model_id
stringlengths 12
92
| model_card
stringlengths 166
900k
| model_labels
listlengths 2
250
|
---|---|---|
giuseppemartino/model2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model2
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the giuseppemartino/isaid_sam_predicted dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2318
- Mean Iou: 0.2504
- Mean Accuracy: 0.3019
- Overall Accuracy: 0.4542
- Accuracy Background: nan
- Accuracy Ship: 0.6330
- Accuracy Small-vehicle: 0.4644
- Accuracy Tennis-court: 0.0280
- Accuracy Helicopter: nan
- Accuracy Basketball-court: 0.0
- Accuracy Ground-track-field: 0.6010
- Accuracy Swimming-pool: nan
- Accuracy Harbor: 0.4575
- Accuracy Soccer-ball-field: 0.7776
- Accuracy Plane: nan
- Accuracy Storage-tank: 0.0
- Accuracy Baseball-diamond: nan
- Accuracy Large-vehicle: 0.3594
- Accuracy Bridge: 0.0
- Accuracy Roundabout: 0.0
- Iou Background: 0.0
- Iou Ship: 0.5194
- Iou Small-vehicle: 0.4368
- Iou Tennis-court: 0.0280
- Iou Helicopter: nan
- Iou Basketball-court: 0.0
- Iou Ground-track-field: 0.5492
- Iou Swimming-pool: nan
- Iou Harbor: 0.3611
- Iou Soccer-ball-field: 0.7592
- Iou Plane: nan
- Iou Storage-tank: 0.0
- Iou Baseball-diamond: nan
- Iou Large-vehicle: 0.3508
- Iou Bridge: 0.0
- Iou Roundabout: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 1345
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
| 1.1413 | 1.0 | 113 | 0.5054 | 0.0431 | 0.0841 | 0.0445 | nan | 0.0611 | 0.0179 | 0.0079 | nan | 0.0 | 0.0 | nan | 0.8374 | 0.0 | nan | 0.0 | nan | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0592 | 0.0178 | 0.0079 | nan | 0.0 | 0.0 | nan | 0.4319 | 0.0 | nan | 0.0 | nan | 0.0010 | 0.0 | 0.0 |
| 0.326 | 2.0 | 226 | 0.3240 | 0.0756 | 0.1192 | 0.2144 | nan | 0.0433 | 0.1690 | 0.0 | nan | 0.0 | 0.0 | nan | 0.8062 | 0.0 | nan | 0.0 | nan | 0.2926 | 0.0 | 0.0 | 0.0 | 0.0430 | 0.1614 | 0.0 | nan | 0.0 | 0.0 | nan | 0.4129 | 0.0 | nan | 0.0 | nan | 0.2904 | 0.0 | 0.0 |
| 0.1849 | 3.0 | 339 | 0.2807 | 0.1589 | 0.2164 | 0.3238 | nan | 0.3520 | 0.3125 | 0.0 | nan | 0.0 | 0.3563 | nan | 0.6252 | 0.4509 | nan | 0.0 | nan | 0.2835 | 0.0 | 0.0 | 0.0 | 0.3236 | 0.2894 | 0.0 | nan | 0.0 | 0.3265 | 0.0 | 0.3954 | 0.4506 | nan | 0.0 | nan | 0.2807 | 0.0 | 0.0 |
| 0.1341 | 4.0 | 452 | 0.2694 | 0.1618 | 0.2309 | 0.3055 | nan | 0.2089 | 0.3628 | 0.0188 | nan | 0.0 | 0.4866 | nan | 0.7552 | 0.5206 | nan | 0.0 | nan | 0.1866 | 0.0 | 0.0 | 0.0 | 0.2004 | 0.3303 | 0.0188 | nan | 0.0 | 0.4268 | 0.0 | 0.4221 | 0.5205 | nan | 0.0 | nan | 0.1840 | 0.0 | 0.0 |
| 0.1282 | 5.0 | 565 | 0.2631 | 0.2057 | 0.2726 | 0.3396 | nan | 0.4061 | 0.3347 | 0.0292 | nan | 0.0 | 0.6126 | nan | 0.6152 | 0.8252 | nan | 0.0 | nan | 0.1751 | 0.0 | 0.0 | 0.0 | 0.3667 | 0.3169 | 0.0292 | nan | 0.0 | 0.4767 | nan | 0.3995 | 0.7049 | nan | 0.0 | nan | 0.1745 | 0.0 | 0.0 |
| 0.1138 | 6.0 | 678 | 0.2418 | 0.1949 | 0.2558 | 0.3865 | nan | 0.2362 | 0.3709 | 0.0122 | nan | 0.0 | 0.6128 | nan | 0.6627 | 0.5823 | nan | 0.0 | nan | 0.3365 | 0.0 | 0.0 | 0.0 | 0.2249 | 0.3444 | 0.0122 | nan | 0.0 | 0.4625 | nan | 0.3921 | 0.5725 | nan | 0.0 | nan | 0.3301 | 0.0 | 0.0 |
| 0.1049 | 7.0 | 791 | 0.2345 | 0.2013 | 0.2623 | 0.4725 | nan | 0.3186 | 0.4071 | 0.0827 | nan | 0.0 | 0.1697 | nan | 0.7809 | 0.6140 | nan | 0.0 | nan | 0.5118 | 0.0 | 0.0 | 0.0 | 0.2927 | 0.3851 | 0.0827 | nan | 0.0 | 0.1679 | nan | 0.4702 | 0.5212 | nan | 0.0 | nan | 0.4961 | 0.0 | 0.0 |
| 0.0829 | 8.0 | 904 | 0.2351 | 0.2194 | 0.2818 | 0.4348 | nan | 0.1689 | 0.4289 | 0.0980 | nan | 0.0 | 0.5547 | nan | 0.7050 | 0.7860 | nan | 0.0 | nan | 0.3580 | 0.0 | 0.0 | 0.0 | 0.1619 | 0.4048 | 0.0980 | nan | 0.0 | 0.5205 | nan | 0.3967 | 0.7023 | nan | 0.0 | nan | 0.3490 | 0.0 | 0.0 |
| 0.0922 | 9.0 | 1017 | 0.2350 | 0.2549 | 0.3103 | 0.5060 | nan | 0.4729 | 0.4726 | 0.0572 | nan | 0.0 | 0.5679 | nan | 0.5794 | 0.7942 | nan | 0.0 | nan | 0.4690 | 0.0 | 0.0 | 0.0 | 0.4143 | 0.4398 | 0.0572 | nan | 0.0 | 0.5293 | nan | 0.4010 | 0.7613 | nan | 0.0 | nan | 0.4563 | 0.0 | 0.0 |
| 0.0717 | 10.0 | 1130 | 0.2399 | 0.2344 | 0.2871 | 0.4150 | nan | 0.4512 | 0.4155 | 0.0169 | nan | 0.0 | 0.5706 | nan | 0.6279 | 0.7676 | nan | 0.0 | nan | 0.3089 | 0.0 | 0.0 | 0.0 | 0.3995 | 0.3949 | 0.0169 | nan | 0.0 | 0.5351 | nan | 0.4246 | 0.7393 | nan | 0.0 | nan | 0.3023 | 0.0 | 0.0 |
| 0.0787 | 11.0 | 1243 | 0.2228 | 0.2578 | 0.3105 | 0.4726 | nan | 0.6679 | 0.4378 | 0.0666 | nan | 0.0 | 0.5865 | nan | 0.4684 | 0.7796 | nan | 0.0 | nan | 0.4087 | 0.0 | 0.0 | 0.0 | 0.5359 | 0.4172 | 0.0666 | nan | 0.0 | 0.5456 | nan | 0.3785 | 0.7528 | nan | 0.0 | nan | 0.3975 | 0.0 | 0.0 |
| 0.0787 | 11.9 | 1345 | 0.2318 | 0.2504 | 0.3019 | 0.4542 | nan | 0.6330 | 0.4644 | 0.0280 | nan | 0.0 | 0.6010 | nan | 0.4575 | 0.7776 | nan | 0.0 | nan | 0.3594 | 0.0 | 0.0 | 0.0 | 0.5194 | 0.4368 | 0.0280 | nan | 0.0 | 0.5492 | nan | 0.3611 | 0.7592 | nan | 0.0 | nan | 0.3508 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"background",
"ship",
"small-vehicle",
"tennis-court",
"helicopter",
"basketball-court",
"ground-track-field",
"swimming-pool",
"harbor",
"soccer-ball-field",
"plane",
"storage-tank",
"baseball-diamond",
"large-vehicle",
"bridge",
"roundabout"
] |
magitz/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7960
- eval_mean_iou: 0.2053
- eval_mean_accuracy: 0.2533
- eval_overall_accuracy: 0.7980
- eval_accuracy_unlabeled: nan
- eval_accuracy_flat-road: 0.8959
- eval_accuracy_flat-sidewalk: 0.9420
- eval_accuracy_flat-crosswalk: 0.0
- eval_accuracy_flat-cyclinglane: 0.4535
- eval_accuracy_flat-parkingdriveway: 0.2273
- eval_accuracy_flat-railtrack: nan
- eval_accuracy_flat-curb: 0.3520
- eval_accuracy_human-person: 0.0
- eval_accuracy_human-rider: 0.0
- eval_accuracy_vehicle-car: 0.9346
- eval_accuracy_vehicle-truck: 0.0
- eval_accuracy_vehicle-bus: 0.0
- eval_accuracy_vehicle-tramtrain: nan
- eval_accuracy_vehicle-motorcycle: 0.0
- eval_accuracy_vehicle-bicycle: 0.0
- eval_accuracy_vehicle-caravan: 0.0
- eval_accuracy_vehicle-cartrailer: 0.0
- eval_accuracy_construction-building: 0.8792
- eval_accuracy_construction-door: 0.0
- eval_accuracy_construction-wall: 0.3746
- eval_accuracy_construction-fenceguardrail: 0.0
- eval_accuracy_construction-bridge: 0.0
- eval_accuracy_construction-tunnel: nan
- eval_accuracy_construction-stairs: 0.0
- eval_accuracy_object-pole: 0.0065
- eval_accuracy_object-trafficsign: 0.0
- eval_accuracy_object-trafficlight: 0.0
- eval_accuracy_nature-vegetation: 0.9279
- eval_accuracy_nature-terrain: 0.8991
- eval_accuracy_sky: 0.9585
- eval_accuracy_void-ground: 0.0
- eval_accuracy_void-dynamic: 0.0
- eval_accuracy_void-static: 0.0014
- eval_accuracy_void-unclear: 0.0
- eval_iou_unlabeled: nan
- eval_iou_flat-road: 0.6699
- eval_iou_flat-sidewalk: 0.7999
- eval_iou_flat-crosswalk: 0.0
- eval_iou_flat-cyclinglane: 0.4306
- eval_iou_flat-parkingdriveway: 0.1874
- eval_iou_flat-railtrack: nan
- eval_iou_flat-curb: 0.2837
- eval_iou_human-person: 0.0
- eval_iou_human-rider: 0.0
- eval_iou_vehicle-car: 0.6757
- eval_iou_vehicle-truck: 0.0
- eval_iou_vehicle-bus: 0.0
- eval_iou_vehicle-tramtrain: nan
- eval_iou_vehicle-motorcycle: 0.0
- eval_iou_vehicle-bicycle: 0.0
- eval_iou_vehicle-caravan: 0.0
- eval_iou_vehicle-cartrailer: 0.0
- eval_iou_construction-building: 0.6298
- eval_iou_construction-door: 0.0
- eval_iou_construction-wall: 0.2766
- eval_iou_construction-fenceguardrail: 0.0
- eval_iou_construction-bridge: 0.0
- eval_iou_construction-tunnel: nan
- eval_iou_construction-stairs: 0.0
- eval_iou_object-pole: 0.0065
- eval_iou_object-trafficsign: 0.0
- eval_iou_object-trafficlight: 0.0
- eval_iou_nature-vegetation: 0.8333
- eval_iou_nature-terrain: 0.6916
- eval_iou_sky: 0.8777
- eval_iou_void-ground: 0.0
- eval_iou_void-dynamic: 0.0
- eval_iou_void-static: 0.0014
- eval_iou_void-unclear: 0.0
- eval_runtime: 34.3451
- eval_samples_per_second: 5.823
- eval_steps_per_second: 2.912
- epoch: 2.05
- step: 820
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
wang1215/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
jericojr23/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6325
- Mean Iou: 0.0535
- Mean Accuracy: 0.0868
- Overall Accuracy: 0.5176
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.0813
- Accuracy Flat-sidewalk: 0.9451
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.0
- Accuracy Flat-parkingdriveway: 0.0
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.0017
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.2409
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: 0.0
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9096
- Accuracy Nature-terrain: 0.0349
- Accuracy Sky: 0.5635
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.0721
- Iou Flat-sidewalk: 0.4933
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.0
- Iou Flat-parkingdriveway: 0.0
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.0017
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.1927
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.5226
- Iou Nature-terrain: 0.0332
- Iou Sky: 0.3971
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.1406 | 0.2 | 20 | 3.3169 | 0.0250 | 0.0555 | 0.4250 | nan | 0.0 | 0.8293 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9246 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.4257 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0208 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3535 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.856 | 0.4 | 40 | 1.9761 | 0.0295 | 0.0611 | 0.4511 | nan | 0.0 | 0.8624 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1301 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9616 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.4700 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3725 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.9981 | 0.6 | 60 | 2.2395 | 0.0259 | 0.0508 | 0.4085 | nan | 0.0 | 0.9972 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4062 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2213 | 0.0000 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.4001 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2248 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2034 | 0.0000 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.1244 | 0.8 | 80 | 1.7573 | 0.0401 | 0.0707 | 0.4917 | nan | 0.0004 | 0.9494 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2756 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9149 | 0.0540 | 0.0670 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0004 | 0.4783 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1872 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5061 | 0.0472 | 0.0636 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.8822 | 1.0 | 100 | 1.6325 | 0.0535 | 0.0868 | 0.5176 | nan | 0.0813 | 0.9451 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2409 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9096 | 0.0349 | 0.5635 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0721 | 0.4933 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.1927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5226 | 0.0332 | 0.3971 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
wang1215/segformer-b3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b3
This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7826
- Mean Iou: 0.3995
- Mean Accuracy: 0.4977
- Overall Accuracy: 0.8759
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.9069
- Accuracy Flat-sidewalk: 0.9471
- Accuracy Flat-crosswalk: 0.5043
- Accuracy Flat-cyclinglane: 0.8684
- Accuracy Flat-parkingdriveway: 0.5057
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.7351
- Accuracy Human-person: 0.8662
- Accuracy Human-rider: 0.2599
- Accuracy Vehicle-car: 0.9494
- Accuracy Vehicle-truck: 0.1607
- Accuracy Vehicle-bus: 0.0044
- Accuracy Vehicle-tramtrain: 0.1992
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.7913
- Accuracy Vehicle-caravan: 0.4628
- Accuracy Vehicle-cartrailer: 0.0106
- Accuracy Construction-building: 0.9117
- Accuracy Construction-door: 0.2679
- Accuracy Construction-wall: 0.6351
- Accuracy Construction-fenceguardrail: 0.5893
- Accuracy Construction-bridge: 0.5639
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.4246
- Accuracy Object-pole: 0.6323
- Accuracy Object-trafficsign: 0.4266
- Accuracy Object-trafficlight: 0.2431
- Accuracy Nature-vegetation: 0.9540
- Accuracy Nature-terrain: 0.8819
- Accuracy Sky: 0.9827
- Accuracy Void-ground: 0.0045
- Accuracy Void-dynamic: 0.2006
- Accuracy Void-static: 0.5328
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: 0.0
- Iou Flat-road: 0.7947
- Iou Flat-sidewalk: 0.8656
- Iou Flat-crosswalk: 0.4529
- Iou Flat-cyclinglane: 0.6876
- Iou Flat-parkingdriveway: 0.4461
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.5989
- Iou Human-person: 0.6127
- Iou Human-rider: 0.2346
- Iou Vehicle-car: 0.8877
- Iou Vehicle-truck: 0.0662
- Iou Vehicle-bus: 0.0044
- Iou Vehicle-tramtrain: 0.1985
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.5765
- Iou Vehicle-caravan: 0.1495
- Iou Vehicle-cartrailer: 0.0106
- Iou Construction-building: 0.8060
- Iou Construction-door: 0.2190
- Iou Construction-wall: 0.5015
- Iou Construction-fenceguardrail: 0.4923
- Iou Construction-bridge: 0.3467
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.3908
- Iou Object-pole: 0.4693
- Iou Object-trafficsign: 0.3698
- Iou Object-trafficlight: 0.2052
- Iou Nature-vegetation: 0.8832
- Iou Nature-terrain: 0.7906
- Iou Sky: 0.9519
- Iou Void-ground: 0.0038
- Iou Void-dynamic: 0.1774
- Iou Void-static: 0.3885
