.7502 | 0.8705 | 0.6726 | 0.7230 | 0.3918 | nan | 0.5458 | 0.5629 | 0.0056 | 0.8510 | 0.1486 | 0.0 | 0.3683 | 0.0 | 0.5684 | 0.0 | 0.0 | 0.7557 | 0.1281 | 0.5094 | 0.3033 | 0.0 | nan | 0.1315 | 0.4601 | 0.3689 | 0.0 | 0.8734 | 0.7513 | 0.9462 | 0.0008 | 0.1108 | 0.3598 | 0.0 |
| 0.1225 | 12.4 | 2480 | 0.6349 | 0.3697 | 0.4419 | 0.8653 | nan | 0.8298 | 0.9563 | 0.7270 | 0.8458 | 0.4908 | nan | 0.6935 | 0.8170 | 0.0016 | 0.9535 | 0.1277 | 0.0 | 0.1943 | 0.0 | 0.6818 | 0.0 | 0.0 | 0.9243 | 0.0993 | 0.5907 | 0.3374 | 0.0 | nan | 0.1578 | 0.5889 | 0.5923 | 0.0 | 0.9541 | 0.7663 | 0.9832 | 0.0017 | 0.4623 | 0.3629 | 0.0 | nan | 0.7383 | 0.8689 | 0.6986 | 0.7201 | 0.3735 | nan | 0.5547 | 0.6206 | 0.0008 | 0.8499 | 0.1108 | 0.0 | 0.1761 | 0.0 | 0.5647 | 0.0 | 0.0 | 0.7506 | 0.0919 | 0.5152 | 0.2830 | 0.0 | nan | 0.1368 | 0.4754 | 0.3761 | 0.0 | 0.8704 | 0.7117 | 0.9433 | 0.0012 | 0.0886 | 0.3105 | 0.0 |
| 0.17 | 12.5 | 2500 | 0.6301 | 0.3746 | 0.4515 | 0.8591 | nan | 0.7800 | 0.9414 | 0.7639 | 0.8348 | 0.5670 | nan | 0.6941 | 0.8344 | 0.0025 | 0.9472 | 0.1556 | 0.0 | 0.2321 | 0.0 | 0.7384 | 0.0 | 0.0 | 0.9207 | 0.1489 | 0.5901 | 0.3355 | 0.0 | nan | 0.2611 | 0.5878 | 0.5471 | 0.0 | 0.9567 | 0.8401 | 0.9839 | 0.0020 | 0.3890 | 0.3939 | 0.0 | nan | 0.6970 | 0.8698 | 0.7009 | 0.6399 | 0.3747 | nan | 0.5503 | 0.6201 | 0.0013 | 0.8517 | 0.1344 | 0.0 | 0.2098 | 0.0 | 0.5732 | 0.0 | 0.0 | 0.7501 | 0.1287 | 0.5132 | 0.2866 | 0.0 | nan | 0.2142 | 0.4713 | 0.3932 | 0.0 | 0.8804 | 0.7604 | 0.9405 | 0.0012 | 0.0953 | 0.3289 | 0.0 |
| 0.165 | 12.6 | 2520 | 0.6584 | 0.3661 | 0.4352 | 0.8570 | nan | 0.7368 | 0.9524 | 0.7641 | 0.8569 | 0.5238 | nan | 0.6428 | 0.8209 | 0.0036 | 0.9346 | 0.1399 | 0.0 | 0.1906 | 0.0 | 0.7413 | 0.0 | 0.0 | 0.9404 | 0.2085 | 0.5960 | 0.3233 | 0.0 | nan | 0.1134 | 0.5718 | 0.5039 | 0.0 | 0.9471 | 0.8686 | 0.9802 | 0.0023 | 0.1083 | 0.4567 | 0.0 | nan | 0.6616 | 0.8708 | 0.6893 | 0.5929 | 0.3828 | nan | 0.5459 | 0.5759 | 0.0018 | 0.8532 | 0.1247 | 0.0 | 0.1748 | 0.0 | 0.5620 | 0.0 | 0.0 | 0.7446 | 0.1639 | 0.4943 | 0.2780 | 0.0 | nan | 0.0852 | 0.4645 | 0.3842 | 0.0 | 0.8847 | 0.7794 | 0.9446 | 0.0020 | 0.0760 | 0.3766 | 0.0 |
| 0.1429 | 12.7 | 2540 | 0.6257 | 0.3674 | 0.4410 | 0.8642 | nan | 0.8160 | 0.9534 | 0.7486 | 0.8338 | 0.4912 | nan | 0.6777 | 0.8433 | 0.0 | 0.9496 | 0.1179 | 0.0 | 0.3490 | 0.0 | 0.7247 | 0.0 | 0.0 | 0.9433 | 0.1158 | 0.5400 | 0.3428 | 0.0 | nan | 0.0911 | 0.6048 | 0.5402 | 0.0 | 0.9376 | 0.8745 | 0.9812 | 0.0009 | 0.2446 | 0.3913 | 0.0 | nan | 0.7176 | 0.8700 | 0.6719 | 0.6720 | 0.3812 | nan | 0.5478 | 0.5687 | 0.0 | 0.8470 | 0.1068 | 0.0 | 0.2404 | 0.0 | 0.5742 | 0.0 | 0.0 | 0.7373 | 0.1023 | 0.4654 | 0.2893 | 0.0 | nan | 0.0700 | 0.4721 | 0.3740 | 0.0 | 0.8863 | 0.7742 | 0.9449 | 0.0008 | 0.1089 | 0.3334 | 0.0 |
| 0.2148 | 12.8 | 2560 | 0.6506 | 0.3615 | 0.4361 | 0.8657 | nan | 0.8294 | 0.9461 | 0.7752 | 0.8529 | 0.5457 | nan | 0.6227 | 0.8170 | 0.0 | 0.9457 | 0.1039 | 0.0 | 0.1968 | 0.0 | 0.7317 | 0.0 | 0.0 | 0.9237 | 0.0543 | 0.5955 | 0.3732 | 0.0 | nan | 0.0714 | 0.5452 | 0.5722 | 0.0 | 0.9555 | 0.8497 | 0.9830 | 0.0013 | 0.3009 | 0.3629 | 0.0 | nan | 0.7423 | 0.8720 | 0.6351 | 0.7116 | 0.3801 | nan | 0.5362 | 0.5780 | 0.0 | 0.8514 | 0.0939 | 0.0 | 0.1506 | 0.0 | 0.5538 | 0.0 | 0.0 | 0.7452 | 0.0523 | 0.4998 | 0.3005 | 0.0 | nan | 0.0557 | 0.4536 | 0.3680 | 0.0 | 0.8828 | 0.7690 | 0.9439 | 0.0008 | 0.0857 | 0.3067 | 0.0 |
| 0.1008 | 12.9 | 2580 | 0.6366 | 0.3646 | 0.4308 | 0.8690 | nan | 0.8348 | 0.9596 | 0.7654 | 0.8486 | 0.4781 | nan | 0.6440 | 0.8230 | 0.0 | 0.9401 | 0.0809 | 0.0 | 0.0403 | 0.0 | 0.7241 | 0.0 | 0.0 | 0.9404 | 0.0910 | 0.5811 | 0.3870 | 0.0 | nan | 0.0529 | 0.6005 | 0.5440 | 0.0 | 0.9417 | 0.8558 | 0.9761 | 0.0091 | 0.2742 | 0.3930 | 0.0 | nan | 0.7476 | 0.8739 | 0.6846 | 0.7247 | 0.3771 | nan | 0.5427 | 0.6177 | 0.0 | 0.8530 | 0.0728 | 0.0 | 0.0367 | 0.0 | 0.5974 | 0.0 | 0.0 | 0.7460 | 0.0835 | 0.4990 | 0.3228 | 0.0 | nan | 0.0427 | 0.4805 | 0.3583 | 0.0 | 0.8849 | 0.7654 | 0.9476 | 0.0044 | 0.0760 | 0.3287 | 0.0 |
| 0.1522 | 13.0 | 2600 | 0.6428 | 0.3646 | 0.4295 | 0.8690 | nan | 0.8303 | 0.9632 | 0.7664 | 0.8164 | 0.4636 | nan | 0.6786 | 0.7941 | 0.0266 | 0.9519 | 0.0963 | 0.0 | 0.0264 | 0.0 | 0.7352 | 0.0 | 0.0 | 0.9292 | 0.1689 | 0.5832 | 0.3683 | 0.0 | nan | 0.0134 | 0.5600 | 0.5372 | 0.0 | 0.9532 | 0.8346 | 0.9827 | 0.0022 | 0.2319 | 0.4291 | 0.0 | nan | 0.7495 | 0.8672 | 0.6985 | 0.7028 | 0.3705 | nan | 0.5573 | 0.5974 | 0.0090 | 0.8505 | 0.0855 | 0.0 | 0.0226 | 0.0 | 0.5779 | 0.0 | 0.0 | 0.7493 | 0.1519 | 0.4990 | 0.3153 | 0.0 | nan | 0.0110 | 0.4666 | 0.3700 | 0.0 | 0.8830 | 0.7672 | 0.9455 | 0.0016 | 0.0710 | 0.3461 | 0.0 |
| 0.2057 | 13.1 | 2620 | 0.6362 | 0.3648 | 0.4290 | 0.8681 | nan | 0.8362 | 0.9518 | 0.7971 | 0.8013 | 0.4958 | nan | 0.6809 | 0.8544 | 0.0 | 0.9491 | 0.1131 | 0.0 | 0.0089 | 0.0 | 0.7202 | 0.0 | 0.0 | 0.9329 | 0.0788 | 0.5645 | 0.3541 | 0.0 | nan | 0.0622 | 0.5870 | 0.5498 | 0.0 | 0.9617 | 0.8374 | 0.9785 | 0.0082 | 0.1591 | 0.4444 | 0.0 | nan | 0.7457 | 0.8653 | 0.7014 | 0.7078 | 0.3798 | nan | 0.5451 | 0.6337 | 0.0 | 0.8506 | 0.1009 | 0.0 | 0.0084 | 0.0 | 0.5899 | 0.0 | 0.0 | 0.7449 | 0.0734 | 0.4999 | 0.3024 | 0.0 | nan | 0.0552 | 0.4695 | 0.3761 | 0.0 | 0.8769 | 0.7513 | 0.9487 | 0.0065 | 0.0730 | 0.3664 | 0.0 |
| 0.1275 | 13.2 | 2640 | 0.6206 | 0.3704 | 0.4324 | 0.8716 | nan | 0.8514 | 0.9568 | 0.7906 | 0.8056 | 0.5298 | nan | 0.6604 | 0.8550 | 0.0 | 0.9368 | 0.1211 | 0.0 | 0.0309 | 0.0 | 0.7165 | 0.0 | 0.0 | 0.9430 | 0.1613 | 0.5821 | 0.3947 | 0.0 | nan | 0.0998 | 0.5349 | 0.5008 | 0.0 | 0.9382 | 0.8708 | 0.9835 | 0.0024 | 0.0890 | 0.4824 | 0.0 | nan | 0.7574 | 0.8693 | 0.7222 | 0.7114 | 0.3926 | nan | 0.5542 | 0.5887 | 0.0 | 0.8555 | 0.1079 | 0.0 | 0.0280 | 0.0 | 0.6065 | 0.0 | 0.0 | 0.7420 | 0.1495 | 0.5062 | 0.3216 | 0.0 | nan | 0.0856 | 0.4645 | 0.3651 | 0.0 | 0.8853 | 0.7743 | 0.9452 | 0.0023 | 0.0430 | 0.3754 | 0.0 |
| 0.1347 | 13.3 | 2660 | 0.6095 | 0.3719 | 0.4455 | 0.8700 | nan | 0.8279 | 0.9563 | 0.7853 | 0.8425 | 0.5450 | nan | 0.6901 | 0.8485 | 0.0 | 0.9497 | 0.1046 | 0.0 | 0.0767 | 0.0 | 0.7409 | 0.0 | 0.0 | 0.9110 | 0.2988 | 0.5294 | 0.3394 | 0.0 | nan | 0.1154 | 0.6044 | 0.5436 | 0.0 | 0.9577 | 0.8662 | 0.9823 | 0.0019 | 0.3407 | 0.3988 | 0.0 | nan | 0.7461 | 0.8734 | 0.6989 | 0.7428 | 0.3914 | nan | 0.5611 | 0.5997 | 0.0 | 0.8506 | 0.0949 | 0.0 | 0.0700 | 0.0 | 0.5830 | 0.0 | 0.0 | 0.7483 | 0.2296 | 0.4694 | 0.2874 | 0.0 | nan | 0.0914 | 0.4729 | 0.3638 | 0.0 | 0.8769 | 0.7703 | 0.9457 | 0.0016 | 0.0945 | 0.3362 | 0.0 |
| 0.2485 | 13.4 | 2680 | 0.6268 | 0.3714 | 0.4387 | 0.8683 | nan | 0.8264 | 0.9537 | 0.8050 | 0.8298 | 0.5365 | nan | 0.6674 | 0.8409 | 0.0 | 0.9517 | 0.1271 | 0.0 | 0.0620 | 0.0 | 0.7334 | 0.0 | 0.0001 | 0.9130 | 0.1673 | 0.6948 | 0.2833 | 0.0 | nan | 0.1799 | 0.5789 | 0.4927 | 0.0 | 0.9572 | 0.7666 | 0.9814 | 0.0028 | 0.2146 | 0.4709 | 0.0 | nan | 0.7393 | 0.8683 | 0.6553 | 0.7410 | 0.3897 | nan | 0.5474 | 0.6279 | 0.0 | 0.8533 | 0.1132 | 0.0 | 0.0553 | 0.0 | 0.6019 | 0.0 | 0.0001 | 0.7628 | 0.1513 | 0.5262 | 0.2585 | 0.0 | nan | 0.1395 | 0.4651 | 0.3625 | 0.0 | 0.8740 | 0.7215 | 0.9462 | 0.0020 | 0.1102 | 0.3729 | 0.0 |
| 0.1525 | 13.5 | 2700 | 0.6110 | 0.3650 | 0.4255 | 0.8704 | nan | 0.8474 | 0.9557 | 0.7782 | 0.8435 | 0.5040 | nan | 0.6619 | 0.7982 | 0.0 | 0.9442 | 0.0899 | 0.0 | 0.0353 | 0.0 | 0.6722 | 0.0 | 0.0 | 0.9479 | 0.0813 | 0.5063 | 0.3830 | 0.0 | nan | 0.0530 | 0.5744 | 0.5097 | 0.0 | 0.9437 | 0.8528 | 0.9840 | 0.0021 | 0.1918 | 0.4547 | 0.0 | nan | 0.7505 | 0.8771 | 0.6676 | 0.7346 | 0.3815 | nan | 0.5483 | 0.6471 | 0.0 | 0.8551 | 0.0823 | 0.0 | 0.0322 | 0.0 | 0.5850 | 0.0 | 0.0 | 0.7303 | 0.0762 | 0.4660 | 0.3171 | 0.0 | nan | 0.0483 | 0.4664 | 0.3777 | 0.0 | 0.8836 | 0.7640 | 0.9446 | 0.0016 | 0.0762 | 0.3674 | 0.0 |
| 0.143 | 13.6 | 2720 | 0.6194 | 0.3740 | 0.4436 | 0.8696 | nan | 0.8290 | 0.9541 | 0.7935 | 0.8487 | 0.5119 | nan | 0.6949 | 0.8598 | 0.0002 | 0.9392 | 0.1333 | 0.0 | 0.1574 | 0.0 | 0.6618 | 0.0 | 0.0 | 0.9352 | 0.2334 | 0.5895 | 0.3310 | 0.0 | nan | 0.1549 | 0.5873 | 0.5214 | 0.0 | 0.9487 | 0.8358 | 0.9781 | 0.0015 | 0.2644 | 0.4311 | 0.0 | nan | 0.7467 | 0.8738 | 0.6418 | 0.7283 | 0.3822 | nan | 0.5565 | 0.6359 | 0.0002 | 0.8549 | 0.1172 | 0.0 | 0.1287 | 0.0 | 0.5698 | 0.0 | 0.0 | 0.7493 | 0.1940 | 0.5161 | 0.2898 | 0.0 | nan | 0.1212 | 0.4736 | 0.3769 | 0.0 | 0.8815 | 0.7545 | 0.9493 | 0.0012 | 0.0793 | 0.3459 | 0.0 |
| 0.1094 | 13.7 | 2740 | 0.6446 | 0.3740 | 0.4465 | 0.8647 | nan | 0.8092 | 0.9513 | 0.7723 | 0.8255 | 0.5528 | nan | 0.6324 | 0.8453 | 0.0056 | 0.9468 | 0.1589 | 0.0 | 0.2978 | 0.0000 | 0.6940 | 0.0 | 0.0 | 0.9222 | 0.1008 | 0.6086 | 0.4271 | 0.0 | nan | 0.1750 | 0.5541 | 0.5967 | 0.0 | 0.9486 | 0.8623 | 0.9790 | 0.0019 | 0.1964 | 0.4233 | 0.0 | nan | 0.7344 | 0.8628 | 0.6750 | 0.6872 | 0.3726 | nan | 0.5472 | 0.6229 | 0.0033 | 0.8487 | 0.1334 | 0.0 | 0.2540 | 0.0000 | 0.5686 | 0.0 | 0.0 | 0.7526 | 0.0916 | 0.5157 | 0.3333 | 0.0 | nan | 0.1280 | 0.4655 | 0.3615 | 0.0 | 0.8826 | 0.7633 | 0.9485 | 0.0014 | 0.0656 | 0.3464 | 0.0 |
| 0.1719 | 13.8 | 2760 | 0.6517 | 0.3692 | 0.4442 | 0.8633 | nan | 0.8127 | 0.9523 | 0.7780 | 0.8328 | 0.4678 | nan | 0.6884 | 0.8158 | 0.0169 | 0.9453 | 0.1204 | 0.0 | 0.3134 | 0.0 | 0.7445 | 0.0 | 0.0 | 0.9160 | 0.1944 | 0.5866 | 0.3583 | 0.0 | nan | 0.0522 | 0.5863 | 0.5834 | 0.0 | 0.9586 | 0.7890 | 0.9860 | 0.0052 | 0.2654 | 0.4462 | 0.0 | nan | 0.7298 | 0.8677 | 0.6782 | 0.6843 | 0.3674 | nan | 0.5435 | 0.6222 | 0.0066 | 0.8529 | 0.1059 | 0.0 | 0.2405 | 0.0 | 0.5573 | 0.0 | 0.0 | 0.7502 | 0.1709 | 0.5163 | 0.2980 | 0.0 | nan | 0.0417 | 0.4815 | 0.3531 | 0.0 | 0.8734 | 0.7261 | 0.9391 | 0.0036 | 0.0683 | 0.3350 | 0.0 |
| 0.197 | 13.9 | 2780 | 0.6215 | 0.3729 | 0.4418 | 0.8687 | nan | 0.8668 | 0.9514 | 0.7759 | 0.7972 | 0.5255 | nan | 0.6496 | 0.8175 | 0.0228 | 0.9515 | 0.0731 | 0.0 | 0.2487 | 0.0 | 0.7049 | 0.0 | 0.0 | 0.9290 | 0.1966 | 0.5696 | 0.3480 | 0.0 | nan | 0.1606 | 0.5942 | 0.5603 | 0.0 | 0.9526 | 0.7950 | 0.9848 | 0.0269 | 0.2232 | 0.4112 | 0.0 | nan | 0.7569 | 0.8791 | 0.6367 | 0.7200 | 0.3761 | nan | 0.5464 | 0.6425 | 0.0090 | 0.8494 | 0.0679 | 0.0 | 0.1974 | 0.0 | 0.5789 | 0.0 | 0.0 | 0.7471 | 0.1676 | 0.5024 | 0.2995 | 0.0 | nan | 0.1214 | 0.4876 | 0.3790 | 0.0 | 0.8760 | 0.7302 | 0.9424 | 0.0164 | 0.0679 | 0.3361 | 0.0 |
| 0.1238 | 14.0 | 2800 | 0.6008 | 0.3822 | 0.4546 | 0.8742 | nan | 0.8710 | 0.9515 | 0.7717 | 0.8274 | 0.4743 | nan | 0.7189 | 0.8324 | 0.0504 | 0.9358 | 0.1246 | 0.0 | 0.4430 | 0.0 | 0.7318 | 0.0 | 0.0173 | 0.9097 | 0.0782 | 0.6669 | 0.3868 | 0.0 | nan | 0.1546 | 0.5889 | 0.5536 | 0.0 | 0.9543 | 0.8475 | 0.9784 | 0.0074 | 0.1882 | 0.4838 | 0.0 | nan | 0.7677 | 0.8817 | 0.6589 | 0.7277 | 0.3922 | nan | 0.5545 | 0.6251 | 0.0184 | 0.8534 | 0.1129 | 0.0 | 0.3401 | 0.0 | 0.5678 | 0.0 | 0.0133 | 0.7551 | 0.0757 | 0.5311 | 0.3201 | 0.0 | nan | 0.1346 | 0.4819 | 0.3939 | 0.0 | 0.8806 | 0.7508 | 0.9467 | 0.0057 | 0.0696 | 0.3693 | 0.0 |
| 0.1317 | 14.1 | 2820 | 0.6037 | 0.3756 | 0.4368 | 0.8766 | nan | 0.8728 | 0.9625 | 0.7553 | 0.8525 | 0.4601 | nan | 0.6745 | 0.8292 | 0.0124 | 0.9444 | 0.1426 | 0.0 | 0.0085 | 0.0 | 0.6589 | 0.0 | 0.0052 | 0.9372 | 0.1747 | 0.5779 | 0.3701 | 0.0 | nan | 0.1536 | 0.6059 | 0.5533 | 0.0 | 0.9529 | 0.8101 | 0.9833 | 0.0028 | 0.2206 | 0.4557 | 0.0 | nan | 0.7769 | 0.8838 | 0.7156 | 0.7342 | 0.3727 | nan | 0.5626 | 0.6729 | 0.0066 | 0.8449 | 0.1261 | 0.0 | 0.0054 | 0.0 | 0.5665 | 0.0 | 0.0038 | 0.7449 | 0.1511 | 0.5088 | 0.3111 | 0.0 | nan | 0.1232 | 0.4809 | 0.3857 | 0.0 | 0.8812 | 0.7537 | 0.9452 | 0.0027 | 0.0850 | 0.3737 | 0.0 |
| 0.1561 | 14.2 | 2840 | 0.6731 | 0.3774 | 0.4507 | 0.8659 | nan | 0.8091 | 0.9530 | 0.7726 | 0.8470 | 0.5168 | nan | 0.7039 | 0.8604 | 0.0233 | 0.9451 | 0.1814 | 0.0 | 0.4042 | 0.0002 | 0.7136 | 0.0 | 0.0019 | 0.9294 | 0.1412 | 0.5499 | 0.3167 | 0.0 | nan | 0.2017 | 0.5679 | 0.5189 | 0.0 | 0.9553 | 0.8126 | 0.9828 | 0.0065 | 0.2318 | 0.4767 | 0.0 | nan | 0.7279 | 0.8725 | 0.6738 | 0.6924 | 0.3847 | nan | 0.5622 | 0.6163 | 0.0140 | 0.8548 | 0.1535 | 0.0 | 0.2975 | 0.0002 | 0.5667 | 0.0 | 0.0014 | 0.7453 | 0.1297 | 0.4810 | 0.2752 | 0.0 | nan | 0.1615 | 0.4737 | 0.3750 | 0.0 | 0.8758 | 0.7340 | 0.9463 | 0.0055 | 0.0817 | 0.3751 | 0.0 |
| 0.1034 | 14.3 | 2860 | 0.6550 | 0.3748 | 0.4388 | 0.8693 | nan | 0.8425 | 0.9480 | 0.7923 | 0.8447 | 0.5247 | nan | 0.6776 | 0.7910 | 0.0 | 0.9425 | 0.1608 | 0.0 | 0.0004 | 0.0 | 0.6871 | 0.0 | 0.0 | 0.9286 | 0.1559 | 0.4997 | 0.3733 | 0.0035 | nan | 0.2962 | 0.5880 | 0.5191 | 0.0 | 0.9588 | 0.8267 | 0.9847 | 0.0279 | 0.1601 | 0.5066 | 0.0 | nan | 0.7517 | 0.8791 | 0.6509 | 0.7343 | 0.3776 | nan | 0.5648 | 0.6827 | 0.0 | 0.8562 | 0.1422 | 0.0 | 0.0004 | 0.0 | 0.5781 | 0.0 | 0.0 | 0.7368 | 0.1417 | 0.4471 | 0.3179 | 0.0035 | nan | 0.2035 | 0.4832 | 0.3897 | 0.0 | 0.8790 | 0.7543 | 0.9447 | 0.0138 | 0.0668 | 0.3940 | 0.0 |
| 0.1665 | 14.4 | 2880 | 0.6118 | 0.3831 | 0.4646 | 0.8676 | nan | 0.7911 | 0.9537 | 0.7726 | 0.8726 | 0.4892 | nan | 0.7120 | 0.8720 | 0.0038 | 0.9533 | 0.1108 | 0.0 | 0.1787 | 0.0 | 0.6998 | 0.0 | 0.0 | 0.9148 | 0.3593 | 0.6052 | 0.4110 | 0.0 | nan | 0.3748 | 0.6291 | 0.5697 | 0.0 | 0.9530 | 0.8561 | 0.9818 | 0.0107 | 0.3523 | 0.4381 | 0.0 | nan | 0.7136 | 0.8780 | 0.6737 | 0.6563 | 0.3897 | nan | 0.5721 | 0.6119 | 0.0021 | 0.8477 | 0.0971 | 0.0 | 0.1439 | 0.0 | 0.5845 | 0.0 | 0.0 | 0.7619 | 0.2726 | 0.5318 | 0.3321 | 0.0 | nan | 0.2603 | 0.4942 | 0.3754 | 0.0 | 0.8866 | 0.7676 | 0.9465 | 0.0086 | 0.0947 | 0.3578 | 0.0 |
| 0.1398 | 14.5 | 2900 | 0.6139 | 0.3737 | 0.4408 | 0.8712 | nan | 0.8352 | 0.9550 | 0.7588 | 0.8556 | 0.5251 | nan | 0.6427 | 0.8668 | 0.0036 | 0.9531 | 0.1265 | 0.0 | 0.0435 | 0.0 | 0.6477 | 0.0 | 0.0 | 0.9243 | 0.2127 | 0.6372 | 0.3441 | 0.0 | nan | 0.1601 | 0.5896 | 0.5623 | 0.0 | 0.9568 | 0.8104 | 0.9820 | 0.0034 | 0.2632 | 0.4466 | 0.0 | nan | 0.7429 | 0.8702 | 0.6934 | 0.7224 | 0.3869 | nan | 0.5542 | 0.6216 | 0.0023 | 0.8513 | 0.1085 | 0.0 | 0.0360 | 0.0 | 0.5713 | 0.0 | 0.0 | 0.7667 | 0.1898 | 0.5516 | 0.2950 | 0.0 | nan | 0.1310 | 0.4800 | 0.3634 | 0.0 | 0.8795 | 0.7426 | 0.9460 | 0.0033 | 0.0936 | 0.3543 | 0.0 |
| 0.1276 | 14.6 | 2920 | 0.6433 | 0.3719 | 0.4329 | 0.8700 | nan | 0.8228 | 0.9536 | 0.7414 | 0.8581 | 0.5513 | nan | 0.6904 | 0.8408 | 0.0 | 0.9392 | 0.1324 | 0.0 | 0.0 | 0.0033 | 0.6332 | 0.0 | 0.0 | 0.9406 | 0.1394 | 0.6059 | 0.3639 | 0.0 | nan | 0.1756 | 0.5418 | 0.5289 | 0.0 | 0.9547 | 0.8334 | 0.9822 | 0.0075 | 0.2013 | 0.4118 | 0.0 | nan | 0.7384 | 0.8704 | 0.6956 | 0.7200 | 0.3889 | nan | 0.5758 | 0.6502 | 0.0 | 0.8530 | 0.1164 | 0.0 | 0.0 | 0.0033 | 0.5765 | 0.0 | 0.0 | 0.7459 | 0.1295 | 0.5186 | 0.3150 | 0.0 | nan | 0.1326 | 0.4657 | 0.3834 | 0.0 | 0.8835 | 0.7562 | 0.9467 | 0.0067 | 0.0838 | 0.3460 | 0.0 |
| 0.1534 | 14.7 | 2940 | 0.6143 | 0.3755 | 0.4412 | 0.8690 | nan | 0.8303 | 0.9475 | 0.7472 | 0.8284 | 0.5513 | nan | 0.6966 | 0.8160 | 0.0036 | 0.9502 | 0.1188 | 0.0 | 0.0228 | 0.0112 | 0.6890 | 0.0 | 0.0 | 0.9327 | 0.1902 | 0.6148 | 0.3769 | 0.0 | nan | 0.2047 | 0.6157 | 0.5613 | 0.0 | 0.9489 | 0.8397 | 0.9842 | 0.0051 | 0.1582 | 0.4742 | 0.0 | nan | 0.7388 | 0.8680 | 0.7020 | 0.7018 | 0.3790 | nan | 0.5612 | 0.6487 | 0.0019 | 0.8491 | 0.1049 | 0.0 | 0.0214 | 0.0111 | 0.5808 | 0.0 | 0.0 | 0.7596 | 0.1761 | 0.5272 | 0.3231 | 0.0 | nan | 0.1657 | 0.4738 | 0.3796 | 0.0 | 0.8843 | 0.7596 | 0.9453 | 0.0042 | 0.0823 | 0.3670 | 0.0 |
| 0.7322 | 14.8 | 2960 | 0.5924 | 0.3867 | 0.4634 | 0.8740 | nan | 0.8622 | 0.9550 | 0.7538 | 0.8256 | 0.4927 | nan | 0.6743 | 0.8511 | 0.0127 | 0.9476 | 0.1325 | 0.0 | 0.2133 | 0.0395 | 0.7274 | 0.0 | 0.0 | 0.9184 | 0.3518 | 0.6067 | 0.4630 | 0.0 | nan | 0.2801 | 0.5880 | 0.5689 | 0.0 | 0.9469 | 0.8717 | 0.9805 | 0.0367 | 0.2787 | 0.4502 | 0.0 | nan | 0.7656 | 0.8766 | 0.6694 | 0.7074 | 0.3811 | nan | 0.5560 | 0.6148 | 0.0075 | 0.8546 | 0.1119 | 0.0 | 0.1506 | 0.0395 | 0.5836 | 0.0 | 0.0 | 0.7703 | 0.2928 | 0.5369 | 0.3488 | 0.0 | nan | 0.2015 | 0.4753 | 0.3556 | 0.0 | 0.8884 | 0.7731 | 0.9472 | 0.0223 | 0.0949 | 0.3494 | 0.0 |
| 0.1363 | 14.9 | 2980 | 0.5998 | 0.3843 | 0.4588 | 0.8758 | nan | 0.8613 | 0.9508 | 0.7900 | 0.8233 | 0.5551 | nan | 0.6846 | 0.7923 | 0.1220 | 0.9444 | 0.1305 | 0.0 | 0.2587 | 0.0345 | 0.7305 | 0.0 | 0.0 | 0.9263 | 0.2417 | 0.6455 | 0.3663 | 0.0 | nan | 0.1970 | 0.5860 | 0.5722 | 0.0 | 0.9550 | 0.8504 | 0.9841 | 0.0068 | 0.1978 | 0.4733 | 0.0 | nan | 0.7683 | 0.8822 | 0.6306 | 0.7341 | 0.3911 | nan | 0.5612 | 0.6044 | 0.0279 | 0.8514 | 0.1080 | 0.0 | 0.1795 | 0.0345 | 0.5812 | 0.0 | 0.0 | 0.7676 | 0.2177 | 0.5378 | 0.3020 | 0.0 | nan | 0.1535 | 0.4746 | 0.3613 | 0.0 | 0.8867 | 0.7781 | 0.9441 | 0.0047 | 0.1336 | 0.3809 | 0.0 |
| 0.1537 | 15.0 | 3000 | 0.6302 | 0.3781 | 0.4487 | 0.8742 | nan | 0.8608 | 0.9579 | 0.7474 | 0.8513 | 0.5297 | nan | 0.6613 | 0.8043 | 0.0522 | 0.9385 | 0.1654 | 0.0 | 0.2167 | 0.0953 | 0.7527 | 0.0 | 0.0 | 0.9337 | 0.1895 | 0.5803 | 0.3136 | 0.0 | nan | 0.1148 | 0.6138 | 0.5339 | 0.0 | 0.9526 | 0.8402 | 0.9592 | 0.0053 | 0.2302 | 0.4568 | 0.0 | nan | 0.7672 | 0.8787 | 0.6736 | 0.7405 | 0.3974 | nan | 0.5523 | 0.5813 | 0.0141 | 0.8544 | 0.1415 | 0.0 | 0.1406 | 0.0953 | 0.5765 | 0.0 | 0.0 | 0.7532 | 0.1724 | 0.5052 | 0.2751 | 0.0 | nan | 0.0875 | 0.4545 | 0.3693 | 0.0 | 0.8846 | 0.7687 | 0.9310 | 0.0042 | 0.1148 | 0.3662 | 0.0 |
| 0.1485 | 15.1 | 3020 | 0.6229 | 0.3789 | 0.4409 | 0.8729 | nan | 0.8526 | 0.9580 | 0.7556 | 0.8393 | 0.4950 | nan | 0.6441 | 0.7653 | 0.0076 | 0.9464 | 0.0919 | 0.0 | 0.0298 | 0.0986 | 0.7278 | 0.0 | 0.0 | 0.9373 | 0.2535 | 0.5704 | 0.3935 | 0.0 | nan | 0.1312 | 0.5455 | 0.5439 | 0.0 | 0.9529 | 0.8331 | 0.9853 | 0.0344 | 0.2334 | 0.4811 | 0.0 | nan | 0.7615 | 0.8757 | 0.6904 | 0.7305 | 0.3855 | nan | 0.5535 | 0.6358 | 0.0036 | 0.8538 | 0.0840 | 0.0 | 0.0231 | 0.0986 | 0.5857 | 0.0 | 0.0 | 0.7518 | 0.2238 | 0.5053 | 0.3084 | 0.0 | nan | 0.1041 | 0.4677 | 0.3890 | 0.0 | 0.8814 | 0.7567 | 0.9427 | 0.0189 | 0.1170 | 0.3772 | 0.0 |
| 0.1718 | 15.2 | 3040 | 0.6701 | 0.3798 | 0.4523 | 0.8674 | nan | 0.7972 | 0.9520 | 0.8221 | 0.8217 | 0.5098 | nan | 0.7271 | 0.8380 | 0.0024 | 0.9484 | 0.0892 | 0.0 | 0.2547 | 0.0806 | 0.7163 | 0.0 | 0.0 | 0.9314 | 0.2443 | 0.5898 | 0.4167 | 0.0 | nan | 0.1191 | 0.6087 | 0.5311 | 0.0 | 0.9565 | 0.8495 | 0.9722 | 0.0061 | 0.2044 | 0.4828 | 0.0 | nan | 0.7285 | 0.8674 | 0.6197 | 0.6923 | 0.3759 | nan | 0.5581 | 0.6158 | 0.0015 | 0.8562 | 0.0833 | 0.0 | 0.1950 | 0.0806 | 0.5738 | 0.0 | 0.0 | 0.7618 | 0.2240 | 0.5185 | 0.3276 | 0.0 | nan | 0.1040 | 0.4752 | 0.3956 | 0.0 | 0.8844 | 0.7688 | 0.9478 | 0.0047 | 0.1121 | 0.3815 | 0.0 |
| 0.2132 | 15.3 | 3060 | 0.6335 | 0.3901 | 0.4622 | 0.8752 | nan | 0.8468 | 0.9570 | 0.7840 | 0.8462 | 0.4725 | nan | 0.6814 | 0.8495 | 0.0 | 0.9521 | 0.0949 | 0.0 | 0.4795 | 0.0581 | 0.7033 | 0.0 | 0.0 | 0.9150 | 0.2418 | 0.6258 | 0.4263 | 0.0077 | nan | 0.1338 | 0.5820 | 0.5426 | 0.0 | 0.9475 | 0.8725 | 0.9865 | 0.0032 | 0.2268 | 0.5548 | 0.0 | nan | 0.7638 | 0.8767 | 0.6849 | 0.7075 | 0.3723 | nan | 0.5592 | 0.6402 | 0.0 | 0.8557 | 0.0874 | 0.0 | 0.3410 | 0.0580 | 0.5791 | 0.0 | 0.0 | 0.7701 | 0.2224 | 0.5375 | 0.3389 | 0.0077 | nan | 0.1213 | 0.4724 | 0.3778 | 0.0 | 0.8877 | 0.7703 | 0.9448 | 0.0028 | 0.1137 | 0.3887 | 0.0 |
| 0.1008 | 15.4 | 3080 | 0.6443 | 0.3736 | 0.4415 | 0.8748 | nan | 0.8665 | 0.9538 | 0.7823 | 0.8147 | 0.5270 | nan | 0.6705 | 0.8323 | 0.0113 | 0.9477 | 0.1022 | 0.0 | 0.0254 | 0.0193 | 0.7429 | 0.0 | 0.0 | 0.9372 | 0.1383 | 0.5936 | 0.3546 | 0.0074 | nan | 0.1973 | 0.5904 | 0.5592 | 0.0 | 0.9524 | 0.8656 | 0.9749 | 0.0057 | 0.2072 | 0.4480 | 0.0 | nan | 0.7751 | 0.8771 | 0.7096 | 0.7160 | 0.3638 | nan | 0.5610 | 0.6100 | 0.0053 | 0.8599 | 0.0934 | 0.0 | 0.0221 | 0.0193 | 0.5593 | 0.0 | 0.0 | 0.7542 | 0.1324 | 0.5138 | 0.3004 | 0.0074 | nan | 0.1418 | 0.4798 | 0.3722 | 0.0 | 0.8868 | 0.7715 | 0.9507 | 0.0051 | 0.0993 | 0.3687 | 0.0 |
| 0.0901 | 15.5 | 3100 | 0.6716 | 0.3743 | 0.4341 | 0.8706 | nan | 0.8558 | 0.9587 | 0.6992 | 0.7659 | 0.5143 | nan | 0.6714 | 0.8210 | 0.0 | 0.9460 | 0.1066 | 0.0 | 0.0 | 0.0136 | 0.6662 | 0.0 | 0.0001 | 0.9354 | 0.2046 | 0.5539 | 0.3793 | 0.0 | nan | 0.2436 | 0.5818 | 0.5368 | 0.0 | 0.9485 | 0.8743 | 0.9826 | 0.0010 | 0.1007 | 0.5287 | 0.0 | nan | 0.7455 | 0.8663 | 0.6775 | 0.6980 | 0.3842 | nan | 0.5610 | 0.6267 | 0.0 | 0.8585 | 0.0963 | 0.0 | 0.0 | 0.0136 | 0.5838 | 0.0 | 0.0001 | 0.7477 | 0.1866 | 0.4929 | 0.3108 | 0.0 | nan | 0.1832 | 0.4803 | 0.3828 | 0.0 | 0.8878 | 0.7795 | 0.9468 | 0.0009 | 0.0737 | 0.3941 | 0.0 |
| 0.1319 | 15.6 | 3120 | 0.6274 | 0.3881 | 0.4643 | 0.8720 | nan | 0.8344 | 0.9556 | 0.7932 | 0.8385 | 0.4978 | nan | 0.7199 | 0.8512 | 0.0053 | 0.9580 | 0.0994 | 0.0 | 0.3726 | 0.0014 | 0.6745 | 0.0 | 0.0032 | 0.9289 | 0.2962 | 0.6204 | 0.3558 | 0.0025 | nan | 0.4086 | 0.5790 | 0.5311 | 0.0 | 0.9423 | 0.8488 | 0.9777 | 0.0062 | 0.2870 | 0.4688 | 0.0 | nan | 0.7538 | 0.8741 | 0.6520 | 0.7409 | 0.3659 | nan | 0.5670 | 0.6344 | 0.0029 | 0.8528 | 0.0888 | 0.0 | 0.2982 | 0.0014 | 0.5932 | 0.0 | 0.0024 | 0.7569 | 0.2374 | 0.5227 | 0.3058 | 0.0025 | nan | 0.2161 | 0.4790 | 0.3802 | 0.0 | 0.8840 | 0.7661 | 0.9486 | 0.0043 | 0.1112 | 0.3771 | 0.0 |
| 0.1196 | 15.7 | 3140 | 0.6027 | 0.3772 | 0.4491 | 0.8713 | nan | 0.8343 | 0.9517 | 0.7782 | 0.8481 | 0.4852 | nan | 0.6646 | 0.8781 | 0.0082 | 0.9449 | 0.1244 | 0.0 | 0.1531 | 0.0005 | 0.6859 | 0.0 | 0.0001 | 0.9241 | 0.1114 | 0.6287 | 0.4011 | 0.0004 | nan | 0.2774 | 0.5891 | 0.5923 | 0.0 | 0.9515 | 0.8736 | 0.9861 | 0.0088 | 0.1966 | 0.4716 | 0.0 | nan | 0.7500 | 0.8720 | 0.6315 | 0.7355 | 0.3701 | nan | 0.5496 | 0.6068 | 0.0071 | 0.8624 | 0.1100 | 0.0 | 0.1400 | 0.0005 | 0.6012 | 0.0 | 0.0001 | 0.7640 | 0.1051 | 0.5415 | 0.3113 | 0.0004 | nan | 0.1998 | 0.4782 | 0.3660 | 0.0 | 0.8829 | 0.7651 | 0.9441 | 0.0053 | 0.0993 | 0.3703 | 0.0 |
| 0.2085 | 15.8 | 3160 | 0.6267 | 0.3826 | 0.4602 | 0.8690 | nan | 0.8379 | 0.9526 | 0.7944 | 0.8073 | 0.5268 | nan | 0.6582 | 0.8739 | 0.0182 | 0.9506 | 0.1455 | 0.0 | 0.4964 | 0.0267 | 0.7657 | 0.0 | 0.0 | 0.9212 | 0.0797 | 0.6069 | 0.3732 | 0.0039 | nan | 0.2219 | 0.5556 | 0.5704 | 0.0 | 0.9611 | 0.8149 | 0.9818 | 0.0101 | 0.3218 | 0.4499 | 0.0 | nan | 0.7522 | 0.8662 | 0.6466 | 0.7271 | 0.3761 | nan | 0.5491 | 0.5897 | 0.0104 | 0.8602 | 0.1250 | 0.0 | 0.3505 | 0.0267 | 0.6110 | 0.0 | 0.0 | 0.7596 | 0.0743 | 0.5171 | 0.3070 | 0.0039 | nan | 0.1908 | 0.4781 | 0.3434 | 0.0 | 0.8789 | 0.7513 | 0.9492 | 0.0062 | 0.1302 | 0.3627 | 0.0 |
| 0.1353 | 15.9 | 3180 | 0.6430 | 0.3835 | 0.4563 | 0.8631 | nan | 0.7710 | 0.9483 | 0.7555 | 0.8692 | 0.4833 | nan | 0.7177 | 0.8501 | 0.0091 | 0.9469 | 0.1603 | 0.0 | 0.3588 | 0.0500 | 0.7433 | 0.0 | 0.0 | 0.9276 | 0.0763 | 0.5958 | 0.3994 | 0.0 | nan | 0.2782 | 0.5942 | 0.5438 | 0.0 | 0.9520 | 0.8643 | 0.9798 | 0.0108 | 0.2056 | 0.5113 | 0.0 | nan | 0.6972 | 0.8681 | 0.6930 | 0.6404 | 0.3562 | nan | 0.5509 | 0.6160 | 0.0048 | 0.8632 | 0.1420 | 0.0 | 0.2866 | 0.0500 | 0.6075 | 0.0 | 0.0 | 0.7604 | 0.0732 | 0.5174 | 0.3142 | 0.0 | nan | 0.2496 | 0.4831 | 0.3790 | 0.0 | 0.8853 | 0.7660 | 0.9496 | 0.0087 | 0.1189 | 0.3913 | 0.0 |
| 0.1617 | 16.0 | 3200 | 0.6151 | 0.3882 | 0.4699 | 0.8694 | nan | 0.8348 | 0.9375 | 0.8239 | 0.8528 | 0.6061 | nan | 0.6822 | 0.8461 | 0.0035 | 0.9569 | 0.1134 | 0.0 | 0.2992 | 0.0593 | 0.7013 | 0.0 | 0.0 | 0.9299 | 0.2929 | 0.6016 | 0.3728 | 0.0 | nan | 0.3863 | 0.5991 | 0.5887 | 0.0 | 0.9438 | 0.8419 | 0.9836 | 0.0086 | 0.3252 | 0.4467 | 0.0 | nan | 0.7545 | 0.8715 | 0.7219 | 0.7414 | 0.3574 | nan | 0.5604 | 0.5901 | 0.0020 | 0.8559 | 0.1012 | 0.0 | 0.2251 | 0.0593 | 0.5656 | 0.0 | 0.0 | 0.7552 | 0.2467 | 0.5171 | 0.3168 | 0.0 | nan | 0.2600 | 0.4849 | 0.3788 | 0.0 | 0.8828 | 0.7523 | 0.9466 | 0.0066 | 0.1108 | 0.3571 | 0.0 |
| 0.1087 | 16.1 | 3220 | 0.6156 | 0.3946 | 0.4679 | 0.8739 | nan | 0.8424 | 0.9612 | 0.7933 | 0.8578 | 0.4260 | nan | 0.7008 | 0.8356 | 0.0025 | 0.9456 | 0.1843 | 0.0 | 0.4258 | 0.1187 | 0.7147 | 0.0 | 0.0011 | 0.9300 | 0.2992 | 0.5966 | 0.3569 | 0.0 | nan | 0.4344 | 0.5571 | 0.5288 | 0.0 | 0.9551 | 0.8390 | 0.9786 | 0.0000 | 0.2392 | 0.4465 | 0.0 | nan | 0.7647 | 0.8734 | 0.6996 | 0.7312 | 0.3438 | nan | 0.5670 | 0.6188 | 0.0015 | 0.8613 | 0.1567 | 0.0 | 0.3108 | 0.1187 | 0.6023 | 0.0 | 0.0008 | 0.7553 | 0.2500 | 0.5166 | 0.2998 | 0.0 | nan | 0.2646 | 0.4777 | 0.3785 | 0.0 | 0.8838 | 0.7618 | 0.9511 | 0.0000 | 0.0869 | 0.3505 | 0.0 |
| 0.1534 | 16.2 | 3240 | 0.6361 | 0.3907 | 0.4569 | 0.8695 | nan | 0.8248 | 0.9618 | 0.7594 | 0.8464 | 0.4330 | nan | 0.6412 | 0.7748 | 0.0027 | 0.9560 | 0.1846 | 0.0 | 0.2197 | 0.0492 | 0.6962 | 0.0 | 0.0 | 0.9159 | 0.2669 | 0.5864 | 0.3982 | 0.0130 | nan | 0.4334 | 0.5939 | 0.5933 | 0.0 | 0.9521 | 0.8627 | 0.9699 | 0.0202 | 0.1637 | 0.5010 | 0.0 | nan | 0.7452 | 0.8576 | 0.7096 | 0.7390 | 0.3564 | nan | 0.5582 | 0.6255 | 0.0012 | 0.8545 | 0.1652 | 0.0 | 0.2012 | 0.0492 | 0.5941 | 0.0 | 0.0 | 0.7608 | 0.2184 | 0.5128 | 0.3134 | 0.0129 | nan | 0.3033 | 0.4586 | 0.3854 | 0.0 | 0.8842 | 0.7705 | 0.9393 | 0.0105 | 0.0960 | 0.3782 | 0.0 |
| 0.1424 | 16.3 | 3260 | 0.6442 | 0.3731 | 0.4348 | 0.8686 | nan | 0.8203 | 0.9599 | 0.7388 | 0.8626 | 0.4214 | nan | 0.6717 | 0.8149 | 0.0025 | 0.9475 | 0.1189 | 0.0 | 0.0003 | 0.0073 | 0.6840 | 0.0 | 0.0 | 0.9272 | 0.1288 | 0.6072 | 0.3303 | 0.0014 | nan | 0.3258 | 0.5757 | 0.5233 | 0.0 | 0.9592 | 0.8548 | 0.9727 | 0.0326 | 0.2164 | 0.4083 | 0.0 | nan | 0.7306 | 0.8685 | 0.7158 | 0.7007 | 0.3514 | nan | 0.5668 | 0.6272 | 0.0014 | 0.8631 | 0.1051 | 0.0 | 0.0003 | 0.0073 | 0.5916 | 0.0 | 0.0 | 0.7522 | 0.1159 | 0.5177 | 0.2870 | 0.0014 | nan | 0.2639 | 0.4648 | 0.3685 | 0.0 | 0.8824 | 0.7719 | 0.9418 | 0.0204 | 0.0798 | 0.3408 | 0.0 |
| 0.0966 | 16.4 | 3280 | 0.6606 | 0.3902 | 0.4710 | 0.8664 | nan | 0.8024 | 0.9532 | 0.8037 | 0.8563 | 0.4764 | nan | 0.6834 | 0.8516 | 0.0098 | 0.9516 | 0.1549 | 0.0 | 0.7565 | 0.1112 | 0.6759 | 0.0 | 0.0 | 0.9240 | 0.1866 | 0.5807 | 0.3483 | 0.0 | nan | 0.2897 | 0.5930 | 0.5241 | 0.0 | 0.9495 | 0.8388 | 0.9864 | 0.0284 | 0.2430 | 0.4930 | 0.0 | nan | 0.7277 | 0.8624 | 0.6978 | 0.7045 | 0.3633 | nan | 0.5624 | 0.6023 | 0.0055 | 0.8623 | 0.1326 | 0.0 | 0.3993 | 0.1112 | 0.6022 | 0.0 | 0.0 | 0.7582 | 0.1648 | 0.5129 | 0.3044 | 0.0 | nan | 0.2335 | 0.4796 | 0.3474 | 0.0 | 0.8846 | 0.7624 | 0.9436 | 0.0170 | 0.0817 | 0.3635 | 0.0 |
| 0.1438 | 16.5 | 3300 | 0.6547 | 0.3949 | 0.4663 | 0.8686 | nan | 0.8167 | 0.9584 | 0.7571 | 0.8461 | 0.4767 | nan | 0.6833 | 0.7965 | 0.0007 | 0.9491 | 0.1242 | 0.0 | 0.6012 | 0.1260 | 0.7100 | 0.0 | 0.0 | 0.9347 | 0.2388 | 0.5549 | 0.4005 | 0.0 | nan | 0.2431 | 0.5893 | 0.5809 | 0.0 | 0.9484 | 0.8448 | 0.9847 | 0.0081 | 0.2865 | 0.4624 | 0.0 | nan | 0.7351 | 0.8619 | 0.7252 | 0.7187 | 0.3620 | nan | 0.5654 | 0.6422 | 0.0003 | 0.8603 | 0.1085 | 0.0 | 0.4644 | 0.1260 | 0.6126 | 0.0 | 0.0 | 0.7527 | 0.1927 | 0.4990 | 0.3261 | 0.0 | nan | 0.1837 | 0.4828 | 0.3534 | 0.0 | 0.8866 | 0.7707 | 0.9463 | 0.0061 | 0.0907 | 0.3638 | 0.0 |
| 0.1047 | 16.6 | 3320 | 0.6620 | 0.3902 | 0.4587 | 0.8690 | nan | 0.8165 | 0.9626 | 0.7851 | 0.8390 | 0.4763 | nan | 0.6498 | 0.7912 | 0.0249 | 0.9441 | 0.1145 | 0.0 | 0.4841 | 0.1315 | 0.7786 | 0.0 | 0.0 | 0.9267 | 0.1411 | 0.6071 | 0.3302 | 0.0021 | nan | 0.2145 | 0.5729 | 0.5669 | 0.0 | 0.9516 | 0.8311 | 0.9806 | 0.0048 | 0.2571 | 0.4927 | 0.0 | nan | 0.7392 | 0.8618 | 0.7085 | 0.7183 | 0.3847 | nan | 0.5524 | 0.6180 | 0.0084 | 0.8613 | 0.1008 | 0.0 | 0.4199 | 0.1315 | 0.6120 | 0.0 | 0.0 | 0.7561 | 0.1279 | 0.5092 | 0.2864 | 0.0021 | nan | 0.1764 | 0.4765 | 0.3684 | 0.0 | 0.8822 | 0.7540 | 0.9490 | 0.0033 | 0.0984 | 0.3790 | 0.0 |
| 0.1603 | 16.7 | 3340 | 0.6201 | 0.3909 | 0.4604 | 0.8724 | nan | 0.8357 | 0.9505 | 0.7955 | 0.8510 | 0.5418 | nan | 0.6921 | 0.7958 | 0.0189 | 0.9505 | 0.1030 | 0.0 | 0.4512 | 0.1370 | 0.7554 | 0.0 | 0.0 | 0.9323 | 0.1324 | 0.5851 | 0.2937 | 0.0 | nan | 0.2254 | 0.5794 | 0.5298 | 0.0 | 0.9565 | 0.8437 | 0.9786 | 0.0100 | 0.2826 | 0.5059 | 0.0 | nan | 0.7510 | 0.8757 | 0.7049 | 0.7267 | 0.4078 | nan | 0.5574 | 0.6164 | 0.0068 | 0.8607 | 0.0917 | 0.0 | 0.4070 | 0.1369 | 0.5831 | 0.0 | 0.0 | 0.7535 | 0.1208 | 0.5183 | 0.2661 | 0.0 | nan | 0.1880 | 0.4874 | 0.3682 | 0.0 | 0.8805 | 0.7568 | 0.9503 | 0.0065 | 0.1034 | 0.3822 | 0.0 |
| 0.1489 | 16.8 | 3360 | 0.6502 | 0.3922 | 0.4645 | 0.8689 | nan | 0.8335 | 0.9446 | 0.7831 | 0.8308 | 0.5645 | nan | 0.6905 | 0.7748 | 0.0126 | 0.9532 | 0.1575 | 0.0 | 0.5452 | 0.0976 | 0.7534 | 0.0 | 0.0 | 0.9381 | 0.1427 | 0.5909 | 0.4154 | 0.0 | nan | 0.2283 | 0.5970 | 0.5611 | 0.0 | 0.9464 | 0.8215 | 0.9784 | 0.0080 | 0.1876 | 0.5064 | 0.0 | nan | 0.7445 | 0.8666 | 0.7103 | 0.7164 | 0.3841 | nan | 0.5533 | 0.6011 | 0.0027 | 0.8621 | 0.1280 | 0.0 | 0.4344 | 0.0975 | 0.6057 | 0.0 | 0.0 | 0.7533 | 0.1269 | 0.5119 | 0.3197 | 0.0 | nan | 0.1745 | 0.4893 | 0.3693 | 0.0 | 0.8832 | 0.7496 | 0.9511 | 0.0055 | 0.1152 | 0.3944 | 0.0 |
| 0.1685 | 16.9 | 3380 | 0.6708 | 0.3851 | 0.4575 | 0.8690 | nan | 0.8334 | 0.9582 | 0.7801 | 0.8063 | 0.5133 | nan | 0.6511 | 0.8619 | 0.0251 | 0.9376 | 0.1521 | 0.0 | 0.6353 | 0.0269 | 0.7188 | 0.0 | 0.0 | 0.9257 | 0.1267 | 0.5672 | 0.3617 | 0.0372 | nan | 0.2287 | 0.5864 | 0.5349 | 0.0 | 0.9582 | 0.8384 | 0.9849 | 0.0080 | 0.1262 | 0.4551 | 0.0 | nan | 0.7410 | 0.8653 | 0.6794 | 0.7120 | 0.3925 | nan | 0.5553 | 0.5044 | 0.0111 | 0.8650 | 0.1305 | 0.0 | 0.4608 | 0.0269 | 0.6250 | 0.0 | 0.0 | 0.7559 | 0.1139 | 0.5049 | 0.3013 | 0.0369 | nan | 0.1731 | 0.4805 | 0.3695 | 0.0 | 0.8804 | 0.7613 | 0.9454 | 0.0058 | 0.0652 | 0.3586 | 0.0 |
| 0.1464 | 17.0 | 3400 | 0.6396 | 0.3889 | 0.4638 | 0.8711 | nan | 0.8434 | 0.9486 | 0.8471 | 0.8117 | 0.5337 | nan | 0.6774 | 0.8109 | 0.0009 | 0.9510 | 0.1685 | 0.0 | 0.6241 | 0.0945 | 0.7062 | 0.0 | 0.0 | 0.9337 | 0.0732 | 0.5948 | 0.3886 | 0.0499 | nan | 0.2157 | 0.5693 | 0.5502 | 0.0 | 0.9559 | 0.8320 | 0.9821 | 0.0024 | 0.2056 | 0.4701 | 0.0 | nan | 0.7574 | 0.8809 | 0.6622 | 0.7190 | 0.3777 | nan | 0.5570 | 0.6090 | 0.0005 | 0.8596 | 0.1422 | 0.0 | 0.4428 | 0.0944 | 0.5854 | 0.0 | 0.0 | 0.7552 | 0.0679 | 0.5222 | 0.3214 | 0.0494 | nan | 0.1783 | 0.4779 | 0.3635 | 0.0 | 0.8814 | 0.7449 | 0.9474 | 0.0013 | 0.0831 | 0.3613 | 0.0 |
| 0.1365 | 17.1 | 3420 | 0.6572 | 0.3892 | 0.4633 | 0.8705 | nan | 0.8382 | 0.9572 | 0.8112 | 0.7848 | 0.5338 | nan | 0.6472 | 0.8088 | 0.0071 | 0.9497 | 0.1396 | 0.0 | 0.5627 | 0.0748 | 0.7273 | 0.0 | 0.0 | 0.9303 | 0.1357 | 0.6070 | 0.4103 | 0.0277 | nan | 0.2033 | 0.5932 | 0.5764 | 0.0 | 0.9469 | 0.8637 | 0.9832 | 0.0022 | 0.2535 | 0.4493 | 0.0 | nan | 0.7516 | 0.8673 | 0.6850 | 0.7140 | 0.3789 | nan | 0.5561 | 0.6163 | 0.0036 | 0.8644 | 0.1202 | 0.0 | 0.4187 | 0.0748 | 0.5798 | 0.0 | 0.0 | 0.7616 | 0.1225 | 0.5294 | 0.3379 | 0.0275 | nan | 0.1374 | 0.4880 | 0.3775 | 0.0 | 0.8883 | 0.7683 | 0.9473 | 0.0013 | 0.0840 | 0.3516 | 0.0 |
| 0.1378 | 17.2 | 3440 | 0.6191 | 0.3847 | 0.4545 | 0.8740 | nan | 0.8495 | 0.9487 | 0.7936 | 0.8689 | 0.4940 | nan | 0.6837 | 0.8027 | 0.0011 | 0.9480 | 0.1273 | 0.0 | 0.3769 | 0.0300 | 0.7042 | 0.0 | 0.0 | 0.9262 | 0.1578 | 0.6273 | 0.3385 | 0.0095 | nan | 0.2106 | 0.5912 | 0.5896 | 0.0 | 0.9543 | 0.8506 | 0.9832 | 0.0015 | 0.1770 | 0.4974 | 0.0 | nan | 0.7596 | 0.8815 | 0.6459 | 0.7035 | 0.3778 | nan | 0.5592 | 0.6375 | 0.0007 | 0.8580 | 0.1145 | 0.0 | 0.3289 | 0.0300 | 0.5752 | 0.0 | 0.0 | 0.7606 | 0.1426 | 0.5268 | 0.2930 | 0.0094 | nan | 0.1559 | 0.4862 | 0.3845 | 0.0 | 0.8857 | 0.7672 | 0.9472 | 0.0014 | 0.0916 | 0.3863 | 0.0 |
| 0.1417 | 17.3 | 3460 | 0.6328 | 0.3898 | 0.4660 | 0.8735 | nan | 0.8465 | 0.9501 | 0.7913 | 0.8431 | 0.5206 | nan | 0.6615 | 0.8699 | 0.0089 | 0.9539 | 0.2104 | 0.0 | 0.4512 | 0.0147 | 0.6838 | 0.0 | 0.0 | 0.9255 | 0.2034 | 0.6098 | 0.3673 | 0.0256 | nan | 0.2154 | 0.5991 | 0.6197 | 0.0 | 0.9511 | 0.8755 | 0.9824 | 0.0223 | 0.2381 | 0.4713 | 0.0 | nan | 0.7532 | 0.8780 | 0.6962 | 0.7382 | 0.3778 | nan | 0.5484 | 0.6016 | 0.0075 | 0.8590 | 0.1806 | 0.0 | 0.3458 | 0.0147 | 0.5818 | 0.0 | 0.0 | 0.7599 | 0.1754 | 0.5210 | 0.3029 | 0.0253 | nan | 0.1574 | 0.4859 | 0.3672 | 0.0 | 0.8871 | 0.7619 | 0.9488 | 0.0140 | 0.1032 | 0.3791 | 0.0 |
| 0.1277 | 17.4 | 3480 | 0.6331 | 0.3872 | 0.4582 | 0.8722 | nan | 0.8338 | 0.9512 | 0.7777 | 0.8407 | 0.5404 | nan | 0.7127 | 0.8462 | 0.0131 | 0.9527 | 0.1605 | 0.0 | 0.3180 | 0.0268 | 0.6960 | 0.0 | 0.0 | 0.9278 | 0.2041 | 0.6040 | 0.3440 | 0.0067 | nan | 0.2529 | 0.5973 | 0.5703 | 0.0 | 0.9532 | 0.8474 | 0.9828 | 0.0080 | 0.2203 | 0.4740 | 0.0 | nan | 0.7460 | 0.8775 | 0.7051 | 0.7192 | 0.3927 | nan | 0.5591 | 0.6078 | 0.0072 | 0.8635 | 0.1412 | 0.0 | 0.2497 | 0.0268 | 0.5889 | 0.0 | 0.0 | 0.7585 | 0.1791 | 0.5135 | 0.2937 | 0.0066 | nan | 0.2063 | 0.4870 | 0.3853 | 0.0 | 0.8854 | 0.7689 | 0.9492 | 0.0046 | 0.0924 | 0.3759 | 0.0 |
| 0.162 | 17.5 | 3500 | 0.6330 | 0.3854 | 0.4526 | 0.8730 | nan | 0.8373 | 0.9588 | 0.7677 | 0.8370 | 0.4894 | nan | 0.6701 | 0.8162 | 0.0102 | 0.9564 | 0.1115 | 0.0 | 0.3171 | 0.0528 | 0.6832 | 0.0 | 0.0 | 0.9220 | 0.2651 | 0.6014 | 0.3459 | 0.0011 | nan | 0.1705 | 0.5879 | 0.5539 | 0.0 | 0.9609 | 0.8585 | 0.9792 | 0.0009 | 0.2789 | 0.4478 | 0.0 | nan | 0.7443 | 0.8716 | 0.7125 | 0.7195 | 0.3858 | nan | 0.5647 | 0.6139 | 0.0049 | 0.8575 | 0.0998 | 0.0 | 0.2619 | 0.0528 | 0.5751 | 0.0 | 0.0 | 0.7591 | 0.2179 | 0.5136 | 0.2962 | 0.0010 | nan | 0.1336 | 0.4891 | 0.3825 | 0.0 | 0.8828 | 0.7760 | 0.9499 | 0.0009 | 0.1019 | 0.3647 | 0.0 |
| 0.0967 | 17.6 | 3520 | 0.6176 | 0.3858 | 0.4542 | 0.8752 | nan | 0.8580 | 0.9520 | 0.7998 | 0.8507 | 0.5326 | nan | 0.6841 | 0.8336 | 0.0020 | 0.9521 | 0.1145 | 0.0 | 0.2032 | 0.0751 | 0.6629 | 0.0 | 0.0 | 0.9342 | 0.2073 | 0.5489 | 0.3947 | 0.0218 | nan | 0.2637 | 0.6003 | 0.5635 | 0.0 | 0.9521 | 0.8432 | 0.9831 | 0.0086 | 0.2128 | 0.4805 | 0.0 | nan | 0.7633 | 0.8815 | 0.6620 | 0.7389 | 0.3922 | nan | 0.5692 | 0.6264 | 0.0013 | 0.8571 | 0.1023 | 0.0 | 0.1693 | 0.0751 | 0.5715 | 0.0 | 0.0 | 0.7558 | 0.1879 | 0.4861 | 0.3087 | 0.0216 | nan | 0.2168 | 0.4879 | 0.3836 | 0.0 | 0.8844 | 0.7608 | 0.9469 | 0.0077 | 0.1060 | 0.3815 | 0.0 |
| 0.1003 | 17.7 | 3540 | 0.6420 | 0.3874 | 0.4692 | 0.8713 | nan | 0.8484 | 0.9538 | 0.7812 | 0.8201 | 0.5088 | nan | 0.6856 | 0.8652 | 0.0007 | 0.9537 | 0.1706 | 0.0 | 0.6290 | 0.0624 | 0.7385 | 0.0 | 0.0 | 0.9386 | 0.2066 | 0.5970 | 0.3658 | 0.0267 | nan | 0.2712 | 0.5962 | 0.5393 | 0.0 | 0.9480 | 0.8226 | 0.9837 | 0.0082 | 0.2721 | 0.4197 | 0.0 | nan | 0.7533 | 0.8758 | 0.6771 | 0.6990 | 0.3944 | nan | 0.5631 | 0.5618 | 0.0005 | 0.8596 | 0.1445 | 0.0 | 0.3542 | 0.0624 | 0.5718 | 0.0 | 0.0 | 0.7510 | 0.1778 | 0.4933 | 0.3078 | 0.0262 | nan | 0.2112 | 0.4891 | 0.3718 | 0.0 | 0.8834 | 0.7588 | 0.9469 | 0.0075 | 0.1096 | 0.3450 | 0.0 |
| 0.1321 | 17.8 | 3560 | 0.6472 | 0.3854 | 0.4690 | 0.8700 | nan | 0.8190 | 0.9575 | 0.7796 | 0.8176 | 0.5442 | nan | 0.7002 | 0.8532 | 0.0009 | 0.9549 | 0.2109 | 0.0357 | 0.8843 | 0.1077 | 0.7413 | 0.0 | 0.0 | 0.9250 | 0.1177 | 0.6343 | 0.3388 | 0.0348 | nan | 0.1354 | 0.5508 | 0.4907 | 0.0 | 0.9538 | 0.8184 | 0.9834 | 0.0006 | 0.1281 | 0.4906 | 0.0 | nan | 0.7362 | 0.8674 | 0.6764 | 0.7011 | 0.3939 | nan | 0.5691 | 0.5895 | 0.0007 | 0.8628 | 0.1768 | 0.0357 | 0.3133 | 0.1077 | 0.5636 | 0.0 | 0.0 | 0.7612 | 0.1111 | 0.5214 | 0.2874 | 0.0343 | nan | 0.1176 | 0.4788 | 0.3656 | 0.0 | 0.8833 | 0.7533 | 0.9473 | 0.0006 | 0.0951 | 0.3820 | 0.0 |
| 0.1012 | 17.9 | 3580 | 0.6327 | 0.3945 | 0.4744 | 0.8750 | nan | 0.8444 | 0.9511 | 0.7980 | 0.8497 | 0.5546 | nan | 0.6874 | 0.8387 | 0.0047 | 0.9528 | 0.1516 | 0.0241 | 0.6486 | 0.1604 | 0.7541 | 0.0 | 0.0 | 0.9332 | 0.1317 | 0.6395 | 0.3957 | 0.0456 | nan | 0.1993 | 0.5825 | 0.5292 | 0.0 | 0.9510 | 0.8507 | 0.9821 | 0.0028 | 0.2793 | 0.4377 | 0.0 | nan | 0.7602 | 0.8801 | 0.6560 | 0.7283 | 0.3917 | nan | 0.5599 | 0.6319 | 0.0034 | 0.8636 | 0.1319 | 0.0241 | 0.3515 | 0.1603 | 0.5733 | 0.0 | 0.0 | 0.7636 | 0.1224 | 0.5281 | 0.3166 | 0.0446 | nan | 0.1600 | 0.4877 | 0.3838 | 0.0 | 0.8873 | 0.7671 | 0.9494 | 0.0024 | 0.1333 | 0.3614 | 0.0 |
| 0.1115 | 18.0 | 3600 | 0.6471 | 0.3958 | 0.4775 | 0.8741 | nan | 0.8373 | 0.9557 | 0.8146 | 0.8568 | 0.5123 | nan | 0.6811 | 0.8384 | 0.0147 | 0.9499 | 0.1619 | 0.0286 | 0.6451 | 0.2463 | 0.7429 | 0.0 | 0.0 | 0.9359 | 0.1783 | 0.5939 | 0.3325 | 0.0481 | nan | 0.2130 | 0.5999 | 0.5620 | 0.0 | 0.9495 | 0.8572 | 0.9796 | 0.0047 | 0.2841 | 0.4547 | 0.0 | nan | 0.7578 | 0.8810 | 0.6269 | 0.7312 | 0.3883 | nan | 0.5636 | 0.6215 | 0.0093 | 0.8634 | 0.1373 | 0.0285 | 0.3512 | 0.2463 | 0.5963 | 0.0 | 0.0 | 0.7620 | 0.1596 | 0.5112 | 0.2902 | 0.0468 | nan | 0.1611 | 0.4861 | 0.3712 | 0.0 | 0.8848 | 0.7659 | 0.9499 | 0.0038 | 0.1134 | 0.3581 | 0.0 |
| 0.1348 | 18.1 | 3620 | 0.6481 | 0.3917 | 0.4693 | 0.8706 | nan | 0.8306 | 0.9477 | 0.8035 | 0.8420 | 0.5514 | nan | 0.7045 | 0.8461 | 0.0400 | 0.9511 | 0.1532 | 0.0096 | 0.6127 | 0.1254 | 0.7203 | 0.0001 | 0.0 | 0.9398 | 0.1342 | 0.5573 | 0.3896 | 0.0337 | nan | 0.2287 | 0.5552 | 0.5724 | 0.0 | 0.9505 | 0.8600 | 0.9802 | 0.0028 | 0.2236 | 0.4512 | 0.0 | nan | 0.7478 | 0.8727 | 0.6513 | 0.7269 | 0.3812 | nan | 0.5678 | 0.6342 | 0.0202 | 0.8619 | 0.1277 | 0.0091 | 0.4013 | 0.1253 | 0.5868 | 0.0001 | 0.0 | 0.7536 | 0.1229 | 0.4895 | 0.2892 | 0.0330 | nan | 0.1947 | 0.4772 | 0.3720 | 0.0 | 0.8859 | 0.7637 | 0.9502 | 0.0024 | 0.1190 | 0.3666 | 0.0 |
| 0.1008 | 18.2 | 3640 | 0.6400 | 0.3961 | 0.4778 | 0.8700 | nan | 0.8315 | 0.9466 | 0.7874 | 0.8600 | 0.5177 | nan | 0.6957 | 0.8418 | 0.0366 | 0.9475 | 0.2405 | 0.0 | 0.6111 | 0.1058 | 0.7397 | 0.0 | 0.0009 | 0.9279 | 0.2627 | 0.5572 | 0.3947 | 0.0730 | nan | 0.2279 | 0.6045 | 0.5431 | 0.0 | 0.9459 | 0.8792 | 0.9865 | 0.0192 | 0.2656 | 0.4386 | 0.0 | nan | 0.7440 | 0.8732 | 0.6501 | 0.7160 | 0.3869 | nan | 0.5630 | 0.6315 | 0.0223 | 0.8652 | 0.2004 | 0.0 | 0.4063 | 0.1058 | 0.5690 | 0.0 | 0.0008 | 0.7539 | 0.2115 | 0.4873 | 0.2980 | 0.0709 | nan | 0.1864 | 0.4805 | 0.3760 | 0.0 | 0.8870 | 0.7709 | 0.9467 | 0.0142 | 0.1040 | 0.3519 | 0.0 |
| 0.1345 | 18.3 | 3660 | 0.6472 | 0.3959 | 0.4781 | 0.8706 | nan | 0.8146 | 0.9530 | 0.8235 | 0.8520 | 0.5497 | nan | 0.6968 | 0.8381 | 0.0207 | 0.9516 | 0.1768 | 0.0 | 0.6848 | 0.0982 | 0.7017 | 0.0 | 0.0016 | 0.9232 | 0.2083 | 0.5915 | 0.4181 | 0.0692 | nan | 0.2702 | 0.6141 | 0.5410 | 0.0 | 0.9518 | 0.8357 | 0.9695 | 0.0106 | 0.2471 | 0.4844 | 0.0 | nan | 0.7450 | 0.8758 | 0.6078 | 0.7318 | 0.3818 | nan | 0.5719 | 0.6405 | 0.0114 | 0.8615 | 0.1511 | 0.0 | 0.4094 | 0.0981 | 0.5907 | 0.0 | 0.0014 | 0.7618 | 0.1787 | 0.5066 | 0.3096 | 0.0666 | nan | 0.2119 | 0.4778 | 0.3787 | 0.0 | 0.8857 | 0.7576 | 0.9448 | 0.0082 | 0.1287 | 0.3737 | 0.0 |
| 0.1169 | 18.4 | 3680 | 0.6531 | 0.3883 | 0.4689 | 0.8691 | nan | 0.8289 | 0.9521 | 0.7879 | 0.8127 | 0.5339 | nan | 0.6864 | 0.8635 | 0.0215 | 0.9581 | 0.1386 | 0.0544 | 0.8072 | 0.0718 | 0.6534 | 0.0 | 0.0 | 0.9327 | 0.1959 | 0.5625 | 0.3530 | 0.0056 | nan | 0.2673 | 0.5698 | 0.5440 | 0.0 | 0.9512 | 0.8463 | 0.9864 | 0.0051 | 0.1302 | 0.4835 | 0.0 | nan | 0.7451 | 0.8685 | 0.6699 | 0.7229 | 0.3542 | nan | 0.5663 | 0.5963 | 0.0124 | 0.8566 | 0.1181 | 0.0511 | 0.4035 | 0.0717 | 0.5656 | 0.0 | 0.0 | 0.7549 | 0.1712 | 0.4952 | 0.2960 | 0.0056 | nan | 0.2144 | 0.4820 | 0.3652 | 0.0 | 0.8849 | 0.7623 | 0.9443 | 0.0045 | 0.0663 | 0.3781 | 0.0 |
| 0.1532 | 18.5 | 3700 | 0.6728 | 0.3907 | 0.4725 | 0.8686 | nan | 0.8117 | 0.9581 | 0.7649 | 0.8659 | 0.5009 | nan | 0.6302 | 0.7146 | 0.1802 | 0.9449 | 0.1444 | 0.0 | 0.7378 | 0.1248 | 0.7747 | 0.0 | 0.0 | 0.9387 | 0.1801 | 0.6004 | 0.3819 | 0.0629 | nan | 0.1859 | 0.5827 | 0.5751 | 0.0 | 0.9523 | 0.8323 | 0.9805 | 0.0229 | 0.2482 | 0.4215 | 0.0 | nan | 0.7378 | 0.8700 | 0.6787 | 0.6915 | 0.3825 | nan | 0.5584 | 0.6061 | 0.0625 | 0.8632 | 0.1243 | 0.0 | 0.3961 | 0.1248 | 0.5644 | 0.0 | 0.0 | 0.7546 | 0.1585 | 0.5011 | 0.3042 | 0.0613 | nan | 0.1455 | 0.4883 | 0.3701 | 0.0 | 0.8856 | 0.7606 | 0.9497 | 0.0151 | 0.1017 | 0.3440 | 0.0 |
| 0.0933 | 18.6 | 3720 | 0.6657 | 0.3892 | 0.4705 | 0.8671 | nan | 0.7966 | 0.9503 | 0.7910 | 0.8426 | 0.5041 | nan | 0.7030 | 0.8504 | 0.0036 | 0.9521 | 0.1420 | 0.0 | 0.7654 | 0.0719 | 0.6865 | 0.0 | 0.0 | 0.9344 | 0.1655 | 0.6533 | 0.3030 | 0.0829 | nan | 0.2544 | 0.5910 | 0.5748 | 0.0 | 0.9539 | 0.8573 | 0.9809 | 0.0126 | 0.1971 | 0.4359 | 0.0 | nan | 0.7158 | 0.8649 | 0.6562 | 0.6928 | 0.3857 | nan | 0.5605 | 0.5842 | 0.0018 | 0.8581 | 0.1180 | 0.0 | 0.4258 | 0.0718 | 0.5858 | 0.0 | 0.0 | 0.7634 | 0.1494 | 0.5398 | 0.2672 | 0.0798 | nan | 0.1992 | 0.4898 | 0.3707 | 0.0 | 0.8857 | 0.7744 | 0.9496 | 0.0094 | 0.0952 | 0.3577 | 0.0 |
| 0.1438 | 18.7 | 3740 | 0.6791 | 0.3893 | 0.4663 | 0.8655 | nan | 0.7821 | 0.9529 | 0.7963 | 0.8464 | 0.5156 | nan | 0.6654 | 0.8413 | 0.0087 | 0.9405 | 0.1420 | 0.0 | 0.5114 | 0.1117 | 0.7339 | 0.0 | 0.0 | 0.9284 | 0.2376 | 0.6176 | 0.3744 | 0.1001 | nan | 0.1974 | 0.6001 | 0.5361 | 0.0 | 0.9529 | 0.8762 | 0.9833 | 0.0107 | 0.2175 | 0.4416 | 0.0 | nan | 0.7087 | 0.8600 | 0.6665 | 0.7063 | 0.3783 | nan | 0.5571 | 0.5747 | 0.0045 | 0.8647 | 0.1161 | 0.0 | 0.3470 | 0.1117 | 0.5896 | 0.0 | 0.0 | 0.7619 | 0.2037 | 0.5308 | 0.3091 | 0.0951 | nan | 0.1643 | 0.4884 | 0.3719 | 0.0 | 0.8887 | 0.7752 | 0.9486 | 0.0075 | 0.0816 | 0.3465 | 0.0 |