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 0.7275 | 2.5 | 500 | 0.5765 | 0.3050 | 0.3654 | 0.8441 | nan | 0.9561 | 0.9153 | 0.3719 | 0.7164 | 0.4360 | 0.0 | 0.3475 | 0.8270 | 0.0 | 0.9318 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6843 | 0.0 | 0.0 | 0.9160 | 0.0667 | 0.3893 | 0.6512 | 0.0 | nan | 0.0 | 0.5447 | 0.0525 | 0.0 | 0.9581 | 0.8185 | 0.9737 | 0.0 | 0.0262 | 0.4752 | 0.0 | nan | 0.7208 | 0.8407 | 0.3582 | 0.6393 | 0.3693 | 0.0 | 0.2705 | 0.5291 | 0.0 | 0.8548 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5158 | 0.0 | 0.0 | 0.7684 | 0.0638 | 0.3606 | 0.4620 | 0.0 | nan | 0.0 | 0.3805 | 0.0522 | 0.0 | 0.8572 | 0.7657 | 0.9225 | 0.0 | 0.0256 | 0.3078 | 0.0 |
| 0.3654 | 5.0 | 1000 | 0.5265 | 0.3531 | 0.4276 | 0.8622 | nan | 0.9116 | 0.9476 | 0.4986 | 0.8194 | 0.4632 | 0.0 | 0.5613 | 0.8672 | 0.1407 | 0.9399 | 0.2129 | 0.0 | 0.0 | 0.0 | 0.7640 | 0.0 | 0.0 | 0.8915 | 0.1468 | 0.5813 | 0.5719 | 0.0 | nan | 0.3336 | 0.5583 | 0.4068 | 0.0 | 0.9470 | 0.8512 | 0.9780 | 0.0004 | 0.1935 | 0.5228 | 0.0 | nan | 0.7904 | 0.8491 | 0.4455 | 0.6935 | 0.4013 | 0.0 | 0.4607 | 0.5435 | 0.1227 | 0.8663 | 0.1019 | 0.0 | 0.0 | 0.0 | 0.5464 | 0.0 | 0.0 | 0.7740 | 0.1198 | 0.4746 | 0.4587 | 0.0 | nan | 0.2403 | 0.4036 | 0.2949 | 0.0 | 0.8663 | 0.7614 | 0.9334 | 0.0003 | 0.1492 | 0.3544 | 0.0 |
| 0.2359 | 7.5 | 1500 | 0.5790 | 0.3584 | 0.4296 | 0.8649 | nan | 0.8646 | 0.9501 | 0.4466 | 0.8506 | 0.5513 | 0.0 | 0.7099 | 0.8317 | 0.2099 | 0.9442 | 0.2546 | 0.0 | 0.0 | 0.0 | 0.7862 | 0.0087 | 0.0 | 0.9079 | 0.1046 | 0.6479 | 0.5239 | 0.0 | nan | 0.1543 | 0.5674 | 0.3864 | 0.0 | 0.9461 | 0.8753 | 0.9776 | 0.0000 | 0.1974 | 0.4793 | 0.0 | nan | 0.7917 | 0.8414 | 0.4214 | 0.7012 | 0.4494 | 0.0 | 0.5333 | 0.5888 | 0.1897 | 0.8663 | 0.1009 | 0.0 | 0.0 | 0.0 | 0.5427 | 0.0042 | 0.0 | 0.7817 | 0.0945 | 0.4696 | 0.4312 | 0.0 | nan | 0.1477 | 0.4314 | 0.3152 | 0.0 | 0.8749 | 0.7719 | 0.9409 | 0.0000 | 0.1780 | 0.3593 | 0.0 |
| 0.1708 | 10.0 | 2000 | 0.6066 | 0.3684 | 0.4479 | 0.8666 | nan | 0.8819 | 0.9466 | 0.5609 | 0.8324 | 0.4835 | 0.0 | 0.7200 | 0.8575 | 0.1404 | 0.9422 | 0.2656 | 0.0 | 0.0590 | 0.0 | 0.7505 | 0.2619 | 0.0 | 0.8906 | 0.2203 | 0.6425 | 0.5323 | 0.0 | nan | 0.3455 | 0.5923 | 0.4085 | 0.0 | 0.9552 | 0.8844 | 0.9791 | 0.0024 | 0.0951 | 0.5293 | 0.0 | nan | 0.7930 | 0.8537 | 0.4562 | 0.6519 | 0.4311 | 0.0 | 0.5478 | 0.5960 | 0.1301 | 0.8728 | 0.1051 | 0.0 | 0.0590 | 0.0 | 0.5390 | 0.0916 | 0.0 | 0.7864 | 0.1779 | 0.4949 | 0.4467 | 0.0 | nan | 0.3107 | 0.4336 | 0.3289 | 0.0 | 0.8757 | 0.7694 | 0.9416 | 0.0019 | 0.0893 | 0.3741 | 0.0 |
| 0.1326 | 12.5 | 2500 | 0.5934 | 0.3969 | 0.4877 | 0.8753 | nan | 0.9227 | 0.9490 | 0.4762 | 0.8499 | 0.5255 | 0.0 | 0.6941 | 0.8115 | 0.3960 | 0.9430 | 0.3828 | 0.0266 | 0.0998 | 0.0 | 0.7963 | 0.6565 | 0.0003 | 0.8988 | 0.2880 | 0.6352 | 0.5442 | 0.2746 | nan | 0.3048 | 0.6133 | 0.4269 | 0.0 | 0.9483 | 0.9064 | 0.9838 | 0.0025 | 0.2297 | 0.5070 | 0.0 | nan | 0.8032 | 0.8631 | 0.4521 | 0.7678 | 0.4440 | 0.0 | 0.5593 | 0.6096 | 0.2994 | 0.8777 | 0.1308 | 0.0266 | 0.0998 | 0.0 | 0.5663 | 0.2016 | 0.0003 | 0.7931 | 0.1957 | 0.4838 | 0.4475 | 0.2094 | nan | 0.2849 | 0.4530 | 0.3424 | 0.0 | 0.8798 | 0.7777 | 0.9441 | 0.0023 | 0.1979 | 0.3857 | 0.0 |
| 0.1116 | 15.0 | 3000 | 0.6267 | 0.3978 | 0.4820 | 0.8734 | nan | 0.9155 | 0.9431 | 0.5145 | 0.8423 | 0.4973 | 0.0 | 0.7284 | 0.8513 | 0.3146 | 0.9492 | 0.0753 | 0.0 | 0.2565 | 0.0 | 0.7845 | 0.3853 | 0.0220 | 0.8998 | 0.2497 | 0.6306 | 0.5571 | 0.3186 | nan | 0.4912 | 0.5902 | 0.4795 | 0.0 | 0.9501 | 0.9004 | 0.9843 | 0.0038 | 0.2017 | 0.5677 | 0.0 | nan | 0.8037 | 0.8591 | 0.4665 | 0.7147 | 0.4311 | 0.0 | 0.5698 | 0.5996 | 0.2693 | 0.8800 | 0.0366 | 0.0 | 0.2554 | 0.0 | 0.5526 | 0.1200 | 0.0216 | 0.7935 | 0.1949 | 0.4853 | 0.4704 | 0.2116 | nan | 0.3980 | 0.4450 | 0.3691 | 0.0 | 0.8815 | 0.7857 | 0.9439 | 0.0031 | 0.1751 | 0.3899 | 0.0 |
| 0.098 | 17.5 | 3500 | 0.6334 | 0.3922 | 0.5006 | 0.8729 | nan | 0.8961 | 0.9419 | 0.5747 | 0.8862 | 0.4977 | 0.0 | 0.7428 | 0.8491 | 0.3477 | 0.9464 | 0.0952 | 0.0 | 0.2937 | 0.0 | 0.7908 | 0.7738 | 0.0 | 0.8934 | 0.2479 | 0.6445 | 0.6108 | 0.4273 | nan | 0.4435 | 0.6190 | 0.4308 | 0.0015 | 0.9486 | 0.9026 | 0.9818 | 0.0099 | 0.2216 | 0.4994 | 0.0 | 0.0 | 0.7961 | 0.8651 | 0.5005 | 0.6765 | 0.4413 | 0.0 | 0.5751 | 0.6176 | 0.2944 | 0.8811 | 0.0373 | 0.0 | 0.2919 | 0.0 | 0.5578 | 0.2307 | 0.0 | 0.7961 | 0.1835 | 0.4901 | 0.4814 | 0.2506 | nan | 0.3771 | 0.4560 | 0.3562 | 0.0015 | 0.8810 | 0.7806 | 0.9474 | 0.0077 | 0.1823 | 0.3784 | 0.0 |
| 0.0894 | 20.0 | 4000 | 0.6973 | 0.3988 | 0.4923 | 0.8722 | nan | 0.8952 | 0.9456 | 0.5309 | 0.8357 | 0.4777 | 0.0 | 0.7630 | 0.8291 | 0.2785 | 0.9467 | 0.1712 | 0.0047 | 0.1377 | 0.0 | 0.7854 | 0.8237 | 0.0 | 0.9282 | 0.1899 | 0.5904 | 0.6020 | 0.4761 | nan | 0.3323 | 0.6192 | 0.4047 | 0.1381 | 0.9522 | 0.8851 | 0.9767 | 0.0050 | 0.1916 | 0.5277 | 0.0 | nan | 0.8062 | 0.8543 | 0.4692 | 0.6675 | 0.4204 | 0.0 | 0.5710 | 0.6083 | 0.2366 | 0.8855 | 0.0677 | 0.0046 | 0.1374 | 0.0 | 0.5492 | 0.2453 | 0.0 | 0.7996 | 0.1571 | 0.4887 | 0.4847 | 0.2656 | nan | 0.3148 | 0.4670 | 0.3491 | 0.1264 | 0.8815 | 0.7829 | 0.9496 | 0.0043 | 0.1718 | 0.3936 | 0.0 |
| 0.0819 | 22.5 | 4500 | 0.6867 | 0.4098 | 0.5001 | 0.8778 | nan | 0.9344 | 0.9410 | 0.5690 | 0.8783 | 0.4856 | 0.0 | 0.7065 | 0.8495 | 0.2085 | 0.9415 | 0.1530 | 0.0018 | 0.2354 | 0.0 | 0.7829 | 0.7796 | 0.0 | 0.9044 | 0.2261 | 0.6171 | 0.6045 | 0.4780 | nan | 0.4156 | 0.6265 | 0.4288 | 0.1457 | 0.9563 | 0.8877 | 0.9804 | 0.0064 | 0.2136 | 0.5447 | 0.0 | nan | 0.8016 | 0.8702 | 0.4902 | 0.7597 | 0.4279 | 0.0 | 0.5780 | 0.6123 | 0.1998 | 0.8889 | 0.0577 | 0.0018 | 0.2348 | 0.0 | 0.5898 | 0.2436 | 0.0 | 0.7992 | 0.1842 | 0.4829 | 0.4918 | 0.2855 | nan | 0.3732 | 0.4658 | 0.3650 | 0.1297 | 0.8823 | 0.7837 | 0.9500 | 0.0053 | 0.1841 | 0.3839 | 0.0 |
| 0.0767 | 25.0 | 5000 | 0.7377 | 0.4096 | 0.5109 | 0.8720 | nan | 0.8599 | 0.9464 | 0.5724 | 0.9354 | 0.4838 | 0.0 | 0.7392 | 0.8475 | 0.2679 | 0.9530 | 0.2438 | 0.0 | 0.2405 | 0.0 | 0.7879 | 0.8364 | 0.0 | 0.9155 | 0.2107 | 0.5924 | 0.5901 | 0.5525 | nan | 0.3980 | 0.6229 | 0.4648 | 0.2165 | 0.9550 | 0.8865 | 0.9823 | 0.0047 | 0.1970 | 0.5557 | 0.0 | nan | 0.7881 | 0.8643 | 0.5042 | 0.6317 | 0.4280 | 0.0 | 0.5817 | 0.6075 | 0.2397 | 0.8857 | 0.1052 | 0.0 | 0.2384 | 0.0 | 0.5664 | 0.2501 | 0.0 | 0.8056 | 0.1813 | 0.4878 | 0.4863 | 0.2871 | nan | 0.3652 | 0.4725 | 0.3883 | 0.1660 | 0.8804 | 0.7905 | 0.9503 | 0.0040 | 0.1704 | 0.3891 | 0.0 |
| 0.0725 | 27.5 | 5500 | 0.7085 | 0.3977 | 0.5056 | 0.8782 | nan | 0.9177 | 0.9482 | 0.4916 | 0.8966 | 0.4989 | 0.0 | 0.7119 | 0.8469 | 0.2483 | 0.9512 | 0.2387 | 0.0440 | 0.1287 | 0.0 | 0.7947 | 0.8184 | 0.0 | 0.9152 | 0.2257 | 0.6472 | 0.5963 | 0.5426 | nan | 0.3951 | 0.6422 | 0.4369 | 0.2195 | 0.9499 | 0.8824 | 0.9821 | 0.0036 | 0.1824 | 0.5266 | 0.0 | 0.0 | 0.8109 | 0.8638 | 0.4498 | 0.7314 | 0.4437 | 0.0 | 0.5797 | 0.6047 | 0.2215 | 0.8861 | 0.0855 | 0.0430 | 0.1284 | 0.0 | 0.5657 | 0.2395 | 0.0 | 0.8058 | 0.1939 | 0.5113 | 0.4913 | 0.2943 | nan | 0.3732 | 0.4773 | 0.3770 | 0.1643 | 0.8836 | 0.7864 | 0.9509 | 0.0029 | 0.1639 | 0.3905 | 0.0 |
| 0.0685 | 30.0 | 6000 | 0.7388 | 0.4115 | 0.5051 | 0.8738 | nan | 0.9135 | 0.9420 | 0.5290 | 0.8405 | 0.4909 | 0.0 | 0.7408 | 0.8566 | 0.3161 | 0.9461 | 0.1138 | 0.0003 | 0.1616 | 0.0 | 0.8061 | 0.7486 | 0.0001 | 0.9074 | 0.2986 | 0.6418 | 0.5669 | 0.4769 | nan | 0.4607 | 0.6454 | 0.4717 | 0.2320 | 0.9531 | 0.8849 | 0.9802 | 0.0037 | 0.1983 | 0.5417 | 0.0 | nan | 0.7911 | 0.8647 | 0.4671 | 0.6651 | 0.4361 | 0.0 | 0.5848 | 0.6127 | 0.2642 | 0.8885 | 0.0453 | 0.0003 | 0.1613 | 0.0 | 0.5455 | 0.2421 | 0.0001 | 0.8022 | 0.2382 | 0.4975 | 0.4741 | 0.3279 | nan | 0.4050 | 0.4789 | 0.3937 | 0.1921 | 0.8825 | 0.7873 | 0.9516 | 0.0032 | 0.1809 | 0.3970 | 0.0 |
| 0.0654 | 32.5 | 6500 | 0.7246 | 0.4128 | 0.5034 | 0.8789 | nan | 0.9247 | 0.9424 | 0.5865 | 0.8579 | 0.5105 | 0.0 | 0.7409 | 0.8799 | 0.2449 | 0.9462 | 0.0922 | 0.0 | 0.1728 | 0.0 | 0.7762 | 0.7085 | 0.0 | 0.9151 | 0.2459 | 0.6278 | 0.6088 | 0.5426 | nan | 0.4260 | 0.6444 | 0.4471 | 0.2230 | 0.9530 | 0.8839 | 0.9833 | 0.0040 | 0.1978 | 0.5251 | 0.0 | nan | 0.8010 | 0.8705 | 0.5132 | 0.7193 | 0.4466 | 0.0 | 0.5906 | 0.5971 | 0.2204 | 0.8884 | 0.0419 | 0.0 | 0.1724 | 0.0 | 0.5623 | 0.2184 | 0.0 | 0.8044 | 0.2015 | 0.5037 | 0.4964 | 0.3206 | nan | 0.4032 | 0.4828 | 0.3859 | 0.1802 | 0.8828 | 0.7909 | 0.9505 | 0.0033 | 0.1792 | 0.3959 | 0.0 |
| 0.0629 | 35.0 | 7000 | 0.7655 | 0.4168 | 0.5105 | 0.8741 | nan | 0.8961 | 0.9470 | 0.5214 | 0.8906 | 0.4982 | 0.0 | 0.7542 | 0.8631 | 0.2754 | 0.9512 | 0.1882 | 0.0015 | 0.3457 | 0.0 | 0.7778 | 0.6418 | 0.0144 | 0.8908 | 0.2816 | 0.6612 | 0.5910 | 0.5330 | nan | 0.4434 | 0.6305 | 0.4273 | 0.2421 | 0.9516 | 0.8805 | 0.9821 | 0.0036 | 0.2172 | 0.5444 | 0.0 | nan | 0.7981 | 0.8672 | 0.4665 | 0.6765 | 0.4364 | 0.0 | 0.5934 | 0.6114 | 0.2489 | 0.8877 | 0.0831 | 0.0013 | 0.3436 | 0.0 | 0.5668 | 0.2017 | 0.0140 | 0.7928 | 0.2283 | 0.4708 | 0.4904 | 0.3458 | nan | 0.4011 | 0.4722 | 0.3699 | 0.1843 | 0.8836 | 0.7898 | 0.9516 | 0.0030 | 0.1851 | 0.3897 | 0.0 |
| 0.0607 | 37.5 | 7500 | 0.7668 | 0.4180 | 0.5139 | 0.8751 | nan | 0.8948 | 0.9480 | 0.5612 | 0.8579 | 0.4903 | 0.0 | 0.7432 | 0.8676 | 0.2619 | 0.9495 | 0.1718 | 0.0165 | 0.3359 | 0.0010 | 0.7738 | 0.7077 | 0.0304 | 0.9104 | 0.2826 | 0.6353 | 0.6045 | 0.5609 | nan | 0.4406 | 0.6293 | 0.4355 | 0.2376 | 0.9511 | 0.8940 | 0.9818 | 0.0033 | 0.2277 | 0.5530 | 0.0 | nan | 0.7933 | 0.8676 | 0.4914 | 0.6562 | 0.4327 | 0.0 | 0.5956 | 0.6059 | 0.2348 | 0.8875 | 0.0739 | 0.0161 | 0.3343 | 0.0010 | 0.5696 | 0.2086 | 0.0295 | 0.8084 | 0.2268 | 0.5014 | 0.4962 | 0.3297 | nan | 0.3948 | 0.4702 | 0.3754 | 0.1918 | 0.8836 | 0.7857 | 0.9519 | 0.0029 | 0.1886 | 0.3900 | 0.0 |
| 0.0582 | 40.0 | 8000 | 0.7562 | 0.4049 | 0.5074 | 0.8780 | nan | 0.9204 | 0.9463 | 0.5052 | 0.8643 | 0.5082 | 0.0 | 0.7360 | 0.8650 | 0.2462 | 0.9501 | 0.1893 | 0.0024 | 0.2403 | 0.0 | 0.7814 | 0.6631 | 0.0242 | 0.9169 | 0.2821 | 0.6356 | 0.5984 | 0.5609 | nan | 0.4218 | 0.6299 | 0.4414 | 0.2421 | 0.9504 | 0.8835 | 0.9796 | 0.0043 | 0.2138 | 0.5395 | 0.0 | 0.0 | 0.8004 | 0.8683 | 0.4553 | 0.7073 | 0.4478 | 0.0 | 0.6007 | 0.6132 | 0.2291 | 0.8882 | 0.0839 | 0.0024 | 0.2391 | 0.0 | 0.5777 | 0.2020 | 0.0237 | 0.8060 | 0.2276 | 0.5058 | 0.4990 | 0.3415 | nan | 0.3905 | 0.4699 | 0.3815 | 0.1952 | 0.8837 | 0.7908 | 0.9522 | 0.0036 | 0.1849 | 0.3941 | 0.0 |
| 0.0565 | 42.5 | 8500 | 0.7834 | 0.4004 | 0.5024 | 0.8762 | nan | 0.8960 | 0.9474 | 0.5430 | 0.8894 | 0.4937 | 0.0 | 0.7492 | 0.8696 | 0.2727 | 0.9482 | 0.1505 | 0.0006 | 0.1868 | 0.0 | 0.7945 | 0.5042 | 0.0051 | 0.9155 | 0.2834 | 0.6369 | 0.5958 | 0.5811 | nan | 0.4136 | 0.6419 | 0.4457 | 0.2481 | 0.9510 | 0.8887 | 0.9822 | 0.0041 | 0.2054 | 0.5358 | 0.0 | 0.0 | 0.7955 | 0.8676 | 0.4613 | 0.6877 | 0.4390 | 0.0 | 0.6023 | 0.6092 | 0.2503 | 0.8879 | 0.0626 | 0.0006 | 0.1860 | 0.0 | 0.5802 | 0.1628 | 0.0051 | 0.8061 | 0.2307 | 0.5003 | 0.4961 | 0.3290 | nan | 0.3820 | 0.4752 | 0.3819 | 0.2070 | 0.8838 | 0.7914 | 0.9520 | 0.0034 | 0.1813 | 0.3944 | 0.0 |
| 0.0562 | 45.0 | 9000 | 0.7812 | 0.4015 | 0.5008 | 0.8772 | nan | 0.9064 | 0.9466 | 0.5058 | 0.8872 | 0.5059 | 0.0 | 0.7482 | 0.8642 | 0.2957 | 0.9489 | 0.1494 | 0.0059 | 0.1674 | 0.0003 | 0.8079 | 0.4484 | 0.0122 | 0.9134 | 0.2785 | 0.6303 | 0.6007 | 0.5723 | nan | 0.4337 | 0.6286 | 0.4291 | 0.2541 | 0.9521 | 0.8902 | 0.9821 | 0.0054 | 0.2097 | 0.5444 | 0.0 | 0.0 | 0.7954 | 0.8685 | 0.4597 | 0.7046 | 0.4471 | 0.0 | 0.6024 | 0.6174 | 0.2611 | 0.8881 | 0.0630 | 0.0057 | 0.1667 | 0.0003 | 0.5844 | 0.1441 | 0.0120 | 0.8059 | 0.2279 | 0.5021 | 0.4963 | 0.3439 | nan | 0.3981 | 0.4694 | 0.3714 | 0.2134 | 0.8841 | 0.7883 | 0.9522 | 0.0044 | 0.1836 | 0.3913 | 0.0 |
| 0.0547 | 47.5 | 9500 | 0.7899 | 0.3997 | 0.4971 | 0.8759 | nan | 0.9053 | 0.9472 | 0.4999 | 0.8752 | 0.5002 | 0.0 | 0.7334 | 0.8557 | 0.2947 | 0.9505 | 0.1326 | 0.0 | 0.1843 | 0.0 | 0.8065 | 0.3995 | 0.0184 | 0.9146 | 0.2650 | 0.6301 | 0.6056 | 0.5749 | nan | 0.4294 | 0.6299 | 0.4450 | 0.2461 | 0.9515 | 0.8854 | 0.9825 | 0.0044 | 0.2045 | 0.5311 | 0.0000 | 0.0 | 0.7939 | 0.8655 | 0.4530 | 0.6865 | 0.4427 | 0.0 | 0.5983 | 0.6206 | 0.2592 | 0.8881 | 0.0597 | 0.0 | 0.1837 | 0.0 | 0.5769 | 0.1272 | 0.0183 | 0.8055 | 0.2174 | 0.5004 | 0.4960 | 0.3457 | nan | 0.3926 | 0.4724 | 0.3800 | 0.2072 | 0.8841 | 0.7912 | 0.9522 | 0.0037 | 0.1789 | 0.3895 | 0.0000 |
| 0.0543 | 50.0 | 10000 | 0.7826 | 0.3995 | 0.4977 | 0.8759 | nan | 0.9069 | 0.9471 | 0.5043 | 0.8684 | 0.5057 | 0.0 | 0.7351 | 0.8662 | 0.2599 | 0.9494 | 0.1607 | 0.0044 | 0.1992 | 0.0 | 0.7913 | 0.4628 | 0.0106 | 0.9117 | 0.2679 | 0.6351 | 0.5893 | 0.5639 | nan | 0.4246 | 0.6323 | 0.4266 | 0.2431 | 0.9540 | 0.8819 | 0.9827 | 0.0045 | 0.2006 | 0.5328 | 0.0 | 0.0 | 0.7947 | 0.8656 | 0.4529 | 0.6876 | 0.4461 | 0.0 | 0.5989 | 0.6127 | 0.2346 | 0.8877 | 0.0662 | 0.0044 | 0.1985 | 0.0 | 0.5765 | 0.1495 | 0.0106 | 0.8060 | 0.2190 | 0.5015 | 0.4923 | 0.3467 | nan | 0.3908 | 0.4693 | 0.3698 | 0.2052 | 0.8832 | 0.7906 | 0.9519 | 0.0038 | 0.1774 | 0.3885 | 0.0 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
SatwikKambham/segformer-b0-finetuned-suim |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-suim
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the SatwikKambham/suim dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5044
- Mean Iou: 0.6138
- Mean Accuracy: 0.7713
- Overall Accuracy: 0.8213
- Accuracy Background (waterbody): nan
- Accuracy Human divers: 0.9139
- Accuracy Aquatic plants and sea-grass: 0.2842
- Accuracy Wrecks and ruins: 0.8156
- Accuracy Robots (auvs/rovs/instruments): 0.8117
- Accuracy Reefs and invertebrates: 0.9098
- Accuracy Fish and vertebrates: 0.8540
- Accuracy Sea-floor and rocks: 0.8096
- Iou Background (waterbody): 0.0
- Iou Human divers: 0.8428
- Iou Aquatic plants and sea-grass: 0.2638
- Iou Wrecks and ruins: 0.7560
- Iou Robots (auvs/rovs/instruments): 0.7896
- Iou Reefs and invertebrates: 0.7482
- Iou Fish and vertebrates: 0.7927
- Iou Sea-floor and rocks: 0.7176
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background (waterbody) | Accuracy Human divers | Accuracy Aquatic plants and sea-grass | Accuracy Wrecks and ruins | Accuracy Robots (auvs/rovs/instruments) | Accuracy Reefs and invertebrates | Accuracy Fish and vertebrates | Accuracy Sea-floor and rocks | Iou Background (waterbody) | Iou Human divers | Iou Aquatic plants and sea-grass | Iou Wrecks and ruins | Iou Robots (auvs/rovs/instruments) | Iou Reefs and invertebrates | Iou Fish and vertebrates | Iou Sea-floor and rocks |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------:|:---------------------:|:-------------------------------------:|:-------------------------:|:---------------------------------------:|:--------------------------------:|:-----------------------------:|:----------------------------:|:--------------------------:|:----------------:|:--------------------------------:|:--------------------:|:----------------------------------:|:---------------------------:|:------------------------:|:-----------------------:|
| 1.1911 | 0.54 | 100 | 0.9270 | 0.3052 | 0.4434 | 0.6401 | nan | 0.2785 | 0.0 | 0.6857 | 0.0 | 0.7643 | 0.7044 | 0.6709 | 0.0 | 0.2555 | 0.0 | 0.4605 | 0.0 | 0.6111 | 0.5394 | 0.5753 |
| 0.6852 | 1.08 | 200 | 0.7299 | 0.3457 | 0.4967 | 0.7065 | nan | 0.3429 | 0.0 | 0.8033 | 0.0 | 0.7829 | 0.7653 | 0.7826 | 0.0 | 0.3126 | 0.0 | 0.5458 | 0.0 | 0.6336 | 0.5961 | 0.6776 |
| 0.854 | 1.61 | 300 | 0.7453 | 0.3420 | 0.4937 | 0.6506 | nan | 0.5488 | 0.0 | 0.7778 | 0.0 | 0.6528 | 0.7659 | 0.7103 | 0.0 | 0.4867 | 0.0 | 0.5156 | 0.0 | 0.5619 | 0.6180 | 0.5536 |
| 0.5111 | 2.15 | 400 | 0.6174 | 0.3920 | 0.5455 | 0.7207 | nan | 0.7475 | 0.0 | 0.6988 | 0.0 | 0.8364 | 0.7907 | 0.7449 | 0.0 | 0.5704 | 0.0 | 0.5986 | 0.0 | 0.6422 | 0.6796 | 0.6451 |
| 0.5311 | 2.69 | 500 | 0.5811 | 0.4084 | 0.5606 | 0.7368 | nan | 0.7697 | 0.0 | 0.7729 | 0.0 | 0.8658 | 0.7824 | 0.7333 | 0.0 | 0.6522 | 0.0 | 0.6000 | 0.0 | 0.6551 | 0.7045 | 0.6555 |
| 0.5595 | 3.23 | 600 | 0.5591 | 0.4165 | 0.5686 | 0.7420 | nan | 0.8291 | 0.0 | 0.7557 | 0.0 | 0.8848 | 0.7805 | 0.7299 | 0.0 | 0.6524 | 0.0 | 0.6536 | 0.0 | 0.6760 | 0.7011 | 0.6489 |
| 0.6847 | 3.76 | 700 | 0.5657 | 0.4068 | 0.5740 | 0.7336 | nan | 0.8233 | 0.0 | 0.8490 | 0.0 | 0.8649 | 0.8157 | 0.6648 | 0.0 | 0.6575 | 0.0 | 0.5982 | 0.0 | 0.6532 | 0.7179 | 0.6277 |
| 0.3272 | 4.3 | 800 | 0.5065 | 0.4309 | 0.5838 | 0.7573 | nan | 0.7906 | 0.0 | 0.8117 | 0.0467 | 0.8729 | 0.8021 | 0.7629 | 0.0 | 0.6564 | 0.0 | 0.6608 | 0.0467 | 0.6666 | 0.7242 | 0.6925 |
| 0.5065 | 4.84 | 900 | 0.4745 | 0.4420 | 0.5978 | 0.7675 | nan | 0.7969 | 0.0000 | 0.8235 | 0.0879 | 0.8301 | 0.8187 | 0.8273 | 0.0 | 0.6668 | 0.0000 | 0.6834 | 0.0879 | 0.6847 | 0.7247 | 0.6882 |
| 0.3712 | 5.38 | 1000 | 0.4567 | 0.4691 | 0.6296 | 0.7824 | nan | 0.8468 | 0.0004 | 0.7933 | 0.2299 | 0.9005 | 0.8431 | 0.7929 | 0.0 | 0.6829 | 0.0004 | 0.7036 | 0.2298 | 0.6852 | 0.7381 | 0.7125 |
| 0.6866 | 5.91 | 1100 | 0.4453 | 0.5352 | 0.6932 | 0.7843 | nan | 0.8487 | 0.0236 | 0.8462 | 0.6450 | 0.8373 | 0.8198 | 0.8317 | 0.0 | 0.7810 | 0.0227 | 0.7122 | 0.6437 | 0.6768 | 0.7454 | 0.7001 |
| 0.4374 | 6.45 | 1200 | 0.4806 | 0.5279 | 0.6836 | 0.7705 | nan | 0.8392 | 0.1452 | 0.7508 | 0.5700 | 0.8615 | 0.8452 | 0.7732 | 0.0 | 0.7349 | 0.1403 | 0.6883 | 0.5638 | 0.6990 | 0.7439 | 0.6532 |
| 0.5409 | 6.99 | 1300 | 0.4671 | 0.5403 | 0.6987 | 0.7768 | nan | 0.8636 | 0.0181 | 0.7956 | 0.7149 | 0.8739 | 0.8502 | 0.7746 | 0.0 | 0.7666 | 0.0179 | 0.7256 | 0.7072 | 0.6748 | 0.7473 | 0.6834 |
| 0.3526 | 7.53 | 1400 | 0.4691 | 0.5517 | 0.7168 | 0.7811 | nan | 0.8670 | 0.2005 | 0.8345 | 0.6704 | 0.8837 | 0.8260 | 0.7353 | 0.0 | 0.7791 | 0.1891 | 0.6723 | 0.6687 | 0.6845 | 0.7447 | 0.6752 |
| 0.2883 | 8.06 | 1500 | 0.4418 | 0.5744 | 0.7341 | 0.8013 | nan | 0.8526 | 0.2870 | 0.7820 | 0.6996 | 0.8971 | 0.8211 | 0.7993 | 0.0 | 0.7654 | 0.2764 | 0.7106 | 0.6901 | 0.6891 | 0.7557 | 0.7081 |
| 0.645 | 8.6 | 1600 | 0.4597 | 0.5730 | 0.7375 | 0.7945 | nan | 0.8874 | 0.1758 | 0.8621 | 0.7514 | 0.8888 | 0.8442 | 0.7530 | 0.0 | 0.8018 | 0.1683 | 0.7251 | 0.7413 | 0.7048 | 0.7556 | 0.6869 |
| 0.2953 | 9.14 | 1700 | 0.4279 | 0.5967 | 0.7596 | 0.8068 | nan | 0.8210 | 0.4181 | 0.8465 | 0.7328 | 0.8293 | 0.8410 | 0.8285 | 0.0 | 0.7607 | 0.3735 | 0.7601 | 0.7259 | 0.7098 | 0.7495 | 0.6944 |
| 0.3441 | 9.68 | 1800 | 0.4727 | 0.5662 | 0.7387 | 0.7701 | nan | 0.8660 | 0.2776 | 0.8603 | 0.7675 | 0.6688 | 0.8444 | 0.8867 | 0.0 | 0.7965 | 0.2577 | 0.7043 | 0.7602 | 0.6180 | 0.7374 | 0.6556 |
| 0.4354 | 10.22 | 1900 | 0.4499 | 0.5868 | 0.7466 | 0.8000 | nan | 0.7931 | 0.3488 | 0.8160 | 0.7521 | 0.8689 | 0.8599 | 0.7876 | 0.0 | 0.7399 | 0.3263 | 0.7469 | 0.7342 | 0.7090 | 0.7542 | 0.6836 |
| 0.3476 | 10.75 | 2000 | 0.4732 | 0.5468 | 0.7053 | 0.7802 | nan | 0.8976 | 0.0416 | 0.8285 | 0.6882 | 0.8939 | 0.8447 | 0.7426 | 0.0 | 0.8055 | 0.0402 | 0.7180 | 0.6837 | 0.6855 | 0.7632 | 0.6781 |
| 0.3416 | 11.29 | 2100 | 0.4553 | 0.5745 | 0.7342 | 0.7949 | nan | 0.8803 | 0.1754 | 0.7792 | 0.7736 | 0.9134 | 0.8551 | 0.7625 | 0.0 | 0.8009 | 0.1632 | 0.7275 | 0.7484 | 0.6939 | 0.7627 | 0.6996 |
| 0.157 | 11.83 | 2200 | 0.4684 | 0.5814 | 0.7432 | 0.7927 | nan | 0.8915 | 0.2169 | 0.8390 | 0.7693 | 0.8894 | 0.8532 | 0.7434 | 0.0 | 0.8147 | 0.2091 | 0.7275 | 0.7518 | 0.7105 | 0.7707 | 0.6666 |
| 0.1665 | 12.37 | 2300 | 0.4369 | 0.6031 | 0.7710 | 0.8076 | nan | 0.9014 | 0.3852 | 0.8488 | 0.7526 | 0.8590 | 0.8721 | 0.7780 | 0.0 | 0.8264 | 0.3500 | 0.7249 | 0.7403 | 0.7166 | 0.7678 | 0.6990 |
| 0.3426 | 12.9 | 2400 | 0.4458 | 0.5814 | 0.7495 | 0.7925 | nan | 0.8842 | 0.2608 | 0.8393 | 0.7845 | 0.8458 | 0.8491 | 0.7826 | 0.0 | 0.8201 | 0.2433 | 0.6979 | 0.7533 | 0.6987 | 0.7597 | 0.6779 |
| 0.2268 | 13.44 | 2500 | 0.4612 | 0.5776 | 0.7355 | 0.7929 | nan | 0.8722 | 0.1872 | 0.7989 | 0.7789 | 0.8675 | 0.8461 | 0.7978 | 0.0 | 0.7964 | 0.1755 | 0.7478 | 0.7551 | 0.7139 | 0.7654 | 0.6665 |
| 0.3108 | 13.98 | 2600 | 0.4449 | 0.5926 | 0.7490 | 0.8112 | nan | 0.8756 | 0.2111 | 0.8021 | 0.7897 | 0.8921 | 0.8473 | 0.8256 | 0.0 | 0.8106 | 0.2007 | 0.7520 | 0.7736 | 0.7287 | 0.7737 | 0.7017 |
| 0.1832 | 14.52 | 2700 | 0.4271 | 0.6254 | 0.7965 | 0.8277 | nan | 0.8930 | 0.5784 | 0.7930 | 0.7627 | 0.8712 | 0.8446 | 0.8323 | 0.0 | 0.8085 | 0.4667 | 0.7385 | 0.7489 | 0.7402 | 0.7689 | 0.7312 |
| 0.1784 | 15.05 | 2800 | 0.4531 | 0.5858 | 0.7448 | 0.7987 | nan | 0.9073 | 0.2227 | 0.7956 | 0.7764 | 0.8722 | 0.8323 | 0.8069 | 0.0 | 0.8232 | 0.2077 | 0.7337 | 0.7556 | 0.7050 | 0.7734 | 0.6880 |
| 0.2532 | 15.59 | 2900 | 0.4925 | 0.5712 | 0.7273 | 0.7948 | nan | 0.9059 | 0.0955 | 0.8082 | 0.7507 | 0.9018 | 0.8558 | 0.7736 | 0.0 | 0.8223 | 0.0914 | 0.7457 | 0.7283 | 0.7327 | 0.7813 | 0.6678 |
| 0.2804 | 16.13 | 3000 | 0.4406 | 0.6236 | 0.7967 | 0.8169 | nan | 0.9282 | 0.5433 | 0.8292 | 0.7638 | 0.8782 | 0.8735 | 0.7609 | 0.0 | 0.8340 | 0.4822 | 0.7338 | 0.7438 | 0.7286 | 0.7710 | 0.6958 |
| 0.2874 | 16.67 | 3100 | 0.4576 | 0.5876 | 0.7474 | 0.8073 | nan | 0.8891 | 0.1620 | 0.8209 | 0.7999 | 0.8955 | 0.8642 | 0.8001 | 0.0 | 0.8199 | 0.1544 | 0.7478 | 0.7678 | 0.7430 | 0.7774 | 0.6904 |
| 0.2731 | 17.2 | 3200 | 0.4212 | 0.6263 | 0.7914 | 0.8341 | nan | 0.9025 | 0.5544 | 0.7921 | 0.7143 | 0.9193 | 0.8514 | 0.8057 | 0.0 | 0.8120 | 0.4920 | 0.7327 | 0.6956 | 0.7547 | 0.7783 | 0.7447 |
| 0.1974 | 17.74 | 3300 | 0.4423 | 0.6215 | 0.7846 | 0.8138 | nan | 0.8722 | 0.4908 | 0.8068 | 0.8134 | 0.8748 | 0.8356 | 0.7988 | 0.0 | 0.8076 | 0.4451 | 0.7482 | 0.7737 | 0.7350 | 0.7671 | 0.6953 |
| 0.1833 | 18.28 | 3400 | 0.4207 | 0.6284 | 0.7944 | 0.8250 | nan | 0.8809 | 0.4986 | 0.8445 | 0.7943 | 0.8829 | 0.8643 | 0.7955 | 0.0 | 0.8206 | 0.4449 | 0.7446 | 0.7776 | 0.7421 | 0.7729 | 0.7244 |
| 0.1611 | 18.82 | 3500 | 0.4327 | 0.6085 | 0.7733 | 0.8244 | nan | 0.8563 | 0.4147 | 0.7980 | 0.7706 | 0.9201 | 0.8495 | 0.8041 | 0.0 | 0.7886 | 0.3657 | 0.7429 | 0.7326 | 0.7438 | 0.7712 | 0.7230 |
| 0.1339 | 19.35 | 3600 | 0.4795 | 0.5796 | 0.7369 | 0.7978 | nan | 0.8572 | 0.1929 | 0.7776 | 0.7929 | 0.9016 | 0.8480 | 0.7882 | 0.0 | 0.7934 | 0.1840 | 0.7334 | 0.7498 | 0.7296 | 0.7615 | 0.6848 |
| 0.1805 | 19.89 | 3700 | 0.4722 | 0.6137 | 0.7739 | 0.8134 | nan | 0.8924 | 0.3871 | 0.8223 | 0.7928 | 0.8949 | 0.8441 | 0.7836 | 0.0 | 0.8249 | 0.3603 | 0.7521 | 0.7557 | 0.7451 | 0.7728 | 0.6990 |
| 0.173 | 20.43 | 3800 | 0.4495 | 0.6170 | 0.7843 | 0.8230 | nan | 0.9220 | 0.3516 | 0.8189 | 0.8353 | 0.9090 | 0.8546 | 0.7988 | 0.0 | 0.8318 | 0.3314 | 0.7584 | 0.7729 | 0.7453 | 0.7761 | 0.7202 |
| 0.2476 | 20.97 | 3900 | 0.4426 | 0.6363 | 0.8007 | 0.8331 | nan | 0.9142 | 0.4724 | 0.8094 | 0.8448 | 0.9178 | 0.8330 | 0.8136 | 0.0 | 0.8485 | 0.4259 | 0.7481 | 0.8003 | 0.7454 | 0.7840 | 0.7380 |
| 0.3163 | 21.51 | 4000 | 0.4550 | 0.6337 | 0.8023 | 0.8273 | nan | 0.8808 | 0.5716 | 0.8209 | 0.8055 | 0.9199 | 0.8518 | 0.7655 | 0.0 | 0.8129 | 0.4923 | 0.7503 | 0.7815 | 0.7402 | 0.7748 | 0.7180 |
| 0.12 | 22.04 | 4100 | 0.4396 | 0.6142 | 0.7772 | 0.8249 | nan | 0.9254 | 0.2952 | 0.8118 | 0.8303 | 0.9143 | 0.8460 | 0.8174 | 0.0 | 0.8363 | 0.2724 | 0.7579 | 0.7875 | 0.7491 | 0.7787 | 0.7316 |
| 0.2351 | 22.58 | 4200 | 0.4622 | 0.6020 | 0.7612 | 0.8087 | nan | 0.8992 | 0.2520 | 0.8300 | 0.8150 | 0.8647 | 0.8478 | 0.8200 | 0.0 | 0.8366 | 0.2309 | 0.7655 | 0.7912 | 0.7260 | 0.7714 | 0.6945 |
| 0.106 | 23.12 | 4300 | 0.4570 | 0.6001 | 0.7624 | 0.8163 | nan | 0.8731 | 0.2566 | 0.7931 | 0.8358 | 0.8961 | 0.8514 | 0.8306 | 0.0 | 0.8110 | 0.2326 | 0.7431 | 0.7773 | 0.7413 | 0.7771 | 0.7182 |
| 0.2408 | 23.66 | 4400 | 0.4795 | 0.5944 | 0.7501 | 0.8138 | nan | 0.9040 | 0.1740 | 0.8437 | 0.7707 | 0.8980 | 0.8486 | 0.8115 | 0.0 | 0.8454 | 0.1631 | 0.7700 | 0.7579 | 0.7352 | 0.7742 | 0.7091 |
| 0.1285 | 24.19 | 4500 | 0.4311 | 0.6377 | 0.8055 | 0.8339 | nan | 0.9053 | 0.5473 | 0.8025 | 0.8113 | 0.9093 | 0.8567 | 0.8060 | 0.0 | 0.8279 | 0.4738 | 0.7405 | 0.7775 | 0.7588 | 0.7855 | 0.7380 |
| 0.2967 | 24.73 | 4600 | 0.4509 | 0.6273 | 0.7913 | 0.8209 | nan | 0.8998 | 0.4427 | 0.8456 | 0.8264 | 0.8666 | 0.8433 | 0.8146 | 0.0 | 0.8437 | 0.4058 | 0.7616 | 0.7873 | 0.7382 | 0.7723 | 0.7098 |
| 0.2716 | 25.27 | 4700 | 0.4708 | 0.6149 | 0.7815 | 0.8199 | nan | 0.8998 | 0.3343 | 0.8176 | 0.8528 | 0.9088 | 0.8668 | 0.7906 | 0.0 | 0.8345 | 0.3116 | 0.7546 | 0.7633 | 0.7474 | 0.7928 | 0.7152 |
| 0.2685 | 25.81 | 4800 | 0.4688 | 0.6166 | 0.7778 | 0.8135 | nan | 0.9177 | 0.3472 | 0.8437 | 0.8130 | 0.9059 | 0.8572 | 0.7598 | 0.0 | 0.8452 | 0.3205 | 0.7512 | 0.7864 | 0.7475 | 0.7879 | 0.6937 |
| 0.1678 | 26.34 | 4900 | 0.4833 | 0.6056 | 0.7701 | 0.8111 | nan | 0.9324 | 0.2775 | 0.8162 | 0.8232 | 0.8679 | 0.8571 | 0.8162 | 0.0 | 0.8521 | 0.2610 | 0.7384 | 0.7874 | 0.7107 | 0.7817 | 0.7138 |
| 0.1904 | 26.88 | 5000 | 0.4423 | 0.6367 | 0.8050 | 0.8313 | nan | 0.9204 | 0.5078 | 0.8254 | 0.8175 | 0.8890 | 0.8661 | 0.8091 | 0.0 | 0.8452 | 0.4385 | 0.7538 | 0.7841 | 0.7505 | 0.7884 | 0.7333 |
| 0.202 | 27.42 | 5100 | 0.4582 | 0.6143 | 0.7755 | 0.8206 | nan | 0.8995 | 0.2772 | 0.8510 | 0.8392 | 0.8871 | 0.8583 | 0.8159 | 0.0 | 0.8469 | 0.2557 | 0.7571 | 0.8076 | 0.7329 | 0.7852 | 0.7286 |
| 0.1242 | 27.96 | 5200 | 0.4692 | 0.6143 | 0.7766 | 0.8192 | nan | 0.8887 | 0.3377 | 0.8350 | 0.8156 | 0.8718 | 0.8649 | 0.8222 | 0.0 | 0.8302 | 0.3055 | 0.7600 | 0.7944 | 0.7255 | 0.7826 | 0.7164 |
| 0.1594 | 28.49 | 5300 | 0.4588 | 0.6187 | 0.7860 | 0.8190 | nan | 0.9347 | 0.3829 | 0.8410 | 0.8051 | 0.8479 | 0.8606 | 0.8297 | 0.0 | 0.8549 | 0.3390 | 0.7618 | 0.7801 | 0.7272 | 0.7862 | 0.7004 |
| 0.1414 | 29.03 | 5400 | 0.4591 | 0.6293 | 0.7923 | 0.8344 | nan | 0.9064 | 0.5202 | 0.8183 | 0.7327 | 0.9143 | 0.8469 | 0.8073 | 0.0 | 0.8323 | 0.4441 | 0.7449 | 0.7207 | 0.7524 | 0.7906 | 0.7496 |
| 0.1208 | 29.57 | 5500 | 0.4611 | 0.6370 | 0.8006 | 0.8280 | nan | 0.9187 | 0.5037 | 0.7983 | 0.8194 | 0.9176 | 0.8641 | 0.7823 | 0.0 | 0.8407 | 0.4436 | 0.7389 | 0.7951 | 0.7609 | 0.7936 | 0.7233 |
| 0.227 | 30.11 | 5600 | 0.4488 | 0.6304 | 0.7893 | 0.8314 | nan | 0.8984 | 0.4428 | 0.8197 | 0.7898 | 0.9108 | 0.8502 | 0.8135 | 0.0 | 0.8355 | 0.3967 | 0.7621 | 0.7707 | 0.7496 | 0.7875 | 0.7410 |
| 0.2627 | 30.65 | 5700 | 0.4513 | 0.6384 | 0.8022 | 0.8295 | nan | 0.8818 | 0.5132 | 0.8376 | 0.8269 | 0.9009 | 0.8641 | 0.7907 | 0.0 | 0.8304 | 0.4484 | 0.7652 | 0.8068 | 0.7548 | 0.7772 | 0.7245 |
| 0.1512 | 31.18 | 5800 | 0.4655 | 0.6151 | 0.7736 | 0.8222 | nan | 0.9195 | 0.3265 | 0.7978 | 0.8000 | 0.9074 | 0.8461 | 0.8181 | 0.0 | 0.8427 | 0.2993 | 0.7452 | 0.7803 | 0.7358 | 0.7824 | 0.7347 |
| 0.0861 | 31.72 | 5900 | 0.4754 | 0.6258 | 0.7850 | 0.8212 | nan | 0.9167 | 0.3799 | 0.8171 | 0.8288 | 0.9081 | 0.8549 | 0.7897 | 0.0 | 0.8467 | 0.3493 | 0.7586 | 0.8013 | 0.7459 | 0.7807 | 0.7235 |
| 0.1755 | 32.26 | 6000 | 0.5160 | 0.5938 | 0.7507 | 0.8166 | nan | 0.9229 | 0.1614 | 0.8288 | 0.7708 | 0.9159 | 0.8458 | 0.8096 | 0.0 | 0.8410 | 0.1522 | 0.7619 | 0.7540 | 0.7284 | 0.7849 | 0.7280 |
| 0.1556 | 32.8 | 6100 | 0.4894 | 0.6129 | 0.7734 | 0.8141 | nan | 0.8895 | 0.3034 | 0.8242 | 0.8482 | 0.8989 | 0.8603 | 0.7893 | 0.0 | 0.8294 | 0.2825 | 0.7532 | 0.8083 | 0.7317 | 0.7820 | 0.7158 |
| 0.0927 | 33.33 | 6200 | 0.4981 | 0.6298 | 0.7908 | 0.8216 | nan | 0.9017 | 0.4726 | 0.8020 | 0.8062 | 0.9026 | 0.8678 | 0.7829 | 0.0 | 0.8340 | 0.4196 | 0.7415 | 0.7908 | 0.7476 | 0.7910 | 0.7138 |