| 0.0849 | 18.8 | 3760 | 0.6566 | 0.3937 | 0.4671 | 0.8737 | nan | 0.8372 | 0.9555 | 0.7537 | 0.8370 | 0.5635 | nan | 0.6648 | 0.8707 | 0.0169 | 0.9553 | 0.1224 | 0.0 | 0.4110 | 0.0835 | 0.7136 | 0.0 | 0.0012 | 0.9242 | 0.2331 | 0.6116 | 0.4140 | 0.0660 | nan | 0.3150 | 0.5872 | 0.5567 | 0.0 | 0.9522 | 0.8598 | 0.9851 | 0.0051 | 0.1902 | 0.4594 | 0.0 | nan | 0.7514 | 0.8717 | 0.7081 | 0.7288 | 0.3997 | nan | 0.5627 | 0.5637 | 0.0104 | 0.8600 | 0.1056 | 0.0 | 0.3094 | 0.0835 | 0.5931 | 0.0 | 0.0010 | 0.7622 | 0.2070 | 0.5229 | 0.3329 | 0.0644 | nan | 0.2304 | 0.4850 | 0.3810 | 0.0 | 0.8919 | 0.7864 | 0.9474 | 0.0038 | 0.0767 | 0.3569 | 0.0 |
| 0.1116 | 18.9 | 3780 | 0.6471 | 0.3966 | 0.4666 | 0.8774 | nan | 0.8720 | 0.9482 | 0.8046 | 0.8431 | 0.5345 | nan | 0.6738 | 0.8331 | 0.0113 | 0.9485 | 0.0919 | 0.0 | 0.4484 | 0.1166 | 0.7373 | 0.0 | 0.0026 | 0.9275 | 0.1592 | 0.6165 | 0.4077 | 0.0179 | nan | 0.3014 | 0.5796 | 0.5465 | 0.0 | 0.9580 | 0.8396 | 0.9802 | 0.0419 | 0.1764 | 0.5117 | 0.0 | nan | 0.7768 | 0.8863 | 0.6934 | 0.7475 | 0.3869 | nan | 0.5524 | 0.6067 | 0.0064 | 0.8653 | 0.0813 | 0.0 | 0.3712 | 0.1166 | 0.6076 | 0.0 | 0.0022 | 0.7640 | 0.1476 | 0.5426 | 0.3372 | 0.0176 | nan | 0.2389 | 0.4833 | 0.3878 | 0.0 | 0.8879 | 0.7702 | 0.9496 | 0.0196 | 0.0705 | 0.3732 | 0.0 |
| 0.1391 | 19.0 | 3800 | 0.6216 | 0.3908 | 0.4653 | 0.8761 | nan | 0.8496 | 0.9555 | 0.7994 | 0.8339 | 0.5083 | nan | 0.7163 | 0.8324 | 0.0129 | 0.9491 | 0.1400 | 0.0 | 0.5319 | 0.0279 | 0.7549 | 0.0 | 0.0020 | 0.9199 | 0.1396 | 0.6369 | 0.3589 | 0.0829 | nan | 0.2064 | 0.6205 | 0.5965 | 0.0 | 0.9594 | 0.8644 | 0.9757 | 0.0076 | 0.1460 | 0.4598 | 0.0 | nan | 0.7640 | 0.8820 | 0.6720 | 0.7404 | 0.3806 | nan | 0.5694 | 0.5559 | 0.0067 | 0.8639 | 0.1234 | 0.0 | 0.4172 | 0.0279 | 0.5877 | 0.0 | 0.0018 | 0.7649 | 0.1263 | 0.5285 | 0.3136 | 0.0805 | nan | 0.1776 | 0.4837 | 0.3792 | 0.0 | 0.8865 | 0.7708 | 0.9521 | 0.0050 | 0.0771 | 0.3654 | 0.0 |
| 0.1196 | 19.1 | 3820 | 0.6366 | 0.3926 | 0.4722 | 0.8727 | nan | 0.8250 | 0.9484 | 0.8132 | 0.8418 | 0.5690 | nan | 0.7304 | 0.8154 | 0.0102 | 0.9577 | 0.1662 | 0.0002 | 0.6124 | 0.0631 | 0.7290 | 0.0 | 0.0075 | 0.9306 | 0.1782 | 0.6425 | 0.3602 | 0.0330 | nan | 0.2764 | 0.5907 | 0.5957 | 0.0 | 0.9500 | 0.8442 | 0.9833 | 0.0043 | 0.1566 | 0.4757 | 0.0 | nan | 0.7522 | 0.8838 | 0.6799 | 0.7295 | 0.3469 | nan | 0.5803 | 0.5606 | 0.0042 | 0.8591 | 0.1443 | 0.0002 | 0.4289 | 0.0631 | 0.6002 | 0.0 | 0.0067 | 0.7621 | 0.1557 | 0.5209 | 0.3123 | 0.0322 | nan | 0.2066 | 0.4849 | 0.3736 | 0.0 | 0.8885 | 0.7692 | 0.9480 | 0.0035 | 0.1009 | 0.3666 | 0.0 |
| 0.0959 | 19.2 | 3840 | 0.6288 | 0.3935 | 0.4702 | 0.8750 | nan | 0.8575 | 0.9453 | 0.7918 | 0.8497 | 0.5645 | nan | 0.6963 | 0.8299 | 0.0091 | 0.9490 | 0.2160 | 0.0 | 0.4691 | 0.0974 | 0.7566 | 0.0 | 0.0057 | 0.9396 | 0.1275 | 0.5798 | 0.4401 | 0.0737 | nan | 0.2358 | 0.5932 | 0.5844 | 0.0 | 0.9462 | 0.8775 | 0.9824 | 0.0096 | 0.1730 | 0.4441 | 0.0 | nan | 0.7664 | 0.8847 | 0.6672 | 0.7389 | 0.3696 | nan | 0.5766 | 0.5705 | 0.0046 | 0.8629 | 0.1796 | 0.0 | 0.3385 | 0.0973 | 0.5875 | 0.0 | 0.0046 | 0.7543 | 0.1155 | 0.4952 | 0.3465 | 0.0703 | nan | 0.1918 | 0.4893 | 0.3725 | 0.0 | 0.8922 | 0.7813 | 0.9511 | 0.0061 | 0.1146 | 0.3613 | 0.0 |
| 0.0953 | 19.3 | 3860 | 0.6623 | 0.3801 | 0.4474 | 0.8713 | nan | 0.8262 | 0.9593 | 0.7969 | 0.8096 | 0.5081 | nan | 0.6969 | 0.8623 | 0.0131 | 0.9501 | 0.1314 | 0.0012 | 0.2272 | 0.0296 | 0.6862 | 0.0 | 0.0 | 0.9403 | 0.1217 | 0.5800 | 0.3706 | 0.0808 | nan | 0.2683 | 0.5718 | 0.5212 | 0.0 | 0.9522 | 0.8629 | 0.9806 | 0.0062 | 0.1071 | 0.4561 | 0.0 | nan | 0.7435 | 0.8717 | 0.7078 | 0.7134 | 0.3755 | nan | 0.5783 | 0.5435 | 0.0070 | 0.8618 | 0.1100 | 0.0012 | 0.1734 | 0.0295 | 0.5762 | 0.0 | 0.0 | 0.7504 | 0.1110 | 0.4996 | 0.3201 | 0.0776 | nan | 0.2004 | 0.4833 | 0.3712 | 0.0 | 0.8898 | 0.7813 | 0.9505 | 0.0037 | 0.0657 | 0.3646 | 0.0 |
| 0.1373 | 19.4 | 3880 | 0.6685 | 0.3895 | 0.4625 | 0.8714 | nan | 0.8442 | 0.9510 | 0.7916 | 0.8176 | 0.5431 | nan | 0.6855 | 0.8213 | 0.0075 | 0.9520 | 0.1370 | 0.0018 | 0.5377 | 0.0521 | 0.6675 | 0.0 | 0.0017 | 0.9306 | 0.1636 | 0.5739 | 0.3619 | 0.0569 | nan | 0.2615 | 0.5481 | 0.5454 | 0.0 | 0.9551 | 0.8495 | 0.9859 | 0.0112 | 0.2837 | 0.4612 | 0.0 | nan | 0.7560 | 0.8749 | 0.7109 | 0.7168 | 0.3679 | nan | 0.5734 | 0.5998 | 0.0039 | 0.8604 | 0.1156 | 0.0018 | 0.3666 | 0.0521 | 0.5734 | 0.0 | 0.0015 | 0.7527 | 0.1418 | 0.4988 | 0.3208 | 0.0558 | nan | 0.1980 | 0.4756 | 0.3725 | 0.0 | 0.8879 | 0.7700 | 0.9445 | 0.0067 | 0.1031 | 0.3614 | 0.0 |
| 0.0634 | 19.5 | 3900 | 0.6595 | 0.4015 | 0.4852 | 0.8721 | nan | 0.8256 | 0.9453 | 0.8299 | 0.8586 | 0.5898 | nan | 0.6855 | 0.8259 | 0.0306 | 0.9562 | 0.1417 | 0.0069 | 0.6597 | 0.0814 | 0.7130 | 0.0 | 0.0123 | 0.9206 | 0.2307 | 0.6144 | 0.3796 | 0.1257 | nan | 0.3290 | 0.6291 | 0.5818 | 0.0 | 0.9508 | 0.8416 | 0.9838 | 0.0177 | 0.2719 | 0.4868 | 0.0 | nan | 0.7497 | 0.8837 | 0.6989 | 0.7101 | 0.3746 | nan | 0.5735 | 0.6215 | 0.0142 | 0.8605 | 0.1227 | 0.0069 | 0.4337 | 0.0814 | 0.5765 | 0.0 | 0.0110 | 0.7668 | 0.1922 | 0.5229 | 0.3180 | 0.1211 | nan | 0.2457 | 0.4939 | 0.3811 | 0.0 | 0.8884 | 0.7650 | 0.9487 | 0.0094 | 0.1052 | 0.3722 | 0.0 |
| 0.1144 | 19.6 | 3920 | 0.6743 | 0.3943 | 0.4708 | 0.8711 | nan | 0.8363 | 0.9524 | 0.8027 | 0.7968 | 0.5293 | nan | 0.6985 | 0.8225 | 0.1192 | 0.9560 | 0.1437 | 0.0100 | 0.7422 | 0.0896 | 0.6518 | 0.0 | 0.0 | 0.9286 | 0.1067 | 0.6105 | 0.3336 | 0.0772 | nan | 0.2570 | 0.5919 | 0.5545 | 0.0 | 0.9578 | 0.8493 | 0.9787 | 0.0030 | 0.1745 | 0.4916 | 0.0 | nan | 0.7460 | 0.8646 | 0.7031 | 0.7061 | 0.3837 | nan | 0.5698 | 0.6244 | 0.0406 | 0.8595 | 0.1206 | 0.0100 | 0.4231 | 0.0895 | 0.5612 | 0.0 | 0.0 | 0.7606 | 0.0981 | 0.5160 | 0.2920 | 0.0753 | nan | 0.2151 | 0.4904 | 0.3711 | 0.0 | 0.8875 | 0.7760 | 0.9499 | 0.0023 | 0.0951 | 0.3875 | 0.0 |
| 0.1188 | 19.7 | 3940 | 0.6705 | 0.4008 | 0.4736 | 0.8727 | nan | 0.8352 | 0.9605 | 0.7775 | 0.7891 | 0.5159 | nan | 0.6744 | 0.8470 | 0.0115 | 0.9497 | 0.1475 | 0.0024 | 0.6870 | 0.1569 | 0.6805 | 0.0 | 0.0003 | 0.9275 | 0.2195 | 0.6293 | 0.3641 | 0.0765 | nan | 0.2214 | 0.6162 | 0.5561 | 0.0 | 0.9539 | 0.8622 | 0.9766 | 0.0012 | 0.2277 | 0.4884 | 0.0 | nan | 0.7518 | 0.8605 | 0.7179 | 0.7051 | 0.3932 | nan | 0.5742 | 0.6278 | 0.0058 | 0.8634 | 0.1261 | 0.0024 | 0.4491 | 0.1568 | 0.5786 | 0.0 | 0.0002 | 0.7646 | 0.1904 | 0.5319 | 0.3115 | 0.0745 | nan | 0.1672 | 0.5011 | 0.3704 | 0.0 | 0.8884 | 0.7778 | 0.9518 | 0.0011 | 0.1013 | 0.3798 | 0.0 |
| 0.0921 | 19.8 | 3960 | 0.5977 | 0.3969 | 0.4735 | 0.8792 | nan | 0.8769 | 0.9573 | 0.7823 | 0.8502 | 0.4808 | nan | 0.6991 | 0.8520 | 0.0049 | 0.9545 | 0.1090 | 0.0058 | 0.6390 | 0.0450 | 0.6867 | 0.0 | 0.0 | 0.9265 | 0.1901 | 0.6006 | 0.3956 | 0.1275 | nan | 0.2660 | 0.6230 | 0.6010 | 0.0 | 0.9521 | 0.8688 | 0.9846 | 0.0038 | 0.2451 | 0.4230 | 0.0 | nan | 0.7787 | 0.8830 | 0.6752 | 0.7446 | 0.3796 | nan | 0.5851 | 0.6326 | 0.0033 | 0.8611 | 0.0962 | 0.0058 | 0.4192 | 0.0450 | 0.5756 | 0.0 | 0.0 | 0.7626 | 0.1657 | 0.5145 | 0.3129 | 0.1224 | nan | 0.1892 | 0.4940 | 0.3688 | 0.0 | 0.8890 | 0.7783 | 0.9494 | 0.0036 | 0.1144 | 0.3510 | 0.0 |
| 0.0998 | 19.9 | 3980 | 0.6695 | 0.3898 | 0.4654 | 0.8695 | nan | 0.8016 | 0.9558 | 0.7933 | 0.8599 | 0.5248 | nan | 0.7058 | 0.8529 | 0.0 | 0.9482 | 0.1023 | 0.0142 | 0.5224 | 0.0380 | 0.7253 | 0.0 | 0.0163 | 0.9390 | 0.1337 | 0.5630 | 0.3497 | 0.1847 | nan | 0.2445 | 0.5742 | 0.5538 | 0.0 | 0.9543 | 0.8615 | 0.9816 | 0.0138 | 0.2513 | 0.4269 | 0.0 | nan | 0.7260 | 0.8725 | 0.7126 | 0.7037 | 0.3809 | nan | 0.5887 | 0.6069 | 0.0 | 0.8603 | 0.0903 | 0.0136 | 0.3584 | 0.0380 | 0.5701 | 0.0 | 0.0148 | 0.7466 | 0.1170 | 0.4905 | 0.2939 | 0.1709 | nan | 0.1710 | 0.4849 | 0.3728 | 0.0 | 0.8872 | 0.7744 | 0.9510 | 0.0121 | 0.1114 | 0.3524 | 0.0 |
| 0.1001 | 20.0 | 4000 | 0.6360 | 0.3940 | 0.4690 | 0.8747 | nan | 0.8478 | 0.9596 | 0.8029 | 0.8542 | 0.4806 | nan | 0.7011 | 0.8270 | 0.0153 | 0.9524 | 0.1601 | 0.0 | 0.5663 | 0.0927 | 0.7436 | 0.0 | 0.0156 | 0.9355 | 0.1451 | 0.5621 | 0.3605 | 0.1619 | nan | 0.1624 | 0.6078 | 0.5374 | 0.0 | 0.9556 | 0.8211 | 0.9820 | 0.0169 | 0.3125 | 0.4290 | 0.0 | nan | 0.7591 | 0.8734 | 0.6983 | 0.7558 | 0.3819 | nan | 0.5784 | 0.6133 | 0.0099 | 0.8632 | 0.1415 | 0.0 | 0.3731 | 0.0927 | 0.5487 | 0.0 | 0.0145 | 0.7561 | 0.1293 | 0.4910 | 0.3003 | 0.1506 | nan | 0.1298 | 0.4896 | 0.3837 | 0.0 | 0.8829 | 0.7556 | 0.9518 | 0.0153 | 0.1128 | 0.3558 | 0.0 |
| 0.1253 | 20.1 | 4020 | 0.6375 | 0.3945 | 0.4689 | 0.8761 | nan | 0.8562 | 0.9533 | 0.8124 | 0.8497 | 0.5275 | nan | 0.7055 | 0.8616 | 0.0107 | 0.9555 | 0.2256 | 0.0008 | 0.5598 | 0.1015 | 0.7113 | 0.0 | 0.0024 | 0.9286 | 0.1968 | 0.5871 | 0.3271 | 0.1187 | nan | 0.1832 | 0.5976 | 0.5238 | 0.0 | 0.9577 | 0.8331 | 0.9858 | 0.0137 | 0.1747 | 0.4445 | 0.0 | nan | 0.7673 | 0.8788 | 0.6697 | 0.7518 | 0.3957 | nan | 0.5791 | 0.5823 | 0.0078 | 0.8610 | 0.1961 | 0.0008 | 0.3487 | 0.1015 | 0.5737 | 0.0 | 0.0022 | 0.7595 | 0.1723 | 0.5084 | 0.2912 | 0.1149 | nan | 0.1545 | 0.4909 | 0.3803 | 0.0 | 0.8825 | 0.7555 | 0.9488 | 0.0121 | 0.0726 | 0.3626 | 0.0 |
| 0.0963 | 20.2 | 4040 | 0.6343 | 0.3986 | 0.4709 | 0.8758 | nan | 0.8581 | 0.9509 | 0.7889 | 0.8497 | 0.5508 | nan | 0.6903 | 0.8440 | 0.0020 | 0.9561 | 0.1398 | 0.0 | 0.6282 | 0.0328 | 0.6605 | 0.0 | 0.0034 | 0.9246 | 0.2302 | 0.5814 | 0.3759 | 0.1717 | nan | 0.2484 | 0.5943 | 0.5692 | 0.0 | 0.9611 | 0.8160 | 0.9809 | 0.0170 | 0.1377 | 0.5036 | 0.0 | nan | 0.7668 | 0.8783 | 0.6873 | 0.7581 | 0.3905 | nan | 0.5727 | 0.6263 | 0.0016 | 0.8572 | 0.1219 | 0.0 | 0.4296 | 0.0328 | 0.5626 | 0.0 | 0.0032 | 0.7619 | 0.2007 | 0.5207 | 0.2996 | 0.1609 | nan | 0.2098 | 0.4903 | 0.3758 | 0.0 | 0.8799 | 0.7447 | 0.9505 | 0.0132 | 0.0692 | 0.3891 | 0.0 |
| 0.1137 | 20.3 | 4060 | 0.6375 | 0.3946 | 0.4692 | 0.8769 | nan | 0.8613 | 0.9550 | 0.8020 | 0.8515 | 0.5362 | nan | 0.7077 | 0.8397 | 0.0242 | 0.9510 | 0.1386 | 0.0 | 0.6277 | 0.0927 | 0.7196 | 0.0 | 0.0015 | 0.9251 | 0.1790 | 0.6060 | 0.3227 | 0.1148 | nan | 0.1834 | 0.5894 | 0.5724 | 0.0 | 0.9528 | 0.8344 | 0.9837 | 0.0036 | 0.1638 | 0.4759 | 0.0 | nan | 0.7764 | 0.8810 | 0.6866 | 0.7539 | 0.3881 | nan | 0.5824 | 0.5827 | 0.0154 | 0.8616 | 0.1163 | 0.0 | 0.4547 | 0.0926 | 0.5692 | 0.0 | 0.0014 | 0.7587 | 0.1571 | 0.5074 | 0.2865 | 0.1074 | nan | 0.1429 | 0.4889 | 0.3755 | 0.0 | 0.8853 | 0.7612 | 0.9461 | 0.0029 | 0.0755 | 0.3681 | 0.0 |
| 0.1062 | 20.4 | 4080 | 0.6567 | 0.3995 | 0.4775 | 0.8730 | nan | 0.8379 | 0.9542 | 0.8219 | 0.8067 | 0.5245 | nan | 0.7027 | 0.8269 | 0.0109 | 0.9520 | 0.1389 | 0.0 | 0.5794 | 0.1255 | 0.7120 | 0.0 | 0.0142 | 0.9348 | 0.1926 | 0.6014 | 0.4170 | 0.1640 | nan | 0.2494 | 0.6041 | 0.5862 | 0.0 | 0.9498 | 0.8683 | 0.9818 | 0.0056 | 0.2779 | 0.4382 | 0.0 | nan | 0.7553 | 0.8689 | 0.6614 | 0.7353 | 0.3795 | nan | 0.5757 | 0.6132 | 0.0066 | 0.8633 | 0.1199 | 0.0 | 0.4289 | 0.1255 | 0.5749 | 0.0 | 0.0132 | 0.7611 | 0.1679 | 0.5161 | 0.3362 | 0.1469 | nan | 0.1785 | 0.4951 | 0.3797 | 0.0 | 0.8900 | 0.7775 | 0.9491 | 0.0047 | 0.1043 | 0.3541 | 0.0 |
| 0.1041 | 20.5 | 4100 | 0.6890 | 0.4013 | 0.4795 | 0.8670 | nan | 0.7937 | 0.9591 | 0.7886 | 0.8263 | 0.4823 | nan | 0.7058 | 0.8277 | 0.0570 | 0.9562 | 0.2314 | 0.0089 | 0.5893 | 0.0884 | 0.7255 | 0.0 | 0.0212 | 0.9247 | 0.2537 | 0.6046 | 0.3496 | 0.2725 | nan | 0.2060 | 0.5952 | 0.5589 | 0.0 | 0.9555 | 0.8368 | 0.9832 | 0.0022 | 0.2807 | 0.4606 | 0.0 | nan | 0.7252 | 0.8511 | 0.7002 | 0.7143 | 0.3809 | nan | 0.5730 | 0.5817 | 0.0289 | 0.8606 | 0.1952 | 0.0089 | 0.4421 | 0.0883 | 0.5674 | 0.0 | 0.0208 | 0.7613 | 0.2071 | 0.5142 | 0.3038 | 0.2314 | nan | 0.1489 | 0.4961 | 0.3774 | 0.0 | 0.8847 | 0.7648 | 0.9499 | 0.0020 | 0.1005 | 0.3606 | 0.0 |
| 0.1587 | 20.6 | 4120 | 0.6767 | 0.4083 | 0.4812 | 0.8711 | nan | 0.8364 | 0.9537 | 0.7705 | 0.7938 | 0.5484 | nan | 0.6784 | 0.8085 | 0.0284 | 0.9558 | 0.1908 | 0.0 | 0.5209 | 0.2507 | 0.6850 | 0.0 | 0.0004 | 0.9251 | 0.2019 | 0.6493 | 0.3894 | 0.2335 | nan | 0.2594 | 0.5984 | 0.5619 | 0.0 | 0.9466 | 0.8498 | 0.9837 | 0.0110 | 0.2769 | 0.4914 | 0.0 | nan | 0.7442 | 0.8592 | 0.7000 | 0.7254 | 0.3821 | nan | 0.5722 | 0.6206 | 0.0132 | 0.8605 | 0.1656 | 0.0 | 0.4081 | 0.2504 | 0.5632 | 0.0 | 0.0004 | 0.7681 | 0.1775 | 0.5537 | 0.3305 | 0.2045 | nan | 0.1971 | 0.4928 | 0.3788 | 0.0 | 0.8873 | 0.7669 | 0.9484 | 0.0090 | 0.1096 | 0.3747 | 0.0 |
| 0.1263 | 20.7 | 4140 | 0.6792 | 0.4052 | 0.4798 | 0.8693 | nan | 0.8127 | 0.9591 | 0.8023 | 0.8156 | 0.5044 | nan | 0.6911 | 0.8283 | 0.0084 | 0.9539 | 0.1576 | 0.0 | 0.4543 | 0.2301 | 0.6969 | 0.0 | 0.0087 | 0.9293 | 0.1909 | 0.6220 | 0.4202 | 0.2310 | nan | 0.3082 | 0.6124 | 0.5514 | 0.0 | 0.9555 | 0.8294 | 0.9521 | 0.0289 | 0.3463 | 0.4527 | 0.0 | nan | 0.7352 | 0.8585 | 0.6929 | 0.7207 | 0.3930 | nan | 0.5796 | 0.6131 | 0.0048 | 0.8608 | 0.1425 | 0.0 | 0.3678 | 0.2301 | 0.5863 | 0.0 | 0.0082 | 0.7663 | 0.1664 | 0.5473 | 0.3381 | 0.2010 | nan | 0.2321 | 0.4778 | 0.3794 | 0.0 | 0.8840 | 0.7550 | 0.9309 | 0.0198 | 0.1169 | 0.3594 | 0.0 |
| 0.0687 | 20.8 | 4160 | 0.6763 | 0.4026 | 0.4814 | 0.8705 | nan | 0.8374 | 0.9388 | 0.8149 | 0.8092 | 0.6507 | nan | 0.7003 | 0.7479 | 0.0486 | 0.9459 | 0.1209 | 0.0 | 0.4576 | 0.1684 | 0.7734 | 0.0 | 0.0052 | 0.9254 | 0.1351 | 0.6627 | 0.3857 | 0.2935 | nan | 0.3222 | 0.5700 | 0.5956 | 0.0 | 0.9561 | 0.8280 | 0.9860 | 0.0265 | 0.2518 | 0.4466 | 0.0 | nan | 0.7526 | 0.8674 | 0.7003 | 0.7256 | 0.3858 | nan | 0.5779 | 0.5933 | 0.0159 | 0.8653 | 0.1066 | 0.0 | 0.3861 | 0.1684 | 0.5383 | 0.0 | 0.0047 | 0.7688 | 0.1184 | 0.5338 | 0.3312 | 0.2460 | nan | 0.2383 | 0.4819 | 0.3783 | 0.0 | 0.8830 | 0.7539 | 0.9475 | 0.0183 | 0.1309 | 0.3649 | 0.0 |
| 0.1022 | 20.9 | 4180 | 0.6515 | 0.4094 | 0.4840 | 0.8714 | nan | 0.8243 | 0.9531 | 0.8246 | 0.8207 | 0.5230 | nan | 0.7051 | 0.8164 | 0.0200 | 0.9530 | 0.1783 | 0.0 | 0.6442 | 0.2868 | 0.7147 | 0.0 | 0.0004 | 0.9344 | 0.1501 | 0.5645 | 0.3791 | 0.2135 | nan | 0.2752 | 0.6152 | 0.5677 | 0.0 | 0.9529 | 0.8576 | 0.9788 | 0.0186 | 0.2173 | 0.5001 | 0.0 | nan | 0.7452 | 0.8705 | 0.6665 | 0.7204 | 0.3726 | nan | 0.5795 | 0.6388 | 0.0120 | 0.8618 | 0.1561 | 0.0 | 0.4798 | 0.2868 | 0.5968 | 0.0 | 0.0004 | 0.7536 | 0.1331 | 0.4925 | 0.3280 | 0.1859 | nan | 0.2251 | 0.4905 | 0.3779 | 0.0 | 0.8884 | 0.7699 | 0.9526 | 0.0146 | 0.1169 | 0.3848 | 0.0 |
| 0.1278 | 21.0 | 4200 | 0.6634 | 0.4075 | 0.4829 | 0.8711 | nan | 0.8245 | 0.9530 | 0.7866 | 0.8225 | 0.5349 | nan | 0.6884 | 0.8640 | 0.0566 | 0.9489 | 0.2054 | 0.0 | 0.5859 | 0.2362 | 0.7052 | 0.0 | 0.0008 | 0.9347 | 0.1644 | 0.6074 | 0.3896 | 0.2307 | nan | 0.3313 | 0.5614 | 0.5768 | 0.0 | 0.9521 | 0.8605 | 0.9856 | 0.0116 | 0.1722 | 0.4631 | 0.0 | nan | 0.7408 | 0.8674 | 0.7110 | 0.7096 | 0.3785 | nan | 0.5794 | 0.5541 | 0.0353 | 0.8636 | 0.1842 | 0.0 | 0.4354 | 0.2361 | 0.5915 | 0.0 | 0.0008 | 0.7613 | 0.1453 | 0.5112 | 0.3317 | 0.2033 | nan | 0.2664 | 0.4866 | 0.3724 | 0.0 | 0.8884 | 0.7736 | 0.9489 | 0.0089 | 0.0912 | 0.3618 | 0.0 |
| 0.0846 | 21.1 | 4220 | 0.6718 | 0.3986 | 0.4677 | 0.8711 | nan | 0.8204 | 0.9642 | 0.7579 | 0.8309 | 0.4685 | nan | 0.6837 | 0.8341 | 0.0109 | 0.9496 | 0.1461 | 0.0 | 0.4288 | 0.1567 | 0.6752 | 0.0 | 0.0 | 0.9378 | 0.1636 | 0.5715 | 0.3840 | 0.3030 | nan | 0.2801 | 0.6112 | 0.5545 | 0.0 | 0.9499 | 0.8698 | 0.9818 | 0.0113 | 0.1875 | 0.4330 | 0.0 | nan | 0.7372 | 0.8662 | 0.7208 | 0.7000 | 0.3749 | nan | 0.5771 | 0.5614 | 0.0071 | 0.8616 | 0.1265 | 0.0 | 0.3334 | 0.1567 | 0.5866 | 0.0 | 0.0 | 0.7540 | 0.1424 | 0.5010 | 0.3260 | 0.2542 | nan | 0.2147 | 0.4983 | 0.3801 | 0.0 | 0.8891 | 0.7807 | 0.9504 | 0.0093 | 0.0879 | 0.3571 | 0.0 |
| 0.1115 | 21.2 | 4240 | 0.6552 | 0.4076 | 0.4832 | 0.8737 | nan | 0.8317 | 0.9473 | 0.8047 | 0.8574 | 0.5807 | nan | 0.6939 | 0.8171 | 0.0246 | 0.9492 | 0.1527 | 0.0037 | 0.5044 | 0.2308 | 0.6829 | 0.0 | 0.0009 | 0.9300 | 0.1914 | 0.6670 | 0.4029 | 0.3364 | nan | 0.3103 | 0.5589 | 0.5355 | 0.0 | 0.9510 | 0.8408 | 0.9833 | 0.0029 | 0.1955 | 0.4733 | 0.0 | nan | 0.7517 | 0.8763 | 0.6704 | 0.7468 | 0.3714 | nan | 0.5771 | 0.5795 | 0.0150 | 0.8643 | 0.1306 | 0.0037 | 0.3847 | 0.2307 | 0.5843 | 0.0 | 0.0008 | 0.7695 | 0.1615 | 0.5434 | 0.3354 | 0.2658 | nan | 0.2342 | 0.4869 | 0.3854 | 0.0 | 0.8869 | 0.7624 | 0.9506 | 0.0023 | 0.1051 | 0.3660 | 0.0 |
| 0.1084 | 21.3 | 4260 | 0.6892 | 0.3892 | 0.4577 | 0.8640 | nan | 0.7884 | 0.9506 | 0.7385 | 0.8094 | 0.5658 | nan | 0.7285 | 0.8160 | 0.0189 | 0.9520 | 0.1778 | 0.0 | 0.2717 | 0.1533 | 0.6612 | 0.0 | 0.0003 | 0.9476 | 0.1546 | 0.5538 | 0.4004 | 0.1485 | nan | 0.2246 | 0.6010 | 0.5424 | 0.0 | 0.9481 | 0.8537 | 0.9823 | 0.0129 | 0.1972 | 0.4453 | 0.0 | nan | 0.7146 | 0.8556 | 0.7159 | 0.7010 | 0.3691 | nan | 0.5797 | 0.6040 | 0.0121 | 0.8610 | 0.1574 | 0.0 | 0.2095 | 0.1532 | 0.5598 | 0.0 | 0.0002 | 0.7475 | 0.1321 | 0.4993 | 0.3277 | 0.1327 | nan | 0.1811 | 0.4931 | 0.3776 | 0.0 | 0.8874 | 0.7649 | 0.9522 | 0.0083 | 0.0941 | 0.3645 | 0.0 |
| 0.1338 | 21.4 | 4280 | 0.6709 | 0.3973 | 0.4641 | 0.8726 | nan | 0.8313 | 0.9602 | 0.7449 | 0.8214 | 0.5155 | nan | 0.7123 | 0.8303 | 0.0138 | 0.9432 | 0.1363 | 0.0 | 0.4912 | 0.1223 | 0.6385 | 0.0 | 0.0003 | 0.9390 | 0.1575 | 0.6410 | 0.3586 | 0.2166 | nan | 0.2556 | 0.5782 | 0.5075 | 0.0 | 0.9518 | 0.8385 | 0.9821 | 0.0096 | 0.2061 | 0.4482 | 0.0 | nan | 0.7484 | 0.8677 | 0.7121 | 0.7044 | 0.3990 | nan | 0.5868 | 0.5942 | 0.0097 | 0.8629 | 0.1184 | 0.0 | 0.3635 | 0.1222 | 0.5545 | 0.0 | 0.0002 | 0.7618 | 0.1388 | 0.5326 | 0.3045 | 0.1839 | nan | 0.2106 | 0.4879 | 0.3757 | 0.0 | 0.8841 | 0.7657 | 0.9515 | 0.0074 | 0.1076 | 0.3582 | 0.0 |
| 0.0738 | 21.5 | 4300 | 0.6573 | 0.4033 | 0.4748 | 0.8713 | nan | 0.8115 | 0.9567 | 0.8002 | 0.8162 | 0.5514 | nan | 0.7062 | 0.8208 | 0.0280 | 0.9496 | 0.1044 | 0.0029 | 0.4920 | 0.1151 | 0.6800 | 0.0 | 0.0 | 0.9278 | 0.1859 | 0.6386 | 0.3948 | 0.3072 | nan | 0.3047 | 0.6096 | 0.5394 | 0.0 | 0.9550 | 0.8316 | 0.9853 | 0.0043 | 0.1767 | 0.4969 | 0.0 | nan | 0.7366 | 0.8644 | 0.6744 | 0.7142 | 0.3915 | nan | 0.5877 | 0.6245 | 0.0180 | 0.8641 | 0.0928 | 0.0028 | 0.3760 | 0.1150 | 0.5753 | 0.0 | 0.0 | 0.7681 | 0.1669 | 0.5448 | 0.3265 | 0.2540 | nan | 0.2388 | 0.4946 | 0.3862 | 0.0 | 0.8849 | 0.7629 | 0.9491 | 0.0037 | 0.1074 | 0.3806 | 0.0 |
| 0.1029 | 21.6 | 4320 | 0.6469 | 0.4044 | 0.4782 | 0.8737 | nan | 0.8398 | 0.9561 | 0.7955 | 0.8276 | 0.5186 | nan | 0.7033 | 0.7922 | 0.0450 | 0.9536 | 0.1347 | 0.0001 | 0.6867 | 0.1459 | 0.7371 | 0.0 | 0.0003 | 0.9364 | 0.1667 | 0.6232 | 0.3445 | 0.2556 | nan | 0.2941 | 0.5700 | 0.5599 | 0.0 | 0.9584 | 0.8165 | 0.9835 | 0.0045 | 0.1937 | 0.4606 | 0.0 | nan | 0.7543 | 0.8712 | 0.6931 | 0.7240 | 0.3945 | nan | 0.5843 | 0.6372 | 0.0275 | 0.8614 | 0.1184 | 0.0001 | 0.4375 | 0.1459 | 0.5797 | 0.0 | 0.0003 | 0.7593 | 0.1475 | 0.5194 | 0.2930 | 0.2124 | nan | 0.2283 | 0.4873 | 0.3849 | 0.0 | 0.8807 | 0.7483 | 0.9503 | 0.0040 | 0.1232 | 0.3739 | 0.0 |
| 0.1186 | 21.7 | 4340 | 0.6585 | 0.4079 | 0.4883 | 0.8723 | nan | 0.8288 | 0.9558 | 0.7707 | 0.8673 | 0.5224 | nan | 0.6848 | 0.8085 | 0.0581 | 0.9490 | 0.1224 | 0.0 | 0.6958 | 0.0732 | 0.7552 | 0.0 | 0.0 | 0.9204 | 0.2677 | 0.5686 | 0.3612 | 0.3455 | nan | 0.3524 | 0.6461 | 0.5403 | 0.0 | 0.9572 | 0.8196 | 0.9823 | 0.0281 | 0.2567 | 0.4876 | 0.0 | nan | 0.7477 | 0.8743 | 0.7007 | 0.7153 | 0.4094 | nan | 0.5850 | 0.6034 | 0.0355 | 0.8668 | 0.1055 | 0.0 | 0.4602 | 0.0732 | 0.6005 | 0.0 | 0.0 | 0.7550 | 0.2271 | 0.5002 | 0.3071 | 0.2702 | nan | 0.2727 | 0.4949 | 0.3814 | 0.0 | 0.8794 | 0.7426 | 0.9508 | 0.0204 | 0.0945 | 0.3773 | 0.0 |
| 0.0677 | 21.8 | 4360 | 0.6361 | 0.3993 | 0.4769 | 0.8750 | nan | 0.8544 | 0.9537 | 0.7839 | 0.8400 | 0.5455 | nan | 0.6787 | 0.8215 | 0.0144 | 0.9538 | 0.1153 | 0.0 | 0.7256 | 0.0217 | 0.7075 | 0.0 | 0.0 | 0.9299 | 0.1329 | 0.5876 | 0.4313 | 0.2619 | nan | 0.2513 | 0.6280 | 0.5770 | 0.0 | 0.9517 | 0.8389 | 0.9813 | 0.0087 | 0.2031 | 0.4615 | 0.0 | nan | 0.7686 | 0.8791 | 0.6233 | 0.7480 | 0.3951 | nan | 0.5785 | 0.6149 | 0.0087 | 0.8604 | 0.0980 | 0.0 | 0.4816 | 0.0217 | 0.5856 | 0.0 | 0.0 | 0.7597 | 0.1237 | 0.5133 | 0.3455 | 0.2226 | nan | 0.2174 | 0.4940 | 0.3838 | 0.0 | 0.8837 | 0.7542 | 0.9505 | 0.0060 | 0.0886 | 0.3699 | 0.0 |
| 0.0966 | 21.9 | 4380 | 0.6521 | 0.4025 | 0.4823 | 0.8755 | nan | 0.8575 | 0.9535 | 0.7738 | 0.8313 | 0.5383 | nan | 0.6988 | 0.8177 | 0.0173 | 0.9548 | 0.1243 | 0.0 | 0.6781 | 0.1098 | 0.7482 | 0.0 | 0.0 | 0.9375 | 0.1988 | 0.5860 | 0.3846 | 0.2233 | nan | 0.2717 | 0.6065 | 0.6044 | 0.0 | 0.9486 | 0.8565 | 0.9802 | 0.0117 | 0.2642 | 0.4555 | 0.0 | nan | 0.7634 | 0.8766 | 0.6806 | 0.7478 | 0.3922 | nan | 0.5740 | 0.6078 | 0.0107 | 0.8622 | 0.1051 | 0.0 | 0.4432 | 0.1098 | 0.5781 | 0.0 | 0.0 | 0.7588 | 0.1735 | 0.5266 | 0.3227 | 0.1965 | nan | 0.2137 | 0.4956 | 0.3696 | 0.0 | 0.8882 | 0.7733 | 0.9508 | 0.0081 | 0.0910 | 0.3591 | 0.0 |
| 0.1168 | 22.0 | 4400 | 0.6743 | 0.4063 | 0.4888 | 0.8718 | nan | 0.8217 | 0.9470 | 0.8187 | 0.8473 | 0.5740 | nan | 0.6884 | 0.8092 | 0.0404 | 0.9540 | 0.1233 | 0.0 | 0.7544 | 0.1954 | 0.7602 | 0.0 | 0.0011 | 0.9278 | 0.1784 | 0.6134 | 0.3906 | 0.2784 | nan | 0.1975 | 0.6000 | 0.5872 | 0.0 | 0.9548 | 0.8470 | 0.9854 | 0.0077 | 0.2577 | 0.4814 | 0.0 | nan | 0.7449 | 0.8696 | 0.6629 | 0.7342 | 0.3708 | nan | 0.5749 | 0.6200 | 0.0206 | 0.8656 | 0.1045 | 0.0 | 0.4958 | 0.1954 | 0.5853 | 0.0 | 0.0010 | 0.7691 | 0.1619 | 0.5505 | 0.3202 | 0.2488 | nan | 0.1564 | 0.4904 | 0.3779 | 0.0 | 0.8859 | 0.7710 | 0.9489 | 0.0067 | 0.0918 | 0.3755 | 0.0 |
| 0.1196 | 22.1 | 4420 | 0.6573 | 0.4029 | 0.4845 | 0.8736 | nan | 0.8246 | 0.9584 | 0.7864 | 0.8363 | 0.5195 | nan | 0.6933 | 0.7868 | 0.1454 | 0.9523 | 0.1428 | 0.0 | 0.7212 | 0.0582 | 0.7861 | 0.0 | 0.0001 | 0.9330 | 0.2043 | 0.6240 | 0.3923 | 0.2184 | nan | 0.2291 | 0.6001 | 0.5717 | 0.0 | 0.9499 | 0.8588 | 0.9833 | 0.0066 | 0.2396 | 0.4826 | 0.0 | nan | 0.7455 | 0.8696 | 0.6918 | 0.7157 | 0.3893 | nan | 0.5780 | 0.6101 | 0.0592 | 0.8655 | 0.1215 | 0.0 | 0.4956 | 0.0582 | 0.5283 | 0.0 | 0.0001 | 0.7669 | 0.1772 | 0.5426 | 0.3298 | 0.1941 | nan | 0.1912 | 0.4937 | 0.3772 | 0.0 | 0.8886 | 0.7717 | 0.9503 | 0.0059 | 0.0940 | 0.3812 | 0.0 |
| 0.0916 | 22.2 | 4440 | 0.6671 | 0.4016 | 0.4835 | 0.8750 | nan | 0.8546 | 0.9526 | 0.7848 | 0.8181 | 0.5306 | nan | 0.7050 | 0.7740 | 0.0639 | 0.9540 | 0.1298 | 0.0 | 0.7229 | 0.0259 | 0.7771 | 0.0 | 0.0 | 0.9282 | 0.1856 | 0.6414 | 0.4127 | 0.1601 | nan | 0.3675 | 0.6012 | 0.6054 | 0.0 | 0.9586 | 0.8275 | 0.9830 | 0.0156 | 0.2546 | 0.4364 | 0.0 | nan | 0.7593 | 0.8716 | 0.7117 | 0.7337 | 0.3855 | nan | 0.5776 | 0.6147 | 0.0252 | 0.8617 | 0.1121 | 0.0 | 0.4832 | 0.0259 | 0.5267 | 0.0 | 0.0 | 0.7674 | 0.1577 | 0.5443 | 0.3348 | 0.1446 | nan | 0.2485 | 0.4981 | 0.3778 | 0.0 | 0.8851 | 0.7590 | 0.9504 | 0.0125 | 0.1175 | 0.3647 | 0.0 |
| 0.0867 | 22.3 | 4460 | 0.6636 | 0.4042 | 0.4808 | 0.8755 | nan | 0.8381 | 0.9610 | 0.7599 | 0.8121 | 0.5300 | nan | 0.6977 | 0.8275 | 0.0271 | 0.9569 | 0.1220 | 0.0 | 0.7163 | 0.0654 | 0.7150 | 0.0 | 0.0 | 0.9224 | 0.2333 | 0.6599 | 0.3537 | 0.1412 | nan | 0.3349 | 0.5894 | 0.5763 | 0.0 | 0.9542 | 0.8557 | 0.9837 | 0.0079 | 0.2481 | 0.4951 | 0.0 | nan | 0.7549 | 0.8665 | 0.7145 | 0.7176 | 0.4058 | nan | 0.5809 | 0.6203 | 0.0147 | 0.8614 | 0.1082 | 0.0 | 0.4864 | 0.0654 | 0.5410 | 0.0 | 0.0 | 0.7728 | 0.2017 | 0.5630 | 0.3100 | 0.1315 | nan | 0.2410 | 0.4916 | 0.3759 | 0.0 | 0.8892 | 0.7703 | 0.9499 | 0.0067 | 0.1155 | 0.3761 | 0.0 |
| 0.1021 | 22.4 | 4480 | 0.6624 | 0.4058 | 0.4860 | 0.8766 | nan | 0.8609 | 0.9531 | 0.7598 | 0.8181 | 0.5222 | nan | 0.6821 | 0.8110 | 0.1090 | 0.9507 | 0.1304 | 0.0 | 0.7379 | 0.0732 | 0.7369 | 0.0 | 0.0 | 0.9206 | 0.1910 | 0.6836 | 0.4226 | 0.2346 | nan | 0.2167 | 0.6100 | 0.5774 | 0.0 | 0.9527 | 0.8661 | 0.9817 | 0.0058 | 0.2534 | 0.4897 | 0.0 | nan | 0.7584 | 0.8716 | 0.7144 | 0.7334 | 0.3854 | nan | 0.5682 | 0.5957 | 0.0472 | 0.8653 | 0.1130 | 0.0 | 0.4996 | 0.0732 | 0.5125 | 0.0 | 0.0 | 0.7731 | 0.1765 | 0.5758 | 0.3386 | 0.1997 | nan | 0.1902 | 0.4950 | 0.3736 | 0.0 | 0.8902 | 0.7776 | 0.9509 | 0.0048 | 0.1255 | 0.3748 | 0.0 |
| 0.0872 | 22.5 | 4500 | 0.6689 | 0.4063 | 0.4868 | 0.8745 | nan | 0.8574 | 0.9529 | 0.8159 | 0.8035 | 0.5175 | nan | 0.6869 | 0.7413 | 0.2261 | 0.9517 | 0.1434 | 0.0002 | 0.7643 | 0.0877 | 0.6973 | 0.0 | 0.0 | 0.9308 | 0.1619 | 0.5909 | 0.4018 | 0.3157 | nan | 0.2351 | 0.6278 | 0.5717 | 0.0 | 0.9580 | 0.8582 | 0.9820 | 0.0176 | 0.2352 | 0.4442 | 0.0 | nan | 0.7623 | 0.8723 | 0.6897 | 0.7278 | 0.3847 | nan | 0.5636 | 0.6053 | 0.0667 | 0.8630 | 0.1199 | 0.0002 | 0.5100 | 0.0877 | 0.5358 | 0.0 | 0.0 | 0.7563 | 0.1431 | 0.5301 | 0.3409 | 0.2571 | nan | 0.1989 | 0.4989 | 0.3886 | 0.0 | 0.8874 | 0.7713 | 0.9510 | 0.0122 | 0.1084 | 0.3682 | 0.0 |
| 0.0983 | 22.6 | 4520 | 0.7023 | 0.3976 | 0.4705 | 0.8686 | nan | 0.8058 | 0.9578 | 0.8044 | 0.8129 | 0.5313 | nan | 0.6656 | 0.8009 | 0.0983 | 0.9533 | 0.1359 | 0.0 | 0.5326 | 0.0680 | 0.6913 | 0.0 | 0.0016 | 0.9358 | 0.1274 | 0.5976 | 0.3870 | 0.3395 | nan | 0.1922 | 0.6224 | 0.5431 | 0.0 | 0.9529 | 0.8436 | 0.9845 | 0.0118 | 0.2043 | 0.4549 | 0.0 | nan | 0.7301 | 0.8665 | 0.6552 | 0.7167 | 0.3797 | nan | 0.5711 | 0.6217 | 0.0392 | 0.8612 | 0.1163 | 0.0 | 0.4311 | 0.0680 | 0.5479 | 0.0 | 0.0015 | 0.7544 | 0.1128 | 0.5237 | 0.3256 | 0.2716 | nan | 0.1567 | 0.4959 | 0.3898 | 0.0 | 0.8861 | 0.7586 | 0.9494 | 0.0068 | 0.1104 | 0.3756 | 0.0 |
| 0.1209 | 22.7 | 4540 | 0.6888 | 0.4058 | 0.4847 | 0.8721 | nan | 0.8228 | 0.9569 | 0.7871 | 0.8190 | 0.5117 | nan | 0.7215 | 0.8375 | 0.0268 | 0.9549 | 0.1433 | 0.0 | 0.5613 | 0.1067 | 0.6863 | 0.0 | 0.0124 | 0.9308 | 0.1523 | 0.6273 | 0.4237 | 0.4561 | nan | 0.2320 | 0.6087 | 0.5332 | 0.0 | 0.9446 | 0.8729 | 0.9841 | 0.0056 | 0.3310 | 0.4608 | 0.0 | nan | 0.7441 | 0.8699 | 0.6695 | 0.7164 | 0.3835 | nan | 0.5778 | 0.6299 | 0.0147 | 0.8619 | 0.1226 | 0.0 | 0.4366 | 0.1066 | 0.5622 | 0.0 | 0.0117 | 0.7632 | 0.1349 | 0.5324 | 0.3502 | 0.3325 | nan | 0.1801 | 0.4954 | 0.3844 | 0.0 | 0.8894 | 0.7696 | 0.9505 | 0.0040 | 0.1223 | 0.3692 | 0.0 |
| 0.0824 | 22.8 | 4560 | 0.6736 | 0.3993 | 0.4740 | 0.8745 | nan | 0.8310 | 0.9552 | 0.7977 | 0.8584 | 0.5197 | nan | 0.6920 | 0.8539 | 0.0106 | 0.9566 | 0.1252 | 0.0011 | 0.6397 | 0.0409 | 0.6607 | 0.0 | 0.0032 | 0.9340 | 0.1506 | 0.5987 | 0.3985 | 0.3083 | nan | 0.2090 | 0.5958 | 0.5371 | 0.0 | 0.9536 | 0.8469 | 0.9855 | 0.0051 | 0.2170 | 0.4835 | 0.0 | nan | 0.7479 | 0.8744 | 0.6568 | 0.7333 | 0.3959 | nan | 0.5785 | 0.6096 | 0.0067 | 0.8609 | 0.1105 | 0.0011 | 0.4306 | 0.0409 | 0.5658 | 0.0 | 0.0031 | 0.7627 | 0.1352 | 0.5206 | 0.3350 | 0.2573 | nan | 0.1663 | 0.4924 | 0.3826 | 0.0 | 0.8878 | 0.7731 | 0.9471 | 0.0040 | 0.1089 | 0.3872 | 0.0 |
| 0.0955 | 22.9 | 4580 | 0.6769 | 0.3973 | 0.4726 | 0.8750 | nan | 0.8395 | 0.9518 | 0.8094 | 0.8573 | 0.5389 | nan | 0.6844 | 0.8181 | 0.0240 | 0.9536 | 0.1233 | 0.0 | 0.6615 | 0.0566 | 0.6939 | 0.0 | 0.0015 | 0.9378 | 0.1305 | 0.6115 | 0.3674 | 0.2542 | nan | 0.1922 | 0.5850 | 0.5552 | 0.0 | 0.9538 | 0.8550 | 0.9818 | 0.0104 | 0.2114 | 0.4616 | 0.0 | nan | 0.7574 | 0.8781 | 0.6485 | 0.7476 | 0.4006 | nan | 0.5743 | 0.6027 | 0.0124 | 0.8644 | 0.1103 | 0.0 | 0.4160 | 0.0566 | 0.5664 | 0.0 | 0.0014 | 0.7584 | 0.1177 | 0.5146 | 0.3165 | 0.2226 | nan | 0.1647 | 0.4900 | 0.3889 | 0.0 | 0.8875 | 0.7725 | 0.9506 | 0.0059 | 0.1090 | 0.3789 | 0.0 |
| 0.1196 | 23.0 | 4600 | 0.6728 | 0.4035 | 0.4759 | 0.8745 | nan | 0.8255 | 0.9565 | 0.7957 | 0.8567 | 0.5352 | nan | 0.7149 | 0.7660 | 0.0164 | 0.9594 | 0.1322 | 0.0020 | 0.7373 | 0.0622 | 0.6802 | 0.0 | 0.0034 | 0.9197 | 0.1516 | 0.6637 | 0.3872 | 0.2374 | nan | 0.2423 | 0.5818 | 0.5662 | 0.0 | 0.9616 | 0.8030 | 0.9793 | 0.0105 | 0.1726 | 0.5070 | 0.0 | nan | 0.7482 | 0.8715 | 0.6640 | 0.7457 | 0.4033 | nan | 0.5877 | 0.6187 | 0.0062 | 0.8592 | 0.1182 | 0.0020 | 0.4994 | 0.0622 | 0.5617 | 0.0 | 0.0033 | 0.7726 | 0.1381 | 0.5452 | 0.3192 | 0.2098 | nan | 0.1879 | 0.4902 | 0.3920 | 0.0 | 0.8796 | 0.7461 | 0.9529 | 0.0078 | 0.1243 | 0.3965 | 0.0 |
| 0.1144 | 23.1 | 4620 | 0.6609 | 0.4076 | 0.4822 | 0.8764 | nan | 0.8449 | 0.9573 | 0.7680 | 0.8435 | 0.5289 | nan | 0.6911 | 0.8111 | 0.0271 | 0.9566 | 0.1334 | 0.0065 | 0.7120 | 0.1387 | 0.6763 | 0.0 | 0.0017 | 0.9177 | 0.1278 | 0.6233 | 0.4501 | 0.2858 | nan | 0.1839 | 0.6163 | 0.5656 | 0.0 | 0.9523 | 0.8649 | 0.9804 | 0.0073 | 0.2385 | 0.5180 | 0.0 | nan | 0.7512 | 0.8727 | 0.6915 | 0.7513 | 0.4048 | nan | 0.5798 | 0.6187 | 0.0118 | 0.8619 | 0.1208 | 0.0065 | 0.4702 | 0.1386 | 0.5600 | 0.0 | 0.0016 | 0.7692 | 0.1193 | 0.5338 | 0.3470 | 0.2441 | nan | 0.1581 | 0.4946 | 0.3897 | 0.0 | 0.8891 | 0.7725 | 0.9528 | 0.0054 | 0.1337 | 0.3932 | 0.0 |
| 0.1147 | 23.2 | 4640 | 0.6673 | 0.4042 | 0.4842 | 0.8765 | nan | 0.8462 | 0.9556 | 0.7864 | 0.8425 | 0.5362 | nan | 0.7036 | 0.8250 | 0.0328 | 0.9598 | 0.1363 | 0.0 | 0.7146 | 0.0945 | 0.6819 | 0.0 | 0.0 | 0.9310 | 0.1955 | 0.6343 | 0.4073 | 0.2949 | nan | 0.2135 | 0.6039 | 0.5779 | 0.0 | 0.9519 | 0.8486 | 0.9804 | 0.0079 | 0.2781 | 0.4553 | 0.0 | nan | 0.7555 | 0.8744 | 0.6860 | 0.7501 | 0.3970 | nan | 0.5739 | 0.6089 | 0.0172 | 0.8584 | 0.1163 | 0.0 | 0.4415 | 0.0944 | 0.5553 | 0.0 | 0.0 | 0.7657 | 0.1683 | 0.5395 | 0.3418 | 0.2349 | nan | 0.1732 | 0.4906 | 0.3635 | 0.0 | 0.8903 | 0.7753 | 0.9524 | 0.0064 | 0.1280 | 0.3766 | 0.0 |
| 0.0797 | 23.3 | 4660 | 0.6934 | 0.4041 | 0.4799 | 0.8736 | nan | 0.8226 | 0.9545 | 0.7549 | 0.8589 | 0.5554 | nan | 0.6764 | 0.8197 | 0.0164 | 0.9529 | 0.1220 | 0.0 | 0.6507 | 0.0652 | 0.6900 | 0.0 | 0.0 | 0.9273 | 0.1986 | 0.6386 | 0.3753 | 0.2942 | nan | 0.2419 | 0.6171 | 0.5872 | 0.0 | 0.9531 | 0.8602 | 0.9845 | 0.0076 | 0.2604 | 0.4724 | 0.0 | nan | 0.7388 | 0.8706 | 0.6904 | 0.7298 | 0.3955 | nan | 0.5787 | 0.6149 | 0.0105 | 0.8611 | 0.1066 | 0.0 | 0.4802 | 0.0651 | 0.5646 | 0.0 | 0.0 | 0.7635 | 0.1704 | 0.5359 | 0.3274 | 0.2392 | nan | 0.1948 | 0.4917 | 0.3767 | 0.0 | 0.8902 | 0.7752 | 0.9505 | 0.0069 | 0.1253 | 0.3780 | 0.0 |
| 0.0965 | 23.4 | 4680 | 0.7067 | 0.4014 | 0.4765 | 0.8717 | nan | 0.8330 | 0.9523 | 0.7460 | 0.8488 | 0.5634 | nan | 0.6929 | 0.8100 | 0.0555 | 0.9566 | 0.1322 | 0.0 | 0.6135 | 0.1201 | 0.7288 | 0.0 | 0.0 | 0.9314 | 0.1291 | 0.5895 | 0.3716 | 0.3378 | nan | 0.2263 | 0.5871 | 0.5389 | 0.0 | 0.9494 | 0.8527 | 0.9822 | 0.0012 | 0.2427 | 0.4541 | 0.0 | nan | 0.7438 | 0.8718 | 0.6884 | 0.7370 | 0.3878 | nan | 0.5796 | 0.6060 | 0.0254 | 0.8590 | 0.1164 | 0.0 | 0.4471 | 0.1201 | 0.5629 | 0.0 | 0.0 | 0.7508 | 0.1147 | 0.4962 | 0.3251 | 0.2780 | nan | 0.1828 | 0.4891 | 0.3770 | 0.0 | 0.8855 | 0.7589 | 0.9526 | 0.0011 | 0.1225 | 0.3662 | 0.0 |
| 0.1366 | 23.5 | 4700 | 0.6898 | 0.4134 | 0.4982 | 0.8730 | nan | 0.8253 | 0.9597 | 0.7906 | 0.8212 | 0.5107 | nan | 0.6995 | 0.8227 | 0.0240 | 0.9501 | 0.1438 | 0.0149 | 0.8054 | 0.2313 | 0.7367 | 0.0 | 0.0085 | 0.8985 | 0.3260 | 0.6925 | 0.3509 | 0.2820 | nan | 0.3289 | 0.6285 | 0.5403 | 0.0 | 0.9552 | 0.8376 | 0.9854 | 0.0036 | 0.2508 | 0.5173 | 0.0 | nan | 0.7431 | 0.8684 | 0.6978 | 0.7212 | 0.3905 | nan | 0.5702 | 0.6110 | 0.0107 | 0.8661 | 0.1260 | 0.0148 | 0.4738 | 0.2312 | 0.5671 | 0.0 | 0.0082 | 0.7703 | 0.2687 | 0.5575 | 0.3061 | 0.2209 | nan | 0.2486 | 0.4899 | 0.3764 | 0.0 | 0.8827 | 0.7573 | 0.9497 | 0.0033 | 0.1107 | 0.3857 | 0.0 |
| 0.0908 | 23.6 | 4720 | 0.6770 | 0.4098 | 0.4881 | 0.8756 | nan | 0.8416 | 0.9511 | 0.7898 | 0.8537 | 0.5607 | nan | 0.6894 | 0.8402 | 0.0040 | 0.9572 | 0.1218 | 0.0037 | 0.6462 | 0.1959 | 0.6786 | 0.0 | 0.0095 | 0.9199 | 0.2052 | 0.6373 | 0.3794 | 0.3195 | nan | 0.3122 | 0.6081 | 0.5116 | 0.0 | 0.9548 | 0.8582 | 0.9822 | 0.0023 | 0.3116 | 0.4751 | 0.0 | nan | 0.7554 | 0.8787 | 0.6755 | 0.7475 | 0.3776 | nan | 0.5807 | 0.6166 | 0.0025 | 0.8624 | 0.1074 | 0.0037 | 0.4293 | 0.1958 | 0.5660 | 0.0 | 0.0091 | 0.7657 | 0.1809 | 0.5559 | 0.3133 | 0.2630 | nan | 0.2546 | 0.4961 | 0.3786 | 0.0 | 0.8875 | 0.7730 | 0.9517 | 0.0019 | 0.1079 | 0.3751 | 0.0 |
| 0.1014 | 23.7 | 4740 | 0.6535 | 0.4063 | 0.4823 | 0.8735 | nan | 0.8430 | 0.9501 | 0.8058 | 0.8021 | 0.5354 | nan | 0.7165 | 0.8378 | 0.0109 | 0.9548 | 0.1042 | 0.0133 | 0.6325 | 0.0786 | 0.6767 | 0.0 | 0.0003 | 0.9215 | 0.1791 | 0.6628 | 0.3357 | 0.3620 | nan | 0.3204 | 0.6167 | 0.5248 | 0.0 | 0.9541 | 0.8546 | 0.9855 | 0.0132 | 0.2390 | 0.5036 | 0.0 | nan | 0.7544 | 0.8748 | 0.6597 | 0.7311 | 0.3679 | nan | 0.5745 | 0.6423 | 0.0075 | 0.8625 | 0.0925 | 0.0133 | 0.4476 | 0.0785 | 0.5741 | 0.0 | 0.0003 | 0.7645 | 0.1578 | 0.5596 | 0.2964 | 0.2935 | nan | 0.2556 | 0.4971 | 0.3898 | 0.0 | 0.8873 | 0.7724 | 0.9498 | 0.0085 | 0.1011 | 0.3875 | 0.0 |
| 0.102 | 23.8 | 4760 | 0.6747 | 0.4017 | 0.4770 | 0.8742 | nan | 0.8188 | 0.9561 | 0.8030 | 0.8568 | 0.5305 | nan | 0.6926 | 0.8115 | 0.0258 | 0.9537 | 0.0933 | 0.0 | 0.6117 | 0.0918 | 0.7096 | 0.0 | 0.0003 | 0.9281 | 0.1678 | 0.6539 | 0.3376 | 0.3058 | nan | 0.3111 | 0.6180 | 0.5367 | 0.0 | 0.9519 | 0.8692 | 0.9838 | 0.0037 | 0.1622 | 0.4779 | 0.0 | nan | 0.7398 | 0.8785 | 0.6542 | 0.7370 | 0.3722 | nan | 0.5798 | 0.5885 | 0.0108 | 0.8663 | 0.0825 | 0.0 | 0.4224 | 0.0918 | 0.5818 | 0.0 | 0.0003 | 0.7673 | 0.1502 | 0.5593 | 0.2970 | 0.2544 | nan | 0.2420 | 0.4978 | 0.3933 | 0.0 | 0.8884 | 0.7793 | 0.9499 | 0.0026 | 0.0884 | 0.3787 | 0.0 |
| 0.1469 | 23.9 | 4780 | 0.6532 | 0.4060 | 0.4836 | 0.8787 | nan | 0.8692 | 0.9580 | 0.7645 | 0.8406 | 0.5217 | nan | 0.6817 | 0.7427 | 0.0926 | 0.9555 | 0.1089 | 0.0 | 0.5908 | 0.1198 | 0.7532 | 0.0 | 0.0020 | 0.9314 | 0.2335 | 0.6322 | 0.3620 | 0.3100 | nan | 0.3448 | 0.5898 | 0.5816 | 0.0 | 0.9518 | 0.8482 | 0.9816 | 0.0056 | 0.2243 | 0.4756 | 0.0 | nan | 0.7724 | 0.8805 | 0.6834 | 0.7630 | 0.3912 | nan | 0.5737 | 0.5794 | 0.0273 | 0.8663 | 0.0947 | 0.0 | 0.4012 | 0.1198 | 0.5659 | 0.0 | 0.0020 | 0.7664 | 0.2007 | 0.5522 | 0.3059 | 0.2548 | nan | 0.2398 | 0.4910 | 0.3870 | 0.0 | 0.8851 | 0.7671 | 0.9514 | 0.0042 | 0.0953 | 0.3706 | 0.0 |
| 0.0832 | 24.0 | 4800 | 0.6606 | 0.4047 | 0.4815 | 0.8758 | nan | 0.8290 | 0.9556 | 0.7845 | 0.8629 | 0.5526 | nan | 0.6877 | 0.8289 | 0.0126 | 0.9567 | 0.1224 | 0.0 | 0.6626 | 0.1311 | 0.6637 | 0.0 | 0.0090 | 0.9326 | 0.0793 | 0.6616 | 0.3595 | 0.3732 | nan | 0.2827 | 0.6086 | 0.5777 | 0.0 | 0.9524 | 0.8613 | 0.9847 | 0.0140 | 0.2216 | 0.4388 | 0.0 | nan | 0.7495 | 0.8800 | 0.6644 | 0.7370 | 0.3917 | nan | 0.5861 | 0.6419 | 0.0082 | 0.8640 | 0.1073 | 0.0 | 0.4011 | 0.1310 | 0.5753 | 0.0 | 0.0089 | 0.7656 | 0.0747 | 0.5575 | 0.3065 | 0.2953 | nan | 0.2261 | 0.4960 | 0.3872 | 0.0 | 0.8866 | 0.7757 | 0.9502 | 0.0096 | 0.1024 | 0.3698 | 0.0 |
| 0.1054 | 24.1 | 4820 | 0.6621 | 0.4131 | 0.4917 | 0.8779 | nan | 0.8668 | 0.9545 | 0.7446 | 0.8404 | 0.5394 | nan | 0.6960 | 0.8436 | 0.0180 | 0.9535 | 0.1369 | 0.0 | 0.6041 | 0.2740 | 0.6958 | 0.0 | 0.0260 | 0.9239 | 0.2214 | 0.6427 | 0.3805 | 0.2423 | nan | 0.4048 | 0.5851 | 0.5905 | 0.0 | 0.9549 | 0.8283 | 0.9830 | 0.0152 | 0.2682 | 0.5001 | 0.0 | nan | 0.7693 | 0.8823 | 0.6863 | 0.7551 | 0.3808 | nan | 0.5851 | 0.6125 | 0.0100 | 0.8680 | 0.1182 | 0.0 | 0.3845 | 0.2736 | 0.5852 | 0.0 | 0.0255 | 0.7721 | 0.1944 | 0.5505 | 0.3180 | 0.2073 | nan | 0.2891 | 0.4955 | 0.3669 | 0.0 | 0.8834 | 0.7560 | 0.9512 | 0.0100 | 0.1112 | 0.3785 | 0.0 |
| 0.0628 | 24.2 | 4840 | 0.6659 | 0.4126 | 0.4973 | 0.8764 | nan | 0.8482 | 0.9532 | 0.8024 | 0.8445 | 0.5336 | nan | 0.6979 | 0.8672 | 0.0248 | 0.9586 | 0.1514 | 0.0 | 0.6141 | 0.2115 | 0.6955 | 0.0 | 0.0052 | 0.9133 | 0.2168 | 0.6544 | 0.4175 | 0.3947 | nan | 0.3573 | 0.6188 | 0.5859 | 0.0 | 0.9544 | 0.8420 | 0.9826 | 0.0076 | 0.2786 | 0.4811 | 0.0 | nan | 0.7621 | 0.8762 | 0.6918 | 0.7523 | 0.3880 | nan | 0.5765 | 0.5741 | 0.0149 | 0.8643 | 0.1291 | 0.0 | 0.4119 | 0.2112 | 0.5678 | 0.0 | 0.0052 | 0.7720 | 0.1904 | 0.5424 | 0.3399 | 0.3102 | nan | 0.2791 | 0.4959 | 0.3576 | 0.0 | 0.8856 | 0.7586 | 0.9511 | 0.0060 | 0.1135 | 0.3753 | 0.0 |
| 0.0991 | 24.3 | 4860 | 0.6955 | 0.4082 | 0.4875 | 0.8761 | nan | 0.8536 | 0.9518 | 0.8091 | 0.8414 | 0.5575 | nan | 0.6870 | 0.8289 | 0.0324 | 0.9480 | 0.1085 | 0.0 | 0.5813 | 0.1625 | 0.7587 | 0.0 | 0.0232 | 0.9303 | 0.2009 | 0.6298 | 0.3871 | 0.4062 | nan | 0.2810 | 0.5868 | 0.5593 | 0.0 | 0.9548 | 0.8246 | 0.9849 | 0.0032 | 0.2298 | 0.4767 | 0.0 | nan | 0.7655 | 0.8783 | 0.6721 | 0.7540 | 0.3832 | nan | 0.5760 | 0.5723 | 0.0179 | 0.8676 | 0.0964 | 0.0 | 0.4293 | 0.1624 | 0.5609 | 0.0 | 0.0230 | 0.7676 | 0.1764 | 0.5444 | 0.3243 | 0.3140 | nan | 0.2434 | 0.4931 | 0.3775 | 0.0 | 0.8835 | 0.7535 | 0.9503 | 0.0026 | 0.0972 | 0.3749 | 0.0 |
| 0.1244 | 24.4 | 4880 | 0.6913 | 0.4070 | 0.4834 | 0.8750 | nan | 0.8484 | 0.9514 | 0.7952 | 0.8303 | 0.5339 | nan | 0.7220 | 0.8061 | 0.0202 | 0.9484 | 0.1076 | 0.0185 | 0.5105 | 0.1573 | 0.7423 | 0.0 | 0.0147 | 0.9346 | 0.2283 | 0.6113 | 0.3916 | 0.3409 | nan | 0.3059 | 0.6206 | 0.5449 | 0.0 | 0.9550 | 0.8421 | 0.9806 | 0.0050 | 0.2446 | 0.4554 | 0.0 | nan | 0.7589 | 0.8740 | 0.6844 | 0.7453 | 0.3829 | nan | 0.5773 | 0.6150 | 0.0107 | 0.8623 | 0.0949 | 0.0184 | 0.3722 | 0.1573 | 0.5755 | 0.0 | 0.0146 | 0.7645 | 0.1975 | 0.5299 | 0.3193 | 0.2635 | nan | 0.2408 | 0.4983 | 0.3800 | 0.0 | 0.8852 | 0.7619 | 0.9523 | 0.0040 | 0.1092 | 0.3730 | 0.0 |
| 0.1156 | 24.5 | 4900 | 0.6872 | 0.4104 | 0.4857 | 0.8740 | nan | 0.8472 | 0.9539 | 0.8035 | 0.7991 | 0.5354 | nan | 0.6961 | 0.8381 | 0.0211 | 0.9500 | 0.1042 | 0.0164 | 0.5515 | 0.2262 | 0.7248 | 0.0 | 0.0216 | 0.9260 | 0.1495 | 0.6373 | 0.4013 | 0.3315 | nan | 0.3628 | 0.5909 | 0.5302 | 0.0 | 0.9539 | 0.8443 | 0.9846 | 0.0044 | 0.2430 | 0.4948 | 0.0 | nan | 0.7509 | 0.8737 | 0.6822 | 0.7162 | 0.3894 | nan | 0.5797 | 0.6099 | 0.0130 | 0.8638 | 0.0916 | 0.0164 | 0.4414 | 0.2259 | 0.5915 | 0.0 | 0.0215 | 0.7678 | 0.1346 | 0.5359 | 0.3177 | 0.2581 | nan | 0.2672 | 0.4943 | 0.3782 | 0.0 | 0.8868 | 0.7687 | 0.9510 | 0.0034 | 0.1181 | 0.3842 | 0.0 |
| 0.1161 | 24.6 | 4920 | 0.6739 | 0.4109 | 0.4828 | 0.8753 | nan | 0.8585 | 0.9563 | 0.7776 | 0.8028 | 0.5214 | nan | 0.6980 | 0.8283 | 0.0100 | 0.9572 | 0.1064 | 0.0 | 0.5024 | 0.2197 | 0.7194 | 0.0 | 0.0005 | 0.9343 | 0.1388 | 0.6306 | 0.4056 | 0.2956 | nan | 0.4097 | 0.6059 | 0.5564 | 0.0 | 0.9504 | 0.8251 | 0.9853 | 0.0201 | 0.2503 | 0.4829 | 0.0 | nan | 0.7581 | 0.8764 | 0.6901 | 0.7238 | 0.4003 | nan | 0.5772 | 0.6326 | 0.0064 | 0.8622 | 0.0935 | 0.0 | 0.4033 | 0.2191 | 0.5943 | 0.0 | 0.0005 | 0.7664 | 0.1255 | 0.5445 | 0.3369 | 0.2515 | nan | 0.3306 | 0.5028 | 0.3723 | 0.0 | 0.8853 | 0.7556 | 0.9504 | 0.0122 | 0.1017 | 0.3758 | 0.0 |
| 0.0637 | 24.7 | 4940 | 0.6632 | 0.4097 | 0.4835 | 0.8764 | nan | 0.8464 | 0.9557 | 0.8120 | 0.8365 | 0.5221 | nan | 0.6857 | 0.8429 | 0.0299 | 0.9485 | 0.1338 | 0.0 | 0.4987 | 0.1103 | 0.7168 | 0.0 | 0.0032 | 0.9244 | 0.1512 | 0.6448 | 0.3985 | 0.3803 | nan | 0.3515 | 0.6227 | 0.5915 | 0.0 | 0.9588 | 0.8445 | 0.9812 | 0.0259 | 0.1926 | 0.4600 | 0.0 | nan | 0.7592 | 0.8776 | 0.6662 | 0.7446 | 0.4036 | nan | 0.5652 | 0.6249 | 0.0187 | 0.8637 | 0.1150 | 0.0 | 0.4005 | 0.1101 | 0.5944 | 0.0 | 0.0032 | 0.7679 | 0.1344 | 0.5437 | 0.3184 | 0.3012 | nan | 0.2867 | 0.4977 | 0.3855 | 0.0 | 0.8851 | 0.7606 | 0.9509 | 0.0149 | 0.1346 | 0.3814 | 0.0 |
| 0.0985 | 24.8 | 4960 | 0.6682 | 0.4116 | 0.4878 | 0.8794 | nan | 0.8668 | 0.9547 | 0.7974 | 0.8458 | 0.5332 | nan | 0.6825 | 0.8161 | 0.0215 | 0.9582 | 0.1394 | 0.0 | 0.6203 | 0.1289 | 0.6870 | 0.0 | 0.0065 | 0.9294 | 0.1776 | 0.6455 | 0.3973 | 0.4017 | nan | 0.2997 | 0.6134 | 0.5755 | 0.0 | 0.9516 | 0.8513 | 0.9842 | 0.0146 | 0.2445 | 0.4660 | 0.0 | nan | 0.7747 | 0.8812 | 0.6855 | 0.7584 | 0.3930 | nan | 0.5663 | 0.6446 | 0.0122 | 0.8604 | 0.1209 | 0.0 | 0.4040 | 0.1288 | 0.5813 | 0.0 | 0.0065 | 0.7709 | 0.1549 | 0.5461 | 0.3154 | 0.3114 | nan | 0.2470 | 0.4980 | 0.3755 | 0.0 | 0.8899 | 0.7729 | 0.9505 | 0.0092 | 0.1344 | 0.3784 | 0.0 |
| 0.0761 | 24.9 | 4980 | 0.6739 | 0.4110 | 0.4890 | 0.8768 | nan | 0.8640 | 0.9506 | 0.7996 | 0.8113 | 0.5416 | nan | 0.6980 | 0.8474 | 0.0488 | 0.9506 | 0.1134 | 0.0036 | 0.6406 | 0.1765 | 0.7130 | 0.0 | 0.0 | 0.9279 | 0.2156 | 0.6395 | 0.3693 | 0.2851 | nan | 0.3728 | 0.5819 | 0.5480 | 0.0 | 0.9541 | 0.8624 | 0.9829 | 0.0202 | 0.2360 | 0.4945 | 0.0 | nan | 0.7687 | 0.8807 | 0.6984 | 0.7350 | 0.3854 | nan | 0.5674 | 0.6164 | 0.0271 | 0.8653 | 0.0989 | 0.0036 | 0.4341 | 0.1763 | 0.5854 | 0.0 | 0.0 | 0.7705 | 0.1856 | 0.5469 | 0.3020 | 0.2374 | nan | 0.2850 | 0.4921 | 0.3710 | 0.0 | 0.8867 | 0.7714 | 0.9507 | 0.0110 | 0.1154 | 0.3827 | 0.0 |
| 0.0735 | 25.0 | 5000 | 0.6830 | 0.4082 | 0.4872 | 0.8746 | nan | 0.8526 | 0.9559 | 0.8056 | 0.7894 | 0.5199 | nan | 0.6850 | 0.8030 | 0.1254 | 0.9522 | 0.1047 | 0.0 | 0.6198 | 0.1374 | 0.7549 | 0.0 | 0.0015 | 0.9279 | 0.1950 | 0.6612 | 0.3706 | 0.2416 | nan | 0.3857 | 0.6293 | 0.5656 | 0.0 | 0.9538 | 0.8347 | 0.9810 | 0.0132 | 0.2424 | 0.4825 | 0.0 | nan | 0.7567 | 0.8744 | 0.6918 | 0.7206 | 0.3850 | nan | 0.5699 | 0.6128 | 0.0516 | 0.8634 | 0.0923 | 0.0 | 0.4538 | 0.1373 | 0.5654 | 0.0 | 0.0014 | 0.7704 | 0.1717 | 0.5527 | 0.3110 | 0.2065 | nan | 0.2869 | 0.4934 | 0.3816 | 0.0 | 0.8848 | 0.7593 | 0.9523 | 0.0082 | 0.1241 | 0.3836 | 0.0 |
| 0.0938 | 25.1 | 5020 | 0.6645 | 0.4116 | 0.4882 | 0.8781 | nan | 0.8499 | 0.9551 | 0.8119 | 0.8610 | 0.5020 | nan | 0.6796 | 0.8278 | 0.0481 | 0.9580 | 0.1147 | 0.0 | 0.6345 | 0.1092 | 0.7140 | 0.0 | 0.0107 | 0.9178 | 0.1656 | 0.6692 | 0.4067 | 0.3954 | nan | 0.2975 | 0.6107 | 0.5512 | 0.0 | 0.9543 | 0.8624 | 0.9816 | 0.0058 | 0.2392 | 0.4898 | 0.0 | nan | 0.7644 | 0.8812 | 0.6835 | 0.7389 | 0.3873 | nan | 0.5716 | 0.6184 | 0.0260 | 0.8597 | 0.1006 | 0.0 | 0.4904 | 0.1090 | 0.5648 | 0.0 | 0.0104 | 0.7717 | 0.1496 | 0.5551 | 0.3267 | 0.3090 | nan | 0.2399 | 0.5007 | 0.3807 | 0.0 | 0.8883 | 0.7700 | 0.9509 | 0.0040 | 0.1360 | 0.3809 | 0.0 |
| 0.093 | 25.2 | 5040 | 0.6889 | 0.4094 | 0.4870 | 0.8747 | nan | 0.8459 | 0.9616 | 0.7975 | 0.7967 | 0.5299 | nan | 0.6816 | 0.8436 | 0.0369 | 0.9504 | 0.1119 | 0.0 | 0.5495 | 0.1542 | 0.7090 | 0.0 | 0.0110 | 0.9289 | 0.2162 | 0.6300 | 0.3669 | 0.4266 | nan | 0.3106 | 0.6245 | 0.5737 | 0.0 | 0.9493 | 0.8377 | 0.9829 | 0.0034 | 0.2728 | 0.4795 | 0.0 | nan | 0.7568 | 0.8718 | 0.6990 | 0.7256 | 0.3905 | nan | 0.5750 | 0.5860 | 0.0194 | 0.8629 | 0.0962 | 0.0 | 0.4309 | 0.1541 | 0.5898 | 0.0 | 0.0107 | 0.7672 | 0.1901 | 0.5447 | 0.3203 | 0.3227 | nan | 0.2274 | 0.4974 | 0.3704 | 0.0 | 0.8879 | 0.7670 | 0.9509 | 0.0023 | 0.1111 | 0.3720 | 0.0 |
| 0.075 | 25.3 | 5060 | 0.6667 | 0.4123 | 0.4879 | 0.8759 | nan | 0.8341 | 0.9488 | 0.8000 | 0.8593 | 0.5572 | nan | 0.7305 | 0.8057 | 0.0129 | 0.9501 | 0.1211 | 0.0 | 0.5537 | 0.1523 | 0.6850 | 0.0 | 0.0085 | 0.9328 | 0.1743 | 0.6494 | 0.3818 | 0.4368 | nan | 0.3142 | 0.5996 | 0.5596 | 0.0 | 0.9507 | 0.8710 | 0.9842 | 0.0056 | 0.2599 | 0.4734 | 0.0 | nan | 0.7514 | 0.8764 | 0.7078 | 0.7405 | 0.3926 | nan | 0.5763 | 0.6279 | 0.0074 | 0.8605 | 0.1038 | 0.0 | 0.4455 | 0.1521 | 0.5823 | 0.0 | 0.0081 | 0.7689 | 0.1574 | 0.5531 | 0.3275 | 0.3353 | nan | 0.2247 | 0.4981 | 0.3831 | 0.0 | 0.8894 | 0.7808 | 0.9505 | 0.0039 | 0.1115 | 0.3755 | 0.0 |
| 0.0883 | 25.4 | 5080 | 0.6826 | 0.4071 | 0.4811 | 0.8782 | nan | 0.8498 | 0.9660 | 0.7923 | 0.8490 | 0.4725 | nan | 0.6617 | 0.8420 | 0.0195 | 0.9434 | 0.1262 | 0.0 | 0.6498 | 0.1398 | 0.6956 | 0.0 | 0.0 | 0.9290 | 0.1854 | 0.6294 | 0.3749 | 0.3810 | nan | 0.1998 | 0.6090 | 0.5451 | 0.0 | 0.9577 | 0.8428 | 0.9847 | 0.0020 | 0.2837 | 0.4641 | 0.0 | nan | 0.7571 | 0.8752 | 0.7074 | 0.7545 | 0.3956 | nan | 0.5682 | 0.5973 | 0.0116 | 0.8641 | 0.1088 | 0.0 | 0.4206 | 0.1397 | 0.5925 | 0.0 | 0.0 | 0.7698 | 0.1680 | 0.5493 | 0.3142 | 0.3030 | nan | 0.1681 | 0.4992 | 0.3759 | 0.0 | 0.8855 | 0.7756 | 0.9511 | 0.0017 | 0.1063 | 0.3670 | 0.0 |
| 0.0816 | 25.5 | 5100 | 0.6807 | 0.4114 | 0.4955 | 0.8749 | nan | 0.8345 | 0.9478 | 0.8324 | 0.8536 | 0.5572 | nan | 0.7033 | 0.7725 | 0.1826 | 0.9557 | 0.1266 | 0.0 | 0.7428 | 0.0977 | 0.7280 | 0.0 | 0.0050 | 0.9258 | 0.2657 | 0.6480 | 0.3696 | 0.3062 | nan | 0.3317 | 0.6083 | 0.5698 | 0.0 | 0.9562 | 0.8370 | 0.9822 | 0.0077 | 0.2130 | 0.4945 | 0.0 | nan | 0.7530 | 0.8759 | 0.6533 | 0.7513 | 0.4000 | nan | 0.5683 | 0.6028 | 0.0512 | 0.8618 | 0.1103 | 0.0 | 0.5336 | 0.0977 | 0.5827 | 0.0 | 0.0049 | 0.7748 | 0.2246 | 0.5527 | 0.3123 | 0.2552 | nan | 0.2516 | 0.4962 | 0.3681 | 0.0 | 0.8845 | 0.7606 | 0.9528 | 0.0048 | 0.0989 | 0.3816 | 0.0 |
| 0.0916 | 25.6 | 5120 | 0.7149 | 0.4123 | 0.4943 | 0.8733 | nan | 0.8150 | 0.9578 | 0.8043 | 0.8584 | 0.5208 | nan | 0.6757 | 0.7541 | 0.2774 | 0.9568 | 0.1717 | 0.0 | 0.6621 | 0.0629 | 0.7186 | 0.0 | 0.0065 | 0.9310 | 0.2619 | 0.6287 | 0.3896 | 0.3775 | nan | 0.2891 | 0.6290 | 0.5645 | 0.0 | 0.9525 | 0.8389 | 0.9825 | 0.0055 | 0.2428 | 0.4810 | 0.0 | nan | 0.7377 | 0.8732 | 0.6804 | 0.7161 | 0.3912 | nan | 0.5710 | 0.6170 | 0.0662 | 0.8598 | 0.1508 | 0.0 | 0.4993 | 0.0629 | 0.5755 | 0.0 | 0.0064 | 0.7720 | 0.2194 | 0.5453 | 0.3182 | 0.3081 | nan | 0.2384 | 0.4975 | 0.3752 | 0.0 | 0.8870 | 0.7674 | 0.9532 | 0.0039 | 0.1123 | 0.3868 | 0.0 |
| 0.0756 | 25.7 | 5140 | 0.6823 | 0.4106 | 0.4847 | 0.8764 | nan | 0.8456 | 0.9563 | 0.8080 | 0.8325 | 0.5236 | nan | 0.7090 | 0.8032 | 0.0222 | 0.9552 | 0.1291 | 0.0 | 0.6489 | 0.1083 | 0.6883 | 0.0 | 0.0041 | 0.9370 | 0.2403 | 0.6077 | 0.3606 | 0.3683 | nan | 0.3181 | 0.6060 | 0.5516 | 0.0 | 0.9540 | 0.8402 | 0.9832 | 0.0093 | 0.2087 | 0.4923 | 0.0 | nan | 0.7600 | 0.8755 | 0.7023 | 0.7397 | 0.4002 | nan | 0.5797 | 0.6311 | 0.0085 | 0.8632 | 0.1114 | 0.0 | 0.4545 | 0.1082 | 0.5811 | 0.0 | 0.0039 | 0.7603 | 0.2042 | 0.5239 | 0.3056 | 0.2967 | nan | 0.2467 | 0.4979 | 0.3758 | 0.0 | 0.8863 | 0.7610 | 0.9513 | 0.0073 | 0.1088 | 0.3932 | 0.0 |
| 0.0803 | 25.8 | 5160 | 0.6809 | 0.4101 | 0.4872 | 0.8765 | nan | 0.8516 | 0.9534 | 0.7921 | 0.8191 | 0.5660 | nan | 0.6904 | 0.8421 | 0.0473 | 0.9555 | 0.1229 | 0.0 | 0.6922 | 0.0765 | 0.7293 | 0.0 | 0.0033 | 0.9232 | 0.1971 | 0.6275 | 0.3768 | 0.3648 | nan | 0.2874 | 0.5885 | 0.5604 | 0.0 | 0.9569 | 0.8549 | 0.9839 | 0.0082 | 0.2141 | 0.5045 | 0.0 | nan | 0.7598 | 0.8736 | 0.7219 | 0.7322 | 0.4040 | nan | 0.5802 | 0.6153 | 0.0208 | 0.8647 | 0.1069 | 0.0 | 0.4975 | 0.0765 | 0.5739 | 0.0 | 0.0033 | 0.7707 | 0.1722 | 0.5427 | 0.3144 | 0.2992 | nan | 0.2225 | 0.4932 | 0.3685 | 0.0 | 0.8873 | 0.7701 | 0.9497 | 0.0060 | 0.1062 | 0.3894 | 0.0 |
| 0.0942 | 25.9 | 5180 | 0.6411 | 0.4150 | 0.4918 | 0.8804 | nan | 0.8641 | 0.9544 | 0.8129 | 0.8409 | 0.5218 | nan | 0.7097 | 0.8362 | 0.0164 | 0.9534 | 0.1471 | 0.0 | 0.6927 | 0.0914 | 0.7230 | 0.0 | 0.0008 | 0.9245 | 0.2612 | 0.6589 | 0.3817 | 0.3129 | nan | 0.2753 | 0.6200 | 0.5529 | 0.0 | 0.9531 | 0.8723 | 0.9840 | 0.0115 | 0.2889 | 0.4774 | 0.0 | nan | 0.7693 | 0.8800 | 0.7346 | 0.7522 | 0.3931 | nan | 0.5823 | 0.6294 | 0.0100 | 0.8652 | 0.1280 | 0.0 | 0.4820 | 0.0913 | 0.5905 | 0.0 | 0.0008 | 0.7745 | 0.2181 | 0.5536 | 0.3162 | 0.2624 | nan | 0.2308 | 0.5001 | 0.3704 | 0.0 | 0.8909 | 0.7826 | 0.9502 | 0.0081 | 0.1282 | 0.3862 | 0.0 |
| 0.0807 | 26.0 | 5200 | 0.6570 | 0.4128 | 0.4904 | 0.8781 | nan | 0.8506 | 0.9551 | 0.8030 | 0.8504 | 0.5486 | nan | 0.6728 | 0.8390 | 0.0246 | 0.9582 | 0.1389 | 0.0 | 0.7115 | 0.0633 | 0.7197 | 0.0 | 0.0044 | 0.9195 | 0.2165 | 0.6409 | 0.3865 | 0.4242 | nan | 0.2336 | 0.6239 | 0.5434 | 0.0 | 0.9546 | 0.8558 | 0.9826 | 0.0088 | 0.2644 | 0.4987 | 0.0 | nan | 0.7612 | 0.8776 | 0.7084 | 0.7527 | 0.3977 | nan | 0.5819 | 0.6278 | 0.0145 | 0.8635 | 0.1234 | 0.0 | 0.4967 | 0.0632 | 0.5861 | 0.0 | 0.0043 | 0.7734 | 0.1857 | 0.5453 | 0.3198 | 0.3231 | nan | 0.1996 | 0.5033 | 0.3803 | 0.0 | 0.8897 | 0.7765 | 0.9515 | 0.0058 | 0.1138 | 0.3839 | 0.0 |
| 0.0989 | 26.1 | 5220 | 0.6766 | 0.4118 | 0.4929 | 0.8761 | nan | 0.8360 | 0.9501 | 0.7735 | 0.8566 | 0.5484 | nan | 0.7156 | 0.7947 | 0.1476 | 0.9545 | 0.1832 | 0.0 | 0.7047 | 0.0546 | 0.7455 | 0.0 | 0.0060 | 0.9283 | 0.1483 | 0.6515 | 0.4213 | 0.4199 | nan | 0.2458 | 0.6013 | 0.5454 | 0.0 | 0.9561 | 0.8676 | 0.9824 | 0.0061 | 0.2510 | 0.4768 | 0.0 | nan | 0.7478 | 0.8754 | 0.7067 | 0.7406 | 0.3945 | nan | 0.5775 | 0.6051 | 0.0539 | 0.8656 | 0.1609 | 0.0 | 0.4929 | 0.0546 | 0.5695 | 0.0 | 0.0059 | 0.7716 | 0.1330 | 0.5479 | 0.3357 | 0.3199 | nan | 0.2093 | 0.5010 | 0.3795 | 0.0 | 0.8896 | 0.7777 | 0.9525 | 0.0044 | 0.1170 | 0.3885 | 0.0 |
| 0.0975 | 26.2 | 5240 | 0.6686 | 0.4147 | 0.4966 | 0.8766 | nan | 0.8481 | 0.9563 | 0.7830 | 0.8141 | 0.5606 | nan | 0.7064 | 0.8431 | 0.0839 | 0.9516 | 0.2203 | 0.0 | 0.6956 | 0.0612 | 0.7290 | 0.0 | 0.0090 | 0.9187 | 0.2126 | 0.6371 | 0.4440 | 0.4329 | nan | 0.2754 | 0.6159 | 0.5759 | 0.0 | 0.9525 | 0.8437 | 0.9847 | 0.0022 | 0.2114 | 0.5207 | 0.0 | nan | 0.7606 | 0.8729 | 0.7049 | 0.7360 | 0.3947 | nan | 0.5843 | 0.5929 | 0.0388 | 0.8677 | 0.1858 | 0.0 | 0.4800 | 0.0611 | 0.5925 | 0.0 | 0.0081 | 0.7734 | 0.1887 | 0.5505 | 0.3515 | 0.3299 | nan | 0.2270 | 0.5001 | 0.3717 | 0.0 | 0.8893 | 0.7697 | 0.9519 | 0.0017 | 0.0951 | 0.3903 | 0.0 |
| 0.1222 | 26.3 | 5260 | 0.7007 | 0.4112 | 0.4917 | 0.8733 | nan | 0.8112 | 0.9544 | 0.7829 | 0.8609 | 0.5339 | nan | 0.6915 | 0.8542 | 0.0131 | 0.9557 | 0.1905 | 0.0 | 0.7522 | 0.0119 | 0.7064 | 0.0 | 0.0188 | 0.9257 | 0.1751 | 0.6510 | 0.4046 | 0.4786 | nan | 0.2755 | 0.6000 | 0.5597 | 0.0 | 0.9580 | 0.8450 | 0.9834 | 0.0081 | 0.2413 | 0.4900 | 0.0 | nan | 0.7343 | 0.8749 | 0.6988 | 0.6905 | 0.4023 | nan | 0.5853 | 0.6266 | 0.0117 | 0.8660 | 0.1613 | 0.0 | 0.4892 | 0.0119 | 0.6045 | 0.0 | 0.0182 | 0.7709 | 0.1540 | 0.5544 | 0.3348 | 0.3448 | nan | 0.2370 | 0.4994 | 0.3791 | 0.0 | 0.8864 | 0.7669 | 0.9530 | 0.0057 | 0.1116 | 0.3860 | 0.0 |
| 0.1183 | 26.4 | 5280 | 0.6994 | 0.4117 | 0.4921 | 0.8735 | nan | 0.8099 | 0.9557 | 0.8170 | 0.8511 | 0.5359 | nan | 0.7151 | 0.8481 | 0.0280 | 0.9527 | 0.1402 | 0.0 | 0.7074 | 0.0186 | 0.7115 | 0.0 | 0.0120 | 0.9337 | 0.1862 | 0.6441 | 0.4187 | 0.4533 | nan | 0.3415 | 0.6097 | 0.5326 | 0.0 | 0.9519 | 0.8405 | 0.9825 | 0.0120 | 0.2630 | 0.4755 | 0.0 | nan | 0.7376 | 0.8751 | 0.6819 | 0.6959 | 0.4059 | nan | 0.5829 | 0.6393 | 0.0226 | 0.8642 | 0.1216 | 0.0 | 0.4882 | 0.0186 | 0.5983 | 0.0 | 0.0119 | 0.7705 | 0.1645 | 0.5578 | 0.3381 | 0.3383 | nan | 0.2654 | 0.5020 | 0.3845 | 0.0 | 0.8874 | 0.7637 | 0.9527 | 0.0081 | 0.1143 | 0.3839 | 0.0 |
| 0.0751 | 26.5 | 5300 | 0.6749 | 0.4114 | 0.4891 | 0.8763 | nan | 0.8349 | 0.9526 | 0.7899 | 0.8599 | 0.5438 | nan | 0.7032 | 0.8391 | 0.0881 | 0.9516 | 0.1227 | 0.0 | 0.6688 | 0.0251 | 0.7336 | 0.0 | 0.0 | 0.9283 | 0.1750 | 0.6450 | 0.3704 | 0.4431 | nan | 0.2957 | 0.6250 | 0.5594 | 0.0 | 0.9550 | 0.8531 | 0.9841 | 0.0046 | 0.1953 | 0.5032 | 0.0 | nan | 0.7504 | 0.8752 | 0.7089 | 0.7251 | 0.3993 | nan | 0.5903 | 0.6139 | 0.0498 | 0.8656 | 0.1065 | 0.0 | 0.4799 | 0.0251 | 0.5932 | 0.0 | 0.0 | 0.7705 | 0.1554 | 0.5509 | 0.3146 | 0.3413 | nan | 0.2379 | 0.5074 | 0.3865 | 0.0 | 0.8889 | 0.7779 | 0.9511 | 0.0034 | 0.1035 | 0.3907 | 0.0 |
| 0.0861 | 26.6 | 5320 | 0.6729 | 0.4105 | 0.4900 | 0.8744 | nan | 0.8149 | 0.9547 | 0.8105 | 0.8521 | 0.5684 | nan | 0.6942 | 0.8356 | 0.0508 | 0.9531 | 0.1030 | 0.0 | 0.7563 | 0.0308 | 0.7031 | 0.0 | 0.0034 | 0.9281 | 0.2793 | 0.6487 | 0.3257 | 0.4017 | nan | 0.3096 | 0.6137 | 0.5375 | 0.0 | 0.9537 | 0.8597 | 0.9814 | 0.0027 | 0.2138 | 0.4945 | 0.0 | nan | 0.7427 | 0.8728 | 0.6707 | 0.7218 | 0.4035 | nan | 0.5825 | 0.6148 | 0.0303 | 0.8661 | 0.0904 | 0.0 | 0.5141 | 0.0308 | 0.5987 | 0.0 | 0.0034 | 0.7702 | 0.2363 | 0.5536 | 0.2826 | 0.3157 | nan | 0.2324 | 0.5074 | 0.3798 | 0.0 | 0.8882 | 0.7793 | 0.9523 | 0.0021 | 0.1075 | 0.3858 | 0.0 |
| 0.1072 | 26.7 | 5340 | 0.6385 | 0.4165 | 0.5051 | 0.8771 | nan | 0.8402 | 0.9509 | 0.8062 | 0.8605 | 0.5389 | nan | 0.7122 | 0.8531 | 0.0539 | 0.9585 | 0.1279 | 0.0 | 0.8263 | 0.0386 | 0.7015 | 0.0 | 0.0135 | 0.9078 | 0.4718 | 0.6603 | 0.3479 | 0.3799 | nan | 0.3560 | 0.6282 | 0.5538 | 0.0 | 0.9560 | 0.8533 | 0.9839 | 0.0029 | 0.2515 | 0.5266 | 0.0 | nan | 0.7579 | 0.8816 | 0.6728 | 0.7196 | 0.3906 | nan | 0.5818 | 0.6118 | 0.0338 | 0.8640 | 0.1143 | 0.0 | 0.5220 | 0.0386 | 0.5987 | 0.0 | 0.0133 | 0.7761 | 0.3066 | 0.5636 | 0.2985 | 0.3097 | nan | 0.2655 | 0.5059 | 0.3742 | 0.0 | 0.8888 | 0.7756 | 0.9515 | 0.0024 | 0.1193 | 0.3895 | 0.0 |
| 0.075 | 26.8 | 5360 | 0.6882 | 0.4178 | 0.4994 | 0.8770 | nan | 0.8276 | 0.9542 | 0.8144 | 0.8555 | 0.5746 | nan | 0.6765 | 0.8361 | 0.0220 | 0.9521 | 0.1819 | 0.0 | 0.7861 | 0.0414 | 0.7041 | 0.0 | 0.0025 | 0.9256 | 0.3586 | 0.6814 | 0.3652 | 0.3536 | nan | 0.3433 | 0.6089 | 0.5657 | 0.0 | 0.9546 | 0.8467 | 0.9802 | 0.0030 | 0.2599 | 0.5062 | 0.0 | nan | 0.7502 | 0.8759 | 0.6701 | 0.7418 | 0.3962 | nan | 0.5801 | 0.6557 | 0.0151 | 0.8644 | 0.1547 | 0.0 | 0.5061 | 0.0414 | 0.6178 | 0.0 | 0.0024 | 0.7767 | 0.2725 | 0.5582 | 0.3139 | 0.2876 | nan | 0.2507 | 0.5072 | 0.3787 | 0.0 | 0.8898 | 0.7779 | 0.9536 | 0.0026 | 0.1324 | 0.3968 | 0.0 |
| 0.1095 | 26.9 | 5380 | 0.6906 | 0.4114 | 0.4891 | 0.8781 | nan | 0.8369 | 0.9576 | 0.7971 | 0.8501 | 0.5551 | nan | 0.7060 | 0.8135 | 0.0291 | 0.9532 | 0.1185 | 0.0 | 0.6903 | 0.0319 | 0.7166 | 0.0 | 0.0 | 0.9269 | 0.2260 | 0.6456 | 0.3905 | 0.3490 | nan | 0.3174 | 0.6271 | 0.5923 | 0.0 | 0.9549 | 0.8555 | 0.9855 | 0.0044 | 0.2436 | 0.4768 | 0.0 | nan | 0.7561 | 0.8745 | 0.6692 | 0.7556 | 0.4017 | nan | 0.5824 | 0.6476 | 0.0187 | 0.8661 | 0.1019 | 0.0 | 0.4578 | 0.0319 | 0.6070 | 0.0 | 0.0 | 0.7750 | 0.1968 | 0.5555 | 0.3165 | 0.2879 | nan | 0.2456 | 0.5073 | 0.3771 | 0.0 | 0.8899 | 0.7780 | 0.9496 | 0.0039 | 0.1203 | 0.3899 | 0.0 |
| 0.1506 | 27.0 | 5400 | 0.6823 | 0.4105 | 0.4968 | 0.8779 | nan | 0.8466 | 0.9546 | 0.7995 | 0.8469 | 0.5295 | nan | 0.7037 | 0.8394 | 0.0635 | 0.9543 | 0.1163 | 0.0 | 0.7633 | 0.0475 | 0.7615 | 0.0 | 0.0 | 0.9358 | 0.1898 | 0.6437 | 0.3914 | 0.4259 | nan | 0.3250 | 0.6204 | 0.5437 | 0.0 | 0.9495 | 0.8699 | 0.9813 | 0.0103 | 0.3204 | 0.4652 | 0.0 | nan | 0.7623 | 0.8762 | 0.6641 | 0.7556 | 0.3897 | nan | 0.5861 | 0.6245 | 0.0368 | 0.8685 | 0.0992 | 0.0 | 0.4243 | 0.0475 | 0.6058 | 0.0 | 0.0 | 0.7695 | 0.1659 | 0.5516 | 0.3248 | 0.3197 | nan | 0.2507 | 0.5065 | 0.3748 | 0.0 | 0.8914 | 0.7819 | 0.9530 | 0.0080 | 0.1189 | 0.3790 | 0.0 |
| 0.0938 | 27.1 | 5420 | 0.6557 | 0.4105 | 0.4863 | 0.8819 | nan | 0.8763 | 0.9536 | 0.7881 | 0.8415 | 0.5490 | nan | 0.7220 | 0.8324 | 0.0224 | 0.9549 | 0.1229 | 0.0 | 0.7538 | 0.0387 | 0.7186 | 0.0 | 0.0004 | 0.9286 | 0.1472 | 0.6398 | 0.3440 | 0.3325 | nan | 0.2764 | 0.6080 | 0.5649 | 0.0 | 0.9557 | 0.8681 | 0.9825 | 0.0012 | 0.2378 | 0.5020 | 0.0 | nan | 0.7828 | 0.8807 | 0.6887 | 0.7740 | 0.3939 | nan | 0.5933 | 0.6221 | 0.0134 | 0.8674 | 0.1067 | 0.0 | 0.4857 | 0.0387 | 0.6042 | 0.0 | 0.0004 | 0.7721 | 0.1336 | 0.5439 | 0.2990 | 0.2742 | nan | 0.2357 | 0.5013 | 0.3789 | 0.0 | 0.8894 | 0.7802 | 0.9524 | 0.0011 | 0.1293 | 0.3938 | 0.0 |
| 0.0922 | 27.2 | 5440 | 0.6789 | 0.4124 | 0.4937 | 0.8778 | nan | 0.8441 | 0.9528 | 0.7871 | 0.8561 | 0.5597 | nan | 0.7062 | 0.8316 | 0.0127 | 0.9555 | 0.1165 | 0.0 | 0.7839 | 0.0331 | 0.7121 | 0.0 | 0.0036 | 0.9277 | 0.2226 | 0.6475 | 0.3821 | 0.3915 | nan | 0.3323 | 0.6105 | 0.6060 | 0.0 | 0.9571 | 0.8456 | 0.9830 | 0.0124 | 0.2411 | 0.4829 | 0.0 | nan | 0.7593 | 0.8755 | 0.7016 | 0.7540 | 0.3872 | nan | 0.5912 | 0.6258 | 0.0077 | 0.8663 | 0.1008 | 0.0 | 0.4567 | 0.0331 | 0.6051 | 0.0 | 0.0034 | 0.7729 | 0.1901 | 0.5497 | 0.3172 | 0.3099 | nan | 0.2680 | 0.5033 | 0.3734 | 0.0 | 0.8883 | 0.7725 | 0.9521 | 0.0100 | 0.1303 | 0.3909 | 0.0 |
| 0.096 | 27.3 | 5460 | 0.6704 | 0.4060 | 0.4903 | 0.8754 | nan | 0.8254 | 0.9533 | 0.7920 | 0.8735 | 0.5246 | nan | 0.6949 | 0.8410 | 0.0581 | 0.9554 | 0.1050 | 0.0 | 0.7937 | 0.0133 | 0.7730 | 0.0 | 0.0007 | 0.9311 | 0.2743 | 0.6469 | 0.3820 | 0.3244 | nan | 0.2645 | 0.6060 | 0.5833 | 0.0 | 0.9549 | 0.8581 | 0.9833 | 0.0101 | 0.2081 | 0.4576 | 0.0 | nan | 0.7435 | 0.8795 | 0.6874 | 0.7072 | 0.3941 | nan | 0.5839 | 0.5840 | 0.0354 | 0.8667 | 0.0918 | 0.0 | 0.4936 | 0.0133 | 0.5650 | 0.0 | 0.0007 | 0.7718 | 0.2335 | 0.5515 | 0.3144 | 0.2713 | nan | 0.2367 | 0.5008 | 0.3740 | 0.0 | 0.8891 | 0.7737 | 0.9509 | 0.0084 | 0.0967 | 0.3735 | 0.0 |
| 0.0978 | 27.4 | 5480 | 0.6725 | 0.4047 | 0.4838 | 0.8759 | nan | 0.8290 | 0.9558 | 0.8021 | 0.8683 | 0.4995 | nan | 0.7111 | 0.8203 | 0.0517 | 0.9528 | 0.1147 | 0.0 | 0.6795 | 0.0295 | 0.7583 | 0.0 | 0.0 | 0.9286 | 0.2051 | 0.6574 | 0.3569 | 0.3430 | nan | 0.2604 | 0.6237 | 0.5778 | 0.0 | 0.9572 | 0.8412 | 0.9829 | 0.0104 | 0.1870 | 0.4760 | 0.0 | nan | 0.7490 | 0.8809 | 0.6835 | 0.7109 | 0.3761 | nan | 0.5841 | 0.5973 | 0.0304 | 0.8676 | 0.0987 | 0.0 | 0.4418 | 0.0295 | 0.5886 | 0.0 | 0.0 | 0.7723 | 0.1829 | 0.5593 | 0.3080 | 0.2819 | nan | 0.2282 | 0.5039 | 0.3866 | 0.0 | 0.8879 | 0.7694 | 0.9508 | 0.0081 | 0.0898 | 0.3821 | 0.0 |
| 0.1081 | 27.5 | 5500 | 0.6632 | 0.4076 | 0.4835 | 0.8783 | nan | 0.8643 | 0.9516 | 0.7971 | 0.8583 | 0.5222 | nan | 0.7090 | 0.8066 | 0.0313 | 0.9567 | 0.1047 | 0.0 | 0.6207 | 0.0330 | 0.7483 | 0.0 | 0.0 | 0.9300 | 0.2751 | 0.6632 | 0.3831 | 0.2637 | nan | 0.3216 | 0.6242 | 0.5814 | 0.0 | 0.9588 | 0.7810 | 0.9817 | 0.0221 | 0.1954 | 0.4874 | 0.0 | nan | 0.7753 | 0.8867 | 0.6966 | 0.7449 | 0.3831 | nan | 0.5873 | 0.6360 | 0.0203 | 0.8656 | 0.0909 | 0.0 | 0.4102 | 0.0330 | 0.5889 | 0.0 | 0.0 | 0.7705 | 0.2247 | 0.5607 | 0.3196 | 0.2249 | nan | 0.2714 | 0.5076 | 0.3911 | 0.0 | 0.8806 | 0.7286 | 0.9519 | 0.0116 | 0.0938 | 0.3870 | 0.0 |
| 0.0712 | 27.6 | 5520 | 0.6932 | 0.4087 | 0.4852 | 0.8768 | nan | 0.8332 | 0.9596 | 0.8028 | 0.8385 | 0.5178 | nan | 0.7153 | 0.8222 | 0.0493 | 0.9471 | 0.1109 | 0.0 | 0.6470 | 0.0600 | 0.7521 | 0.0 | 0.0019 | 0.9282 | 0.2295 | 0.6720 | 0.3390 | 0.2774 | nan | 0.3487 | 0.6283 | 0.5638 | 0.0 | 0.9566 | 0.8371 | 0.9832 | 0.0143 | 0.2063 | 0.4831 | 0.0 | nan | 0.7533 | 0.8757 | 0.6709 | 0.7481 | 0.3994 | nan | 0.5842 | 0.6202 | 0.0310 | 0.8688 | 0.0967 | 0.0 | 0.4354 | 0.0600 | 0.5986 | 0.0 | 0.0018 | 0.7740 | 0.1988 | 0.5605 | 0.2965 | 0.2358 | nan | 0.2775 | 0.5082 | 0.3916 | 0.0 | 0.8852 | 0.7556 | 0.9511 | 0.0095 | 0.1038 | 0.3855 | 0.0 |
| 0.1027 | 27.7 | 5540 | 0.6726 | 0.4118 | 0.4918 | 0.8777 | nan | 0.8437 | 0.9552 | 0.7899 | 0.8477 | 0.5416 | nan | 0.7039 | 0.8241 | 0.0552 | 0.9555 | 0.1165 | 0.0 | 0.7872 | 0.0404 | 0.7305 | 0.0 | 0.0 | 0.9259 | 0.2684 | 0.6667 | 0.3302 | 0.3230 | nan | 0.3216 | 0.6274 | 0.5729 | 0.0 | 0.9556 | 0.8468 | 0.9843 | 0.0049 | 0.2345 | 0.4851 | 0.0 | nan | 0.7561 | 0.8770 | 0.6958 | 0.7531 | 0.3973 | nan | 0.5829 | 0.6304 | 0.0335 | 0.8641 | 0.1020 | 0.0 | 0.4693 | 0.0404 | 0.5951 | 0.0 | 0.0 | 0.7749 | 0.2252 | 0.5508 | 0.2920 | 0.2629 | nan | 0.2534 | 0.5062 | 0.3897 | 0.0 | 0.8872 | 0.7672 | 0.9510 | 0.0033 | 0.1268 | 0.3899 | 0.0 |
| 0.0892 | 27.8 | 5560 | 0.6352 | 0.4118 | 0.4884 | 0.8813 | nan | 0.8804 | 0.9525 | 0.7938 | 0.8414 | 0.5485 | nan | 0.7087 | 0.8153 | 0.0402 | 0.9562 | 0.1179 | 0.0 | 0.8002 | 0.0301 | 0.6878 | 0.0 | 0.0 | 0.9299 | 0.1701 | 0.6682 | 0.3440 | 0.4775 | nan | 0.2656 | 0.5936 | 0.5302 | 0.0 | 0.9541 | 0.8372 | 0.9861 | 0.0032 | 0.1952 | 0.5014 | 0.0 | nan | 0.7858 | 0.8827 | 0.7003 | 0.7763 | 0.3848 | nan | 0.5858 | 0.6419 | 0.0244 | 0.8634 | 0.1014 | 0.0 | 0.4713 | 0.0301 | 0.5872 | 0.0 | 0.0 | 0.7710 | 0.1535 | 0.5495 | 0.3039 | 0.3359 | nan | 0.2132 | 0.4990 | 0.3878 | 0.0 | 0.8881 | 0.7675 | 0.9497 | 0.0020 | 0.1255 | 0.3961 | 0.0 |
| 0.0857 | 27.9 | 5580 | 0.6976 | 0.4086 | 0.4967 | 0.8745 | nan | 0.8227 | 0.9517 | 0.8055 | 0.8587 | 0.5235 | nan | 0.7266 | 0.8383 | 0.0748 | 0.9593 | 0.1181 | 0.0 | 0.7492 | 0.0193 | 0.7157 | 0.0 | 0.0019 | 0.9173 | 0.2253 | 0.6414 | 0.4203 | 0.4937 | nan | 0.2772 | 0.6241 | 0.5605 | 0.0 | 0.9543 | 0.8592 | 0.9834 | 0.0037 | 0.2642 | 0.5051 | 0.0 | nan | 0.7448 | 0.8754 | 0.6542 | 0.7406 | 0.3817 | nan | 0.5784 | 0.6356 | 0.0402 | 0.8633 | 0.1012 | 0.0 | 0.4460 | 0.0193 | 0.5878 | 0.0 | 0.0018 | 0.7743 | 0.1996 | 0.5449 | 0.3332 | 0.3409 | nan | 0.2216 | 0.5022 | 0.3775 | 0.0 | 0.8887 | 0.7681 | 0.9517 | 0.0029 | 0.1119 | 0.3869 | 0.0 |
| 0.0972 | 28.0 | 5600 | 0.6871 | 0.4086 | 0.4893 | 0.8766 | nan | 0.8299 | 0.9635 | 0.8034 | 0.8568 | 0.4856 | nan | 0.6668 | 0.8288 | 0.0648 | 0.9496 | 0.1159 | 0.0 | 0.6802 | 0.0382 | 0.7206 | 0.0 | 0.0052 | 0.9283 | 0.2539 | 0.6530 | 0.3671 | 0.4558 | nan | 0.2910 | 0.6120 | 0.5659 | 0.0 | 0.9574 | 0.8490 | 0.9824 | 0.0049 | 0.2732 | 0.4544 | 0.0 | nan | 0.7460 | 0.8773 | 0.6448 | 0.7394 | 0.3866 | nan | 0.5750 | 0.6389 | 0.0358 | 0.8679 | 0.1019 | 0.0 | 0.4226 | 0.0382 | 0.5962 | 0.0 | 0.0051 | 0.7747 | 0.2163 | 0.5552 | 0.3197 | 0.3337 | nan | 0.2179 | 0.5055 | 0.3791 | 0.0 | 0.8878 | 0.7706 | 0.9520 | 0.0039 | 0.1103 | 0.3722 | 0.0 |
| 0.0743 | 28.1 | 5620 | 0.6541 | 0.4056 | 0.4848 | 0.8790 | nan | 0.8631 | 0.9537 | 0.8229 | 0.8409 | 0.5408 | nan | 0.6942 | 0.7871 | 0.0371 | 0.9509 | 0.1217 | 0.0 | 0.6734 | 0.0553 | 0.7003 | 0.0 | 0.0110 | 0.9429 | 0.1248 | 0.6635 | 0.3811 | 0.5042 | nan | 0.2089 | 0.6030 | 0.5817 | 0.0 | 0.9534 | 0.8205 | 0.9791 | 0.0077 | 0.2077 | 0.4827 | 0.0 | nan | 0.7753 | 0.8886 | 0.5865 | 0.7629 | 0.3910 | nan | 0.5861 | 0.6408 | 0.0199 | 0.8648 | 0.1062 | 0.0 | 0.4367 | 0.0553 | 0.5790 | 0.0 | 0.0104 | 0.7665 | 0.1147 | 0.5501 | 0.3330 | 0.3413 | nan | 0.1779 | 0.5043 | 0.3899 | 0.0 | 0.8862 | 0.7527 | 0.9532 | 0.0058 | 0.1139 | 0.3876 | 0.0 |
| 0.0942 | 28.2 | 5640 | 0.6635 | 0.4081 | 0.4960 | 0.8790 | nan | 0.8525 | 0.9555 | 0.8179 | 0.8496 | 0.5351 | nan | 0.7077 | 0.8176 | 0.0422 | 0.9503 | 0.1236 | 0.0101 | 0.7732 | 0.0344 | 0.7263 | 0.0024 | 0.0073 | 0.9277 | 0.1708 | 0.6411 | 0.4058 | 0.5404 | nan | 0.2374 | 0.6133 | 0.5887 | 0.0 | 0.9534 | 0.8582 | 0.9830 | 0.0130 | 0.2590 | 0.4756 | 0.0 | nan | 0.7672 | 0.8834 | 0.6328 | 0.7648 | 0.4010 | nan | 0.5878 | 0.6325 | 0.0224 | 0.8678 | 0.1067 | 0.0091 | 0.4179 | 0.0344 | 0.5821 | 0.0024 | 0.0070 | 0.7730 | 0.1557 | 0.5549 | 0.3368 | 0.3462 | nan | 0.2009 | 0.5048 | 0.3854 | 0.0 | 0.8885 | 0.7682 | 0.9517 | 0.0087 | 0.0918 | 0.3746 | 0.0 |
| 0.0886 | 28.3 | 5660 | 0.6853 | 0.4070 | 0.4902 | 0.8768 | nan | 0.8376 | 0.9575 | 0.8021 | 0.8487 | 0.5298 | nan | 0.7247 | 0.8240 | 0.0681 | 0.9529 | 0.1197 | 0.0025 | 0.7321 | 0.0702 | 0.7406 | 0.0 | 0.0094 | 0.9398 | 0.1876 | 0.6085 | 0.3805 | 0.3841 | nan | 0.2739 | 0.6085 | 0.5558 | 0.0 | 0.9502 | 0.8390 | 0.9827 | 0.0155 | 0.2440 | 0.4976 | 0.0 | nan | 0.7588 | 0.8773 | 0.6697 | 0.7653 | 0.3903 | nan | 0.5894 | 0.6166 | 0.0336 | 0.8655 | 0.1039 | 0.0024 | 0.4033 | 0.0702 | 0.5867 | 0.0 | 0.0092 | 0.7629 | 0.1709 | 0.5351 | 0.3236 | 0.2880 | nan | 0.2085 | 0.5044 | 0.3839 | 0.0 | 0.8877 | 0.7654 | 0.9520 | 0.0106 | 0.0980 | 0.3892 | 0.0 |
| 0.0686 | 28.4 | 5680 | 0.6927 | 0.4090 | 0.4976 | 0.8763 | nan | 0.8348 | 0.9564 | 0.8030 | 0.8511 | 0.5345 | nan | 0.7257 | 0.8044 | 0.0892 | 0.9515 | 0.1484 | 0.0079 | 0.7587 | 0.0563 | 0.7866 | 0.0 | 0.0058 | 0.9275 | 0.2435 | 0.6232 | 0.3731 | 0.4607 | nan | 0.2507 | 0.6339 | 0.5748 | 0.0 | 0.9553 | 0.8259 | 0.9828 | 0.0151 | 0.2420 | 0.4988 | 0.0 | nan | 0.7546 | 0.8767 | 0.6618 | 0.7606 | 0.3896 | nan | 0.5871 | 0.6214 | 0.0452 | 0.8665 | 0.1262 | 0.0077 | 0.4076 | 0.0563 | 0.5419 | 0.0 | 0.0057 | 0.7684 | 0.2128 | 0.5385 | 0.3169 | 0.3450 | nan | 0.2047 | 0.5044 | 0.3781 | 0.0 | 0.8854 | 0.7555 | 0.9524 | 0.0115 | 0.1106 | 0.3952 | 0.0 |
| 0.0875 | 28.5 | 5700 | 0.6821 | 0.4057 | 0.4935 | 0.8757 | nan | 0.8305 | 0.9575 | 0.8115 | 0.8588 | 0.5157 | nan | 0.7006 | 0.7422 | 0.2954 | 0.9579 | 0.1075 | 0.0196 | 0.8595 | 0.0428 | 0.7431 | 0.0 | 0.0050 | 0.9338 | 0.1709 | 0.6354 | 0.3660 | 0.3553 | nan | 0.2370 | 0.6056 | 0.5617 | 0.0 | 0.9548 | 0.8313 | 0.9851 | 0.0051 | 0.2237 | 0.4795 | 0.0 | nan | 0.7482 | 0.8784 | 0.6547 | 0.7435 | 0.3981 | nan | 0.5876 | 0.5876 | 0.0877 | 0.8614 | 0.0961 | 0.0196 | 0.4713 | 0.0428 | 0.5644 | 0.0 | 0.0050 | 0.7676 | 0.1565 | 0.5372 | 0.3097 | 0.2924 | nan | 0.2009 | 0.5005 | 0.3819 | 0.0 | 0.8853 | 0.7565 | 0.9506 | 0.0041 | 0.1105 | 0.3831 | 0.0 |
| 0.1119 | 28.6 | 5720 | 0.6901 | 0.4077 | 0.4900 | 0.8763 | nan | 0.8302 | 0.9586 | 0.7965 | 0.8520 | 0.5337 | nan | 0.7242 | 0.8196 | 0.0748 | 0.9513 | 0.1156 | 0.0012 | 0.7790 | 0.0846 | 0.7200 | 0.0 | 0.0159 | 0.9362 | 0.2396 | 0.6415 | 0.3514 | 0.3662 | nan | 0.2889 | 0.6017 | 0.5220 | 0.0 | 0.9530 | 0.8405 | 0.9830 | 0.0093 | 0.2357 | 0.4550 | 0.0 | nan | 0.7512 | 0.8756 | 0.6802 | 0.7477 | 0.3918 | nan | 0.5922 | 0.5992 | 0.0375 | 0.8659 | 0.1026 | 0.0012 | 0.4171 | 0.0845 | 0.5942 | 0.0 | 0.0158 | 0.7687 | 0.2068 | 0.5397 | 0.3038 | 0.2886 | nan | 0.2047 | 0.5016 | 0.3771 | 0.0 | 0.8878 | 0.7668 | 0.9526 | 0.0076 | 0.1130 | 0.3719 | 0.0 |
| 0.065 | 28.7 | 5740 | 0.6797 | 0.4143 | 0.4985 | 0.8774 | nan | 0.8452 | 0.9559 | 0.8006 | 0.8493 | 0.5016 | nan | 0.7138 | 0.8127 | 0.0544 | 0.9576 | 0.1546 | 0.0006 | 0.7711 | 0.1104 | 0.7272 | 0.0 | 0.0075 | 0.9237 | 0.2652 | 0.6554 | 0.4013 | 0.4589 | nan | 0.3079 | 0.6201 | 0.5540 | 0.0 | 0.9557 | 0.8299 | 0.9835 | 0.0105 | 0.2206 | 0.5035 | 0.0 | nan | 0.7559 | 0.8769 | 0.6712 | 0.7529 | 0.4004 | nan | 0.5876 | 0.6260 | 0.0293 | 0.8636 | 0.1338 | 0.0005 | 0.4466 | 0.1104 | 0.5750 | 0.0 | 0.0075 | 0.7745 | 0.2198 | 0.5464 | 0.3310 | 0.3431 | nan | 0.2321 | 0.5006 | 0.3856 | 0.0 | 0.8848 | 0.7497 | 0.9528 | 0.0091 | 0.1076 | 0.3819 | 0.0 |
| 0.0934 | 28.8 | 5760 | 0.6465 | 0.4116 | 0.4904 | 0.8790 | nan | 0.8431 | 0.9547 | 0.7972 | 0.8962 | 0.5132 | nan | 0.7213 | 0.7866 | 0.0628 | 0.9542 | 0.2099 | 0.0010 | 0.6565 | 0.0928 | 0.6967 | 0.0 | 0.0017 | 0.9361 | 0.1630 | 0.6224 | 0.3858 | 0.4652 | nan | 0.2589 | 0.6364 | 0.5783 | 0.0 | 0.9554 | 0.8465 | 0.9811 | 0.0046 | 0.2253 | 0.4466 | 0.0 | nan | 0.7549 | 0.8802 | 0.6827 | 0.7726 | 0.4038 | nan | 0.5928 | 0.6084 | 0.0322 | 0.8658 | 0.1788 | 0.0010 | 0.4057 | 0.0927 | 0.5834 | 0.0 | 0.0017 | 0.7648 | 0.1460 | 0.5400 | 0.3277 | 0.3493 | nan | 0.2143 | 0.5050 | 0.3887 | 0.0 | 0.8878 | 0.7628 | 0.9532 | 0.0042 | 0.1013 | 0.3690 | 0.0 |
| 0.0913 | 28.9 | 5780 | 0.7101 | 0.4135 | 0.4998 | 0.8756 | nan | 0.8296 | 0.9634 | 0.8012 | 0.8352 | 0.4835 | nan | 0.7196 | 0.8435 | 0.0852 | 0.9564 | 0.2459 | 0.0 | 0.6448 | 0.0940 | 0.7343 | 0.0 | 0.0033 | 0.9281 | 0.2470 | 0.6256 | 0.4120 | 0.5362 | nan | 0.2655 | 0.5973 | 0.6031 | 0.0 | 0.9490 | 0.8486 | 0.9847 | 0.0051 | 0.2759 | 0.4760 | 0.0 | nan | 0.7505 | 0.8698 | 0.6877 | 0.7422 | 0.3776 | nan | 0.5863 | 0.5962 | 0.0473 | 0.8671 | 0.2066 | 0.0 | 0.4120 | 0.0940 | 0.5942 | 0.0 | 0.0032 | 0.7700 | 0.2057 | 0.5449 | 0.3383 | 0.3747 | nan | 0.2026 | 0.5004 | 0.3717 | 0.0 | 0.8905 | 0.7700 | 0.9527 | 0.0047 | 0.1002 | 0.3704 | 0.0 |
| 0.072 | 29.0 | 5800 | 0.6968 | 0.4099 | 0.4834 | 0.8762 | nan | 0.8334 | 0.9610 | 0.8071 | 0.8424 | 0.4897 | nan | 0.7077 | 0.8352 | 0.0391 | 0.9520 | 0.1520 | 0.0 | 0.5859 | 0.0863 | 0.7320 | 0.0 | 0.0046 | 0.9333 | 0.1649 | 0.6309 | 0.3745 | 0.4073 | nan | 0.3005 | 0.6135 | 0.5685 | 0.0 | 0.9567 | 0.8291 | 0.9849 | 0.0106 | 0.1745 | 0.4902 | 0.0 | nan | 0.7528 | 0.8734 | 0.6771 | 0.7447 | 0.3839 | nan | 0.5856 | 0.6162 | 0.0255 | 0.8688 | 0.1347 | 0.0 | 0.4398 | 0.0863 | 0.5976 | 0.0 | 0.0046 | 0.7651 | 0.1485 | 0.5473 | 0.3246 | 0.3305 | nan | 0.2484 | 0.4965 | 0.3926 | 0.0 | 0.8861 | 0.7581 | 0.9514 | 0.0094 | 0.0807 | 0.3850 | 0.0 |
| 0.0781 | 29.1 | 5820 | 0.6973 | 0.4131 | 0.4886 | 0.8773 | nan | 0.8343 | 0.9599 | 0.7973 | 0.8468 | 0.5317 | nan | 0.7142 | 0.8298 | 0.0164 | 0.9593 | 0.1801 | 0.0 | 0.6026 | 0.0882 | 0.7129 | 0.0 | 0.0032 | 0.9345 | 0.2456 | 0.6484 | 0.3544 | 0.4435 | nan | 0.3119 | 0.6138 | 0.5755 | 0.0 | 0.9525 | 0.8419 | 0.9814 | 0.0059 | 0.1920 | 0.4572 | 0.0 | nan | 0.7539 | 0.8760 | 0.6968 | 0.7523 | 0.3918 | nan | 0.5919 | 0.6012 | 0.0116 | 0.8643 | 0.1596 | 0.0 | 0.4408 | 0.0882 | 0.5925 | 0.0 | 0.0032 | 0.7668 | 0.2068 | 0.5522 | 0.3123 | 0.3525 | nan | 0.2465 | 0.4988 | 0.3882 | 0.0 | 0.8884 | 0.7642 | 0.9537 | 0.0050 | 0.0883 | 0.3717 | 0.0 |
| 0.0882 | 29.2 | 5840 | 0.6949 | 0.4107 | 0.4873 | 0.8777 | nan | 0.8417 | 0.9601 | 0.7950 | 0.8391 | 0.5112 | nan | 0.7123 | 0.8305 | 0.0195 | 0.9536 | 0.1604 | 0.0 | 0.6562 | 0.0472 | 0.7099 | 0.0 | 0.0 | 0.9325 | 0.1996 | 0.6680 | 0.3698 | 0.5032 | nan | 0.2998 | 0.5804 | 0.5492 | 0.0 | 0.9570 | 0.8352 | 0.9825 | 0.0130 | 0.1928 | 0.4749 | 0.0 | nan | 0.7550 | 0.8757 | 0.6943 | 0.7509 | 0.4055 | nan | 0.5837 | 0.6050 | 0.0133 | 0.8664 | 0.1407 | 0.0 | 0.4336 | 0.0472 | 0.5829 | 0.0 | 0.0 | 0.7708 | 0.1744 | 0.5551 | 0.3162 | 0.3544 | nan | 0.2495 | 0.4980 | 0.3864 | 0.0 | 0.8861 | 0.7591 | 0.9531 | 0.0100 | 0.1005 | 0.3753 | 0.0 |
| 0.0707 | 29.3 | 5860 | 0.6947 | 0.4112 | 0.4895 | 0.8774 | nan | 0.8247 | 0.9609 | 0.7985 | 0.8580 | 0.5161 | nan | 0.7280 | 0.7997 | 0.0293 | 0.9579 | 0.1443 | 0.0 | 0.6550 | 0.0522 | 0.6908 | 0.0 | 0.0013 | 0.9334 | 0.2002 | 0.6496 | 0.3956 | 0.4688 | nan | 0.2862 | 0.6281 | 0.5941 | 0.0 | 0.9545 | 0.8436 | 0.9820 | 0.0123 | 0.2338 | 0.4644 | 0.0 | nan | 0.7498 | 0.8752 | 0.6773 | 0.7486 | 0.4050 | nan | 0.5895 | 0.6463 | 0.0182 | 0.8622 | 0.1285 | 0.0 | 0.4120 | 0.0521 | 0.5773 | 0.0 | 0.0013 | 0.7698 | 0.1752 | 0.5495 | 0.3277 | 0.3557 | nan | 0.2325 | 0.5066 | 0.3845 | 0.0 | 0.8877 | 0.7646 | 0.9535 | 0.0102 | 0.1159 | 0.3829 | 0.0 |
| 0.0808 | 29.4 | 5880 | 0.7035 | 0.4153 | 0.5005 | 0.8777 | nan | 0.8409 | 0.9609 | 0.8013 | 0.8432 | 0.5292 | nan | 0.6840 | 0.8192 | 0.0704 | 0.9569 | 0.1940 | 0.0002 | 0.7892 | 0.0759 | 0.6909 | 0.0 | 0.0115 | 0.9330 | 0.2708 | 0.6312 | 0.3761 | 0.4916 | nan | 0.3595 | 0.6176 | 0.5648 | 0.0 | 0.9512 | 0.8414 | 0.9804 | 0.0128 | 0.2294 | 0.4890 | 0.0 | nan | 0.7548 | 0.8765 | 0.6734 | 0.7502 | 0.4074 | nan | 0.5854 | 0.6300 | 0.0378 | 0.8660 | 0.1712 | 0.0002 | 0.3926 | 0.0759 | 0.5810 | 0.0 | 0.0114 | 0.7675 | 0.2253 | 0.5374 | 0.3222 | 0.3649 | nan | 0.2490 | 0.5043 | 0.3850 | 0.0 | 0.8883 | 0.7650 | 0.9545 | 0.0100 | 0.1134 | 0.3900 | 0.0 |
| 0.0959 | 29.5 | 5900 | 0.6633 | 0.4123 | 0.4992 | 0.8769 | nan | 0.8516 | 0.9532 | 0.8257 | 0.8463 | 0.5411 | nan | 0.7325 | 0.7945 | 0.0996 | 0.9575 | 0.1970 | 0.0 | 0.8361 | 0.0722 | 0.7040 | 0.0 | 0.0015 | 0.9325 | 0.1979 | 0.6232 | 0.3559 | 0.4814 | nan | 0.3650 | 0.6066 | 0.5344 | 0.0 | 0.9574 | 0.7861 | 0.9828 | 0.0202 | 0.2246 | 0.4946 | 0.0 | nan | 0.7671 | 0.8815 | 0.6558 | 0.7607 | 0.4057 | nan | 0.5869 | 0.6192 | 0.0441 | 0.8637 | 0.1692 | 0.0 | 0.4204 | 0.0721 | 0.5866 | 0.0 | 0.0014 | 0.7655 | 0.1765 | 0.5306 | 0.3051 | 0.3484 | nan | 0.2809 | 0.5017 | 0.3784 | 0.0 | 0.8789 | 0.7286 | 0.9534 | 0.0144 | 0.1115 | 0.3860 | 0.0 |
| 0.0771 | 29.6 | 5920 | 0.6884 | 0.4142 | 0.5007 | 0.8764 | nan | 0.8283 | 0.9584 | 0.8123 | 0.8427 | 0.5157 | nan | 0.7270 | 0.8310 | 0.0579 | 0.9523 | 0.2168 | 0.0 | 0.8208 | 0.0862 | 0.7416 | 0.0 | 0.0 | 0.9275 | 0.1550 | 0.6739 | 0.3409 | 0.5263 | nan | 0.3536 | 0.6307 | 0.5499 | 0.0 | 0.9567 | 0.8381 | 0.9828 | 0.0116 | 0.2159 | 0.4682 | 0.0 | nan | 0.7503 | 0.8739 | 0.6630 | 0.7414 | 0.4013 | nan | 0.5855 | 0.6113 | 0.0326 | 0.8692 | 0.1840 | 0.0 | 0.4372 | 0.0862 | 0.5978 | 0.0 | 0.0 | 0.7733 | 0.1416 | 0.5535 | 0.2984 | 0.3676 | nan | 0.2926 | 0.5067 | 0.3830 | 0.0 | 0.8852 | 0.7577 | 0.9536 | 0.0100 | 0.1185 | 0.3791 | 0.0 |
| 0.0705 | 29.7 | 5940 | 0.6747 | 0.4181 | 0.5036 | 0.8780 | nan | 0.8426 | 0.9584 | 0.7923 | 0.8350 | 0.5360 | nan | 0.7188 | 0.8237 | 0.0655 | 0.9586 | 0.2272 | 0.0001 | 0.8067 | 0.0805 | 0.7526 | 0.0 | 0.0 | 0.9323 | 0.2434 | 0.6474 | 0.3673 | 0.5485 | nan | 0.3330 | 0.6053 | 0.5587 | 0.0 | 0.9538 | 0.8479 | 0.9846 | 0.0074 | 0.2233 | 0.4627 | 0.0 | nan | 0.7568 | 0.8740 | 0.6958 | 0.7447 | 0.4053 | nan | 0.5883 | 0.6244 | 0.0361 | 0.8644 | 0.1895 | 0.0001 | 0.4437 | 0.0805 | 0.5893 | 0.0 | 0.0 | 0.7708 | 0.2032 | 0.5473 | 0.3117 | 0.3816 | nan | 0.2713 | 0.5021 | 0.3805 | 0.0 | 0.8884 | 0.7714 | 0.9529 | 0.0068 | 0.1211 | 0.3776 | 0.0 |
| 0.0472 | 29.8 | 5960 | 0.7109 | 0.4086 | 0.4956 | 0.8758 | nan | 0.8353 | 0.9621 | 0.8017 | 0.8276 | 0.5187 | nan | 0.7011 | 0.8241 | 0.1174 | 0.9530 | 0.1418 | 0.0 | 0.7473 | 0.0818 | 0.7646 | 0.0 | 0.0 | 0.9265 | 0.1480 | 0.6075 | 0.4195 | 0.5112 | nan | 0.2423 | 0.6126 | 0.5446 | 0.0 | 0.9582 | 0.8396 | 0.9838 | 0.0135 | 0.3227 | 0.4524 | 0.0 | nan | 0.7546 | 0.8730 | 0.6628 | 0.7390 | 0.4098 | nan | 0.5845 | 0.6204 | 0.0569 | 0.8708 | 0.1223 | 0.0 | 0.4144 | 0.0818 | 0.5821 | 0.0 | 0.0 | 0.7687 | 0.1324 | 0.5337 | 0.3295 | 0.3688 | nan | 0.2083 | 0.5037 | 0.3762 | 0.0 | 0.8858 | 0.7640 | 0.9523 | 0.0120 | 0.1100 | 0.3565 | 0.0 |
| 0.0856 | 29.9 | 5980 | 0.7068 | 0.4075 | 0.4915 | 0.8769 | nan | 0.8328 | 0.9616 | 0.7846 | 0.8604 | 0.5267 | nan | 0.7001 | 0.8317 | 0.0490 | 0.9578 | 0.1086 | 0.0 | 0.7661 | 0.0397 | 0.6910 | 0.0 | 0.0025 | 0.9349 | 0.2551 | 0.6181 | 0.3754 | 0.4470 | nan | 0.2880 | 0.6232 | 0.5678 | 0.0 | 0.9521 | 0.8409 | 0.9837 | 0.0102 | 0.2774 | 0.4412 | 0.0 | nan | 0.7531 | 0.8765 | 0.6674 | 0.7471 | 0.4108 | nan | 0.5886 | 0.6380 | 0.0292 | 0.8636 | 0.0955 | 0.0 | 0.4072 | 0.0397 | 0.5824 | 0.0 | 0.0025 | 0.7642 | 0.2054 | 0.5298 | 0.3210 | 0.3295 | nan | 0.2042 | 0.5070 | 0.3838 | 0.0 | 0.8882 | 0.7660 | 0.9520 | 0.0091 | 0.1154 | 0.3630 | 0.0 |
| 0.0632 | 30.0 | 6000 | 0.6955 | 0.4046 | 0.4834 | 0.8758 | nan | 0.8442 | 0.9537 | 0.7839 | 0.8517 | 0.5396 | nan | 0.7162 | 0.8110 | 0.0400 | 0.9540 | 0.1004 | 0.0 | 0.7228 | 0.0127 | 0.6716 | 0.0 | 0.0072 | 0.9378 | 0.1141 | 0.6040 | 0.3381 | 0.4786 | nan | 0.3070 | 0.6319 | 0.5860 | 0.0 | 0.9547 | 0.8347 | 0.9842 | 0.0080 | 0.2084 | 0.4721 | 0.0 | nan | 0.7577 | 0.8775 | 0.6634 | 0.7512 | 0.3930 | nan | 0.5910 | 0.6374 | 0.0219 | 0.8630 | 0.0879 | 0.0 | 0.4588 | 0.0127 | 0.5791 | 0.0 | 0.0070 | 0.7596 | 0.1049 | 0.5244 | 0.2932 | 0.3452 | nan | 0.2441 | 0.5018 | 0.3876 | 0.0 | 0.8857 | 0.7614 | 0.9505 | 0.0066 | 0.1052 | 0.3755 | 0.0 |
| 0.0753 | 30.1 | 6020 | 0.6949 | 0.4082 | 0.4973 | 0.8758 | nan | 0.8345 | 0.9571 | 0.8362 | 0.8264 | 0.5438 | nan | 0.7323 | 0.8108 | 0.1971 | 0.9566 | 0.1114 | 0.0 | 0.7618 | 0.0325 | 0.7024 | 0.0 | 0.0191 | 0.9319 | 0.1148 | 0.6197 | 0.3594 | 0.5067 | nan | 0.3401 | 0.6437 | 0.5648 | 0.0 | 0.9520 | 0.8443 | 0.9797 | 0.0129 | 0.2513 | 0.4698 | 0.0 | nan | 0.7561 | 0.8772 | 0.6487 | 0.7454 | 0.4034 | nan | 0.5893 | 0.6161 | 0.0728 | 0.8618 | 0.0976 | 0.0 | 0.4558 | 0.0325 | 0.5780 | 0.0 | 0.0188 | 0.7642 | 0.1055 | 0.5314 | 0.3079 | 0.3534 | nan | 0.2505 | 0.5066 | 0.3820 | 0.0 | 0.8864 | 0.7637 | 0.9524 | 0.0108 | 0.1209 | 0.3744 | 0.0 |
| 0.1257 | 30.2 | 6040 | 0.6917 | 0.4070 | 0.4841 | 0.8779 | nan | 0.8493 | 0.9572 | 0.8337 | 0.8431 | 0.5213 | nan | 0.6946 | 0.7666 | 0.1476 | 0.9528 | 0.1400 | 0.0 | 0.6802 | 0.0394 | 0.7341 | 0.0 | 0.0169 | 0.9393 | 0.0977 | 0.6252 | 0.3417 | 0.4498 | nan | 0.2825 | 0.6021 | 0.5489 | 0.0 | 0.9565 | 0.8478 | 0.9835 | 0.0138 | 0.1719 | 0.4552 | 0.0 | nan | 0.7609 | 0.8821 | 0.6538 | 0.7509 | 0.3998 | nan | 0.5869 | 0.6337 | 0.0614 | 0.8635 | 0.1233 | 0.0 | 0.4218 | 0.0394 | 0.5784 | 0.0 | 0.0168 | 0.7609 | 0.0906 | 0.5322 | 0.3005 | 0.3418 | nan | 0.2392 | 0.4983 | 0.3973 | 0.0 | 0.8847 | 0.7660 | 0.9524 | 0.0114 | 0.1011 | 0.3764 | 0.0 |
| 0.1099 | 30.3 | 6060 | 0.6502 | 0.4117 | 0.4958 | 0.8784 | nan | 0.8603 | 0.9469 | 0.8447 | 0.8613 | 0.5677 | nan | 0.6992 | 0.8168 | 0.0617 | 0.9599 | 0.1942 | 0.0 | 0.7344 | 0.0195 | 0.6950 | 0.0 | 0.0363 | 0.9261 | 0.1359 | 0.6417 | 0.3702 | 0.4821 | nan | 0.2626 | 0.6125 | 0.5872 | 0.0 | 0.9514 | 0.8377 | 0.9843 | 0.0076 | 0.2688 | 0.4986 | 0.0 | nan | 0.7764 | 0.8886 | 0.6787 | 0.7535 | 0.3592 | nan | 0.5988 | 0.6382 | 0.0345 | 0.8602 | 0.1687 | 0.0 | 0.4401 | 0.0195 | 0.5770 | 0.0 | 0.0358 | 0.7705 | 0.1235 | 0.5355 | 0.3169 | 0.3607 | nan | 0.2241 | 0.5019 | 0.3836 | 0.0 | 0.8868 | 0.7598 | 0.9519 | 0.0056 | 0.1383 | 0.3852 | 0.0 |
| 0.0772 | 30.4 | 6080 | 0.6619 | 0.4126 | 0.4875 | 0.8790 | nan | 0.8764 | 0.9468 | 0.8257 | 0.8391 | 0.5504 | nan | 0.7166 | 0.8301 | 0.0395 | 0.9459 | 0.1677 | 0.0 | 0.5851 | 0.0885 | 0.7132 | 0.0 | 0.0414 | 0.9361 | 0.1862 | 0.6286 | 0.3409 | 0.3462 | nan | 0.2937 | 0.6241 | 0.5592 | 0.0 | 0.9572 | 0.8257 | 0.9805 | 0.0118 | 0.2612 | 0.4819 | 0.0 | nan | 0.7804 | 0.8881 | 0.7290 | 0.7596 | 0.3569 | nan | 0.5928 | 0.6354 | 0.0243 | 0.8688 | 0.1465 | 0.0 | 0.4213 | 0.0884 | 0.5870 | 0.0 | 0.0406 | 0.7637 | 0.1650 | 0.5315 | 0.3011 | 0.2810 | nan | 0.2343 | 0.5056 | 0.3912 | 0.0 | 0.8844 | 0.7534 | 0.9542 | 0.0080 | 0.1283 | 0.3817 | 0.0 |
| 0.0667 | 30.5 | 6100 | 0.6734 | 0.4156 | 0.4975 | 0.8768 | nan | 0.8659 | 0.9488 | 0.8169 | 0.8425 | 0.5445 | nan | 0.7401 | 0.8129 | 0.1878 | 0.9561 | 0.1335 | 0.0 | 0.6130 | 0.0796 | 0.7363 | 0.0 | 0.0373 | 0.9295 | 0.2599 | 0.5996 | 0.3926 | 0.4041 | nan | 0.3321 | 0.6299 | 0.5870 | 0.0 | 0.9605 | 0.7830 | 0.9819 | 0.0121 | 0.2828 | 0.4500 | 0.0 | nan | 0.7741 | 0.8840 | 0.7218 | 0.7529 | 0.3690 | nan | 0.5993 | 0.6478 | 0.0927 | 0.8646 | 0.1188 | 0.0 | 0.4250 | 0.0795 | 0.5757 | 0.0 | 0.0369 | 0.7654 | 0.2164 | 0.5279 | 0.3266 | 0.3253 | nan | 0.2681 | 0.5043 | 0.3908 | 0.0 | 0.8761 | 0.7178 | 0.9529 | 0.0091 | 0.1090 | 0.3682 | 0.0 |
| 0.0914 | 30.6 | 6120 | 0.6724 | 0.4115 | 0.4907 | 0.8772 | nan | 0.8487 | 0.9539 | 0.8272 | 0.8489 | 0.5201 | nan | 0.7346 | 0.8388 | 0.0661 | 0.9553 | 0.1135 | 0.0 | 0.6458 | 0.0374 | 0.7067 | 0.0 | 0.0146 | 0.9313 | 0.2638 | 0.6162 | 0.3748 | 0.4614 | nan | 0.2940 | 0.6111 | 0.5433 | 0.0 | 0.9517 | 0.8375 | 0.9826 | 0.0122 | 0.2292 | 0.4805 | 0.0 | nan | 0.7623 | 0.8822 | 0.6902 | 0.7479 | 0.3890 | nan | 0.5967 | 0.6272 | 0.0419 | 0.8660 | 0.1011 | 0.0 | 0.4417 | 0.0374 | 0.5728 | 0.0 | 0.0145 | 0.7672 | 0.2226 | 0.5318 | 0.3195 | 0.3483 | nan | 0.2485 | 0.5019 | 0.3951 | 0.0 | 0.8840 | 0.7441 | 0.9528 | 0.0088 | 0.0989 | 0.3731 | 0.0 |
| 0.0661 | 30.7 | 6140 | 0.7170 | 0.4061 | 0.4897 | 0.8731 | nan | 0.8210 | 0.9529 | 0.8176 | 0.8697 | 0.5278 | nan | 0.7301 | 0.8420 | 0.0351 | 0.9562 | 0.1284 | 0.0 | 0.6482 | 0.0361 | 0.7150 | 0.0 | 0.0179 | 0.9353 | 0.2255 | 0.6233 | 0.3457 | 0.5291 | nan | 0.2833 | 0.6036 | 0.5790 | 0.0 | 0.9537 | 0.8027 | 0.9850 | 0.0134 | 0.2334 | 0.4607 | 0.0 | nan | 0.7420 | 0.8802 | 0.6737 | 0.7257 | 0.3774 | nan | 0.5939 | 0.6169 | 0.0226 | 0.8641 | 0.1118 | 0.0 | 0.4206 | 0.0361 | 0.5798 | 0.0 | 0.0178 | 0.7671 | 0.1958 | 0.5363 | 0.2960 | 0.3592 | nan | 0.2366 | 0.4952 | 0.3927 | 0.0 | 0.8805 | 0.7368 | 0.9513 | 0.0107 | 0.1042 | 0.3705 | 0.0 |
| 0.0741 | 30.8 | 6160 | 0.7035 | 0.4059 | 0.4835 | 0.8739 | nan | 0.8332 | 0.9534 | 0.8044 | 0.8594 | 0.5470 | nan | 0.6966 | 0.8466 | 0.0264 | 0.9513 | 0.1178 | 0.0 | 0.6525 | 0.0279 | 0.6862 | 0.0 | 0.0111 | 0.9339 | 0.2435 | 0.6108 | 0.3731 | 0.4133 | nan | 0.2855 | 0.6059 | 0.5583 | 0.0 | 0.9556 | 0.8048 | 0.9822 | 0.0117 | 0.2116 | 0.4694 | 0.0 | nan | 0.7500 | 0.8788 | 0.6764 | 0.7474 | 0.3757 | nan | 0.5922 | 0.6360 | 0.0169 | 0.8647 | 0.1031 | 0.0 | 0.4324 | 0.0278 | 0.5708 | 0.0 | 0.0111 | 0.7611 | 0.2063 | 0.5166 | 0.3174 | 0.3225 | nan | 0.2321 | 0.4967 | 0.3917 | 0.0 | 0.8810 | 0.7370 | 0.9529 | 0.0099 | 0.1061 | 0.3742 | 0.0 |
| 0.058 | 30.9 | 6180 | 0.6949 | 0.4057 | 0.4874 | 0.8758 | nan | 0.8500 | 0.9529 | 0.8062 | 0.8529 | 0.5494 | nan | 0.7168 | 0.8530 | 0.0539 | 0.9533 | 0.1434 | 0.0 | 0.6919 | 0.0333 | 0.7170 | 0.0 | 0.0029 | 0.9345 | 0.1742 | 0.5842 | 0.3866 | 0.4719 | nan | 0.2287 | 0.6061 | 0.5550 | 0.0 | 0.9526 | 0.8203 | 0.9840 | 0.0032 | 0.2581 | 0.4611 | 0.0 | nan | 0.7621 | 0.8822 | 0.6865 | 0.7517 | 0.3810 | nan | 0.5951 | 0.6290 | 0.0340 | 0.8645 | 0.1196 | 0.0 | 0.4348 | 0.0333 | 0.5701 | 0.0 | 0.0029 | 0.7594 | 0.1569 | 0.5025 | 0.3272 | 0.3516 | nan | 0.1977 | 0.4968 | 0.3827 | 0.0 | 0.8834 | 0.7426 | 0.9522 | 0.0028 | 0.1132 | 0.3673 | 0.0 |
| 0.0769 | 31.0 | 6200 | 0.7021 | 0.4053 | 0.4841 | 0.8771 | nan | 0.8492 | 0.9555 | 0.8176 | 0.8517 | 0.5460 | nan | 0.6977 | 0.8309 | 0.0346 | 0.9528 | 0.1484 | 0.0 | 0.6787 | 0.0428 | 0.7329 | 0.0 | 0.0019 | 0.9380 | 0.1775 | 0.5846 | 0.3760 | 0.3971 | nan | 0.2414 | 0.5944 | 0.5549 | 0.0 | 0.9527 | 0.8520 | 0.9845 | 0.0045 | 0.2571 | 0.4371 | 0.0 | nan | 0.7645 | 0.8833 | 0.6655 | 0.7506 | 0.3847 | nan | 0.5952 | 0.6331 | 0.0236 | 0.8665 | 0.1226 | 0.0 | 0.4309 | 0.0428 | 0.5769 | 0.0 | 0.0018 | 0.7567 | 0.1589 | 0.5088 | 0.3230 | 0.3165 | nan | 0.2053 | 0.4955 | 0.3887 | 0.0 | 0.8882 | 0.7661 | 0.9518 | 0.0039 | 0.1047 | 0.3583 | 0.0 |
| 0.1001 | 31.1 | 6220 | 0.6853 | 0.4093 | 0.4854 | 0.8775 | nan | 0.8416 | 0.9577 | 0.8128 | 0.8535 | 0.5338 | nan | 0.7194 | 0.8196 | 0.0204 | 0.9562 | 0.1343 | 0.0 | 0.6562 | 0.0496 | 0.7100 | 0.0 | 0.0097 | 0.9281 | 0.1991 | 0.6091 | 0.3812 | 0.4154 | nan | 0.2431 | 0.6048 | 0.5839 | 0.0 | 0.9558 | 0.8400 | 0.9842 | 0.0073 | 0.2275 | 0.4778 | 0.0 | nan | 0.7583 | 0.8790 | 0.6821 | 0.7485 | 0.3949 | nan | 0.5976 | 0.6516 | 0.0143 | 0.8642 | 0.1142 | 0.0 | 0.4418 | 0.0496 | 0.5859 | 0.0 | 0.0096 | 0.7646 | 0.1751 | 0.5216 | 0.3246 | 0.3335 | nan | 0.1983 | 0.4977 | 0.3874 | 0.0 | 0.8879 | 0.7664 | 0.9515 | 0.0064 | 0.1118 | 0.3783 | 0.0 |
| 0.0825 | 31.2 | 6240 | 0.7171 | 0.4077 | 0.4846 | 0.8742 | nan | 0.8166 | 0.9577 | 0.8072 | 0.8654 | 0.5347 | nan | 0.7027 | 0.8295 | 0.0439 | 0.9538 | 0.1191 | 0.0 | 0.6460 | 0.0475 | 0.7103 | 0.0 | 0.0139 | 0.9326 | 0.1952 | 0.6114 | 0.3621 | 0.3947 | nan | 0.2462 | 0.6264 | 0.5722 | 0.0 | 0.9531 | 0.8397 | 0.9826 | 0.0105 | 0.2558 | 0.4754 | 0.0 | nan | 0.7417 | 0.8761 | 0.7062 | 0.7212 | 0.3914 | nan | 0.5990 | 0.6442 | 0.0283 | 0.8653 | 0.1020 | 0.0 | 0.4481 | 0.0475 | 0.5948 | 0.0 | 0.0138 | 0.7624 | 0.1714 | 0.5208 | 0.3110 | 0.3095 | nan | 0.2061 | 0.5013 | 0.3833 | 0.0 | 0.8875 | 0.7596 | 0.9522 | 0.0089 | 0.1172 | 0.3768 | 0.0 |