| 0.1746 | 33.87 | 6300 | 0.4925 | 0.6243 | 0.7844 | 0.8169 | nan | 0.9056 | 0.4036 | 0.8058 | 0.8331 | 0.8925 | 0.8574 | 0.7928 | 0.0 | 0.8421 | 0.3654 | 0.7480 | 0.8046 | 0.7419 | 0.7887 | 0.7037 |
| 0.2803 | 34.41 | 6400 | 0.5036 | 0.6192 | 0.7785 | 0.8179 | nan | 0.9037 | 0.4145 | 0.8096 | 0.7774 | 0.9187 | 0.8604 | 0.7655 | 0.0 | 0.8204 | 0.3805 | 0.7519 | 0.7603 | 0.7509 | 0.7855 | 0.7038 |
| 0.1777 | 34.95 | 6500 | 0.4886 | 0.6197 | 0.7787 | 0.8209 | nan | 0.9173 | 0.3337 | 0.8366 | 0.8071 | 0.9066 | 0.8615 | 0.7883 | 0.0 | 0.8405 | 0.3112 | 0.7654 | 0.7895 | 0.7486 | 0.7875 | 0.7149 |
| 0.1073 | 35.48 | 6600 | 0.4839 | 0.6271 | 0.7868 | 0.8245 | nan | 0.9297 | 0.3696 | 0.8335 | 0.8214 | 0.9102 | 0.8503 | 0.7930 | 0.0 | 0.8519 | 0.3424 | 0.7647 | 0.7957 | 0.7553 | 0.7908 | 0.7156 |
| 0.0958 | 36.02 | 6700 | 0.5011 | 0.6186 | 0.7744 | 0.8177 | nan | 0.9017 | 0.3398 | 0.8211 | 0.8092 | 0.8996 | 0.8509 | 0.7981 | 0.0 | 0.8383 | 0.3189 | 0.7575 | 0.7915 | 0.7508 | 0.7882 | 0.7037 |
| 0.1107 | 36.56 | 6800 | 0.4854 | 0.6291 | 0.7880 | 0.8229 | nan | 0.9108 | 0.3956 | 0.8209 | 0.8310 | 0.9093 | 0.8608 | 0.7876 | 0.0 | 0.8423 | 0.3649 | 0.7552 | 0.8064 | 0.7546 | 0.7949 | 0.7143 |
| 0.1541 | 37.1 | 6900 | 0.4965 | 0.6126 | 0.7684 | 0.8160 | nan | 0.9126 | 0.2968 | 0.7884 | 0.8303 | 0.9209 | 0.8291 | 0.8006 | 0.0 | 0.8398 | 0.2769 | 0.7381 | 0.8048 | 0.7358 | 0.7817 | 0.7240 |
| 0.445 | 37.63 | 7000 | 0.5060 | 0.6189 | 0.7769 | 0.8191 | nan | 0.9039 | 0.3292 | 0.8121 | 0.8313 | 0.9127 | 0.8582 | 0.7910 | 0.0 | 0.8355 | 0.3081 | 0.7533 | 0.8065 | 0.7455 | 0.7894 | 0.7132 |
| 0.2018 | 38.17 | 7100 | 0.5000 | 0.6144 | 0.7723 | 0.8270 | nan | 0.9077 | 0.2693 | 0.8312 | 0.8125 | 0.9103 | 0.8466 | 0.8282 | 0.0 | 0.8408 | 0.2498 | 0.7595 | 0.7957 | 0.7438 | 0.7901 | 0.7351 |
| 0.3123 | 38.71 | 7200 | 0.5074 | 0.6111 | 0.7691 | 0.8184 | nan | 0.9025 | 0.2503 | 0.8243 | 0.8337 | 0.8975 | 0.8623 | 0.8133 | 0.0 | 0.8378 | 0.2337 | 0.7602 | 0.8090 | 0.7412 | 0.7912 | 0.7153 |
| 0.1877 | 39.25 | 7300 | 0.5227 | 0.6147 | 0.7722 | 0.8159 | nan | 0.9113 | 0.3006 | 0.8216 | 0.8232 | 0.9182 | 0.8541 | 0.7766 | 0.0 | 0.8393 | 0.2827 | 0.7559 | 0.7979 | 0.7479 | 0.7922 | 0.7018 |
| 0.1139 | 39.78 | 7400 | 0.5134 | 0.6146 | 0.7727 | 0.8208 | nan | 0.9234 | 0.2839 | 0.8203 | 0.8118 | 0.9109 | 0.8565 | 0.8021 | 0.0 | 0.8449 | 0.2659 | 0.7558 | 0.7906 | 0.7470 | 0.7941 | 0.7181 |
| 0.2875 | 40.32 | 7500 | 0.4953 | 0.6309 | 0.7919 | 0.8246 | nan | 0.9165 | 0.4221 | 0.8274 | 0.8228 | 0.9026 | 0.8602 | 0.7917 | 0.0 | 0.8437 | 0.3822 | 0.7642 | 0.7975 | 0.7566 | 0.7930 | 0.7096 |
| 0.1543 | 40.86 | 7600 | 0.5131 | 0.6227 | 0.7814 | 0.8225 | nan | 0.9159 | 0.3537 | 0.8144 | 0.8157 | 0.9106 | 0.8651 | 0.7943 | 0.0 | 0.8452 | 0.3252 | 0.7587 | 0.7914 | 0.7537 | 0.7956 | 0.7120 |
| 0.0935 | 41.4 | 7700 | 0.4870 | 0.6333 | 0.7958 | 0.8326 | nan | 0.9115 | 0.4304 | 0.8214 | 0.8199 | 0.9069 | 0.8677 | 0.8127 | 0.0 | 0.8401 | 0.3865 | 0.7595 | 0.7926 | 0.7518 | 0.7931 | 0.7424 |
| 0.1449 | 41.94 | 7800 | 0.5064 | 0.6131 | 0.7718 | 0.8177 | nan | 0.9140 | 0.2785 | 0.8342 | 0.8206 | 0.9070 | 0.8563 | 0.7919 | 0.0 | 0.8467 | 0.2571 | 0.7621 | 0.7934 | 0.7425 | 0.7947 | 0.7085 |
| 0.196 | 42.47 | 7900 | 0.4914 | 0.6158 | 0.7747 | 0.8250 | nan | 0.9065 | 0.3182 | 0.8195 | 0.7971 | 0.9159 | 0.8592 | 0.8066 | 0.0 | 0.8378 | 0.2900 | 0.7554 | 0.7732 | 0.7429 | 0.7941 | 0.7334 |
| 0.0902 | 43.01 | 8000 | 0.5049 | 0.6092 | 0.7678 | 0.8156 | nan | 0.9207 | 0.2618 | 0.8027 | 0.8255 | 0.9075 | 0.8543 | 0.8020 | 0.0 | 0.8510 | 0.2407 | 0.7415 | 0.7976 | 0.7388 | 0.7934 | 0.7108 |
| 0.0981 | 43.55 | 8100 | 0.5101 | 0.6028 | 0.7602 | 0.8140 | nan | 0.9289 | 0.2040 | 0.8124 | 0.8145 | 0.9034 | 0.8485 | 0.8094 | 0.0 | 0.8519 | 0.1903 | 0.7504 | 0.7913 | 0.7421 | 0.7891 | 0.7070 |
| 0.0804 | 44.09 | 8200 | 0.5136 | 0.6187 | 0.7777 | 0.8179 | nan | 0.9224 | 0.3260 | 0.8225 | 0.8244 | 0.9141 | 0.8543 | 0.7800 | 0.0 | 0.8514 | 0.3008 | 0.7543 | 0.7957 | 0.7521 | 0.7924 | 0.7033 |
| 0.125 | 44.62 | 8300 | 0.5089 | 0.6182 | 0.7770 | 0.8184 | nan | 0.9165 | 0.3390 | 0.8121 | 0.8162 | 0.9054 | 0.8558 | 0.7939 | 0.0 | 0.8459 | 0.3079 | 0.7522 | 0.7915 | 0.7521 | 0.7904 | 0.7052 |
| 0.1567 | 45.16 | 8400 | 0.5128 | 0.6093 | 0.7676 | 0.8178 | nan | 0.9259 | 0.2550 | 0.8216 | 0.8056 | 0.9131 | 0.8573 | 0.7945 | 0.0 | 0.8460 | 0.2413 | 0.7548 | 0.7802 | 0.7473 | 0.7921 | 0.7124 |
| 0.1533 | 45.7 | 8500 | 0.5073 | 0.6144 | 0.7719 | 0.8183 | nan | 0.9250 | 0.3017 | 0.8238 | 0.7985 | 0.9106 | 0.8532 | 0.7905 | 0.0 | 0.8477 | 0.2807 | 0.7582 | 0.7781 | 0.7505 | 0.7924 | 0.7075 |
| 0.1264 | 46.24 | 8600 | 0.5117 | 0.6175 | 0.7771 | 0.8281 | nan | 0.9186 | 0.3045 | 0.8219 | 0.8005 | 0.9130 | 0.8633 | 0.8178 | 0.0 | 0.8426 | 0.2823 | 0.7565 | 0.7777 | 0.7496 | 0.7957 | 0.7358 |
| 0.196 | 46.77 | 8700 | 0.5079 | 0.6199 | 0.7785 | 0.8230 | nan | 0.9060 | 0.3527 | 0.8219 | 0.8023 | 0.9128 | 0.8590 | 0.7949 | 0.0 | 0.8362 | 0.3234 | 0.7564 | 0.7803 | 0.7515 | 0.7915 | 0.7200 |
| 0.1576 | 47.31 | 8800 | 0.5046 | 0.6192 | 0.7778 | 0.8236 | nan | 0.9132 | 0.3347 | 0.8159 | 0.8091 | 0.9072 | 0.8549 | 0.8096 | 0.0 | 0.8410 | 0.3079 | 0.7548 | 0.7871 | 0.7504 | 0.7915 | 0.7211 |
| 0.1362 | 47.85 | 8900 | 0.5086 | 0.6226 | 0.7815 | 0.8228 | nan | 0.9132 | 0.3548 | 0.8207 | 0.8199 | 0.9185 | 0.8555 | 0.7881 | 0.0 | 0.8427 | 0.3250 | 0.7574 | 0.7954 | 0.7543 | 0.7932 | 0.7124 |
| 0.1221 | 48.39 | 9000 | 0.5128 | 0.6172 | 0.7760 | 0.8201 | nan | 0.9197 | 0.3168 | 0.8285 | 0.8051 | 0.9096 | 0.8635 | 0.7887 | 0.0 | 0.8438 | 0.2946 | 0.7603 | 0.7838 | 0.7511 | 0.7937 | 0.7101 |
| 0.1495 | 48.92 | 9100 | 0.5083 | 0.6219 | 0.7808 | 0.8212 | nan | 0.9145 | 0.3516 | 0.8284 | 0.8180 | 0.9109 | 0.8546 | 0.7879 | 0.0 | 0.8451 | 0.3218 | 0.7593 | 0.7943 | 0.7525 | 0.7924 | 0.7096 |
| 0.2303 | 49.46 | 9200 | 0.5041 | 0.6165 | 0.7747 | 0.8238 | nan | 0.9155 | 0.3038 | 0.8206 | 0.8039 | 0.9129 | 0.8603 | 0.8058 | 0.0 | 0.8434 | 0.2804 | 0.7582 | 0.7845 | 0.7494 | 0.7953 | 0.7211 |
| 0.1028 | 50.0 | 9300 | 0.5044 | 0.6138 | 0.7713 | 0.8213 | nan | 0.9139 | 0.2842 | 0.8156 | 0.8117 | 0.9098 | 0.8540 | 0.8096 | 0.0 | 0.8428 | 0.2638 | 0.7560 | 0.7896 | 0.7482 | 0.7927 | 0.7176 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
| [
"background (waterbody)",
"human divers",
"aquatic plants and sea-grass",
"wrecks and ruins",
"robots (auvs/rovs/instruments)",
"reefs and invertebrates",
"fish and vertebrates",
"sea-floor and rocks"
] |
rishitunu/FINAL_ecc_segformer |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FINAL_ecc_segformer
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector_dataset_exhaustive dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0749
- Mean Iou: 0.1968
- Mean Accuracy: 0.3939
- Overall Accuracy: 0.3939
- Accuracy Background: nan
- Accuracy Crack: 0.3939
- Iou Background: 0.0
- Iou Crack: 0.3936
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.0534 | 1.0 | 548 | 0.0614 | 0.1368 | 0.2750 | 0.2750 | nan | 0.2750 | 0.0 | 0.2736 |
| 0.058 | 2.0 | 1096 | 0.1018 | 0.2093 | 0.4238 | 0.4238 | nan | 0.4238 | 0.0 | 0.4186 |
| 0.0482 | 3.0 | 1644 | 0.0508 | 0.1791 | 0.4315 | 0.4315 | nan | 0.4315 | 0.0 | 0.3582 |
| 0.0338 | 4.0 | 2192 | 0.0569 | 0.1849 | 0.3716 | 0.3716 | nan | 0.3716 | 0.0 | 0.3698 |
| 0.0395 | 5.0 | 2740 | 0.0597 | 0.1745 | 0.3506 | 0.3506 | nan | 0.3506 | 0.0 | 0.3490 |
| 0.0372 | 6.0 | 3288 | 0.0509 | 0.2298 | 0.4635 | 0.4635 | nan | 0.4635 | 0.0 | 0.4597 |
| 0.0402 | 7.0 | 3836 | 0.0620 | 0.1751 | 0.3507 | 0.3507 | nan | 0.3507 | 0.0 | 0.3503 |
| 0.038 | 8.0 | 4384 | 0.0681 | 0.1905 | 0.3815 | 0.3815 | nan | 0.3815 | 0.0 | 0.3810 |
| 0.0393 | 9.0 | 4932 | 0.0685 | 0.2213 | 0.4433 | 0.4433 | nan | 0.4433 | 0.0 | 0.4425 |
| 0.0376 | 10.0 | 5480 | 0.0590 | 0.1962 | 0.3929 | 0.3929 | nan | 0.3929 | 0.0 | 0.3924 |
| 0.0381 | 11.0 | 6028 | 0.0626 | 0.1891 | 0.3801 | 0.3801 | nan | 0.3801 | 0.0 | 0.3783 |
| 0.034 | 12.0 | 6576 | 0.0623 | 0.2061 | 0.4162 | 0.4162 | nan | 0.4162 | 0.0 | 0.4122 |
| 0.0301 | 13.0 | 7124 | 0.0831 | 0.1832 | 0.3669 | 0.3669 | nan | 0.3669 | 0.0 | 0.3664 |
| 0.034 | 14.0 | 7672 | 0.0636 | 0.2059 | 0.4119 | 0.4119 | nan | 0.4119 | 0.0 | 0.4118 |
| 0.0303 | 15.0 | 8220 | 0.0705 | 0.1931 | 0.3864 | 0.3864 | nan | 0.3864 | 0.0 | 0.3862 |
| 0.0338 | 16.0 | 8768 | 0.0685 | 0.2101 | 0.4206 | 0.4206 | nan | 0.4206 | 0.0 | 0.4202 |
| 0.0229 | 17.0 | 9316 | 0.0706 | 0.2099 | 0.4204 | 0.4204 | nan | 0.4204 | 0.0 | 0.4197 |
| 0.0337 | 18.0 | 9864 | 0.0742 | 0.1982 | 0.3968 | 0.3968 | nan | 0.3968 | 0.0 | 0.3965 |
| 0.0257 | 18.25 | 10000 | 0.0749 | 0.1968 | 0.3939 | 0.3939 | nan | 0.3939 | 0.0 | 0.3936 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cpu
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"background",
"crack"
] |
bvaibhav83/segformer-b0-finetuned-segments-sidewalk-3 | # SegFormer (b0-sized) model fine-tuned on Segments.ai sidewalk-semantic.
SegFormer model fine-tuned on [Segments.ai](https://segments.ai) [`sidewalk-semantic`](https://huggingface.co/datasets/segments/sidewalk-semantic). It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
## Model description
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
### How to use
Here is how to use this model to classify an image of the sidewalk dataset:
```python
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk")
url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
``` | [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
peldrak/segformer_finetuned_coasts |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer_finetuned_coasts
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the peldrak/coast dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3304
- Mean Iou: 0.4794
- Mean Accuracy: 0.6650
- Overall Accuracy: 0.9144
- Accuracy Water: nan
- Accuracy Whitewater: 0.4315
- Accuracy Sediment: 0.8895
- Accuracy Other Natural Terrain: 0.0
- Accuracy Vegetation: 0.8740
- Accuracy Development: 0.8271
- Accuracy Unknown: 0.9678
- Iou Water: 0.0
- Iou Whitewater: 0.2745
- Iou Sediment: 0.7784
- Iou Other Natural Terrain: 0.0
- Iou Vegetation: 0.7930
- Iou Development: 0.5438
- Iou Unknown: 0.9658
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|
| 1.5565 | 0.01 | 20 | 1.3796 | 0.2430 | 0.3551 | 0.7951 | nan | 0.0097 | 0.1349 | 0.0623 | 0.8407 | 0.1406 | 0.9421 | 0.0 | 0.0051 | 0.1067 | 0.0232 | 0.5193 | 0.1049 | 0.9414 |
| 1.7203 | 0.02 | 40 | 1.0580 | 0.2474 | 0.3601 | 0.8312 | nan | 0.0000 | 0.1687 | 0.0012 | 0.9812 | 0.0552 | 0.9541 | 0.0 | 0.0000 | 0.1594 | 0.0010 | 0.5662 | 0.0518 | 0.9534 |
| 1.5577 | 0.04 | 60 | 0.9417 | 0.2218 | 0.3312 | 0.8179 | nan | 0.0000 | 0.0330 | 0.0001 | 0.9915 | 0.0100 | 0.9525 | 0.0 | 0.0000 | 0.0323 | 0.0001 | 0.5585 | 0.0099 | 0.9517 |
| 0.8823 | 0.05 | 80 | 0.7899 | 0.2293 | 0.3345 | 0.8217 | nan | 0.0000 | 0.0599 | 0.0 | 0.9906 | 0.0011 | 0.9553 | 0.0 | 0.0000 | 0.0596 | 0.0 | 0.5903 | 0.0011 | 0.9538 |
| 1.2586 | 0.06 | 100 | 0.6372 | 0.2532 | 0.3440 | 0.8300 | nan | 0.0000 | 0.0981 | 0.0000 | 0.9697 | 0.0284 | 0.9679 | 0.0 | 0.0000 | 0.0971 | 0.0000 | 0.6818 | 0.0284 | 0.9653 |
| 1.5022 | 0.07 | 120 | 0.6110 | 0.2431 | 0.3372 | 0.8258 | nan | 0.0 | 0.0759 | 0.0 | 0.9823 | 0.0029 | 0.9619 | 0.0 | 0.0 | 0.0757 | 0.0 | 0.6633 | 0.0029 | 0.9599 |
| 0.7693 | 0.08 | 140 | 0.5468 | 0.2613 | 0.3416 | 0.8125 | nan | 0.0 | 0.2451 | 0.0 | 0.8389 | 0.0027 | 0.9628 | 0.0 | 0.0 | 0.2372 | 0.0 | 0.6285 | 0.0027 | 0.9606 |
| 1.6587 | 0.1 | 160 | 0.5876 | 0.2717 | 0.3736 | 0.8444 | nan | 0.0 | 0.3158 | 0.0 | 0.9600 | 0.0029 | 0.9628 | 0.0 | 0.0 | 0.3106 | 0.0 | 0.6272 | 0.0029 | 0.9609 |
| 1.259 | 0.11 | 180 | 0.5015 | 0.2883 | 0.3752 | 0.8292 | nan | 0.0 | 0.4727 | 0.0 | 0.7987 | 0.0120 | 0.9679 | 0.0 | 0.0 | 0.4317 | 0.0 | 0.6105 | 0.0120 | 0.9642 |
| 1.1834 | 0.12 | 200 | 0.5206 | 0.3021 | 0.4047 | 0.8628 | nan | 0.0 | 0.4986 | 0.0 | 0.9598 | 0.0051 | 0.9646 | 0.0 | 0.0 | 0.4515 | 0.0 | 0.6958 | 0.0051 | 0.9620 |
| 1.1998 | 0.13 | 220 | 0.5969 | 0.3095 | 0.4198 | 0.8740 | nan | 0.0 | 0.5619 | 0.0 | 0.9853 | 0.0075 | 0.9642 | 0.0 | 0.0 | 0.5167 | 0.0 | 0.6803 | 0.0075 | 0.9620 |
| 1.2329 | 0.15 | 240 | 0.4667 | 0.3146 | 0.4176 | 0.8629 | nan | 0.0 | 0.5946 | 0.0 | 0.9102 | 0.0359 | 0.9649 | 0.0 | 0.0 | 0.5137 | 0.0 | 0.6915 | 0.0348 | 0.9622 |
| 0.4256 | 0.16 | 260 | 0.4695 | 0.3513 | 0.4674 | 0.8878 | nan | 0.0 | 0.7239 | 0.0 | 0.9465 | 0.1678 | 0.9660 | 0.0 | 0.0 | 0.6265 | 0.0 | 0.7136 | 0.1548 | 0.9639 |
| 0.6354 | 0.17 | 280 | 0.4582 | 0.3651 | 0.4836 | 0.8773 | nan | 0.0 | 0.6636 | 0.0 | 0.8840 | 0.3866 | 0.9674 | 0.0 | 0.0 | 0.5882 | 0.0 | 0.6976 | 0.3052 | 0.9648 |
| 0.7103 | 0.18 | 300 | 0.4466 | 0.3736 | 0.5041 | 0.8699 | nan | 0.0 | 0.7149 | 0.0 | 0.8020 | 0.5409 | 0.9668 | 0.0 | 0.0 | 0.6068 | 0.0 | 0.6750 | 0.3693 | 0.9639 |
| 0.7022 | 0.19 | 320 | 0.4621 | 0.3560 | 0.4756 | 0.8796 | nan | 0.0 | 0.6003 | 0.0 | 0.9246 | 0.3601 | 0.9685 | 0.0 | 0.0 | 0.5370 | 0.0 | 0.7056 | 0.2843 | 0.9653 |
| 0.8337 | 0.21 | 340 | 0.4500 | 0.3678 | 0.4897 | 0.8754 | nan | 0.0 | 0.6673 | 0.0 | 0.8694 | 0.4355 | 0.9660 | 0.0 | 0.0 | 0.5735 | 0.0 | 0.7075 | 0.3300 | 0.9634 |
| 0.3512 | 0.22 | 360 | 0.4664 | 0.3630 | 0.4910 | 0.8783 | nan | 0.0 | 0.5888 | 0.0 | 0.8998 | 0.4880 | 0.9696 | 0.0 | 0.0 | 0.5302 | 0.0 | 0.7033 | 0.3433 | 0.9645 |
| 1.3383 | 0.23 | 380 | 0.5411 | 0.3447 | 0.4592 | 0.8802 | nan | 0.0 | 0.5990 | 0.0 | 0.9552 | 0.2349 | 0.9663 | 0.0 | 0.0 | 0.5463 | 0.0 | 0.7003 | 0.2027 | 0.9633 |
| 1.421 | 0.24 | 400 | 0.4386 | 0.3646 | 0.4884 | 0.8661 | nan | 0.0 | 0.6447 | 0.0 | 0.8233 | 0.4958 | 0.9668 | 0.0 | 0.0 | 0.5597 | 0.0 | 0.6861 | 0.3435 | 0.9631 |
| 0.5563 | 0.25 | 420 | 0.4313 | 0.3801 | 0.5625 | 0.8797 | nan | 0.0 | 0.7973 | 0.0 | 0.7520 | 0.8561 | 0.9697 | 0.0 | 0.0 | 0.6663 | 0.0 | 0.6742 | 0.3552 | 0.9652 |
| 0.6055 | 0.27 | 440 | 0.4203 | 0.3731 | 0.5480 | 0.8733 | nan | 0.0 | 0.7083 | 0.0 | 0.7656 | 0.8454 | 0.9690 | 0.0 | 0.0 | 0.6071 | 0.0 | 0.6947 | 0.3457 | 0.9645 |
| 1.0955 | 0.28 | 460 | 0.4412 | 0.3664 | 0.5119 | 0.8665 | nan | 0.0 | 0.6004 | 0.0 | 0.8418 | 0.6706 | 0.9587 | 0.0 | 0.0 | 0.5408 | 0.0 | 0.7123 | 0.3561 | 0.9554 |
| 0.9308 | 0.29 | 480 | 0.4208 | 0.3845 | 0.5381 | 0.8852 | nan | 0.0 | 0.7242 | 0.0 | 0.8578 | 0.6826 | 0.9637 | 0.0 | 0.0 | 0.6415 | 0.0 | 0.7161 | 0.3737 | 0.9600 |
| 0.3463 | 0.3 | 500 | 0.4321 | 0.3713 | 0.5160 | 0.8621 | nan | 0.0 | 0.6749 | 0.0 | 0.7632 | 0.6930 | 0.9652 | 0.0 | 0.0 | 0.5896 | 0.0 | 0.6635 | 0.3833 | 0.9627 |
| 0.8166 | 0.32 | 520 | 0.4851 | 0.3999 | 0.5399 | 0.8955 | nan | 0.0 | 0.7876 | 0.0 | 0.8940 | 0.5942 | 0.9633 | 0.0 | 0.0 | 0.7062 | 0.0 | 0.7290 | 0.4032 | 0.9609 |
| 0.5054 | 0.33 | 540 | 0.4328 | 0.3951 | 0.5256 | 0.8936 | nan | 0.0 | 0.7356 | 0.0 | 0.9243 | 0.5325 | 0.9614 | 0.0 | 0.0 | 0.6860 | 0.0 | 0.7262 | 0.3955 | 0.9579 |
| 0.316 | 0.34 | 560 | 0.3850 | 0.3985 | 0.5660 | 0.8957 | nan | 0.0 | 0.8014 | 0.0 | 0.8400 | 0.7855 | 0.9691 | 0.0 | 0.0 | 0.7180 | 0.0 | 0.7286 | 0.3782 | 0.9647 |
| 0.2616 | 0.35 | 580 | 0.3974 | 0.3831 | 0.5087 | 0.8852 | nan | 0.0 | 0.6365 | 0.0 | 0.9089 | 0.5391 | 0.9677 | 0.0 | 0.0 | 0.5653 | 0.0 | 0.7531 | 0.3995 | 0.9640 |
| 0.4969 | 0.36 | 600 | 0.4115 | 0.3849 | 0.5209 | 0.8738 | nan | 0.0 | 0.7301 | 0.0 | 0.8064 | 0.6238 | 0.9650 | 0.0 | 0.0 | 0.6141 | 0.0 | 0.7030 | 0.4155 | 0.9618 |
| 0.6554 | 0.38 | 620 | 0.3927 | 0.3997 | 0.5634 | 0.8927 | nan | 0.0 | 0.8489 | 0.0 | 0.8074 | 0.7544 | 0.9698 | 0.0 | 0.0 | 0.7254 | 0.0 | 0.7077 | 0.4004 | 0.9641 |
| 0.5096 | 0.39 | 640 | 0.4265 | 0.3833 | 0.5554 | 0.8772 | nan | 0.0 | 0.8562 | 0.0 | 0.7283 | 0.7792 | 0.9688 | 0.0 | 0.0 | 0.6714 | 0.0 | 0.6556 | 0.3905 | 0.9655 |
| 0.5453 | 0.4 | 660 | 0.4163 | 0.3830 | 0.5356 | 0.8763 | nan | 0.0 | 0.7352 | 0.0 | 0.8036 | 0.7106 | 0.9644 | 0.0 | 0.0 | 0.6194 | 0.0 | 0.6953 | 0.4040 | 0.9625 |
| 0.8522 | 0.41 | 680 | 0.3850 | 0.3859 | 0.5522 | 0.8779 | nan | 0.0 | 0.8238 | 0.0 | 0.7533 | 0.7690 | 0.9672 | 0.0 | 0.0 | 0.6587 | 0.0 | 0.6785 | 0.4009 | 0.9634 |
| 0.324 | 0.42 | 700 | 0.3980 | 0.3957 | 0.5386 | 0.8933 | nan | 0.0 | 0.7033 | 0.0 | 0.8982 | 0.6630 | 0.9674 | 0.0 | 0.0 | 0.6302 | 0.0 | 0.7372 | 0.4384 | 0.9644 |
| 0.6783 | 0.44 | 720 | 0.4155 | 0.3798 | 0.5332 | 0.8771 | nan | 0.0 | 0.6873 | 0.0 | 0.8122 | 0.7309 | 0.9689 | 0.0 | 0.0 | 0.5793 | 0.0 | 0.7058 | 0.4079 | 0.9656 |
| 0.6283 | 0.45 | 740 | 0.4053 | 0.3875 | 0.5179 | 0.8917 | nan | 0.0 | 0.6808 | 0.0 | 0.9207 | 0.5386 | 0.9674 | 0.0 | 0.0 | 0.6077 | 0.0 | 0.7409 | 0.3986 | 0.9649 |
| 0.831 | 0.46 | 760 | 0.3984 | 0.3850 | 0.5178 | 0.8838 | nan | 0.0 | 0.7712 | 0.0 | 0.8476 | 0.5216 | 0.9664 | 0.0 | 0.0 | 0.5900 | 0.0 | 0.7380 | 0.4044 | 0.9629 |
| 0.5993 | 0.47 | 780 | 0.4069 | 0.3891 | 0.5129 | 0.8961 | nan | 0.0 | 0.7348 | 0.0 | 0.9287 | 0.4453 | 0.9687 | 0.0 | 0.0 | 0.6417 | 0.0 | 0.7532 | 0.3632 | 0.9658 |
| 0.719 | 0.49 | 800 | 0.3856 | 0.4053 | 0.5597 | 0.9006 | nan | 0.0 | 0.8377 | 0.0 | 0.8641 | 0.6875 | 0.9688 | 0.0 | 0.0 | 0.7007 | 0.0 | 0.7423 | 0.4286 | 0.9657 |
| 0.4896 | 0.5 | 820 | 0.3741 | 0.4033 | 0.5511 | 0.8982 | nan | 0.0 | 0.7926 | 0.0 | 0.8730 | 0.6715 | 0.9697 | 0.0 | 0.0 | 0.6861 | 0.0 | 0.7405 | 0.4302 | 0.9662 |
| 0.5632 | 0.51 | 840 | 0.4503 | 0.4085 | 0.5607 | 0.9069 | nan | 0.0 | 0.8602 | 0.0 | 0.8788 | 0.6530 | 0.9724 | 0.0 | 0.0 | 0.7133 | 0.0 | 0.7441 | 0.4355 | 0.9664 |
| 0.2878 | 0.52 | 860 | 0.4594 | 0.3772 | 0.4928 | 0.8637 | nan | 0.0 | 0.5859 | 0.0 | 0.8246 | 0.5792 | 0.9668 | 0.0 | 0.0 | 0.5066 | 0.0 | 0.7162 | 0.4538 | 0.9639 |
| 0.5433 | 0.53 | 880 | 0.3916 | 0.3899 | 0.5519 | 0.8832 | nan | 0.0 | 0.7655 | 0.0 | 0.8304 | 0.7561 | 0.9596 | 0.0 | 0.0 | 0.6246 | 0.0 | 0.7277 | 0.4197 | 0.9571 |
| 1.1254 | 0.55 | 900 | 0.3724 | 0.4012 | 0.5588 | 0.8989 | nan | 0.0 | 0.8798 | 0.0 | 0.8445 | 0.6612 | 0.9676 | 0.0 | 0.0 | 0.6859 | 0.0 | 0.7355 | 0.4222 | 0.9645 |
| 0.3224 | 0.56 | 920 | 0.3896 | 0.3832 | 0.5236 | 0.8848 | nan | 0.0 | 0.6800 | 0.0 | 0.8722 | 0.6211 | 0.9682 | 0.0 | 0.0 | 0.5748 | 0.0 | 0.7403 | 0.4029 | 0.9642 |
| 0.5332 | 0.57 | 940 | 0.4089 | 0.3939 | 0.5357 | 0.9015 | nan | 0.0 | 0.7886 | 0.0 | 0.9190 | 0.5394 | 0.9673 | 0.0 | 0.0 | 0.6730 | 0.0 | 0.7391 | 0.3803 | 0.9647 |
| 0.5894 | 0.58 | 960 | 0.3700 | 0.3927 | 0.5405 | 0.8839 | nan | 0.0 | 0.7708 | 0.0 | 0.8235 | 0.6824 | 0.9660 | 0.0 | 0.0 | 0.6556 | 0.0 | 0.7161 | 0.4163 | 0.9612 |
| 1.036 | 0.59 | 980 | 0.3671 | 0.3944 | 0.5432 | 0.8837 | nan | 0.0 | 0.7763 | 0.0 | 0.8179 | 0.6990 | 0.9658 | 0.0 | 0.0 | 0.6802 | 0.0 | 0.7127 | 0.4058 | 0.9623 |
| 1.5145 | 0.61 | 1000 | 0.3916 | 0.3965 | 0.5456 | 0.8958 | nan | 0.0 | 0.7867 | 0.0 | 0.8846 | 0.6375 | 0.9647 | 0.0 | 0.0 | 0.7018 | 0.0 | 0.7190 | 0.3925 | 0.9624 |
| 0.4625 | 0.62 | 1020 | 0.3603 | 0.4067 | 0.5496 | 0.9010 | nan | 0.0 | 0.8180 | 0.0 | 0.8992 | 0.6160 | 0.9646 | 0.0 | 0.0 | 0.7095 | 0.0 | 0.7525 | 0.4239 | 0.9608 |
| 0.3804 | 0.63 | 1040 | 0.4219 | 0.3928 | 0.5328 | 0.8789 | nan | 0.0 | 0.8239 | 0.0 | 0.7882 | 0.6196 | 0.9652 | 0.0 | 0.0 | 0.6778 | 0.0 | 0.6963 | 0.4115 | 0.9637 |
| 0.1372 | 0.64 | 1060 | 0.3774 | 0.4034 | 0.5582 | 0.8978 | nan | 0.0 | 0.8729 | 0.0 | 0.8348 | 0.6721 | 0.9696 | 0.0 | 0.0 | 0.7169 | 0.0 | 0.7231 | 0.4186 | 0.9653 |
| 0.4438 | 0.65 | 1080 | 0.3409 | 0.4042 | 0.5501 | 0.8971 | nan | 0.0 | 0.7877 | 0.0 | 0.8704 | 0.6733 | 0.9694 | 0.0 | 0.0 | 0.6900 | 0.0 | 0.7509 | 0.4241 | 0.9648 |
| 0.3661 | 0.67 | 1100 | 0.3662 | 0.3994 | 0.5728 | 0.8936 | nan | 0.0039 | 0.8665 | 0.0 | 0.7975 | 0.7998 | 0.9693 | 0.0 | 0.0039 | 0.7029 | 0.0 | 0.7202 | 0.4038 | 0.9651 |
| 0.3783 | 0.68 | 1120 | 0.3625 | 0.4003 | 0.5673 | 0.8893 | nan | 0.0 | 0.8860 | 0.0 | 0.7856 | 0.7669 | 0.9654 | 0.0 | 0.0 | 0.7155 | 0.0 | 0.7166 | 0.4074 | 0.9628 |
| 0.3344 | 0.69 | 1140 | 0.3889 | 0.4142 | 0.5535 | 0.9062 | nan | 0.0 | 0.8531 | 0.0 | 0.9107 | 0.5919 | 0.9651 | 0.0 | 0.0 | 0.7437 | 0.0 | 0.7598 | 0.4330 | 0.9628 |
| 0.448 | 0.7 | 1160 | 0.3701 | 0.3875 | 0.5226 | 0.8774 | nan | 0.0 | 0.6806 | 0.0 | 0.8287 | 0.6578 | 0.9688 | 0.0 | 0.0 | 0.5996 | 0.0 | 0.7207 | 0.4273 | 0.9648 |
| 0.5724 | 0.72 | 1180 | 0.3466 | 0.4074 | 0.5587 | 0.8998 | nan | 0.0000 | 0.8195 | 0.0 | 0.8653 | 0.6982 | 0.9692 | 0.0 | 0.0000 | 0.7289 | 0.0 | 0.7380 | 0.4198 | 0.9648 |
| 0.2868 | 0.73 | 1200 | 0.3369 | 0.4088 | 0.5653 | 0.8956 | nan | 0.0005 | 0.8380 | 0.0 | 0.8254 | 0.7584 | 0.9697 | 0.0 | 0.0005 | 0.7145 | 0.0 | 0.7399 | 0.4414 | 0.9652 |
| 1.2485 | 0.74 | 1220 | 0.3480 | 0.4120 | 0.5639 | 0.9023 | nan | 0.0079 | 0.8643 | 0.0 | 0.8543 | 0.6865 | 0.9706 | 0.0 | 0.0079 | 0.7086 | 0.0 | 0.7548 | 0.4469 | 0.9659 |
| 0.6551 | 0.75 | 1240 | 0.3791 | 0.4219 | 0.5591 | 0.9145 | nan | 0.0048 | 0.8977 | 0.0 | 0.9139 | 0.5662 | 0.9718 | 0.0 | 0.0048 | 0.7367 | 0.0 | 0.7844 | 0.4620 | 0.9651 |
| 0.2599 | 0.76 | 1260 | 0.4596 | 0.3694 | 0.5736 | 0.8698 | nan | 0.0001 | 0.9234 | 0.0 | 0.6502 | 0.9018 | 0.9664 | 0.0 | 0.0001 | 0.6060 | 0.0 | 0.6179 | 0.3974 | 0.9644 |
| 0.4005 | 0.78 | 1280 | 0.3520 | 0.4018 | 0.5566 | 0.8965 | nan | 0.0076 | 0.7654 | 0.0 | 0.8698 | 0.7278 | 0.9690 | 0.0 | 0.0076 | 0.6936 | 0.0 | 0.7161 | 0.4306 | 0.9648 |
| 0.4001 | 0.79 | 1300 | 0.3456 | 0.4070 | 0.5543 | 0.8977 | nan | 0.0001 | 0.7549 | 0.0 | 0.8813 | 0.7203 | 0.9692 | 0.0 | 0.0001 | 0.6933 | 0.0 | 0.7277 | 0.4620 | 0.9658 |
| 0.9039 | 0.8 | 1320 | 0.3889 | 0.4112 | 0.5790 | 0.8984 | nan | 0.0006 | 0.8918 | 0.0 | 0.8236 | 0.7933 | 0.9650 | 0.0 | 0.0006 | 0.7323 | 0.0 | 0.7349 | 0.4479 | 0.9626 |
| 0.6388 | 0.81 | 1340 | 0.4108 | 0.4121 | 0.5752 | 0.9051 | nan | 0.0001 | 0.8354 | 0.0 | 0.8712 | 0.7752 | 0.9692 | 0.0 | 0.0001 | 0.7325 | 0.0 | 0.7351 | 0.4512 | 0.9655 |
| 0.3616 | 0.82 | 1360 | 0.4138 | 0.4221 | 0.5638 | 0.9099 | nan | 0.0 | 0.8630 | 0.0 | 0.9119 | 0.6414 | 0.9664 | 0.0 | 0.0 | 0.7581 | 0.0 | 0.7689 | 0.4631 | 0.9646 |
| 0.2287 | 0.84 | 1380 | 0.3833 | 0.4229 | 0.5762 | 0.9055 | nan | 0.0000 | 0.8940 | 0.0 | 0.8637 | 0.7335 | 0.9658 | 0.0 | 0.0000 | 0.7658 | 0.0 | 0.7545 | 0.4779 | 0.9620 |
| 0.2687 | 0.85 | 1400 | 0.3732 | 0.4287 | 0.5666 | 0.9118 | nan | 0.0000 | 0.8972 | 0.0 | 0.9157 | 0.6226 | 0.9641 | 0.0 | 0.0000 | 0.7764 | 0.0 | 0.7815 | 0.4814 | 0.9618 |
| 0.3827 | 0.86 | 1420 | 0.3344 | 0.4176 | 0.5816 | 0.9030 | nan | 0.0 | 0.8511 | 0.0 | 0.8537 | 0.8177 | 0.9671 | 0.0 | 0.0 | 0.7452 | 0.0 | 0.7485 | 0.4653 | 0.9641 |
| 1.1798 | 0.87 | 1440 | 0.3485 | 0.4198 | 0.5742 | 0.9089 | nan | 0.0002 | 0.8352 | 0.0 | 0.8893 | 0.7500 | 0.9705 | 0.0 | 0.0002 | 0.7491 | 0.0 | 0.7514 | 0.4729 | 0.9653 |
| 0.5062 | 0.89 | 1460 | 0.3882 | 0.4145 | 0.5766 | 0.9028 | nan | 0.0013 | 0.8817 | 0.0 | 0.8337 | 0.7717 | 0.9712 | 0.0 | 0.0013 | 0.7656 | 0.0 | 0.7303 | 0.4389 | 0.9656 |
| 0.2002 | 0.9 | 1480 | 0.3677 | 0.4167 | 0.5785 | 0.9005 | nan | 0.0001 | 0.8674 | 0.0 | 0.8450 | 0.7934 | 0.9649 | 0.0 | 0.0001 | 0.7513 | 0.0 | 0.7391 | 0.4645 | 0.9620 |
| 0.1993 | 0.91 | 1500 | 0.3801 | 0.4240 | 0.5584 | 0.9134 | nan | 0.0000 | 0.8673 | 0.0 | 0.9311 | 0.5842 | 0.9680 | 0.0 | 0.0000 | 0.7626 | 0.0 | 0.7714 | 0.4687 | 0.9653 |
| 0.2609 | 0.92 | 1520 | 0.3489 | 0.4199 | 0.5475 | 0.9084 | nan | 0.0001 | 0.8222 | 0.0 | 0.9304 | 0.5642 | 0.9682 | 0.0 | 0.0001 | 0.7412 | 0.0 | 0.7755 | 0.4568 | 0.9657 |
| 0.4571 | 0.93 | 1540 | 0.3767 | 0.4218 | 0.5832 | 0.9040 | nan | 0.0372 | 0.8298 | 0.0 | 0.8774 | 0.7894 | 0.9651 | 0.0 | 0.0365 | 0.7505 | 0.0 | 0.7451 | 0.4583 | 0.9621 |
| 0.5643 | 0.95 | 1560 | 0.3707 | 0.4220 | 0.5848 | 0.9027 | nan | 0.0187 | 0.8455 | 0.0 | 0.8446 | 0.8307 | 0.9695 | 0.0 | 0.0186 | 0.7506 | 0.0 | 0.7459 | 0.4715 | 0.9670 |
| 0.2607 | 0.96 | 1580 | 0.3601 | 0.4304 | 0.5782 | 0.9099 | nan | 0.0119 | 0.8665 | 0.0 | 0.8921 | 0.7312 | 0.9675 | 0.0 | 0.0118 | 0.7565 | 0.0 | 0.7761 | 0.5029 | 0.9652 |
| 0.2481 | 0.97 | 1600 | 0.3817 | 0.4281 | 0.5952 | 0.9043 | nan | 0.0346 | 0.8954 | 0.0 | 0.8582 | 0.8225 | 0.9604 | 0.0 | 0.0342 | 0.7426 | 0.0 | 0.7691 | 0.4917 | 0.9589 |
| 0.1986 | 0.98 | 1620 | 0.3817 | 0.4475 | 0.5988 | 0.9135 | nan | 0.1260 | 0.8537 | 0.0 | 0.9194 | 0.7288 | 0.9651 | 0.0 | 0.1246 | 0.7532 | 0.0 | 0.7756 | 0.5166 | 0.9626 |
| 0.455 | 0.99 | 1640 | 0.3812 | 0.4526 | 0.5958 | 0.9144 | nan | 0.1518 | 0.8918 | 0.0 | 0.9239 | 0.6439 | 0.9636 | 0.0 | 0.1467 | 0.7665 | 0.0 | 0.7888 | 0.5058 | 0.9602 |
| 0.4941 | 1.01 | 1660 | 0.3751 | 0.4389 | 0.6153 | 0.9094 | nan | 0.1142 | 0.9261 | 0.0 | 0.8391 | 0.8440 | 0.9682 | 0.0 | 0.1110 | 0.7601 | 0.0 | 0.7621 | 0.4737 | 0.9652 |
| 0.2446 | 1.02 | 1680 | 0.3794 | 0.4389 | 0.5817 | 0.9136 | nan | 0.0160 | 0.9137 | 0.0 | 0.8883 | 0.7034 | 0.9689 | 0.0 | 0.0160 | 0.7765 | 0.0 | 0.7870 | 0.5264 | 0.9664 |
| 0.3996 | 1.03 | 1700 | 0.3408 | 0.4193 | 0.5478 | 0.9004 | nan | 0.0060 | 0.7699 | 0.0 | 0.8999 | 0.6419 | 0.9691 | 0.0 | 0.0060 | 0.6761 | 0.0 | 0.7813 | 0.5054 | 0.9660 |
| 0.6762 | 1.04 | 1720 | 0.3653 | 0.4203 | 0.5646 | 0.8983 | nan | 0.0554 | 0.7069 | 0.0 | 0.8982 | 0.7581 | 0.9691 | 0.0 | 0.0550 | 0.6118 | 0.0 | 0.7905 | 0.5192 | 0.9658 |
| 0.3445 | 1.06 | 1740 | 0.3179 | 0.4460 | 0.6063 | 0.9131 | nan | 0.1284 | 0.8453 | 0.0 | 0.8960 | 0.7983 | 0.9697 | 0.0 | 0.1275 | 0.7422 | 0.0 | 0.7797 | 0.5068 | 0.9658 |
| 0.5238 | 1.07 | 1760 | 0.3420 | 0.4456 | 0.6022 | 0.9178 | nan | 0.0626 | 0.9129 | 0.0 | 0.8955 | 0.7732 | 0.9692 | 0.0 | 0.0616 | 0.7810 | 0.0 | 0.7931 | 0.5180 | 0.9658 |
| 0.4666 | 1.08 | 1780 | 0.3410 | 0.4379 | 0.5994 | 0.9099 | nan | 0.0695 | 0.8674 | 0.0 | 0.8796 | 0.8136 | 0.9666 | 0.0 | 0.0678 | 0.7510 | 0.0 | 0.7786 | 0.5035 | 0.9645 |
| 0.1126 | 1.09 | 1800 | 0.3464 | 0.4383 | 0.6157 | 0.9101 | nan | 0.1208 | 0.8865 | 0.0 | 0.8516 | 0.8653 | 0.9700 | 0.0 | 0.1180 | 0.7454 | 0.0 | 0.7670 | 0.4711 | 0.9664 |
| 0.7935 | 1.1 | 1820 | 0.3999 | 0.4382 | 0.5737 | 0.9179 | nan | 0.0529 | 0.8790 | 0.0 | 0.9439 | 0.5984 | 0.9679 | 0.0 | 0.0528 | 0.7719 | 0.0 | 0.7874 | 0.4906 | 0.9650 |
| 0.6014 | 1.12 | 1840 | 0.3176 | 0.4707 | 0.6222 | 0.9193 | nan | 0.2149 | 0.8795 | 0.0 | 0.9128 | 0.7558 | 0.9702 | 0.0 | 0.2033 | 0.7731 | 0.0 | 0.7938 | 0.5591 | 0.9653 |
| 1.1728 | 1.13 | 1860 | 0.3165 | 0.4715 | 0.6205 | 0.9205 | nan | 0.2344 | 0.8965 | 0.0 | 0.9165 | 0.7044 | 0.9709 | 0.0 | 0.2151 | 0.7453 | 0.0 | 0.8097 | 0.5650 | 0.9654 |
| 0.1275 | 1.14 | 1880 | 0.3705 | 0.4586 | 0.5965 | 0.9140 | nan | 0.2139 | 0.8187 | 0.0 | 0.9455 | 0.6344 | 0.9666 | 0.0 | 0.2070 | 0.7223 | 0.0 | 0.7887 | 0.5277 | 0.9649 |
| 0.2179 | 1.15 | 1900 | 0.3268 | 0.4608 | 0.6240 | 0.9126 | nan | 0.2176 | 0.8507 | 0.0 | 0.8910 | 0.8165 | 0.9679 | 0.0 | 0.2054 | 0.7202 | 0.0 | 0.7888 | 0.5454 | 0.9656 |
| 0.1725 | 1.16 | 1920 | 0.3277 | 0.4655 | 0.6146 | 0.9203 | nan | 0.1809 | 0.8656 | 0.0 | 0.9297 | 0.7422 | 0.9693 | 0.0 | 0.1753 | 0.7456 | 0.0 | 0.8099 | 0.5610 | 0.9667 |
| 0.3003 | 1.18 | 1940 | 0.3347 | 0.4741 | 0.6311 | 0.9203 | nan | 0.2239 | 0.8903 | 0.0 | 0.9079 | 0.7951 | 0.9696 | 0.0 | 0.2144 | 0.7493 | 0.0 | 0.8067 | 0.5815 | 0.9669 |
| 0.4764 | 1.19 | 1960 | 0.3413 | 0.4478 | 0.6279 | 0.9079 | nan | 0.1854 | 0.9016 | 0.0 | 0.8339 | 0.8779 | 0.9687 | 0.0 | 0.1690 | 0.7441 | 0.0 | 0.7655 | 0.4897 | 0.9663 |
| 0.1679 | 1.2 | 1980 | 0.3516 | 0.4473 | 0.5798 | 0.9191 | nan | 0.0754 | 0.8674 | 0.0 | 0.9466 | 0.6204 | 0.9692 | 0.0 | 0.0724 | 0.7752 | 0.0 | 0.7993 | 0.5181 | 0.9660 |