| 0.0719 | 31.3 | 6260 | 0.7227 | 0.4029 | 0.4776 | 0.8724 | nan | 0.8252 | 0.9572 | 0.8001 | 0.8361 | 0.5346 | nan | 0.7171 | 0.8383 | 0.0841 | 0.9517 | 0.1249 | 0.0004 | 0.6682 | 0.0438 | 0.7044 | 0.0 | 0.0090 | 0.9348 | 0.1377 | 0.5864 | 0.3301 | 0.3852 | nan | 0.2310 | 0.5876 | 0.5513 | 0.0 | 0.9574 | 0.8105 | 0.9836 | 0.0052 | 0.1920 | 0.4961 | 0.0 | nan | 0.7465 | 0.8720 | 0.6935 | 0.7138 | 0.3899 | nan | 0.5954 | 0.6378 | 0.0479 | 0.8665 | 0.1055 | 0.0004 | 0.4430 | 0.0438 | 0.5924 | 0.0 | 0.0089 | 0.7560 | 0.1232 | 0.5036 | 0.2936 | 0.3103 | nan | 0.1915 | 0.4936 | 0.3802 | 0.0 | 0.8833 | 0.7456 | 0.9516 | 0.0045 | 0.1095 | 0.3888 | 0.0 |
| 0.0706 | 31.4 | 6280 | 0.7254 | 0.4055 | 0.4860 | 0.8726 | nan | 0.8178 | 0.9526 | 0.8173 | 0.8460 | 0.5517 | nan | 0.7147 | 0.8187 | 0.0855 | 0.9556 | 0.1163 | 0.0048 | 0.6842 | 0.0582 | 0.7201 | 0.0 | 0.0240 | 0.9390 | 0.1200 | 0.5932 | 0.3625 | 0.4347 | nan | 0.2568 | 0.5897 | 0.5849 | 0.0 | 0.9546 | 0.8502 | 0.9816 | 0.0098 | 0.2429 | 0.4652 | 0.0 | nan | 0.7442 | 0.8756 | 0.6588 | 0.7151 | 0.3918 | nan | 0.5943 | 0.6401 | 0.0474 | 0.8644 | 0.0997 | 0.0046 | 0.4438 | 0.0581 | 0.5896 | 0.0 | 0.0238 | 0.7558 | 0.1079 | 0.5100 | 0.3098 | 0.3399 | nan | 0.2168 | 0.4966 | 0.3814 | 0.0 | 0.8874 | 0.7607 | 0.9527 | 0.0083 | 0.1194 | 0.3773 | 0.0 |
| 0.0874 | 31.5 | 6300 | 0.7268 | 0.4020 | 0.4789 | 0.8717 | nan | 0.8095 | 0.9606 | 0.8034 | 0.8561 | 0.5209 | nan | 0.7001 | 0.8063 | 0.0546 | 0.9517 | 0.1006 | 0.0039 | 0.6399 | 0.0730 | 0.7356 | 0.0 | 0.0078 | 0.9383 | 0.1055 | 0.5675 | 0.3776 | 0.4526 | nan | 0.2018 | 0.5976 | 0.5706 | 0.0 | 0.9536 | 0.8297 | 0.9801 | 0.0118 | 0.2338 | 0.4798 | 0.0 | nan | 0.7348 | 0.8737 | 0.6748 | 0.7096 | 0.3915 | nan | 0.5888 | 0.6465 | 0.0313 | 0.8675 | 0.0893 | 0.0037 | 0.4096 | 0.0730 | 0.5995 | 0.0 | 0.0078 | 0.7556 | 0.0964 | 0.5046 | 0.3131 | 0.3490 | nan | 0.1735 | 0.4953 | 0.3811 | 0.0 | 0.8872 | 0.7585 | 0.9528 | 0.0095 | 0.1093 | 0.3771 | 0.0 |
| 0.1078 | 31.6 | 6320 | 0.7038 | 0.4033 | 0.4803 | 0.8737 | nan | 0.8193 | 0.9549 | 0.8142 | 0.8598 | 0.5280 | nan | 0.7177 | 0.8195 | 0.0581 | 0.9601 | 0.1067 | 0.0096 | 0.6746 | 0.0319 | 0.7294 | 0.0 | 0.0 | 0.9362 | 0.1320 | 0.6057 | 0.3791 | 0.3374 | nan | 0.2643 | 0.5980 | 0.5489 | 0.0 | 0.9565 | 0.8236 | 0.9834 | 0.0105 | 0.2318 | 0.4768 | 0.0 | nan | 0.7444 | 0.8757 | 0.6466 | 0.7298 | 0.4080 | nan | 0.5887 | 0.6389 | 0.0335 | 0.8631 | 0.0937 | 0.0093 | 0.4737 | 0.0319 | 0.5699 | 0.0 | 0.0 | 0.7627 | 0.1200 | 0.5175 | 0.3115 | 0.2830 | nan | 0.2302 | 0.4973 | 0.3836 | 0.0 | 0.8837 | 0.7454 | 0.9522 | 0.0086 | 0.1224 | 0.3814 | 0.0 |
| 0.0711 | 31.7 | 6340 | 0.7174 | 0.4066 | 0.4866 | 0.8736 | nan | 0.8243 | 0.9516 | 0.8095 | 0.8656 | 0.5432 | nan | 0.7135 | 0.8475 | 0.0550 | 0.9579 | 0.1080 | 0.0546 | 0.7416 | 0.0321 | 0.7189 | 0.0 | 0.0 | 0.9370 | 0.1802 | 0.6009 | 0.3674 | 0.3297 | nan | 0.2785 | 0.6281 | 0.5601 | 0.0 | 0.9530 | 0.8254 | 0.9845 | 0.0107 | 0.2219 | 0.4711 | 0.0 | nan | 0.7459 | 0.8751 | 0.6467 | 0.7309 | 0.3992 | nan | 0.5923 | 0.6307 | 0.0327 | 0.8658 | 0.0929 | 0.0520 | 0.4931 | 0.0321 | 0.5788 | 0.0 | 0.0 | 0.7610 | 0.1603 | 0.5105 | 0.3171 | 0.2766 | nan | 0.2344 | 0.5053 | 0.3758 | 0.0 | 0.8858 | 0.7519 | 0.9518 | 0.0092 | 0.1202 | 0.3818 | 0.0 |
| 0.0753 | 31.8 | 6360 | 0.7175 | 0.4085 | 0.4870 | 0.8750 | nan | 0.8346 | 0.9524 | 0.7899 | 0.8642 | 0.5514 | nan | 0.7120 | 0.8405 | 0.0501 | 0.9590 | 0.1016 | 0.0091 | 0.6982 | 0.0294 | 0.6857 | 0.0 | 0.0012 | 0.9302 | 0.1419 | 0.6116 | 0.3700 | 0.5232 | nan | 0.2718 | 0.6032 | 0.5396 | 0.0 | 0.9547 | 0.8306 | 0.9835 | 0.0090 | 0.2432 | 0.4908 | 0.0 | nan | 0.7515 | 0.8752 | 0.6752 | 0.7407 | 0.3913 | nan | 0.5938 | 0.6172 | 0.0311 | 0.8641 | 0.0885 | 0.0088 | 0.5006 | 0.0294 | 0.5643 | 0.0 | 0.0012 | 0.7671 | 0.1301 | 0.5224 | 0.3169 | 0.3806 | nan | 0.2300 | 0.5022 | 0.3785 | 0.0 | 0.8872 | 0.7572 | 0.9525 | 0.0075 | 0.1284 | 0.3792 | 0.0 |
| 0.0705 | 31.9 | 6380 | 0.7062 | 0.4112 | 0.4900 | 0.8763 | nan | 0.8427 | 0.9512 | 0.7884 | 0.8599 | 0.5317 | nan | 0.7283 | 0.8216 | 0.0484 | 0.9527 | 0.1100 | 0.0072 | 0.6203 | 0.0666 | 0.7012 | 0.0 | 0.0029 | 0.9403 | 0.1995 | 0.6033 | 0.3720 | 0.5112 | nan | 0.3261 | 0.6278 | 0.5613 | 0.0 | 0.9518 | 0.8619 | 0.9833 | 0.0094 | 0.2489 | 0.4499 | 0.0 | nan | 0.7558 | 0.8745 | 0.6857 | 0.7456 | 0.3975 | nan | 0.5863 | 0.6238 | 0.0294 | 0.8666 | 0.0955 | 0.0069 | 0.4483 | 0.0666 | 0.5581 | 0.0 | 0.0029 | 0.7610 | 0.1724 | 0.5200 | 0.3221 | 0.3774 | nan | 0.2558 | 0.5087 | 0.3873 | 0.0 | 0.8909 | 0.7734 | 0.9525 | 0.0079 | 0.1195 | 0.3665 | 0.0 |
| 0.0822 | 32.0 | 6400 | 0.6943 | 0.4123 | 0.4897 | 0.8763 | nan | 0.8249 | 0.9565 | 0.8046 | 0.8503 | 0.5427 | nan | 0.7243 | 0.8296 | 0.0390 | 0.9608 | 0.0953 | 0.0 | 0.6325 | 0.0404 | 0.6859 | 0.0 | 0.0005 | 0.9273 | 0.2207 | 0.6202 | 0.4016 | 0.4459 | nan | 0.3713 | 0.6071 | 0.5696 | 0.0 | 0.9564 | 0.8529 | 0.9832 | 0.0115 | 0.2157 | 0.4988 | 0.0 | nan | 0.7500 | 0.8751 | 0.6614 | 0.7480 | 0.4049 | nan | 0.5941 | 0.6398 | 0.0240 | 0.8622 | 0.0844 | 0.0 | 0.4865 | 0.0404 | 0.5522 | 0.0 | 0.0005 | 0.7696 | 0.1895 | 0.5334 | 0.3299 | 0.3518 | nan | 0.2886 | 0.5030 | 0.3887 | 0.0 | 0.8885 | 0.7667 | 0.9526 | 0.0091 | 0.1140 | 0.3856 | 0.0 |
| 0.0668 | 32.1 | 6420 | 0.7170 | 0.4117 | 0.4908 | 0.8756 | nan | 0.8303 | 0.9569 | 0.8044 | 0.8574 | 0.5256 | nan | 0.7134 | 0.8253 | 0.0717 | 0.9551 | 0.1055 | 0.0004 | 0.6658 | 0.0383 | 0.6925 | 0.0 | 0.0016 | 0.9343 | 0.2526 | 0.6060 | 0.3833 | 0.4895 | nan | 0.3324 | 0.6097 | 0.5615 | 0.0 | 0.9505 | 0.8486 | 0.9849 | 0.0083 | 0.2182 | 0.4814 | 0.0 | nan | 0.7487 | 0.8756 | 0.6546 | 0.7416 | 0.4008 | nan | 0.5996 | 0.6438 | 0.0427 | 0.8637 | 0.0916 | 0.0004 | 0.4797 | 0.0383 | 0.5574 | 0.0 | 0.0016 | 0.7635 | 0.2075 | 0.5271 | 0.3201 | 0.3666 | nan | 0.2627 | 0.4996 | 0.3834 | 0.0 | 0.8883 | 0.7686 | 0.9515 | 0.0066 | 0.1079 | 0.3810 | 0.0 |
| 0.109 | 32.2 | 6440 | 0.6935 | 0.4073 | 0.4896 | 0.8756 | nan | 0.8346 | 0.9530 | 0.7909 | 0.8605 | 0.5453 | nan | 0.7193 | 0.8166 | 0.1420 | 0.9557 | 0.1090 | 0.0 | 0.6780 | 0.0411 | 0.7133 | 0.0 | 0.0003 | 0.9332 | 0.1200 | 0.6218 | 0.3600 | 0.4940 | nan | 0.2634 | 0.6039 | 0.5729 | 0.0 | 0.9543 | 0.8559 | 0.9829 | 0.0058 | 0.2842 | 0.4566 | 0.0 | nan | 0.7505 | 0.8765 | 0.6700 | 0.7381 | 0.3989 | nan | 0.6023 | 0.6275 | 0.0790 | 0.8640 | 0.0946 | 0.0 | 0.4644 | 0.0411 | 0.5404 | 0.0 | 0.0003 | 0.7660 | 0.1098 | 0.5411 | 0.3056 | 0.3728 | nan | 0.2263 | 0.4973 | 0.3782 | 0.0 | 0.8881 | 0.7704 | 0.9521 | 0.0049 | 0.1110 | 0.3630 | 0.0 |
| 0.1092 | 32.3 | 6460 | 0.6913 | 0.4103 | 0.4887 | 0.8780 | nan | 0.8523 | 0.9547 | 0.7885 | 0.8480 | 0.5476 | nan | 0.7248 | 0.8243 | 0.0524 | 0.9527 | 0.1199 | 0.0 | 0.6414 | 0.0525 | 0.6923 | 0.0 | 0.0012 | 0.9293 | 0.1572 | 0.6457 | 0.3509 | 0.5211 | nan | 0.2821 | 0.6106 | 0.5562 | 0.0 | 0.9529 | 0.8452 | 0.9834 | 0.0110 | 0.2626 | 0.4776 | 0.0 | nan | 0.7633 | 0.8792 | 0.6827 | 0.7520 | 0.3946 | nan | 0.5972 | 0.6374 | 0.0305 | 0.8661 | 0.1029 | 0.0 | 0.4491 | 0.0525 | 0.5630 | 0.0 | 0.0012 | 0.7682 | 0.1397 | 0.5439 | 0.3047 | 0.3765 | nan | 0.2310 | 0.5023 | 0.3822 | 0.0 | 0.8886 | 0.7707 | 0.9526 | 0.0090 | 0.1141 | 0.3733 | 0.0 |
| 0.0882 | 32.4 | 6480 | 0.6950 | 0.4128 | 0.4911 | 0.8775 | nan | 0.8384 | 0.9547 | 0.8099 | 0.8561 | 0.5512 | nan | 0.7151 | 0.8269 | 0.0289 | 0.9541 | 0.0924 | 0.0 | 0.6422 | 0.0898 | 0.6895 | 0.0 | 0.0008 | 0.9313 | 0.2086 | 0.6159 | 0.4136 | 0.4909 | nan | 0.2832 | 0.6301 | 0.5775 | 0.0 | 0.9506 | 0.8589 | 0.9833 | 0.0161 | 0.2169 | 0.4886 | 0.0 | nan | 0.7574 | 0.8779 | 0.6794 | 0.7450 | 0.4003 | nan | 0.5922 | 0.6370 | 0.0167 | 0.8665 | 0.0826 | 0.0 | 0.4593 | 0.0898 | 0.5692 | 0.0 | 0.0008 | 0.7670 | 0.1782 | 0.5370 | 0.3388 | 0.3688 | nan | 0.2250 | 0.5074 | 0.3948 | 0.0 | 0.8908 | 0.7754 | 0.9528 | 0.0123 | 0.1047 | 0.3829 | 0.0 |
| 0.1078 | 32.5 | 6500 | 0.7008 | 0.4077 | 0.4851 | 0.8768 | nan | 0.8260 | 0.9568 | 0.8089 | 0.8641 | 0.5325 | nan | 0.7276 | 0.8352 | 0.0344 | 0.9569 | 0.0890 | 0.0 | 0.6498 | 0.0799 | 0.7141 | 0.0 | 0.0003 | 0.9332 | 0.1337 | 0.6248 | 0.4004 | 0.4473 | nan | 0.2084 | 0.6083 | 0.5986 | 0.0 | 0.9546 | 0.8545 | 0.9826 | 0.0117 | 0.2128 | 0.4765 | 0.0 | nan | 0.7537 | 0.8767 | 0.6901 | 0.7304 | 0.4085 | nan | 0.5935 | 0.6295 | 0.0208 | 0.8652 | 0.0800 | 0.0 | 0.4612 | 0.0799 | 0.5707 | 0.0 | 0.0003 | 0.7653 | 0.1212 | 0.5288 | 0.3344 | 0.3514 | nan | 0.1775 | 0.5027 | 0.3925 | 0.0 | 0.8896 | 0.7701 | 0.9528 | 0.0095 | 0.1122 | 0.3797 | 0.0 |
| 0.0839 | 32.6 | 6520 | 0.6931 | 0.4070 | 0.4811 | 0.8762 | nan | 0.8256 | 0.9578 | 0.7687 | 0.8671 | 0.5476 | nan | 0.7239 | 0.8142 | 0.0359 | 0.9583 | 0.0924 | 0.0 | 0.6538 | 0.0468 | 0.6923 | 0.0 | 0.0052 | 0.9296 | 0.1578 | 0.6324 | 0.3887 | 0.4013 | nan | 0.2183 | 0.6161 | 0.5845 | 0.0 | 0.9555 | 0.8465 | 0.9810 | 0.0069 | 0.2266 | 0.4620 | 0.0 | nan | 0.7481 | 0.8773 | 0.7198 | 0.7139 | 0.4052 | nan | 0.5951 | 0.6356 | 0.0227 | 0.8628 | 0.0832 | 0.0 | 0.4647 | 0.0468 | 0.5635 | 0.0 | 0.0052 | 0.7671 | 0.1405 | 0.5332 | 0.3266 | 0.3282 | nan | 0.1798 | 0.5013 | 0.3971 | 0.0 | 0.8898 | 0.7736 | 0.9531 | 0.0060 | 0.1144 | 0.3709 | 0.0 |
| 0.0993 | 32.7 | 6540 | 0.7215 | 0.4052 | 0.4845 | 0.8741 | nan | 0.8252 | 0.9563 | 0.7900 | 0.8293 | 0.5540 | nan | 0.7042 | 0.8283 | 0.1096 | 0.9620 | 0.0997 | 0.0 | 0.6786 | 0.0450 | 0.6849 | 0.0 | 0.0052 | 0.9311 | 0.1770 | 0.6198 | 0.3774 | 0.3792 | nan | 0.1926 | 0.6116 | 0.5805 | 0.0 | 0.9537 | 0.8576 | 0.9825 | 0.0017 | 0.2979 | 0.4689 | 0.0 | nan | 0.7450 | 0.8710 | 0.6980 | 0.7201 | 0.4009 | nan | 0.5858 | 0.6205 | 0.0619 | 0.8594 | 0.0887 | 0.0 | 0.4599 | 0.0450 | 0.5572 | 0.0 | 0.0052 | 0.7674 | 0.1559 | 0.5378 | 0.3225 | 0.3122 | nan | 0.1615 | 0.5010 | 0.3915 | 0.0 | 0.8896 | 0.7746 | 0.9524 | 0.0015 | 0.1138 | 0.3657 | 0.0 |
| 0.0767 | 32.8 | 6560 | 0.7154 | 0.4119 | 0.4878 | 0.8752 | nan | 0.8259 | 0.9534 | 0.8095 | 0.8543 | 0.5497 | nan | 0.6975 | 0.7829 | 0.1343 | 0.9474 | 0.1097 | 0.0 | 0.6268 | 0.0537 | 0.7137 | 0.0 | 0.0033 | 0.9335 | 0.1615 | 0.6321 | 0.4182 | 0.4522 | nan | 0.2498 | 0.6249 | 0.5742 | 0.0 | 0.9536 | 0.8550 | 0.9824 | 0.0084 | 0.2087 | 0.4922 | 0.0 | nan | 0.7454 | 0.8740 | 0.6896 | 0.7329 | 0.3946 | nan | 0.5824 | 0.6412 | 0.0629 | 0.8653 | 0.0960 | 0.0 | 0.4605 | 0.0537 | 0.5902 | 0.0 | 0.0033 | 0.7651 | 0.1420 | 0.5385 | 0.3385 | 0.3546 | nan | 0.2151 | 0.5038 | 0.3986 | 0.0 | 0.8898 | 0.7714 | 0.9525 | 0.0068 | 0.1229 | 0.3897 | 0.0 |
| 0.07 | 32.9 | 6580 | 0.7151 | 0.4086 | 0.4868 | 0.8742 | nan | 0.8154 | 0.9566 | 0.8130 | 0.8613 | 0.5386 | nan | 0.7003 | 0.8201 | 0.0959 | 0.9565 | 0.1221 | 0.0079 | 0.6187 | 0.0545 | 0.7487 | 0.0 | 0.0009 | 0.9347 | 0.2350 | 0.6063 | 0.3738 | 0.4407 | nan | 0.2614 | 0.6001 | 0.5478 | 0.0 | 0.9557 | 0.8371 | 0.9858 | 0.0061 | 0.2000 | 0.4813 | 0.0 | nan | 0.7412 | 0.8754 | 0.6716 | 0.7269 | 0.3948 | nan | 0.5877 | 0.6248 | 0.0466 | 0.8617 | 0.1046 | 0.0078 | 0.4182 | 0.0545 | 0.6030 | 0.0 | 0.0009 | 0.7639 | 0.1969 | 0.5336 | 0.3179 | 0.3477 | nan | 0.2122 | 0.4997 | 0.3894 | 0.0 | 0.8867 | 0.7627 | 0.9507 | 0.0050 | 0.1037 | 0.3853 | 0.0 |
| 0.0869 | 33.0 | 6600 | 0.7291 | 0.4098 | 0.4886 | 0.8733 | nan | 0.8000 | 0.9569 | 0.8014 | 0.8654 | 0.5538 | nan | 0.7208 | 0.8246 | 0.0684 | 0.9506 | 0.1201 | 0.0254 | 0.6151 | 0.0426 | 0.7512 | 0.0 | 0.0015 | 0.9316 | 0.2126 | 0.6254 | 0.3746 | 0.4522 | nan | 0.2562 | 0.6426 | 0.5521 | 0.0 | 0.9547 | 0.8444 | 0.9837 | 0.0108 | 0.2265 | 0.4712 | 0.0 | nan | 0.7315 | 0.8745 | 0.6940 | 0.7067 | 0.4021 | nan | 0.5896 | 0.6237 | 0.0401 | 0.8644 | 0.1045 | 0.0251 | 0.4398 | 0.0425 | 0.6079 | 0.0 | 0.0015 | 0.7688 | 0.1816 | 0.5406 | 0.3177 | 0.3504 | nan | 0.1928 | 0.5069 | 0.3942 | 0.0 | 0.8878 | 0.7669 | 0.9524 | 0.0084 | 0.1167 | 0.3818 | 0.0 |
| 0.0907 | 33.1 | 6620 | 0.7083 | 0.4140 | 0.4938 | 0.8760 | nan | 0.8313 | 0.9492 | 0.7967 | 0.8513 | 0.5814 | nan | 0.7147 | 0.8239 | 0.0723 | 0.9481 | 0.1296 | 0.0329 | 0.6339 | 0.0548 | 0.7398 | 0.0 | 0.0030 | 0.9302 | 0.2007 | 0.6677 | 0.3820 | 0.4066 | nan | 0.3267 | 0.6150 | 0.5558 | 0.0 | 0.9557 | 0.8548 | 0.9816 | 0.0128 | 0.2743 | 0.4734 | 0.0 | nan | 0.7510 | 0.8790 | 0.6874 | 0.7512 | 0.3778 | nan | 0.5872 | 0.6345 | 0.0395 | 0.8648 | 0.1112 | 0.0328 | 0.4481 | 0.0548 | 0.5977 | 0.0 | 0.0030 | 0.7735 | 0.1747 | 0.5569 | 0.3216 | 0.3227 | nan | 0.2508 | 0.5051 | 0.3969 | 0.0 | 0.8878 | 0.7636 | 0.9535 | 0.0094 | 0.1310 | 0.3795 | 0.0 |
| 0.0662 | 33.2 | 6640 | 0.7039 | 0.4131 | 0.4916 | 0.8772 | nan | 0.8298 | 0.9586 | 0.8088 | 0.8580 | 0.5375 | nan | 0.7101 | 0.7987 | 0.1955 | 0.9538 | 0.1375 | 0.0 | 0.6408 | 0.0635 | 0.7458 | 0.0 | 0.0037 | 0.9299 | 0.1396 | 0.6343 | 0.3837 | 0.4410 | nan | 0.2617 | 0.6124 | 0.5711 | 0.0 | 0.9535 | 0.8593 | 0.9840 | 0.0078 | 0.2362 | 0.4741 | 0.0 | nan | 0.7508 | 0.8788 | 0.6696 | 0.7440 | 0.3979 | nan | 0.5928 | 0.6328 | 0.0921 | 0.8642 | 0.1173 | 0.0 | 0.4648 | 0.0635 | 0.5916 | 0.0 | 0.0037 | 0.7705 | 0.1264 | 0.5459 | 0.3223 | 0.3503 | nan | 0.2286 | 0.5051 | 0.3944 | 0.0 | 0.8893 | 0.7750 | 0.9522 | 0.0059 | 0.1141 | 0.3754 | 0.0 |
| 0.0726 | 33.3 | 6660 | 0.7065 | 0.4084 | 0.4842 | 0.8759 | nan | 0.8363 | 0.9559 | 0.8071 | 0.8274 | 0.5425 | nan | 0.7215 | 0.8516 | 0.0306 | 0.9505 | 0.1148 | 0.0 | 0.6430 | 0.0477 | 0.6927 | 0.0 | 0.0025 | 0.9344 | 0.1697 | 0.6262 | 0.3146 | 0.4589 | nan | 0.2954 | 0.6111 | 0.5492 | 0.0 | 0.9557 | 0.8535 | 0.9834 | 0.0044 | 0.2195 | 0.4939 | 0.0 | nan | 0.7537 | 0.8756 | 0.6706 | 0.7371 | 0.4011 | nan | 0.5870 | 0.6198 | 0.0206 | 0.8659 | 0.0991 | 0.0 | 0.4766 | 0.0477 | 0.5819 | 0.0 | 0.0025 | 0.7675 | 0.1532 | 0.5420 | 0.2811 | 0.3503 | nan | 0.2542 | 0.5009 | 0.3853 | 0.0 | 0.8869 | 0.7699 | 0.9523 | 0.0035 | 0.1047 | 0.3782 | 0.0 |
| 0.0765 | 33.4 | 6680 | 0.7081 | 0.4149 | 0.4950 | 0.8765 | nan | 0.8328 | 0.9578 | 0.8029 | 0.8399 | 0.5425 | nan | 0.7116 | 0.8201 | 0.0353 | 0.9547 | 0.1215 | 0.0 | 0.6405 | 0.0628 | 0.7235 | 0.0 | 0.0085 | 0.9322 | 0.1502 | 0.6530 | 0.4228 | 0.6183 | nan | 0.3093 | 0.6097 | 0.5750 | 0.0 | 0.9516 | 0.8377 | 0.9840 | 0.0098 | 0.2520 | 0.4802 | 0.0 | nan | 0.7528 | 0.8742 | 0.6729 | 0.7404 | 0.4038 | nan | 0.5890 | 0.6490 | 0.0240 | 0.8631 | 0.1061 | 0.0 | 0.4733 | 0.0628 | 0.5778 | 0.0 | 0.0085 | 0.7719 | 0.1361 | 0.5468 | 0.3464 | 0.4091 | nan | 0.2539 | 0.5036 | 0.3912 | 0.0 | 0.8882 | 0.7625 | 0.9521 | 0.0076 | 0.1290 | 0.3809 | 0.0 |
| 0.0897 | 33.5 | 6700 | 0.7159 | 0.4094 | 0.4878 | 0.8751 | nan | 0.8256 | 0.9557 | 0.8043 | 0.8559 | 0.5403 | nan | 0.7293 | 0.8425 | 0.0251 | 0.9597 | 0.0810 | 0.0 | 0.6896 | 0.0414 | 0.7049 | 0.0 | 0.0086 | 0.9321 | 0.1699 | 0.6306 | 0.3758 | 0.5154 | nan | 0.2817 | 0.6137 | 0.5449 | 0.0 | 0.9536 | 0.8209 | 0.9839 | 0.0041 | 0.2244 | 0.4935 | 0.0 | nan | 0.7496 | 0.8754 | 0.6659 | 0.7466 | 0.3971 | nan | 0.5921 | 0.6412 | 0.0174 | 0.8602 | 0.0730 | 0.0 | 0.4721 | 0.0414 | 0.5749 | 0.0 | 0.0086 | 0.7695 | 0.1523 | 0.5378 | 0.3204 | 0.3785 | nan | 0.2446 | 0.5059 | 0.3870 | 0.0 | 0.8839 | 0.7483 | 0.9526 | 0.0031 | 0.1198 | 0.3810 | 0.0 |
| 0.0776 | 33.6 | 6720 | 0.7226 | 0.4115 | 0.4950 | 0.8749 | nan | 0.8214 | 0.9543 | 0.8080 | 0.8569 | 0.5551 | nan | 0.7005 | 0.8607 | 0.0413 | 0.9565 | 0.0964 | 0.0 | 0.6873 | 0.0378 | 0.7132 | 0.0 | 0.0026 | 0.9314 | 0.2169 | 0.6416 | 0.3864 | 0.5312 | nan | 0.3206 | 0.6181 | 0.5986 | 0.0 | 0.9525 | 0.8474 | 0.9843 | 0.0084 | 0.2475 | 0.4630 | 0.0 | nan | 0.7465 | 0.8753 | 0.6633 | 0.7468 | 0.3910 | nan | 0.5916 | 0.6261 | 0.0278 | 0.8626 | 0.0849 | 0.0 | 0.4609 | 0.0378 | 0.5827 | 0.0 | 0.0026 | 0.7684 | 0.1841 | 0.5377 | 0.3260 | 0.3794 | nan | 0.2578 | 0.5090 | 0.3896 | 0.0 | 0.8880 | 0.7629 | 0.9518 | 0.0058 | 0.1302 | 0.3758 | 0.0 |
| 0.1109 | 33.7 | 6740 | 0.7219 | 0.4140 | 0.4975 | 0.8759 | nan | 0.8275 | 0.9576 | 0.8050 | 0.8541 | 0.5187 | nan | 0.7415 | 0.8474 | 0.0535 | 0.9539 | 0.1190 | 0.0 | 0.7124 | 0.0666 | 0.7268 | 0.0 | 0.0017 | 0.9352 | 0.1979 | 0.6278 | 0.3975 | 0.5485 | nan | 0.3189 | 0.6067 | 0.5829 | 0.0 | 0.9535 | 0.8316 | 0.9827 | 0.0100 | 0.2786 | 0.4640 | 0.0 | nan | 0.7494 | 0.8761 | 0.6653 | 0.7520 | 0.3944 | nan | 0.5889 | 0.6479 | 0.0342 | 0.8640 | 0.1020 | 0.0 | 0.4684 | 0.0666 | 0.5976 | 0.0 | 0.0017 | 0.7665 | 0.1717 | 0.5348 | 0.3320 | 0.3754 | nan | 0.2489 | 0.5057 | 0.3869 | 0.0 | 0.8872 | 0.7600 | 0.9523 | 0.0073 | 0.1342 | 0.3753 | 0.0 |
| 0.0714 | 33.8 | 6760 | 0.7040 | 0.4191 | 0.5104 | 0.8769 | nan | 0.8311 | 0.9574 | 0.8046 | 0.8543 | 0.5370 | nan | 0.7318 | 0.8065 | 0.3629 | 0.9544 | 0.1247 | 0.0 | 0.7249 | 0.1480 | 0.7440 | 0.0 | 0.0020 | 0.9248 | 0.2265 | 0.6234 | 0.4050 | 0.5126 | nan | 0.2951 | 0.6125 | 0.5795 | 0.0 | 0.9579 | 0.8385 | 0.9825 | 0.0048 | 0.3099 | 0.4775 | 0.0 | nan | 0.7546 | 0.8781 | 0.6648 | 0.7504 | 0.4058 | nan | 0.5879 | 0.6292 | 0.1124 | 0.8647 | 0.1069 | 0.0 | 0.4684 | 0.1479 | 0.5998 | 0.0 | 0.0020 | 0.7721 | 0.1987 | 0.5353 | 0.3365 | 0.3703 | nan | 0.2205 | 0.5051 | 0.3877 | 0.0 | 0.8865 | 0.7618 | 0.9521 | 0.0035 | 0.1365 | 0.3713 | 0.0 |
| 0.0615 | 33.9 | 6780 | 0.7146 | 0.4125 | 0.4896 | 0.8775 | nan | 0.8301 | 0.9632 | 0.7929 | 0.8508 | 0.5108 | nan | 0.7121 | 0.8431 | 0.0684 | 0.9536 | 0.1265 | 0.0 | 0.7271 | 0.0748 | 0.6713 | 0.0 | 0.0 | 0.9263 | 0.2143 | 0.6247 | 0.3687 | 0.4975 | nan | 0.2420 | 0.6167 | 0.5793 | 0.0 | 0.9579 | 0.8454 | 0.9836 | 0.0041 | 0.1795 | 0.5033 | 0.0 | nan | 0.7504 | 0.8762 | 0.6669 | 0.7404 | 0.4170 | nan | 0.5865 | 0.6454 | 0.0385 | 0.8639 | 0.1077 | 0.0 | 0.4739 | 0.0748 | 0.5780 | 0.0 | 0.0 | 0.7720 | 0.1918 | 0.5342 | 0.3126 | 0.3662 | nan | 0.1871 | 0.5051 | 0.3988 | 0.0 | 0.8858 | 0.7658 | 0.9516 | 0.0035 | 0.1193 | 0.3869 | 0.0 |
| 0.0893 | 34.0 | 6800 | 0.7000 | 0.4168 | 0.4974 | 0.8783 | nan | 0.8374 | 0.9617 | 0.7923 | 0.8609 | 0.5329 | nan | 0.7031 | 0.7904 | 0.1178 | 0.9539 | 0.1435 | 0.0022 | 0.8039 | 0.0996 | 0.7168 | 0.0 | 0.0020 | 0.9357 | 0.2202 | 0.6263 | 0.3937 | 0.5509 | nan | 0.2026 | 0.6028 | 0.5671 | 0.0 | 0.9493 | 0.8424 | 0.9830 | 0.0082 | 0.2195 | 0.4952 | 0.0 | nan | 0.7542 | 0.8793 | 0.6748 | 0.7430 | 0.4192 | nan | 0.5891 | 0.6673 | 0.0697 | 0.8621 | 0.1203 | 0.0022 | 0.4841 | 0.0995 | 0.5736 | 0.0 | 0.0020 | 0.7679 | 0.1916 | 0.5293 | 0.3269 | 0.3909 | nan | 0.1635 | 0.5054 | 0.3861 | 0.0 | 0.8889 | 0.7676 | 0.9519 | 0.0068 | 0.1331 | 0.3868 | 0.0 |
| 0.0643 | 34.1 | 6820 | 0.7305 | 0.4052 | 0.4840 | 0.8741 | nan | 0.8217 | 0.9635 | 0.8015 | 0.8551 | 0.4787 | nan | 0.7021 | 0.8348 | 0.0715 | 0.9554 | 0.1245 | 0.0 | 0.6547 | 0.0495 | 0.7125 | 0.0 | 0.0079 | 0.9311 | 0.2483 | 0.5820 | 0.3625 | 0.4930 | nan | 0.1410 | 0.6551 | 0.5725 | 0.0 | 0.9555 | 0.8247 | 0.9831 | 0.0033 | 0.2233 | 0.4796 | 0.0 | nan | 0.7460 | 0.8727 | 0.6596 | 0.7339 | 0.3828 | nan | 0.5858 | 0.6495 | 0.0449 | 0.8623 | 0.1080 | 0.0 | 0.4414 | 0.0495 | 0.5549 | 0.0 | 0.0079 | 0.7635 | 0.2121 | 0.5171 | 0.3097 | 0.3602 | nan | 0.1169 | 0.5045 | 0.3949 | 0.0 | 0.8853 | 0.7568 | 0.9522 | 0.0027 | 0.1130 | 0.3797 | 0.0 |
| 0.0835 | 34.2 | 6840 | 0.7173 | 0.4094 | 0.4836 | 0.8773 | nan | 0.8376 | 0.9589 | 0.7892 | 0.8537 | 0.5312 | nan | 0.7159 | 0.8236 | 0.0417 | 0.9520 | 0.1248 | 0.0 | 0.6412 | 0.0239 | 0.6903 | 0.0 | 0.0034 | 0.9344 | 0.1832 | 0.6327 | 0.3625 | 0.5151 | nan | 0.2228 | 0.6314 | 0.5617 | 0.0 | 0.9543 | 0.8310 | 0.9842 | 0.0093 | 0.1743 | 0.4925 | 0.0 | nan | 0.7552 | 0.8780 | 0.6802 | 0.7442 | 0.4123 | nan | 0.5862 | 0.6551 | 0.0259 | 0.8620 | 0.1086 | 0.0 | 0.4597 | 0.0239 | 0.5638 | 0.0 | 0.0034 | 0.7681 | 0.1653 | 0.5335 | 0.3098 | 0.3808 | nan | 0.1794 | 0.5121 | 0.3907 | 0.0 | 0.8856 | 0.7535 | 0.9520 | 0.0069 | 0.1149 | 0.3910 | 0.0 |
| 0.0742 | 34.3 | 6860 | 0.7048 | 0.4105 | 0.4888 | 0.8782 | nan | 0.8362 | 0.9591 | 0.8005 | 0.8552 | 0.5264 | nan | 0.7207 | 0.8449 | 0.0987 | 0.9547 | 0.1075 | 0.0 | 0.6571 | 0.0278 | 0.6951 | 0.0 | 0.0081 | 0.9278 | 0.1670 | 0.6597 | 0.3732 | 0.5320 | nan | 0.2193 | 0.6198 | 0.5725 | 0.0 | 0.9523 | 0.8574 | 0.9834 | 0.0013 | 0.1958 | 0.4896 | 0.0 | nan | 0.7562 | 0.8790 | 0.6689 | 0.7413 | 0.4090 | nan | 0.5854 | 0.6317 | 0.0561 | 0.8609 | 0.0946 | 0.0 | 0.4557 | 0.0278 | 0.5638 | 0.0 | 0.0081 | 0.7737 | 0.1521 | 0.5446 | 0.3168 | 0.3893 | nan | 0.1820 | 0.5130 | 0.3914 | 0.0 | 0.8888 | 0.7689 | 0.9520 | 0.0010 | 0.1353 | 0.3876 | 0.0 |
| 0.1168 | 34.4 | 6880 | 0.6841 | 0.4150 | 0.4977 | 0.8794 | nan | 0.8529 | 0.9527 | 0.8020 | 0.8523 | 0.5574 | nan | 0.7265 | 0.8365 | 0.0637 | 0.9550 | 0.1016 | 0.0 | 0.6778 | 0.0272 | 0.7031 | 0.0 | 0.0212 | 0.9231 | 0.2925 | 0.6511 | 0.3985 | 0.5207 | nan | 0.2553 | 0.6245 | 0.5977 | 0.0 | 0.9545 | 0.8385 | 0.9839 | 0.0018 | 0.2349 | 0.5202 | 0.0 | nan | 0.7699 | 0.8812 | 0.6835 | 0.7501 | 0.3954 | nan | 0.5866 | 0.6470 | 0.0383 | 0.8615 | 0.0893 | 0.0 | 0.4509 | 0.0272 | 0.5621 | 0.0 | 0.0212 | 0.7771 | 0.2466 | 0.5537 | 0.3301 | 0.3799 | nan | 0.2045 | 0.5060 | 0.3862 | 0.0 | 0.8881 | 0.7639 | 0.9515 | 0.0015 | 0.1364 | 0.3917 | 0.0 |
| 0.0595 | 34.5 | 6900 | 0.7130 | 0.4101 | 0.4904 | 0.8775 | nan | 0.8442 | 0.9532 | 0.8013 | 0.8490 | 0.5569 | nan | 0.7149 | 0.8149 | 0.1256 | 0.9551 | 0.1126 | 0.0 | 0.6683 | 0.0307 | 0.7014 | 0.0 | 0.0049 | 0.9346 | 0.2040 | 0.6351 | 0.3813 | 0.4835 | nan | 0.2342 | 0.6111 | 0.5948 | 0.0 | 0.9543 | 0.8439 | 0.9837 | 0.0032 | 0.2197 | 0.4776 | 0.0 | nan | 0.7597 | 0.8772 | 0.6766 | 0.7504 | 0.3995 | nan | 0.5850 | 0.6392 | 0.0631 | 0.8600 | 0.0989 | 0.0 | 0.4336 | 0.0307 | 0.5614 | 0.0 | 0.0049 | 0.7709 | 0.1801 | 0.5459 | 0.3220 | 0.3608 | nan | 0.1852 | 0.5028 | 0.3971 | 0.0 | 0.8874 | 0.7644 | 0.9520 | 0.0026 | 0.1309 | 0.3810 | 0.0 |
| 0.0885 | 34.6 | 6920 | 0.7065 | 0.4110 | 0.4956 | 0.8773 | nan | 0.8436 | 0.9571 | 0.7963 | 0.8438 | 0.5365 | nan | 0.7003 | 0.8339 | 0.1525 | 0.9518 | 0.1117 | 0.0 | 0.6927 | 0.0622 | 0.7234 | 0.0 | 0.0065 | 0.9294 | 0.2014 | 0.6350 | 0.3897 | 0.5032 | nan | 0.2568 | 0.6164 | 0.5865 | 0.0 | 0.9536 | 0.8522 | 0.9817 | 0.0117 | 0.2515 | 0.4782 | 0.0 | nan | 0.7598 | 0.8766 | 0.6939 | 0.7435 | 0.4051 | nan | 0.5845 | 0.6021 | 0.0802 | 0.8648 | 0.0967 | 0.0 | 0.4335 | 0.0622 | 0.5517 | 0.0 | 0.0065 | 0.7722 | 0.1793 | 0.5491 | 0.3233 | 0.3673 | nan | 0.1997 | 0.5005 | 0.3978 | 0.0 | 0.8879 | 0.7661 | 0.9532 | 0.0080 | 0.1146 | 0.3710 | 0.0 |
| 0.0715 | 34.7 | 6940 | 0.7091 | 0.4125 | 0.4943 | 0.8776 | nan | 0.8471 | 0.9560 | 0.7982 | 0.8358 | 0.5498 | nan | 0.7191 | 0.8264 | 0.0810 | 0.9588 | 0.1080 | 0.0 | 0.6942 | 0.0434 | 0.6989 | 0.0 | 0.0072 | 0.9267 | 0.2175 | 0.6463 | 0.3871 | 0.4835 | nan | 0.3013 | 0.6419 | 0.5906 | 0.0 | 0.9537 | 0.8299 | 0.9838 | 0.0065 | 0.2428 | 0.4815 | 0.0 | nan | 0.7602 | 0.8772 | 0.7021 | 0.7450 | 0.4044 | nan | 0.5904 | 0.6210 | 0.0448 | 0.8598 | 0.0944 | 0.0 | 0.4384 | 0.0434 | 0.5587 | 0.0 | 0.0072 | 0.7725 | 0.1907 | 0.5470 | 0.3270 | 0.3721 | nan | 0.2330 | 0.5032 | 0.4042 | 0.0 | 0.8870 | 0.7600 | 0.9526 | 0.0048 | 0.1173 | 0.3813 | 0.0 |
| 0.0908 | 34.8 | 6960 | 0.7034 | 0.4133 | 0.4963 | 0.8781 | nan | 0.8463 | 0.9567 | 0.7999 | 0.8399 | 0.5551 | nan | 0.7234 | 0.8263 | 0.1250 | 0.9508 | 0.1135 | 0.0 | 0.6795 | 0.0507 | 0.7067 | 0.0 | 0.0101 | 0.9316 | 0.2536 | 0.6314 | 0.3883 | 0.4968 | nan | 0.2776 | 0.6215 | 0.5755 | 0.0 | 0.9553 | 0.8408 | 0.9832 | 0.0066 | 0.2792 | 0.4559 | 0.0 | nan | 0.7646 | 0.8796 | 0.6948 | 0.7483 | 0.4008 | nan | 0.5927 | 0.6159 | 0.0623 | 0.8653 | 0.0994 | 0.0 | 0.4262 | 0.0507 | 0.5722 | 0.0 | 0.0101 | 0.7701 | 0.2134 | 0.5379 | 0.3254 | 0.3697 | nan | 0.2032 | 0.5077 | 0.4076 | 0.0 | 0.8870 | 0.7637 | 0.9529 | 0.0047 | 0.1300 | 0.3709 | 0.0 |
| 0.0926 | 34.9 | 6980 | 0.7226 | 0.4129 | 0.5021 | 0.8743 | nan | 0.8084 | 0.9567 | 0.7951 | 0.8701 | 0.5444 | nan | 0.7083 | 0.8245 | 0.1514 | 0.9543 | 0.1348 | 0.0 | 0.6805 | 0.0463 | 0.7060 | 0.0 | 0.0069 | 0.9234 | 0.2647 | 0.6287 | 0.3968 | 0.5927 | nan | 0.2616 | 0.6449 | 0.5906 | 0.0 | 0.9519 | 0.8647 | 0.9833 | 0.0077 | 0.2975 | 0.4714 | 0.0 | nan | 0.7343 | 0.8782 | 0.6921 | 0.6995 | 0.4072 | nan | 0.5899 | 0.6290 | 0.0722 | 0.8616 | 0.1157 | 0.0 | 0.4273 | 0.0463 | 0.5762 | 0.0 | 0.0069 | 0.7722 | 0.2214 | 0.5357 | 0.3314 | 0.3707 | nan | 0.1966 | 0.5107 | 0.3979 | 0.0 | 0.8896 | 0.7743 | 0.9526 | 0.0057 | 0.1434 | 0.3734 | 0.0 |
| 0.072 | 35.0 | 7000 | 0.7112 | 0.4118 | 0.4961 | 0.8770 | nan | 0.8373 | 0.9527 | 0.7939 | 0.8673 | 0.5509 | nan | 0.7249 | 0.8349 | 0.1411 | 0.9566 | 0.1426 | 0.0 | 0.6715 | 0.0284 | 0.7095 | 0.0 | 0.0032 | 0.9373 | 0.2113 | 0.6021 | 0.3573 | 0.5783 | nan | 0.2289 | 0.6315 | 0.5659 | 0.0 | 0.9492 | 0.8623 | 0.9810 | 0.0086 | 0.2546 | 0.4921 | 0.0 | nan | 0.7609 | 0.8859 | 0.6978 | 0.7222 | 0.3807 | nan | 0.5923 | 0.6311 | 0.0732 | 0.8622 | 0.1218 | 0.0 | 0.4430 | 0.0284 | 0.5737 | 0.0 | 0.0032 | 0.7643 | 0.1859 | 0.5229 | 0.3097 | 0.3805 | nan | 0.1885 | 0.5066 | 0.4033 | 0.0 | 0.8896 | 0.7731 | 0.9540 | 0.0062 | 0.1348 | 0.3822 | 0.0 |
| 0.0878 | 35.1 | 7020 | 0.7032 | 0.4121 | 0.4950 | 0.8796 | nan | 0.8632 | 0.9551 | 0.8148 | 0.8522 | 0.5301 | nan | 0.7068 | 0.8316 | 0.0810 | 0.9546 | 0.1448 | 0.0 | 0.6698 | 0.0374 | 0.7077 | 0.0 | 0.0 | 0.9315 | 0.1499 | 0.6055 | 0.3846 | 0.6106 | nan | 0.2612 | 0.6163 | 0.5929 | 0.0 | 0.9509 | 0.8546 | 0.9852 | 0.0106 | 0.2482 | 0.4902 | 0.0 | nan | 0.7732 | 0.8875 | 0.6897 | 0.7523 | 0.3764 | nan | 0.5895 | 0.6392 | 0.0493 | 0.8625 | 0.1203 | 0.0 | 0.4445 | 0.0374 | 0.5728 | 0.0 | 0.0 | 0.7643 | 0.1360 | 0.5188 | 0.3272 | 0.3897 | nan | 0.2108 | 0.5050 | 0.3999 | 0.0 | 0.8897 | 0.7721 | 0.9513 | 0.0080 | 0.1363 | 0.3830 | 0.0 |
| 0.0617 | 35.2 | 7040 | 0.7085 | 0.4076 | 0.4862 | 0.8779 | nan | 0.8469 | 0.9541 | 0.8175 | 0.8613 | 0.5417 | nan | 0.7101 | 0.8428 | 0.0342 | 0.9524 | 0.1063 | 0.0 | 0.6526 | 0.0122 | 0.7009 | 0.0 | 0.0007 | 0.9350 | 0.1259 | 0.5991 | 0.3807 | 0.5674 | nan | 0.2156 | 0.6201 | 0.5787 | 0.0 | 0.9548 | 0.8446 | 0.9818 | 0.0100 | 0.2173 | 0.4933 | 0.0 | nan | 0.7655 | 0.8837 | 0.6960 | 0.7419 | 0.3874 | nan | 0.5899 | 0.6424 | 0.0234 | 0.8619 | 0.0929 | 0.0 | 0.4448 | 0.0122 | 0.5773 | 0.0 | 0.0007 | 0.7608 | 0.1156 | 0.5165 | 0.3232 | 0.3777 | nan | 0.1875 | 0.5068 | 0.4089 | 0.0 | 0.8878 | 0.7641 | 0.9526 | 0.0079 | 0.1262 | 0.3872 | 0.0 |
| 0.0636 | 35.3 | 7060 | 0.7015 | 0.4130 | 0.4922 | 0.8782 | nan | 0.8488 | 0.9566 | 0.8009 | 0.8527 | 0.5343 | nan | 0.7245 | 0.8251 | 0.0319 | 0.9549 | 0.1212 | 0.0 | 0.6995 | 0.0283 | 0.6915 | 0.0 | 0.0028 | 0.9273 | 0.2412 | 0.6259 | 0.3709 | 0.5330 | nan | 0.2623 | 0.6272 | 0.5727 | 0.0 | 0.9555 | 0.8255 | 0.9827 | 0.0109 | 0.2392 | 0.5022 | 0.0 | nan | 0.7659 | 0.8814 | 0.6998 | 0.7451 | 0.3928 | nan | 0.5907 | 0.6495 | 0.0203 | 0.8597 | 0.1045 | 0.0 | 0.4582 | 0.0283 | 0.5761 | 0.0 | 0.0028 | 0.7697 | 0.2071 | 0.5300 | 0.3199 | 0.3712 | nan | 0.2169 | 0.5065 | 0.4021 | 0.0 | 0.8852 | 0.7539 | 0.9524 | 0.0086 | 0.1298 | 0.3871 | 0.0 |
| 0.0551 | 35.4 | 7080 | 0.6996 | 0.4136 | 0.4917 | 0.8791 | nan | 0.8576 | 0.9591 | 0.8023 | 0.8473 | 0.5101 | nan | 0.7156 | 0.8227 | 0.0597 | 0.9540 | 0.1384 | 0.0 | 0.6836 | 0.0255 | 0.7013 | 0.0 | 0.0024 | 0.9314 | 0.2454 | 0.6274 | 0.3617 | 0.5197 | nan | 0.2522 | 0.6283 | 0.5832 | 0.0 | 0.9528 | 0.8283 | 0.9866 | 0.0045 | 0.2473 | 0.4846 | 0.0 | nan | 0.7706 | 0.8814 | 0.7086 | 0.7500 | 0.3846 | nan | 0.5886 | 0.6455 | 0.0359 | 0.8613 | 0.1172 | 0.0 | 0.4454 | 0.0255 | 0.5828 | 0.0 | 0.0024 | 0.7678 | 0.2096 | 0.5277 | 0.3131 | 0.3811 | nan | 0.2117 | 0.5064 | 0.4019 | 0.0 | 0.8859 | 0.7581 | 0.9508 | 0.0038 | 0.1357 | 0.3816 | 0.0 |
| 0.0555 | 35.5 | 7100 | 0.7008 | 0.4108 | 0.4897 | 0.8788 | nan | 0.8481 | 0.9579 | 0.8094 | 0.8626 | 0.5052 | nan | 0.7268 | 0.8382 | 0.0548 | 0.9542 | 0.1216 | 0.0 | 0.6768 | 0.0288 | 0.7086 | 0.0 | 0.0040 | 0.9293 | 0.1859 | 0.6175 | 0.3534 | 0.5334 | nan | 0.2739 | 0.6032 | 0.5648 | 0.0 | 0.9600 | 0.8306 | 0.9847 | 0.0082 | 0.2428 | 0.4855 | 0.0 | nan | 0.7684 | 0.8847 | 0.6922 | 0.7430 | 0.3884 | nan | 0.5942 | 0.6428 | 0.0347 | 0.8619 | 0.1038 | 0.0 | 0.4355 | 0.0288 | 0.5760 | 0.0 | 0.0040 | 0.7669 | 0.1662 | 0.5237 | 0.3013 | 0.3811 | nan | 0.2261 | 0.5022 | 0.4037 | 0.0 | 0.8831 | 0.7549 | 0.9516 | 0.0065 | 0.1401 | 0.3809 | 0.0 |
| 0.0685 | 35.6 | 7120 | 0.6991 | 0.4137 | 0.4954 | 0.8780 | nan | 0.8426 | 0.9550 | 0.8109 | 0.8636 | 0.5350 | nan | 0.7355 | 0.8334 | 0.0566 | 0.9551 | 0.1427 | 0.0012 | 0.7120 | 0.0213 | 0.6881 | 0.0 | 0.0188 | 0.9347 | 0.2164 | 0.6212 | 0.3516 | 0.5650 | nan | 0.2964 | 0.6247 | 0.5762 | 0.0 | 0.9528 | 0.8363 | 0.9829 | 0.0074 | 0.2304 | 0.4844 | 0.0 | nan | 0.7640 | 0.8856 | 0.6964 | 0.7336 | 0.3824 | nan | 0.5942 | 0.6517 | 0.0340 | 0.8610 | 0.1194 | 0.0012 | 0.4459 | 0.0213 | 0.5836 | 0.0 | 0.0187 | 0.7668 | 0.1879 | 0.5232 | 0.3031 | 0.3881 | nan | 0.2392 | 0.5056 | 0.4001 | 0.0 | 0.8858 | 0.7562 | 0.9529 | 0.0062 | 0.1420 | 0.3893 | 0.0 |
| 0.0688 | 35.7 | 7140 | 0.7115 | 0.4137 | 0.4982 | 0.8749 | nan | 0.8133 | 0.9552 | 0.7908 | 0.8666 | 0.5457 | nan | 0.7425 | 0.8438 | 0.0803 | 0.9552 | 0.1694 | 0.0015 | 0.7415 | 0.0262 | 0.6994 | 0.0 | 0.0347 | 0.9313 | 0.1861 | 0.6127 | 0.3975 | 0.5372 | nan | 0.2925 | 0.6242 | 0.5672 | 0.0 | 0.9508 | 0.8592 | 0.9825 | 0.0076 | 0.2294 | 0.4985 | 0.0 | nan | 0.7406 | 0.8803 | 0.7048 | 0.7144 | 0.3771 | nan | 0.5912 | 0.6374 | 0.0471 | 0.8628 | 0.1437 | 0.0015 | 0.4355 | 0.0262 | 0.5822 | 0.0 | 0.0345 | 0.7694 | 0.1668 | 0.5288 | 0.3207 | 0.3802 | nan | 0.2327 | 0.5057 | 0.3945 | 0.0 | 0.8890 | 0.7673 | 0.9535 | 0.0067 | 0.1502 | 0.3926 | 0.0 |
| 0.0911 | 35.8 | 7160 | 0.7127 | 0.4171 | 0.5055 | 0.8749 | nan | 0.8198 | 0.9536 | 0.7962 | 0.8677 | 0.5529 | nan | 0.7179 | 0.8123 | 0.2586 | 0.9532 | 0.1314 | 0.0 | 0.7348 | 0.0632 | 0.7108 | 0.0 | 0.0530 | 0.9332 | 0.2061 | 0.6238 | 0.4007 | 0.5218 | nan | 0.3449 | 0.6127 | 0.5598 | 0.0 | 0.9534 | 0.8369 | 0.9825 | 0.0082 | 0.2718 | 0.4932 | 0.0 | nan | 0.7420 | 0.8851 | 0.6962 | 0.7035 | 0.3731 | nan | 0.5890 | 0.6483 | 0.1169 | 0.8648 | 0.1145 | 0.0 | 0.4173 | 0.0632 | 0.5896 | 0.0 | 0.0524 | 0.7712 | 0.1831 | 0.5377 | 0.3297 | 0.3778 | nan | 0.2610 | 0.5062 | 0.3907 | 0.0 | 0.8873 | 0.7594 | 0.9537 | 0.0071 | 0.1381 | 0.3888 | 0.0 |
| 0.0745 | 35.9 | 7180 | 0.6970 | 0.4162 | 0.5017 | 0.8765 | nan | 0.8326 | 0.9566 | 0.7924 | 0.8683 | 0.5136 | nan | 0.7218 | 0.7968 | 0.3063 | 0.9562 | 0.1121 | 0.0 | 0.6826 | 0.0618 | 0.7158 | 0.0 | 0.0413 | 0.9271 | 0.2218 | 0.6374 | 0.3751 | 0.4786 | nan | 0.3344 | 0.6221 | 0.5697 | 0.0 | 0.9569 | 0.8356 | 0.9849 | 0.0138 | 0.2779 | 0.4618 | 0.0 | nan | 0.7538 | 0.8827 | 0.7012 | 0.7188 | 0.3717 | nan | 0.5949 | 0.6410 | 0.1112 | 0.8610 | 0.0984 | 0.0 | 0.4344 | 0.0618 | 0.5806 | 0.0 | 0.0409 | 0.7695 | 0.1922 | 0.5333 | 0.3247 | 0.3578 | nan | 0.2487 | 0.5049 | 0.3946 | 0.0 | 0.8862 | 0.7612 | 0.9519 | 0.0110 | 0.1510 | 0.3789 | 0.0 |
| 0.098 | 36.0 | 7200 | 0.7067 | 0.4167 | 0.5020 | 0.8761 | nan | 0.8272 | 0.9580 | 0.7997 | 0.8615 | 0.5146 | nan | 0.7204 | 0.7786 | 0.3260 | 0.9567 | 0.1210 | 0.0 | 0.7143 | 0.0673 | 0.7219 | 0.0 | 0.0364 | 0.9272 | 0.1989 | 0.6440 | 0.3668 | 0.4954 | nan | 0.3236 | 0.6110 | 0.5818 | 0.0 | 0.9562 | 0.8395 | 0.9854 | 0.0191 | 0.2414 | 0.4706 | 0.0 | nan | 0.7499 | 0.8770 | 0.6894 | 0.7338 | 0.3880 | nan | 0.5896 | 0.6261 | 0.1040 | 0.8598 | 0.1053 | 0.0 | 0.4644 | 0.0673 | 0.5807 | 0.0 | 0.0362 | 0.7711 | 0.1764 | 0.5369 | 0.3151 | 0.3816 | nan | 0.2475 | 0.5046 | 0.3927 | 0.0 | 0.8861 | 0.7613 | 0.9518 | 0.0145 | 0.1437 | 0.3786 | 0.0 |
| 0.0913 | 36.1 | 7220 | 0.6997 | 0.4150 | 0.4988 | 0.8783 | nan | 0.8518 | 0.9561 | 0.8063 | 0.8402 | 0.5311 | nan | 0.7216 | 0.7947 | 0.2903 | 0.9534 | 0.1148 | 0.0 | 0.6703 | 0.0730 | 0.7298 | 0.0 | 0.0158 | 0.9356 | 0.1644 | 0.6500 | 0.3514 | 0.4716 | nan | 0.3353 | 0.6106 | 0.5744 | 0.0 | 0.9499 | 0.8522 | 0.9845 | 0.0146 | 0.2490 | 0.4688 | 0.0 | nan | 0.7663 | 0.8818 | 0.6878 | 0.7574 | 0.3797 | nan | 0.5869 | 0.6227 | 0.1008 | 0.8619 | 0.1000 | 0.0 | 0.4523 | 0.0730 | 0.5852 | 0.0 | 0.0157 | 0.7675 | 0.1473 | 0.5364 | 0.3086 | 0.3620 | nan | 0.2524 | 0.5042 | 0.3920 | 0.0 | 0.8884 | 0.7666 | 0.9527 | 0.0105 | 0.1416 | 0.3776 | 0.0 |
| 0.0637 | 36.2 | 7240 | 0.6977 | 0.4142 | 0.4944 | 0.8788 | nan | 0.8588 | 0.9543 | 0.8064 | 0.8406 | 0.5492 | nan | 0.7120 | 0.8186 | 0.1689 | 0.9555 | 0.1137 | 0.0 | 0.6676 | 0.0581 | 0.7305 | 0.0 | 0.0312 | 0.9309 | 0.1872 | 0.6187 | 0.3752 | 0.4368 | nan | 0.2872 | 0.6168 | 0.5789 | 0.0 | 0.9575 | 0.8339 | 0.9822 | 0.0152 | 0.2486 | 0.4868 | 0.0 | nan | 0.7745 | 0.8842 | 0.6891 | 0.7590 | 0.3856 | nan | 0.5883 | 0.6318 | 0.0757 | 0.8617 | 0.1009 | 0.0 | 0.4530 | 0.0581 | 0.5816 | 0.0 | 0.0312 | 0.7674 | 0.1672 | 0.5317 | 0.3163 | 0.3459 | nan | 0.2318 | 0.5034 | 0.3969 | 0.0 | 0.8852 | 0.7579 | 0.9540 | 0.0101 | 0.1300 | 0.3808 | 0.0 |
| 0.0577 | 36.3 | 7260 | 0.6996 | 0.4130 | 0.4876 | 0.8784 | nan | 0.8582 | 0.9553 | 0.7909 | 0.8403 | 0.5440 | nan | 0.7311 | 0.8018 | 0.1001 | 0.9540 | 0.1164 | 0.0 | 0.6541 | 0.0438 | 0.6995 | 0.0 | 0.0241 | 0.9389 | 0.1828 | 0.6238 | 0.3535 | 0.4863 | nan | 0.2532 | 0.6019 | 0.5866 | 0.0 | 0.9520 | 0.8268 | 0.9827 | 0.0112 | 0.1905 | 0.5003 | 0.0 | nan | 0.7702 | 0.8815 | 0.7048 | 0.7527 | 0.3851 | nan | 0.5930 | 0.6534 | 0.0464 | 0.8612 | 0.1019 | 0.0 | 0.4455 | 0.0438 | 0.5897 | 0.0 | 0.0240 | 0.7643 | 0.1630 | 0.5292 | 0.3078 | 0.3715 | nan | 0.2076 | 0.5011 | 0.3996 | 0.0 | 0.8853 | 0.7536 | 0.9532 | 0.0087 | 0.1253 | 0.3925 | 0.0 |
| 0.0702 | 36.4 | 7280 | 0.6983 | 0.4149 | 0.4925 | 0.8794 | nan | 0.8620 | 0.9546 | 0.8033 | 0.8408 | 0.5509 | nan | 0.7143 | 0.8175 | 0.0806 | 0.9553 | 0.1160 | 0.0 | 0.6629 | 0.0396 | 0.6983 | 0.0 | 0.0254 | 0.9273 | 0.2064 | 0.6429 | 0.3873 | 0.4986 | nan | 0.2752 | 0.6216 | 0.5645 | 0.0 | 0.9558 | 0.8278 | 0.9822 | 0.0105 | 0.2456 | 0.4927 | 0.0 | nan | 0.7758 | 0.8830 | 0.6970 | 0.7579 | 0.3846 | nan | 0.5898 | 0.6602 | 0.0442 | 0.8605 | 0.1009 | 0.0 | 0.4327 | 0.0396 | 0.5747 | 0.0 | 0.0254 | 0.7718 | 0.1811 | 0.5403 | 0.3225 | 0.3797 | nan | 0.2263 | 0.5026 | 0.3968 | 0.0 | 0.8848 | 0.7530 | 0.9532 | 0.0078 | 0.1448 | 0.3873 | 0.0 |
| 0.0964 | 36.5 | 7300 | 0.7178 | 0.4104 | 0.4857 | 0.8780 | nan | 0.8624 | 0.9553 | 0.8127 | 0.8304 | 0.5364 | nan | 0.7039 | 0.8188 | 0.0519 | 0.9557 | 0.1239 | 0.0 | 0.6651 | 0.0256 | 0.6564 | 0.0 | 0.0216 | 0.9335 | 0.2001 | 0.6143 | 0.3561 | 0.4989 | nan | 0.2867 | 0.6079 | 0.5412 | 0.0 | 0.9570 | 0.8218 | 0.9826 | 0.0098 | 0.2261 | 0.4856 | 0.0 | nan | 0.7748 | 0.8830 | 0.6690 | 0.7528 | 0.3793 | nan | 0.5862 | 0.6547 | 0.0308 | 0.8591 | 0.1060 | 0.0 | 0.4377 | 0.0256 | 0.5692 | 0.0 | 0.0215 | 0.7674 | 0.1777 | 0.5325 | 0.3070 | 0.3708 | nan | 0.2353 | 0.5018 | 0.3911 | 0.0 | 0.8832 | 0.7496 | 0.9528 | 0.0068 | 0.1247 | 0.3816 | 0.0 |
| 0.0779 | 36.6 | 7320 | 0.7006 | 0.4113 | 0.4883 | 0.8802 | nan | 0.8665 | 0.9604 | 0.7948 | 0.8530 | 0.4945 | nan | 0.6943 | 0.8122 | 0.0683 | 0.9578 | 0.1127 | 0.0 | 0.6658 | 0.0479 | 0.6622 | 0.0 | 0.0275 | 0.9319 | 0.1801 | 0.6153 | 0.3630 | 0.5298 | nan | 0.2535 | 0.6365 | 0.5624 | 0.0 | 0.9528 | 0.8414 | 0.9845 | 0.0084 | 0.2596 | 0.4869 | 0.0 | nan | 0.7764 | 0.8868 | 0.6850 | 0.7540 | 0.3797 | nan | 0.5877 | 0.6487 | 0.0401 | 0.8588 | 0.0975 | 0.0 | 0.4239 | 0.0478 | 0.5621 | 0.0 | 0.0273 | 0.7669 | 0.1615 | 0.5356 | 0.3141 | 0.3862 | nan | 0.2107 | 0.5080 | 0.3909 | 0.0 | 0.8876 | 0.7632 | 0.9520 | 0.0057 | 0.1236 | 0.3791 | 0.0 |
| 0.0819 | 36.7 | 7340 | 0.6940 | 0.4133 | 0.4937 | 0.8800 | nan | 0.8635 | 0.9556 | 0.8034 | 0.8453 | 0.5412 | nan | 0.7088 | 0.8302 | 0.0977 | 0.9553 | 0.1181 | 0.0 | 0.6735 | 0.0520 | 0.6906 | 0.0024 | 0.0285 | 0.9300 | 0.1750 | 0.6211 | 0.3797 | 0.4705 | nan | 0.2997 | 0.6162 | 0.5961 | 0.0 | 0.9550 | 0.8468 | 0.9837 | 0.0117 | 0.2575 | 0.4882 | 0.0 | nan | 0.7777 | 0.8874 | 0.6822 | 0.7598 | 0.3861 | nan | 0.5925 | 0.6507 | 0.0582 | 0.8616 | 0.1026 | 0.0 | 0.4242 | 0.0520 | 0.5613 | 0.0024 | 0.0280 | 0.7668 | 0.1571 | 0.5304 | 0.3237 | 0.3636 | nan | 0.2547 | 0.5030 | 0.3807 | 0.0 | 0.8867 | 0.7599 | 0.9527 | 0.0080 | 0.1316 | 0.3807 | 0.0 |
| 0.0808 | 36.8 | 7360 | 0.7044 | 0.4140 | 0.4945 | 0.8787 | nan | 0.8521 | 0.9593 | 0.8008 | 0.8295 | 0.5274 | nan | 0.7146 | 0.8379 | 0.0985 | 0.9559 | 0.1124 | 0.0 | 0.7056 | 0.0324 | 0.7043 | 0.0 | 0.0238 | 0.9325 | 0.2648 | 0.6339 | 0.3744 | 0.4287 | nan | 0.3486 | 0.6128 | 0.5930 | 0.0 | 0.9544 | 0.8436 | 0.9831 | 0.0106 | 0.2225 | 0.4661 | 0.0 | nan | 0.7659 | 0.8791 | 0.6990 | 0.7507 | 0.3942 | nan | 0.5905 | 0.6398 | 0.0591 | 0.8624 | 0.0988 | 0.0 | 0.4251 | 0.0324 | 0.5589 | 0.0 | 0.0237 | 0.7672 | 0.2195 | 0.5346 | 0.3235 | 0.3453 | nan | 0.2728 | 0.5047 | 0.3876 | 0.0 | 0.8877 | 0.7607 | 0.9530 | 0.0081 | 0.1244 | 0.3778 | 0.0 |
| 0.0728 | 36.9 | 7380 | 0.7084 | 0.4142 | 0.4939 | 0.8775 | nan | 0.8526 | 0.9574 | 0.7959 | 0.8252 | 0.5435 | nan | 0.7087 | 0.8486 | 0.0754 | 0.9540 | 0.1073 | 0.0 | 0.7192 | 0.0265 | 0.6834 | 0.0 | 0.0597 | 0.9352 | 0.2742 | 0.6030 | 0.3712 | 0.4912 | nan | 0.3306 | 0.6073 | 0.5723 | 0.0 | 0.9549 | 0.8389 | 0.9843 | 0.0061 | 0.1954 | 0.4826 | 0.0 | nan | 0.7638 | 0.8777 | 0.7027 | 0.7416 | 0.3910 | nan | 0.5880 | 0.6377 | 0.0475 | 0.8630 | 0.0950 | 0.0 | 0.4225 | 0.0265 | 0.5725 | 0.0 | 0.0590 | 0.7648 | 0.2240 | 0.5250 | 0.3208 | 0.3676 | nan | 0.2636 | 0.5029 | 0.3931 | 0.0 | 0.8882 | 0.7638 | 0.9525 | 0.0050 | 0.1131 | 0.3814 | 0.0 |
| 0.1764 | 37.0 | 7400 | 0.7037 | 0.4157 | 0.4940 | 0.8778 | nan | 0.8468 | 0.9595 | 0.7919 | 0.8447 | 0.5265 | nan | 0.6947 | 0.8410 | 0.0717 | 0.9525 | 0.1123 | 0.0 | 0.6746 | 0.0423 | 0.6907 | 0.0 | 0.0719 | 0.9325 | 0.2086 | 0.6238 | 0.3980 | 0.5253 | nan | 0.3076 | 0.6047 | 0.5729 | 0.0 | 0.9522 | 0.8394 | 0.9850 | 0.0059 | 0.2324 | 0.4974 | 0.0 | nan | 0.7613 | 0.8786 | 0.7001 | 0.7416 | 0.3913 | nan | 0.5885 | 0.6472 | 0.0451 | 0.8637 | 0.0987 | 0.0 | 0.4451 | 0.0423 | 0.5728 | 0.0 | 0.0705 | 0.7681 | 0.1829 | 0.5288 | 0.3336 | 0.3785 | nan | 0.2514 | 0.5018 | 0.3933 | 0.0 | 0.8883 | 0.7619 | 0.9517 | 0.0048 | 0.1275 | 0.3840 | 0.0 |
| 0.0895 | 37.1 | 7420 | 0.6999 | 0.4126 | 0.4867 | 0.8771 | nan | 0.8503 | 0.9592 | 0.7848 | 0.8346 | 0.5228 | nan | 0.7162 | 0.8293 | 0.0593 | 0.9567 | 0.1175 | 0.0 | 0.6605 | 0.0387 | 0.6881 | 0.0 | 0.0442 | 0.9354 | 0.1439 | 0.6318 | 0.3631 | 0.4673 | nan | 0.3297 | 0.6239 | 0.5750 | 0.0 | 0.9561 | 0.8125 | 0.9823 | 0.0063 | 0.2213 | 0.4635 | 0.0 | nan | 0.7630 | 0.8783 | 0.7080 | 0.7374 | 0.3937 | nan | 0.5928 | 0.6596 | 0.0380 | 0.8603 | 0.1037 | 0.0 | 0.4432 | 0.0387 | 0.5748 | 0.0 | 0.0438 | 0.7654 | 0.1303 | 0.5292 | 0.3127 | 0.3603 | nan | 0.2676 | 0.5057 | 0.3996 | 0.0 | 0.8828 | 0.7418 | 0.9535 | 0.0050 | 0.1345 | 0.3791 | 0.0 |
| 0.0634 | 37.2 | 7440 | 0.7077 | 0.4125 | 0.4917 | 0.8772 | nan | 0.8502 | 0.9576 | 0.7968 | 0.8249 | 0.5279 | nan | 0.7244 | 0.8363 | 0.0593 | 0.9579 | 0.1177 | 0.0 | 0.7277 | 0.0377 | 0.6814 | 0.0 | 0.0241 | 0.9348 | 0.1902 | 0.6227 | 0.3439 | 0.4986 | nan | 0.3346 | 0.6298 | 0.5920 | 0.0 | 0.9556 | 0.8270 | 0.9823 | 0.0088 | 0.2083 | 0.4821 | 0.0 | nan | 0.7617 | 0.8781 | 0.7008 | 0.7425 | 0.3955 | nan | 0.5903 | 0.6593 | 0.0376 | 0.8607 | 0.1038 | 0.0 | 0.4193 | 0.0377 | 0.5790 | 0.0 | 0.0239 | 0.7656 | 0.1680 | 0.5331 | 0.3008 | 0.3671 | nan | 0.2706 | 0.5073 | 0.3960 | 0.0 | 0.8836 | 0.7501 | 0.9531 | 0.0067 | 0.1227 | 0.3856 | 0.0 |
| 0.0869 | 37.3 | 7460 | 0.7203 | 0.4136 | 0.4989 | 0.8760 | nan | 0.8378 | 0.9566 | 0.8226 | 0.8214 | 0.5284 | nan | 0.7195 | 0.8496 | 0.0744 | 0.9566 | 0.1154 | 0.0 | 0.7636 | 0.0293 | 0.6973 | 0.0 | 0.0175 | 0.9256 | 0.2485 | 0.6449 | 0.3697 | 0.5119 | nan | 0.3441 | 0.6346 | 0.5931 | 0.0 | 0.9548 | 0.8344 | 0.9848 | 0.0120 | 0.2231 | 0.4933 | 0.0 | nan | 0.7570 | 0.8759 | 0.6561 | 0.7358 | 0.3974 | nan | 0.5874 | 0.6473 | 0.0484 | 0.8628 | 0.1012 | 0.0 | 0.4442 | 0.0293 | 0.5714 | 0.0 | 0.0173 | 0.7723 | 0.2101 | 0.5453 | 0.3139 | 0.3701 | nan | 0.2793 | 0.5088 | 0.3939 | 0.0 | 0.8855 | 0.7551 | 0.9520 | 0.0085 | 0.1230 | 0.3860 | 0.0 |
| 0.0597 | 37.4 | 7480 | 0.7213 | 0.4157 | 0.4955 | 0.8759 | nan | 0.8351 | 0.9555 | 0.8265 | 0.8139 | 0.5288 | nan | 0.7252 | 0.8324 | 0.0834 | 0.9548 | 0.1119 | 0.0 | 0.6856 | 0.0357 | 0.6952 | 0.0 | 0.0188 | 0.9232 | 0.2232 | 0.6509 | 0.4116 | 0.4663 | nan | 0.3377 | 0.6356 | 0.5721 | 0.0 | 0.9563 | 0.8457 | 0.9834 | 0.0146 | 0.2253 | 0.5080 | 0.0 | nan | 0.7572 | 0.8750 | 0.6576 | 0.7290 | 0.3910 | nan | 0.5886 | 0.6493 | 0.0514 | 0.8631 | 0.0988 | 0.0 | 0.4646 | 0.0357 | 0.5736 | 0.0 | 0.0186 | 0.7752 | 0.1952 | 0.5484 | 0.3319 | 0.3610 | nan | 0.2802 | 0.5078 | 0.4058 | 0.0 | 0.8867 | 0.7619 | 0.9530 | 0.0098 | 0.1402 | 0.3920 | 0.0 |
| 0.1193 | 37.5 | 7500 | 0.7207 | 0.4120 | 0.4897 | 0.8770 | nan | 0.8432 | 0.9606 | 0.8109 | 0.8180 | 0.5229 | nan | 0.7120 | 0.8275 | 0.1034 | 0.9543 | 0.1219 | 0.0 | 0.6833 | 0.0345 | 0.6969 | 0.0 | 0.0102 | 0.9327 | 0.1481 | 0.6324 | 0.3758 | 0.4912 | nan | 0.2921 | 0.6100 | 0.5838 | 0.0 | 0.9552 | 0.8455 | 0.9850 | 0.0088 | 0.2433 | 0.4661 | 0.0 | nan | 0.7599 | 0.8764 | 0.6587 | 0.7355 | 0.4006 | nan | 0.5885 | 0.6496 | 0.0616 | 0.8628 | 0.1051 | 0.0 | 0.4668 | 0.0345 | 0.5765 | 0.0 | 0.0101 | 0.7681 | 0.1350 | 0.5379 | 0.3189 | 0.3620 | nan | 0.2479 | 0.5048 | 0.3974 | 0.0 | 0.8879 | 0.7671 | 0.9516 | 0.0066 | 0.1352 | 0.3757 | 0.0 |
| 0.0614 | 37.6 | 7520 | 0.6856 | 0.4164 | 0.4986 | 0.8806 | nan | 0.8557 | 0.9552 | 0.8226 | 0.8593 | 0.5294 | nan | 0.7159 | 0.8328 | 0.1112 | 0.9576 | 0.1192 | 0.0 | 0.6645 | 0.0129 | 0.6900 | 0.0 | 0.0179 | 0.9247 | 0.1651 | 0.6610 | 0.4152 | 0.5309 | nan | 0.3175 | 0.6542 | 0.5826 | 0.0 | 0.9500 | 0.8539 | 0.9860 | 0.0117 | 0.2712 | 0.4871 | 0.0 | nan | 0.7709 | 0.8876 | 0.6646 | 0.7462 | 0.3925 | nan | 0.5944 | 0.6430 | 0.0640 | 0.8613 | 0.1034 | 0.0 | 0.4655 | 0.0129 | 0.5776 | 0.0 | 0.0176 | 0.7756 | 0.1487 | 0.5568 | 0.3333 | 0.3772 | nan | 0.2724 | 0.5143 | 0.3912 | 0.0 | 0.8902 | 0.7694 | 0.9512 | 0.0086 | 0.1547 | 0.3807 | 0.0 |
| 0.0606 | 37.7 | 7540 | 0.6941 | 0.4182 | 0.5017 | 0.8805 | nan | 0.8650 | 0.9560 | 0.7933 | 0.8414 | 0.5326 | nan | 0.7177 | 0.8293 | 0.2166 | 0.9546 | 0.1315 | 0.0 | 0.6449 | 0.0166 | 0.7135 | 0.0 | 0.0131 | 0.9264 | 0.1896 | 0.6603 | 0.3691 | 0.5088 | nan | 0.3542 | 0.6202 | 0.5767 | 0.0 | 0.9502 | 0.8751 | 0.9825 | 0.0109 | 0.3413 | 0.4621 | 0.0 | nan | 0.7733 | 0.8840 | 0.6919 | 0.7561 | 0.3889 | nan | 0.5943 | 0.6378 | 0.1103 | 0.8633 | 0.1141 | 0.0 | 0.4581 | 0.0166 | 0.5770 | 0.0 | 0.0129 | 0.7770 | 0.1652 | 0.5553 | 0.3172 | 0.3632 | nan | 0.2839 | 0.5131 | 0.3938 | 0.0 | 0.8873 | 0.7691 | 0.9542 | 0.0079 | 0.1494 | 0.3677 | 0.0 |
| 0.0705 | 37.8 | 7560 | 0.7229 | 0.4164 | 0.4947 | 0.8785 | nan | 0.8464 | 0.9580 | 0.8100 | 0.8481 | 0.5249 | nan | 0.7054 | 0.8062 | 0.1369 | 0.9560 | 0.1133 | 0.0 | 0.6437 | 0.0216 | 0.7081 | 0.0 | 0.0221 | 0.9333 | 0.1667 | 0.6620 | 0.3972 | 0.4877 | nan | 0.3476 | 0.6257 | 0.5574 | 0.0 | 0.9519 | 0.8326 | 0.9843 | 0.0128 | 0.2983 | 0.4736 | 0.0 | nan | 0.7628 | 0.8790 | 0.6833 | 0.7575 | 0.3933 | nan | 0.5903 | 0.6564 | 0.0770 | 0.8623 | 0.0997 | 0.0 | 0.4658 | 0.0216 | 0.5761 | 0.0 | 0.0218 | 0.7726 | 0.1472 | 0.5519 | 0.3323 | 0.3607 | nan | 0.2752 | 0.5137 | 0.3994 | 0.0 | 0.8860 | 0.7577 | 0.9535 | 0.0095 | 0.1437 | 0.3755 | 0.0 |
| 0.0537 | 37.9 | 7580 | 0.7356 | 0.4172 | 0.5007 | 0.8764 | nan | 0.8459 | 0.9600 | 0.8097 | 0.8236 | 0.5127 | nan | 0.7044 | 0.8155 | 0.2175 | 0.9523 | 0.1212 | 0.0 | 0.6535 | 0.0820 | 0.7624 | 0.0 | 0.0245 | 0.9178 | 0.2273 | 0.6465 | 0.3677 | 0.4937 | nan | 0.3210 | 0.6487 | 0.5791 | 0.0 | 0.9585 | 0.8132 | 0.9828 | 0.0122 | 0.2730 | 0.4941 | 0.0 | nan | 0.7605 | 0.8744 | 0.6860 | 0.7425 | 0.3914 | nan | 0.5853 | 0.6235 | 0.1081 | 0.8668 | 0.1056 | 0.0 | 0.4666 | 0.0820 | 0.5846 | 0.0 | 0.0237 | 0.7741 | 0.1965 | 0.5475 | 0.3153 | 0.3550 | nan | 0.2637 | 0.5131 | 0.3937 | 0.0 | 0.8822 | 0.7447 | 0.9532 | 0.0093 | 0.1260 | 0.3765 | 0.0 |
| 0.0794 | 38.0 | 7600 | 0.7181 | 0.4144 | 0.4909 | 0.8764 | nan | 0.8466 | 0.9593 | 0.7987 | 0.8244 | 0.5173 | nan | 0.6945 | 0.8151 | 0.1500 | 0.9550 | 0.1158 | 0.0 | 0.6362 | 0.0640 | 0.7349 | 0.0 | 0.0074 | 0.9308 | 0.2132 | 0.6209 | 0.3703 | 0.4600 | nan | 0.3048 | 0.6224 | 0.5582 | 0.0 | 0.9569 | 0.8241 | 0.9826 | 0.0143 | 0.2317 | 0.5001 | 0.0 | nan | 0.7596 | 0.8736 | 0.6989 | 0.7417 | 0.3967 | nan | 0.5822 | 0.6178 | 0.0823 | 0.8657 | 0.1009 | 0.0 | 0.4681 | 0.0640 | 0.5913 | 0.0 | 0.0073 | 0.7699 | 0.1893 | 0.5379 | 0.3136 | 0.3458 | nan | 0.2566 | 0.5099 | 0.3935 | 0.0 | 0.8832 | 0.7484 | 0.9532 | 0.0109 | 0.1155 | 0.3826 | 0.0 |
| 0.0976 | 38.1 | 7620 | 0.7275 | 0.4167 | 0.4948 | 0.8778 | nan | 0.8452 | 0.9596 | 0.7945 | 0.8375 | 0.5127 | nan | 0.7134 | 0.8046 | 0.2441 | 0.9569 | 0.1222 | 0.0 | 0.6225 | 0.0448 | 0.7151 | 0.0 | 0.0046 | 0.9291 | 0.1728 | 0.6484 | 0.3735 | 0.5232 | nan | 0.3094 | 0.6309 | 0.5690 | 0.0 | 0.9544 | 0.8394 | 0.9851 | 0.0144 | 0.2225 | 0.4840 | 0.0 | nan | 0.7599 | 0.8755 | 0.7011 | 0.7472 | 0.3964 | nan | 0.5875 | 0.6215 | 0.1186 | 0.8636 | 0.1064 | 0.0 | 0.4711 | 0.0448 | 0.5874 | 0.0 | 0.0046 | 0.7716 | 0.1564 | 0.5438 | 0.3163 | 0.3747 | nan | 0.2580 | 0.5110 | 0.3998 | 0.0 | 0.8870 | 0.7616 | 0.9522 | 0.0109 | 0.1265 | 0.3795 | 0.0 |
| 0.1365 | 38.2 | 7640 | 0.7119 | 0.4121 | 0.4928 | 0.8766 | nan | 0.8474 | 0.9524 | 0.8074 | 0.8526 | 0.5495 | nan | 0.6898 | 0.8332 | 0.0948 | 0.9565 | 0.1132 | 0.0 | 0.6853 | 0.0279 | 0.7159 | 0.0 | 0.0181 | 0.9358 | 0.1758 | 0.6504 | 0.3769 | 0.5242 | nan | 0.2627 | 0.6129 | 0.5666 | 0.0 | 0.9530 | 0.8232 | 0.9847 | 0.0102 | 0.2972 | 0.4530 | 0.0 | nan | 0.7633 | 0.8785 | 0.6964 | 0.7575 | 0.3707 | nan | 0.5854 | 0.6259 | 0.0489 | 0.8638 | 0.0986 | 0.0 | 0.4741 | 0.0279 | 0.5917 | 0.0 | 0.0180 | 0.7694 | 0.1586 | 0.5437 | 0.3192 | 0.3748 | nan | 0.2147 | 0.5088 | 0.3942 | 0.0 | 0.8850 | 0.7495 | 0.9525 | 0.0080 | 0.1414 | 0.3649 | 0.0 |
| 0.083 | 38.3 | 7660 | 0.6949 | 0.4127 | 0.4875 | 0.8774 | nan | 0.8514 | 0.9562 | 0.7999 | 0.8520 | 0.5273 | nan | 0.6936 | 0.8133 | 0.0601 | 0.9558 | 0.1203 | 0.0 | 0.6775 | 0.0249 | 0.6821 | 0.0 | 0.0110 | 0.9317 | 0.2019 | 0.6379 | 0.3723 | 0.4744 | nan | 0.2766 | 0.6250 | 0.5635 | 0.0 | 0.9551 | 0.8210 | 0.9834 | 0.0084 | 0.2563 | 0.4670 | 0.0 | nan | 0.7648 | 0.8777 | 0.7051 | 0.7562 | 0.3775 | nan | 0.5838 | 0.6511 | 0.0339 | 0.8629 | 0.1044 | 0.0 | 0.4645 | 0.0249 | 0.5882 | 0.0 | 0.0109 | 0.7678 | 0.1786 | 0.5393 | 0.3193 | 0.3608 | nan | 0.2288 | 0.5063 | 0.3969 | 0.0 | 0.8832 | 0.7467 | 0.9530 | 0.0070 | 0.1366 | 0.3761 | 0.0 |
| 0.0565 | 38.4 | 7680 | 0.7109 | 0.4145 | 0.4937 | 0.8779 | nan | 0.8473 | 0.9554 | 0.7978 | 0.8475 | 0.5370 | nan | 0.7277 | 0.8299 | 0.0863 | 0.9572 | 0.1351 | 0.0 | 0.7158 | 0.0126 | 0.6839 | 0.0 | 0.0220 | 0.9303 | 0.1862 | 0.6312 | 0.3700 | 0.4975 | nan | 0.3249 | 0.6206 | 0.5891 | 0.0 | 0.9540 | 0.8441 | 0.9846 | 0.0100 | 0.2242 | 0.4755 | 0.0 | nan | 0.7633 | 0.8766 | 0.7151 | 0.7567 | 0.3933 | nan | 0.5880 | 0.6438 | 0.0540 | 0.8617 | 0.1155 | 0.0 | 0.4699 | 0.0126 | 0.5720 | 0.0 | 0.0219 | 0.7696 | 0.1657 | 0.5374 | 0.3103 | 0.3687 | nan | 0.2571 | 0.5025 | 0.3951 | 0.0 | 0.8852 | 0.7603 | 0.9523 | 0.0079 | 0.1289 | 0.3780 | 0.0 |
| 0.0839 | 38.5 | 7700 | 0.7159 | 0.4131 | 0.4910 | 0.8775 | nan | 0.8444 | 0.9584 | 0.8049 | 0.8463 | 0.5358 | nan | 0.7017 | 0.8419 | 0.0834 | 0.9532 | 0.1406 | 0.0 | 0.7470 | 0.0308 | 0.6798 | 0.0014 | 0.0332 | 0.9384 | 0.1592 | 0.6145 | 0.3729 | 0.5277 | nan | 0.2538 | 0.6062 | 0.5783 | 0.0 | 0.9537 | 0.8386 | 0.9830 | 0.0098 | 0.2066 | 0.4680 | 0.0 | nan | 0.7614 | 0.8756 | 0.7064 | 0.7559 | 0.3953 | nan | 0.5875 | 0.6396 | 0.0518 | 0.8645 | 0.1198 | 0.0 | 0.4784 | 0.0308 | 0.5764 | 0.0014 | 0.0330 | 0.7649 | 0.1447 | 0.5283 | 0.3164 | 0.3755 | nan | 0.2125 | 0.5022 | 0.3936 | 0.0 | 0.8854 | 0.7581 | 0.9531 | 0.0079 | 0.1206 | 0.3774 | 0.0 |
| 0.0716 | 38.6 | 7720 | 0.7162 | 0.4187 | 0.5017 | 0.8788 | nan | 0.8526 | 0.9551 | 0.8050 | 0.8509 | 0.5184 | nan | 0.7209 | 0.8335 | 0.1556 | 0.9543 | 0.1366 | 0.0 | 0.7470 | 0.0510 | 0.7137 | 0.0 | 0.0399 | 0.9287 | 0.1901 | 0.6347 | 0.3853 | 0.5274 | nan | 0.3012 | 0.6383 | 0.5748 | 0.0 | 0.9536 | 0.8538 | 0.9817 | 0.0128 | 0.2525 | 0.4866 | 0.0 | nan | 0.7630 | 0.8781 | 0.7102 | 0.7565 | 0.3939 | nan | 0.5860 | 0.6298 | 0.0866 | 0.8660 | 0.1174 | 0.0 | 0.4762 | 0.0510 | 0.5783 | 0.0 | 0.0391 | 0.7713 | 0.1708 | 0.5383 | 0.3233 | 0.3755 | nan | 0.2561 | 0.5111 | 0.3920 | 0.0 | 0.8877 | 0.7657 | 0.9540 | 0.0100 | 0.1305 | 0.3816 | 0.0 |
| 0.0676 | 38.7 | 7740 | 0.7302 | 0.4197 | 0.5022 | 0.8779 | nan | 0.8427 | 0.9615 | 0.8072 | 0.8324 | 0.5191 | nan | 0.7091 | 0.8190 | 0.1884 | 0.9549 | 0.1308 | 0.0 | 0.7349 | 0.0611 | 0.7321 | 0.0 | 0.0403 | 0.9298 | 0.2212 | 0.6389 | 0.3802 | 0.5425 | nan | 0.3131 | 0.6210 | 0.5711 | 0.0 | 0.9553 | 0.8361 | 0.9837 | 0.0132 | 0.2581 | 0.4737 | 0.0 | nan | 0.7592 | 0.8737 | 0.7083 | 0.7446 | 0.4115 | nan | 0.5851 | 0.6418 | 0.1032 | 0.8648 | 0.1133 | 0.0 | 0.4610 | 0.0611 | 0.5807 | 0.0 | 0.0396 | 0.7703 | 0.1939 | 0.5360 | 0.3207 | 0.3842 | nan | 0.2520 | 0.5080 | 0.3975 | 0.0 | 0.8857 | 0.7559 | 0.9533 | 0.0114 | 0.1337 | 0.3807 | 0.0 |
| 0.0372 | 38.8 | 7760 | 0.7275 | 0.4183 | 0.4979 | 0.8781 | nan | 0.8438 | 0.9619 | 0.8070 | 0.8256 | 0.5068 | nan | 0.7279 | 0.8360 | 0.1696 | 0.9537 | 0.1189 | 0.0 | 0.7087 | 0.0612 | 0.7082 | 0.0 | 0.0407 | 0.9307 | 0.2306 | 0.6416 | 0.3363 | 0.4796 | nan | 0.3186 | 0.6241 | 0.5594 | 0.0 | 0.9526 | 0.8501 | 0.9834 | 0.0108 | 0.2527 | 0.4908 | 0.0 | nan | 0.7588 | 0.8734 | 0.7065 | 0.7448 | 0.4069 | nan | 0.5842 | 0.6397 | 0.0891 | 0.8659 | 0.1040 | 0.0 | 0.4616 | 0.0612 | 0.5898 | 0.0 | 0.0400 | 0.7725 | 0.2028 | 0.5434 | 0.2970 | 0.3622 | nan | 0.2571 | 0.5070 | 0.3964 | 0.0 | 0.8866 | 0.7624 | 0.9531 | 0.0095 | 0.1274 | 0.3815 | 0.0 |
| 0.1237 | 38.9 | 7780 | 0.7390 | 0.4173 | 0.4961 | 0.8774 | nan | 0.8399 | 0.9606 | 0.8099 | 0.8417 | 0.5393 | nan | 0.7047 | 0.8089 | 0.1372 | 0.9554 | 0.1194 | 0.0 | 0.7419 | 0.0579 | 0.7088 | 0.0 | 0.0401 | 0.9338 | 0.2093 | 0.6252 | 0.3535 | 0.5579 | nan | 0.2733 | 0.6027 | 0.5453 | 0.0 | 0.9556 | 0.8218 | 0.9823 | 0.0119 | 0.2484 | 0.4868 | 0.0 | nan | 0.7578 | 0.8762 | 0.6966 | 0.7555 | 0.4077 | nan | 0.5903 | 0.6490 | 0.0734 | 0.8654 | 0.1039 | 0.0 | 0.4925 | 0.0579 | 0.5851 | 0.0 | 0.0395 | 0.7697 | 0.1866 | 0.5410 | 0.3043 | 0.3889 | nan | 0.2289 | 0.5039 | 0.3952 | 0.0 | 0.8828 | 0.7474 | 0.9537 | 0.0093 | 0.1161 | 0.3756 | 0.0 |
| 0.0878 | 39.0 | 7800 | 0.7379 | 0.4135 | 0.4932 | 0.8779 | nan | 0.8465 | 0.9608 | 0.8103 | 0.8408 | 0.5221 | nan | 0.7165 | 0.8213 | 0.1609 | 0.9555 | 0.1149 | 0.0 | 0.6741 | 0.0498 | 0.7193 | 0.0 | 0.0385 | 0.9362 | 0.1633 | 0.6127 | 0.3813 | 0.5541 | nan | 0.2256 | 0.6193 | 0.5516 | 0.0 | 0.9528 | 0.8320 | 0.9839 | 0.0110 | 0.2697 | 0.4585 | 0.0 | nan | 0.7617 | 0.8781 | 0.6954 | 0.7586 | 0.4065 | nan | 0.5940 | 0.6398 | 0.0858 | 0.8650 | 0.0996 | 0.0 | 0.4466 | 0.0498 | 0.5844 | 0.0 | 0.0380 | 0.7653 | 0.1480 | 0.5314 | 0.3164 | 0.3876 | nan | 0.1939 | 0.5069 | 0.3963 | 0.0 | 0.8841 | 0.7475 | 0.9528 | 0.0084 | 0.1212 | 0.3684 | 0.0 |
| 0.062 | 39.1 | 7820 | 0.7108 | 0.4157 | 0.4923 | 0.8784 | nan | 0.8438 | 0.9597 | 0.7949 | 0.8504 | 0.5365 | nan | 0.7155 | 0.8291 | 0.0994 | 0.9575 | 0.1482 | 0.0 | 0.6562 | 0.0225 | 0.6960 | 0.0 | 0.0527 | 0.9367 | 0.1711 | 0.6192 | 0.3725 | 0.5414 | nan | 0.2670 | 0.6328 | 0.5576 | 0.0 | 0.9509 | 0.8439 | 0.9822 | 0.0065 | 0.2352 | 0.4735 | 0.0 | nan | 0.7621 | 0.8780 | 0.7092 | 0.7552 | 0.4032 | nan | 0.5936 | 0.6374 | 0.0592 | 0.8633 | 0.1272 | 0.0 | 0.4597 | 0.0225 | 0.5862 | 0.0 | 0.0517 | 0.7645 | 0.1543 | 0.5282 | 0.3163 | 0.3868 | nan | 0.2224 | 0.5101 | 0.4008 | 0.0 | 0.8880 | 0.7637 | 0.9543 | 0.0051 | 0.1229 | 0.3766 | 0.0 |
| 0.1004 | 39.2 | 7840 | 0.7033 | 0.4185 | 0.4942 | 0.8791 | nan | 0.8559 | 0.9565 | 0.7930 | 0.8491 | 0.5355 | nan | 0.7101 | 0.8301 | 0.1027 | 0.9562 | 0.1725 | 0.0 | 0.6637 | 0.0242 | 0.7070 | 0.0 | 0.0722 | 0.9286 | 0.1791 | 0.6424 | 0.3857 | 0.5214 | nan | 0.2739 | 0.6100 | 0.5467 | 0.0 | 0.9586 | 0.8115 | 0.9831 | 0.0036 | 0.2308 | 0.5100 | 0.0 | nan | 0.7675 | 0.8797 | 0.7109 | 0.7577 | 0.3964 | nan | 0.5891 | 0.6448 | 0.0609 | 0.8643 | 0.1490 | 0.0 | 0.4624 | 0.0242 | 0.5880 | 0.0 | 0.0703 | 0.7721 | 0.1616 | 0.5424 | 0.3222 | 0.3832 | nan | 0.2333 | 0.5032 | 0.3985 | 0.0 | 0.8826 | 0.7440 | 0.9536 | 0.0029 | 0.1356 | 0.3931 | 0.0 |
| 0.0602 | 39.3 | 7860 | 0.7216 | 0.4169 | 0.4948 | 0.8780 | nan | 0.8340 | 0.9595 | 0.8077 | 0.8507 | 0.5321 | nan | 0.7220 | 0.8371 | 0.1258 | 0.9539 | 0.1473 | 0.0 | 0.6460 | 0.0272 | 0.7104 | 0.0 | 0.0401 | 0.9283 | 0.2397 | 0.6438 | 0.3579 | 0.4705 | nan | 0.2827 | 0.6228 | 0.5608 | 0.0 | 0.9569 | 0.8349 | 0.9816 | 0.0061 | 0.2532 | 0.4996 | 0.0 | nan | 0.7584 | 0.8766 | 0.6849 | 0.7489 | 0.3992 | nan | 0.5886 | 0.6289 | 0.0706 | 0.8663 | 0.1302 | 0.0 | 0.4607 | 0.0272 | 0.5851 | 0.0 | 0.0398 | 0.7749 | 0.2118 | 0.5500 | 0.3089 | 0.3623 | nan | 0.2385 | 0.5067 | 0.3993 | 0.0 | 0.8862 | 0.7622 | 0.9543 | 0.0048 | 0.1298 | 0.3845 | 0.0 |
| 0.0722 | 39.4 | 7880 | 0.7279 | 0.4158 | 0.4944 | 0.8793 | nan | 0.8447 | 0.9610 | 0.8107 | 0.8430 | 0.5297 | nan | 0.7024 | 0.8319 | 0.1052 | 0.9593 | 0.1157 | 0.0 | 0.6465 | 0.0196 | 0.7043 | 0.0 | 0.0278 | 0.9274 | 0.2287 | 0.6582 | 0.3815 | 0.4803 | nan | 0.2805 | 0.6389 | 0.5961 | 0.0 | 0.9555 | 0.8343 | 0.9837 | 0.0073 | 0.2698 | 0.4762 | 0.0 | nan | 0.7635 | 0.8777 | 0.6774 | 0.7572 | 0.4057 | nan | 0.5842 | 0.6384 | 0.0617 | 0.8630 | 0.1021 | 0.0 | 0.4500 | 0.0196 | 0.5784 | 0.0 | 0.0277 | 0.7755 | 0.2023 | 0.5536 | 0.3216 | 0.3683 | nan | 0.2345 | 0.5113 | 0.4037 | 0.0 | 0.8876 | 0.7632 | 0.9530 | 0.0058 | 0.1393 | 0.3805 | 0.0 |
| 0.0719 | 39.5 | 7900 | 0.7208 | 0.4149 | 0.4961 | 0.8786 | nan | 0.8398 | 0.9592 | 0.8124 | 0.8508 | 0.5282 | nan | 0.7058 | 0.8316 | 0.1139 | 0.9600 | 0.1281 | 0.0 | 0.6649 | 0.0164 | 0.7065 | 0.0 | 0.0230 | 0.9300 | 0.1827 | 0.6428 | 0.4054 | 0.5390 | nan | 0.2653 | 0.6270 | 0.5696 | 0.0 | 0.9535 | 0.8449 | 0.9823 | 0.0082 | 0.2985 | 0.4852 | 0.0 | nan | 0.7593 | 0.8784 | 0.6730 | 0.7511 | 0.4080 | nan | 0.5888 | 0.6418 | 0.0683 | 0.8619 | 0.1105 | 0.0 | 0.4541 | 0.0164 | 0.5749 | 0.0 | 0.0230 | 0.7736 | 0.1657 | 0.5479 | 0.3315 | 0.3771 | nan | 0.2269 | 0.5095 | 0.4005 | 0.0 | 0.8888 | 0.7629 | 0.9537 | 0.0065 | 0.1402 | 0.3813 | 0.0 |
| 0.0846 | 39.6 | 7920 | 0.6984 | 0.4183 | 0.4961 | 0.8808 | nan | 0.8589 | 0.9569 | 0.8112 | 0.8473 | 0.5346 | nan | 0.7155 | 0.8169 | 0.0974 | 0.9561 | 0.1416 | 0.0 | 0.6767 | 0.0101 | 0.7005 | 0.0 | 0.0254 | 0.9290 | 0.1983 | 0.6502 | 0.3968 | 0.5309 | nan | 0.2897 | 0.6273 | 0.5516 | 0.0 | 0.9538 | 0.8456 | 0.9819 | 0.0081 | 0.2572 | 0.5060 | 0.0 | nan | 0.7752 | 0.8828 | 0.6751 | 0.7567 | 0.4072 | nan | 0.5912 | 0.6550 | 0.0613 | 0.8624 | 0.1209 | 0.0 | 0.4808 | 0.0101 | 0.5745 | 0.0 | 0.0253 | 0.7752 | 0.1782 | 0.5485 | 0.3296 | 0.3791 | nan | 0.2458 | 0.5081 | 0.4058 | 0.0 | 0.8873 | 0.7594 | 0.9539 | 0.0062 | 0.1392 | 0.3899 | 0.0 |
| 0.0809 | 39.7 | 7940 | 0.7169 | 0.4148 | 0.4923 | 0.8793 | nan | 0.8536 | 0.9586 | 0.8105 | 0.8475 | 0.5322 | nan | 0.6982 | 0.8256 | 0.0994 | 0.9558 | 0.1317 | 0.0 | 0.6672 | 0.0141 | 0.7055 | 0.0 | 0.0191 | 0.9298 | 0.1881 | 0.6427 | 0.3488 | 0.5112 | nan | 0.2933 | 0.6179 | 0.5871 | 0.0 | 0.9564 | 0.8229 | 0.9850 | 0.0119 | 0.2337 | 0.5052 | 0.0 | nan | 0.7701 | 0.8802 | 0.6757 | 0.7586 | 0.4029 | nan | 0.5886 | 0.6480 | 0.0595 | 0.8637 | 0.1131 | 0.0 | 0.4732 | 0.0141 | 0.5779 | 0.0 | 0.0190 | 0.7734 | 0.1697 | 0.5488 | 0.3030 | 0.3724 | nan | 0.2432 | 0.5065 | 0.4009 | 0.0 | 0.8848 | 0.7553 | 0.9522 | 0.0083 | 0.1235 | 0.3883 | 0.0 |
| 0.0945 | 39.8 | 7960 | 0.7017 | 0.4152 | 0.4958 | 0.8797 | nan | 0.8576 | 0.9532 | 0.8158 | 0.8498 | 0.5588 | nan | 0.7138 | 0.8261 | 0.1482 | 0.9577 | 0.1459 | 0.0 | 0.6522 | 0.0102 | 0.7086 | 0.0 | 0.0185 | 0.9304 | 0.1772 | 0.6265 | 0.3742 | 0.5060 | nan | 0.2929 | 0.6277 | 0.5883 | 0.0 | 0.9563 | 0.8431 | 0.9832 | 0.0089 | 0.2584 | 0.4771 | 0.0 | nan | 0.7751 | 0.8855 | 0.6741 | 0.7566 | 0.3922 | nan | 0.5920 | 0.6459 | 0.0836 | 0.8614 | 0.1255 | 0.0 | 0.4616 | 0.0102 | 0.5758 | 0.0 | 0.0184 | 0.7704 | 0.1604 | 0.5422 | 0.3159 | 0.3706 | nan | 0.2470 | 0.5085 | 0.3991 | 0.0 | 0.8875 | 0.7653 | 0.9526 | 0.0060 | 0.1240 | 0.3785 | 0.0 |
| 0.0709 | 39.9 | 7980 | 0.6824 | 0.4177 | 0.4990 | 0.8802 | nan | 0.8637 | 0.9545 | 0.8064 | 0.8450 | 0.5502 | nan | 0.7172 | 0.8241 | 0.1955 | 0.9567 | 0.1354 | 0.0 | 0.6952 | 0.0083 | 0.7013 | 0.0 | 0.0200 | 0.9256 | 0.1924 | 0.6498 | 0.3677 | 0.5193 | nan | 0.3254 | 0.6198 | 0.5777 | 0.0 | 0.9556 | 0.8344 | 0.9831 | 0.0078 | 0.2394 | 0.4968 | 0.0 | nan | 0.7781 | 0.8862 | 0.7001 | 0.7581 | 0.3762 | nan | 0.5914 | 0.6247 | 0.1057 | 0.8610 | 0.1174 | 0.0 | 0.4881 | 0.0083 | 0.5716 | 0.0 | 0.0199 | 0.7752 | 0.1735 | 0.5509 | 0.3146 | 0.3802 | nan | 0.2705 | 0.5070 | 0.3950 | 0.0 | 0.8869 | 0.7625 | 0.9528 | 0.0055 | 0.1265 | 0.3797 | 0.0 |
| 0.0547 | 40.0 | 8000 | 0.7111 | 0.4160 | 0.4967 | 0.8793 | nan | 0.8592 | 0.9570 | 0.7988 | 0.8468 | 0.5238 | nan | 0.7063 | 0.8328 | 0.1482 | 0.9541 | 0.1329 | 0.0 | 0.6587 | 0.0168 | 0.7095 | 0.0 | 0.0289 | 0.9318 | 0.2070 | 0.6181 | 0.3898 | 0.5362 | nan | 0.3203 | 0.6264 | 0.5822 | 0.0 | 0.9551 | 0.8464 | 0.9843 | 0.0083 | 0.2529 | 0.4631 | 0.0 | nan | 0.7693 | 0.8781 | 0.7153 | 0.7588 | 0.3972 | nan | 0.5880 | 0.6141 | 0.0841 | 0.8626 | 0.1162 | 0.0 | 0.4551 | 0.0168 | 0.5758 | 0.0 | 0.0288 | 0.7695 | 0.1828 | 0.5380 | 0.3252 | 0.3743 | nan | 0.2568 | 0.5091 | 0.3966 | 0.0 | 0.8883 | 0.7678 | 0.9528 | 0.0061 | 0.1174 | 0.3673 | 0.0 |
| 0.0858 | 40.1 | 8020 | 0.7221 | 0.4135 | 0.4925 | 0.8782 | nan | 0.8552 | 0.9559 | 0.7976 | 0.8474 | 0.5309 | nan | 0.7098 | 0.8381 | 0.1045 | 0.9552 | 0.1035 | 0.0 | 0.6336 | 0.0115 | 0.7002 | 0.0 | 0.0388 | 0.9335 | 0.2127 | 0.5985 | 0.3998 | 0.5091 | nan | 0.3033 | 0.6293 | 0.5819 | 0.0 | 0.9555 | 0.8360 | 0.9838 | 0.0103 | 0.2591 | 0.4654 | 0.0 | nan | 0.7694 | 0.8781 | 0.7211 | 0.7589 | 0.3944 | nan | 0.5895 | 0.6134 | 0.0608 | 0.8625 | 0.0920 | 0.0 | 0.4409 | 0.0115 | 0.5837 | 0.0 | 0.0385 | 0.7643 | 0.1876 | 0.5244 | 0.3306 | 0.3740 | nan | 0.2456 | 0.5079 | 0.3983 | 0.0 | 0.8871 | 0.7570 | 0.9532 | 0.0073 | 0.1129 | 0.3659 | 0.0 |
| 0.0695 | 40.2 | 8040 | 0.7099 | 0.4159 | 0.4970 | 0.8800 | nan | 0.8637 | 0.9564 | 0.7999 | 0.8444 | 0.5332 | nan | 0.7073 | 0.8490 | 0.1056 | 0.9560 | 0.1068 | 0.0 | 0.6443 | 0.0205 | 0.7023 | 0.0 | 0.0346 | 0.9285 | 0.2501 | 0.6405 | 0.3662 | 0.5070 | nan | 0.3411 | 0.6337 | 0.5808 | 0.0 | 0.9531 | 0.8505 | 0.9833 | 0.0080 | 0.2765 | 0.4612 | 0.0 | nan | 0.7759 | 0.8817 | 0.7130 | 0.7633 | 0.3899 | nan | 0.5911 | 0.6022 | 0.0613 | 0.8624 | 0.0944 | 0.0 | 0.4481 | 0.0205 | 0.5844 | 0.0 | 0.0342 | 0.7705 | 0.2157 | 0.5417 | 0.3178 | 0.3717 | nan | 0.2610 | 0.5101 | 0.3980 | 0.0 | 0.8885 | 0.7637 | 0.9531 | 0.0057 | 0.1230 | 0.3653 | 0.0 |
| 0.0796 | 40.3 | 8060 | 0.7107 | 0.4157 | 0.4954 | 0.8796 | nan | 0.8609 | 0.9568 | 0.7905 | 0.8493 | 0.5125 | nan | 0.7184 | 0.8283 | 0.1212 | 0.9543 | 0.1012 | 0.0 | 0.6666 | 0.0362 | 0.7047 | 0.0 | 0.0299 | 0.9276 | 0.1844 | 0.6379 | 0.3452 | 0.5341 | nan | 0.3662 | 0.6248 | 0.5844 | 0.0 | 0.9572 | 0.8399 | 0.9828 | 0.0140 | 0.2255 | 0.4967 | 0.0 | nan | 0.7721 | 0.8809 | 0.7172 | 0.7599 | 0.3866 | nan | 0.5904 | 0.6015 | 0.0668 | 0.8629 | 0.0898 | 0.0 | 0.4694 | 0.0362 | 0.5856 | 0.0 | 0.0297 | 0.7715 | 0.1673 | 0.5417 | 0.3024 | 0.3677 | nan | 0.2845 | 0.5088 | 0.3984 | 0.0 | 0.8865 | 0.7622 | 0.9529 | 0.0097 | 0.1214 | 0.3776 | 0.0 |
| 0.0724 | 40.4 | 8080 | 0.7106 | 0.4169 | 0.5013 | 0.8799 | nan | 0.8624 | 0.9575 | 0.7998 | 0.8468 | 0.5267 | nan | 0.7205 | 0.8300 | 0.1562 | 0.9553 | 0.1078 | 0.0 | 0.6866 | 0.0474 | 0.7193 | 0.0 | 0.0365 | 0.9303 | 0.1972 | 0.6227 | 0.3779 | 0.5839 | nan | 0.3352 | 0.6225 | 0.5880 | 0.0 | 0.9522 | 0.8457 | 0.9839 | 0.0096 | 0.2625 | 0.4761 | 0.0 | nan | 0.7742 | 0.8807 | 0.7120 | 0.7606 | 0.3870 | nan | 0.5935 | 0.6092 | 0.0852 | 0.8635 | 0.0951 | 0.0 | 0.4542 | 0.0474 | 0.5808 | 0.0 | 0.0362 | 0.7702 | 0.1771 | 0.5395 | 0.3223 | 0.3795 | nan | 0.2676 | 0.5092 | 0.3938 | 0.0 | 0.8893 | 0.7672 | 0.9525 | 0.0073 | 0.1162 | 0.3706 | 0.0 |
| 0.0861 | 40.5 | 8100 | 0.7126 | 0.4154 | 0.4968 | 0.8788 | nan | 0.8509 | 0.9591 | 0.8039 | 0.8473 | 0.5250 | nan | 0.7123 | 0.8259 | 0.1234 | 0.9525 | 0.1220 | 0.0 | 0.6810 | 0.0406 | 0.7185 | 0.0 | 0.0481 | 0.9290 | 0.2089 | 0.6287 | 0.3642 | 0.5502 | nan | 0.2832 | 0.6238 | 0.5661 | 0.0 | 0.9556 | 0.8417 | 0.9821 | 0.0075 | 0.2778 | 0.4699 | 0.0 | nan | 0.7683 | 0.8775 | 0.7027 | 0.7596 | 0.3931 | nan | 0.5943 | 0.6091 | 0.0731 | 0.8649 | 0.1067 | 0.0 | 0.4585 | 0.0406 | 0.5824 | 0.0 | 0.0475 | 0.7699 | 0.1858 | 0.5358 | 0.3135 | 0.3763 | nan | 0.2335 | 0.5090 | 0.3943 | 0.0 | 0.8875 | 0.7648 | 0.9533 | 0.0059 | 0.1189 | 0.3664 | 0.0 |
| 0.0864 | 40.6 | 8120 | 0.7126 | 0.4158 | 0.4996 | 0.8781 | nan | 0.8529 | 0.9577 | 0.7999 | 0.8500 | 0.5235 | nan | 0.7092 | 0.8165 | 0.1371 | 0.9546 | 0.1320 | 0.0 | 0.7268 | 0.0451 | 0.7072 | 0.0 | 0.0315 | 0.9346 | 0.1732 | 0.6225 | 0.3816 | 0.6257 | nan | 0.2730 | 0.6131 | 0.5802 | 0.0 | 0.9530 | 0.8303 | 0.9835 | 0.0093 | 0.2946 | 0.4686 | 0.0 | nan | 0.7672 | 0.8786 | 0.7101 | 0.7576 | 0.3883 | nan | 0.5942 | 0.6285 | 0.0779 | 0.8631 | 0.1131 | 0.0 | 0.4647 | 0.0451 | 0.5853 | 0.0 | 0.0312 | 0.7671 | 0.1563 | 0.5319 | 0.3204 | 0.4060 | nan | 0.2306 | 0.5065 | 0.3911 | 0.0 | 0.8866 | 0.7560 | 0.9531 | 0.0071 | 0.1212 | 0.3685 | 0.0 |
| 0.0489 | 40.7 | 8140 | 0.7001 | 0.4168 | 0.4990 | 0.8786 | nan | 0.8581 | 0.9576 | 0.7935 | 0.8392 | 0.5069 | nan | 0.7259 | 0.7895 | 0.2352 | 0.9557 | 0.1464 | 0.0 | 0.7005 | 0.0433 | 0.6987 | 0.0 | 0.0159 | 0.9282 | 0.1917 | 0.6173 | 0.3791 | 0.5618 | nan | 0.2642 | 0.6416 | 0.5948 | 0.0 | 0.9565 | 0.8391 | 0.9837 | 0.0108 | 0.2517 | 0.4799 | 0.0 | nan | 0.7651 | 0.8791 | 0.7217 | 0.7586 | 0.3793 | nan | 0.5944 | 0.6412 | 0.0998 | 0.8614 | 0.1255 | 0.0 | 0.4618 | 0.0433 | 0.5817 | 0.0 | 0.0158 | 0.7689 | 0.1718 | 0.5362 | 0.3195 | 0.3800 | nan | 0.2271 | 0.5068 | 0.3928 | 0.0 | 0.8861 | 0.7587 | 0.9531 | 0.0083 | 0.1205 | 0.3787 | 0.0 |
| 0.0885 | 40.8 | 8160 | 0.7055 | 0.4151 | 0.4967 | 0.8789 | nan | 0.8546 | 0.9578 | 0.8063 | 0.8368 | 0.5227 | nan | 0.7276 | 0.8306 | 0.1052 | 0.9568 | 0.1536 | 0.0 | 0.7151 | 0.0256 | 0.6851 | 0.0 | 0.0230 | 0.9323 | 0.1821 | 0.6141 | 0.3939 | 0.5730 | nan | 0.2549 | 0.6408 | 0.5897 | 0.0 | 0.9506 | 0.8533 | 0.9838 | 0.0067 | 0.2379 | 0.4792 | 0.0 | nan | 0.7664 | 0.8800 | 0.7130 | 0.7574 | 0.3786 | nan | 0.5950 | 0.6417 | 0.0597 | 0.8608 | 0.1306 | 0.0 | 0.4675 | 0.0256 | 0.5791 | 0.0 | 0.0230 | 0.7671 | 0.1637 | 0.5323 | 0.3301 | 0.3915 | nan | 0.2119 | 0.5075 | 0.3876 | 0.0 | 0.8901 | 0.7687 | 0.9532 | 0.0054 | 0.1181 | 0.3782 | 0.0 |
| 0.0666 | 40.9 | 8180 | 0.6983 | 0.4148 | 0.4943 | 0.8804 | nan | 0.8615 | 0.9583 | 0.8135 | 0.8462 | 0.5189 | nan | 0.7181 | 0.8330 | 0.0987 | 0.9506 | 0.1547 | 0.0 | 0.6725 | 0.0495 | 0.7100 | 0.0 | 0.0287 | 0.9267 | 0.1776 | 0.6343 | 0.3780 | 0.5432 | nan | 0.2443 | 0.6137 | 0.5769 | 0.0 | 0.9584 | 0.8384 | 0.9828 | 0.0066 | 0.2333 | 0.4880 | 0.0 | nan | 0.7760 | 0.8835 | 0.6975 | 0.7577 | 0.3847 | nan | 0.5952 | 0.6365 | 0.0593 | 0.8659 | 0.1333 | 0.0 | 0.4577 | 0.0495 | 0.5792 | 0.0 | 0.0286 | 0.7722 | 0.1602 | 0.5420 | 0.3217 | 0.3705 | nan | 0.2078 | 0.5065 | 0.3912 | 0.0 | 0.8859 | 0.7595 | 0.9537 | 0.0053 | 0.1169 | 0.3758 | 0.0 |
| 0.0927 | 41.0 | 8200 | 0.7110 | 0.4152 | 0.4938 | 0.8796 | nan | 0.8595 | 0.9572 | 0.8074 | 0.8472 | 0.5385 | nan | 0.7135 | 0.8222 | 0.0817 | 0.9568 | 0.1376 | 0.0 | 0.6614 | 0.0422 | 0.7135 | 0.0 | 0.0282 | 0.9262 | 0.1968 | 0.6167 | 0.3808 | 0.5397 | nan | 0.2615 | 0.6287 | 0.5838 | 0.0 | 0.9574 | 0.8236 | 0.9837 | 0.0121 | 0.2220 | 0.5007 | 0.0 | nan | 0.7749 | 0.8832 | 0.7024 | 0.7589 | 0.3841 | nan | 0.5957 | 0.6435 | 0.0512 | 0.8635 | 0.1196 | 0.0 | 0.4658 | 0.0422 | 0.5789 | 0.0 | 0.0281 | 0.7691 | 0.1761 | 0.5324 | 0.3221 | 0.3748 | nan | 0.2213 | 0.5070 | 0.3918 | 0.0 | 0.8855 | 0.7553 | 0.9531 | 0.0094 | 0.1149 | 0.3822 | 0.0 |
| 0.0784 | 41.1 | 8220 | 0.7319 | 0.4160 | 0.4940 | 0.8790 | nan | 0.8561 | 0.9583 | 0.8089 | 0.8384 | 0.5278 | nan | 0.7092 | 0.8246 | 0.0814 | 0.9545 | 0.1391 | 0.0 | 0.6316 | 0.0590 | 0.7229 | 0.0 | 0.0238 | 0.9329 | 0.2112 | 0.6189 | 0.3859 | 0.5190 | nan | 0.2873 | 0.6168 | 0.5891 | 0.0 | 0.9543 | 0.8355 | 0.9833 | 0.0165 | 0.2376 | 0.4825 | 0.0 | nan | 0.7691 | 0.8808 | 0.6975 | 0.7617 | 0.3839 | nan | 0.5908 | 0.6494 | 0.0511 | 0.8644 | 0.1202 | 0.0 | 0.4527 | 0.0590 | 0.5800 | 0.0 | 0.0237 | 0.7681 | 0.1869 | 0.5344 | 0.3263 | 0.3720 | nan | 0.2333 | 0.5073 | 0.3929 | 0.0 | 0.8865 | 0.7570 | 0.9537 | 0.0123 | 0.1167 | 0.3791 | 0.0 |
| 0.0667 | 41.2 | 8240 | 0.7222 | 0.4126 | 0.4903 | 0.8783 | nan | 0.8543 | 0.9550 | 0.8106 | 0.8437 | 0.5405 | nan | 0.7182 | 0.8463 | 0.0717 | 0.9550 | 0.1303 | 0.0 | 0.6477 | 0.0313 | 0.7111 | 0.0 | 0.0306 | 0.9294 | 0.1755 | 0.6283 | 0.3626 | 0.4902 | nan | 0.2610 | 0.6342 | 0.5772 | 0.0 | 0.9563 | 0.8257 | 0.9828 | 0.0121 | 0.2199 | 0.4890 | 0.0 | nan | 0.7670 | 0.8804 | 0.6984 | 0.7617 | 0.3820 | nan | 0.5916 | 0.6406 | 0.0455 | 0.8624 | 0.1137 | 0.0 | 0.4502 | 0.0313 | 0.5807 | 0.0 | 0.0305 | 0.7701 | 0.1591 | 0.5380 | 0.3146 | 0.3684 | nan | 0.2147 | 0.5078 | 0.3928 | 0.0 | 0.8845 | 0.7513 | 0.9536 | 0.0095 | 0.1195 | 0.3833 | 0.0 |
| 0.0719 | 41.3 | 8260 | 0.7150 | 0.4129 | 0.4889 | 0.8786 | nan | 0.8482 | 0.9565 | 0.8046 | 0.8534 | 0.5374 | nan | 0.7099 | 0.8436 | 0.0664 | 0.9558 | 0.1160 | 0.0 | 0.6357 | 0.0288 | 0.7091 | 0.0 | 0.0459 | 0.9284 | 0.1771 | 0.6290 | 0.3729 | 0.4730 | nan | 0.2386 | 0.6250 | 0.5816 | 0.0 | 0.9566 | 0.8394 | 0.9835 | 0.0035 | 0.2339 | 0.4895 | 0.0 | nan | 0.7638 | 0.8790 | 0.7074 | 0.7540 | 0.3897 | nan | 0.5946 | 0.6470 | 0.0429 | 0.8617 | 0.1015 | 0.0 | 0.4443 | 0.0288 | 0.5846 | 0.0 | 0.0458 | 0.7694 | 0.1605 | 0.5365 | 0.3197 | 0.3608 | nan | 0.2000 | 0.5086 | 0.3954 | 0.0 | 0.8862 | 0.7583 | 0.9526 | 0.0030 | 0.1288 | 0.3859 | 0.0 |
| 0.058 | 41.4 | 8280 | 0.7249 | 0.4149 | 0.4906 | 0.8788 | nan | 0.8595 | 0.9577 | 0.8047 | 0.8316 | 0.5300 | nan | 0.7112 | 0.8323 | 0.0734 | 0.9546 | 0.1188 | 0.0 | 0.6529 | 0.0564 | 0.7018 | 0.0 | 0.0388 | 0.9337 | 0.2297 | 0.6200 | 0.3705 | 0.4951 | nan | 0.2212 | 0.6194 | 0.5791 | 0.0 | 0.9535 | 0.8400 | 0.9823 | 0.0089 | 0.2406 | 0.4811 | 0.0 | nan | 0.7669 | 0.8796 | 0.7100 | 0.7539 | 0.3916 | nan | 0.5929 | 0.6481 | 0.0462 | 0.8639 | 0.1034 | 0.0 | 0.4556 | 0.0564 | 0.5855 | 0.0 | 0.0385 | 0.7658 | 0.1999 | 0.5280 | 0.3195 | 0.3666 | nan | 0.1890 | 0.5092 | 0.3935 | 0.0 | 0.8874 | 0.7598 | 0.9533 | 0.0071 | 0.1239 | 0.3806 | 0.0 |
| 0.0713 | 41.5 | 8300 | 0.7246 | 0.4159 | 0.4938 | 0.8796 | nan | 0.8617 | 0.9582 | 0.8017 | 0.8346 | 0.5269 | nan | 0.7055 | 0.8484 | 0.0846 | 0.9547 | 0.1224 | 0.0 | 0.6546 | 0.0629 | 0.7093 | 0.0 | 0.0433 | 0.9283 | 0.2270 | 0.6212 | 0.3884 | 0.5291 | nan | 0.2168 | 0.6255 | 0.5767 | 0.0 | 0.9544 | 0.8536 | 0.9821 | 0.0084 | 0.2440 | 0.4769 | 0.0 | nan | 0.7708 | 0.8794 | 0.7099 | 0.7561 | 0.3945 | nan | 0.5920 | 0.6368 | 0.0546 | 0.8646 | 0.1063 | 0.0 | 0.4508 | 0.0629 | 0.5847 | 0.0 | 0.0426 | 0.7672 | 0.1970 | 0.5285 | 0.3282 | 0.3829 | nan | 0.1803 | 0.5096 | 0.3944 | 0.0 | 0.8888 | 0.7674 | 0.9534 | 0.0067 | 0.1231 | 0.3763 | 0.0 |
| 0.0749 | 41.6 | 8320 | 0.7235 | 0.4159 | 0.4939 | 0.8791 | nan | 0.8596 | 0.9574 | 0.7982 | 0.8473 | 0.5339 | nan | 0.7065 | 0.8321 | 0.1159 | 0.9565 | 0.1260 | 0.0 | 0.6461 | 0.0717 | 0.7121 | 0.0 | 0.0399 | 0.9331 | 0.2266 | 0.6165 | 0.3872 | 0.5393 | nan | 0.2080 | 0.6241 | 0.5663 | 0.0 | 0.9519 | 0.8333 | 0.9848 | 0.0066 | 0.2445 | 0.4781 | 0.0 | nan | 0.7714 | 0.8796 | 0.7094 | 0.7562 | 0.3935 | nan | 0.5940 | 0.6356 | 0.0654 | 0.8632 | 0.1084 | 0.0 | 0.4528 | 0.0717 | 0.5806 | 0.0 | 0.0393 | 0.7653 | 0.1969 | 0.5249 | 0.3302 | 0.3871 | nan | 0.1723 | 0.5094 | 0.3931 | 0.0 | 0.8876 | 0.7604 | 0.9525 | 0.0054 | 0.1249 | 0.3762 | 0.0 |
| 0.0797 | 41.7 | 8340 | 0.7274 | 0.4130 | 0.4909 | 0.8792 | nan | 0.8519 | 0.9562 | 0.8035 | 0.8531 | 0.5439 | nan | 0.7088 | 0.8430 | 0.0806 | 0.9565 | 0.1222 | 0.0 | 0.6614 | 0.0473 | 0.7077 | 0.0 | 0.0384 | 0.9308 | 0.1828 | 0.6351 | 0.3837 | 0.5151 | nan | 0.1893 | 0.6149 | 0.5878 | 0.0 | 0.9549 | 0.8449 | 0.9851 | 0.0052 | 0.2324 | 0.4736 | 0.0 | nan | 0.7700 | 0.8795 | 0.7001 | 0.7552 | 0.3956 | nan | 0.5961 | 0.6341 | 0.0483 | 0.8633 | 0.1057 | 0.0 | 0.4576 | 0.0472 | 0.5786 | 0.0 | 0.0380 | 0.7683 | 0.1633 | 0.5348 | 0.3249 | 0.3814 | nan | 0.1590 | 0.5099 | 0.3968 | 0.0 | 0.8878 | 0.7646 | 0.9524 | 0.0043 | 0.1245 | 0.3759 | 0.0 |
| 0.0992 | 41.8 | 8360 | 0.7200 | 0.4129 | 0.4919 | 0.8783 | nan | 0.8496 | 0.9564 | 0.8070 | 0.8435 | 0.5330 | nan | 0.7220 | 0.8368 | 0.0732 | 0.9572 | 0.1298 | 0.0 | 0.6709 | 0.0622 | 0.7007 | 0.0 | 0.0269 | 0.9303 | 0.1829 | 0.6236 | 0.3705 | 0.5537 | nan | 0.1950 | 0.6268 | 0.5977 | 0.0 | 0.9553 | 0.8440 | 0.9844 | 0.0053 | 0.2268 | 0.4750 | 0.0 | nan | 0.7641 | 0.8773 | 0.6907 | 0.7587 | 0.3943 | nan | 0.5929 | 0.6437 | 0.0429 | 0.8629 | 0.1115 | 0.0 | 0.4596 | 0.0622 | 0.5825 | 0.0 | 0.0267 | 0.7682 | 0.1647 | 0.5321 | 0.3166 | 0.3840 | nan | 0.1642 | 0.5102 | 0.3949 | 0.0 | 0.8868 | 0.7622 | 0.9528 | 0.0044 | 0.1231 | 0.3788 | 0.0 |
| 0.0582 | 41.9 | 8380 | 0.7296 | 0.4136 | 0.4924 | 0.8785 | nan | 0.8458 | 0.9592 | 0.8061 | 0.8447 | 0.5136 | nan | 0.7207 | 0.8342 | 0.0641 | 0.9576 | 0.1245 | 0.0 | 0.6799 | 0.0590 | 0.7184 | 0.0 | 0.0293 | 0.9313 | 0.1980 | 0.6216 | 0.3837 | 0.5488 | nan | 0.2023 | 0.6359 | 0.5885 | 0.0 | 0.9538 | 0.8449 | 0.9838 | 0.0088 | 0.2121 | 0.4875 | 0.0 | nan | 0.7637 | 0.8770 | 0.6863 | 0.7567 | 0.3963 | nan | 0.5920 | 0.6472 | 0.0403 | 0.8635 | 0.1081 | 0.0 | 0.4642 | 0.0590 | 0.5765 | 0.0 | 0.0291 | 0.7673 | 0.1775 | 0.5307 | 0.3274 | 0.3845 | nan | 0.1720 | 0.5113 | 0.3951 | 0.0 | 0.8879 | 0.7644 | 0.9531 | 0.0069 | 0.1164 | 0.3815 | 0.0 |
| 0.0701 | 42.0 | 8400 | 0.7337 | 0.4166 | 0.4941 | 0.8794 | nan | 0.8473 | 0.9594 | 0.8017 | 0.8461 | 0.5233 | nan | 0.7117 | 0.8309 | 0.0828 | 0.9545 | 0.1145 | 0.0 | 0.6676 | 0.0605 | 0.7218 | 0.0 | 0.0342 | 0.9306 | 0.2053 | 0.6414 | 0.3719 | 0.5456 | nan | 0.2417 | 0.6270 | 0.5795 | 0.0 | 0.9551 | 0.8547 | 0.9828 | 0.0081 | 0.2259 | 0.4839 | 0.0 | nan | 0.7642 | 0.8767 | 0.7027 | 0.7549 | 0.3968 | nan | 0.5939 | 0.6486 | 0.0503 | 0.8654 | 0.1005 | 0.0 | 0.4616 | 0.0605 | 0.5804 | 0.0 | 0.0339 | 0.7705 | 0.1820 | 0.5421 | 0.3226 | 0.3825 | nan | 0.2008 | 0.5129 | 0.4000 | 0.0 | 0.8890 | 0.7714 | 0.9532 | 0.0065 | 0.1244 | 0.3819 | 0.0 |
| 0.0728 | 42.1 | 8420 | 0.7088 | 0.4176 | 0.4970 | 0.8802 | nan | 0.8586 | 0.9580 | 0.7946 | 0.8437 | 0.5241 | nan | 0.7327 | 0.8391 | 0.0650 | 0.9594 | 0.1225 | 0.0 | 0.6719 | 0.0386 | 0.7056 | 0.0 | 0.0373 | 0.9302 | 0.2239 | 0.6361 | 0.3748 | 0.5825 | nan | 0.2644 | 0.6285 | 0.5914 | 0.0 | 0.9539 | 0.8399 | 0.9820 | 0.0074 | 0.2436 | 0.4938 | 0.0 | nan | 0.7709 | 0.8803 | 0.7146 | 0.7559 | 0.3943 | nan | 0.5952 | 0.6516 | 0.0407 | 0.8623 | 0.1078 | 0.0 | 0.4596 | 0.0386 | 0.5840 | 0.0 | 0.0372 | 0.7724 | 0.1968 | 0.5428 | 0.3211 | 0.3926 | nan | 0.2153 | 0.5124 | 0.3964 | 0.0 | 0.8873 | 0.7598 | 0.9536 | 0.0059 | 0.1290 | 0.3856 | 0.0 |
| 0.0779 | 42.2 | 8440 | 0.7205 | 0.4161 | 0.4943 | 0.8797 | nan | 0.8508 | 0.9577 | 0.7977 | 0.8524 | 0.5320 | nan | 0.7101 | 0.8392 | 0.0628 | 0.9558 | 0.1263 | 0.0 | 0.6522 | 0.0314 | 0.7007 | 0.0 | 0.0404 | 0.9291 | 0.2000 | 0.6533 | 0.3771 | 0.5758 | nan | 0.2348 | 0.6217 | 0.5855 | 0.0 | 0.9555 | 0.8560 | 0.9833 | 0.0088 | 0.2664 | 0.4606 | 0.0 | nan | 0.7671 | 0.8793 | 0.7060 | 0.7545 | 0.3968 | nan | 0.5946 | 0.6539 | 0.0420 | 0.8647 | 0.1110 | 0.0 | 0.4508 | 0.0314 | 0.5844 | 0.0 | 0.0401 | 0.7719 | 0.1772 | 0.5459 | 0.3214 | 0.3899 | nan | 0.1958 | 0.5120 | 0.4020 | 0.0 | 0.8878 | 0.7681 | 0.9529 | 0.0068 | 0.1305 | 0.3751 | 0.0 |
| 0.0871 | 42.3 | 8460 | 0.7242 | 0.4185 | 0.4984 | 0.8793 | nan | 0.8523 | 0.9558 | 0.8010 | 0.8471 | 0.5390 | nan | 0.7165 | 0.8376 | 0.0732 | 0.9575 | 0.1268 | 0.0 | 0.6554 | 0.0401 | 0.7135 | 0.0 | 0.0391 | 0.9302 | 0.2009 | 0.6376 | 0.3938 | 0.5685 | nan | 0.2904 | 0.6257 | 0.6011 | 0.0 | 0.9547 | 0.8443 | 0.9831 | 0.0072 | 0.2709 | 0.4865 | 0.0 | nan | 0.7665 | 0.8795 | 0.7045 | 0.7569 | 0.3943 | nan | 0.5916 | 0.6578 | 0.0482 | 0.8641 | 0.1112 | 0.0 | 0.4562 | 0.0401 | 0.5822 | 0.0 | 0.0388 | 0.7715 | 0.1783 | 0.5404 | 0.3289 | 0.3985 | nan | 0.2423 | 0.5129 | 0.3986 | 0.0 | 0.8878 | 0.7631 | 0.9532 | 0.0056 | 0.1355 | 0.3838 | 0.0 |
| 0.0671 | 42.4 | 8480 | 0.7098 | 0.4188 | 0.4982 | 0.8806 | nan | 0.8619 | 0.9552 | 0.8057 | 0.8452 | 0.5423 | nan | 0.7258 | 0.8334 | 0.0872 | 0.9566 | 0.1294 | 0.0 | 0.6649 | 0.0448 | 0.7137 | 0.0 | 0.0332 | 0.9312 | 0.1886 | 0.6284 | 0.3881 | 0.5432 | nan | 0.3220 | 0.6299 | 0.5896 | 0.0 | 0.9543 | 0.8488 | 0.9821 | 0.0093 | 0.2349 | 0.4914 | 0.0 | nan | 0.7764 | 0.8833 | 0.6977 | 0.7602 | 0.3922 | nan | 0.5932 | 0.6581 | 0.0533 | 0.8642 | 0.1131 | 0.0 | 0.4540 | 0.0448 | 0.5776 | 0.0 | 0.0331 | 0.7703 | 0.1689 | 0.5359 | 0.3266 | 0.3886 | nan | 0.2650 | 0.5127 | 0.3999 | 0.0 | 0.8876 | 0.7635 | 0.9537 | 0.0070 | 0.1350 | 0.3869 | 0.0 |
| 0.0736 | 42.5 | 8500 | 0.7222 | 0.4162 | 0.4933 | 0.8795 | nan | 0.8571 | 0.9566 | 0.8087 | 0.8463 | 0.5427 | nan | 0.7186 | 0.8216 | 0.0681 | 0.9545 | 0.1284 | 0.0 | 0.6721 | 0.0528 | 0.7124 | 0.0 | 0.0335 | 0.9342 | 0.1955 | 0.6150 | 0.3653 | 0.5562 | nan | 0.2725 | 0.6109 | 0.5731 | 0.0 | 0.9558 | 0.8340 | 0.9829 | 0.0079 | 0.2154 | 0.4945 | 0.0 | nan | 0.7733 | 0.8818 | 0.6834 | 0.7600 | 0.3922 | nan | 0.5932 | 0.6659 | 0.0427 | 0.8649 | 0.1118 | 0.0 | 0.4561 | 0.0528 | 0.5790 | 0.0 | 0.0332 | 0.7670 | 0.1743 | 0.5256 | 0.3162 | 0.3880 | nan | 0.2272 | 0.5090 | 0.3999 | 0.0 | 0.8859 | 0.7582 | 0.9532 | 0.0062 | 0.1276 | 0.3903 | 0.0 |
| 0.0666 | 42.6 | 8520 | 0.7110 | 0.4198 | 0.4967 | 0.8812 | nan | 0.8616 | 0.9569 | 0.7996 | 0.8491 | 0.5364 | nan | 0.7060 | 0.8177 | 0.0932 | 0.9571 | 0.1263 | 0.0 | 0.6658 | 0.0576 | 0.7184 | 0.0 | 0.0473 | 0.9285 | 0.2135 | 0.6561 | 0.3734 | 0.5421 | nan | 0.2644 | 0.6309 | 0.5902 | 0.0 | 0.9542 | 0.8551 | 0.9831 | 0.0090 | 0.2125 | 0.4895 | 0.0 | nan | 0.7743 | 0.8819 | 0.6957 | 0.7576 | 0.3946 | nan | 0.5919 | 0.6597 | 0.0575 | 0.8641 | 0.1115 | 0.0 | 0.4605 | 0.0576 | 0.5757 | 0.0 | 0.0468 | 0.7745 | 0.1876 | 0.5488 | 0.3221 | 0.3951 | nan | 0.2200 | 0.5136 | 0.4034 | 0.0 | 0.8891 | 0.7712 | 0.9533 | 0.0069 | 0.1312 | 0.3877 | 0.0 |
| 0.0695 | 42.7 | 8540 | 0.7218 | 0.4189 | 0.4977 | 0.8780 | nan | 0.8364 | 0.9574 | 0.7969 | 0.8431 | 0.5503 | nan | 0.7173 | 0.8123 | 0.1159 | 0.9577 | 0.1220 | 0.0 | 0.6804 | 0.0625 | 0.7212 | 0.0 | 0.0555 | 0.9310 | 0.1974 | 0.6558 | 0.3836 | 0.5621 | nan | 0.2385 | 0.6290 | 0.6051 | 0.0 | 0.9517 | 0.8515 | 0.9845 | 0.0038 | 0.2094 | 0.4955 | 0.0 | nan | 0.7579 | 0.8747 | 0.7015 | 0.7469 | 0.3890 | nan | 0.5928 | 0.6626 | 0.0668 | 0.8629 | 0.1075 | 0.0 | 0.4649 | 0.0625 | 0.5803 | 0.0 | 0.0551 | 0.7735 | 0.1761 | 0.5460 | 0.3289 | 0.4016 | nan | 0.1946 | 0.5145 | 0.4018 | 0.0 | 0.8895 | 0.7713 | 0.9526 | 0.0032 | 0.1358 | 0.3916 | 0.0 |
| 0.0572 | 42.8 | 8560 | 0.7331 | 0.4175 | 0.4938 | 0.8775 | nan | 0.8462 | 0.9556 | 0.7954 | 0.8294 | 0.5532 | nan | 0.7014 | 0.8166 | 0.1012 | 0.9509 | 0.1225 | 0.0 | 0.6679 | 0.0907 | 0.7107 | 0.0 | 0.0320 | 0.9310 | 0.1957 | 0.6430 | 0.3670 | 0.5316 | nan | 0.2325 | 0.6179 | 0.5918 | 0.0 | 0.9551 | 0.8517 | 0.9839 | 0.0061 | 0.2207 | 0.5003 | 0.0 | nan | 0.7595 | 0.8746 | 0.7054 | 0.7463 | 0.3845 | nan | 0.5869 | 0.6623 | 0.0572 | 0.8663 | 0.1078 | 0.0 | 0.4633 | 0.0906 | 0.5868 | 0.0 | 0.0318 | 0.7716 | 0.1738 | 0.5426 | 0.3163 | 0.3871 | nan | 0.1916 | 0.5119 | 0.3987 | 0.0 | 0.8883 | 0.7697 | 0.9529 | 0.0050 | 0.1348 | 0.3928 | 0.0 |
| 0.0852 | 42.9 | 8580 | 0.7294 | 0.4218 | 0.5035 | 0.8781 | nan | 0.8474 | 0.9539 | 0.7988 | 0.8363 | 0.5591 | nan | 0.7173 | 0.8223 | 0.1199 | 0.9574 | 0.1374 | 0.0 | 0.6863 | 0.0966 | 0.7122 | 0.0002 | 0.0356 | 0.9282 | 0.2153 | 0.6422 | 0.3889 | 0.5794 | nan | 0.3187 | 0.6249 | 0.5866 | 0.0 | 0.9541 | 0.8453 | 0.9840 | 0.0073 | 0.2534 | 0.5031 | 0.0 | nan | 0.7629 | 0.8772 | 0.7008 | 0.7526 | 0.3834 | nan | 0.5882 | 0.6610 | 0.0666 | 0.8639 | 0.1194 | 0.0 | 0.4654 | 0.0966 | 0.5804 | 0.0002 | 0.0351 | 0.7734 | 0.1897 | 0.5443 | 0.3258 | 0.4037 | nan | 0.2523 | 0.5123 | 0.3962 | 0.0 | 0.8888 | 0.7665 | 0.9529 | 0.0059 | 0.1388 | 0.3924 | 0.0 |
| 0.088 | 43.0 | 8600 | 0.7267 | 0.4198 | 0.4991 | 0.8778 | nan | 0.8440 | 0.9545 | 0.8047 | 0.8429 | 0.5587 | nan | 0.7048 | 0.8152 | 0.1090 | 0.9560 | 0.1211 | 0.0 | 0.7106 | 0.0746 | 0.6981 | 0.0001 | 0.0267 | 0.9307 | 0.2232 | 0.6422 | 0.3654 | 0.5411 | nan | 0.3333 | 0.6245 | 0.5647 | 0.0 | 0.9534 | 0.8454 | 0.9850 | 0.0061 | 0.2331 | 0.5013 | 0.0 | nan | 0.7621 | 0.8776 | 0.6877 | 0.7496 | 0.3866 | nan | 0.5884 | 0.6568 | 0.0592 | 0.8628 | 0.1055 | 0.0 | 0.4838 | 0.0746 | 0.5828 | 0.0001 | 0.0265 | 0.7720 | 0.1964 | 0.5455 | 0.3158 | 0.3866 | nan | 0.2690 | 0.5124 | 0.3965 | 0.0 | 0.8881 | 0.7673 | 0.9523 | 0.0047 | 0.1319 | 0.3907 | 0.0 |
| 0.065 | 43.1 | 8620 | 0.7317 | 0.4196 | 0.5005 | 0.8781 | nan | 0.8451 | 0.9537 | 0.8098 | 0.8427 | 0.5527 | nan | 0.7069 | 0.8223 | 0.1230 | 0.9560 | 0.1239 | 0.0 | 0.6888 | 0.0726 | 0.7129 | 0.0 | 0.0271 | 0.9294 | 0.2125 | 0.6537 | 0.3741 | 0.5544 | nan | 0.3373 | 0.6257 | 0.5650 | 0.0 | 0.9528 | 0.8529 | 0.9834 | 0.0072 | 0.2298 | 0.5000 | 0.0 | nan | 0.7622 | 0.8785 | 0.6837 | 0.7518 | 0.3855 | nan | 0.5875 | 0.6530 | 0.0684 | 0.8638 | 0.1080 | 0.0 | 0.4804 | 0.0725 | 0.5771 | 0.0 | 0.0269 | 0.7726 | 0.1868 | 0.5450 | 0.3229 | 0.3885 | nan | 0.2678 | 0.5116 | 0.3946 | 0.0 | 0.8892 | 0.7700 | 0.9534 | 0.0056 | 0.1319 | 0.3878 | 0.0 |
| 0.0697 | 43.2 | 8640 | 0.7204 | 0.4192 | 0.5005 | 0.8785 | nan | 0.8482 | 0.9530 | 0.8100 | 0.8455 | 0.5573 | nan | 0.7103 | 0.8250 | 0.1150 | 0.9551 | 0.1219 | 0.0 | 0.6710 | 0.0804 | 0.7151 | 0.0 | 0.0266 | 0.9303 | 0.2002 | 0.6498 | 0.3774 | 0.5495 | nan | 0.3482 | 0.6393 | 0.5789 | 0.0 | 0.9557 | 0.8447 | 0.9829 | 0.0081 | 0.2347 | 0.4812 | 0.0 | nan | 0.7656 | 0.8803 | 0.6869 | 0.7549 | 0.3853 | nan | 0.5889 | 0.6460 | 0.0617 | 0.8646 | 0.1058 | 0.0 | 0.4654 | 0.0803 | 0.5804 | 0.0 | 0.0264 | 0.7723 | 0.1779 | 0.5491 | 0.3224 | 0.3888 | nan | 0.2797 | 0.5128 | 0.3962 | 0.0 | 0.8874 | 0.7630 | 0.9534 | 0.0062 | 0.1306 | 0.3827 | 0.0 |
| 0.0618 | 43.3 | 8660 | 0.7165 | 0.4183 | 0.4983 | 0.8792 | nan | 0.8572 | 0.9548 | 0.8042 | 0.8479 | 0.5460 | nan | 0.7072 | 0.8212 | 0.1021 | 0.9566 | 0.1165 | 0.0 | 0.6709 | 0.0647 | 0.7131 | 0.0 | 0.0285 | 0.9315 | 0.2115 | 0.6370 | 0.3804 | 0.5576 | nan | 0.3268 | 0.6234 | 0.5779 | 0.0 | 0.9542 | 0.8376 | 0.9834 | 0.0093 | 0.2454 | 0.4792 | 0.0 | nan | 0.7710 | 0.8820 | 0.7006 | 0.7550 | 0.3833 | nan | 0.5902 | 0.6422 | 0.0543 | 0.8639 | 0.1019 | 0.0 | 0.4641 | 0.0647 | 0.5811 | 0.0 | 0.0281 | 0.7700 | 0.1853 | 0.5414 | 0.3240 | 0.3977 | nan | 0.2670 | 0.5098 | 0.3917 | 0.0 | 0.8875 | 0.7613 | 0.9529 | 0.0073 | 0.1270 | 0.3791 | 0.0 |
| 0.06 | 43.4 | 8680 | 0.7109 | 0.4201 | 0.5011 | 0.8800 | nan | 0.8595 | 0.9558 | 0.7967 | 0.8494 | 0.5272 | nan | 0.7195 | 0.8216 | 0.1296 | 0.9587 | 0.1180 | 0.0 | 0.6750 | 0.0609 | 0.7230 | 0.0 | 0.0352 | 0.9277 | 0.2070 | 0.6379 | 0.3972 | 0.5523 | nan | 0.3292 | 0.6208 | 0.5823 | 0.0 | 0.9550 | 0.8361 | 0.9826 | 0.0137 | 0.2559 | 0.5083 | 0.0 | nan | 0.7730 | 0.8823 | 0.7029 | 0.7538 | 0.3909 | nan | 0.5893 | 0.6437 | 0.0670 | 0.8638 | 0.1036 | 0.0 | 0.4610 | 0.0609 | 0.5810 | 0.0 | 0.0346 | 0.7733 | 0.1834 | 0.5459 | 0.3286 | 0.4014 | nan | 0.2719 | 0.5098 | 0.3906 | 0.0 | 0.8872 | 0.7607 | 0.9534 | 0.0097 | 0.1288 | 0.3893 | 0.0 |
| 0.0637 | 43.5 | 8700 | 0.7112 | 0.4197 | 0.5019 | 0.8798 | nan | 0.8598 | 0.9564 | 0.7924 | 0.8452 | 0.5278 | nan | 0.7139 | 0.8459 | 0.0673 | 0.9563 | 0.1162 | 0.0 | 0.7044 | 0.0499 | 0.7242 | 0.0046 | 0.0234 | 0.9320 | 0.2177 | 0.6367 | 0.4050 | 0.5829 | nan | 0.3565 | 0.6146 | 0.5795 | 0.0 | 0.9508 | 0.8419 | 0.9832 | 0.0151 | 0.2453 | 0.5112 | 0.0 | nan | 0.7701 | 0.8810 | 0.7087 | 0.7526 | 0.3938 | nan | 0.5881 | 0.6374 | 0.0410 | 0.8654 | 0.1019 | 0.0 | 0.4544 | 0.0498 | 0.5856 | 0.0044 | 0.0231 | 0.7726 | 0.1907 | 0.5461 | 0.3340 | 0.4087 | nan | 0.2842 | 0.5077 | 0.3904 | 0.0 | 0.8887 | 0.7634 | 0.9534 | 0.0104 | 0.1279 | 0.3934 | 0.0 |
| 0.0686 | 43.6 | 8720 | 0.7090 | 0.4197 | 0.4989 | 0.8799 | nan | 0.8557 | 0.9581 | 0.7838 | 0.8390 | 0.5234 | nan | 0.7065 | 0.8386 | 0.0559 | 0.9563 | 0.1346 | 0.0 | 0.7263 | 0.0440 | 0.7063 | 0.0053 | 0.0168 | 0.9253 | 0.2019 | 0.6655 | 0.4033 | 0.5193 | nan | 0.3487 | 0.6270 | 0.5874 | 0.0 | 0.9547 | 0.8525 | 0.9830 | 0.0137 | 0.2328 | 0.4980 | 0.0 | nan | 0.7640 | 0.8780 | 0.7104 | 0.7531 | 0.4014 | nan | 0.5854 | 0.6436 | 0.0343 | 0.8650 | 0.1170 | 0.0 | 0.4675 | 0.0440 | 0.5847 | 0.0052 | 0.0166 | 0.7773 | 0.1781 | 0.5546 | 0.3319 | 0.3880 | nan | 0.2757 | 0.5094 | 0.3956 | 0.0 | 0.8885 | 0.7679 | 0.9534 | 0.0100 | 0.1391 | 0.3922 | 0.0 |
| 0.0807 | 43.7 | 8740 | 0.7229 | 0.4180 | 0.4983 | 0.8792 | nan | 0.8466 | 0.9586 | 0.7929 | 0.8472 | 0.5371 | nan | 0.7049 | 0.8364 | 0.0621 | 0.9543 | 0.1221 | 0.0 | 0.7106 | 0.0559 | 0.7133 | 0.0062 | 0.0340 | 0.9336 | 0.1828 | 0.6558 | 0.3936 | 0.5337 | nan | 0.3272 | 0.6369 | 0.6002 | 0.0 | 0.9521 | 0.8448 | 0.9834 | 0.0054 | 0.2294 | 0.4832 | 0.0 | nan | 0.7613 | 0.8771 | 0.7048 | 0.7507 | 0.4042 | nan | 0.5878 | 0.6479 | 0.0383 | 0.8658 | 0.1062 | 0.0 | 0.4355 | 0.0559 | 0.5919 | 0.0061 | 0.0334 | 0.7728 | 0.1631 | 0.5500 | 0.3294 | 0.3916 | nan | 0.2608 | 0.5128 | 0.3933 | 0.0 | 0.8887 | 0.7658 | 0.9533 | 0.0044 | 0.1359 | 0.3871 | 0.0 |
| 0.0557 | 43.8 | 8760 | 0.7293 | 0.4202 | 0.5003 | 0.8787 | nan | 0.8414 | 0.9593 | 0.7976 | 0.8454 | 0.5346 | nan | 0.7111 | 0.8324 | 0.0655 | 0.9556 | 0.1376 | 0.0 | 0.7028 | 0.0795 | 0.7066 | 0.0112 | 0.0297 | 0.9321 | 0.2095 | 0.6408 | 0.3838 | 0.5562 | nan | 0.3337 | 0.6187 | 0.5912 | 0.0 | 0.9529 | 0.8491 | 0.9826 | 0.0117 | 0.2366 | 0.4989 | 0.0 | nan | 0.7594 | 0.8760 | 0.7044 | 0.7460 | 0.4061 | nan | 0.5894 | 0.6491 | 0.0391 | 0.8650 | 0.1192 | 0.0 | 0.4528 | 0.0795 | 0.5932 | 0.0110 | 0.0292 | 0.7729 | 0.1842 | 0.5456 | 0.3261 | 0.3934 | nan | 0.2579 | 0.5118 | 0.3937 | 0.0 | 0.8887 | 0.7667 | 0.9542 | 0.0090 | 0.1334 | 0.3893 | 0.0 |