| 0.1999 | 1.21 | 2000 | 0.3341 | 0.4721 | 0.6457 | 0.9175 | nan | 0.2688 | 0.8973 | 0.0 | 0.8822 | 0.8568 | 0.9688 | 0.0 | 0.2286 | 0.7781 | 0.0 | 0.7962 | 0.5359 | 0.9662 |
| 0.8992 | 1.22 | 2020 | 0.3121 | 0.4757 | 0.6409 | 0.9179 | nan | 0.2915 | 0.8910 | 0.0 | 0.8935 | 0.8000 | 0.9695 | 0.0 | 0.2634 | 0.7798 | 0.0 | 0.7856 | 0.5347 | 0.9661 |
| 0.7007 | 1.24 | 2040 | 0.3041 | 0.4618 | 0.6127 | 0.9128 | nan | 0.1999 | 0.8653 | 0.0 | 0.8950 | 0.7474 | 0.9685 | 0.0 | 0.1702 | 0.7512 | 0.0 | 0.7931 | 0.5532 | 0.9647 |
| 0.5711 | 1.25 | 2060 | 0.3104 | 0.4758 | 0.6277 | 0.9190 | nan | 0.2760 | 0.8877 | 0.0 | 0.9128 | 0.7196 | 0.9699 | 0.0 | 0.2357 | 0.7700 | 0.0 | 0.8006 | 0.5579 | 0.9666 |
| 0.7925 | 1.26 | 2080 | 0.3465 | 0.4605 | 0.6418 | 0.9091 | nan | 0.2878 | 0.8570 | 0.0 | 0.8532 | 0.8831 | 0.9696 | 0.0 | 0.2437 | 0.7217 | 0.0 | 0.7779 | 0.5136 | 0.9670 |
| 0.1759 | 1.27 | 2100 | 0.3406 | 0.4619 | 0.6235 | 0.9078 | nan | 0.2492 | 0.8230 | 0.0 | 0.8719 | 0.8272 | 0.9698 | 0.0 | 0.2157 | 0.6976 | 0.0 | 0.7884 | 0.5655 | 0.9663 |
| 0.6914 | 1.29 | 2120 | 0.3209 | 0.4694 | 0.6229 | 0.9168 | nan | 0.2340 | 0.8629 | 0.0 | 0.9024 | 0.7665 | 0.9713 | 0.0 | 0.2126 | 0.7390 | 0.0 | 0.8017 | 0.5650 | 0.9672 |
| 0.1292 | 1.3 | 2140 | 0.3151 | 0.4735 | 0.6349 | 0.9147 | nan | 0.2670 | 0.8724 | 0.0 | 0.8983 | 0.8062 | 0.9657 | 0.0 | 0.2358 | 0.7487 | 0.0 | 0.8011 | 0.5662 | 0.9625 |
| 0.5439 | 1.31 | 2160 | 0.3343 | 0.4617 | 0.6058 | 0.9133 | nan | 0.2228 | 0.7989 | 0.0 | 0.9340 | 0.7110 | 0.9681 | 0.0 | 0.2091 | 0.7154 | 0.0 | 0.7958 | 0.5458 | 0.9660 |
| 0.5949 | 1.32 | 2180 | 0.3260 | 0.4561 | 0.6419 | 0.9072 | nan | 0.3080 | 0.8721 | 0.0 | 0.8355 | 0.8650 | 0.9709 | 0.0 | 0.2166 | 0.7527 | 0.0 | 0.7632 | 0.4930 | 0.9670 |
| 0.9366 | 1.33 | 2200 | 0.3182 | 0.4748 | 0.6430 | 0.9190 | nan | 0.2967 | 0.9100 | 0.0 | 0.8864 | 0.7941 | 0.9710 | 0.0 | 0.2381 | 0.7813 | 0.0 | 0.7926 | 0.5446 | 0.9669 |
| 0.4478 | 1.35 | 2220 | 0.3531 | 0.4596 | 0.5997 | 0.9223 | nan | 0.1622 | 0.8843 | 0.0 | 0.9456 | 0.6361 | 0.9703 | 0.0 | 0.1565 | 0.7919 | 0.0 | 0.7921 | 0.5099 | 0.9670 |
| 0.2858 | 1.36 | 2240 | 0.3627 | 0.4607 | 0.6228 | 0.9173 | nan | 0.1578 | 0.8976 | 0.0 | 0.8883 | 0.8239 | 0.9694 | 0.0 | 0.1500 | 0.7902 | 0.0 | 0.7738 | 0.5443 | 0.9666 |
| 0.4923 | 1.37 | 2260 | 0.3367 | 0.4498 | 0.6047 | 0.9082 | nan | 0.1380 | 0.8348 | 0.0 | 0.8814 | 0.8063 | 0.9678 | 0.0 | 0.1299 | 0.7364 | 0.0 | 0.7740 | 0.5442 | 0.9638 |
| 0.1323 | 1.38 | 2280 | 0.3380 | 0.4515 | 0.6301 | 0.9084 | nan | 0.1971 | 0.8926 | 0.0 | 0.8345 | 0.8863 | 0.9700 | 0.0 | 0.1751 | 0.7494 | 0.0 | 0.7577 | 0.5118 | 0.9668 |
| 0.3126 | 1.39 | 2300 | 0.3519 | 0.4753 | 0.6187 | 0.9234 | nan | 0.2345 | 0.8849 | 0.0 | 0.9471 | 0.6770 | 0.9686 | 0.0 | 0.2226 | 0.7876 | 0.0 | 0.7971 | 0.5533 | 0.9662 |
| 1.8741 | 1.41 | 2320 | 0.3483 | 0.4766 | 0.6352 | 0.9194 | nan | 0.2550 | 0.8999 | 0.0 | 0.9013 | 0.7856 | 0.9691 | 0.0 | 0.2242 | 0.7747 | 0.0 | 0.7957 | 0.5761 | 0.9656 |
| 0.3519 | 1.42 | 2340 | 0.3390 | 0.4794 | 0.6391 | 0.9205 | nan | 0.2594 | 0.8966 | 0.0 | 0.9017 | 0.8068 | 0.9700 | 0.0 | 0.2378 | 0.7732 | 0.0 | 0.7951 | 0.5829 | 0.9671 |
| 0.4777 | 1.43 | 2360 | 0.3234 | 0.4707 | 0.6410 | 0.9149 | nan | 0.2605 | 0.8687 | 0.0 | 0.8787 | 0.8681 | 0.9698 | 0.0 | 0.2422 | 0.7715 | 0.0 | 0.7784 | 0.5358 | 0.9670 |
| 0.7156 | 1.44 | 2380 | 0.3451 | 0.4794 | 0.6418 | 0.9201 | nan | 0.2929 | 0.8798 | 0.0 | 0.9094 | 0.7995 | 0.9694 | 0.0 | 0.2575 | 0.7733 | 0.0 | 0.7918 | 0.5663 | 0.9670 |
| 0.3765 | 1.46 | 2400 | 0.3339 | 0.4639 | 0.6238 | 0.9133 | nan | 0.2550 | 0.8921 | 0.0 | 0.8805 | 0.7455 | 0.9696 | 0.0 | 0.1751 | 0.7569 | 0.0 | 0.7919 | 0.5564 | 0.9669 |
| 0.4343 | 1.47 | 2420 | 0.3374 | 0.4630 | 0.6168 | 0.9135 | nan | 0.2179 | 0.8541 | 0.0 | 0.9035 | 0.7576 | 0.9678 | 0.0 | 0.1775 | 0.7531 | 0.0 | 0.7934 | 0.5515 | 0.9658 |
| 0.2178 | 1.48 | 2440 | 0.3254 | 0.4825 | 0.6499 | 0.9219 | nan | 0.3424 | 0.8816 | 0.0 | 0.9140 | 0.7912 | 0.9704 | 0.0 | 0.2639 | 0.7733 | 0.0 | 0.8027 | 0.5707 | 0.9669 |
| 0.1439 | 1.49 | 2460 | 0.3176 | 0.4752 | 0.6409 | 0.9175 | nan | 0.2942 | 0.8787 | 0.0 | 0.8935 | 0.8089 | 0.9702 | 0.0 | 0.2160 | 0.7786 | 0.0 | 0.7978 | 0.5673 | 0.9664 |
| 0.2481 | 1.5 | 2480 | 0.3195 | 0.4773 | 0.6265 | 0.9190 | nan | 0.2645 | 0.8625 | 0.0 | 0.9263 | 0.7376 | 0.9683 | 0.0 | 0.2089 | 0.7689 | 0.0 | 0.8083 | 0.5890 | 0.9658 |
| 0.9347 | 1.52 | 2500 | 0.3430 | 0.4789 | 0.6464 | 0.9207 | nan | 0.3009 | 0.8885 | 0.0 | 0.9029 | 0.8159 | 0.9702 | 0.0 | 0.2626 | 0.7724 | 0.0 | 0.7975 | 0.5528 | 0.9670 |
| 0.1827 | 1.53 | 2520 | 0.3459 | 0.4726 | 0.6328 | 0.9181 | nan | 0.2484 | 0.9093 | 0.0 | 0.8921 | 0.7775 | 0.9692 | 0.0 | 0.2042 | 0.7741 | 0.0 | 0.7998 | 0.5643 | 0.9662 |
| 0.3971 | 1.54 | 2540 | 0.3276 | 0.4661 | 0.6353 | 0.9144 | nan | 0.2600 | 0.8791 | 0.0 | 0.8777 | 0.8247 | 0.9700 | 0.0 | 0.2198 | 0.7730 | 0.0 | 0.7785 | 0.5249 | 0.9663 |
| 0.173 | 1.55 | 2560 | 0.3109 | 0.4591 | 0.6419 | 0.9093 | nan | 0.2986 | 0.8694 | 0.0 | 0.8536 | 0.8611 | 0.9690 | 0.0 | 0.2176 | 0.7731 | 0.0 | 0.7626 | 0.4941 | 0.9662 |
| 0.2705 | 1.56 | 2580 | 0.3112 | 0.4632 | 0.6178 | 0.9101 | nan | 0.2942 | 0.8141 | 0.0 | 0.9057 | 0.7240 | 0.9687 | 0.0 | 0.2203 | 0.7423 | 0.0 | 0.7818 | 0.5318 | 0.9661 |
| 0.2656 | 1.58 | 2600 | 0.3331 | 0.4806 | 0.6427 | 0.9202 | nan | 0.3186 | 0.8837 | 0.0 | 0.9166 | 0.7691 | 0.9680 | 0.0 | 0.2634 | 0.7761 | 0.0 | 0.7986 | 0.5600 | 0.9661 |
| 0.9206 | 1.59 | 2620 | 0.3247 | 0.4688 | 0.6290 | 0.9162 | nan | 0.3530 | 0.8646 | 0.0 | 0.9130 | 0.6725 | 0.9706 | 0.0 | 0.2167 | 0.7747 | 0.0 | 0.7877 | 0.5357 | 0.9667 |
| 0.6181 | 1.6 | 2640 | 0.4032 | 0.4888 | 0.6638 | 0.9239 | nan | 0.3722 | 0.9134 | 0.0 | 0.9041 | 0.8231 | 0.9701 | 0.0 | 0.3080 | 0.7774 | 0.0 | 0.8039 | 0.5652 | 0.9668 |
| 0.3185 | 1.61 | 2660 | 0.3383 | 0.4705 | 0.6598 | 0.9145 | nan | 0.3341 | 0.9161 | 0.0 | 0.8448 | 0.8926 | 0.9711 | 0.0 | 0.2860 | 0.7681 | 0.0 | 0.7732 | 0.4997 | 0.9667 |
| 0.2155 | 1.63 | 2680 | 0.3389 | 0.4639 | 0.6447 | 0.9109 | nan | 0.3037 | 0.8741 | 0.0 | 0.8593 | 0.8625 | 0.9689 | 0.0 | 0.2608 | 0.7573 | 0.0 | 0.7696 | 0.4933 | 0.9664 |
| 0.2003 | 1.64 | 2700 | 0.3230 | 0.4649 | 0.6588 | 0.9112 | nan | 0.3442 | 0.8983 | 0.0 | 0.8350 | 0.9045 | 0.9710 | 0.0 | 0.2818 | 0.7704 | 0.0 | 0.7626 | 0.4723 | 0.9672 |
| 0.1279 | 1.65 | 2720 | 0.3241 | 0.4747 | 0.6489 | 0.9163 | nan | 0.3240 | 0.8760 | 0.0 | 0.8863 | 0.8379 | 0.9693 | 0.0 | 0.2713 | 0.7729 | 0.0 | 0.7876 | 0.5243 | 0.9666 |
| 1.5163 | 1.66 | 2740 | 0.3286 | 0.4822 | 0.6409 | 0.9182 | nan | 0.3422 | 0.8431 | 0.0 | 0.9203 | 0.7703 | 0.9694 | 0.0 | 0.2859 | 0.7533 | 0.0 | 0.7992 | 0.5702 | 0.9667 |
| 0.5542 | 1.67 | 2760 | 0.3147 | 0.4774 | 0.6336 | 0.9157 | nan | 0.3563 | 0.8646 | 0.0 | 0.9065 | 0.7039 | 0.9702 | 0.0 | 0.2631 | 0.7649 | 0.0 | 0.7932 | 0.5544 | 0.9664 |
| 0.343 | 1.69 | 2780 | 0.3632 | 0.4858 | 0.6494 | 0.9212 | nan | 0.3345 | 0.8857 | 0.0 | 0.9134 | 0.7937 | 0.9689 | 0.0 | 0.2855 | 0.7758 | 0.0 | 0.7975 | 0.5756 | 0.9665 |
| 0.4835 | 1.7 | 2800 | 0.3339 | 0.4753 | 0.6437 | 0.9181 | nan | 0.2891 | 0.8746 | 0.0 | 0.8945 | 0.8339 | 0.9703 | 0.0 | 0.2399 | 0.7766 | 0.0 | 0.7894 | 0.5538 | 0.9670 |
| 0.1818 | 1.71 | 2820 | 0.3292 | 0.4655 | 0.6247 | 0.9133 | nan | 0.2390 | 0.8420 | 0.0 | 0.8972 | 0.8010 | 0.9688 | 0.0 | 0.1741 | 0.7599 | 0.0 | 0.7941 | 0.5642 | 0.9664 |
| 0.9569 | 1.72 | 2840 | 0.3529 | 0.4755 | 0.6446 | 0.9220 | nan | 0.2926 | 0.8872 | 0.0 | 0.9090 | 0.8079 | 0.9709 | 0.0 | 0.2297 | 0.7690 | 0.0 | 0.8052 | 0.5572 | 0.9672 |
| 0.1522 | 1.73 | 2860 | 0.3493 | 0.4606 | 0.6375 | 0.9130 | nan | 0.2946 | 0.8384 | 0.0 | 0.8860 | 0.8360 | 0.9702 | 0.0 | 0.2283 | 0.7457 | 0.0 | 0.7715 | 0.5112 | 0.9675 |
| 0.1661 | 1.75 | 2880 | 0.3477 | 0.4546 | 0.6333 | 0.9095 | nan | 0.2724 | 0.8481 | 0.0 | 0.8671 | 0.8428 | 0.9693 | 0.0 | 0.2106 | 0.7487 | 0.0 | 0.7711 | 0.4853 | 0.9667 |
| 0.2484 | 1.76 | 2900 | 0.3435 | 0.4515 | 0.6292 | 0.9050 | nan | 0.2757 | 0.8926 | 0.0 | 0.8347 | 0.8039 | 0.9683 | 0.0 | 0.1935 | 0.7419 | 0.0 | 0.7619 | 0.4975 | 0.9658 |
| 0.1391 | 1.77 | 2920 | 0.3083 | 0.4621 | 0.6332 | 0.9138 | nan | 0.3116 | 0.8488 | 0.0 | 0.8965 | 0.7730 | 0.9696 | 0.0 | 0.2033 | 0.7516 | 0.0 | 0.7920 | 0.5213 | 0.9666 |
| 0.1363 | 1.78 | 2940 | 0.3371 | 0.4638 | 0.6463 | 0.9110 | nan | 0.3354 | 0.8500 | 0.0 | 0.8745 | 0.8501 | 0.9679 | 0.0 | 0.2511 | 0.7327 | 0.0 | 0.7852 | 0.5121 | 0.9656 |
| 0.3563 | 1.8 | 2960 | 0.3271 | 0.4584 | 0.6325 | 0.9096 | nan | 0.2815 | 0.8248 | 0.0 | 0.8714 | 0.8465 | 0.9711 | 0.0 | 0.2268 | 0.7214 | 0.0 | 0.7805 | 0.5133 | 0.9670 |
| 0.7689 | 1.81 | 2980 | 0.3054 | 0.4593 | 0.6192 | 0.9096 | nan | 0.2350 | 0.8486 | 0.0 | 0.8729 | 0.7878 | 0.9708 | 0.0 | 0.1854 | 0.7343 | 0.0 | 0.7904 | 0.5387 | 0.9664 |
| 0.333 | 1.82 | 3000 | 0.3318 | 0.4715 | 0.6438 | 0.9178 | nan | 0.2849 | 0.8976 | 0.0 | 0.8858 | 0.8248 | 0.9698 | 0.0 | 0.2529 | 0.7470 | 0.0 | 0.7938 | 0.5400 | 0.9669 |
| 0.0664 | 1.83 | 3020 | 0.3174 | 0.4616 | 0.6548 | 0.9101 | nan | 0.3318 | 0.8963 | 0.0 | 0.8294 | 0.8993 | 0.9718 | 0.0 | 0.2594 | 0.7513 | 0.0 | 0.7654 | 0.4884 | 0.9670 |
| 0.5802 | 1.84 | 3040 | 0.3003 | 0.4694 | 0.6533 | 0.9138 | nan | 0.3512 | 0.8930 | 0.0 | 0.8604 | 0.8446 | 0.9707 | 0.0 | 0.2368 | 0.7722 | 0.0 | 0.7820 | 0.5277 | 0.9668 |
| 0.158 | 1.86 | 3060 | 0.2986 | 0.4762 | 0.6403 | 0.9197 | nan | 0.3481 | 0.8854 | 0.0 | 0.9133 | 0.7247 | 0.9701 | 0.0 | 0.2633 | 0.7703 | 0.0 | 0.7969 | 0.5362 | 0.9669 |
| 0.1517 | 1.87 | 3080 | 0.3548 | 0.4843 | 0.6427 | 0.9240 | nan | 0.4025 | 0.8833 | 0.0 | 0.9451 | 0.6554 | 0.9699 | 0.0 | 0.3066 | 0.7910 | 0.0 | 0.7953 | 0.5295 | 0.9675 |
| 0.5864 | 1.88 | 3100 | 0.3026 | 0.4797 | 0.6438 | 0.9193 | nan | 0.3682 | 0.8682 | 0.0 | 0.9130 | 0.7426 | 0.9709 | 0.0 | 0.2850 | 0.7875 | 0.0 | 0.7846 | 0.5333 | 0.9676 |
| 0.4852 | 1.89 | 3120 | 0.3118 | 0.4811 | 0.6588 | 0.9188 | nan | 0.3660 | 0.8840 | 0.0 | 0.8897 | 0.8429 | 0.9703 | 0.0 | 0.2981 | 0.7871 | 0.0 | 0.7857 | 0.5299 | 0.9672 |
| 0.2932 | 1.9 | 3140 | 0.2926 | 0.4920 | 0.6502 | 0.9245 | nan | 0.3744 | 0.8931 | 0.0 | 0.9253 | 0.7370 | 0.9717 | 0.0 | 0.3025 | 0.7904 | 0.0 | 0.8108 | 0.5731 | 0.9675 |
| 0.2021 | 1.92 | 3160 | 0.3038 | 0.4779 | 0.6211 | 0.9178 | nan | 0.3510 | 0.8491 | 0.0 | 0.9417 | 0.6159 | 0.9689 | 0.0 | 0.2831 | 0.7536 | 0.0 | 0.8076 | 0.5351 | 0.9663 |
| 0.3806 | 1.93 | 3180 | 0.3182 | 0.4760 | 0.6492 | 0.9141 | nan | 0.3445 | 0.8570 | 0.0 | 0.8832 | 0.8411 | 0.9692 | 0.0 | 0.2641 | 0.7392 | 0.0 | 0.7967 | 0.5651 | 0.9670 |
| 0.1496 | 1.94 | 3200 | 0.3361 | 0.4753 | 0.6422 | 0.9156 | nan | 0.3138 | 0.9011 | 0.0 | 0.8849 | 0.7859 | 0.9678 | 0.0 | 0.2435 | 0.7803 | 0.0 | 0.7946 | 0.5434 | 0.9651 |
| 0.0671 | 1.95 | 3220 | 0.3265 | 0.4742 | 0.6578 | 0.9147 | nan | 0.3656 | 0.8798 | 0.0 | 0.8741 | 0.8584 | 0.9687 | 0.0 | 0.2816 | 0.7842 | 0.0 | 0.7832 | 0.5041 | 0.9659 |
| 0.15 | 1.96 | 3240 | 0.3244 | 0.4739 | 0.6427 | 0.9158 | nan | 0.3541 | 0.8804 | 0.0 | 0.8972 | 0.7564 | 0.9682 | 0.0 | 0.2528 | 0.7590 | 0.0 | 0.7978 | 0.5417 | 0.9660 |
| 0.1933 | 1.98 | 3260 | 0.3516 | 0.4773 | 0.6542 | 0.9174 | nan | 0.3953 | 0.9202 | 0.0 | 0.8821 | 0.7583 | 0.9693 | 0.0 | 0.2658 | 0.7510 | 0.0 | 0.8026 | 0.5550 | 0.9665 |
| 0.1333 | 1.99 | 3280 | 0.3080 | 0.4830 | 0.6444 | 0.9189 | nan | 0.3587 | 0.9054 | 0.0 | 0.9009 | 0.7318 | 0.9695 | 0.0 | 0.3008 | 0.7536 | 0.0 | 0.8027 | 0.5574 | 0.9667 |
| 0.1016 | 2.0 | 3300 | 0.3048 | 0.4824 | 0.6479 | 0.9180 | nan | 0.3595 | 0.8686 | 0.0 | 0.9005 | 0.7879 | 0.9707 | 0.0 | 0.3022 | 0.7380 | 0.0 | 0.8046 | 0.5642 | 0.9675 |
| 0.3692 | 2.01 | 3320 | 0.3021 | 0.4761 | 0.6468 | 0.9144 | nan | 0.3537 | 0.8509 | 0.0 | 0.8868 | 0.8186 | 0.9706 | 0.0 | 0.2802 | 0.7268 | 0.0 | 0.8011 | 0.5570 | 0.9672 |
| 0.8706 | 2.03 | 3340 | 0.3320 | 0.4796 | 0.6430 | 0.9199 | nan | 0.3116 | 0.9048 | 0.0 | 0.8987 | 0.7727 | 0.9701 | 0.0 | 0.2747 | 0.7327 | 0.0 | 0.8107 | 0.5718 | 0.9674 |
| 0.3265 | 2.04 | 3360 | 0.3169 | 0.4765 | 0.6552 | 0.9168 | nan | 0.3639 | 0.9043 | 0.0 | 0.8762 | 0.8171 | 0.9698 | 0.0 | 0.2622 | 0.7622 | 0.0 | 0.7963 | 0.5480 | 0.9671 |
| 0.1013 | 2.05 | 3380 | 0.3117 | 0.4774 | 0.6759 | 0.9165 | nan | 0.4382 | 0.9000 | 0.0 | 0.8647 | 0.8830 | 0.9696 | 0.0 | 0.2732 | 0.7770 | 0.0 | 0.7877 | 0.5370 | 0.9668 |
| 0.2655 | 2.06 | 3400 | 0.3157 | 0.4852 | 0.6580 | 0.9201 | nan | 0.3775 | 0.8841 | 0.0 | 0.9011 | 0.8152 | 0.9698 | 0.0 | 0.3075 | 0.7750 | 0.0 | 0.7963 | 0.5505 | 0.9673 |
| 0.321 | 2.07 | 3420 | 0.2988 | 0.4807 | 0.6601 | 0.9180 | nan | 0.3850 | 0.8639 | 0.0 | 0.8911 | 0.8497 | 0.9709 | 0.0 | 0.2850 | 0.7833 | 0.0 | 0.7893 | 0.5400 | 0.9673 |
| 0.1012 | 2.09 | 3440 | 0.3125 | 0.4939 | 0.6538 | 0.9251 | nan | 0.3966 | 0.8959 | 0.0 | 0.9308 | 0.7287 | 0.9706 | 0.0 | 0.3223 | 0.7911 | 0.0 | 0.8092 | 0.5669 | 0.9676 |
| 0.412 | 2.1 | 3460 | 0.3296 | 0.4815 | 0.6585 | 0.9182 | nan | 0.3481 | 0.9184 | 0.0 | 0.8726 | 0.8417 | 0.9701 | 0.0 | 0.2909 | 0.7612 | 0.0 | 0.7971 | 0.5547 | 0.9666 |
| 0.1383 | 2.11 | 3480 | 0.3082 | 0.4884 | 0.6540 | 0.9225 | nan | 0.3569 | 0.9140 | 0.0 | 0.9056 | 0.7776 | 0.9699 | 0.0 | 0.2999 | 0.7737 | 0.0 | 0.8086 | 0.5698 | 0.9665 |
| 0.1925 | 2.12 | 3500 | 0.3206 | 0.4821 | 0.6536 | 0.9182 | nan | 0.3449 | 0.9109 | 0.0 | 0.8844 | 0.8124 | 0.9688 | 0.0 | 0.2829 | 0.7721 | 0.0 | 0.7977 | 0.5564 | 0.9659 |
| 0.6483 | 2.13 | 3520 | 0.3155 | 0.4756 | 0.6540 | 0.9136 | nan | 0.3536 | 0.8712 | 0.0 | 0.8698 | 0.8595 | 0.9697 | 0.0 | 0.2857 | 0.7718 | 0.0 | 0.7790 | 0.5269 | 0.9660 |
| 0.4534 | 2.15 | 3540 | 0.3218 | 0.4792 | 0.6513 | 0.9170 | nan | 0.3516 | 0.9113 | 0.0 | 0.8804 | 0.7955 | 0.9690 | 0.0 | 0.2800 | 0.7792 | 0.0 | 0.7901 | 0.5392 | 0.9657 |
| 0.1899 | 2.16 | 3560 | 0.3131 | 0.4741 | 0.6607 | 0.9143 | nan | 0.3562 | 0.9017 | 0.0 | 0.8519 | 0.8837 | 0.9708 | 0.0 | 0.2942 | 0.7720 | 0.0 | 0.7761 | 0.5095 | 0.9666 |