| 0.0655 | 43.9 | 8780 | 0.7311 | 0.4198 | 0.5014 | 0.8783 | nan | 0.8393 | 0.9554 | 0.8100 | 0.8526 | 0.5444 | nan | 0.7158 | 0.8314 | 0.0777 | 0.9564 | 0.1426 | 0.0 | 0.7048 | 0.0661 | 0.7165 | 0.0070 | 0.0355 | 0.9295 | 0.2021 | 0.6563 | 0.3785 | 0.5421 | nan | 0.3485 | 0.6098 | 0.5809 | 0.0 | 0.9562 | 0.8432 | 0.9819 | 0.0113 | 0.2569 | 0.4911 | 0.0 | nan | 0.7591 | 0.8774 | 0.6880 | 0.7491 | 0.4010 | nan | 0.5890 | 0.6512 | 0.0459 | 0.8645 | 0.1234 | 0.0 | 0.4569 | 0.0661 | 0.5894 | 0.0069 | 0.0348 | 0.7745 | 0.1777 | 0.5502 | 0.3229 | 0.3875 | nan | 0.2705 | 0.5105 | 0.3950 | 0.0 | 0.8871 | 0.7637 | 0.9543 | 0.0087 | 0.1385 | 0.3887 | 0.0 |
| 0.1089 | 44.0 | 8800 | 0.7312 | 0.4192 | 0.4999 | 0.8783 | nan | 0.8397 | 0.9578 | 0.8063 | 0.8582 | 0.5364 | nan | 0.6964 | 0.8238 | 0.0701 | 0.9568 | 0.1412 | 0.0 | 0.6988 | 0.0710 | 0.7186 | 0.0024 | 0.0395 | 0.9293 | 0.1825 | 0.6419 | 0.3726 | 0.5495 | nan | 0.3361 | 0.6296 | 0.5986 | 0.0 | 0.9542 | 0.8373 | 0.9846 | 0.0106 | 0.2464 | 0.5059 | 0.0 | nan | 0.7582 | 0.8774 | 0.6870 | 0.7482 | 0.4026 | nan | 0.5888 | 0.6556 | 0.0403 | 0.8647 | 0.1220 | 0.0 | 0.4713 | 0.0709 | 0.5898 | 0.0024 | 0.0388 | 0.7742 | 0.1633 | 0.5487 | 0.3173 | 0.3890 | nan | 0.2694 | 0.5097 | 0.3926 | 0.0 | 0.8871 | 0.7616 | 0.9533 | 0.0082 | 0.1322 | 0.3913 | 0.0 |
| 0.0651 | 44.1 | 8820 | 0.7258 | 0.4167 | 0.4960 | 0.8781 | nan | 0.8389 | 0.9580 | 0.8069 | 0.8540 | 0.5310 | nan | 0.7010 | 0.8305 | 0.0672 | 0.9582 | 0.1303 | 0.0 | 0.6921 | 0.0439 | 0.7103 | 0.0 | 0.0331 | 0.9301 | 0.1987 | 0.6444 | 0.3661 | 0.5154 | nan | 0.3231 | 0.6235 | 0.5817 | 0.0 | 0.9546 | 0.8372 | 0.9849 | 0.0090 | 0.2459 | 0.5016 | 0.0 | nan | 0.7581 | 0.8772 | 0.6853 | 0.7509 | 0.4018 | nan | 0.5875 | 0.6505 | 0.0400 | 0.8634 | 0.1134 | 0.0 | 0.4602 | 0.0439 | 0.5862 | 0.0 | 0.0328 | 0.7733 | 0.1758 | 0.5474 | 0.3146 | 0.3825 | nan | 0.2584 | 0.5083 | 0.3952 | 0.0 | 0.8866 | 0.7597 | 0.9530 | 0.0068 | 0.1321 | 0.3900 | 0.0 |
| 0.0692 | 44.2 | 8840 | 0.7330 | 0.4161 | 0.4947 | 0.8773 | nan | 0.8412 | 0.9553 | 0.8049 | 0.8450 | 0.5478 | nan | 0.7073 | 0.8187 | 0.0795 | 0.9572 | 0.1261 | 0.0 | 0.6916 | 0.0548 | 0.7093 | 0.0029 | 0.0275 | 0.9332 | 0.1765 | 0.6301 | 0.3681 | 0.5453 | nan | 0.2985 | 0.6152 | 0.5738 | 0.0 | 0.9541 | 0.8444 | 0.9853 | 0.0108 | 0.2370 | 0.4879 | 0.0 | nan | 0.7584 | 0.8765 | 0.6907 | 0.7500 | 0.3961 | nan | 0.5871 | 0.6576 | 0.0452 | 0.8634 | 0.1096 | 0.0 | 0.4611 | 0.0548 | 0.5893 | 0.0028 | 0.0274 | 0.7684 | 0.1583 | 0.5353 | 0.3184 | 0.3885 | nan | 0.2442 | 0.5093 | 0.3966 | 0.0 | 0.8871 | 0.7617 | 0.9526 | 0.0082 | 0.1301 | 0.3866 | 0.0 |
| 0.0654 | 44.3 | 8860 | 0.7268 | 0.4164 | 0.4958 | 0.8779 | nan | 0.8438 | 0.9578 | 0.7944 | 0.8479 | 0.5362 | nan | 0.6987 | 0.8252 | 0.0859 | 0.9576 | 0.1255 | 0.0 | 0.6884 | 0.0533 | 0.7208 | 0.0038 | 0.0228 | 0.9300 | 0.1571 | 0.6303 | 0.4273 | 0.5702 | nan | 0.2575 | 0.6223 | 0.5944 | 0.0 | 0.9520 | 0.8468 | 0.9850 | 0.0115 | 0.2333 | 0.4859 | 0.0 | nan | 0.7596 | 0.8765 | 0.6991 | 0.7497 | 0.3995 | nan | 0.5865 | 0.6540 | 0.0503 | 0.8638 | 0.1088 | 0.0 | 0.4636 | 0.0533 | 0.5866 | 0.0037 | 0.0227 | 0.7688 | 0.1423 | 0.5312 | 0.3468 | 0.4065 | nan | 0.2179 | 0.5087 | 0.3934 | 0.0 | 0.8891 | 0.7646 | 0.9523 | 0.0087 | 0.1321 | 0.3839 | 0.0 |
| 0.0886 | 44.4 | 8880 | 0.7317 | 0.4162 | 0.4946 | 0.8776 | nan | 0.8453 | 0.9574 | 0.7868 | 0.8436 | 0.5339 | nan | 0.7076 | 0.8323 | 0.0835 | 0.9565 | 0.1189 | 0.0 | 0.6836 | 0.0644 | 0.7184 | 0.0029 | 0.0224 | 0.9334 | 0.1645 | 0.6164 | 0.4076 | 0.5555 | nan | 0.2833 | 0.6216 | 0.5878 | 0.0 | 0.9531 | 0.8455 | 0.9836 | 0.0136 | 0.2147 | 0.4873 | 0.0 | nan | 0.7597 | 0.8757 | 0.7058 | 0.7446 | 0.4026 | nan | 0.5884 | 0.6438 | 0.0485 | 0.8646 | 0.1042 | 0.0 | 0.4628 | 0.0644 | 0.5891 | 0.0028 | 0.0223 | 0.7662 | 0.1479 | 0.5247 | 0.3425 | 0.3939 | nan | 0.2349 | 0.5086 | 0.3960 | 0.0 | 0.8889 | 0.7651 | 0.9531 | 0.0099 | 0.1246 | 0.3835 | 0.0 |
| 0.0592 | 44.5 | 8900 | 0.7325 | 0.4189 | 0.4975 | 0.8784 | nan | 0.8458 | 0.9586 | 0.7892 | 0.8429 | 0.5300 | nan | 0.7085 | 0.8330 | 0.1017 | 0.9566 | 0.1281 | 0.0 | 0.6934 | 0.0763 | 0.7256 | 0.0006 | 0.0309 | 0.9290 | 0.2149 | 0.6268 | 0.3929 | 0.5390 | nan | 0.2751 | 0.6182 | 0.5806 | 0.0 | 0.9533 | 0.8541 | 0.9831 | 0.0123 | 0.2190 | 0.5009 | 0.0 | nan | 0.7606 | 0.8758 | 0.7049 | 0.7442 | 0.4042 | nan | 0.5897 | 0.6434 | 0.0576 | 0.8656 | 0.1122 | 0.0 | 0.4635 | 0.0763 | 0.5883 | 0.0005 | 0.0305 | 0.7700 | 0.1886 | 0.5313 | 0.3367 | 0.3915 | nan | 0.2296 | 0.5086 | 0.3965 | 0.0 | 0.8897 | 0.7701 | 0.9537 | 0.0092 | 0.1255 | 0.3859 | 0.0 |
| 0.0756 | 44.6 | 8920 | 0.7285 | 0.4177 | 0.4947 | 0.8778 | nan | 0.8449 | 0.9569 | 0.7980 | 0.8439 | 0.5414 | nan | 0.7156 | 0.8249 | 0.0876 | 0.9550 | 0.1230 | 0.0 | 0.6976 | 0.0827 | 0.7212 | 0.0011 | 0.0269 | 0.9353 | 0.2019 | 0.6128 | 0.3814 | 0.5312 | nan | 0.2838 | 0.6041 | 0.5666 | 0.0 | 0.9534 | 0.8478 | 0.9831 | 0.0133 | 0.2039 | 0.4928 | 0.0 | nan | 0.7604 | 0.8769 | 0.6981 | 0.7464 | 0.4036 | nan | 0.5917 | 0.6492 | 0.0511 | 0.8661 | 0.1076 | 0.0 | 0.4700 | 0.0827 | 0.5898 | 0.0011 | 0.0267 | 0.7655 | 0.1780 | 0.5223 | 0.3287 | 0.3834 | nan | 0.2358 | 0.5075 | 0.3975 | 0.0 | 0.8880 | 0.7659 | 0.9536 | 0.0100 | 0.1227 | 0.3856 | 0.0 |
| 0.0552 | 44.7 | 8940 | 0.7286 | 0.4178 | 0.4960 | 0.8785 | nan | 0.8500 | 0.9568 | 0.7997 | 0.8454 | 0.5380 | nan | 0.7104 | 0.8261 | 0.0826 | 0.9550 | 0.1311 | 0.0 | 0.6737 | 0.0857 | 0.7207 | 0.0013 | 0.0228 | 0.9298 | 0.1966 | 0.6192 | 0.3907 | 0.5334 | nan | 0.2912 | 0.6324 | 0.5819 | 0.0 | 0.9558 | 0.8433 | 0.9824 | 0.0117 | 0.2209 | 0.4822 | 0.0 | nan | 0.7627 | 0.8784 | 0.6998 | 0.7509 | 0.4015 | nan | 0.5918 | 0.6423 | 0.0479 | 0.8664 | 0.1136 | 0.0 | 0.4565 | 0.0857 | 0.5902 | 0.0013 | 0.0225 | 0.7685 | 0.1739 | 0.5288 | 0.3294 | 0.3864 | nan | 0.2423 | 0.5103 | 0.3982 | 0.0 | 0.8870 | 0.7651 | 0.9538 | 0.0089 | 0.1235 | 0.3812 | 0.0 |
| 0.0666 | 44.8 | 8960 | 0.7386 | 0.4175 | 0.4952 | 0.8780 | nan | 0.8404 | 0.9579 | 0.8046 | 0.8503 | 0.5445 | nan | 0.7113 | 0.8195 | 0.1001 | 0.9529 | 0.1387 | 0.0 | 0.6556 | 0.0980 | 0.7253 | 0.0010 | 0.0275 | 0.9326 | 0.1886 | 0.6285 | 0.3736 | 0.5390 | nan | 0.2726 | 0.6155 | 0.5677 | 0.0 | 0.9554 | 0.8414 | 0.9833 | 0.0083 | 0.2342 | 0.4780 | 0.0 | nan | 0.7598 | 0.8779 | 0.6886 | 0.7473 | 0.4052 | nan | 0.5924 | 0.6417 | 0.0559 | 0.8671 | 0.1196 | 0.0 | 0.4493 | 0.0980 | 0.5946 | 0.0010 | 0.0273 | 0.7685 | 0.1679 | 0.5325 | 0.3207 | 0.3926 | nan | 0.2302 | 0.5093 | 0.3996 | 0.0 | 0.8867 | 0.7644 | 0.9536 | 0.0063 | 0.1233 | 0.3797 | 0.0 |
| 0.062 | 44.9 | 8980 | 0.7354 | 0.4167 | 0.4943 | 0.8776 | nan | 0.8392 | 0.9559 | 0.8056 | 0.8510 | 0.5501 | nan | 0.7168 | 0.8244 | 0.0703 | 0.9562 | 0.1388 | 0.0 | 0.6559 | 0.0825 | 0.7042 | 0.0 | 0.0273 | 0.9347 | 0.2042 | 0.6299 | 0.3684 | 0.5330 | nan | 0.2867 | 0.6248 | 0.5721 | 0.0 | 0.9543 | 0.8418 | 0.9828 | 0.0084 | 0.2265 | 0.4720 | 0.0 | nan | 0.7588 | 0.8780 | 0.6875 | 0.7494 | 0.4034 | nan | 0.5932 | 0.6421 | 0.0418 | 0.8650 | 0.1199 | 0.0 | 0.4503 | 0.0825 | 0.5912 | 0.0 | 0.0270 | 0.7679 | 0.1794 | 0.5320 | 0.3182 | 0.3908 | nan | 0.2400 | 0.5106 | 0.3981 | 0.0 | 0.8870 | 0.7627 | 0.9540 | 0.0062 | 0.1210 | 0.3772 | 0.0 |
| 0.0723 | 45.0 | 9000 | 0.7471 | 0.4173 | 0.4954 | 0.8778 | nan | 0.8333 | 0.9563 | 0.8064 | 0.8629 | 0.5388 | nan | 0.7114 | 0.8171 | 0.0703 | 0.9572 | 0.1278 | 0.0 | 0.6566 | 0.0568 | 0.7102 | 0.0 | 0.0346 | 0.9322 | 0.1989 | 0.6334 | 0.3889 | 0.5232 | nan | 0.3184 | 0.6227 | 0.5818 | 0.0 | 0.9517 | 0.8613 | 0.9836 | 0.0112 | 0.2188 | 0.4869 | 0.0 | nan | 0.7549 | 0.8780 | 0.6770 | 0.7456 | 0.4055 | nan | 0.5931 | 0.6419 | 0.0425 | 0.8642 | 0.1121 | 0.0 | 0.4577 | 0.0568 | 0.5839 | 0.0 | 0.0343 | 0.7700 | 0.1761 | 0.5356 | 0.3285 | 0.3927 | nan | 0.2656 | 0.5089 | 0.3986 | 0.0 | 0.8898 | 0.7708 | 0.9535 | 0.0083 | 0.1270 | 0.3819 | 0.0 |
| 0.0648 | 45.1 | 9020 | 0.7314 | 0.4180 | 0.4975 | 0.8780 | nan | 0.8368 | 0.9564 | 0.8026 | 0.8635 | 0.5396 | nan | 0.7064 | 0.8212 | 0.0805 | 0.9556 | 0.1300 | 0.0 | 0.6996 | 0.0558 | 0.7156 | 0.0 | 0.0289 | 0.9301 | 0.2240 | 0.6456 | 0.3784 | 0.5095 | nan | 0.3363 | 0.6191 | 0.5911 | 0.0 | 0.9550 | 0.8447 | 0.9817 | 0.0094 | 0.2181 | 0.4845 | 0.0 | nan | 0.7572 | 0.8784 | 0.6826 | 0.7447 | 0.4042 | nan | 0.5951 | 0.6395 | 0.0479 | 0.8653 | 0.1139 | 0.0 | 0.4665 | 0.0558 | 0.5832 | 0.0 | 0.0287 | 0.7728 | 0.1957 | 0.5406 | 0.3217 | 0.3863 | nan | 0.2713 | 0.5095 | 0.3938 | 0.0 | 0.8876 | 0.7644 | 0.9542 | 0.0069 | 0.1283 | 0.3792 | 0.0 |
| 0.0623 | 45.2 | 9040 | 0.7278 | 0.4188 | 0.4995 | 0.8778 | nan | 0.8387 | 0.9556 | 0.8078 | 0.8564 | 0.5497 | nan | 0.7147 | 0.8184 | 0.0845 | 0.9571 | 0.1374 | 0.0 | 0.7057 | 0.0565 | 0.7144 | 0.0 | 0.0271 | 0.9300 | 0.2166 | 0.6403 | 0.3961 | 0.5277 | nan | 0.3465 | 0.6230 | 0.5861 | 0.0 | 0.9538 | 0.8378 | 0.9831 | 0.0104 | 0.2284 | 0.4816 | 0.0 | nan | 0.7591 | 0.8794 | 0.6766 | 0.7506 | 0.3999 | nan | 0.5965 | 0.6427 | 0.0491 | 0.8646 | 0.1196 | 0.0 | 0.4744 | 0.0565 | 0.5865 | 0.0 | 0.0269 | 0.7725 | 0.1910 | 0.5386 | 0.3288 | 0.3946 | nan | 0.2760 | 0.5099 | 0.3924 | 0.0 | 0.8870 | 0.7582 | 0.9538 | 0.0074 | 0.1293 | 0.3795 | 0.0 |
| 0.0933 | 45.3 | 9060 | 0.7315 | 0.4165 | 0.4958 | 0.8770 | nan | 0.8354 | 0.9562 | 0.8112 | 0.8543 | 0.5486 | nan | 0.7124 | 0.8203 | 0.0950 | 0.9562 | 0.1240 | 0.0 | 0.6678 | 0.0667 | 0.7217 | 0.0 | 0.0277 | 0.9344 | 0.1949 | 0.6166 | 0.3834 | 0.5225 | nan | 0.3350 | 0.6123 | 0.5716 | 0.0 | 0.9552 | 0.8340 | 0.9832 | 0.0097 | 0.2344 | 0.4819 | 0.0 | nan | 0.7565 | 0.8785 | 0.6719 | 0.7522 | 0.4025 | nan | 0.5940 | 0.6437 | 0.0542 | 0.8649 | 0.1081 | 0.0 | 0.4599 | 0.0667 | 0.5888 | 0.0 | 0.0274 | 0.7680 | 0.1737 | 0.5282 | 0.3233 | 0.3892 | nan | 0.2649 | 0.5078 | 0.3946 | 0.0 | 0.8857 | 0.7566 | 0.9535 | 0.0070 | 0.1277 | 0.3796 | 0.0 |
| 0.0677 | 45.4 | 9080 | 0.7344 | 0.4174 | 0.4972 | 0.8772 | nan | 0.8379 | 0.9557 | 0.8075 | 0.8528 | 0.5457 | nan | 0.7049 | 0.8222 | 0.1007 | 0.9576 | 0.1268 | 0.0 | 0.6637 | 0.0536 | 0.7270 | 0.0 | 0.0301 | 0.9329 | 0.1934 | 0.6329 | 0.3872 | 0.5320 | nan | 0.3338 | 0.6185 | 0.5816 | 0.0 | 0.9532 | 0.8411 | 0.9840 | 0.0124 | 0.2396 | 0.4811 | 0.0 | nan | 0.7567 | 0.8781 | 0.6787 | 0.7525 | 0.3997 | nan | 0.5912 | 0.6507 | 0.0581 | 0.8639 | 0.1107 | 0.0 | 0.4616 | 0.0536 | 0.5893 | 0.0 | 0.0297 | 0.7699 | 0.1720 | 0.5350 | 0.3262 | 0.3926 | nan | 0.2656 | 0.5087 | 0.3940 | 0.0 | 0.8867 | 0.7585 | 0.9531 | 0.0086 | 0.1308 | 0.3809 | 0.0 |
| 0.0562 | 45.5 | 9100 | 0.7293 | 0.4182 | 0.4980 | 0.8775 | nan | 0.8373 | 0.9568 | 0.8015 | 0.8531 | 0.5431 | nan | 0.7127 | 0.8264 | 0.0872 | 0.9570 | 0.1405 | 0.0 | 0.6721 | 0.0682 | 0.7243 | 0.0 | 0.0273 | 0.9280 | 0.2170 | 0.6294 | 0.3873 | 0.5305 | nan | 0.3120 | 0.6229 | 0.5872 | 0.0 | 0.9560 | 0.8360 | 0.9832 | 0.0102 | 0.2377 | 0.4911 | 0.0 | nan | 0.7569 | 0.8778 | 0.6855 | 0.7522 | 0.4006 | nan | 0.5921 | 0.6538 | 0.0508 | 0.8642 | 0.1226 | 0.0 | 0.4610 | 0.0682 | 0.5914 | 0.0 | 0.0270 | 0.7720 | 0.1898 | 0.5368 | 0.3270 | 0.3875 | nan | 0.2549 | 0.5103 | 0.3902 | 0.0 | 0.8855 | 0.7555 | 0.9537 | 0.0074 | 0.1266 | 0.3816 | 0.0 |
| 0.0722 | 45.6 | 9120 | 0.7235 | 0.4166 | 0.4948 | 0.8775 | nan | 0.8413 | 0.9552 | 0.7981 | 0.8550 | 0.5459 | nan | 0.7196 | 0.8248 | 0.0916 | 0.9560 | 0.1451 | 0.0 | 0.6633 | 0.0771 | 0.7236 | 0.0 | 0.0392 | 0.9341 | 0.1956 | 0.6222 | 0.3749 | 0.5074 | nan | 0.2789 | 0.6205 | 0.5841 | 0.0 | 0.9543 | 0.8399 | 0.9834 | 0.0040 | 0.2227 | 0.4759 | 0.0 | nan | 0.7596 | 0.8782 | 0.6895 | 0.7517 | 0.3923 | nan | 0.5944 | 0.6488 | 0.0515 | 0.8644 | 0.1259 | 0.0 | 0.4444 | 0.0771 | 0.5943 | 0.0 | 0.0388 | 0.7686 | 0.1723 | 0.5313 | 0.3210 | 0.3871 | nan | 0.2354 | 0.5105 | 0.3925 | 0.0 | 0.8865 | 0.7586 | 0.9536 | 0.0031 | 0.1195 | 0.3787 | 0.0 |
| 0.0855 | 45.7 | 9140 | 0.7305 | 0.4143 | 0.4917 | 0.8777 | nan | 0.8419 | 0.9569 | 0.8012 | 0.8498 | 0.5367 | nan | 0.7175 | 0.8233 | 0.0903 | 0.9561 | 0.1382 | 0.0 | 0.6537 | 0.0677 | 0.7246 | 0.0 | 0.0283 | 0.9335 | 0.1604 | 0.6322 | 0.3685 | 0.5063 | nan | 0.2680 | 0.6185 | 0.5825 | 0.0 | 0.9568 | 0.8389 | 0.9840 | 0.0062 | 0.2316 | 0.4611 | 0.0 | nan | 0.7593 | 0.8777 | 0.6863 | 0.7509 | 0.3992 | nan | 0.5939 | 0.6446 | 0.0520 | 0.8650 | 0.1202 | 0.0 | 0.4408 | 0.0677 | 0.5886 | 0.0 | 0.0282 | 0.7690 | 0.1451 | 0.5347 | 0.3159 | 0.3871 | nan | 0.2261 | 0.5104 | 0.3969 | 0.0 | 0.8861 | 0.7610 | 0.9529 | 0.0048 | 0.1205 | 0.3735 | 0.0 |
| 0.1003 | 45.8 | 9160 | 0.7352 | 0.4134 | 0.4917 | 0.8775 | nan | 0.8407 | 0.9570 | 0.8053 | 0.8416 | 0.5420 | nan | 0.7239 | 0.8304 | 0.0839 | 0.9577 | 0.1438 | 0.0 | 0.6563 | 0.0487 | 0.7149 | 0.0 | 0.0286 | 0.9311 | 0.1542 | 0.6253 | 0.3811 | 0.5337 | nan | 0.2558 | 0.6163 | 0.5718 | 0.0 | 0.9561 | 0.8423 | 0.9833 | 0.0079 | 0.2251 | 0.4753 | 0.0 | nan | 0.7589 | 0.8770 | 0.6796 | 0.7526 | 0.4003 | nan | 0.5916 | 0.6395 | 0.0499 | 0.8648 | 0.1252 | 0.0 | 0.4420 | 0.0487 | 0.5860 | 0.0 | 0.0284 | 0.7701 | 0.1400 | 0.5330 | 0.3208 | 0.3949 | nan | 0.2163 | 0.5095 | 0.3961 | 0.0 | 0.8868 | 0.7634 | 0.9535 | 0.0060 | 0.1182 | 0.3753 | 0.0 |
| 0.0856 | 45.9 | 9180 | 0.7275 | 0.4160 | 0.4940 | 0.8780 | nan | 0.8410 | 0.9569 | 0.8037 | 0.8525 | 0.5318 | nan | 0.7125 | 0.8325 | 0.0641 | 0.9577 | 0.1498 | 0.0 | 0.6451 | 0.0527 | 0.7146 | 0.0 | 0.0274 | 0.9315 | 0.1914 | 0.6320 | 0.3802 | 0.5320 | nan | 0.2852 | 0.6298 | 0.5780 | 0.0 | 0.9526 | 0.8491 | 0.9825 | 0.0073 | 0.2231 | 0.4918 | 0.0 | nan | 0.7590 | 0.8777 | 0.6857 | 0.7505 | 0.3972 | nan | 0.5930 | 0.6430 | 0.0397 | 0.8646 | 0.1305 | 0.0 | 0.4510 | 0.0527 | 0.5873 | 0.0 | 0.0272 | 0.7714 | 0.1695 | 0.5386 | 0.3233 | 0.3932 | nan | 0.2411 | 0.5101 | 0.3956 | 0.0 | 0.8883 | 0.7657 | 0.9541 | 0.0055 | 0.1176 | 0.3792 | 0.0 |
| 0.0818 | 46.0 | 9200 | 0.7458 | 0.4147 | 0.4941 | 0.8772 | nan | 0.8414 | 0.9570 | 0.7964 | 0.8409 | 0.5371 | nan | 0.7188 | 0.8320 | 0.0784 | 0.9571 | 0.1535 | 0.0 | 0.6523 | 0.0480 | 0.7226 | 0.0 | 0.0183 | 0.9319 | 0.1858 | 0.6348 | 0.3898 | 0.5330 | nan | 0.2789 | 0.6231 | 0.5943 | 0.0 | 0.9558 | 0.8330 | 0.9843 | 0.0110 | 0.2373 | 0.4636 | 0.0 | nan | 0.7578 | 0.8759 | 0.6976 | 0.7506 | 0.3975 | nan | 0.5916 | 0.6398 | 0.0482 | 0.8652 | 0.1325 | 0.0 | 0.4373 | 0.0480 | 0.5842 | 0.0 | 0.0181 | 0.7708 | 0.1639 | 0.5377 | 0.3260 | 0.3928 | nan | 0.2324 | 0.5116 | 0.3963 | 0.0 | 0.8858 | 0.7563 | 0.9532 | 0.0081 | 0.1199 | 0.3716 | 0.0 |
| 0.0727 | 46.1 | 9220 | 0.7385 | 0.4162 | 0.4947 | 0.8773 | nan | 0.8434 | 0.9572 | 0.7878 | 0.8435 | 0.5369 | nan | 0.7161 | 0.8285 | 0.0850 | 0.9556 | 0.1520 | 0.0 | 0.6477 | 0.0513 | 0.7257 | 0.0 | 0.0171 | 0.9305 | 0.2151 | 0.6339 | 0.3868 | 0.5109 | nan | 0.2958 | 0.6302 | 0.5912 | 0.0 | 0.9548 | 0.8314 | 0.9839 | 0.0083 | 0.2354 | 0.4753 | 0.0 | nan | 0.7582 | 0.8760 | 0.7016 | 0.7485 | 0.3972 | nan | 0.5919 | 0.6417 | 0.0512 | 0.8663 | 0.1306 | 0.0 | 0.4412 | 0.0513 | 0.5872 | 0.0 | 0.0169 | 0.7718 | 0.1877 | 0.5386 | 0.3260 | 0.3906 | nan | 0.2423 | 0.5121 | 0.3961 | 0.0 | 0.8860 | 0.7552 | 0.9534 | 0.0062 | 0.1189 | 0.3750 | 0.0 |
| 0.0575 | 46.2 | 9240 | 0.7399 | 0.4176 | 0.4962 | 0.8774 | nan | 0.8411 | 0.9561 | 0.7987 | 0.8454 | 0.5384 | nan | 0.7186 | 0.8241 | 0.0766 | 0.9531 | 0.1534 | 0.0 | 0.6517 | 0.0703 | 0.7375 | 0.0 | 0.0285 | 0.9308 | 0.2062 | 0.6480 | 0.3815 | 0.5007 | nan | 0.3178 | 0.6272 | 0.5761 | 0.0 | 0.9552 | 0.8348 | 0.9836 | 0.0087 | 0.2379 | 0.4757 | 0.0 | nan | 0.7579 | 0.8761 | 0.6950 | 0.7505 | 0.3951 | nan | 0.5925 | 0.6410 | 0.0465 | 0.8681 | 0.1319 | 0.0 | 0.4437 | 0.0703 | 0.5958 | 0.0 | 0.0279 | 0.7733 | 0.1823 | 0.5453 | 0.3248 | 0.3814 | nan | 0.2603 | 0.5126 | 0.3966 | 0.0 | 0.8860 | 0.7557 | 0.9535 | 0.0066 | 0.1182 | 0.3746 | 0.0 |
| 0.0972 | 46.3 | 9260 | 0.7251 | 0.4175 | 0.4958 | 0.8779 | nan | 0.8462 | 0.9550 | 0.7966 | 0.8451 | 0.5448 | nan | 0.7146 | 0.8252 | 0.0723 | 0.9575 | 0.1456 | 0.0 | 0.6676 | 0.0647 | 0.7245 | 0.0 | 0.0273 | 0.9313 | 0.1948 | 0.6500 | 0.3861 | 0.5225 | nan | 0.3129 | 0.6088 | 0.5722 | 0.0 | 0.9545 | 0.8397 | 0.9830 | 0.0075 | 0.2369 | 0.4783 | 0.0 | nan | 0.7610 | 0.8766 | 0.7007 | 0.7536 | 0.3934 | nan | 0.5942 | 0.6424 | 0.0442 | 0.8653 | 0.1253 | 0.0 | 0.4524 | 0.0647 | 0.5900 | 0.0 | 0.0269 | 0.7730 | 0.1726 | 0.5446 | 0.3287 | 0.3898 | nan | 0.2568 | 0.5100 | 0.3965 | 0.0 | 0.8871 | 0.7584 | 0.9537 | 0.0058 | 0.1184 | 0.3745 | 0.0 |
| 0.0528 | 46.4 | 9280 | 0.7302 | 0.4166 | 0.4933 | 0.8784 | nan | 0.8492 | 0.9565 | 0.7981 | 0.8473 | 0.5424 | nan | 0.6950 | 0.8226 | 0.0683 | 0.9571 | 0.1401 | 0.0 | 0.6675 | 0.0655 | 0.7211 | 0.0 | 0.0256 | 0.9300 | 0.1869 | 0.6525 | 0.3817 | 0.5119 | nan | 0.2976 | 0.6154 | 0.5809 | 0.0 | 0.9544 | 0.8396 | 0.9842 | 0.0088 | 0.2052 | 0.4807 | 0.0 | nan | 0.7626 | 0.8770 | 0.6993 | 0.7526 | 0.3962 | nan | 0.5926 | 0.6401 | 0.0423 | 0.8654 | 0.1211 | 0.0 | 0.4546 | 0.0655 | 0.5869 | 0.0 | 0.0253 | 0.7730 | 0.1662 | 0.5443 | 0.3279 | 0.3840 | nan | 0.2467 | 0.5094 | 0.3965 | 0.0 | 0.8873 | 0.7608 | 0.9531 | 0.0066 | 0.1164 | 0.3777 | 0.0 |
| 0.0629 | 46.5 | 9300 | 0.7256 | 0.4175 | 0.4942 | 0.8785 | nan | 0.8492 | 0.9565 | 0.7925 | 0.8456 | 0.5273 | nan | 0.7210 | 0.8175 | 0.0515 | 0.9588 | 0.1461 | 0.0 | 0.6703 | 0.0769 | 0.7161 | 0.0 | 0.0221 | 0.9329 | 0.1864 | 0.6420 | 0.3898 | 0.5235 | nan | 0.2992 | 0.6153 | 0.5840 | 0.0 | 0.9537 | 0.8408 | 0.9846 | 0.0105 | 0.2214 | 0.4793 | 0.0 | nan | 0.7628 | 0.8771 | 0.7040 | 0.7518 | 0.3966 | nan | 0.5926 | 0.6505 | 0.0332 | 0.8643 | 0.1260 | 0.0 | 0.4539 | 0.0769 | 0.5916 | 0.0 | 0.0219 | 0.7715 | 0.1656 | 0.5414 | 0.3303 | 0.3870 | nan | 0.2515 | 0.5090 | 0.3982 | 0.0 | 0.8873 | 0.7597 | 0.9529 | 0.0079 | 0.1177 | 0.3779 | 0.0 |
| 0.0586 | 46.6 | 9320 | 0.7344 | 0.4168 | 0.4927 | 0.8779 | nan | 0.8464 | 0.9545 | 0.8018 | 0.8483 | 0.5394 | nan | 0.7172 | 0.8116 | 0.0486 | 0.9574 | 0.1387 | 0.0 | 0.6651 | 0.0812 | 0.7010 | 0.0 | 0.0252 | 0.9338 | 0.1746 | 0.6301 | 0.3853 | 0.5186 | nan | 0.3050 | 0.6162 | 0.5729 | 0.0 | 0.9552 | 0.8382 | 0.9841 | 0.0090 | 0.2169 | 0.4890 | 0.0 | nan | 0.7616 | 0.8774 | 0.6929 | 0.7521 | 0.3965 | nan | 0.5919 | 0.6575 | 0.0306 | 0.8647 | 0.1198 | 0.0 | 0.4507 | 0.0812 | 0.5933 | 0.0 | 0.0249 | 0.7696 | 0.1567 | 0.5370 | 0.3266 | 0.3832 | nan | 0.2577 | 0.5076 | 0.3988 | 0.0 | 0.8866 | 0.7574 | 0.9530 | 0.0069 | 0.1191 | 0.3816 | 0.0 |
| 0.0568 | 46.7 | 9340 | 0.7314 | 0.4166 | 0.4932 | 0.8782 | nan | 0.8463 | 0.9563 | 0.8034 | 0.8480 | 0.5337 | nan | 0.7172 | 0.8189 | 0.0663 | 0.9556 | 0.1397 | 0.0 | 0.6488 | 0.0903 | 0.7265 | 0.0 | 0.0278 | 0.9337 | 0.1693 | 0.6203 | 0.3956 | 0.5112 | nan | 0.2894 | 0.6188 | 0.5791 | 0.0 | 0.9555 | 0.8414 | 0.9835 | 0.0048 | 0.2222 | 0.4803 | 0.0 | nan | 0.7618 | 0.8772 | 0.6908 | 0.7524 | 0.3994 | nan | 0.5930 | 0.6552 | 0.0414 | 0.8665 | 0.1207 | 0.0 | 0.4390 | 0.0903 | 0.5985 | 0.0 | 0.0274 | 0.7683 | 0.1518 | 0.5324 | 0.3318 | 0.3791 | nan | 0.2433 | 0.5085 | 0.3998 | 0.0 | 0.8870 | 0.7603 | 0.9532 | 0.0039 | 0.1184 | 0.3791 | 0.0 |
| 0.0611 | 46.8 | 9360 | 0.7297 | 0.4186 | 0.4960 | 0.8783 | nan | 0.8479 | 0.9551 | 0.8031 | 0.8471 | 0.5461 | nan | 0.7064 | 0.8101 | 0.0863 | 0.9576 | 0.1442 | 0.0 | 0.6391 | 0.0892 | 0.7285 | 0.0 | 0.0249 | 0.9313 | 0.1826 | 0.6372 | 0.3967 | 0.5232 | nan | 0.3067 | 0.6147 | 0.5874 | 0.0 | 0.9550 | 0.8416 | 0.9838 | 0.0089 | 0.2377 | 0.4788 | 0.0 | nan | 0.7624 | 0.8777 | 0.6896 | 0.7528 | 0.3999 | nan | 0.5928 | 0.6580 | 0.0516 | 0.8651 | 0.1244 | 0.0 | 0.4500 | 0.0892 | 0.5927 | 0.0 | 0.0246 | 0.7715 | 0.1615 | 0.5397 | 0.3325 | 0.3890 | nan | 0.2582 | 0.5085 | 0.3975 | 0.0 | 0.8872 | 0.7598 | 0.9531 | 0.0068 | 0.1216 | 0.3773 | 0.0 |
| 0.1038 | 46.9 | 9380 | 0.7274 | 0.4177 | 0.4942 | 0.8783 | nan | 0.8465 | 0.9568 | 0.7992 | 0.8453 | 0.5452 | nan | 0.7094 | 0.8165 | 0.0852 | 0.9587 | 0.1454 | 0.0 | 0.6590 | 0.0907 | 0.7254 | 0.0 | 0.0270 | 0.9278 | 0.1996 | 0.6471 | 0.3748 | 0.4610 | nan | 0.2958 | 0.6211 | 0.5866 | 0.0 | 0.9559 | 0.8365 | 0.9833 | 0.0078 | 0.2260 | 0.4811 | 0.0 | nan | 0.7621 | 0.8770 | 0.6919 | 0.7533 | 0.4018 | nan | 0.5925 | 0.6552 | 0.0508 | 0.8641 | 0.1258 | 0.0 | 0.4486 | 0.0907 | 0.5881 | 0.0 | 0.0267 | 0.7738 | 0.1758 | 0.5457 | 0.3221 | 0.3668 | nan | 0.2496 | 0.5085 | 0.3966 | 0.0 | 0.8863 | 0.7590 | 0.9533 | 0.0059 | 0.1182 | 0.3766 | 0.0 |
| 0.0721 | 47.0 | 9400 | 0.7309 | 0.4177 | 0.4954 | 0.8785 | nan | 0.8496 | 0.9579 | 0.7981 | 0.8473 | 0.5252 | nan | 0.7008 | 0.8264 | 0.0810 | 0.9573 | 0.1389 | 0.0 | 0.6520 | 0.0924 | 0.7349 | 0.0 | 0.0209 | 0.9318 | 0.1881 | 0.6388 | 0.3893 | 0.5309 | nan | 0.2970 | 0.6226 | 0.5797 | 0.0 | 0.9539 | 0.8383 | 0.9824 | 0.0103 | 0.2231 | 0.4843 | 0.0 | nan | 0.7617 | 0.8773 | 0.6923 | 0.7515 | 0.4019 | nan | 0.5902 | 0.6515 | 0.0488 | 0.8656 | 0.1199 | 0.0 | 0.4441 | 0.0924 | 0.5927 | 0.0 | 0.0206 | 0.7722 | 0.1676 | 0.5419 | 0.3287 | 0.3841 | nan | 0.2496 | 0.5102 | 0.3969 | 0.0 | 0.8872 | 0.7594 | 0.9538 | 0.0076 | 0.1178 | 0.3788 | 0.0 |
| 0.0765 | 47.1 | 9420 | 0.7436 | 0.4173 | 0.4947 | 0.8780 | nan | 0.8395 | 0.9568 | 0.7953 | 0.8553 | 0.5420 | nan | 0.7069 | 0.8268 | 0.0823 | 0.9524 | 0.1397 | 0.0 | 0.6590 | 0.0776 | 0.7365 | 0.0 | 0.0291 | 0.9325 | 0.1797 | 0.6467 | 0.3971 | 0.5116 | nan | 0.2776 | 0.6242 | 0.5679 | 0.0 | 0.9525 | 0.8448 | 0.9835 | 0.0085 | 0.2178 | 0.4879 | 0.0 | nan | 0.7576 | 0.8766 | 0.6852 | 0.7475 | 0.4050 | nan | 0.5935 | 0.6497 | 0.0490 | 0.8680 | 0.1209 | 0.0 | 0.4457 | 0.0776 | 0.5973 | 0.0 | 0.0285 | 0.7724 | 0.1608 | 0.5445 | 0.3343 | 0.3842 | nan | 0.2379 | 0.5114 | 0.3974 | 0.0 | 0.8881 | 0.7620 | 0.9534 | 0.0065 | 0.1186 | 0.3802 | 0.0 |
| 0.0778 | 47.2 | 9440 | 0.7376 | 0.4153 | 0.4919 | 0.8779 | nan | 0.8420 | 0.9571 | 0.7947 | 0.8531 | 0.5307 | nan | 0.7137 | 0.8216 | 0.0704 | 0.9525 | 0.1361 | 0.0 | 0.6425 | 0.0739 | 0.7302 | 0.0 | 0.0221 | 0.9352 | 0.1703 | 0.6248 | 0.3884 | 0.5102 | nan | 0.2715 | 0.6262 | 0.5748 | 0.0 | 0.9541 | 0.8482 | 0.9821 | 0.0113 | 0.2260 | 0.4762 | 0.0 | nan | 0.7585 | 0.8773 | 0.6851 | 0.7481 | 0.4032 | nan | 0.5925 | 0.6512 | 0.0433 | 0.8679 | 0.1177 | 0.0 | 0.4427 | 0.0739 | 0.5972 | 0.0 | 0.0217 | 0.7690 | 0.1527 | 0.5360 | 0.3284 | 0.3733 | nan | 0.2334 | 0.5107 | 0.3990 | 0.0 | 0.8876 | 0.7631 | 0.9538 | 0.0084 | 0.1165 | 0.3760 | 0.0 |
| 0.0621 | 47.3 | 9460 | 0.7279 | 0.4137 | 0.4915 | 0.8774 | nan | 0.8375 | 0.9566 | 0.8020 | 0.8541 | 0.5428 | nan | 0.7096 | 0.8224 | 0.0794 | 0.9576 | 0.1345 | 0.0 | 0.6602 | 0.0616 | 0.7244 | 0.0 | 0.0222 | 0.9324 | 0.1667 | 0.6315 | 0.3798 | 0.5007 | nan | 0.2676 | 0.6308 | 0.5884 | 0.0 | 0.9567 | 0.8354 | 0.9810 | 0.0079 | 0.2086 | 0.4761 | 0.0 | nan | 0.7575 | 0.8770 | 0.6783 | 0.7480 | 0.4013 | nan | 0.5942 | 0.6488 | 0.0470 | 0.8652 | 0.1168 | 0.0 | 0.4413 | 0.0616 | 0.5908 | 0.0 | 0.0220 | 0.7701 | 0.1501 | 0.5382 | 0.3234 | 0.3744 | nan | 0.2276 | 0.5094 | 0.3971 | 0.0 | 0.8862 | 0.7601 | 0.9539 | 0.0060 | 0.1150 | 0.3776 | 0.0 |
| 0.0558 | 47.4 | 9480 | 0.7360 | 0.4143 | 0.4952 | 0.8770 | nan | 0.8385 | 0.9552 | 0.8044 | 0.8521 | 0.5415 | nan | 0.7143 | 0.8293 | 0.0805 | 0.9582 | 0.1368 | 0.0 | 0.6804 | 0.0656 | 0.7297 | 0.0 | 0.0222 | 0.9316 | 0.1784 | 0.6315 | 0.3912 | 0.5249 | nan | 0.2854 | 0.6190 | 0.5898 | 0.0 | 0.9560 | 0.8343 | 0.9832 | 0.0095 | 0.2359 | 0.4682 | 0.0 | nan | 0.7570 | 0.8768 | 0.6773 | 0.7489 | 0.3980 | nan | 0.5937 | 0.6465 | 0.0482 | 0.8650 | 0.1187 | 0.0 | 0.4391 | 0.0656 | 0.5893 | 0.0 | 0.0220 | 0.7709 | 0.1589 | 0.5394 | 0.3281 | 0.3818 | nan | 0.2384 | 0.5090 | 0.3943 | 0.0 | 0.8860 | 0.7567 | 0.9533 | 0.0072 | 0.1149 | 0.3720 | 0.0 |
| 0.0726 | 47.5 | 9500 | 0.7314 | 0.4160 | 0.4960 | 0.8772 | nan | 0.8422 | 0.9544 | 0.7934 | 0.8513 | 0.5438 | nan | 0.7173 | 0.8243 | 0.0799 | 0.9579 | 0.1533 | 0.0 | 0.7087 | 0.0749 | 0.7255 | 0.0 | 0.0160 | 0.9311 | 0.2048 | 0.6372 | 0.3851 | 0.5228 | nan | 0.2714 | 0.6266 | 0.5853 | 0.0 | 0.9553 | 0.8319 | 0.9832 | 0.0115 | 0.2038 | 0.4784 | 0.0 | nan | 0.7578 | 0.8768 | 0.6892 | 0.7488 | 0.3959 | nan | 0.5926 | 0.6495 | 0.0482 | 0.8648 | 0.1313 | 0.0 | 0.4538 | 0.0749 | 0.5859 | 0.0 | 0.0158 | 0.7718 | 0.1794 | 0.5413 | 0.3257 | 0.3844 | nan | 0.2306 | 0.5098 | 0.3921 | 0.0 | 0.8859 | 0.7547 | 0.9535 | 0.0087 | 0.1108 | 0.3771 | 0.0 |
| 0.0779 | 47.6 | 9520 | 0.7363 | 0.4140 | 0.4934 | 0.8770 | nan | 0.8399 | 0.9569 | 0.7949 | 0.8506 | 0.5383 | nan | 0.7144 | 0.8275 | 0.0841 | 0.9571 | 0.1461 | 0.0 | 0.6956 | 0.0652 | 0.7286 | 0.0 | 0.0193 | 0.9326 | 0.1878 | 0.6376 | 0.3843 | 0.5204 | nan | 0.2447 | 0.6152 | 0.5780 | 0.0 | 0.9556 | 0.8259 | 0.9832 | 0.0079 | 0.2296 | 0.4659 | 0.0 | nan | 0.7575 | 0.8757 | 0.6880 | 0.7494 | 0.3984 | nan | 0.5922 | 0.6447 | 0.0499 | 0.8652 | 0.1262 | 0.0 | 0.4449 | 0.0652 | 0.5913 | 0.0 | 0.0191 | 0.7713 | 0.1667 | 0.5406 | 0.3256 | 0.3877 | nan | 0.2083 | 0.5086 | 0.3915 | 0.0 | 0.8857 | 0.7537 | 0.9534 | 0.0062 | 0.1125 | 0.3698 | 0.0 |
| 0.0684 | 47.7 | 9540 | 0.7313 | 0.4147 | 0.4948 | 0.8773 | nan | 0.8394 | 0.9563 | 0.7983 | 0.8544 | 0.5386 | nan | 0.7088 | 0.8248 | 0.0835 | 0.9565 | 0.1451 | 0.0 | 0.6814 | 0.0755 | 0.7316 | 0.0 | 0.0193 | 0.9340 | 0.1910 | 0.6379 | 0.3899 | 0.5246 | nan | 0.2466 | 0.6246 | 0.5960 | 0.0 | 0.9549 | 0.8363 | 0.9820 | 0.0070 | 0.2391 | 0.4575 | 0.0 | nan | 0.7574 | 0.8760 | 0.6850 | 0.7473 | 0.3987 | nan | 0.5922 | 0.6459 | 0.0498 | 0.8657 | 0.1249 | 0.0 | 0.4395 | 0.0755 | 0.5940 | 0.0 | 0.0191 | 0.7708 | 0.1686 | 0.5411 | 0.3285 | 0.3841 | nan | 0.2108 | 0.5105 | 0.3936 | 0.0 | 0.8873 | 0.7602 | 0.9538 | 0.0055 | 0.1153 | 0.3687 | 0.0 |
| 0.0506 | 47.8 | 9560 | 0.7419 | 0.4159 | 0.4964 | 0.8773 | nan | 0.8391 | 0.9555 | 0.7997 | 0.8506 | 0.5418 | nan | 0.7197 | 0.8267 | 0.0754 | 0.9557 | 0.1434 | 0.0 | 0.6838 | 0.0789 | 0.7314 | 0.0 | 0.0211 | 0.9315 | 0.2033 | 0.6406 | 0.3975 | 0.5284 | nan | 0.2621 | 0.6212 | 0.5835 | 0.0 | 0.9555 | 0.8379 | 0.9829 | 0.0084 | 0.2466 | 0.4632 | 0.0 | nan | 0.7574 | 0.8760 | 0.6866 | 0.7498 | 0.3988 | nan | 0.5916 | 0.6472 | 0.0461 | 0.8665 | 0.1237 | 0.0 | 0.4367 | 0.0789 | 0.5946 | 0.0 | 0.0208 | 0.7718 | 0.1779 | 0.5414 | 0.3328 | 0.3886 | nan | 0.2215 | 0.5104 | 0.3945 | 0.0 | 0.8871 | 0.7591 | 0.9536 | 0.0066 | 0.1176 | 0.3700 | 0.0 |
| 0.088 | 47.9 | 9580 | 0.7372 | 0.4154 | 0.4948 | 0.8770 | nan | 0.8372 | 0.9557 | 0.7968 | 0.8555 | 0.5386 | nan | 0.7190 | 0.8235 | 0.0752 | 0.9572 | 0.1330 | 0.0 | 0.6780 | 0.0705 | 0.7250 | 0.0 | 0.0221 | 0.9338 | 0.2007 | 0.6348 | 0.3928 | 0.5277 | nan | 0.2733 | 0.6200 | 0.5778 | 0.0 | 0.9557 | 0.8324 | 0.9817 | 0.0100 | 0.2410 | 0.4647 | 0.0 | nan | 0.7565 | 0.8758 | 0.6889 | 0.7478 | 0.3999 | nan | 0.5922 | 0.6489 | 0.0459 | 0.8654 | 0.1161 | 0.0 | 0.4375 | 0.0705 | 0.5903 | 0.0 | 0.0219 | 0.7702 | 0.1762 | 0.5390 | 0.3303 | 0.3902 | nan | 0.2294 | 0.5097 | 0.3954 | 0.0 | 0.8866 | 0.7577 | 0.9539 | 0.0076 | 0.1170 | 0.3704 | 0.0 |
| 0.0708 | 48.0 | 9600 | 0.7499 | 0.4138 | 0.4932 | 0.8768 | nan | 0.8380 | 0.9567 | 0.8049 | 0.8498 | 0.5414 | nan | 0.7080 | 0.8187 | 0.0876 | 0.9575 | 0.1376 | 0.0 | 0.6679 | 0.0770 | 0.7211 | 0.0 | 0.0208 | 0.9348 | 0.1811 | 0.6242 | 0.3758 | 0.5263 | nan | 0.2632 | 0.6166 | 0.5870 | 0.0 | 0.9565 | 0.8334 | 0.9838 | 0.0097 | 0.2509 | 0.4512 | 0.0 | nan | 0.7566 | 0.8760 | 0.6799 | 0.7510 | 0.4006 | nan | 0.5910 | 0.6498 | 0.0504 | 0.8651 | 0.1189 | 0.0 | 0.4321 | 0.0770 | 0.5895 | 0.0 | 0.0206 | 0.7681 | 0.1609 | 0.5345 | 0.3214 | 0.3879 | nan | 0.2187 | 0.5091 | 0.3942 | 0.0 | 0.8860 | 0.7582 | 0.9531 | 0.0074 | 0.1174 | 0.3658 | 0.0 |
| 0.0619 | 48.1 | 9620 | 0.7347 | 0.4134 | 0.4906 | 0.8774 | nan | 0.8400 | 0.9564 | 0.7991 | 0.8501 | 0.5427 | nan | 0.7101 | 0.8264 | 0.0870 | 0.9591 | 0.1333 | 0.0 | 0.6645 | 0.0631 | 0.7117 | 0.0 | 0.0173 | 0.9342 | 0.1844 | 0.6364 | 0.3685 | 0.4912 | nan | 0.2683 | 0.6247 | 0.5788 | 0.0 | 0.9545 | 0.8391 | 0.9843 | 0.0087 | 0.2019 | 0.4636 | 0.0 | nan | 0.7576 | 0.8762 | 0.6888 | 0.7512 | 0.4006 | nan | 0.5913 | 0.6446 | 0.0503 | 0.8633 | 0.1157 | 0.0 | 0.4366 | 0.0631 | 0.5840 | 0.0 | 0.0172 | 0.7691 | 0.1639 | 0.5377 | 0.3190 | 0.3767 | nan | 0.2234 | 0.5091 | 0.3951 | 0.0 | 0.8869 | 0.7603 | 0.9529 | 0.0067 | 0.1134 | 0.3731 | 0.0 |
| 0.0679 | 48.2 | 9640 | 0.7443 | 0.4146 | 0.4932 | 0.8774 | nan | 0.8398 | 0.9563 | 0.8032 | 0.8523 | 0.5367 | nan | 0.7114 | 0.8243 | 0.0852 | 0.9570 | 0.1333 | 0.0 | 0.6632 | 0.0695 | 0.7156 | 0.0 | 0.0205 | 0.9321 | 0.1847 | 0.6359 | 0.3747 | 0.5341 | nan | 0.2829 | 0.6160 | 0.5802 | 0.0 | 0.9557 | 0.8381 | 0.9843 | 0.0100 | 0.2119 | 0.4738 | 0.0 | nan | 0.7574 | 0.8765 | 0.6845 | 0.7502 | 0.4017 | nan | 0.5913 | 0.6466 | 0.0493 | 0.8652 | 0.1155 | 0.0 | 0.4376 | 0.0695 | 0.5849 | 0.0 | 0.0204 | 0.7699 | 0.1649 | 0.5374 | 0.3215 | 0.3882 | nan | 0.2340 | 0.5089 | 0.3947 | 0.0 | 0.8867 | 0.7605 | 0.9530 | 0.0075 | 0.1149 | 0.3748 | 0.0 |
| 0.0938 | 48.3 | 9660 | 0.7429 | 0.4140 | 0.4931 | 0.8774 | nan | 0.8406 | 0.9563 | 0.8019 | 0.8513 | 0.5320 | nan | 0.7138 | 0.8390 | 0.0770 | 0.9569 | 0.1339 | 0.0 | 0.6531 | 0.0543 | 0.7198 | 0.0 | 0.0187 | 0.9321 | 0.1847 | 0.6366 | 0.3761 | 0.5390 | nan | 0.2840 | 0.6273 | 0.5741 | 0.0 | 0.9549 | 0.8357 | 0.9836 | 0.0111 | 0.2154 | 0.4776 | 0.0 | nan | 0.7576 | 0.8767 | 0.6863 | 0.7500 | 0.4008 | nan | 0.5908 | 0.6389 | 0.0470 | 0.8657 | 0.1162 | 0.0 | 0.4395 | 0.0543 | 0.5858 | 0.0 | 0.0185 | 0.7704 | 0.1651 | 0.5387 | 0.3217 | 0.3894 | nan | 0.2368 | 0.5099 | 0.3934 | 0.0 | 0.8866 | 0.7584 | 0.9532 | 0.0083 | 0.1141 | 0.3750 | 0.0 |
| 0.0591 | 48.4 | 9680 | 0.7427 | 0.4138 | 0.4931 | 0.8771 | nan | 0.8375 | 0.9563 | 0.8043 | 0.8503 | 0.5410 | nan | 0.7166 | 0.8399 | 0.0708 | 0.9560 | 0.1297 | 0.0 | 0.6557 | 0.0510 | 0.7179 | 0.0 | 0.0270 | 0.9321 | 0.1910 | 0.6275 | 0.3767 | 0.5428 | nan | 0.2835 | 0.6128 | 0.5744 | 0.0 | 0.9556 | 0.8359 | 0.9835 | 0.0084 | 0.2141 | 0.4868 | 0.0 | nan | 0.7571 | 0.8764 | 0.6832 | 0.7505 | 0.4016 | nan | 0.5924 | 0.6416 | 0.0450 | 0.8665 | 0.1128 | 0.0 | 0.4379 | 0.0510 | 0.5873 | 0.0 | 0.0268 | 0.7699 | 0.1697 | 0.5351 | 0.3212 | 0.3897 | nan | 0.2340 | 0.5080 | 0.3918 | 0.0 | 0.8863 | 0.7582 | 0.9532 | 0.0065 | 0.1118 | 0.3760 | 0.0 |
| 0.0523 | 48.5 | 9700 | 0.7421 | 0.4144 | 0.4949 | 0.8775 | nan | 0.8384 | 0.9572 | 0.8026 | 0.8506 | 0.5378 | nan | 0.7151 | 0.8431 | 0.0752 | 0.9573 | 0.1406 | 0.0 | 0.6618 | 0.0523 | 0.7143 | 0.0 | 0.0241 | 0.9290 | 0.1937 | 0.6402 | 0.3804 | 0.5604 | nan | 0.2732 | 0.6196 | 0.5871 | 0.0 | 0.9550 | 0.8367 | 0.9846 | 0.0083 | 0.2182 | 0.4810 | 0.0 | nan | 0.7572 | 0.8761 | 0.6848 | 0.7501 | 0.4023 | nan | 0.5922 | 0.6393 | 0.0462 | 0.8657 | 0.1215 | 0.0 | 0.4336 | 0.0523 | 0.5862 | 0.0 | 0.0239 | 0.7723 | 0.1720 | 0.5407 | 0.3235 | 0.3985 | nan | 0.2255 | 0.5089 | 0.3921 | 0.0 | 0.8870 | 0.7597 | 0.9527 | 0.0065 | 0.1145 | 0.3759 | 0.0 |
| 0.0637 | 48.6 | 9720 | 0.7331 | 0.4134 | 0.4923 | 0.8774 | nan | 0.8411 | 0.9564 | 0.8016 | 0.8486 | 0.5389 | nan | 0.7131 | 0.8436 | 0.0734 | 0.9559 | 0.1355 | 0.0 | 0.6678 | 0.0479 | 0.7143 | 0.0 | 0.0212 | 0.9321 | 0.1742 | 0.6388 | 0.3770 | 0.5414 | nan | 0.2821 | 0.6092 | 0.5614 | 0.0 | 0.9559 | 0.8377 | 0.9840 | 0.0100 | 0.2209 | 0.4709 | 0.0 | nan | 0.7578 | 0.8764 | 0.6842 | 0.7507 | 0.4014 | nan | 0.5907 | 0.6393 | 0.0455 | 0.8661 | 0.1174 | 0.0 | 0.4289 | 0.0479 | 0.5867 | 0.0 | 0.0211 | 0.7708 | 0.1560 | 0.5389 | 0.3215 | 0.3930 | nan | 0.2359 | 0.5076 | 0.3937 | 0.0 | 0.8865 | 0.7603 | 0.9530 | 0.0076 | 0.1152 | 0.3744 | 0.0 |
| 0.0684 | 48.7 | 9740 | 0.7413 | 0.4147 | 0.4926 | 0.8777 | nan | 0.8393 | 0.9575 | 0.7960 | 0.8495 | 0.5399 | nan | 0.7155 | 0.8305 | 0.0608 | 0.9568 | 0.1343 | 0.0 | 0.6793 | 0.0566 | 0.7062 | 0.0 | 0.0236 | 0.9330 | 0.1737 | 0.6419 | 0.3874 | 0.5362 | nan | 0.2728 | 0.6194 | 0.5792 | 0.0 | 0.9542 | 0.8375 | 0.9835 | 0.0097 | 0.2096 | 0.4797 | 0.0 | nan | 0.7577 | 0.8758 | 0.6888 | 0.7504 | 0.4032 | nan | 0.5920 | 0.6493 | 0.0382 | 0.8655 | 0.1165 | 0.0 | 0.4411 | 0.0566 | 0.5861 | 0.0 | 0.0234 | 0.7713 | 0.1561 | 0.5405 | 0.3279 | 0.3945 | nan | 0.2280 | 0.5106 | 0.3945 | 0.0 | 0.8875 | 0.7615 | 0.9533 | 0.0074 | 0.1156 | 0.3780 | 0.0 |
| 0.0569 | 48.8 | 9760 | 0.7418 | 0.4147 | 0.4920 | 0.8776 | nan | 0.8406 | 0.9572 | 0.7979 | 0.8524 | 0.5363 | nan | 0.7072 | 0.8246 | 0.0664 | 0.9582 | 0.1298 | 0.0 | 0.6691 | 0.0599 | 0.7100 | 0.0 | 0.0233 | 0.9336 | 0.1790 | 0.6340 | 0.3755 | 0.5214 | nan | 0.2883 | 0.6211 | 0.5849 | 0.0 | 0.9546 | 0.8381 | 0.9827 | 0.0090 | 0.2097 | 0.4801 | 0.0 | nan | 0.7578 | 0.8763 | 0.6864 | 0.7495 | 0.4025 | nan | 0.5912 | 0.6513 | 0.0409 | 0.8647 | 0.1129 | 0.0 | 0.4435 | 0.0599 | 0.5852 | 0.0 | 0.0232 | 0.7699 | 0.1597 | 0.5369 | 0.3219 | 0.3894 | nan | 0.2395 | 0.5099 | 0.3934 | 0.0 | 0.8873 | 0.7619 | 0.9536 | 0.0069 | 0.1146 | 0.3783 | 0.0 |
| 0.0643 | 48.9 | 9780 | 0.7366 | 0.4135 | 0.4904 | 0.8775 | nan | 0.8419 | 0.9566 | 0.7893 | 0.8522 | 0.5418 | nan | 0.7185 | 0.8334 | 0.0726 | 0.9567 | 0.1313 | 0.0 | 0.6664 | 0.0590 | 0.7157 | 0.0 | 0.0185 | 0.9318 | 0.1687 | 0.6233 | 0.3777 | 0.5091 | nan | 0.2657 | 0.6215 | 0.5780 | 0.0 | 0.9570 | 0.8320 | 0.9825 | 0.0083 | 0.1973 | 0.4853 | 0.0 | nan | 0.7581 | 0.8762 | 0.6937 | 0.7500 | 0.4024 | nan | 0.5925 | 0.6464 | 0.0436 | 0.8658 | 0.1139 | 0.0 | 0.4394 | 0.0590 | 0.5873 | 0.0 | 0.0184 | 0.7697 | 0.1521 | 0.5328 | 0.3214 | 0.3823 | nan | 0.2255 | 0.5103 | 0.3930 | 0.0 | 0.8863 | 0.7600 | 0.9536 | 0.0065 | 0.1109 | 0.3795 | 0.0 |
| 0.0618 | 49.0 | 9800 | 0.7324 | 0.4133 | 0.4908 | 0.8776 | nan | 0.8385 | 0.9577 | 0.8009 | 0.8520 | 0.5329 | nan | 0.7132 | 0.8277 | 0.0697 | 0.9596 | 0.1262 | 0.0 | 0.6673 | 0.0580 | 0.7046 | 0.0 | 0.0220 | 0.9325 | 0.1735 | 0.6305 | 0.3849 | 0.5274 | nan | 0.2633 | 0.6253 | 0.5768 | 0.0 | 0.9547 | 0.8406 | 0.9843 | 0.0085 | 0.1999 | 0.4747 | 0.0 | nan | 0.7577 | 0.8761 | 0.6846 | 0.7503 | 0.4020 | nan | 0.5919 | 0.6485 | 0.0424 | 0.8634 | 0.1100 | 0.0 | 0.4368 | 0.0580 | 0.5832 | 0.0 | 0.0219 | 0.7696 | 0.1555 | 0.5351 | 0.3255 | 0.3876 | nan | 0.2220 | 0.5101 | 0.3954 | 0.0 | 0.8875 | 0.7621 | 0.9528 | 0.0066 | 0.1131 | 0.3773 | 0.0 |
| 0.0722 | 49.1 | 9820 | 0.7347 | 0.4152 | 0.4928 | 0.8777 | nan | 0.8403 | 0.9565 | 0.7873 | 0.8557 | 0.5384 | nan | 0.7119 | 0.8282 | 0.0710 | 0.9564 | 0.1294 | 0.0 | 0.6734 | 0.0744 | 0.7173 | 0.0 | 0.0147 | 0.9324 | 0.1844 | 0.6363 | 0.3878 | 0.5176 | nan | 0.2736 | 0.6280 | 0.5896 | 0.0 | 0.9558 | 0.8401 | 0.9836 | 0.0111 | 0.2020 | 0.4727 | 0.0 | nan | 0.7581 | 0.8762 | 0.6974 | 0.7481 | 0.4016 | nan | 0.5941 | 0.6497 | 0.0431 | 0.8656 | 0.1120 | 0.0 | 0.4399 | 0.0744 | 0.5860 | 0.0 | 0.0146 | 0.7702 | 0.1637 | 0.5370 | 0.3277 | 0.3850 | nan | 0.2310 | 0.5107 | 0.3964 | 0.0 | 0.8870 | 0.7609 | 0.9530 | 0.0084 | 0.1158 | 0.3774 | 0.0 |
| 0.0848 | 49.2 | 9840 | 0.7302 | 0.4154 | 0.4924 | 0.8779 | nan | 0.8416 | 0.9570 | 0.7898 | 0.8545 | 0.5362 | nan | 0.7096 | 0.8272 | 0.0683 | 0.9567 | 0.1272 | 0.0 | 0.6605 | 0.0652 | 0.7112 | 0.0 | 0.0269 | 0.9322 | 0.1873 | 0.6383 | 0.3877 | 0.5232 | nan | 0.2786 | 0.6276 | 0.5780 | 0.0 | 0.9544 | 0.8408 | 0.9845 | 0.0039 | 0.2122 | 0.4777 | 0.0 | nan | 0.7582 | 0.8762 | 0.6952 | 0.7485 | 0.4011 | nan | 0.5941 | 0.6516 | 0.0409 | 0.8653 | 0.1102 | 0.0 | 0.4407 | 0.0652 | 0.5879 | 0.0 | 0.0267 | 0.7704 | 0.1661 | 0.5384 | 0.3281 | 0.3896 | nan | 0.2317 | 0.5104 | 0.3957 | 0.0 | 0.8876 | 0.7614 | 0.9526 | 0.0032 | 0.1171 | 0.3778 | 0.0 |
| 0.0643 | 49.3 | 9860 | 0.7355 | 0.4159 | 0.4939 | 0.8777 | nan | 0.8423 | 0.9557 | 0.7939 | 0.8495 | 0.5429 | nan | 0.7175 | 0.8320 | 0.0748 | 0.9574 | 0.1283 | 0.0 | 0.6710 | 0.0728 | 0.7084 | 0.0 | 0.0211 | 0.9312 | 0.1863 | 0.6321 | 0.3859 | 0.5260 | nan | 0.2964 | 0.6212 | 0.5756 | 0.0 | 0.9555 | 0.8396 | 0.9838 | 0.0094 | 0.2111 | 0.4841 | 0.0 | nan | 0.7584 | 0.8765 | 0.6940 | 0.7514 | 0.4006 | nan | 0.5930 | 0.6498 | 0.0438 | 0.8652 | 0.1112 | 0.0 | 0.4418 | 0.0728 | 0.5869 | 0.0 | 0.0209 | 0.7707 | 0.1661 | 0.5366 | 0.3264 | 0.3899 | nan | 0.2456 | 0.5099 | 0.3942 | 0.0 | 0.8869 | 0.7603 | 0.9532 | 0.0072 | 0.1160 | 0.3788 | 0.0 |
| 0.0671 | 49.4 | 9880 | 0.7447 | 0.4160 | 0.4946 | 0.8777 | nan | 0.8400 | 0.9564 | 0.8003 | 0.8508 | 0.5393 | nan | 0.7193 | 0.8202 | 0.0841 | 0.9561 | 0.1303 | 0.0 | 0.6808 | 0.0803 | 0.7160 | 0.0 | 0.0180 | 0.9329 | 0.1805 | 0.6364 | 0.3888 | 0.5383 | nan | 0.2899 | 0.6208 | 0.5842 | 0.0 | 0.9553 | 0.8362 | 0.9844 | 0.0111 | 0.1967 | 0.4782 | 0.0 | nan | 0.7581 | 0.8765 | 0.6879 | 0.7514 | 0.4014 | nan | 0.5924 | 0.6533 | 0.0488 | 0.8656 | 0.1124 | 0.0 | 0.4460 | 0.0803 | 0.5854 | 0.0 | 0.0179 | 0.7700 | 0.1612 | 0.5372 | 0.3270 | 0.3889 | nan | 0.2425 | 0.5099 | 0.3944 | 0.0 | 0.8867 | 0.7602 | 0.9529 | 0.0084 | 0.1167 | 0.3799 | 0.0 |
| 0.0706 | 49.5 | 9900 | 0.7401 | 0.4150 | 0.4933 | 0.8775 | nan | 0.8401 | 0.9563 | 0.7972 | 0.8519 | 0.5382 | nan | 0.7231 | 0.8251 | 0.0681 | 0.9572 | 0.1265 | 0.0 | 0.6689 | 0.0728 | 0.7077 | 0.0 | 0.0200 | 0.9336 | 0.1805 | 0.6236 | 0.3934 | 0.5249 | nan | 0.2937 | 0.6237 | 0.5834 | 0.0 | 0.9554 | 0.8395 | 0.9831 | 0.0091 | 0.2201 | 0.4694 | 0.0 | nan | 0.7584 | 0.8766 | 0.6901 | 0.7510 | 0.4012 | nan | 0.5928 | 0.6518 | 0.0408 | 0.8652 | 0.1098 | 0.0 | 0.4336 | 0.0728 | 0.5861 | 0.0 | 0.0199 | 0.7688 | 0.1606 | 0.5332 | 0.3284 | 0.3879 | nan | 0.2446 | 0.5098 | 0.3961 | 0.0 | 0.8869 | 0.7609 | 0.9535 | 0.0070 | 0.1169 | 0.3748 | 0.0 |
| 0.1163 | 49.6 | 9920 | 0.7314 | 0.4154 | 0.4931 | 0.8776 | nan | 0.8406 | 0.9555 | 0.7982 | 0.8534 | 0.5451 | nan | 0.7131 | 0.8257 | 0.0790 | 0.9569 | 0.1210 | 0.0 | 0.6700 | 0.0738 | 0.7103 | 0.0 | 0.0224 | 0.9322 | 0.1839 | 0.6400 | 0.3738 | 0.5067 | nan | 0.3024 | 0.6231 | 0.5802 | 0.0 | 0.9561 | 0.8347 | 0.9831 | 0.0082 | 0.2098 | 0.4802 | 0.0 | nan | 0.7584 | 0.8768 | 0.6893 | 0.7502 | 0.4007 | nan | 0.5928 | 0.6520 | 0.0460 | 0.8651 | 0.1058 | 0.0 | 0.4382 | 0.0738 | 0.5842 | 0.0 | 0.0223 | 0.7704 | 0.1638 | 0.5387 | 0.3210 | 0.3845 | nan | 0.2505 | 0.5099 | 0.3950 | 0.0 | 0.8865 | 0.7604 | 0.9534 | 0.0063 | 0.1171 | 0.3788 | 0.0 |
| 0.0655 | 49.7 | 9940 | 0.7432 | 0.4168 | 0.4966 | 0.8777 | nan | 0.8411 | 0.9569 | 0.7993 | 0.8503 | 0.5401 | nan | 0.7121 | 0.8312 | 0.0845 | 0.9536 | 0.1329 | 0.0 | 0.6689 | 0.0911 | 0.7217 | 0.0 | 0.0183 | 0.9332 | 0.1866 | 0.6354 | 0.3938 | 0.5485 | nan | 0.2954 | 0.6268 | 0.5871 | 0.0 | 0.9534 | 0.8387 | 0.9836 | 0.0106 | 0.2143 | 0.4811 | 0.0 | nan | 0.7581 | 0.8764 | 0.6886 | 0.7514 | 0.4024 | nan | 0.5921 | 0.6494 | 0.0486 | 0.8673 | 0.1144 | 0.0 | 0.4376 | 0.0911 | 0.5913 | 0.0 | 0.0181 | 0.7701 | 0.1660 | 0.5373 | 0.3309 | 0.3936 | nan | 0.2439 | 0.5109 | 0.3925 | 0.0 | 0.8879 | 0.7621 | 0.9533 | 0.0080 | 0.1168 | 0.3782 | 0.0 |
| 0.0654 | 49.8 | 9960 | 0.7503 | 0.4162 | 0.4953 | 0.8776 | nan | 0.8410 | 0.9559 | 0.8005 | 0.8522 | 0.5450 | nan | 0.7082 | 0.8301 | 0.0806 | 0.9556 | 0.1303 | 0.0 | 0.6670 | 0.0746 | 0.7186 | 0.0 | 0.0215 | 0.9323 | 0.1870 | 0.6362 | 0.3906 | 0.5446 | nan | 0.3029 | 0.6134 | 0.5720 | 0.0 | 0.9558 | 0.8356 | 0.9824 | 0.0106 | 0.2257 | 0.4792 | 0.0 | nan | 0.7582 | 0.8768 | 0.6872 | 0.7508 | 0.4013 | nan | 0.5918 | 0.6502 | 0.0475 | 0.8662 | 0.1127 | 0.0 | 0.4361 | 0.0745 | 0.5863 | 0.0 | 0.0213 | 0.7704 | 0.1661 | 0.5377 | 0.3288 | 0.3947 | nan | 0.2522 | 0.5096 | 0.3940 | 0.0 | 0.8870 | 0.7608 | 0.9537 | 0.0080 | 0.1186 | 0.3769 | 0.0 |
| 0.0668 | 49.9 | 9980 | 0.7339 | 0.4160 | 0.4957 | 0.8778 | nan | 0.8397 | 0.9574 | 0.8012 | 0.8533 | 0.5329 | nan | 0.7149 | 0.8324 | 0.0808 | 0.9581 | 0.1315 | 0.0 | 0.6686 | 0.0743 | 0.7097 | 0.0 | 0.0236 | 0.9318 | 0.1824 | 0.6321 | 0.3937 | 0.5660 | nan | 0.2925 | 0.6250 | 0.5827 | 0.0 | 0.9539 | 0.8401 | 0.9840 | 0.0107 | 0.2145 | 0.4754 | 0.0 | nan | 0.7578 | 0.8765 | 0.6865 | 0.7502 | 0.4021 | nan | 0.5921 | 0.6487 | 0.0468 | 0.8647 | 0.1139 | 0.0 | 0.4381 | 0.0743 | 0.5855 | 0.0 | 0.0234 | 0.7708 | 0.1630 | 0.5373 | 0.3288 | 0.3982 | nan | 0.2423 | 0.5108 | 0.3945 | 0.0 | 0.8876 | 0.7623 | 0.9531 | 0.0081 | 0.1176 | 0.3773 | 0.0 |
| 0.0611 | 50.0 | 10000 | 0.7413 | 0.4159 | 0.4945 | 0.8774 | nan | 0.8388 | 0.9573 | 0.8007 | 0.8552 | 0.5279 | nan | 0.7175 | 0.8243 | 0.0845 | 0.9557 | 0.1300 | 0.0 | 0.6660 | 0.0883 | 0.7186 | 0.0 | 0.0195 | 0.9361 | 0.1788 | 0.6178 | 0.3916 | 0.5516 | nan | 0.2882 | 0.6120 | 0.5812 | 0.0 | 0.9537 | 0.8377 | 0.9844 | 0.0132 | 0.2116 | 0.4815 | 0.0 | nan | 0.7575 | 0.8765 | 0.6860 | 0.7491 | 0.4030 | nan | 0.5916 | 0.6521 | 0.0488 | 0.8662 | 0.1122 | 0.0 | 0.4442 | 0.0883 | 0.5874 | 0.0 | 0.0193 | 0.7672 | 0.1600 | 0.5304 | 0.3282 | 0.3920 | nan | 0.2410 | 0.5084 | 0.3941 | 0.0 | 0.8872 | 0.7611 | 0.9529 | 0.0098 | 0.1155 | 0.3780 | 0.0 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
RintaroMisaka/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
ayoubkirouane/Segments-Sidewalk-SegFormer-B0 |
## Model Details
+ **Model Name**: Segments-Sidewalk-SegFormer-B0
+ **Model Type**: Semantic Segmentation
+ **Base Model**: nvidia/segformer-b0-finetuned-ade-512-512
+ **Fine-Tuning Dataset**: Sidewalk-Semantic
## Model Description
The **Segments-Sidewalk-SegFormer-B0** model is a semantic segmentation model fine-tuned on the **sidewalk-semantic** dataset. It is based on the **SegFormer (b0-sized)** architecture and has been adapted for the task of segmenting sidewalk images into various classes, such as road surfaces, pedestrians, vehicles, and more.