| 0.6685 | 2.17 | 3580 | 0.3230 | 0.4836 | 0.6603 | 0.9195 | nan | 0.3811 | 0.9106 | 0.0 | 0.8880 | 0.8125 | 0.9694 | 0.0 | 0.3074 | 0.7791 | 0.0 | 0.7905 | 0.5417 | 0.9664 |
| 0.1743 | 2.18 | 3600 | 0.3060 | 0.4764 | 0.6571 | 0.9157 | nan | 0.3722 | 0.9087 | 0.0 | 0.8655 | 0.8258 | 0.9704 | 0.0 | 0.2614 | 0.7796 | 0.0 | 0.7862 | 0.5412 | 0.9661 |
| 0.2988 | 2.2 | 3620 | 0.3150 | 0.4883 | 0.6569 | 0.9234 | nan | 0.3869 | 0.8954 | 0.0 | 0.9154 | 0.7728 | 0.9709 | 0.0 | 0.2894 | 0.7913 | 0.0 | 0.8052 | 0.5647 | 0.9671 |
| 0.199 | 2.21 | 3640 | 0.3073 | 0.4799 | 0.6563 | 0.9205 | nan | 0.3823 | 0.9094 | 0.0 | 0.8966 | 0.7794 | 0.9700 | 0.0 | 0.2462 | 0.7752 | 0.0 | 0.8058 | 0.5652 | 0.9668 |
| 0.356 | 2.22 | 3660 | 0.3088 | 0.4787 | 0.6539 | 0.9202 | nan | 0.3759 | 0.8945 | 0.0 | 0.9014 | 0.7813 | 0.9701 | 0.0 | 0.2406 | 0.7759 | 0.0 | 0.8051 | 0.5631 | 0.9663 |
| 1.2003 | 2.23 | 3680 | 0.3037 | 0.4829 | 0.6551 | 0.9212 | nan | 0.4053 | 0.8855 | 0.0 | 0.9139 | 0.7558 | 0.9701 | 0.0 | 0.2744 | 0.7755 | 0.0 | 0.8075 | 0.5561 | 0.9666 |
| 0.1801 | 2.24 | 3700 | 0.3155 | 0.4837 | 0.6570 | 0.9202 | nan | 0.4074 | 0.8924 | 0.0 | 0.9082 | 0.7655 | 0.9688 | 0.0 | 0.3066 | 0.7867 | 0.0 | 0.7995 | 0.5269 | 0.9664 |
| 0.2767 | 2.26 | 3720 | 0.3365 | 0.4783 | 0.6767 | 0.9163 | nan | 0.4490 | 0.9065 | 0.0000 | 0.8610 | 0.8735 | 0.9699 | 0.0 | 0.2931 | 0.7931 | 0.0000 | 0.7863 | 0.5086 | 0.9666 |
| 0.2641 | 2.27 | 3740 | 0.3103 | 0.4783 | 0.6719 | 0.9153 | nan | 0.4315 | 0.8901 | 0.0 | 0.8631 | 0.8765 | 0.9700 | 0.0 | 0.2993 | 0.7883 | 0.0 | 0.7826 | 0.5114 | 0.9668 |
| 0.7382 | 2.28 | 3760 | 0.3684 | 0.4819 | 0.6608 | 0.9156 | nan | 0.3913 | 0.8903 | 0.0 | 0.8832 | 0.8335 | 0.9667 | 0.0 | 0.3122 | 0.7635 | 0.0 | 0.7916 | 0.5410 | 0.9651 |
| 0.1887 | 2.29 | 3780 | 0.3380 | 0.4850 | 0.6672 | 0.9190 | nan | 0.3872 | 0.9062 | 0.0 | 0.8795 | 0.8607 | 0.9693 | 0.0 | 0.3182 | 0.7798 | 0.0 | 0.7920 | 0.5385 | 0.9668 |
| 0.4301 | 2.3 | 3800 | 0.3126 | 0.4902 | 0.6655 | 0.9219 | nan | 0.4399 | 0.8957 | 0.0 | 0.9040 | 0.7823 | 0.9711 | 0.0 | 0.3320 | 0.7915 | 0.0 | 0.7986 | 0.5423 | 0.9673 |
| 0.0796 | 2.32 | 3820 | 0.3078 | 0.4931 | 0.6700 | 0.9231 | nan | 0.4574 | 0.8945 | 0.0 | 0.9082 | 0.7887 | 0.9712 | 0.0 | 0.3244 | 0.7902 | 0.0 | 0.8045 | 0.5654 | 0.9673 |
| 0.5856 | 2.33 | 3840 | 0.3280 | 0.4860 | 0.6739 | 0.9186 | nan | 0.4448 | 0.8992 | 0.0 | 0.8803 | 0.8492 | 0.9697 | 0.0 | 0.3209 | 0.7944 | 0.0 | 0.7874 | 0.5328 | 0.9665 |
| 0.3133 | 2.34 | 3860 | 0.3306 | 0.4901 | 0.6625 | 0.9220 | nan | 0.4158 | 0.8912 | 0.0 | 0.9104 | 0.7877 | 0.9698 | 0.0 | 0.3321 | 0.7919 | 0.0 | 0.7933 | 0.5461 | 0.9669 |
| 0.1759 | 2.35 | 3880 | 0.3318 | 0.4893 | 0.6707 | 0.9209 | nan | 0.4327 | 0.9019 | 0.0 | 0.8910 | 0.8278 | 0.9705 | 0.0 | 0.3309 | 0.7941 | 0.0 | 0.7933 | 0.5402 | 0.9669 |
| 0.2173 | 2.37 | 3900 | 0.3227 | 0.4842 | 0.6738 | 0.9186 | nan | 0.4241 | 0.9066 | 0.0 | 0.8627 | 0.8765 | 0.9731 | 0.0 | 0.3222 | 0.7925 | 0.0 | 0.7836 | 0.5238 | 0.9670 |
| 0.3338 | 2.38 | 3920 | 0.3146 | 0.4892 | 0.6725 | 0.9208 | nan | 0.4330 | 0.8966 | 0.0 | 0.8909 | 0.8443 | 0.9704 | 0.0 | 0.3364 | 0.7922 | 0.0 | 0.7910 | 0.5381 | 0.9671 |
| 0.1098 | 2.39 | 3940 | 0.3051 | 0.4850 | 0.6648 | 0.9186 | nan | 0.4086 | 0.9006 | 0.0 | 0.8823 | 0.8271 | 0.9703 | 0.0 | 0.2986 | 0.7912 | 0.0 | 0.7915 | 0.5466 | 0.9668 |
| 0.2892 | 2.4 | 3960 | 0.3277 | 0.4914 | 0.6582 | 0.9235 | nan | 0.4131 | 0.9019 | 0.0 | 0.9224 | 0.7429 | 0.9691 | 0.0 | 0.3010 | 0.7897 | 0.0 | 0.8109 | 0.5718 | 0.9666 |
| 0.7496 | 2.41 | 3980 | 0.3239 | 0.4799 | 0.6699 | 0.9166 | nan | 0.4203 | 0.9044 | 0.0000 | 0.8701 | 0.8556 | 0.9690 | 0.0 | 0.2835 | 0.7871 | 0.0000 | 0.7897 | 0.5325 | 0.9666 |
| 0.1267 | 2.43 | 4000 | 0.3030 | 0.4849 | 0.6719 | 0.9188 | nan | 0.4334 | 0.8752 | 0.0 | 0.8889 | 0.8636 | 0.9700 | 0.0 | 0.3219 | 0.7904 | 0.0 | 0.7879 | 0.5268 | 0.9670 |
| 0.1651 | 2.44 | 4020 | 0.3301 | 0.4801 | 0.6728 | 0.9161 | nan | 0.4176 | 0.8973 | 0.0 | 0.8652 | 0.8877 | 0.9692 | 0.0 | 0.2969 | 0.7938 | 0.0 | 0.7830 | 0.5201 | 0.9669 |
| 0.3399 | 2.45 | 4040 | 0.3104 | 0.4728 | 0.6705 | 0.9147 | nan | 0.4008 | 0.8929 | 0.0000 | 0.8517 | 0.9064 | 0.9712 | 0.0 | 0.2694 | 0.7927 | 0.0000 | 0.7785 | 0.5023 | 0.9669 |
| 0.399 | 2.46 | 4060 | 0.2932 | 0.4825 | 0.6653 | 0.9207 | nan | 0.4182 | 0.8889 | 0.0000 | 0.8964 | 0.8174 | 0.9711 | 0.0 | 0.2890 | 0.7885 | 0.0000 | 0.7953 | 0.5376 | 0.9672 |
| 0.1291 | 2.47 | 4080 | 0.3093 | 0.4793 | 0.6726 | 0.9178 | nan | 0.4242 | 0.8888 | 0.0 | 0.8791 | 0.8745 | 0.9691 | 0.0 | 0.2900 | 0.7911 | 0.0 | 0.7879 | 0.5195 | 0.9669 |
| 0.0833 | 2.49 | 4100 | 0.3038 | 0.4784 | 0.6705 | 0.9162 | nan | 0.4206 | 0.8873 | 0.0000 | 0.8697 | 0.8757 | 0.9699 | 0.0 | 0.2837 | 0.7942 | 0.0000 | 0.7854 | 0.5195 | 0.9664 |
| 0.4351 | 2.5 | 4120 | 0.3084 | 0.4812 | 0.6710 | 0.9181 | nan | 0.4290 | 0.8976 | 0.0 | 0.8771 | 0.8520 | 0.9702 | 0.0 | 0.2869 | 0.7811 | 0.0 | 0.7942 | 0.5398 | 0.9666 |
| 0.6208 | 2.51 | 4140 | 0.3039 | 0.4776 | 0.6523 | 0.9168 | nan | 0.3598 | 0.8827 | 0.0 | 0.8828 | 0.8175 | 0.9710 | 0.0 | 0.2525 | 0.7696 | 0.0 | 0.7989 | 0.5560 | 0.9663 |
| 0.3642 | 2.52 | 4160 | 0.3249 | 0.4892 | 0.6676 | 0.9218 | nan | 0.4016 | 0.9010 | 0.0 | 0.8974 | 0.8360 | 0.9699 | 0.0 | 0.3151 | 0.7717 | 0.0 | 0.8056 | 0.5650 | 0.9670 |
| 0.6865 | 2.53 | 4180 | 0.3203 | 0.4934 | 0.6659 | 0.9243 | nan | 0.4052 | 0.8954 | 0.0 | 0.9134 | 0.8108 | 0.9708 | 0.0 | 0.3057 | 0.7841 | 0.0 | 0.8130 | 0.5842 | 0.9672 |
| 1.0893 | 2.55 | 4200 | 0.2951 | 0.4863 | 0.6613 | 0.9193 | nan | 0.4150 | 0.8548 | 0.0000 | 0.9060 | 0.8212 | 0.9707 | 0.0 | 0.2905 | 0.7699 | 0.0000 | 0.8057 | 0.5707 | 0.9670 |
| 0.4914 | 2.56 | 4220 | 0.2988 | 0.4951 | 0.6731 | 0.9224 | nan | 0.4553 | 0.8745 | 0.0000 | 0.9001 | 0.8352 | 0.9734 | 0.0 | 0.3491 | 0.7804 | 0.0000 | 0.8038 | 0.5630 | 0.9690 |
| 0.2864 | 2.57 | 4240 | 0.3029 | 0.4946 | 0.6670 | 0.9232 | nan | 0.4448 | 0.8753 | 0.0 | 0.9182 | 0.7926 | 0.9710 | 0.0 | 0.3187 | 0.7765 | 0.0 | 0.8127 | 0.5870 | 0.9673 |
| 0.1695 | 2.58 | 4260 | 0.3356 | 0.5014 | 0.6749 | 0.9263 | nan | 0.4545 | 0.8932 | 0.0 | 0.9249 | 0.8066 | 0.9702 | 0.0 | 0.3657 | 0.7799 | 0.0 | 0.8119 | 0.5847 | 0.9676 |
| 0.5746 | 2.6 | 4280 | 0.3106 | 0.5024 | 0.6754 | 0.9260 | nan | 0.4610 | 0.8796 | 0.0 | 0.9206 | 0.8187 | 0.9723 | 0.0 | 0.3690 | 0.7837 | 0.0 | 0.8137 | 0.5818 | 0.9683 |
| 0.2629 | 2.61 | 4300 | 0.3153 | 0.5020 | 0.6771 | 0.9269 | nan | 0.4768 | 0.9000 | 0.0 | 0.9266 | 0.7890 | 0.9702 | 0.0 | 0.3420 | 0.7826 | 0.0 | 0.8218 | 0.6005 | 0.9671 |
| 0.4151 | 2.62 | 4320 | 0.2932 | 0.4957 | 0.6677 | 0.9229 | nan | 0.4382 | 0.8798 | 0.0 | 0.9142 | 0.8031 | 0.9706 | 0.0 | 0.3086 | 0.7840 | 0.0 | 0.8159 | 0.5944 | 0.9668 |
| 0.1169 | 2.63 | 4340 | 0.2940 | 0.4995 | 0.6683 | 0.9244 | nan | 0.4620 | 0.8738 | 0.0 | 0.9295 | 0.7744 | 0.9701 | 0.0 | 0.3315 | 0.7860 | 0.0 | 0.8161 | 0.5960 | 0.9668 |
| 0.1379 | 2.64 | 4360 | 0.2958 | 0.5047 | 0.6750 | 0.9264 | nan | 0.4636 | 0.8776 | 0.0000 | 0.9138 | 0.8195 | 0.9754 | 0.0 | 0.3667 | 0.7920 | 0.0000 | 0.8160 | 0.5891 | 0.9689 |
| 0.1106 | 2.66 | 4380 | 0.3271 | 0.5063 | 0.6866 | 0.9278 | nan | 0.5061 | 0.9005 | 0.0 | 0.9251 | 0.8175 | 0.9702 | 0.0 | 0.3773 | 0.7976 | 0.0 | 0.8143 | 0.5878 | 0.9673 |
| 0.6561 | 2.67 | 4400 | 0.3072 | 0.4820 | 0.6689 | 0.9179 | nan | 0.4274 | 0.9043 | 0.0001 | 0.8736 | 0.8372 | 0.9707 | 0.0 | 0.2704 | 0.7896 | 0.0001 | 0.7980 | 0.5493 | 0.9665 |
| 1.0281 | 2.68 | 4420 | 0.3102 | 0.4815 | 0.6878 | 0.9179 | nan | 0.4964 | 0.9069 | 0.0000 | 0.8569 | 0.8942 | 0.9721 | 0.0 | 0.3072 | 0.7945 | 0.0000 | 0.7899 | 0.5115 | 0.9676 |
| 0.2507 | 2.69 | 4440 | 0.3143 | 0.4839 | 0.6758 | 0.9200 | nan | 0.4543 | 0.9103 | 0.0 | 0.8806 | 0.8390 | 0.9704 | 0.0 | 0.2914 | 0.7904 | 0.0 | 0.8009 | 0.5380 | 0.9668 |
| 1.8848 | 2.7 | 4460 | 0.3204 | 0.4827 | 0.6763 | 0.9186 | nan | 0.4533 | 0.9111 | 0.0000 | 0.8766 | 0.8475 | 0.9690 | 0.0 | 0.2813 | 0.7838 | 0.0000 | 0.8023 | 0.5453 | 0.9664 |
| 0.2177 | 2.72 | 4480 | 0.3152 | 0.4841 | 0.6658 | 0.9196 | nan | 0.4292 | 0.8986 | 0.0 | 0.8922 | 0.8050 | 0.9699 | 0.0 | 0.2702 | 0.7881 | 0.0 | 0.8063 | 0.5579 | 0.9666 |
| 0.2683 | 2.73 | 4500 | 0.3165 | 0.4810 | 0.6710 | 0.9176 | nan | 0.4378 | 0.9003 | 0.0 | 0.8797 | 0.8395 | 0.9687 | 0.0 | 0.2755 | 0.7847 | 0.0 | 0.7996 | 0.5408 | 0.9661 |
| 0.4168 | 2.74 | 4520 | 0.3347 | 0.4920 | 0.6748 | 0.9233 | nan | 0.4527 | 0.9122 | 0.0 | 0.9021 | 0.8121 | 0.9698 | 0.0 | 0.3271 | 0.7776 | 0.0 | 0.8105 | 0.5616 | 0.9670 |
| 0.89 | 2.75 | 4540 | 0.3345 | 0.4875 | 0.6709 | 0.9211 | nan | 0.4383 | 0.9006 | 0.0 | 0.8985 | 0.8189 | 0.9690 | 0.0 | 0.2903 | 0.7895 | 0.0 | 0.8071 | 0.5591 | 0.9666 |
| 0.3392 | 2.77 | 4560 | 0.3020 | 0.4852 | 0.6730 | 0.9197 | nan | 0.4509 | 0.8977 | 0.0 | 0.8886 | 0.8312 | 0.9698 | 0.0 | 0.2847 | 0.7921 | 0.0 | 0.8024 | 0.5506 | 0.9665 |
| 0.4607 | 2.78 | 4580 | 0.3230 | 0.4935 | 0.6757 | 0.9238 | nan | 0.4640 | 0.9097 | 0.0 | 0.9075 | 0.8036 | 0.9696 | 0.0 | 0.3195 | 0.7866 | 0.0 | 0.8116 | 0.5697 | 0.9670 |
| 0.3654 | 2.79 | 4600 | 0.3109 | 0.4928 | 0.6672 | 0.9231 | nan | 0.4508 | 0.8907 | 0.0 | 0.9169 | 0.7750 | 0.9698 | 0.0 | 0.3078 | 0.7942 | 0.0 | 0.8102 | 0.5704 | 0.9670 |
| 0.4694 | 2.8 | 4620 | 0.3250 | 0.4919 | 0.6806 | 0.9221 | nan | 0.4773 | 0.9033 | 0.0 | 0.8870 | 0.8435 | 0.9722 | 0.0 | 0.3328 | 0.7919 | 0.0 | 0.8015 | 0.5489 | 0.9679 |
| 0.7987 | 2.81 | 4640 | 0.3292 | 0.4954 | 0.6686 | 0.9240 | nan | 0.4267 | 0.8898 | 0.0 | 0.9178 | 0.8078 | 0.9696 | 0.0 | 0.3340 | 0.7982 | 0.0 | 0.8063 | 0.5622 | 0.9672 |
| 0.1422 | 2.83 | 4660 | 0.3098 | 0.4980 | 0.6793 | 0.9252 | nan | 0.4912 | 0.9051 | 0.0 | 0.9137 | 0.7954 | 0.9706 | 0.0 | 0.3358 | 0.7895 | 0.0 | 0.8146 | 0.5789 | 0.9674 |
| 0.2764 | 2.84 | 4680 | 0.2950 | 0.4955 | 0.6780 | 0.9236 | nan | 0.4777 | 0.8876 | 0.0 | 0.9065 | 0.8249 | 0.9715 | 0.0 | 0.3347 | 0.7929 | 0.0 | 0.8095 | 0.5634 | 0.9678 |
| 0.7027 | 2.85 | 4700 | 0.3178 | 0.4956 | 0.6811 | 0.9237 | nan | 0.4798 | 0.9043 | 0.0 | 0.9009 | 0.8310 | 0.9708 | 0.0 | 0.3432 | 0.7879 | 0.0 | 0.8083 | 0.5622 | 0.9676 |
| 0.1181 | 2.86 | 4720 | 0.3131 | 0.4926 | 0.6812 | 0.9229 | nan | 0.4841 | 0.9019 | 0.0 | 0.8987 | 0.8317 | 0.9705 | 0.0 | 0.3250 | 0.7894 | 0.0 | 0.8072 | 0.5593 | 0.9673 |
| 0.1929 | 2.87 | 4740 | 0.3345 | 0.4983 | 0.6796 | 0.9246 | nan | 0.4671 | 0.9066 | 0.0 | 0.9087 | 0.8258 | 0.9697 | 0.0 | 0.3638 | 0.7872 | 0.0 | 0.8075 | 0.5620 | 0.9673 |
| 0.1227 | 2.89 | 4760 | 0.3008 | 0.4923 | 0.6766 | 0.9215 | nan | 0.4699 | 0.8828 | 0.0 | 0.8972 | 0.8386 | 0.9714 | 0.0 | 0.3415 | 0.7942 | 0.0 | 0.8013 | 0.5408 | 0.9681 |
| 0.2807 | 2.9 | 4780 | 0.3065 | 0.4867 | 0.6674 | 0.9185 | nan | 0.4280 | 0.8885 | 0.0 | 0.8864 | 0.8315 | 0.9701 | 0.0 | 0.3093 | 0.7890 | 0.0 | 0.7973 | 0.5438 | 0.9672 |
| 0.1685 | 2.91 | 4800 | 0.3054 | 0.4890 | 0.6712 | 0.9206 | nan | 0.4508 | 0.8940 | 0.0 | 0.8947 | 0.8176 | 0.9704 | 0.0 | 0.3112 | 0.7901 | 0.0 | 0.8020 | 0.5527 | 0.9672 |
| 0.2884 | 2.92 | 4820 | 0.3072 | 0.4896 | 0.6770 | 0.9201 | nan | 0.4773 | 0.8843 | 0.0 | 0.8932 | 0.8372 | 0.9703 | 0.0 | 0.3251 | 0.7914 | 0.0 | 0.7997 | 0.5440 | 0.9673 |
| 0.6886 | 2.94 | 4840 | 0.3077 | 0.4936 | 0.6643 | 0.9225 | nan | 0.4469 | 0.8662 | 0.0 | 0.9228 | 0.7796 | 0.9704 | 0.0 | 0.3339 | 0.7868 | 0.0 | 0.8057 | 0.5614 | 0.9676 |
| 0.3344 | 2.95 | 4860 | 0.3017 | 0.4943 | 0.6733 | 0.9225 | nan | 0.4660 | 0.8746 | 0.0 | 0.9098 | 0.8184 | 0.9711 | 0.0 | 0.3488 | 0.7900 | 0.0 | 0.8032 | 0.5498 | 0.9681 |
| 0.1385 | 2.96 | 4880 | 0.3149 | 0.4846 | 0.6688 | 0.9180 | nan | 0.4436 | 0.8811 | 0.0000 | 0.8905 | 0.8288 | 0.9692 | 0.0 | 0.2956 | 0.7873 | 0.0000 | 0.7986 | 0.5441 | 0.9667 |
| 0.559 | 2.97 | 4900 | 0.3012 | 0.4827 | 0.6598 | 0.9172 | nan | 0.4204 | 0.8584 | 0.0000 | 0.8997 | 0.8108 | 0.9693 | 0.0 | 0.2854 | 0.7789 | 0.0000 | 0.7992 | 0.5489 | 0.9666 |
| 0.0576 | 2.98 | 4920 | 0.3116 | 0.4880 | 0.6794 | 0.9200 | nan | 0.4841 | 0.8852 | 0.0 | 0.8866 | 0.8489 | 0.9714 | 0.0 | 0.3229 | 0.7898 | 0.0 | 0.7986 | 0.5372 | 0.9678 |
| 0.1294 | 3.0 | 4940 | 0.3304 | 0.4794 | 0.6650 | 0.9144 | nan | 0.4315 | 0.8895 | 0.0 | 0.8740 | 0.8271 | 0.9678 | 0.0 | 0.2745 | 0.7784 | 0.0 | 0.7930 | 0.5438 | 0.9658 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
| [
"water",
"whitewater",
"sediment",
"other_natural_terrain",
"vegetation",
"development",
"unknown"
] |
Aassemtkt/segformer-b0-finetuned-drugs-in-bins-nov-23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-drugs-in-bins-nov-23
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the Aassemtkt/v0.1 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"unlabeled",
"drug-blister"
] |
Aassemtkt/segformer-b3-finetuned-drugs-in-bins-nov-23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b3-finetuned-drugs-in-bins-nov-23
This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the Aassemtkt/v0.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0494
- Mean Iou: 0.4900
- Mean Accuracy: 0.9799
- Overall Accuracy: 0.9799
- Accuracy Unlabeled: nan
- Accuracy Drug-blister: 0.9799
- Iou Unlabeled: 0.0
- Iou Drug-blister: 0.9799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Drug-blister | Iou Unlabeled | Iou Drug-blister |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------------:|:-------------:|:----------------:|
| 0.4816 | 0.14 | 20 | 0.2387 | 0.4744 | 0.9488 | 0.9488 | nan | 0.9488 | 0.0 | 0.9488 |
| 0.1071 | 0.29 | 40 | 0.0969 | 0.4766 | 0.9532 | 0.9532 | nan | 0.9532 | 0.0 | 0.9532 |
| 0.102 | 0.43 | 60 | 0.0701 | 0.4799 | 0.9599 | 0.9599 | nan | 0.9599 | 0.0 | 0.9599 |
| 0.0828 | 0.58 | 80 | 0.0748 | 0.4865 | 0.9731 | 0.9731 | nan | 0.9731 | 0.0 | 0.9731 |