## Model Architecture
The model architecture is based on SegFormer, which utilizes a **hierarchical Transformer Encoder and a lightweight all-MLP decoder head**. This architecture has been proven effective in semantic segmentation tasks, and fine-tuning on the 'sidewalk-semantic' dataset allows it to learn to segment sidewalk images accurately.
## Intended Uses
The **Segments-Sidewalk-SegFormer-B0** model can be used for various applications in the context of sidewalk image analysis and understanding.
**Some of the intended use cases include**
+ **Semantic Segmentation**: Use the model to perform pixel-level classification of sidewalk images, enabling the identification of different objects and features in the images, such as road surfaces, pedestrians, vehicles, and construction elements.
+ **Urban Planning**: The model can assist in urban planning tasks by providing detailed information about sidewalk infrastructure, helping city planners make informed decisions.
+ **Autonomous Navigation**: Deploy the model in autonomous vehicles or robots to enhance their understanding of the sidewalk environment, aiding in safe navigation.

## Limitations
+ **Resolution Dependency**: The model's performance may be sensitive to the resolution of the input images. Fine-tuning was performed at a specific resolution, so using significantly different resolutions may require additional adjustments.
+ **Hardware Requirements**: Inference with deep learning models can be computationally intensive, requiring access to GPUs or other specialized hardware for real-time or efficient processing.
## Ethical Considerations
When using and deploying the **Segments-Sidewalk-SegFormer-B0** model, consider the following ethical considerations:
+ **Bias and Fairness**: Carefully evaluate the dataset for biases that may be present and address them to avoid unfair or discriminatory outcomes in predictions, especially when dealing with human-related classes (e.g., pedestrians).
+ **Privacy**: Be mindful of privacy concerns when processing sidewalk images, as they may contain personally identifiable information or capture private locations. Appropriate data anonymization and consent mechanisms should be in place.
+ **Transparency**: Clearly communicate the model's capabilities and limitations to end-users and stakeholders, ensuring they understand the model's potential errors and uncertainties.
+ **Regulatory Compliance**: Adhere to local and national regulations regarding the collection and processing of sidewalk images, especially if the data involves public spaces or private property.
+ **Accessibility**: Ensure that the model's outputs and applications are accessible to individuals with disabilities and do not exclude any user group.
## Usage
```python
# Load model directly
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
extractor = AutoFeatureExtractor.from_pretrained("ayoubkirouane/Segments-Sidewalk-SegFormer-B0")
model = SegformerForSemanticSegmentation.from_pretrained("ayoubkirouane/Segments-Sidewalk-SegFormer-B0")
``` | [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
JCAI2000/segformerb5-finetuned-largerImages |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformerb5-finetuned-largerImages
This model is a fine-tuned version of [JCAI2000/segformer-b5-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass-2](https://huggingface.co/JCAI2000/segformer-b5-finetuned-100by100PNG-50epochs-attempt2-100epochs-backgroundclass-2) on the JCAI2000/LargerImagesLabelled dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0724
- Mean Iou: 0.7754
- Mean Accuracy: 0.8589
- Overall Accuracy: 0.9828
- Accuracy Background: 0.9910
- Accuracy Branch: 0.7269
- Iou Background: 0.9824
- Iou Branch: 0.5684
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Branch | Iou Background | Iou Branch |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
| 0.0872 | 1.18 | 20 | 0.0678 | 0.6870 | 0.7241 | 0.9784 | 0.9954 | 0.4528 | 0.9781 | 0.3958 |
| 0.0848 | 2.35 | 40 | 0.0577 | 0.7333 | 0.7908 | 0.9806 | 0.9932 | 0.5884 | 0.9802 | 0.4864 |
| 0.0549 | 3.53 | 60 | 0.0634 | 0.7485 | 0.8857 | 0.9773 | 0.9834 | 0.7879 | 0.9767 | 0.5203 |
| 0.0653 | 4.71 | 80 | 0.0493 | 0.7662 | 0.8346 | 0.9827 | 0.9926 | 0.6767 | 0.9823 | 0.5500 |
| 0.0596 | 5.88 | 100 | 0.0476 | 0.7497 | 0.7920 | 0.9828 | 0.9955 | 0.5885 | 0.9825 | 0.5168 |
| 0.0458 | 7.06 | 120 | 0.0478 | 0.7636 | 0.8357 | 0.9823 | 0.9921 | 0.6793 | 0.9819 | 0.5452 |
| 0.0285 | 8.24 | 140 | 0.0458 | 0.7758 | 0.8574 | 0.9829 | 0.9913 | 0.7235 | 0.9825 | 0.5691 |
| 0.0341 | 9.41 | 160 | 0.0466 | 0.7670 | 0.8376 | 0.9827 | 0.9923 | 0.6829 | 0.9823 | 0.5517 |
| 0.0369 | 10.59 | 180 | 0.0491 | 0.7699 | 0.8731 | 0.9813 | 0.9885 | 0.7576 | 0.9809 | 0.5589 |
| 0.0352 | 11.76 | 200 | 0.0465 | 0.7731 | 0.8551 | 0.9826 | 0.9911 | 0.7191 | 0.9822 | 0.5640 |
| 0.0477 | 12.94 | 220 | 0.0462 | 0.7721 | 0.8415 | 0.9832 | 0.9926 | 0.6905 | 0.9828 | 0.5615 |
| 0.0404 | 14.12 | 240 | 0.0493 | 0.7704 | 0.8734 | 0.9814 | 0.9886 | 0.7583 | 0.9809 | 0.5599 |
| 0.0221 | 15.29 | 260 | 0.0458 | 0.7798 | 0.8719 | 0.9828 | 0.9901 | 0.7536 | 0.9823 | 0.5772 |
| 0.0263 | 16.47 | 280 | 0.0450 | 0.7778 | 0.8509 | 0.9835 | 0.9923 | 0.7096 | 0.9831 | 0.5726 |
| 0.0364 | 17.65 | 300 | 0.0489 | 0.7756 | 0.8537 | 0.9830 | 0.9917 | 0.7158 | 0.9827 | 0.5686 |
| 0.02 | 18.82 | 320 | 0.0493 | 0.7713 | 0.8474 | 0.9828 | 0.9918 | 0.7031 | 0.9824 | 0.5602 |
| 0.0193 | 20.0 | 340 | 0.0481 | 0.7786 | 0.8694 | 0.9827 | 0.9903 | 0.7484 | 0.9823 | 0.5749 |
| 0.0133 | 21.18 | 360 | 0.0486 | 0.7756 | 0.8552 | 0.9830 | 0.9915 | 0.7189 | 0.9826 | 0.5686 |
| 0.0163 | 22.35 | 380 | 0.0492 | 0.7768 | 0.8632 | 0.9828 | 0.9907 | 0.7357 | 0.9824 | 0.5713 |
| 0.0252 | 23.53 | 400 | 0.0510 | 0.7725 | 0.8605 | 0.9823 | 0.9904 | 0.7306 | 0.9819 | 0.5632 |
| 0.0178 | 24.71 | 420 | 0.0509 | 0.7770 | 0.8665 | 0.9826 | 0.9904 | 0.7427 | 0.9822 | 0.5719 |
| 0.0167 | 25.88 | 440 | 0.0516 | 0.7748 | 0.8615 | 0.9826 | 0.9906 | 0.7323 | 0.9822 | 0.5675 |
| 0.0332 | 27.06 | 460 | 0.0507 | 0.7702 | 0.8422 | 0.9829 | 0.9922 | 0.6921 | 0.9825 | 0.5578 |
| 0.021 | 28.24 | 480 | 0.0522 | 0.7710 | 0.8482 | 0.9827 | 0.9916 | 0.7048 | 0.9823 | 0.5597 |
| 0.0284 | 29.41 | 500 | 0.0536 | 0.7762 | 0.8643 | 0.9826 | 0.9905 | 0.7380 | 0.9822 | 0.5702 |
| 0.0174 | 30.59 | 520 | 0.0535 | 0.7739 | 0.8591 | 0.9826 | 0.9908 | 0.7274 | 0.9822 | 0.5657 |
| 0.0228 | 31.76 | 540 | 0.0527 | 0.7765 | 0.8578 | 0.9830 | 0.9913 | 0.7243 | 0.9826 | 0.5703 |
| 0.0347 | 32.94 | 560 | 0.0530 | 0.7754 | 0.8534 | 0.9830 | 0.9917 | 0.7151 | 0.9826 | 0.5681 |
| 0.0182 | 34.12 | 580 | 0.0554 | 0.7764 | 0.8670 | 0.9825 | 0.9902 | 0.7437 | 0.9821 | 0.5706 |
| 0.0139 | 35.29 | 600 | 0.0521 | 0.7786 | 0.8540 | 0.9834 | 0.9920 | 0.7159 | 0.9830 | 0.5742 |
| 0.0121 | 36.47 | 620 | 0.0549 | 0.7787 | 0.8728 | 0.9826 | 0.9899 | 0.7557 | 0.9822 | 0.5752 |
| 0.0191 | 37.65 | 640 | 0.0560 | 0.7766 | 0.8678 | 0.9825 | 0.9902 | 0.7454 | 0.9821 | 0.5711 |
| 0.0216 | 38.82 | 660 | 0.0553 | 0.7745 | 0.8543 | 0.9829 | 0.9914 | 0.7172 | 0.9825 | 0.5665 |
| 0.0135 | 40.0 | 680 | 0.0569 | 0.7738 | 0.8640 | 0.9823 | 0.9902 | 0.7379 | 0.9819 | 0.5658 |
| 0.0167 | 41.18 | 700 | 0.0566 | 0.7765 | 0.8619 | 0.9828 | 0.9908 | 0.7330 | 0.9824 | 0.5707 |
| 0.0224 | 42.35 | 720 | 0.0570 | 0.7768 | 0.8680 | 0.9825 | 0.9902 | 0.7458 | 0.9821 | 0.5714 |
| 0.0188 | 43.53 | 740 | 0.0575 | 0.7768 | 0.8630 | 0.9828 | 0.9907 | 0.7353 | 0.9824 | 0.5713 |
| 0.0338 | 44.71 | 760 | 0.0565 | 0.7783 | 0.8634 | 0.9830 | 0.9909 | 0.7359 | 0.9826 | 0.5741 |
| 0.0122 | 45.88 | 780 | 0.0585 | 0.7788 | 0.8656 | 0.9829 | 0.9907 | 0.7404 | 0.9825 | 0.5750 |
| 0.0119 | 47.06 | 800 | 0.0587 | 0.7774 | 0.8639 | 0.9828 | 0.9907 | 0.7371 | 0.9824 | 0.5725 |
| 0.0086 | 48.24 | 820 | 0.0594 | 0.7777 | 0.8567 | 0.9832 | 0.9916 | 0.7218 | 0.9828 | 0.5726 |
| 0.0094 | 49.41 | 840 | 0.0597 | 0.7766 | 0.8627 | 0.9828 | 0.9907 | 0.7347 | 0.9823 | 0.5708 |
| 0.0107 | 50.59 | 860 | 0.0619 | 0.7773 | 0.8624 | 0.9829 | 0.9909 | 0.7338 | 0.9825 | 0.5722 |
| 0.0175 | 51.76 | 880 | 0.0605 | 0.7752 | 0.8588 | 0.9828 | 0.9910 | 0.7266 | 0.9824 | 0.5681 |
| 0.0139 | 52.94 | 900 | 0.0620 | 0.7786 | 0.8675 | 0.9828 | 0.9905 | 0.7446 | 0.9824 | 0.5748 |
| 0.02 | 54.12 | 920 | 0.0633 | 0.7764 | 0.8628 | 0.9827 | 0.9907 | 0.7348 | 0.9823 | 0.5704 |
| 0.0294 | 55.29 | 940 | 0.0637 | 0.7762 | 0.8584 | 0.9829 | 0.9912 | 0.7256 | 0.9825 | 0.5699 |
| 0.0175 | 56.47 | 960 | 0.0639 | 0.7789 | 0.8717 | 0.9827 | 0.9900 | 0.7534 | 0.9822 | 0.5755 |
| 0.008 | 57.65 | 980 | 0.0640 | 0.7797 | 0.8667 | 0.9830 | 0.9907 | 0.7428 | 0.9826 | 0.5768 |
| 0.0132 | 58.82 | 1000 | 0.0652 | 0.7754 | 0.8657 | 0.9825 | 0.9902 | 0.7412 | 0.9820 | 0.5687 |
| 0.0339 | 60.0 | 1020 | 0.0640 | 0.7785 | 0.8664 | 0.9828 | 0.9906 | 0.7421 | 0.9824 | 0.5746 |
| 0.0144 | 61.18 | 1040 | 0.0618 | 0.7804 | 0.8577 | 0.9835 | 0.9919 | 0.7236 | 0.9831 | 0.5778 |
| 0.0206 | 62.35 | 1060 | 0.0653 | 0.7767 | 0.8636 | 0.9827 | 0.9907 | 0.7366 | 0.9823 | 0.5710 |
| 0.0165 | 63.53 | 1080 | 0.0651 | 0.7774 | 0.8602 | 0.9830 | 0.9912 | 0.7293 | 0.9826 | 0.5722 |
| 0.0175 | 64.71 | 1100 | 0.0648 | 0.7758 | 0.8568 | 0.9829 | 0.9913 | 0.7222 | 0.9825 | 0.5690 |
| 0.0104 | 65.88 | 1120 | 0.0669 | 0.7771 | 0.8618 | 0.9829 | 0.9909 | 0.7327 | 0.9825 | 0.5717 |
| 0.0191 | 67.06 | 1140 | 0.0662 | 0.7779 | 0.8696 | 0.9826 | 0.9901 | 0.7490 | 0.9822 | 0.5737 |
| 0.0123 | 68.24 | 1160 | 0.0668 | 0.7775 | 0.8591 | 0.9830 | 0.9913 | 0.7270 | 0.9826 | 0.5723 |
| 0.0127 | 69.41 | 1180 | 0.0676 | 0.7772 | 0.8637 | 0.9828 | 0.9907 | 0.7366 | 0.9824 | 0.5720 |
| 0.0092 | 70.59 | 1200 | 0.0673 | 0.7778 | 0.8699 | 0.9826 | 0.9901 | 0.7496 | 0.9822 | 0.5735 |
| 0.0101 | 71.76 | 1220 | 0.0680 | 0.7761 | 0.8694 | 0.9824 | 0.9899 | 0.7489 | 0.9820 | 0.5703 |
| 0.0204 | 72.94 | 1240 | 0.0676 | 0.7772 | 0.8640 | 0.9828 | 0.9907 | 0.7373 | 0.9824 | 0.5721 |
| 0.008 | 74.12 | 1260 | 0.0685 | 0.7768 | 0.8661 | 0.9826 | 0.9904 | 0.7417 | 0.9822 | 0.5714 |
| 0.0124 | 75.29 | 1280 | 0.0676 | 0.7776 | 0.8648 | 0.9828 | 0.9907 | 0.7390 | 0.9824 | 0.5729 |
| 0.0134 | 76.47 | 1300 | 0.0689 | 0.7770 | 0.8672 | 0.9826 | 0.9903 | 0.7441 | 0.9822 | 0.5718 |
| 0.0082 | 77.65 | 1320 | 0.0688 | 0.7755 | 0.8621 | 0.9826 | 0.9907 | 0.7336 | 0.9822 | 0.5687 |
| 0.0125 | 78.82 | 1340 | 0.0698 | 0.7761 | 0.8655 | 0.9826 | 0.9904 | 0.7407 | 0.9822 | 0.5701 |
| 0.0064 | 80.0 | 1360 | 0.0707 | 0.7760 | 0.8611 | 0.9827 | 0.9908 | 0.7314 | 0.9823 | 0.5696 |
| 0.0131 | 81.18 | 1380 | 0.0709 | 0.7765 | 0.8645 | 0.9827 | 0.9905 | 0.7384 | 0.9822 | 0.5707 |
| 0.0099 | 82.35 | 1400 | 0.0696 | 0.7769 | 0.8665 | 0.9826 | 0.9904 | 0.7427 | 0.9822 | 0.5717 |
| 0.0174 | 83.53 | 1420 | 0.0704 | 0.7757 | 0.8612 | 0.9827 | 0.9908 | 0.7317 | 0.9823 | 0.5692 |
| 0.0122 | 84.71 | 1440 | 0.0710 | 0.7754 | 0.8595 | 0.9827 | 0.9910 | 0.7281 | 0.9823 | 0.5685 |
| 0.0136 | 85.88 | 1460 | 0.0705 | 0.7765 | 0.8632 | 0.9827 | 0.9907 | 0.7356 | 0.9823 | 0.5706 |
| 0.0115 | 87.06 | 1480 | 0.0711 | 0.7763 | 0.8638 | 0.9827 | 0.9906 | 0.7370 | 0.9823 | 0.5703 |
| 0.0074 | 88.24 | 1500 | 0.0709 | 0.7763 | 0.8606 | 0.9828 | 0.9910 | 0.7302 | 0.9824 | 0.5702 |
| 0.0073 | 89.41 | 1520 | 0.0707 | 0.7767 | 0.8595 | 0.9829 | 0.9911 | 0.7278 | 0.9825 | 0.5708 |
| 0.0073 | 90.59 | 1540 | 0.0713 | 0.7756 | 0.8556 | 0.9830 | 0.9914 | 0.7197 | 0.9826 | 0.5687 |
| 0.0123 | 91.76 | 1560 | 0.0716 | 0.7763 | 0.8623 | 0.9827 | 0.9907 | 0.7339 | 0.9823 | 0.5702 |
| 0.0161 | 92.94 | 1580 | 0.0712 | 0.7762 | 0.8601 | 0.9828 | 0.9910 | 0.7293 | 0.9824 | 0.5700 |
| 0.0061 | 94.12 | 1600 | 0.0718 | 0.7754 | 0.8597 | 0.9827 | 0.9909 | 0.7284 | 0.9823 | 0.5685 |
| 0.0063 | 95.29 | 1620 | 0.0725 | 0.7751 | 0.8598 | 0.9827 | 0.9909 | 0.7288 | 0.9823 | 0.5679 |
| 0.0124 | 96.47 | 1640 | 0.0722 | 0.7750 | 0.8633 | 0.9825 | 0.9905 | 0.7361 | 0.9821 | 0.5680 |
| 0.0123 | 97.65 | 1660 | 0.0722 | 0.7751 | 0.8598 | 0.9827 | 0.9909 | 0.7287 | 0.9823 | 0.5680 |
| 0.0185 | 98.82 | 1680 | 0.0717 | 0.7753 | 0.8593 | 0.9827 | 0.9910 | 0.7277 | 0.9823 | 0.5683 |
| 0.0152 | 100.0 | 1700 | 0.0724 | 0.7754 | 0.8589 | 0.9828 | 0.9910 | 0.7269 | 0.9824 | 0.5684 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"branch"
] |
Manduzamzam/segformer-finetuned-sidewalk-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-sidewalk-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the Manduzamzam/practice2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6829
- Mean Iou: 0.0140
- Mean Accuracy: 0.0279
- Overall Accuracy: 0.0279
- Accuracy Background: nan
- Accuracy Object: 0.0279
- Iou Background: 0.0
- Iou Object: 0.0279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Object | Iou Background | Iou Object |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
| No log | 0.71 | 10 | 0.6829 | 0.0140 | 0.0279 | 0.0279 | nan | 0.0279 | 0.0 | 0.0279 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.14.5
- Tokenizers 0.14.0
| [
"background",
"object"
] |
JCAI2000/segformerb5-largeImages |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformerb5-largeImages
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the JCAI2000/LargerImagesLabelled dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1156
- Mean Iou: 0.7785
- Mean Accuracy: 0.8298
- Overall Accuracy: 0.9767
- Accuracy Background: 0.9925
- Accuracy Branch: 0.6671
- Iou Background: 0.9759
- Iou Branch: 0.5812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Branch | Iou Background | Iou Branch |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
| 0.2671 | 1.18 | 20 | 0.2779 | 0.4834 | 0.5075 | 0.9509 | 0.9985 | 0.0165 | 0.9508 | 0.0160 |
| 0.122 | 2.35 | 40 | 0.1772 | 0.6522 | 0.6931 | 0.9632 | 0.9922 | 0.3940 | 0.9625 | 0.3419 |
| 0.0671 | 3.53 | 60 | 0.1086 | 0.7392 | 0.8603 | 0.9658 | 0.9772 | 0.7435 | 0.9646 | 0.5138 |
| 0.0979 | 4.71 | 80 | 0.0860 | 0.7552 | 0.8493 | 0.9705 | 0.9836 | 0.7150 | 0.9695 | 0.5409 |
| 0.0749 | 5.88 | 100 | 0.0727 | 0.7601 | 0.8116 | 0.9746 | 0.9921 | 0.6311 | 0.9738 | 0.5465 |
| 0.032 | 7.06 | 120 | 0.0721 | 0.7535 | 0.8016 | 0.9741 | 0.9927 | 0.6106 | 0.9733 | 0.5338 |
| 0.0337 | 8.24 | 140 | 0.0719 | 0.7745 | 0.8530 | 0.9743 | 0.9873 | 0.7187 | 0.9733 | 0.5757 |
| 0.0398 | 9.41 | 160 | 0.0704 | 0.7732 | 0.8302 | 0.9756 | 0.9913 | 0.6690 | 0.9748 | 0.5715 |
| 0.0374 | 10.59 | 180 | 0.0724 | 0.7583 | 0.7995 | 0.9752 | 0.9941 | 0.6050 | 0.9744 | 0.5422 |
| 0.0334 | 11.76 | 200 | 0.0724 | 0.7721 | 0.8231 | 0.9760 | 0.9924 | 0.6537 | 0.9752 | 0.5690 |
| 0.025 | 12.94 | 220 | 0.0731 | 0.7725 | 0.8192 | 0.9763 | 0.9932 | 0.6452 | 0.9755 | 0.5694 |
| 0.0336 | 14.12 | 240 | 0.0699 | 0.7793 | 0.8334 | 0.9765 | 0.9919 | 0.6748 | 0.9757 | 0.5828 |
| 0.0321 | 15.29 | 260 | 0.0697 | 0.7825 | 0.8395 | 0.9767 | 0.9915 | 0.6875 | 0.9759 | 0.5891 |
| 0.0216 | 16.47 | 280 | 0.0752 | 0.7701 | 0.8176 | 0.9760 | 0.9930 | 0.6421 | 0.9752 | 0.5650 |
| 0.0178 | 17.65 | 300 | 0.0743 | 0.7753 | 0.8296 | 0.9761 | 0.9918 | 0.6674 | 0.9753 | 0.5752 |
| 0.0206 | 18.82 | 320 | 0.0717 | 0.7881 | 0.8488 | 0.9771 | 0.9909 | 0.7066 | 0.9763 | 0.5999 |
| 0.0162 | 20.0 | 340 | 0.0786 | 0.7694 | 0.8141 | 0.9761 | 0.9935 | 0.6347 | 0.9754 | 0.5634 |
| 0.0306 | 21.18 | 360 | 0.0785 | 0.7785 | 0.8275 | 0.9768 | 0.9929 | 0.6622 | 0.9760 | 0.5809 |
| 0.0179 | 22.35 | 380 | 0.0769 | 0.7816 | 0.8414 | 0.9764 | 0.9909 | 0.6919 | 0.9756 | 0.5876 |
| 0.0152 | 23.53 | 400 | 0.0776 | 0.7842 | 0.8461 | 0.9766 | 0.9906 | 0.7016 | 0.9758 | 0.5926 |
| 0.0245 | 24.71 | 420 | 0.0820 | 0.7725 | 0.8164 | 0.9765 | 0.9937 | 0.6390 | 0.9758 | 0.5692 |
| 0.0248 | 25.88 | 440 | 0.0829 | 0.7772 | 0.8268 | 0.9766 | 0.9928 | 0.6608 | 0.9759 | 0.5786 |
| 0.0176 | 27.06 | 460 | 0.0818 | 0.7761 | 0.8271 | 0.9764 | 0.9925 | 0.6617 | 0.9756 | 0.5767 |
| 0.0135 | 28.24 | 480 | 0.0816 | 0.7805 | 0.8384 | 0.9764 | 0.9913 | 0.6854 | 0.9756 | 0.5855 |
| 0.0343 | 29.41 | 500 | 0.0852 | 0.7777 | 0.8310 | 0.9764 | 0.9921 | 0.6699 | 0.9756 | 0.5798 |
| 0.0147 | 30.59 | 520 | 0.0851 | 0.7792 | 0.8367 | 0.9763 | 0.9913 | 0.6820 | 0.9755 | 0.5829 |
| 0.0119 | 31.76 | 540 | 0.0880 | 0.7800 | 0.8337 | 0.9767 | 0.9920 | 0.6754 | 0.9759 | 0.5842 |
| 0.0143 | 32.94 | 560 | 0.0899 | 0.7749 | 0.8241 | 0.9764 | 0.9928 | 0.6555 | 0.9756 | 0.5743 |
| 0.0122 | 34.12 | 580 | 0.0886 | 0.7810 | 0.8374 | 0.9766 | 0.9916 | 0.6832 | 0.9758 | 0.5863 |
| 0.0135 | 35.29 | 600 | 0.0908 | 0.7727 | 0.8206 | 0.9762 | 0.9930 | 0.6482 | 0.9755 | 0.5699 |
| 0.0203 | 36.47 | 620 | 0.0913 | 0.7758 | 0.8267 | 0.9764 | 0.9925 | 0.6608 | 0.9756 | 0.5759 |
| 0.0109 | 37.65 | 640 | 0.0898 | 0.7803 | 0.8337 | 0.9767 | 0.9921 | 0.6753 | 0.9759 | 0.5847 |
| 0.0141 | 38.82 | 660 | 0.0936 | 0.7774 | 0.8280 | 0.9766 | 0.9926 | 0.6634 | 0.9758 | 0.5790 |
| 0.0087 | 40.0 | 680 | 0.0903 | 0.7830 | 0.8493 | 0.9762 | 0.9898 | 0.7088 | 0.9753 | 0.5908 |
| 0.0099 | 41.18 | 700 | 0.0930 | 0.7779 | 0.8284 | 0.9766 | 0.9926 | 0.6641 | 0.9759 | 0.5799 |
| 0.0149 | 42.35 | 720 | 0.0908 | 0.7799 | 0.8320 | 0.9767 | 0.9923 | 0.6717 | 0.9760 | 0.5838 |
| 0.0168 | 43.53 | 740 | 0.0897 | 0.7864 | 0.8496 | 0.9768 | 0.9904 | 0.7087 | 0.9759 | 0.5969 |
| 0.0281 | 44.71 | 760 | 0.0954 | 0.7760 | 0.8259 | 0.9765 | 0.9927 | 0.6591 | 0.9757 | 0.5762 |
| 0.0102 | 45.88 | 780 | 0.0942 | 0.7819 | 0.8382 | 0.9767 | 0.9916 | 0.6849 | 0.9759 | 0.5879 |
| 0.0087 | 47.06 | 800 | 0.0948 | 0.7843 | 0.8422 | 0.9769 | 0.9913 | 0.6931 | 0.9761 | 0.5926 |
| 0.0166 | 48.24 | 820 | 0.0981 | 0.7777 | 0.8280 | 0.9766 | 0.9926 | 0.6634 | 0.9759 | 0.5796 |
| 0.0236 | 49.41 | 840 | 0.0972 | 0.7770 | 0.8274 | 0.9765 | 0.9926 | 0.6622 | 0.9758 | 0.5782 |
| 0.0168 | 50.59 | 860 | 0.0994 | 0.7751 | 0.8218 | 0.9766 | 0.9932 | 0.6505 | 0.9758 | 0.5743 |
| 0.017 | 51.76 | 880 | 0.0991 | 0.7779 | 0.8281 | 0.9767 | 0.9926 | 0.6635 | 0.9759 | 0.5799 |
| 0.0111 | 52.94 | 900 | 0.0994 | 0.7778 | 0.8266 | 0.9767 | 0.9929 | 0.6603 | 0.9760 | 0.5797 |
| 0.0202 | 54.12 | 920 | 0.0985 | 0.7845 | 0.8380 | 0.9772 | 0.9921 | 0.6839 | 0.9764 | 0.5926 |
| 0.0142 | 55.29 | 940 | 0.1025 | 0.7762 | 0.8240 | 0.9767 | 0.9931 | 0.6548 | 0.9759 | 0.5766 |
| 0.01 | 56.47 | 960 | 0.0997 | 0.7808 | 0.8346 | 0.9767 | 0.9920 | 0.6771 | 0.9759 | 0.5857 |
| 0.0127 | 57.65 | 980 | 0.1028 | 0.7797 | 0.8317 | 0.9767 | 0.9923 | 0.6712 | 0.9759 | 0.5835 |
| 0.0069 | 58.82 | 1000 | 0.1011 | 0.7834 | 0.8400 | 0.9768 | 0.9915 | 0.6885 | 0.9760 | 0.5907 |
| 0.0109 | 60.0 | 1020 | 0.1059 | 0.7775 | 0.8282 | 0.9766 | 0.9925 | 0.6638 | 0.9758 | 0.5792 |
| 0.0087 | 61.18 | 1040 | 0.1037 | 0.7793 | 0.8308 | 0.9767 | 0.9924 | 0.6692 | 0.9759 | 0.5826 |
| 0.0125 | 62.35 | 1060 | 0.1056 | 0.7784 | 0.8279 | 0.9768 | 0.9928 | 0.6630 | 0.9760 | 0.5808 |
| 0.0084 | 63.53 | 1080 | 0.1066 | 0.7803 | 0.8330 | 0.9768 | 0.9922 | 0.6737 | 0.9760 | 0.5847 |
| 0.0183 | 64.71 | 1100 | 0.1056 | 0.7806 | 0.8340 | 0.9767 | 0.9921 | 0.6759 | 0.9760 | 0.5853 |
| 0.0106 | 65.88 | 1120 | 0.1076 | 0.7768 | 0.8257 | 0.9766 | 0.9929 | 0.6586 | 0.9759 | 0.5778 |
| 0.0072 | 67.06 | 1140 | 0.1103 | 0.7771 | 0.8278 | 0.9765 | 0.9925 | 0.6630 | 0.9758 | 0.5784 |
| 0.0112 | 68.24 | 1160 | 0.1070 | 0.7799 | 0.8315 | 0.9768 | 0.9924 | 0.6705 | 0.9760 | 0.5838 |
| 0.0149 | 69.41 | 1180 | 0.1089 | 0.7778 | 0.8284 | 0.9766 | 0.9926 | 0.6642 | 0.9758 | 0.5797 |
| 0.0147 | 70.59 | 1200 | 0.1087 | 0.7805 | 0.8325 | 0.9768 | 0.9924 | 0.6727 | 0.9760 | 0.5850 |
| 0.013 | 71.76 | 1220 | 0.1081 | 0.7803 | 0.8331 | 0.9767 | 0.9922 | 0.6741 | 0.9760 | 0.5846 |
| 0.013 | 72.94 | 1240 | 0.1097 | 0.7789 | 0.8304 | 0.9767 | 0.9924 | 0.6683 | 0.9759 | 0.5818 |
| 0.0115 | 74.12 | 1260 | 0.1104 | 0.7773 | 0.8269 | 0.9766 | 0.9927 | 0.6610 | 0.9759 | 0.5787 |
| 0.0102 | 75.29 | 1280 | 0.1097 | 0.7795 | 0.8323 | 0.9767 | 0.9922 | 0.6725 | 0.9759 | 0.5831 |
| 0.0133 | 76.47 | 1300 | 0.1101 | 0.7808 | 0.8355 | 0.9767 | 0.9919 | 0.6791 | 0.9759 | 0.5857 |
| 0.013 | 77.65 | 1320 | 0.1111 | 0.7814 | 0.8358 | 0.9768 | 0.9919 | 0.6797 | 0.9760 | 0.5867 |
| 0.0068 | 78.82 | 1340 | 0.1107 | 0.7814 | 0.8362 | 0.9767 | 0.9919 | 0.6805 | 0.9759 | 0.5869 |
| 0.0036 | 80.0 | 1360 | 0.1136 | 0.7789 | 0.8313 | 0.9766 | 0.9923 | 0.6703 | 0.9758 | 0.5820 |
| 0.0163 | 81.18 | 1380 | 0.1123 | 0.7809 | 0.8347 | 0.9767 | 0.9920 | 0.6773 | 0.9760 | 0.5858 |
| 0.0065 | 82.35 | 1400 | 0.1117 | 0.7811 | 0.8356 | 0.9767 | 0.9919 | 0.6794 | 0.9759 | 0.5862 |
| 0.018 | 83.53 | 1420 | 0.1121 | 0.7811 | 0.8360 | 0.9767 | 0.9918 | 0.6802 | 0.9759 | 0.5864 |
| 0.0122 | 84.71 | 1440 | 0.1123 | 0.7803 | 0.8346 | 0.9766 | 0.9919 | 0.6772 | 0.9759 | 0.5847 |
| 0.0085 | 85.88 | 1460 | 0.1139 | 0.7783 | 0.8300 | 0.9766 | 0.9924 | 0.6676 | 0.9758 | 0.5808 |
| 0.0074 | 87.06 | 1480 | 0.1130 | 0.7820 | 0.8364 | 0.9768 | 0.9919 | 0.6808 | 0.9760 | 0.5879 |
| 0.0124 | 88.24 | 1500 | 0.1141 | 0.7801 | 0.8332 | 0.9767 | 0.9921 | 0.6743 | 0.9759 | 0.5843 |
| 0.0114 | 89.41 | 1520 | 0.1152 | 0.7783 | 0.8301 | 0.9766 | 0.9924 | 0.6678 | 0.9758 | 0.5808 |
| 0.0113 | 90.59 | 1540 | 0.1153 | 0.7784 | 0.8302 | 0.9766 | 0.9924 | 0.6680 | 0.9758 | 0.5811 |
| 0.0076 | 91.76 | 1560 | 0.1153 | 0.7778 | 0.8286 | 0.9766 | 0.9925 | 0.6647 | 0.9758 | 0.5797 |
| 0.0128 | 92.94 | 1580 | 0.1149 | 0.7785 | 0.8308 | 0.9766 | 0.9923 | 0.6694 | 0.9758 | 0.5813 |
| 0.0046 | 94.12 | 1600 | 0.1154 | 0.7781 | 0.8298 | 0.9766 | 0.9923 | 0.6673 | 0.9758 | 0.5803 |
| 0.0091 | 95.29 | 1620 | 0.1143 | 0.7792 | 0.8318 | 0.9766 | 0.9922 | 0.6713 | 0.9759 | 0.5826 |
| 0.0121 | 96.47 | 1640 | 0.1153 | 0.7784 | 0.8302 | 0.9766 | 0.9924 | 0.6681 | 0.9758 | 0.5810 |
| 0.0082 | 97.65 | 1660 | 0.1151 | 0.7787 | 0.8308 | 0.9766 | 0.9923 | 0.6694 | 0.9758 | 0.5815 |
| 0.0094 | 98.82 | 1680 | 0.1155 | 0.7784 | 0.8295 | 0.9766 | 0.9925 | 0.6664 | 0.9759 | 0.5808 |
| 0.0067 | 100.0 | 1700 | 0.1156 | 0.7785 | 0.8298 | 0.9767 | 0.9925 | 0.6671 | 0.9759 | 0.5812 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| [
"background",
"branch"
] |
twdent/segformer-b0-finetuned-robot-hiking |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-robot-hiking
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the twdent/Hiking dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1458
- Mean Iou: 0.6158
- Mean Accuracy: 0.9603
- Overall Accuracy: 0.9619
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9546
- Accuracy Non-traversable: 0.9661
- Iou Unlabeled: 0.0
- Iou Traversable: 0.9044
- Iou Non-traversable: 0.9429
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.5363 | 1.33 | 20 | 0.7433 | 0.5581 | 0.9246 | 0.9153 | nan | 0.9573 | 0.8919 | 0.0 | 0.8030 | 0.8712 |
| 0.3689 | 2.67 | 40 | 0.4666 | 0.5567 | 0.9281 | 0.9137 | nan | 0.9791 | 0.8771 | 0.0 | 0.8030 | 0.8670 |
| 0.2706 | 4.0 | 60 | 0.3204 | 0.5880 | 0.9479 | 0.9407 | nan | 0.9732 | 0.9226 | 0.0 | 0.8550 | 0.9089 |
| 0.2338 | 5.33 | 80 | 0.2881 | 0.5985 | 0.9504 | 0.9497 | nan | 0.9527 | 0.9481 | 0.0 | 0.8719 | 0.9236 |
| 0.2068 | 6.67 | 100 | 0.2556 | 0.9022 | 0.9521 | 0.9521 | nan | 0.9522 | 0.9521 | nan | 0.8770 | 0.9273 |
| 0.1764 | 8.0 | 120 | 0.2401 | 0.6024 | 0.9539 | 0.9528 | nan | 0.9577 | 0.9500 | 0.0 | 0.8792 | 0.9280 |
| 0.2639 | 9.33 | 140 | 0.2588 | 0.5937 | 0.9504 | 0.9455 | nan | 0.9680 | 0.9329 | 0.0 | 0.8646 | 0.9166 |
| 0.1813 | 10.67 | 160 | 0.2124 | 0.6030 | 0.9526 | 0.9530 | nan | 0.9513 | 0.9540 | 0.0 | 0.8801 | 0.9287 |
| 0.1407 | 12.0 | 180 | 0.1938 | 0.6055 | 0.9518 | 0.9554 | nan | 0.9388 | 0.9647 | 0.0 | 0.8836 | 0.9328 |
| 0.13 | 13.33 | 200 | 0.1881 | 0.6062 | 0.9524 | 0.9558 | nan | 0.9403 | 0.9644 | 0.0 | 0.8854 | 0.9333 |
| 0.107 | 14.67 | 220 | 0.2092 | 0.5967 | 0.9530 | 0.9474 | nan | 0.9725 | 0.9334 | 0.0 | 0.8708 | 0.9194 |
| 0.1282 | 16.0 | 240 | 0.1803 | 0.6065 | 0.9536 | 0.9555 | nan | 0.9471 | 0.9602 | 0.0 | 0.8869 | 0.9328 |
| 0.146 | 17.33 | 260 | 0.1912 | 0.6028 | 0.9559 | 0.9519 | nan | 0.9700 | 0.9418 | 0.0 | 0.8814 | 0.9269 |
| 0.1011 | 18.67 | 280 | 0.1769 | 0.6079 | 0.9598 | 0.9561 | nan | 0.9727 | 0.9468 | 0.0 | 0.8907 | 0.9330 |
| 0.1124 | 20.0 | 300 | 0.1580 | 0.6135 | 0.9582 | 0.9608 | nan | 0.9491 | 0.9673 | 0.0 | 0.8995 | 0.9411 |
| 0.0801 | 21.33 | 320 | 0.1614 | 0.6113 | 0.9582 | 0.9588 | nan | 0.9563 | 0.9602 | 0.0 | 0.8960 | 0.9380 |
| 0.0831 | 22.67 | 340 | 0.1540 | 0.6130 | 0.9608 | 0.9601 | nan | 0.9633 | 0.9584 | 0.0 | 0.8994 | 0.9396 |
| 0.0599 | 24.0 | 360 | 0.1641 | 0.6098 | 0.9584 | 0.9576 | nan | 0.9614 | 0.9554 | 0.0 | 0.8935 | 0.9358 |
| 0.0955 | 25.33 | 380 | 0.1711 | 0.6084 | 0.9597 | 0.9562 | nan | 0.9720 | 0.9474 | 0.0 | 0.8917 | 0.9334 |
| 0.0667 | 26.67 | 400 | 0.1618 | 0.6109 | 0.9574 | 0.9583 | nan | 0.9543 | 0.9605 | 0.0 | 0.8954 | 0.9373 |
| 0.0783 | 28.0 | 420 | 0.1640 | 0.6089 | 0.9589 | 0.9568 | nan | 0.9665 | 0.9513 | 0.0 | 0.8924 | 0.9343 |
| 0.0743 | 29.33 | 440 | 0.1512 | 0.6145 | 0.9582 | 0.9612 | nan | 0.9478 | 0.9686 | 0.0 | 0.9016 | 0.9419 |
| 0.0775 | 30.67 | 460 | 0.1574 | 0.6131 | 0.9583 | 0.9598 | nan | 0.9528 | 0.9637 | 0.0 | 0.8995 | 0.9398 |
| 0.0773 | 32.0 | 480 | 0.1464 | 0.6157 | 0.9610 | 0.9621 | nan | 0.9573 | 0.9647 | 0.0 | 0.9043 | 0.9428 |
| 0.0575 | 33.33 | 500 | 0.1600 | 0.6085 | 0.9568 | 0.9564 | nan | 0.9583 | 0.9554 | 0.0 | 0.8912 | 0.9343 |
| 0.0729 | 34.67 | 520 | 0.1540 | 0.6105 | 0.9569 | 0.9577 | nan | 0.9541 | 0.9597 | 0.0 | 0.8946 | 0.9369 |
| 0.1409 | 36.0 | 540 | 0.1557 | 0.6112 | 0.9584 | 0.9586 | nan | 0.9575 | 0.9593 | 0.0 | 0.8962 | 0.9376 |
| 0.0543 | 37.33 | 560 | 0.1607 | 0.6103 | 0.9546 | 0.9581 | nan | 0.9422 | 0.9670 | 0.0 | 0.8938 | 0.9373 |
| 0.063 | 38.67 | 580 | 0.1622 | 0.6099 | 0.9558 | 0.9574 | nan | 0.9504 | 0.9613 | 0.0 | 0.8933 | 0.9364 |
| 0.0549 | 40.0 | 600 | 0.1543 | 0.6118 | 0.9571 | 0.9590 | nan | 0.9503 | 0.9639 | 0.0 | 0.8969 | 0.9386 |
| 0.0766 | 41.33 | 620 | 0.1481 | 0.6139 | 0.9575 | 0.9606 | nan | 0.9467 | 0.9684 | 0.0 | 0.9005 | 0.9412 |
| 0.0616 | 42.67 | 640 | 0.1485 | 0.6151 | 0.9600 | 0.9614 | nan | 0.9550 | 0.9649 | 0.0 | 0.9032 | 0.9422 |
| 0.0872 | 44.0 | 660 | 0.1511 | 0.6144 | 0.9607 | 0.9609 | nan | 0.9602 | 0.9612 | 0.0 | 0.9022 | 0.9409 |
| 0.0677 | 45.33 | 680 | 0.1510 | 0.6139 | 0.9599 | 0.9604 | nan | 0.9580 | 0.9618 | 0.0 | 0.9012 | 0.9405 |
| 0.1075 | 46.67 | 700 | 0.1506 | 0.6145 | 0.9606 | 0.9610 | nan | 0.9592 | 0.9619 | 0.0 | 0.9024 | 0.9411 |
| 0.0485 | 48.0 | 720 | 0.1450 | 0.6159 | 0.9595 | 0.9621 | nan | 0.9506 | 0.9685 | 0.0 | 0.9043 | 0.9433 |
| 0.0972 | 49.33 | 740 | 0.1458 | 0.6158 | 0.9603 | 0.9619 | nan | 0.9546 | 0.9661 | 0.0 | 0.9044 | 0.9429 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
| [
"unlabeled",
"traversable",
"non-traversable"
] |
twdent/segformer-b1-finetuned-Hiking |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-Hiking
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the twdent/Hiking dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1129
- Mean Iou: 0.6261
- Mean Accuracy: 0.9707
- Overall Accuracy: 0.9700
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9730
- Accuracy Non-traversable: 0.9684
- Iou Unlabeled: 0.0
- Iou Traversable: 0.9226
- Iou Non-traversable: 0.9557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.5526 | 1.33 | 20 | 0.7232 | 0.5814 | 0.9404 | 0.9333 | nan | 0.9630 | 0.9177 | 0.0 | 0.8433 | 0.9009 |
| 0.3768 | 2.67 | 40 | 0.3616 | 0.5929 | 0.9504 | 0.9453 | nan | 0.9666 | 0.9341 | 0.0 | 0.8605 | 0.9183 |
| 0.3271 | 4.0 | 60 | 0.2683 | 0.6080 | 0.9606 | 0.9571 | nan | 0.9718 | 0.9494 | 0.0 | 0.8883 | 0.9358 |
| 0.2377 | 5.33 | 80 | 0.2754 | 0.5869 | 0.9256 | 0.9429 | nan | 0.8706 | 0.9807 | 0.0 | 0.8415 | 0.9191 |
| 0.2242 | 6.67 | 100 | 0.2299 | 0.6027 | 0.9447 | 0.9545 | nan | 0.9134 | 0.9760 | 0.0 | 0.8739 | 0.9341 |
| 0.2458 | 8.0 | 120 | 0.1939 | 0.6207 | 0.9604 | 0.9667 | nan | 0.9402 | 0.9805 | 0.0 | 0.9107 | 0.9513 |
| 0.1541 | 9.33 | 140 | 0.1988 | 0.6121 | 0.9654 | 0.9599 | nan | 0.9831 | 0.9477 | 0.0 | 0.8967 | 0.9395 |
| 0.1448 | 10.67 | 160 | 0.1722 | 0.6202 | 0.9677 | 0.9662 | nan | 0.9725 | 0.9629 | 0.0 | 0.9112 | 0.9494 |
| 0.1533 | 12.0 | 180 | 0.2112 | 0.5951 | 0.9570 | 0.9454 | nan | 0.9941 | 0.9199 | 0.0 | 0.8676 | 0.9176 |
| 0.107 | 13.33 | 200 | 0.1658 | 0.6139 | 0.9626 | 0.9614 | nan | 0.9665 | 0.9587 | 0.0 | 0.8992 | 0.9426 |
| 0.109 | 14.67 | 220 | 0.1342 | 0.6267 | 0.9714 | 0.9712 | nan | 0.9724 | 0.9705 | 0.0 | 0.9231 | 0.9569 |
| 0.1092 | 16.0 | 240 | 0.1448 | 0.6173 | 0.9690 | 0.9636 | nan | 0.9860 | 0.9519 | 0.0 | 0.9065 | 0.9453 |
| 0.0971 | 17.33 | 260 | 0.1282 | 0.6216 | 0.9691 | 0.9673 | nan | 0.9747 | 0.9635 | 0.0 | 0.9136 | 0.9512 |
| 0.1448 | 18.67 | 280 | 0.1504 | 0.6155 | 0.9661 | 0.9619 | nan | 0.9795 | 0.9526 | 0.0 | 0.9032 | 0.9434 |
| 0.0797 | 20.0 | 300 | 0.1312 | 0.6209 | 0.9669 | 0.9666 | nan | 0.9680 | 0.9659 | 0.0 | 0.9124 | 0.9503 |
| 0.0766 | 21.33 | 320 | 0.1164 | 0.6251 | 0.9667 | 0.9696 | nan | 0.9574 | 0.9760 | 0.0 | 0.9198 | 0.9555 |
| 0.0822 | 22.67 | 340 | 0.1365 | 0.6171 | 0.9638 | 0.9639 | nan | 0.9635 | 0.9641 | 0.0 | 0.9050 | 0.9464 |
| 0.075 | 24.0 | 360 | 0.1401 | 0.6160 | 0.9679 | 0.9621 | nan | 0.9862 | 0.9495 | 0.0 | 0.9046 | 0.9433 |
| 0.0684 | 25.33 | 380 | 0.1317 | 0.6190 | 0.9687 | 0.9645 | nan | 0.9822 | 0.9552 | 0.0 | 0.9099 | 0.9472 |
| 0.0767 | 26.67 | 400 | 0.1293 | 0.6195 | 0.9699 | 0.9651 | nan | 0.9851 | 0.9547 | 0.0 | 0.9107 | 0.9478 |
| 0.0576 | 28.0 | 420 | 0.1195 | 0.6236 | 0.9701 | 0.9679 | nan | 0.9771 | 0.9631 | 0.0 | 0.9180 | 0.9529 |
| 0.0596 | 29.33 | 440 | 0.1179 | 0.6248 | 0.9717 | 0.9692 | nan | 0.9794 | 0.9639 | 0.0 | 0.9204 | 0.9541 |
| 0.0564 | 30.67 | 460 | 0.1110 | 0.6264 | 0.9719 | 0.9701 | nan | 0.9777 | 0.9661 | 0.0 | 0.9233 | 0.9559 |
| 0.0496 | 32.0 | 480 | 0.1063 | 0.6284 | 0.9726 | 0.9714 | nan | 0.9761 | 0.9690 | 0.0 | 0.9271 | 0.9581 |
| 0.0722 | 33.33 | 500 | 0.1073 | 0.6272 | 0.9712 | 0.9711 | nan | 0.9716 | 0.9708 | 0.0 | 0.9244 | 0.9573 |
| 0.0465 | 34.67 | 520 | 0.1228 | 0.6220 | 0.9692 | 0.9669 | nan | 0.9763 | 0.9620 | 0.0 | 0.9150 | 0.9510 |
| 0.0655 | 36.0 | 540 | 0.1142 | 0.6245 | 0.9704 | 0.9689 | nan | 0.9752 | 0.9656 | 0.0 | 0.9196 | 0.9540 |
| 0.0516 | 37.33 | 560 | 0.1197 | 0.6238 | 0.9687 | 0.9684 | nan | 0.9696 | 0.9677 | 0.0 | 0.9181 | 0.9533 |
| 0.0774 | 38.67 | 580 | 0.1114 | 0.6266 | 0.9706 | 0.9704 | nan | 0.9712 | 0.9700 | 0.0 | 0.9234 | 0.9565 |
| 0.0572 | 40.0 | 600 | 0.1124 | 0.6261 | 0.9707 | 0.9700 | nan | 0.9730 | 0.9684 | 0.0 | 0.9227 | 0.9558 |
| 0.0554 | 41.33 | 620 | 0.1116 | 0.6273 | 0.9718 | 0.9709 | nan | 0.9747 | 0.9688 | 0.0 | 0.9248 | 0.9570 |
| 0.0438 | 42.67 | 640 | 0.1192 | 0.6259 | 0.9707 | 0.9694 | nan | 0.9746 | 0.9667 | 0.0 | 0.9225 | 0.9551 |
| 0.0486 | 44.0 | 660 | 0.1186 | 0.6248 | 0.9709 | 0.9689 | nan | 0.9775 | 0.9643 | 0.0 | 0.9203 | 0.9540 |
| 0.0582 | 45.33 | 680 | 0.1194 | 0.6250 | 0.9705 | 0.9691 | nan | 0.9751 | 0.9660 | 0.0 | 0.9209 | 0.9542 |
| 0.0643 | 46.67 | 700 | 0.1157 | 0.6252 | 0.9706 | 0.9692 | nan | 0.9750 | 0.9662 | 0.0 | 0.9209 | 0.9546 |
| 0.057 | 48.0 | 720 | 0.1181 | 0.6251 | 0.9708 | 0.9691 | nan | 0.9763 | 0.9654 | 0.0 | 0.9210 | 0.9543 |
| 0.0468 | 49.33 | 740 | 0.1129 | 0.6261 | 0.9707 | 0.9700 | nan | 0.9730 | 0.9684 | 0.0 | 0.9226 | 0.9557 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
| [
"unlabeled",
"traversable",
"non-traversable"
] |
twdent/segformer-b5-finetuned-Hiking |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-Hiking
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the twdent/Hiking dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1401
- Mean Iou: 0.6237
- Mean Accuracy: 0.9673
- Overall Accuracy: 0.9683
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9641
- Accuracy Non-traversable: 0.9705
- Iou Unlabeled: 0.0
- Iou Traversable: 0.9178
- Iou Non-traversable: 0.9532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.2675 | 1.33 | 20 | 0.2742 | 0.6058 | 0.9616 | 0.9550 | nan | 0.9826 | 0.9406 | 0.0 | 0.8853 | 0.9321 |
| 0.1418 | 2.67 | 40 | 0.1827 | 0.6073 | 0.9562 | 0.9566 | nan | 0.9548 | 0.9575 | 0.0 | 0.8858 | 0.9360 |
| 0.0949 | 4.0 | 60 | 0.1561 | 0.6002 | 0.9382 | 0.9523 | nan | 0.8931 | 0.9832 | 0.0 | 0.8692 | 0.9314 |
| 0.0684 | 5.33 | 80 | 0.1364 | 0.6135 | 0.9556 | 0.9614 | nan | 0.9369 | 0.9742 | 0.0 | 0.8967 | 0.9437 |
| 0.0627 | 6.67 | 100 | 0.1289 | 0.6122 | 0.9506 | 0.9610 | nan | 0.9177 | 0.9836 | 0.0 | 0.8928 | 0.9438 |
| 0.0625 | 8.0 | 120 | 0.1097 | 0.6208 | 0.9610 | 0.9658 | nan | 0.9458 | 0.9762 | 0.0 | 0.9113 | 0.9510 |
| 0.0371 | 9.33 | 140 | 0.1361 | 0.6130 | 0.9551 | 0.9610 | nan | 0.9361 | 0.9741 | 0.0 | 0.8959 | 0.9431 |
| 0.0409 | 10.67 | 160 | 0.1239 | 0.6194 | 0.9615 | 0.9653 | nan | 0.9494 | 0.9737 | 0.0 | 0.9086 | 0.9494 |
| 0.0457 | 12.0 | 180 | 0.0993 | 0.6281 | 0.9715 | 0.9713 | nan | 0.9723 | 0.9707 | 0.0 | 0.9264 | 0.9579 |
| 0.0368 | 13.33 | 200 | 0.1354 | 0.6146 | 0.9563 | 0.9617 | nan | 0.9389 | 0.9737 | 0.0 | 0.8993 | 0.9446 |
| 0.0667 | 14.67 | 220 | 0.1208 | 0.6171 | 0.9565 | 0.9644 | nan | 0.9316 | 0.9815 | 0.0 | 0.9032 | 0.9482 |
| 0.029 | 16.0 | 240 | 0.0946 | 0.6291 | 0.9695 | 0.9724 | nan | 0.9606 | 0.9785 | 0.0 | 0.9276 | 0.9596 |
| 0.0467 | 17.33 | 260 | 0.1188 | 0.6224 | 0.9655 | 0.9676 | nan | 0.9589 | 0.9721 | 0.0 | 0.9151 | 0.9522 |
| 0.0449 | 18.67 | 280 | 0.1201 | 0.6212 | 0.9638 | 0.9667 | nan | 0.9545 | 0.9731 | 0.0 | 0.9125 | 0.9511 |
| 0.0353 | 20.0 | 300 | 0.1285 | 0.6234 | 0.9687 | 0.9681 | nan | 0.9706 | 0.9668 | 0.0 | 0.9174 | 0.9527 |
| 0.025 | 21.33 | 320 | 0.1292 | 0.6204 | 0.9641 | 0.9659 | nan | 0.9582 | 0.9699 | 0.0 | 0.9114 | 0.9500 |
| 0.0244 | 22.67 | 340 | 0.1352 | 0.6208 | 0.9665 | 0.9664 | nan | 0.9667 | 0.9662 | 0.0 | 0.9124 | 0.9501 |
| 0.035 | 24.0 | 360 | 0.1260 | 0.6252 | 0.9699 | 0.9693 | nan | 0.9718 | 0.9681 | 0.0 | 0.9211 | 0.9544 |
| 0.0295 | 25.33 | 380 | 0.1190 | 0.6244 | 0.9669 | 0.9688 | nan | 0.9607 | 0.9730 | 0.0 | 0.9190 | 0.9543 |
| 0.032 | 26.67 | 400 | 0.1258 | 0.6253 | 0.9694 | 0.9695 | nan | 0.9693 | 0.9695 | 0.0 | 0.9211 | 0.9547 |
| 0.0241 | 28.0 | 420 | 0.1255 | 0.6230 | 0.9658 | 0.9678 | nan | 0.9593 | 0.9723 | 0.0 | 0.9164 | 0.9527 |
| 0.0246 | 29.33 | 440 | 0.1273 | 0.6238 | 0.9675 | 0.9683 | nan | 0.9651 | 0.9699 | 0.0 | 0.9179 | 0.9534 |
| 0.0214 | 30.67 | 460 | 0.1321 | 0.6233 | 0.9670 | 0.9675 | nan | 0.9652 | 0.9687 | 0.0 | 0.9171 | 0.9527 |
| 0.0236 | 32.0 | 480 | 0.1289 | 0.6241 | 0.9687 | 0.9685 | nan | 0.9695 | 0.9679 | 0.0 | 0.9189 | 0.9534 |
| 0.0238 | 33.33 | 500 | 0.1309 | 0.6234 | 0.9664 | 0.9680 | nan | 0.9612 | 0.9716 | 0.0 | 0.9172 | 0.9529 |
| 0.0204 | 34.67 | 520 | 0.1271 | 0.6249 | 0.9681 | 0.9693 | nan | 0.9643 | 0.9719 | 0.0 | 0.9201 | 0.9547 |
| 0.0243 | 36.0 | 540 | 0.1264 | 0.6248 | 0.9679 | 0.9693 | nan | 0.9636 | 0.9723 | 0.0 | 0.9196 | 0.9547 |
| 0.0259 | 37.33 | 560 | 0.1305 | 0.6226 | 0.9656 | 0.9679 | nan | 0.9582 | 0.9730 | 0.0 | 0.9154 | 0.9525 |
| 0.0341 | 38.67 | 580 | 0.1277 | 0.6245 | 0.9674 | 0.9690 | nan | 0.9623 | 0.9725 | 0.0 | 0.9192 | 0.9543 |
| 0.0275 | 40.0 | 600 | 0.1369 | 0.6221 | 0.9653 | 0.9672 | nan | 0.9590 | 0.9715 | 0.0 | 0.9147 | 0.9516 |
| 0.0303 | 41.33 | 620 | 0.1380 | 0.6235 | 0.9674 | 0.9681 | nan | 0.9650 | 0.9698 | 0.0 | 0.9175 | 0.9530 |
| 0.0207 | 42.67 | 640 | 0.1389 | 0.6237 | 0.9677 | 0.9682 | nan | 0.9662 | 0.9692 | 0.0 | 0.9180 | 0.9531 |
| 0.0231 | 44.0 | 660 | 0.1369 | 0.6243 | 0.9679 | 0.9688 | nan | 0.9652 | 0.9707 | 0.0 | 0.9190 | 0.9538 |
| 0.0249 | 45.33 | 680 | 0.1379 | 0.6237 | 0.9672 | 0.9683 | nan | 0.9640 | 0.9705 | 0.0 | 0.9179 | 0.9532 |
| 0.0382 | 46.67 | 700 | 0.1384 | 0.6239 | 0.9677 | 0.9685 | nan | 0.9650 | 0.9704 | 0.0 | 0.9182 | 0.9534 |
| 0.0238 | 48.0 | 720 | 0.1420 | 0.6230 | 0.9668 | 0.9677 | nan | 0.9640 | 0.9697 | 0.0 | 0.9166 | 0.9524 |
| 0.0212 | 49.33 | 740 | 0.1401 | 0.6237 | 0.9673 | 0.9683 | nan | 0.9641 | 0.9705 | 0.0 | 0.9178 | 0.9532 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
| [
"unlabeled",
"traversable",
"non-traversable"
] |
twdent/segformer-b5-finetuned-HikingHD |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-HikingHD
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the twdent/HikingHD dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1077
- Mean Iou: 0.6364
- Mean Accuracy: 0.9770
- Overall Accuracy: 0.9771
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9758
- Accuracy Non-traversable: 0.9781
- Iou Unlabeled: 0.0
- Iou Traversable: 0.9493
- Iou Non-traversable: 0.9600
- Local Testing:
- Average inference time: 0.9943107657962376
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.1595 | 1.33 | 20 | 0.1789 | 0.9314 | 0.9657 | 0.9649 | nan | 0.9727 | 0.9588 | nan | 0.9240 | 0.9388 |
| 0.3593 | 2.67 | 40 | 0.1137 | 0.9429 | 0.9731 | 0.9709 | nan | 0.9911 | 0.9551 | nan | 0.9372 | 0.9485 |
| 0.1002 | 4.0 | 60 | 0.0979 | 0.9363 | 0.9661 | 0.9677 | nan | 0.9531 | 0.9791 | nan | 0.9282 | 0.9444 |
| 0.0348 | 5.33 | 80 | 0.0933 | 0.9442 | 0.9713 | 0.9717 | nan | 0.9675 | 0.9750 | nan | 0.9375 | 0.9509 |
| 0.0374 | 6.67 | 100 | 0.0884 | 0.9459 | 0.9714 | 0.9727 | nan | 0.9611 | 0.9817 | nan | 0.9391 | 0.9528 |
| 0.0447 | 8.0 | 120 | 0.0886 | 0.9491 | 0.9737 | 0.9743 | nan | 0.9684 | 0.9789 | nan | 0.9430 | 0.9553 |
| 0.0464 | 9.33 | 140 | 0.0790 | 0.9564 | 0.9783 | 0.9780 | nan | 0.9804 | 0.9762 | nan | 0.9514 | 0.9614 |
| 0.0421 | 10.67 | 160 | 0.0868 | 0.9540 | 0.9764 | 0.9768 | nan | 0.9733 | 0.9796 | nan | 0.9485 | 0.9596 |
| 0.0253 | 12.0 | 180 | 0.0887 | 0.9530 | 0.9756 | 0.9763 | nan | 0.9700 | 0.9812 | nan | 0.9472 | 0.9587 |
| 0.0364 | 13.33 | 200 | 0.0960 | 0.9494 | 0.9733 | 0.9745 | nan | 0.9638 | 0.9829 | nan | 0.9431 | 0.9558 |
| 0.0276 | 14.67 | 220 | 0.0980 | 0.9470 | 0.9717 | 0.9732 | nan | 0.9595 | 0.9840 | nan | 0.9402 | 0.9538 |
| 0.0279 | 16.0 | 240 | 0.0914 | 0.9534 | 0.9761 | 0.9765 | nan | 0.9725 | 0.9796 | nan | 0.9478 | 0.9590 |
| 0.026 | 17.33 | 260 | 0.0886 | 0.9557 | 0.9778 | 0.9777 | nan | 0.9792 | 0.9764 | nan | 0.9506 | 0.9609 |
| 0.0228 | 18.67 | 280 | 0.0888 | 0.9547 | 0.9775 | 0.9771 | nan | 0.9804 | 0.9745 | nan | 0.9495 | 0.9599 |
| 0.0259 | 20.0 | 300 | 0.0984 | 0.9505 | 0.9742 | 0.9750 | nan | 0.9679 | 0.9806 | nan | 0.9444 | 0.9565 |
| 0.0306 | 21.33 | 320 | 0.0890 | 0.9542 | 0.9763 | 0.9769 | nan | 0.9716 | 0.9811 | nan | 0.9487 | 0.9598 |
| 0.0305 | 22.67 | 340 | 0.0967 | 0.6352 | 0.9752 | 0.9762 | nan | 0.9669 | 0.9834 | 0.0 | 0.9468 | 0.9586 |
| 0.0219 | 24.0 | 360 | 0.0983 | 0.9538 | 0.9764 | 0.9767 | nan | 0.9735 | 0.9792 | nan | 0.9483 | 0.9593 |
| 0.023 | 25.33 | 380 | 0.0940 | 0.6368 | 0.9771 | 0.9774 | nan | 0.9743 | 0.9799 | 0.0 | 0.9499 | 0.9606 |
| 0.0217 | 26.67 | 400 | 0.0973 | 0.6360 | 0.9767 | 0.9768 | nan | 0.9758 | 0.9776 | 0.0 | 0.9486 | 0.9595 |
| 0.0267 | 28.0 | 420 | 0.1023 | 0.6360 | 0.9770 | 0.9768 | nan | 0.9792 | 0.9749 | 0.0 | 0.9487 | 0.9593 |
| 0.0202 | 29.33 | 440 | 0.0955 | 0.6376 | 0.9783 | 0.9780 | nan | 0.9802 | 0.9764 | 0.0 | 0.9514 | 0.9615 |
| 0.0225 | 30.67 | 460 | 0.1016 | 0.6360 | 0.9763 | 0.9768 | nan | 0.9727 | 0.9800 | 0.0 | 0.9484 | 0.9595 |
| 0.0288 | 32.0 | 480 | 0.1026 | 0.6354 | 0.9756 | 0.9763 | nan | 0.9697 | 0.9815 | 0.0 | 0.9473 | 0.9588 |
| 0.0209 | 33.33 | 500 | 0.0977 | 0.6370 | 0.9771 | 0.9776 | nan | 0.9735 | 0.9808 | 0.0 | 0.9502 | 0.9609 |
| 0.0202 | 34.67 | 520 | 0.1005 | 0.6367 | 0.9772 | 0.9773 | nan | 0.9762 | 0.9782 | 0.0 | 0.9497 | 0.9604 |
| 0.0194 | 36.0 | 540 | 0.1032 | 0.6365 | 0.9771 | 0.9772 | nan | 0.9766 | 0.9776 | 0.0 | 0.9495 | 0.9601 |
| 0.0165 | 37.33 | 560 | 0.1013 | 0.6373 | 0.9777 | 0.9778 | nan | 0.9769 | 0.9785 | 0.0 | 0.9508 | 0.9612 |
| 0.0226 | 38.67 | 580 | 0.1005 | 0.6367 | 0.9771 | 0.9773 | nan | 0.9752 | 0.9790 | 0.0 | 0.9497 | 0.9604 |
| 0.0206 | 40.0 | 600 | 0.1032 | 0.6369 | 0.9773 | 0.9775 | nan | 0.9757 | 0.9789 | 0.0 | 0.9501 | 0.9607 |
| 0.016 | 41.33 | 620 | 0.1007 | 0.6373 | 0.9776 | 0.9777 | nan | 0.9761 | 0.9790 | 0.0 | 0.9506 | 0.9611 |
| 0.012 | 42.67 | 640 | 0.1048 | 0.6364 | 0.9768 | 0.9771 | nan | 0.9748 | 0.9789 | 0.0 | 0.9493 | 0.9601 |
| 0.0261 | 44.0 | 660 | 0.1073 | 0.6364 | 0.9770 | 0.9771 | nan | 0.9760 | 0.9780 | 0.0 | 0.9493 | 0.9600 |
| 0.0125 | 45.33 | 680 | 0.1088 | 0.6357 | 0.9761 | 0.9765 | nan | 0.9727 | 0.9795 | 0.0 | 0.9479 | 0.9591 |
| 0.0259 | 46.67 | 700 | 0.1073 | 0.6365 | 0.9770 | 0.9772 | nan | 0.9760 | 0.9780 | 0.0 | 0.9494 | 0.9601 |
| 0.0173 | 48.0 | 720 | 0.1052 | 0.6366 | 0.9770 | 0.9772 | nan | 0.9755 | 0.9785 | 0.0 | 0.9495 | 0.9602 |
| 0.0162 | 49.33 | 740 | 0.1077 | 0.6364 | 0.9770 | 0.9771 | nan | 0.9758 | 0.9781 | 0.0 | 0.9493 | 0.9600 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
| [
"unlabeled",
"traversable",
"non-traversable"
] |
twdent/segformer-b0-finetuned-HikingHD |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-HikingHD
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the twdent/HikingHD dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1189
- Mean Iou: 0.9224
- Mean Accuracy: 0.9627
- Overall Accuracy: 0.9622
- Accuracy Traversable: 0.9645
- Accuracy Non-traversable: 0.9608
- Iou Traversable: 0.9032
- Iou Non-traversable: 0.9415
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Traversable | Accuracy Non-traversable | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------:|:------------------------:|:---------------:|:-------------------:|
| 0.1555 | 1.33 | 20 | 0.3462 | 0.8817 | 0.9484 | 0.9401 | 0.9792 | 0.9176 | 0.8568 | 0.9067 |
| 0.1168 | 2.67 | 40 | 0.1551 | 0.8998 | 0.9529 | 0.9503 | 0.9628 | 0.9431 | 0.8764 | 0.9233 |
| 0.1054 | 4.0 | 60 | 0.1566 | 0.8910 | 0.9527 | 0.9452 | 0.9807 | 0.9247 | 0.8675 | 0.9146 |
| 0.0775 | 5.33 | 80 | 0.1892 | 0.8645 | 0.9415 | 0.9304 | 0.9830 | 0.9000 | 0.8378 | 0.8912 |
| 0.1111 | 6.67 | 100 | 0.1369 | 0.9015 | 0.9515 | 0.9514 | 0.9520 | 0.9511 | 0.8776 | 0.9255 |
| 0.0737 | 8.0 | 120 | 0.1358 | 0.9005 | 0.9503 | 0.9510 | 0.9476 | 0.9529 | 0.8761 | 0.9249 |
| 0.0908 | 9.33 | 140 | 0.1186 | 0.9097 | 0.9565 | 0.9556 | 0.9599 | 0.9532 | 0.8878 | 0.9316 |
| 0.0654 | 10.67 | 160 | 0.1177 | 0.9182 | 0.9624 | 0.9599 | 0.9719 | 0.9529 | 0.8986 | 0.9377 |
| 0.0871 | 12.0 | 180 | 0.1220 | 0.9105 | 0.9546 | 0.9563 | 0.9482 | 0.9609 | 0.8880 | 0.9330 |
| 0.0493 | 13.33 | 200 | 0.1237 | 0.9126 | 0.9559 | 0.9573 | 0.9504 | 0.9613 | 0.8907 | 0.9346 |
| 0.0643 | 14.67 | 220 | 0.1232 | 0.9107 | 0.9503 | 0.9567 | 0.9265 | 0.9741 | 0.8868 | 0.9345 |
| 0.0491 | 16.0 | 240 | 0.1199 | 0.9140 | 0.9573 | 0.9580 | 0.9545 | 0.9600 | 0.8926 | 0.9355 |
| 0.0556 | 17.33 | 260 | 0.1114 | 0.9199 | 0.9613 | 0.9609 | 0.9628 | 0.9598 | 0.9001 | 0.9396 |
| 0.0484 | 18.67 | 280 | 0.1137 | 0.9189 | 0.9628 | 0.9603 | 0.9720 | 0.9535 | 0.8995 | 0.9383 |
| 0.0607 | 20.0 | 300 | 0.1230 | 0.9163 | 0.9625 | 0.9588 | 0.9762 | 0.9488 | 0.8966 | 0.9359 |
| 0.044 | 21.33 | 320 | 0.1349 | 0.9077 | 0.9567 | 0.9545 | 0.9648 | 0.9485 | 0.8858 | 0.9297 |
| 0.0426 | 22.67 | 340 | 0.1313 | 0.9070 | 0.9563 | 0.9541 | 0.9646 | 0.9481 | 0.8850 | 0.9291 |
| 0.0269 | 24.0 | 360 | 0.1143 | 0.9226 | 0.9668 | 0.9620 | 0.9850 | 0.9487 | 0.9046 | 0.9406 |
| 0.0593 | 25.33 | 380 | 0.1038 | 0.9235 | 0.9616 | 0.9629 | 0.9570 | 0.9662 | 0.9041 | 0.9428 |
| 0.0321 | 26.67 | 400 | 0.1136 | 0.9179 | 0.9598 | 0.9599 | 0.9595 | 0.9602 | 0.8976 | 0.9383 |
| 0.0752 | 28.0 | 420 | 0.1196 | 0.9194 | 0.9627 | 0.9606 | 0.9705 | 0.9548 | 0.9000 | 0.9388 |
| 0.0812 | 29.33 | 440 | 0.1253 | 0.9216 | 0.9665 | 0.9615 | 0.9854 | 0.9477 | 0.9035 | 0.9398 |
| 0.0329 | 30.67 | 460 | 0.1023 | 0.9294 | 0.9671 | 0.9657 | 0.9725 | 0.9618 | 0.9120 | 0.9467 |
| 0.035 | 32.0 | 480 | 0.0969 | 0.9282 | 0.9658 | 0.9651 | 0.9686 | 0.9631 | 0.9104 | 0.9460 |
| 0.0332 | 33.33 | 500 | 0.1086 | 0.9231 | 0.9620 | 0.9626 | 0.9598 | 0.9643 | 0.9038 | 0.9424 |
| 0.0343 | 34.67 | 520 | 0.0962 | 0.9312 | 0.9689 | 0.9666 | 0.9774 | 0.9603 | 0.9145 | 0.9480 |
| 0.0337 | 36.0 | 540 | 0.1072 | 0.9251 | 0.9649 | 0.9635 | 0.9703 | 0.9595 | 0.9067 | 0.9434 |
| 0.0367 | 37.33 | 560 | 0.1033 | 0.9302 | 0.9692 | 0.9660 | 0.9809 | 0.9574 | 0.9135 | 0.9470 |
| 0.0327 | 38.67 | 580 | 0.1014 | 0.9312 | 0.9681 | 0.9666 | 0.9734 | 0.9627 | 0.9143 | 0.9482 |
| 0.0293 | 40.0 | 600 | 0.1202 | 0.9207 | 0.9622 | 0.9613 | 0.9656 | 0.9588 | 0.9012 | 0.9401 |
| 0.0272 | 41.33 | 620 | 0.1113 | 0.9246 | 0.9634 | 0.9633 | 0.9637 | 0.9631 | 0.9058 | 0.9433 |
| 0.0304 | 42.67 | 640 | 0.1070 | 0.9253 | 0.9643 | 0.9637 | 0.9668 | 0.9619 | 0.9069 | 0.9438 |
| 0.037 | 44.0 | 660 | 0.1120 | 0.9228 | 0.9629 | 0.9624 | 0.9648 | 0.9610 | 0.9037 | 0.9419 |
| 0.0323 | 45.33 | 680 | 0.1132 | 0.9213 | 0.9615 | 0.9617 | 0.9609 | 0.9621 | 0.9016 | 0.9409 |
| 0.0281 | 46.67 | 700 | 0.1203 | 0.9199 | 0.9616 | 0.9609 | 0.9643 | 0.9589 | 0.9002 | 0.9396 |
| 0.0339 | 48.0 | 720 | 0.1124 | 0.9253 | 0.9646 | 0.9637 | 0.9683 | 0.9610 | 0.9070 | 0.9437 |
| 0.0289 | 49.33 | 740 | 0.1189 | 0.9224 | 0.9627 | 0.9622 | 0.9645 | 0.9608 | 0.9032 | 0.9415 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"traversable",
"non-traversable"
] |
giuseppemartino/model1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model1
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the giuseppemartino/i-SAID_custom_or_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1646
- Mean Iou: 0.2689
- Mean Accuracy: 0.3089
- Overall Accuracy: 0.3928
- Accuracy Background: nan
- Accuracy Ship: 0.7889
- Accuracy Small-vehicle: 0.3939
- Accuracy Tennis-court: 0.6399
- Accuracy Helicopter: nan
- Accuracy Basketball-court: 0.0
- Accuracy Ground-track-field: 0.4337
- Accuracy Swimming-pool: 0.6049
- Accuracy Harbor: 0.3386
- Accuracy Soccer-ball-field: 0.2551
- Accuracy Plane: 0.0001
- Accuracy Storage-tank: 0.0
- Accuracy Baseball-diamond: 0.5217
- Accuracy Large-vehicle: 0.3477
- Accuracy Bridge: 0.0
- Accuracy Roundabout: 0.0
- Iou Background: 0.0
- Iou Ship: 0.6137
- Iou Small-vehicle: 0.3354
- Iou Tennis-court: 0.6399
- Iou Helicopter: nan
- Iou Basketball-court: 0.0
- Iou Ground-track-field: 0.4084
- Iou Swimming-pool: 0.6049
- Iou Harbor: 0.3165
- Iou Soccer-ball-field: 0.2514
- Iou Plane: 0.0001
- Iou Storage-tank: 0.0
- Iou Baseball-diamond: 0.5217
- Iou Large-vehicle: 0.3418
- Iou Bridge: 0.0
- Iou Roundabout: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 840
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
| 1.1466 | 1.0 | 105 | 0.3419 | 0.0260 | 0.0279 | 0.0687 | nan | 0.0068 | 0.0036 | 0.3562 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0240 | 0.0 | 0.0 | 0.0 | 0.0067 | 0.0036 | 0.3562 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0240 | 0.0 | 0.0 |
| 0.3289 | 2.0 | 210 | 0.2301 | 0.1252 | 0.1441 | 0.2674 | nan | 0.5316 | 0.1793 | 0.6775 | nan | 0.0 | 0.0324 | 0.1854 | 0.1185 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2923 | 0.0 | 0.0 | 0.0 | 0.4189 | 0.1612 | 0.6752 | nan | 0.0 | 0.0321 | 0.1854 | 0.1157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2898 | 0.0 | 0.0 |
| 0.1819 | 3.0 | 315 | 0.1965 | 0.1611 | 0.1937 | 0.3286 | nan | 0.7305 | 0.2842 | 0.4229 | nan | 0.0 | 0.3566 | 0.2424 | 0.1707 | 0.0739 | 0.0 | 0.0 | 0.0 | 0.4300 | 0.0 | 0.0 | 0.0 | 0.5605 | 0.2492 | 0.4229 | nan | 0.0 | 0.2817 | 0.2424 | 0.1637 | 0.0738 | 0.0 | 0.0 | 0.0 | 0.4223 | 0.0 | 0.0 |
| 0.1505 | 4.0 | 420 | 0.1760 | 0.1987 | 0.2352 | 0.3689 | nan | 0.7552 | 0.3079 | 0.5796 | nan | 0.0 | 0.4515 | 0.4367 | 0.2065 | 0.1437 | 0.0 | 0.0 | 0.0 | 0.4115 | 0.0 | 0.0 | 0.0 | 0.5715 | 0.2762 | 0.5790 | nan | 0.0 | 0.3752 | 0.4367 | 0.1957 | 0.1435 | 0.0 | 0.0 | 0.0 | 0.4029 | 0.0 | 0.0 |
| 0.1269 | 5.0 | 525 | 0.1688 | 0.2239 | 0.2616 | 0.3561 | nan | 0.8249 | 0.3133 | 0.5309 | nan | 0.0 | 0.3966 | 0.6398 | 0.2513 | 0.1975 | 0.0003 | 0.0 | 0.1336 | 0.3738 | 0.0 | 0.0 | 0.0 | 0.6006 | 0.2833 | 0.5309 | nan | 0.0 | 0.3711 | 0.6398 | 0.2378 | 0.1957 | 0.0003 | 0.0 | 0.1336 | 0.3661 | 0.0 | 0.0 |
| 0.1012 | 6.0 | 630 | 0.1763 | 0.2563 | 0.3036 | 0.3830 | nan | 0.7977 | 0.4801 | 0.6774 | nan | 0.0 | 0.4913 | 0.7772 | 0.2993 | 0.2702 | 0.0 | 0.0 | 0.2024 | 0.2541 | 0.0 | 0.0 | 0.0 | 0.6060 | 0.3488 | 0.6774 | nan | 0.0 | 0.4359 | 0.7767 | 0.2816 | 0.2638 | 0.0 | 0.0 | 0.2024 | 0.2515 | 0.0 | 0.0 |
| 0.0996 | 7.0 | 735 | 0.1687 | 0.2515 | 0.2906 | 0.3644 | nan | 0.7947 | 0.3775 | 0.5884 | nan | 0.0 | 0.4452 | 0.5756 | 0.2734 | 0.2140 | 0.0 | 0.0 | 0.4769 | 0.3225 | 0.0 | 0.0 | 0.0 | 0.6093 | 0.3246 | 0.5884 | nan | 0.0 | 0.4081 | 0.5756 | 0.2599 | 0.2128 | 0.0 | 0.0 | 0.4769 | 0.3174 | 0.0 | 0.0 |
| 0.0945 | 8.0 | 840 | 0.1646 | 0.2689 | 0.3089 | 0.3928 | nan | 0.7889 | 0.3939 | 0.6399 | nan | 0.0 | 0.4337 | 0.6049 | 0.3386 | 0.2551 | 0.0001 | 0.0 | 0.5217 | 0.3477 | 0.0 | 0.0 | 0.0 | 0.6137 | 0.3354 | 0.6399 | nan | 0.0 | 0.4084 | 0.6049 | 0.3165 | 0.2514 | 0.0001 | 0.0 | 0.5217 | 0.3418 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"background",
"ship",
"small-vehicle",
"tennis-court",
"helicopter",
"basketball-court",
"ground-track-field",
"swimming-pool",
"harbor",
"soccer-ball-field",
"plane",
"storage-tank",
"baseball-diamond",
"large-vehicle",
"bridge",
"roundabout"
] |
RyuNumchon/segformer-b0-finetuned-v0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-v0
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the tontokoton/artery-ultrasound-siit dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1250
- Mean Iou: 0.5989
- Mean Accuracy: 0.7803
- Overall Accuracy: 0.9315
- Accuracy Artery: nan
- Accuracy Vein: 0.8041
- Accuracy Nerve: 0.7428
- Accuracy Muscle1: 0.6254
- Accuracy Muscle2: 0.9488
- Accuracy Muscle3: nan
- Accuracy Muscle4: nan
- Accuracy Unknown: nan
- Iou Artery: 0.0
- Iou Vein: 0.7805
- Iou Nerve: 0.7054
- Iou Muscle1: 0.5651
- Iou Muscle2: 0.9432
- Iou Muscle3: nan
- Iou Muscle4: nan
- Iou Unknown: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Artery | Accuracy Vein | Accuracy Nerve | Accuracy Muscle1 | Accuracy Muscle2 | Accuracy Muscle3 | Accuracy Muscle4 | Accuracy Unknown | Iou Artery | Iou Vein | Iou Nerve | Iou Muscle1 | Iou Muscle2 | Iou Muscle3 | Iou Muscle4 | Iou Unknown |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------:|:-------------:|:--------------:|:----------------:|:----------------:|:----------------:|:----------------:|:----------------:|:----------:|:--------:|:---------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|
| 1.5981 | 0.25 | 10 | 1.9054 | 0.1100 | 0.2407 | 0.8771 | nan | 0.0 | 0.0010 | 0.0 | 0.9616 | nan | nan | nan | 0.0 | 0.0 | 0.0007 | 0.0 | 0.8789 | 0.0 | 0.0 | 0.0 |
| 1.3165 | 0.5 | 20 | 1.5810 | 0.1254 | 0.2400 | 0.8755 | nan | 0.0 | 0.0 | 0.0 | 0.9599 | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8775 | 0.0 | nan | 0.0 |
| 1.3184 | 0.75 | 30 | 1.3830 | 0.1284 | 0.2460 | 0.8974 | nan | 0.0 | 0.0 | 0.0 | 0.9839 | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8987 | 0.0 | nan | 0.0 |
| 1.2067 | 1.0 | 40 | 1.1315 | 0.1309 | 0.2493 | 0.8770 | nan | 0.0368 | 0.0006 | 0.0 | 0.9598 | nan | nan | nan | 0.0 | 0.0363 | 0.0006 | 0.0 | 0.8797 | 0.0 | nan | 0.0 |
| 1.0176 | 1.25 | 50 | 1.0023 | 0.1613 | 0.2607 | 0.8512 | nan | 0.1131 | 0.0017 | 0.0 | 0.9280 | nan | nan | nan | 0.0 | 0.1081 | 0.0017 | 0.0 | 0.8583 | nan | nan | 0.0 |
| 0.8938 | 1.5 | 60 | 0.9674 | 0.2064 | 0.2783 | 0.8904 | nan | 0.1438 | 0.0 | 0.0 | 0.9696 | nan | nan | nan | 0.0 | 0.1383 | 0.0 | 0.0 | 0.8937 | nan | nan | nan |
| 0.8061 | 1.75 | 70 | 0.9469 | 0.2357 | 0.3240 | 0.8960 | nan | 0.3288 | 0.0 | 0.0 | 0.9672 | nan | nan | nan | 0.0 | 0.2740 | 0.0 | 0.0 | 0.9046 | nan | nan | nan |
| 0.936 | 2.0 | 80 | 0.9020 | 0.2702 | 0.3954 | 0.9096 | nan | 0.6123 | 0.0 | 0.0 | 0.9691 | nan | nan | nan | 0.0 | 0.4288 | 0.0 | 0.0 | 0.9223 | nan | nan | nan |
| 0.8633 | 2.25 | 90 | 0.7953 | 0.2578 | 0.3520 | 0.8981 | nan | 0.4406 | 0.0031 | 0.0 | 0.9642 | nan | nan | nan | 0.0 | 0.3816 | 0.0031 | 0.0 | 0.9044 | nan | nan | nan |
| 0.6906 | 2.5 | 100 | 0.8386 | 0.2606 | 0.3572 | 0.9189 | nan | 0.4401 | 0.0014 | 0.0 | 0.9871 | nan | nan | nan | 0.0 | 0.3769 | 0.0014 | 0.0 | 0.9248 | nan | nan | nan |
| 0.7863 | 2.75 | 110 | 0.7661 | 0.2831 | 0.4056 | 0.9112 | nan | 0.6438 | 0.0096 | 0.0 | 0.9691 | nan | nan | nan | 0.0 | 0.4827 | 0.0096 | 0.0 | 0.9231 | nan | nan | nan |
| 0.6937 | 3.0 | 120 | 0.6903 | 0.2875 | 0.4062 | 0.9096 | nan | 0.6577 | 0.0 | 0.0 | 0.9670 | nan | nan | nan | 0.0 | 0.5187 | 0.0 | 0.0 | 0.9190 | nan | nan | nan |
| 0.6985 | 3.25 | 130 | 0.6297 | 0.2878 | 0.4463 | 0.8957 | nan | 0.8255 | 0.0160 | 0.0 | 0.9435 | nan | nan | nan | 0.0 | 0.5071 | 0.0160 | 0.0 | 0.9158 | nan | nan | nan |
| 0.5591 | 3.5 | 140 | 0.6197 | 0.3199 | 0.4766 | 0.9248 | nan | 0.8379 | 0.0965 | 0.0 | 0.9721 | nan | nan | nan | 0.0 | 0.5623 | 0.0951 | 0.0 | 0.9420 | nan | nan | nan |
| 0.5853 | 3.75 | 150 | 0.6285 | 0.3065 | 0.4339 | 0.9282 | nan | 0.7321 | 0.0200 | 0.0 | 0.9833 | nan | nan | nan | 0.0 | 0.5746 | 0.0200 | 0.0 | 0.9380 | nan | nan | nan |
| 0.5948 | 4.0 | 160 | 0.5402 | 0.3175 | 0.4721 | 0.9164 | nan | 0.8473 | 0.0782 | 0.0 | 0.9631 | nan | nan | nan | 0.0 | 0.5788 | 0.0770 | 0.0 | 0.9317 | nan | nan | nan |
| 0.475 | 4.25 | 170 | 0.5844 | 0.3309 | 0.4869 | 0.9353 | nan | 0.8472 | 0.1178 | 0.0 | 0.9825 | nan | nan | nan | 0.0 | 0.5887 | 0.1143 | 0.0 | 0.9517 | nan | nan | nan |
| 0.5397 | 4.5 | 180 | 0.5073 | 0.3293 | 0.4707 | 0.9099 | nan | 0.8099 | 0.1165 | 0.0 | 0.9564 | nan | nan | nan | 0.0 | 0.6117 | 0.1138 | 0.0 | 0.9209 | nan | nan | nan |
| 0.4519 | 4.75 | 190 | 0.4611 | 0.3390 | 0.5135 | 0.8874 | nan | 0.9137 | 0.2166 | 0.0001 | 0.9236 | nan | nan | nan | 0.0 | 0.5848 | 0.2061 | 0.0001 | 0.9041 | nan | nan | nan |
| 0.4307 | 5.0 | 200 | 0.4340 | 0.3485 | 0.4834 | 0.9122 | nan | 0.7946 | 0.1816 | 0.0 | 0.9574 | nan | nan | nan | 0.0 | 0.6460 | 0.1729 | 0.0 | 0.9235 | nan | nan | nan |
| 0.4245 | 5.25 | 210 | 0.4282 | 0.3766 | 0.5516 | 0.9264 | nan | 0.9083 | 0.3351 | 0.0004 | 0.9626 | nan | nan | nan | 0.0 | 0.6405 | 0.2981 | 0.0004 | 0.9440 | nan | nan | nan |
| 0.3845 | 5.5 | 220 | 0.3944 | 0.3649 | 0.4975 | 0.9234 | nan | 0.7745 | 0.2466 | 0.0006 | 0.9685 | nan | nan | nan | 0.0 | 0.6545 | 0.2296 | 0.0006 | 0.9400 | nan | nan | nan |
| 0.5122 | 5.75 | 230 | 0.3684 | 0.3942 | 0.5587 | 0.8972 | nan | 0.8431 | 0.4204 | 0.0413 | 0.9300 | nan | nan | nan | 0.0 | 0.6684 | 0.3514 | 0.0413 | 0.9099 | nan | nan | nan |
| 0.4236 | 6.0 | 240 | 0.3650 | 0.3936 | 0.5529 | 0.9369 | nan | 0.8553 | 0.3606 | 0.0202 | 0.9754 | nan | nan | nan | 0.0 | 0.6715 | 0.3239 | 0.0202 | 0.9526 | nan | nan | nan |
| 0.3275 | 6.25 | 250 | 0.3393 | 0.3903 | 0.5420 | 0.9139 | nan | 0.7951 | 0.4081 | 0.0133 | 0.9514 | nan | nan | nan | 0.0 | 0.6684 | 0.3406 | 0.0133 | 0.9292 | nan | nan | nan |
| 0.3005 | 6.5 | 260 | 0.3286 | 0.3970 | 0.5450 | 0.9188 | nan | 0.7425 | 0.4352 | 0.0447 | 0.9578 | nan | nan | nan | 0.0 | 0.6427 | 0.3591 | 0.0444 | 0.9387 | nan | nan | nan |
| 0.2943 | 6.75 | 270 | 0.3019 | 0.4104 | 0.5770 | 0.9175 | nan | 0.8720 | 0.4117 | 0.0734 | 0.9507 | nan | nan | nan | 0.0 | 0.6773 | 0.3649 | 0.0733 | 0.9366 | nan | nan | nan |
| 0.2736 | 7.0 | 280 | 0.3538 | 0.4001 | 0.5627 | 0.9369 | nan | 0.8595 | 0.3494 | 0.0671 | 0.9748 | nan | nan | nan | 0.0 | 0.6601 | 0.3197 | 0.0671 | 0.9537 | nan | nan | nan |
| 0.2989 | 7.25 | 290 | 0.3069 | 0.4238 | 0.5728 | 0.9236 | nan | 0.7635 | 0.4661 | 0.1014 | 0.9601 | nan | nan | nan | 0.0 | 0.6849 | 0.3929 | 0.1006 | 0.9406 | nan | nan | nan |
| 0.2383 | 7.5 | 300 | 0.2756 | 0.4346 | 0.6040 | 0.8856 | nan | 0.8046 | 0.6093 | 0.0903 | 0.9119 | nan | nan | nan | 0.0 | 0.6795 | 0.4990 | 0.0895 | 0.9051 | nan | nan | nan |
| 0.2803 | 7.75 | 310 | 0.3289 | 0.4315 | 0.5812 | 0.9451 | nan | 0.7226 | 0.4786 | 0.1392 | 0.9845 | nan | nan | nan | 0.0 | 0.6625 | 0.4020 | 0.1368 | 0.9564 | nan | nan | nan |
| 0.2266 | 8.0 | 320 | 0.2588 | 0.4478 | 0.6102 | 0.9257 | nan | 0.8408 | 0.4894 | 0.1535 | 0.9572 | nan | nan | nan | 0.0 | 0.7105 | 0.4321 | 0.1512 | 0.9455 | nan | nan | nan |
| 0.2947 | 8.25 | 330 | 0.2424 | 0.4488 | 0.6058 | 0.8874 | nan | 0.8346 | 0.4993 | 0.1745 | 0.9148 | nan | nan | nan | 0.0 | 0.7149 | 0.4517 | 0.1719 | 0.9054 | nan | nan | nan |
| 0.3069 | 8.5 | 340 | 0.2433 | 0.5001 | 0.6775 | 0.9427 | nan | 0.8486 | 0.5763 | 0.3154 | 0.9698 | nan | nan | nan | 0.0 | 0.7323 | 0.4985 | 0.3107 | 0.9589 | nan | nan | nan |
| 0.2954 | 8.75 | 350 | 0.2371 | 0.4665 | 0.6307 | 0.9049 | nan | 0.8528 | 0.5362 | 0.2023 | 0.9314 | nan | nan | nan | 0.0 | 0.7269 | 0.4852 | 0.1988 | 0.9215 | nan | nan | nan |
| 0.2287 | 9.0 | 360 | 0.2437 | 0.4764 | 0.6633 | 0.9248 | nan | 0.8853 | 0.5762 | 0.2419 | 0.9498 | nan | nan | nan | 0.0 | 0.7139 | 0.4883 | 0.2368 | 0.9432 | nan | nan | nan |
| 0.2449 | 9.25 | 370 | 0.2466 | 0.4698 | 0.6213 | 0.9463 | nan | 0.7620 | 0.4747 | 0.2664 | 0.9820 | nan | nan | nan | 0.0 | 0.7141 | 0.4142 | 0.2578 | 0.9632 | nan | nan | nan |
| 0.2171 | 9.5 | 380 | 0.2179 | 0.5171 | 0.7060 | 0.8975 | nan | 0.8653 | 0.6024 | 0.4399 | 0.9166 | nan | nan | nan | 0.0 | 0.7210 | 0.5251 | 0.4279 | 0.9113 | nan | nan | nan |
| 0.2345 | 9.75 | 390 | 0.2432 | 0.4915 | 0.6525 | 0.9360 | nan | 0.7856 | 0.5085 | 0.3486 | 0.9671 | nan | nan | nan | 0.0 | 0.7231 | 0.4468 | 0.3367 | 0.9511 | nan | nan | nan |
| 0.1929 | 10.0 | 400 | 0.2028 | 0.5067 | 0.6812 | 0.9085 | nan | 0.8078 | 0.5964 | 0.3884 | 0.9323 | nan | nan | nan | 0.0 | 0.7194 | 0.5208 | 0.3679 | 0.9257 | nan | nan | nan |
| 0.2294 | 10.25 | 410 | 0.1962 | 0.5284 | 0.7170 | 0.9115 | nan | 0.8341 | 0.6590 | 0.4435 | 0.9314 | nan | nan | nan | 0.0 | 0.7272 | 0.5626 | 0.4262 | 0.9260 | nan | nan | nan |
| 0.183 | 10.5 | 420 | 0.1962 | 0.5029 | 0.6601 | 0.9130 | nan | 0.7631 | 0.5437 | 0.3927 | 0.9411 | nan | nan | nan | 0.0 | 0.7233 | 0.4884 | 0.3753 | 0.9276 | nan | nan | nan |
| 0.2132 | 10.75 | 430 | 0.1966 | 0.5624 | 0.7620 | 0.9211 | nan | 0.8301 | 0.7474 | 0.5331 | 0.9376 | nan | nan | nan | 0.0 | 0.7485 | 0.6333 | 0.4969 | 0.9333 | nan | nan | nan |
| 0.1768 | 11.0 | 440 | 0.1950 | 0.5154 | 0.6800 | 0.9276 | nan | 0.7467 | 0.5792 | 0.4381 | 0.9558 | nan | nan | nan | 0.0 | 0.7149 | 0.5164 | 0.4004 | 0.9453 | nan | nan | nan |
| 0.1955 | 11.25 | 450 | 0.1961 | 0.5556 | 0.7492 | 0.9456 | nan | 0.8563 | 0.6371 | 0.5364 | 0.9670 | nan | nan | nan | 0.0 | 0.7464 | 0.5632 | 0.5077 | 0.9606 | nan | nan | nan |
| 0.1763 | 11.5 | 460 | 0.1816 | 0.5177 | 0.6941 | 0.9121 | nan | 0.8779 | 0.4815 | 0.4816 | 0.9354 | nan | nan | nan | 0.0 | 0.7402 | 0.4623 | 0.4584 | 0.9278 | nan | nan | nan |
| 0.1361 | 11.75 | 470 | 0.1843 | 0.5485 | 0.7446 | 0.9183 | nan | 0.7590 | 0.7921 | 0.4904 | 0.9370 | nan | nan | nan | 0.0 | 0.7226 | 0.6360 | 0.4513 | 0.9327 | nan | nan | nan |
| 0.1613 | 12.0 | 480 | 0.1754 | 0.5565 | 0.7312 | 0.9283 | nan | 0.7660 | 0.6440 | 0.5633 | 0.9514 | nan | nan | nan | 0.0 | 0.7384 | 0.5899 | 0.5115 | 0.9428 | nan | nan | nan |
| 0.2158 | 12.25 | 490 | 0.1851 | 0.5537 | 0.7317 | 0.8648 | nan | 0.8204 | 0.6881 | 0.5401 | 0.8783 | nan | nan | nan | 0.0 | 0.7617 | 0.6330 | 0.4983 | 0.8754 | nan | nan | nan |
| 0.1542 | 12.5 | 500 | 0.2025 | 0.5759 | 0.7662 | 0.9560 | nan | 0.7910 | 0.7072 | 0.5887 | 0.9781 | nan | nan | nan | 0.0 | 0.7568 | 0.6179 | 0.5360 | 0.9690 | nan | nan | nan |
| 0.19 | 12.75 | 510 | 0.1733 | 0.5551 | 0.7325 | 0.8911 | nan | 0.8147 | 0.6676 | 0.5398 | 0.9081 | nan | nan | nan | 0.0 | 0.7613 | 0.6099 | 0.5021 | 0.9025 | nan | nan | nan |
| 0.1584 | 13.0 | 520 | 0.1832 | 0.5297 | 0.6916 | 0.9464 | nan | 0.7672 | 0.6176 | 0.4067 | 0.9748 | nan | nan | nan | 0.0 | 0.7395 | 0.5588 | 0.3863 | 0.9638 | nan | nan | nan |
| 0.1311 | 13.25 | 530 | 0.1566 | 0.5695 | 0.7565 | 0.9197 | nan | 0.7986 | 0.7456 | 0.5444 | 0.9374 | nan | nan | nan | 0.0 | 0.7532 | 0.6615 | 0.5001 | 0.9326 | nan | nan | nan |
| 0.1742 | 13.5 | 540 | 0.1611 | 0.5855 | 0.7788 | 0.9321 | nan | 0.8407 | 0.7155 | 0.6102 | 0.9489 | nan | nan | nan | 0.0 | 0.7771 | 0.6482 | 0.5582 | 0.9442 | nan | nan | nan |
| 0.146 | 13.75 | 550 | 0.1588 | 0.5743 | 0.7598 | 0.9196 | nan | 0.7929 | 0.7125 | 0.5960 | 0.9378 | nan | nan | nan | 0.0 | 0.7529 | 0.6457 | 0.5403 | 0.9327 | nan | nan | nan |
| 0.1326 | 14.0 | 560 | 0.1627 | 0.5573 | 0.7314 | 0.9237 | nan | 0.7425 | 0.6936 | 0.5431 | 0.9462 | nan | nan | nan | 0.0 | 0.7240 | 0.6261 | 0.4978 | 0.9384 | nan | nan | nan |
| 0.1385 | 14.25 | 570 | 0.1553 | 0.5832 | 0.7734 | 0.9125 | nan | 0.8122 | 0.7620 | 0.5919 | 0.9275 | nan | nan | nan | 0.0 | 0.7699 | 0.6833 | 0.5388 | 0.9239 | nan | nan | nan |
| 0.1419 | 14.5 | 580 | 0.1574 | 0.5828 | 0.7701 | 0.9399 | nan | 0.8022 | 0.7043 | 0.6144 | 0.9596 | nan | nan | nan | 0.0 | 0.7680 | 0.6404 | 0.5527 | 0.9531 | nan | nan | nan |
| 0.1342 | 14.75 | 590 | 0.1489 | 0.5806 | 0.7682 | 0.9216 | nan | 0.8378 | 0.6775 | 0.6187 | 0.9387 | nan | nan | nan | 0.0 | 0.7803 | 0.6314 | 0.5573 | 0.9339 | nan | nan | nan |
| 0.1342 | 15.0 | 600 | 0.1547 | 0.5712 | 0.7491 | 0.9141 | nan | 0.8159 | 0.7522 | 0.4975 | 0.9310 | nan | nan | nan | 0.0 | 0.7762 | 0.6817 | 0.4725 | 0.9258 | nan | nan | nan |
| 0.128 | 15.25 | 610 | 0.1530 | 0.5747 | 0.7581 | 0.9353 | nan | 0.8365 | 0.7411 | 0.5012 | 0.9536 | nan | nan | nan | 0.0 | 0.7886 | 0.6657 | 0.4709 | 0.9483 | nan | nan | nan |
| 0.1104 | 15.5 | 620 | 0.1558 | 0.5653 | 0.7379 | 0.9336 | nan | 0.7945 | 0.6492 | 0.5520 | 0.9560 | nan | nan | nan | 0.0 | 0.7639 | 0.6000 | 0.5143 | 0.9484 | nan | nan | nan |
| 0.12 | 15.75 | 630 | 0.1485 | 0.5813 | 0.7676 | 0.9294 | nan | 0.7847 | 0.7600 | 0.5779 | 0.9476 | nan | nan | nan | 0.0 | 0.7613 | 0.6758 | 0.5265 | 0.9431 | nan | nan | nan |
| 0.1347 | 16.0 | 640 | 0.1434 | 0.5641 | 0.7391 | 0.9182 | nan | 0.8150 | 0.6400 | 0.5631 | 0.9382 | nan | nan | nan | 0.0 | 0.7737 | 0.6006 | 0.5140 | 0.9321 | nan | nan | nan |
| 0.109 | 16.25 | 650 | 0.1480 | 0.5865 | 0.7738 | 0.9127 | nan | 0.8339 | 0.7099 | 0.6234 | 0.9280 | nan | nan | nan | 0.0 | 0.7806 | 0.6626 | 0.5660 | 0.9235 | nan | nan | nan |
| 0.1117 | 16.5 | 660 | 0.1521 | 0.5878 | 0.7706 | 0.9448 | nan | 0.7946 | 0.7264 | 0.5967 | 0.9649 | nan | nan | nan | 0.0 | 0.7701 | 0.6647 | 0.5462 | 0.9581 | nan | nan | nan |
| 0.1269 | 16.75 | 670 | 0.1433 | 0.5767 | 0.7571 | 0.9299 | nan | 0.7746 | 0.7047 | 0.5989 | 0.9502 | nan | nan | nan | 0.0 | 0.7537 | 0.6502 | 0.5357 | 0.9440 | nan | nan | nan |
| 0.1078 | 17.0 | 680 | 0.1433 | 0.5857 | 0.7701 | 0.9284 | nan | 0.7843 | 0.7396 | 0.6097 | 0.9467 | nan | nan | nan | 0.0 | 0.7651 | 0.6720 | 0.5516 | 0.9397 | nan | nan | nan |
| 0.0928 | 17.25 | 690 | 0.1410 | 0.5961 | 0.7853 | 0.9266 | nan | 0.8229 | 0.7606 | 0.6157 | 0.9421 | nan | nan | nan | 0.0 | 0.7881 | 0.6982 | 0.5568 | 0.9375 | nan | nan | nan |
| 0.1062 | 17.5 | 700 | 0.1401 | 0.5792 | 0.7581 | 0.9345 | nan | 0.8318 | 0.6907 | 0.5561 | 0.9538 | nan | nan | nan | 0.0 | 0.7834 | 0.6469 | 0.5168 | 0.9487 | nan | nan | nan |
| 0.0892 | 17.75 | 710 | 0.1397 | 0.5895 | 0.7750 | 0.9105 | nan | 0.8335 | 0.7268 | 0.6146 | 0.9252 | nan | nan | nan | 0.0 | 0.7852 | 0.6837 | 0.5582 | 0.9206 | nan | nan | nan |
| 0.1024 | 18.0 | 720 | 0.1386 | 0.5857 | 0.7709 | 0.9293 | nan | 0.8107 | 0.7295 | 0.5966 | 0.9470 | nan | nan | nan | 0.0 | 0.7716 | 0.6812 | 0.5330 | 0.9430 | nan | nan | nan |
| 0.1266 | 18.25 | 730 | 0.1450 | 0.5682 | 0.7451 | 0.9093 | nan | 0.7798 | 0.6337 | 0.6379 | 0.9290 | nan | nan | nan | 0.0 | 0.7504 | 0.6035 | 0.5638 | 0.9234 | nan | nan | nan |
| 0.1108 | 18.5 | 740 | 0.1410 | 0.5877 | 0.7731 | 0.9386 | nan | 0.7968 | 0.7035 | 0.6338 | 0.9581 | nan | nan | nan | 0.0 | 0.7687 | 0.6467 | 0.5720 | 0.9510 | nan | nan | nan |
| 0.1119 | 18.75 | 750 | 0.1401 | 0.5560 | 0.7230 | 0.9187 | nan | 0.7988 | 0.6046 | 0.5475 | 0.9410 | nan | nan | nan | 0.0 | 0.7616 | 0.5775 | 0.5059 | 0.9351 | nan | nan | nan |
| 0.0933 | 19.0 | 760 | 0.1395 | 0.6052 | 0.8009 | 0.9353 | nan | 0.8338 | 0.7599 | 0.6595 | 0.9505 | nan | nan | nan | 0.0 | 0.7911 | 0.6947 | 0.5951 | 0.9449 | nan | nan | nan |
| 0.2262 | 19.25 | 770 | 0.1358 | 0.5938 | 0.7834 | 0.9333 | nan | 0.8059 | 0.7249 | 0.6520 | 0.9509 | nan | nan | nan | 0.0 | 0.7735 | 0.6695 | 0.5810 | 0.9451 | nan | nan | nan |
| 0.1088 | 19.5 | 780 | 0.1320 | 0.5950 | 0.7832 | 0.9282 | nan | 0.8218 | 0.7150 | 0.6510 | 0.9449 | nan | nan | nan | 0.0 | 0.7825 | 0.6718 | 0.5808 | 0.9398 | nan | nan | nan |
| 0.0846 | 19.75 | 790 | 0.1349 | 0.5920 | 0.7806 | 0.9180 | nan | 0.7860 | 0.7802 | 0.6226 | 0.9336 | nan | nan | nan | 0.0 | 0.7626 | 0.7109 | 0.5574 | 0.9290 | nan | nan | nan |
| 0.0877 | 20.0 | 800 | 0.1390 | 0.5918 | 0.7821 | 0.9331 | nan | 0.8089 | 0.7612 | 0.6081 | 0.9500 | nan | nan | nan | 0.0 | 0.7748 | 0.6904 | 0.5490 | 0.9446 | nan | nan | nan |
| 0.1505 | 20.25 | 810 | 0.1366 | 0.5643 | 0.7310 | 0.9188 | nan | 0.8080 | 0.6375 | 0.5389 | 0.9397 | nan | nan | nan | 0.0 | 0.7736 | 0.6140 | 0.5002 | 0.9335 | nan | nan | nan |
| 0.0957 | 20.5 | 820 | 0.1355 | 0.6131 | 0.8118 | 0.9325 | nan | 0.8188 | 0.8154 | 0.6669 | 0.9461 | nan | nan | nan | 0.0 | 0.7920 | 0.7390 | 0.5935 | 0.9410 | nan | nan | nan |
| 0.1408 | 20.75 | 830 | 0.1360 | 0.5871 | 0.7707 | 0.9138 | nan | 0.7967 | 0.7719 | 0.5848 | 0.9294 | nan | nan | nan | 0.0 | 0.7665 | 0.7133 | 0.5296 | 0.9259 | nan | nan | nan |
| 0.0954 | 21.0 | 840 | 0.1412 | 0.5768 | 0.7489 | 0.9452 | nan | 0.7956 | 0.6830 | 0.5493 | 0.9676 | nan | nan | nan | 0.0 | 0.7677 | 0.6480 | 0.5074 | 0.9611 | nan | nan | nan |
| 0.093 | 21.25 | 850 | 0.1364 | 0.5938 | 0.7855 | 0.9095 | nan | 0.8280 | 0.7745 | 0.6169 | 0.9227 | nan | nan | nan | 0.0 | 0.7861 | 0.7078 | 0.5568 | 0.9182 | nan | nan | nan |
| 0.15 | 21.5 | 860 | 0.1346 | 0.5892 | 0.7706 | 0.9376 | nan | 0.8296 | 0.6965 | 0.6002 | 0.9563 | nan | nan | nan | 0.0 | 0.7859 | 0.6598 | 0.5508 | 0.9493 | nan | nan | nan |
| 0.0734 | 21.75 | 870 | 0.1349 | 0.5788 | 0.7588 | 0.9215 | nan | 0.7738 | 0.7021 | 0.6186 | 0.9407 | nan | nan | nan | 0.0 | 0.7498 | 0.6585 | 0.5509 | 0.9349 | nan | nan | nan |
| 0.0992 | 22.0 | 880 | 0.1342 | 0.5839 | 0.7685 | 0.9141 | nan | 0.7920 | 0.7441 | 0.6076 | 0.9305 | nan | nan | nan | 0.0 | 0.7593 | 0.6888 | 0.5444 | 0.9270 | nan | nan | nan |
| 0.0699 | 22.25 | 890 | 0.1349 | 0.5949 | 0.7859 | 0.9218 | nan | 0.8082 | 0.7646 | 0.6335 | 0.9371 | nan | nan | nan | 0.0 | 0.7758 | 0.6991 | 0.5677 | 0.9320 | nan | nan | nan |
| 0.0692 | 22.5 | 900 | 0.1325 | 0.5990 | 0.7881 | 0.9348 | nan | 0.8269 | 0.7526 | 0.6216 | 0.9512 | nan | nan | nan | 0.0 | 0.7874 | 0.6978 | 0.5645 | 0.9455 | nan | nan | nan |
| 0.0855 | 22.75 | 910 | 0.1346 | 0.5718 | 0.7462 | 0.9241 | nan | 0.7901 | 0.7139 | 0.5369 | 0.9438 | nan | nan | nan | 0.0 | 0.7595 | 0.6672 | 0.4940 | 0.9384 | nan | nan | nan |
| 0.1123 | 23.0 | 920 | 0.1305 | 0.6031 | 0.7903 | 0.9221 | nan | 0.8226 | 0.7347 | 0.6667 | 0.9372 | nan | nan | nan | 0.0 | 0.7866 | 0.6986 | 0.5980 | 0.9322 | nan | nan | nan |
| 0.1032 | 23.25 | 930 | 0.1338 | 0.5981 | 0.7827 | 0.9276 | nan | 0.8256 | 0.7335 | 0.6277 | 0.9439 | nan | nan | nan | 0.0 | 0.7896 | 0.6922 | 0.5709 | 0.9380 | nan | nan | nan |
| 0.0827 | 23.5 | 940 | 0.1316 | 0.5831 | 0.7617 | 0.9225 | nan | 0.7890 | 0.7441 | 0.5734 | 0.9404 | nan | nan | nan | 0.0 | 0.7618 | 0.6964 | 0.5211 | 0.9361 | nan | nan | nan |
| 0.0935 | 23.75 | 950 | 0.1284 | 0.5808 | 0.7593 | 0.9183 | nan | 0.7925 | 0.7156 | 0.5927 | 0.9363 | nan | nan | nan | 0.0 | 0.7659 | 0.6757 | 0.5313 | 0.9312 | nan | nan | nan |
| 0.0686 | 24.0 | 960 | 0.1286 | 0.5898 | 0.7710 | 0.9299 | nan | 0.8111 | 0.7004 | 0.6243 | 0.9482 | nan | nan | nan | 0.0 | 0.7813 | 0.6639 | 0.5621 | 0.9416 | nan | nan | nan |
| 0.0846 | 24.25 | 970 | 0.1293 | 0.5764 | 0.7524 | 0.9232 | nan | 0.7797 | 0.6874 | 0.5993 | 0.9432 | nan | nan | nan | 0.0 | 0.7566 | 0.6487 | 0.5388 | 0.9379 | nan | nan | nan |
| 0.1122 | 24.5 | 980 | 0.1326 | 0.5892 | 0.7699 | 0.9315 | nan | 0.7961 | 0.7212 | 0.6121 | 0.9501 | nan | nan | nan | 0.0 | 0.7689 | 0.6802 | 0.5527 | 0.9441 | nan | nan | nan |
| 0.1055 | 24.75 | 990 | 0.1332 | 0.6078 | 0.7999 | 0.9242 | nan | 0.8298 | 0.7853 | 0.6466 | 0.9378 | nan | nan | nan | 0.0 | 0.7905 | 0.7294 | 0.5858 | 0.9334 | nan | nan | nan |
| 0.075 | 25.0 | 1000 | 0.1309 | 0.5961 | 0.7801 | 0.9318 | nan | 0.8068 | 0.7844 | 0.5807 | 0.9484 | nan | nan | nan | 0.0 | 0.7772 | 0.7249 | 0.5342 | 0.9440 | nan | nan | nan |
| 0.0844 | 25.25 | 1010 | 0.1276 | 0.5851 | 0.7637 | 0.9198 | nan | 0.7883 | 0.7191 | 0.6097 | 0.9377 | nan | nan | nan | 0.0 | 0.7653 | 0.6790 | 0.5487 | 0.9322 | nan | nan | nan |
| 0.0898 | 25.5 | 1020 | 0.1282 | 0.6144 | 0.8161 | 0.9363 | nan | 0.8163 | 0.8330 | 0.6652 | 0.9498 | nan | nan | nan | 0.0 | 0.7872 | 0.7476 | 0.5917 | 0.9456 | nan | nan | nan |
| 0.0939 | 25.75 | 1030 | 0.1289 | 0.5882 | 0.7745 | 0.9172 | nan | 0.7838 | 0.7803 | 0.6008 | 0.9333 | nan | nan | nan | 0.0 | 0.7602 | 0.7155 | 0.5360 | 0.9293 | nan | nan | nan |
| 0.106 | 26.0 | 1040 | 0.1279 | 0.5970 | 0.7799 | 0.9366 | nan | 0.8110 | 0.7394 | 0.6147 | 0.9544 | nan | nan | nan | 0.0 | 0.7855 | 0.6939 | 0.5584 | 0.9474 | nan | nan | nan |
| 0.0731 | 26.25 | 1050 | 0.1255 | 0.5828 | 0.7595 | 0.9260 | nan | 0.7886 | 0.7105 | 0.5939 | 0.9452 | nan | nan | nan | 0.0 | 0.7652 | 0.6719 | 0.5372 | 0.9396 | nan | nan | nan |
| 0.1029 | 26.5 | 1060 | 0.1295 | 0.6009 | 0.7905 | 0.9391 | nan | 0.8098 | 0.7815 | 0.6150 | 0.9558 | nan | nan | nan | 0.0 | 0.7805 | 0.7169 | 0.5572 | 0.9500 | nan | nan | nan |
| 0.074 | 26.75 | 1070 | 0.1315 | 0.6024 | 0.7962 | 0.9162 | nan | 0.8273 | 0.7903 | 0.6380 | 0.9292 | nan | nan | nan | 0.0 | 0.7873 | 0.7265 | 0.5730 | 0.9254 | nan | nan | nan |
| 0.1074 | 27.0 | 1080 | 0.1287 | 0.5949 | 0.7808 | 0.9344 | nan | 0.8235 | 0.7171 | 0.6309 | 0.9519 | nan | nan | nan | 0.0 | 0.7852 | 0.6772 | 0.5651 | 0.9472 | nan | nan | nan |
| 0.1263 | 27.25 | 1090 | 0.1286 | 0.5856 | 0.7657 | 0.9226 | nan | 0.7733 | 0.7113 | 0.6369 | 0.9413 | nan | nan | nan | 0.0 | 0.7528 | 0.6755 | 0.5642 | 0.9355 | nan | nan | nan |
| 0.0636 | 27.5 | 1100 | 0.1297 | 0.6070 | 0.7964 | 0.9322 | nan | 0.8155 | 0.7751 | 0.6472 | 0.9476 | nan | nan | nan | 0.0 | 0.7871 | 0.7224 | 0.5833 | 0.9423 | nan | nan | nan |
| 0.0561 | 27.75 | 1110 | 0.1304 | 0.5967 | 0.7823 | 0.9297 | nan | 0.8114 | 0.7522 | 0.6194 | 0.9463 | nan | nan | nan | 0.0 | 0.7798 | 0.7037 | 0.5584 | 0.9416 | nan | nan | nan |
| 0.0735 | 28.0 | 1120 | 0.1287 | 0.5878 | 0.7701 | 0.9221 | nan | 0.8128 | 0.7150 | 0.6133 | 0.9392 | nan | nan | nan | 0.0 | 0.7811 | 0.6752 | 0.5483 | 0.9342 | nan | nan | nan |
| 0.0785 | 28.25 | 1130 | 0.1311 | 0.5968 | 0.7838 | 0.9360 | nan | 0.8067 | 0.7526 | 0.6223 | 0.9534 | nan | nan | nan | 0.0 | 0.7808 | 0.6982 | 0.5576 | 0.9473 | nan | nan | nan |
| 0.0934 | 28.5 | 1140 | 0.1275 | 0.6008 | 0.7891 | 0.9258 | nan | 0.8110 | 0.7626 | 0.6415 | 0.9413 | nan | nan | nan | 0.0 | 0.7811 | 0.7133 | 0.5734 | 0.9364 | nan | nan | nan |
| 0.079 | 28.75 | 1150 | 0.1290 | 0.5940 | 0.7772 | 0.9319 | nan | 0.7815 | 0.7548 | 0.6225 | 0.9500 | nan | nan | nan | 0.0 | 0.7610 | 0.7027 | 0.5622 | 0.9442 | nan | nan | nan |
| 0.0597 | 29.0 | 1160 | 0.1260 | 0.6038 | 0.7936 | 0.9262 | nan | 0.8107 | 0.7829 | 0.6396 | 0.9411 | nan | nan | nan | 0.0 | 0.7806 | 0.7277 | 0.5738 | 0.9368 | nan | nan | nan |
| 0.0646 | 29.25 | 1170 | 0.1237 | 0.6037 | 0.7929 | 0.9271 | nan | 0.8202 | 0.7670 | 0.6422 | 0.9422 | nan | nan | nan | 0.0 | 0.7858 | 0.7218 | 0.5729 | 0.9380 | nan | nan | nan |
| 0.0581 | 29.5 | 1180 | 0.1311 | 0.5926 | 0.7739 | 0.9272 | nan | 0.8069 | 0.7047 | 0.6390 | 0.9450 | nan | nan | nan | 0.0 | 0.7788 | 0.6745 | 0.5713 | 0.9384 | nan | nan | nan |
| 0.0666 | 29.75 | 1190 | 0.1280 | 0.5925 | 0.7750 | 0.9314 | nan | 0.8076 | 0.7085 | 0.6343 | 0.9496 | nan | nan | nan | 0.0 | 0.7780 | 0.6742 | 0.5659 | 0.9442 | nan | nan | nan |
| 0.0883 | 30.0 | 1200 | 0.1273 | 0.5947 | 0.7794 | 0.9221 | nan | 0.8191 | 0.7195 | 0.6407 | 0.9384 | nan | nan | nan | 0.0 | 0.7858 | 0.6780 | 0.5759 | 0.9337 | nan | nan | nan |
| 0.0839 | 30.25 | 1210 | 0.1331 | 0.5921 | 0.7714 | 0.9349 | nan | 0.8139 | 0.7057 | 0.6126 | 0.9535 | nan | nan | nan | 0.0 | 0.7840 | 0.6679 | 0.5616 | 0.9472 | nan | nan | nan |
| 0.0767 | 30.5 | 1220 | 0.1301 | 0.5948 | 0.7797 | 0.9263 | nan | 0.8107 | 0.7438 | 0.6216 | 0.9428 | nan | nan | nan | 0.0 | 0.7816 | 0.6926 | 0.5624 | 0.9373 | nan | nan | nan |
| 0.06 | 30.75 | 1230 | 0.1288 | 0.6006 | 0.7874 | 0.9217 | nan | 0.8126 | 0.7691 | 0.6313 | 0.9367 | nan | nan | nan | 0.0 | 0.7868 | 0.7181 | 0.5662 | 0.9319 | nan | nan | nan |
| 0.1277 | 31.0 | 1240 | 0.1262 | 0.6044 | 0.7896 | 0.9389 | nan | 0.8150 | 0.7755 | 0.6125 | 0.9555 | nan | nan | nan | 0.0 | 0.7898 | 0.7248 | 0.5574 | 0.9500 | nan | nan | nan |
| 0.0702 | 31.25 | 1250 | 0.1257 | 0.6054 | 0.7919 | 0.9371 | nan | 0.8156 | 0.7733 | 0.6251 | 0.9534 | nan | nan | nan | 0.0 | 0.7865 | 0.7274 | 0.5649 | 0.9482 | nan | nan | nan |
| 0.0665 | 31.5 | 1260 | 0.1285 | 0.5981 | 0.7795 | 0.9312 | nan | 0.8190 | 0.7311 | 0.6196 | 0.9483 | nan | nan | nan | 0.0 | 0.7877 | 0.6987 | 0.5621 | 0.9422 | nan | nan | nan |
| 0.0579 | 31.75 | 1270 | 0.1287 | 0.6023 | 0.7905 | 0.9365 | nan | 0.8239 | 0.7493 | 0.6360 | 0.9530 | nan | nan | nan | 0.0 | 0.7917 | 0.7080 | 0.5648 | 0.9471 | nan | nan | nan |
| 0.0898 | 32.0 | 1280 | 0.1264 | 0.5927 | 0.7750 | 0.9243 | nan | 0.8108 | 0.7344 | 0.6136 | 0.9411 | nan | nan | nan | 0.0 | 0.7817 | 0.6990 | 0.5470 | 0.9357 | nan | nan | nan |
| 0.0785 | 32.25 | 1290 | 0.1331 | 0.6062 | 0.7942 | 0.9447 | nan | 0.8155 | 0.7564 | 0.6428 | 0.9620 | nan | nan | nan | 0.0 | 0.7904 | 0.7101 | 0.5755 | 0.9552 | nan | nan | nan |
| 0.0684 | 32.5 | 1300 | 0.1257 | 0.5981 | 0.7863 | 0.9245 | nan | 0.8043 | 0.7894 | 0.6117 | 0.9398 | nan | nan | nan | 0.0 | 0.7742 | 0.7343 | 0.5463 | 0.9358 | nan | nan | nan |
| 0.0802 | 32.75 | 1310 | 0.1287 | 0.5966 | 0.7797 | 0.9400 | nan | 0.7983 | 0.7626 | 0.5997 | 0.9582 | nan | nan | nan | 0.0 | 0.7729 | 0.7117 | 0.5464 | 0.9521 | nan | nan | nan |
| 0.0768 | 33.0 | 1320 | 0.1236 | 0.6074 | 0.7970 | 0.9299 | nan | 0.8187 | 0.7681 | 0.6562 | 0.9450 | nan | nan | nan | 0.0 | 0.7893 | 0.7194 | 0.5888 | 0.9393 | nan | nan | nan |
| 0.0779 | 33.25 | 1330 | 0.1254 | 0.5993 | 0.7830 | 0.9331 | nan | 0.8223 | 0.7322 | 0.6275 | 0.9501 | nan | nan | nan | 0.0 | 0.7897 | 0.6970 | 0.5655 | 0.9444 | nan | nan | nan |
| 0.0785 | 33.5 | 1340 | 0.1293 | 0.5949 | 0.7803 | 0.9250 | nan | 0.8038 | 0.7556 | 0.6204 | 0.9413 | nan | nan | nan | 0.0 | 0.7729 | 0.7105 | 0.5548 | 0.9363 | nan | nan | nan |
| 0.0678 | 33.75 | 1350 | 0.1284 | 0.6084 | 0.8006 | 0.9314 | nan | 0.8205 | 0.7821 | 0.6537 | 0.9462 | nan | nan | nan | 0.0 | 0.7888 | 0.7267 | 0.5856 | 0.9410 | nan | nan | nan |
| 0.0668 | 34.0 | 1360 | 0.1281 | 0.5968 | 0.7788 | 0.9330 | nan | 0.8029 | 0.7376 | 0.6240 | 0.9507 | nan | nan | nan | 0.0 | 0.7767 | 0.6987 | 0.5637 | 0.9447 | nan | nan | nan |
| 0.0624 | 34.25 | 1370 | 0.1293 | 0.5922 | 0.7727 | 0.9330 | nan | 0.8148 | 0.7268 | 0.5982 | 0.9510 | nan | nan | nan | 0.0 | 0.7835 | 0.6879 | 0.5445 | 0.9453 | nan | nan | nan |
| 0.087 | 34.5 | 1380 | 0.1268 | 0.6089 | 0.7989 | 0.9317 | nan | 0.8302 | 0.7630 | 0.6556 | 0.9466 | nan | nan | nan | 0.0 | 0.7974 | 0.7176 | 0.5877 | 0.9417 | nan | nan | nan |
| 0.1505 | 34.75 | 1390 | 0.1295 | 0.5960 | 0.7778 | 0.9349 | nan | 0.8007 | 0.7235 | 0.6339 | 0.9532 | nan | nan | nan | 0.0 | 0.7757 | 0.6886 | 0.5681 | 0.9473 | nan | nan | nan |
| 0.0651 | 35.0 | 1400 | 0.1272 | 0.5947 | 0.7780 | 0.9317 | nan | 0.7943 | 0.7450 | 0.6234 | 0.9495 | nan | nan | nan | 0.0 | 0.7690 | 0.7010 | 0.5595 | 0.9441 | nan | nan | nan |
| 0.0518 | 35.25 | 1410 | 0.1263 | 0.6011 | 0.7860 | 0.9313 | nan | 0.8104 | 0.7499 | 0.6356 | 0.9479 | nan | nan | nan | 0.0 | 0.7840 | 0.7053 | 0.5736 | 0.9424 | nan | nan | nan |
| 0.0937 | 35.5 | 1420 | 0.1249 | 0.6085 | 0.7972 | 0.9337 | nan | 0.8323 | 0.7622 | 0.6455 | 0.9489 | nan | nan | nan | 0.0 | 0.8009 | 0.7138 | 0.5841 | 0.9438 | nan | nan | nan |
| 0.0587 | 35.75 | 1430 | 0.1243 | 0.5959 | 0.7765 | 0.9292 | nan | 0.8148 | 0.7462 | 0.5989 | 0.9462 | nan | nan | nan | 0.0 | 0.7875 | 0.7022 | 0.5490 | 0.9407 | nan | nan | nan |
| 0.0519 | 36.0 | 1440 | 0.1258 | 0.5898 | 0.7681 | 0.9319 | nan | 0.7902 | 0.7263 | 0.6052 | 0.9508 | nan | nan | nan | 0.0 | 0.7680 | 0.6870 | 0.5493 | 0.9447 | nan | nan | nan |
| 0.0655 | 36.25 | 1450 | 0.1271 | 0.5969 | 0.7758 | 0.9319 | nan | 0.8096 | 0.7110 | 0.6326 | 0.9500 | nan | nan | nan | 0.0 | 0.7832 | 0.6838 | 0.5739 | 0.9435 | nan | nan | nan |
| 0.054 | 36.5 | 1460 | 0.1251 | 0.6118 | 0.8001 | 0.9307 | nan | 0.8335 | 0.7646 | 0.6570 | 0.9453 | nan | nan | nan | 0.0 | 0.8008 | 0.7262 | 0.5920 | 0.9401 | nan | nan | nan |
| 0.0978 | 36.75 | 1470 | 0.1288 | 0.6031 | 0.7890 | 0.9390 | nan | 0.8111 | 0.7736 | 0.6156 | 0.9558 | nan | nan | nan | 0.0 | 0.7844 | 0.7240 | 0.5568 | 0.9505 | nan | nan | nan |
| 0.0862 | 37.0 | 1480 | 0.1267 | 0.5814 | 0.7569 | 0.9204 | nan | 0.7738 | 0.7223 | 0.5922 | 0.9393 | nan | nan | nan | 0.0 | 0.7537 | 0.6862 | 0.5323 | 0.9348 | nan | nan | nan |
| 0.0855 | 37.25 | 1490 | 0.1279 | 0.6086 | 0.7958 | 0.9416 | nan | 0.8167 | 0.7609 | 0.6471 | 0.9584 | nan | nan | nan | 0.0 | 0.7897 | 0.7183 | 0.5823 | 0.9527 | nan | nan | nan |
| 0.0806 | 37.5 | 1500 | 0.1247 | 0.6065 | 0.7941 | 0.9274 | nan | 0.8189 | 0.7541 | 0.6606 | 0.9427 | nan | nan | nan | 0.0 | 0.7906 | 0.7133 | 0.5914 | 0.9374 | nan | nan | nan |
| 0.0883 | 37.75 | 1510 | 0.1258 | 0.5954 | 0.7737 | 0.9328 | nan | 0.8100 | 0.7040 | 0.6294 | 0.9512 | nan | nan | nan | 0.0 | 0.7844 | 0.6758 | 0.5720 | 0.9450 | nan | nan | nan |
| 0.0661 | 38.0 | 1520 | 0.1236 | 0.6027 | 0.7868 | 0.9311 | nan | 0.8211 | 0.7581 | 0.6208 | 0.9472 | nan | nan | nan | 0.0 | 0.7907 | 0.7149 | 0.5657 | 0.9422 | nan | nan | nan |
| 0.0575 | 38.25 | 1530 | 0.1231 | 0.6090 | 0.7970 | 0.9339 | nan | 0.8245 | 0.7703 | 0.6440 | 0.9493 | nan | nan | nan | 0.0 | 0.7954 | 0.7226 | 0.5830 | 0.9440 | nan | nan | nan |
| 0.0637 | 38.5 | 1540 | 0.1255 | 0.5997 | 0.7823 | 0.9360 | nan | 0.8067 | 0.7342 | 0.6347 | 0.9538 | nan | nan | nan | 0.0 | 0.7822 | 0.6970 | 0.5714 | 0.9479 | nan | nan | nan |
| 0.0531 | 38.75 | 1550 | 0.1267 | 0.5879 | 0.7631 | 0.9303 | nan | 0.7893 | 0.7018 | 0.6117 | 0.9498 | nan | nan | nan | 0.0 | 0.7680 | 0.6724 | 0.5555 | 0.9437 | nan | nan | nan |
| 0.0673 | 39.0 | 1560 | 0.1249 | 0.6035 | 0.7880 | 0.9322 | nan | 0.8120 | 0.7355 | 0.6555 | 0.9490 | nan | nan | nan | 0.0 | 0.7860 | 0.6999 | 0.5885 | 0.9433 | nan | nan | nan |
| 0.0781 | 39.25 | 1570 | 0.1230 | 0.6086 | 0.7967 | 0.9327 | nan | 0.8232 | 0.7645 | 0.6510 | 0.9481 | nan | nan | nan | 0.0 | 0.7938 | 0.7196 | 0.5864 | 0.9431 | nan | nan | nan |
| 0.0499 | 39.5 | 1580 | 0.1241 | 0.6003 | 0.7827 | 0.9297 | nan | 0.8099 | 0.7283 | 0.6458 | 0.9468 | nan | nan | nan | 0.0 | 0.7855 | 0.6954 | 0.5795 | 0.9409 | nan | nan | nan |
| 0.0888 | 39.75 | 1590 | 0.1244 | 0.6016 | 0.7852 | 0.9318 | nan | 0.8149 | 0.7420 | 0.6355 | 0.9486 | nan | nan | nan | 0.0 | 0.7887 | 0.7038 | 0.5727 | 0.9427 | nan | nan | nan |
| 0.0696 | 40.0 | 1600 | 0.1248 | 0.5966 | 0.7777 | 0.9328 | nan | 0.8083 | 0.7433 | 0.6089 | 0.9503 | nan | nan | nan | 0.0 | 0.7828 | 0.7037 | 0.5517 | 0.9447 | nan | nan | nan |
| 0.0635 | 40.25 | 1610 | 0.1281 | 0.5987 | 0.7805 | 0.9363 | nan | 0.8046 | 0.7398 | 0.6235 | 0.9542 | nan | nan | nan | 0.0 | 0.7809 | 0.7025 | 0.5619 | 0.9484 | nan | nan | nan |
| 0.066 | 40.5 | 1620 | 0.1228 | 0.6070 | 0.7953 | 0.9286 | nan | 0.8158 | 0.7630 | 0.6586 | 0.9439 | nan | nan | nan | 0.0 | 0.7888 | 0.7209 | 0.5866 | 0.9389 | nan | nan | nan |
| 0.0692 | 40.75 | 1630 | 0.1244 | 0.6071 | 0.7927 | 0.9330 | nan | 0.8190 | 0.7486 | 0.6542 | 0.9491 | nan | nan | nan | 0.0 | 0.7926 | 0.7115 | 0.5877 | 0.9435 | nan | nan | nan |
| 0.0678 | 41.0 | 1640 | 0.1256 | 0.6038 | 0.7869 | 0.9310 | nan | 0.8069 | 0.7425 | 0.6504 | 0.9477 | nan | nan | nan | 0.0 | 0.7851 | 0.7066 | 0.5853 | 0.9419 | nan | nan | nan |
| 0.0934 | 41.25 | 1650 | 0.1252 | 0.6024 | 0.7856 | 0.9328 | nan | 0.8046 | 0.7388 | 0.6490 | 0.9499 | nan | nan | nan | 0.0 | 0.7825 | 0.7034 | 0.5816 | 0.9443 | nan | nan | nan |
| 0.0552 | 41.5 | 1660 | 0.1271 | 0.5990 | 0.7805 | 0.9344 | nan | 0.7972 | 0.7469 | 0.6259 | 0.9522 | nan | nan | nan | 0.0 | 0.7758 | 0.7079 | 0.5649 | 0.9465 | nan | nan | nan |
| 0.0547 | 41.75 | 1670 | 0.1263 | 0.5966 | 0.7762 | 0.9295 | nan | 0.8027 | 0.7420 | 0.6133 | 0.9469 | nan | nan | nan | 0.0 | 0.7790 | 0.7055 | 0.5574 | 0.9411 | nan | nan | nan |
| 0.0626 | 42.0 | 1680 | 0.1257 | 0.6049 | 0.7899 | 0.9307 | nan | 0.8194 | 0.7639 | 0.6300 | 0.9464 | nan | nan | nan | 0.0 | 0.7913 | 0.7223 | 0.5697 | 0.9413 | nan | nan | nan |
| 0.0974 | 42.25 | 1690 | 0.1267 | 0.6092 | 0.7969 | 0.9360 | nan | 0.8232 | 0.7758 | 0.6371 | 0.9516 | nan | nan | nan | 0.0 | 0.7946 | 0.7293 | 0.5760 | 0.9463 | nan | nan | nan |
| 0.0722 | 42.5 | 1700 | 0.1258 | 0.5978 | 0.7799 | 0.9288 | nan | 0.8040 | 0.7434 | 0.6264 | 0.9459 | nan | nan | nan | 0.0 | 0.7791 | 0.7065 | 0.5631 | 0.9403 | nan | nan | nan |
| 0.0543 | 42.75 | 1710 | 0.1270 | 0.5938 | 0.7727 | 0.9304 | nan | 0.7973 | 0.7354 | 0.6096 | 0.9484 | nan | nan | nan | 0.0 | 0.7748 | 0.7001 | 0.5512 | 0.9427 | nan | nan | nan |
| 0.1652 | 43.0 | 1720 | 0.1258 | 0.5998 | 0.7831 | 0.9302 | nan | 0.8054 | 0.7611 | 0.6190 | 0.9469 | nan | nan | nan | 0.0 | 0.7814 | 0.7180 | 0.5583 | 0.9414 | nan | nan | nan |
| 0.0646 | 43.25 | 1730 | 0.1253 | 0.6046 | 0.7894 | 0.9326 | nan | 0.8174 | 0.7607 | 0.6306 | 0.9488 | nan | nan | nan | 0.0 | 0.7907 | 0.7208 | 0.5682 | 0.9434 | nan | nan | nan |
| 0.0681 | 43.5 | 1740 | 0.1268 | 0.6009 | 0.7819 | 0.9299 | nan | 0.8176 | 0.7320 | 0.6315 | 0.9467 | nan | nan | nan | 0.0 | 0.7909 | 0.7025 | 0.5702 | 0.9409 | nan | nan | nan |
| 0.0622 | 43.75 | 1750 | 0.1262 | 0.6021 | 0.7842 | 0.9300 | nan | 0.8191 | 0.7421 | 0.6291 | 0.9465 | nan | nan | nan | 0.0 | 0.7918 | 0.7083 | 0.5698 | 0.9408 | nan | nan | nan |
| 0.0577 | 44.0 | 1760 | 0.1254 | 0.6013 | 0.7847 | 0.9277 | nan | 0.8112 | 0.7499 | 0.6337 | 0.9439 | nan | nan | nan | 0.0 | 0.7859 | 0.7118 | 0.5705 | 0.9385 | nan | nan | nan |
| 0.0729 | 44.25 | 1770 | 0.1246 | 0.6054 | 0.7913 | 0.9342 | nan | 0.8119 | 0.7571 | 0.6456 | 0.9506 | nan | nan | nan | 0.0 | 0.7875 | 0.7158 | 0.5789 | 0.9449 | nan | nan | nan |
| 0.0467 | 44.5 | 1780 | 0.1257 | 0.5994 | 0.7821 | 0.9333 | nan | 0.7977 | 0.7464 | 0.6334 | 0.9508 | nan | nan | nan | 0.0 | 0.7762 | 0.7073 | 0.5684 | 0.9450 | nan | nan | nan |
| 0.1224 | 44.75 | 1790 | 0.1246 | 0.5999 | 0.7835 | 0.9293 | nan | 0.8019 | 0.7509 | 0.6351 | 0.9461 | nan | nan | nan | 0.0 | 0.7785 | 0.7108 | 0.5694 | 0.9408 | nan | nan | nan |
| 0.0531 | 45.0 | 1800 | 0.1259 | 0.5965 | 0.7766 | 0.9305 | nan | 0.8022 | 0.7423 | 0.6140 | 0.9481 | nan | nan | nan | 0.0 | 0.7788 | 0.7046 | 0.5565 | 0.9425 | nan | nan | nan |
| 0.0628 | 45.25 | 1810 | 0.1260 | 0.6041 | 0.7887 | 0.9346 | nan | 0.8118 | 0.7595 | 0.6323 | 0.9512 | nan | nan | nan | 0.0 | 0.7873 | 0.7166 | 0.5708 | 0.9456 | nan | nan | nan |
| 0.0579 | 45.5 | 1820 | 0.1251 | 0.6053 | 0.7910 | 0.9327 | nan | 0.8162 | 0.7640 | 0.6352 | 0.9488 | nan | nan | nan | 0.0 | 0.7901 | 0.7201 | 0.5728 | 0.9435 | nan | nan | nan |
| 0.0622 | 45.75 | 1830 | 0.1239 | 0.6046 | 0.7914 | 0.9307 | nan | 0.8142 | 0.7689 | 0.6362 | 0.9464 | nan | nan | nan | 0.0 | 0.7873 | 0.7229 | 0.5714 | 0.9413 | nan | nan | nan |
| 0.0474 | 46.0 | 1840 | 0.1246 | 0.6021 | 0.7858 | 0.9314 | nan | 0.8119 | 0.7497 | 0.6336 | 0.9480 | nan | nan | nan | 0.0 | 0.7856 | 0.7109 | 0.5717 | 0.9424 | nan | nan | nan |
| 0.0622 | 46.25 | 1850 | 0.1252 | 0.6014 | 0.7842 | 0.9321 | nan | 0.8083 | 0.7335 | 0.6457 | 0.9493 | nan | nan | nan | 0.0 | 0.7833 | 0.7008 | 0.5794 | 0.9435 | nan | nan | nan |
| 0.0564 | 46.5 | 1860 | 0.1252 | 0.6006 | 0.7827 | 0.9312 | nan | 0.8037 | 0.7417 | 0.6371 | 0.9483 | nan | nan | nan | 0.0 | 0.7804 | 0.7059 | 0.5742 | 0.9426 | nan | nan | nan |
| 0.0555 | 46.75 | 1870 | 0.1243 | 0.6018 | 0.7852 | 0.9305 | nan | 0.8067 | 0.7456 | 0.6415 | 0.9472 | nan | nan | nan | 0.0 | 0.7823 | 0.7082 | 0.5769 | 0.9417 | nan | nan | nan |
| 0.0654 | 47.0 | 1880 | 0.1260 | 0.6045 | 0.7876 | 0.9367 | nan | 0.8092 | 0.7452 | 0.6422 | 0.9539 | nan | nan | nan | 0.0 | 0.7860 | 0.7081 | 0.5801 | 0.9480 | nan | nan | nan |
| 0.0649 | 47.25 | 1890 | 0.1250 | 0.6007 | 0.7826 | 0.9323 | nan | 0.8064 | 0.7456 | 0.6289 | 0.9494 | nan | nan | nan | 0.0 | 0.7829 | 0.7070 | 0.5697 | 0.9439 | nan | nan | nan |
| 0.0688 | 47.5 | 1900 | 0.1264 | 0.6032 | 0.7862 | 0.9347 | nan | 0.8080 | 0.7513 | 0.6339 | 0.9518 | nan | nan | nan | 0.0 | 0.7846 | 0.7114 | 0.5737 | 0.9461 | nan | nan | nan |
| 0.0601 | 47.75 | 1910 | 0.1251 | 0.6039 | 0.7889 | 0.9332 | nan | 0.8070 | 0.7630 | 0.6360 | 0.9497 | nan | nan | nan | 0.0 | 0.7833 | 0.7184 | 0.5733 | 0.9443 | nan | nan | nan |
| 0.0626 | 48.0 | 1920 | 0.1241 | 0.6041 | 0.7890 | 0.9323 | nan | 0.8101 | 0.7548 | 0.6426 | 0.9487 | nan | nan | nan | 0.0 | 0.7852 | 0.7141 | 0.5780 | 0.9433 | nan | nan | nan |
| 0.0545 | 48.25 | 1930 | 0.1240 | 0.6056 | 0.7919 | 0.9324 | nan | 0.8130 | 0.7646 | 0.6417 | 0.9485 | nan | nan | nan | 0.0 | 0.7870 | 0.7209 | 0.5772 | 0.9432 | nan | nan | nan |
| 0.052 | 48.5 | 1940 | 0.1239 | 0.6027 | 0.7874 | 0.9309 | nan | 0.8087 | 0.7524 | 0.6411 | 0.9474 | nan | nan | nan | 0.0 | 0.7834 | 0.7129 | 0.5751 | 0.9420 | nan | nan | nan |
| 0.0672 | 48.75 | 1950 | 0.1258 | 0.6008 | 0.7821 | 0.9351 | nan | 0.8084 | 0.7285 | 0.6387 | 0.9529 | nan | nan | nan | 0.0 | 0.7844 | 0.6974 | 0.5753 | 0.9468 | nan | nan | nan |
| 0.132 | 49.0 | 1960 | 0.1251 | 0.6006 | 0.7833 | 0.9317 | nan | 0.8070 | 0.7450 | 0.6325 | 0.9488 | nan | nan | nan | 0.0 | 0.7823 | 0.7075 | 0.5701 | 0.9432 | nan | nan | nan |
| 0.0759 | 49.25 | 1970 | 0.1245 | 0.6014 | 0.7852 | 0.9306 | nan | 0.8074 | 0.7518 | 0.6345 | 0.9472 | nan | nan | nan | 0.0 | 0.7826 | 0.7117 | 0.5712 | 0.9417 | nan | nan | nan |
| 0.0519 | 49.5 | 1980 | 0.1249 | 0.6029 | 0.7875 | 0.9323 | nan | 0.8084 | 0.7526 | 0.6401 | 0.9489 | nan | nan | nan | 0.0 | 0.7837 | 0.7127 | 0.5749 | 0.9433 | nan | nan | nan |
| 0.052 | 49.75 | 1990 | 0.1252 | 0.5998 | 0.7819 | 0.9323 | nan | 0.8042 | 0.7501 | 0.6240 | 0.9495 | nan | nan | nan | 0.0 | 0.7805 | 0.7103 | 0.5643 | 0.9439 | nan | nan | nan |
| 0.0575 | 50.0 | 2000 | 0.1250 | 0.5989 | 0.7803 | 0.9315 | nan | 0.8041 | 0.7428 | 0.6254 | 0.9488 | nan | nan | nan | 0.0 | 0.7805 | 0.7054 | 0.5651 | 0.9432 | nan | nan | nan |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"artery",
"vein",
"nerve",
"muscle1",
"muscle2",
"muscle3",
"muscle4",
"unknown"
] |
twdent/segformer-b1-finetuned-HikingHD |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-HikingHD
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the twdent/HikingHD dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1067
- Mean Iou: 0.9379
- Mean Accuracy: 0.9665
- Overall Accuracy: 0.9684
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9485
- Accuracy Non-traversable: 0.9845
- Iou Unlabeled: nan
- Iou Traversable: 0.9305
- Iou Non-traversable: 0.9452
- Local Tests:
- Average inference time: 0.2622481801774767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.3796 | 1.67 | 20 | 0.5835 | 0.6174 | 0.9605 | 0.9617 | nan | 0.9488 | 0.9721 | 0.0 | 0.9180 | 0.9343 |
| 0.3086 | 3.33 | 40 | 0.2597 | 0.9230 | 0.9589 | 0.9605 | nan | 0.9439 | 0.9739 | nan | 0.9143 | 0.9318 |
| 0.2717 | 5.0 | 60 | 0.2202 | 0.9386 | 0.9681 | 0.9687 | nan | 0.9626 | 0.9736 | nan | 0.9321 | 0.9451 |
| 0.2655 | 6.67 | 80 | 0.2127 | 0.9334 | 0.9658 | 0.9659 | nan | 0.9646 | 0.9670 | nan | 0.9267 | 0.9402 |
| 0.1603 | 8.33 | 100 | 0.1699 | 0.9383 | 0.9677 | 0.9686 | nan | 0.9601 | 0.9753 | nan | 0.9316 | 0.9450 |
| 0.2 | 10.0 | 120 | 0.1692 | 0.9289 | 0.9609 | 0.9637 | nan | 0.9342 | 0.9876 | nan | 0.9200 | 0.9378 |
| 0.1613 | 11.67 | 140 | 0.1389 | 0.9399 | 0.9676 | 0.9695 | nan | 0.9498 | 0.9853 | nan | 0.9328 | 0.9470 |
| 0.185 | 13.33 | 160 | 0.1612 | 0.9217 | 0.9566 | 0.9600 | nan | 0.9254 | 0.9878 | nan | 0.9116 | 0.9318 |
| 0.251 | 15.0 | 180 | 0.1461 | 0.9277 | 0.9603 | 0.9631 | nan | 0.9340 | 0.9865 | nan | 0.9187 | 0.9368 |
| 0.1038 | 16.67 | 200 | 0.1401 | 0.9248 | 0.9581 | 0.9616 | nan | 0.9258 | 0.9904 | nan | 0.9149 | 0.9346 |
| 0.0628 | 18.33 | 220 | 0.1556 | 0.9195 | 0.9548 | 0.9588 | nan | 0.9171 | 0.9924 | nan | 0.9086 | 0.9303 |
| 0.077 | 20.0 | 240 | 0.1439 | 0.9213 | 0.9561 | 0.9598 | nan | 0.9220 | 0.9902 | nan | 0.9110 | 0.9317 |
| 0.0714 | 21.67 | 260 | 0.1267 | 0.9344 | 0.9641 | 0.9666 | nan | 0.9404 | 0.9878 | nan | 0.9263 | 0.9425 |
| 0.081 | 23.33 | 280 | 0.1097 | 0.9397 | 0.9672 | 0.9694 | nan | 0.9470 | 0.9874 | nan | 0.9324 | 0.9470 |
| 0.09 | 25.0 | 300 | 0.1063 | 0.9402 | 0.9679 | 0.9696 | nan | 0.9522 | 0.9836 | nan | 0.9332 | 0.9472 |
| 0.0737 | 26.67 | 320 | 0.1045 | 0.9395 | 0.9674 | 0.9692 | nan | 0.9502 | 0.9845 | nan | 0.9323 | 0.9466 |
| 0.1173 | 28.33 | 340 | 0.1019 | 0.9427 | 0.9702 | 0.9708 | nan | 0.9644 | 0.9760 | nan | 0.9365 | 0.9488 |
| 0.0535 | 30.0 | 360 | 0.1132 | 0.9387 | 0.9674 | 0.9688 | nan | 0.9549 | 0.9799 | nan | 0.9317 | 0.9456 |
| 0.0693 | 31.67 | 380 | 0.1182 | 0.9340 | 0.9637 | 0.9664 | nan | 0.9389 | 0.9886 | nan | 0.9258 | 0.9422 |
| 0.0649 | 33.33 | 400 | 0.1108 | 0.9374 | 0.9662 | 0.9681 | nan | 0.9483 | 0.9841 | nan | 0.9300 | 0.9448 |
| 0.1581 | 35.0 | 420 | 0.1107 | 0.9368 | 0.9658 | 0.9678 | nan | 0.9473 | 0.9844 | nan | 0.9293 | 0.9443 |
| 0.0711 | 36.67 | 440 | 0.1011 | 0.9414 | 0.9690 | 0.9702 | nan | 0.9578 | 0.9801 | nan | 0.9348 | 0.9479 |
| 0.0743 | 38.33 | 460 | 0.1026 | 0.9400 | 0.9676 | 0.9695 | nan | 0.9500 | 0.9853 | nan | 0.9329 | 0.9471 |
| 0.0602 | 40.0 | 480 | 0.1029 | 0.9407 | 0.9681 | 0.9699 | nan | 0.9521 | 0.9841 | nan | 0.9337 | 0.9476 |
| 0.0768 | 41.67 | 500 | 0.1059 | 0.9386 | 0.9670 | 0.9688 | nan | 0.9502 | 0.9837 | nan | 0.9314 | 0.9458 |
| 0.0494 | 43.33 | 520 | 0.1076 | 0.9375 | 0.9663 | 0.9682 | nan | 0.9484 | 0.9842 | nan | 0.9302 | 0.9449 |
| 0.0359 | 45.0 | 540 | 0.1097 | 0.9369 | 0.9659 | 0.9679 | nan | 0.9473 | 0.9844 | nan | 0.9294 | 0.9444 |
| 0.0799 | 46.67 | 560 | 0.1070 | 0.9379 | 0.9666 | 0.9684 | nan | 0.9493 | 0.9838 | nan | 0.9306 | 0.9452 |
| 0.0685 | 48.33 | 580 | 0.1075 | 0.9378 | 0.9665 | 0.9684 | nan | 0.9489 | 0.9841 | nan | 0.9305 | 0.9452 |
| 0.0437 | 50.0 | 600 | 0.1067 | 0.9379 | 0.9665 | 0.9684 | nan | 0.9485 | 0.9845 | nan | 0.9305 | 0.9452 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
| [
"unlabeled",
"traversable",
"non-traversable"
] |
SpotLab/MobileViT_DeepLabv3 |
_Forked from [apple/deeplabv3-mobilevit-xx-small](https://huggingface.co/apple/deeplabv3-mobilevit-xx-small)_
# MobileViT + DeepLabV3 (extra extra small-sized model)
MobileViT model pre-trained on PASCAL VOC at resolution 512x512. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE).
Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings.
The model in this repo adds a [DeepLabV3](https://arxiv.org/abs/1706.05587) head to the MobileViT backbone for semantic segmentation.
## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_mask = logits.argmax(1).squeeze(0)
```
Currently, both the feature extractor and model support PyTorch.
## Training data
The MobileViT + DeepLabV3 model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes, and then fine-tuned on the [PASCAL VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/) dataset.
## Training procedure
### Preprocessing
At inference time, images are center-cropped at 512x512. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB.
### Pretraining
The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling.
To obtain the DeepLabV3 model, MobileViT was fine-tuned on the PASCAL VOC dataset using 4 NVIDIA A100 GPUs.
## Evaluation results
| Model | PASCAL VOC mIOU | # params | URL |
|-------------------|-----------------|-----------|-----------------------------------------------------------|
| **MobileViT-XXS** | **73.6** | **1.9 M** | https://huggingface.co/apple/deeplabv3-mobilevit-xx-small |
| MobileViT-XS | 77.1 | 2.9 M | https://huggingface.co/apple/deeplabv3-mobilevit-x-small |
| MobileViT-S | 79.1 | 6.4 M | https://huggingface.co/apple/deeplabv3-mobilevit-small |
### BibTeX entry and citation info
```bibtex
@inproceedings{vision-transformer,
title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer},
author = {Sachin Mehta and Mohammad Rastegari},
year = {2022},
URL = {https://arxiv.org/abs/2110.02178}
}
```
| [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.