| 0.2944 | 0.72 | 100 | 0.0517 | 0.4816 | 0.9633 | 0.9633 | nan | 0.9633 | 0.0 | 0.9633 |
| 0.0308 | 0.86 | 120 | 0.0493 | 0.4854 | 0.9709 | 0.9709 | nan | 0.9709 | 0.0 | 0.9709 |
| 0.0247 | 1.01 | 140 | 0.0488 | 0.4853 | 0.9706 | 0.9706 | nan | 0.9706 | 0.0 | 0.9706 |
| 0.0194 | 1.15 | 160 | 0.0447 | 0.4864 | 0.9728 | 0.9728 | nan | 0.9728 | 0.0 | 0.9728 |
| 0.1873 | 1.29 | 180 | 0.0496 | 0.4789 | 0.9579 | 0.9579 | nan | 0.9579 | 0.0 | 0.9579 |
| 0.0984 | 1.44 | 200 | 0.0442 | 0.4838 | 0.9676 | 0.9676 | nan | 0.9676 | 0.0 | 0.9676 |
| 0.4066 | 1.58 | 220 | 0.0384 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0197 | 1.73 | 240 | 0.0567 | 0.4809 | 0.9619 | 0.9619 | nan | 0.9619 | 0.0 | 0.9619 |
| 0.068 | 1.87 | 260 | 0.0389 | 0.4849 | 0.9698 | 0.9698 | nan | 0.9698 | 0.0 | 0.9698 |
| 0.029 | 2.01 | 280 | 0.0351 | 0.4853 | 0.9706 | 0.9706 | nan | 0.9706 | 0.0 | 0.9706 |
| 0.016 | 2.16 | 300 | 0.0373 | 0.4821 | 0.9642 | 0.9642 | nan | 0.9642 | 0.0 | 0.9642 |
| 0.0146 | 2.3 | 320 | 0.0367 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0123 | 2.45 | 340 | 0.0388 | 0.4872 | 0.9745 | 0.9745 | nan | 0.9745 | 0.0 | 0.9745 |
| 0.1359 | 2.59 | 360 | 0.0360 | 0.4858 | 0.9715 | 0.9715 | nan | 0.9715 | 0.0 | 0.9715 |
| 0.0142 | 2.73 | 380 | 0.0337 | 0.4882 | 0.9765 | 0.9765 | nan | 0.9765 | 0.0 | 0.9765 |
| 0.012 | 2.88 | 400 | 0.0357 | 0.4865 | 0.9731 | 0.9731 | nan | 0.9731 | 0.0 | 0.9731 |
| 0.0101 | 3.02 | 420 | 0.0370 | 0.4864 | 0.9728 | 0.9728 | nan | 0.9728 | 0.0 | 0.9728 |
| 0.0098 | 3.17 | 440 | 0.0361 | 0.4870 | 0.9740 | 0.9740 | nan | 0.9740 | 0.0 | 0.9740 |
| 0.0226 | 3.31 | 460 | 0.0349 | 0.4895 | 0.9791 | 0.9791 | nan | 0.9791 | 0.0 | 0.9791 |
| 0.0157 | 3.45 | 480 | 0.0362 | 0.4856 | 0.9712 | 0.9712 | nan | 0.9712 | 0.0 | 0.9712 |
| 0.0145 | 3.6 | 500 | 0.0468 | 0.4816 | 0.9632 | 0.9632 | nan | 0.9632 | 0.0 | 0.9632 |
| 0.1801 | 3.74 | 520 | 0.0324 | 0.4906 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0129 | 3.88 | 540 | 0.0314 | 0.4910 | 0.9820 | 0.9820 | nan | 0.9820 | 0.0 | 0.9820 |
| 0.0159 | 4.03 | 560 | 0.0310 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0132 | 4.17 | 580 | 0.0321 | 0.4901 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0126 | 4.32 | 600 | 0.0329 | 0.4874 | 0.9747 | 0.9747 | nan | 0.9747 | 0.0 | 0.9747 |
| 0.0156 | 4.46 | 620 | 0.0381 | 0.4876 | 0.9751 | 0.9751 | nan | 0.9751 | 0.0 | 0.9751 |
| 0.0147 | 4.6 | 640 | 0.0322 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0174 | 4.75 | 660 | 0.0344 | 0.4886 | 0.9772 | 0.9772 | nan | 0.9772 | 0.0 | 0.9772 |
| 0.1191 | 4.89 | 680 | 0.0378 | 0.4863 | 0.9726 | 0.9726 | nan | 0.9726 | 0.0 | 0.9726 |
| 0.0117 | 5.04 | 700 | 0.0386 | 0.4873 | 0.9745 | 0.9745 | nan | 0.9745 | 0.0 | 0.9745 |
| 0.0193 | 5.18 | 720 | 0.0361 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
| 0.0214 | 5.32 | 740 | 0.0360 | 0.4886 | 0.9772 | 0.9772 | nan | 0.9772 | 0.0 | 0.9772 |
| 0.0184 | 5.47 | 760 | 0.0322 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0262 | 5.61 | 780 | 0.0357 | 0.4907 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 | 0.9813 |
| 0.0115 | 5.76 | 800 | 0.0386 | 0.4887 | 0.9774 | 0.9774 | nan | 0.9774 | 0.0 | 0.9774 |
| 0.0145 | 5.9 | 820 | 0.0394 | 0.4879 | 0.9759 | 0.9759 | nan | 0.9759 | 0.0 | 0.9759 |
| 0.0097 | 6.04 | 840 | 0.0322 | 0.4889 | 0.9777 | 0.9777 | nan | 0.9777 | 0.0 | 0.9777 |
| 0.0101 | 6.19 | 860 | 0.0313 | 0.4895 | 0.9790 | 0.9790 | nan | 0.9790 | 0.0 | 0.9790 |
| 0.0099 | 6.33 | 880 | 0.0336 | 0.4876 | 0.9751 | 0.9751 | nan | 0.9751 | 0.0 | 0.9751 |
| 0.0092 | 6.47 | 900 | 0.0342 | 0.4894 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0087 | 6.62 | 920 | 0.0352 | 0.4913 | 0.9825 | 0.9825 | nan | 0.9825 | 0.0 | 0.9825 |
| 0.019 | 6.76 | 940 | 0.0516 | 0.4871 | 0.9742 | 0.9742 | nan | 0.9742 | 0.0 | 0.9742 |
| 0.0104 | 6.91 | 960 | 0.0364 | 0.4877 | 0.9754 | 0.9754 | nan | 0.9754 | 0.0 | 0.9754 |
| 0.0079 | 7.05 | 980 | 0.0300 | 0.4912 | 0.9824 | 0.9824 | nan | 0.9824 | 0.0 | 0.9824 |
| 0.0107 | 7.19 | 1000 | 0.0327 | 0.4939 | 0.9878 | 0.9878 | nan | 0.9878 | 0.0 | 0.9878 |
| 0.0097 | 7.34 | 1020 | 0.0294 | 0.4896 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 | 0.9793 |
| 0.0359 | 7.48 | 1040 | 0.0321 | 0.4908 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 | 0.9817 |
| 0.0674 | 7.63 | 1060 | 0.0321 | 0.4916 | 0.9832 | 0.9832 | nan | 0.9832 | 0.0 | 0.9832 |
| 0.1484 | 7.77 | 1080 | 0.0428 | 0.4868 | 0.9737 | 0.9737 | nan | 0.9737 | 0.0 | 0.9737 |
| 0.188 | 7.91 | 1100 | 0.0338 | 0.4945 | 0.9890 | 0.9890 | nan | 0.9890 | 0.0 | 0.9890 |
| 0.0124 | 8.06 | 1120 | 0.0345 | 0.4873 | 0.9746 | 0.9746 | nan | 0.9746 | 0.0 | 0.9746 |
| 0.011 | 8.2 | 1140 | 0.0350 | 0.4913 | 0.9827 | 0.9827 | nan | 0.9827 | 0.0 | 0.9827 |
| 0.0076 | 8.35 | 1160 | 0.0373 | 0.4884 | 0.9767 | 0.9767 | nan | 0.9767 | 0.0 | 0.9767 |
| 0.0074 | 8.49 | 1180 | 0.0378 | 0.4931 | 0.9862 | 0.9862 | nan | 0.9862 | 0.0 | 0.9862 |
| 0.0757 | 8.63 | 1200 | 0.0364 | 0.4880 | 0.9761 | 0.9761 | nan | 0.9761 | 0.0 | 0.9761 |
| 0.0276 | 8.78 | 1220 | 0.0297 | 0.4906 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 | 0.9813 |
| 0.0072 | 8.92 | 1240 | 0.0308 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0061 | 9.06 | 1260 | 0.0308 | 0.4912 | 0.9825 | 0.9825 | nan | 0.9825 | 0.0 | 0.9825 |
| 0.0063 | 9.21 | 1280 | 0.0323 | 0.4894 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0088 | 9.35 | 1300 | 0.0308 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0129 | 9.5 | 1320 | 0.0295 | 0.4911 | 0.9823 | 0.9823 | nan | 0.9823 | 0.0 | 0.9823 |
| 0.0277 | 9.64 | 1340 | 0.0388 | 0.4876 | 0.9751 | 0.9751 | nan | 0.9751 | 0.0 | 0.9751 |
| 0.0115 | 9.78 | 1360 | 0.0345 | 0.4894 | 0.9787 | 0.9787 | nan | 0.9787 | 0.0 | 0.9787 |
| 0.0129 | 9.93 | 1380 | 0.0394 | 0.4879 | 0.9758 | 0.9758 | nan | 0.9758 | 0.0 | 0.9758 |
| 0.0092 | 10.07 | 1400 | 0.0335 | 0.4916 | 0.9832 | 0.9832 | nan | 0.9832 | 0.0 | 0.9832 |
| 0.0107 | 10.22 | 1420 | 0.0348 | 0.4898 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0072 | 10.36 | 1440 | 0.0334 | 0.4898 | 0.9796 | 0.9796 | nan | 0.9796 | 0.0 | 0.9796 |
| 0.0081 | 10.5 | 1460 | 0.0409 | 0.4886 | 0.9772 | 0.9772 | nan | 0.9772 | 0.0 | 0.9772 |
| 0.0158 | 10.65 | 1480 | 0.0337 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0058 | 10.79 | 1500 | 0.0364 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 |
| 0.0102 | 10.94 | 1520 | 0.0354 | 0.4916 | 0.9832 | 0.9832 | nan | 0.9832 | 0.0 | 0.9832 |
| 0.0098 | 11.08 | 1540 | 0.0515 | 0.4863 | 0.9726 | 0.9726 | nan | 0.9726 | 0.0 | 0.9726 |
| 0.0063 | 11.22 | 1560 | 0.0337 | 0.4882 | 0.9763 | 0.9763 | nan | 0.9763 | 0.0 | 0.9763 |
| 0.0151 | 11.37 | 1580 | 0.0313 | 0.4905 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0197 | 11.51 | 1600 | 0.0384 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
| 0.0093 | 11.65 | 1620 | 0.0328 | 0.4910 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
| 0.2493 | 11.8 | 1640 | 0.0413 | 0.4880 | 0.9759 | 0.9759 | nan | 0.9759 | 0.0 | 0.9759 |
| 0.0133 | 11.94 | 1660 | 0.0385 | 0.4877 | 0.9754 | 0.9754 | nan | 0.9754 | 0.0 | 0.9754 |
| 0.0484 | 12.09 | 1680 | 0.0364 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
| 0.0074 | 12.23 | 1700 | 0.0334 | 0.4912 | 0.9824 | 0.9824 | nan | 0.9824 | 0.0 | 0.9824 |
| 0.0202 | 12.37 | 1720 | 0.0409 | 0.4876 | 0.9752 | 0.9752 | nan | 0.9752 | 0.0 | 0.9752 |
| 0.006 | 12.52 | 1740 | 0.0540 | 0.4860 | 0.9719 | 0.9719 | nan | 0.9719 | 0.0 | 0.9719 |
| 0.0059 | 12.66 | 1760 | 0.0601 | 0.4857 | 0.9714 | 0.9714 | nan | 0.9714 | 0.0 | 0.9714 |
| 0.0083 | 12.81 | 1780 | 0.0348 | 0.4903 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.011 | 12.95 | 1800 | 0.0402 | 0.4885 | 0.9770 | 0.9770 | nan | 0.9770 | 0.0 | 0.9770 |
| 0.045 | 13.09 | 1820 | 0.0322 | 0.4911 | 0.9822 | 0.9822 | nan | 0.9822 | 0.0 | 0.9822 |
| 0.043 | 13.24 | 1840 | 0.0331 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0061 | 13.38 | 1860 | 0.0314 | 0.4913 | 0.9826 | 0.9826 | nan | 0.9826 | 0.0 | 0.9826 |
| 0.0062 | 13.53 | 1880 | 0.0358 | 0.4890 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
| 0.0087 | 13.67 | 1900 | 0.0334 | 0.4895 | 0.9790 | 0.9790 | nan | 0.9790 | 0.0 | 0.9790 |
| 0.0106 | 13.81 | 1920 | 0.0341 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0554 | 13.96 | 1940 | 0.0359 | 0.4881 | 0.9762 | 0.9762 | nan | 0.9762 | 0.0 | 0.9762 |
| 0.009 | 14.1 | 1960 | 0.0424 | 0.4865 | 0.9731 | 0.9731 | nan | 0.9731 | 0.0 | 0.9731 |
| 0.0078 | 14.24 | 1980 | 0.0329 | 0.4885 | 0.9770 | 0.9770 | nan | 0.9770 | 0.0 | 0.9770 |
| 0.012 | 14.39 | 2000 | 0.0346 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0064 | 14.53 | 2020 | 0.0362 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
| 0.0345 | 14.68 | 2040 | 0.0309 | 0.4919 | 0.9838 | 0.9838 | nan | 0.9838 | 0.0 | 0.9838 |
| 0.0075 | 14.82 | 2060 | 0.0389 | 0.4884 | 0.9768 | 0.9768 | nan | 0.9768 | 0.0 | 0.9768 |
| 0.0066 | 14.96 | 2080 | 0.0337 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 |
| 0.0081 | 15.11 | 2100 | 0.0365 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0071 | 15.25 | 2120 | 0.0349 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0054 | 15.4 | 2140 | 0.0388 | 0.4885 | 0.9769 | 0.9769 | nan | 0.9769 | 0.0 | 0.9769 |
| 0.4004 | 15.54 | 2160 | 0.0339 | 0.4909 | 0.9819 | 0.9819 | nan | 0.9819 | 0.0 | 0.9819 |
| 0.008 | 15.68 | 2180 | 0.0422 | 0.4896 | 0.9791 | 0.9791 | nan | 0.9791 | 0.0 | 0.9791 |
| 0.0365 | 15.83 | 2200 | 0.0468 | 0.4887 | 0.9774 | 0.9774 | nan | 0.9774 | 0.0 | 0.9774 |
| 0.0067 | 15.97 | 2220 | 0.0416 | 0.4890 | 0.9780 | 0.9780 | nan | 0.9780 | 0.0 | 0.9780 |
| 0.0079 | 16.12 | 2240 | 0.0377 | 0.4908 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 | 0.9817 |
| 0.0075 | 16.26 | 2260 | 0.0420 | 0.4889 | 0.9779 | 0.9779 | nan | 0.9779 | 0.0 | 0.9779 |
| 0.0063 | 16.4 | 2280 | 0.0422 | 0.4889 | 0.9777 | 0.9777 | nan | 0.9777 | 0.0 | 0.9777 |
| 0.0062 | 16.55 | 2300 | 0.0338 | 0.4912 | 0.9825 | 0.9825 | nan | 0.9825 | 0.0 | 0.9825 |
| 0.0413 | 16.69 | 2320 | 0.0345 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0411 | 16.83 | 2340 | 0.0387 | 0.4891 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
| 0.0548 | 16.98 | 2360 | 0.0333 | 0.4936 | 0.9872 | 0.9872 | nan | 0.9872 | 0.0 | 0.9872 |
| 0.0431 | 17.12 | 2380 | 0.0352 | 0.4887 | 0.9773 | 0.9773 | nan | 0.9773 | 0.0 | 0.9773 |
| 0.0069 | 17.27 | 2400 | 0.0327 | 0.4907 | 0.9814 | 0.9814 | nan | 0.9814 | 0.0 | 0.9814 |
| 0.0059 | 17.41 | 2420 | 0.0406 | 0.4881 | 0.9763 | 0.9763 | nan | 0.9763 | 0.0 | 0.9763 |
| 0.0062 | 17.55 | 2440 | 0.0434 | 0.4875 | 0.9750 | 0.9750 | nan | 0.9750 | 0.0 | 0.9750 |
| 0.0064 | 17.7 | 2460 | 0.0350 | 0.4910 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
| 0.0077 | 17.84 | 2480 | 0.0390 | 0.4894 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 | 0.9788 |
| 0.0061 | 17.99 | 2500 | 0.0395 | 0.4906 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 | 0.9813 |
| 0.0073 | 18.13 | 2520 | 0.0370 | 0.4911 | 0.9822 | 0.9822 | nan | 0.9822 | 0.0 | 0.9822 |
| 0.0038 | 18.27 | 2540 | 0.0383 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
| 0.0066 | 18.42 | 2560 | 0.0394 | 0.4888 | 0.9776 | 0.9776 | nan | 0.9776 | 0.0 | 0.9776 |
| 0.0232 | 18.56 | 2580 | 0.0384 | 0.4891 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
| 0.0066 | 18.71 | 2600 | 0.0408 | 0.4887 | 0.9773 | 0.9773 | nan | 0.9773 | 0.0 | 0.9773 |
| 0.0355 | 18.85 | 2620 | 0.0367 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0048 | 18.99 | 2640 | 0.0366 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
| 0.0083 | 19.14 | 2660 | 0.0422 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0215 | 19.28 | 2680 | 0.0376 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0315 | 19.42 | 2700 | 0.0370 | 0.4905 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0061 | 19.57 | 2720 | 0.0380 | 0.4909 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 | 0.9817 |
| 0.0048 | 19.71 | 2740 | 0.0371 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0058 | 19.86 | 2760 | 0.0389 | 0.4892 | 0.9785 | 0.9785 | nan | 0.9785 | 0.0 | 0.9785 |
| 0.01 | 20.0 | 2780 | 0.0354 | 0.4912 | 0.9824 | 0.9824 | nan | 0.9824 | 0.0 | 0.9824 |
| 0.0051 | 20.14 | 2800 | 0.0380 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0053 | 20.29 | 2820 | 0.0426 | 0.4889 | 0.9779 | 0.9779 | nan | 0.9779 | 0.0 | 0.9779 |
| 0.0062 | 20.43 | 2840 | 0.0359 | 0.4913 | 0.9827 | 0.9827 | nan | 0.9827 | 0.0 | 0.9827 |
| 0.0573 | 20.58 | 2860 | 0.0370 | 0.4909 | 0.9819 | 0.9819 | nan | 0.9819 | 0.0 | 0.9819 |
| 0.0087 | 20.72 | 2880 | 0.0418 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0144 | 20.86 | 2900 | 0.0398 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0157 | 21.01 | 2920 | 0.0463 | 0.4895 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0063 | 21.15 | 2940 | 0.0357 | 0.4905 | 0.9809 | 0.9809 | nan | 0.9809 | 0.0 | 0.9809 |
| 0.0079 | 21.29 | 2960 | 0.0339 | 0.4928 | 0.9856 | 0.9856 | nan | 0.9856 | 0.0 | 0.9856 |
| 0.0052 | 21.44 | 2980 | 0.0419 | 0.4888 | 0.9775 | 0.9775 | nan | 0.9775 | 0.0 | 0.9775 |
| 0.0068 | 21.58 | 3000 | 0.0370 | 0.4896 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 | 0.9793 |
| 0.0109 | 21.73 | 3020 | 0.0350 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0048 | 21.87 | 3040 | 0.0353 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0053 | 22.01 | 3060 | 0.0369 | 0.4911 | 0.9823 | 0.9823 | nan | 0.9823 | 0.0 | 0.9823 |
| 0.006 | 22.16 | 3080 | 0.0339 | 0.4911 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
| 0.0336 | 22.3 | 3100 | 0.0339 | 0.4914 | 0.9828 | 0.9828 | nan | 0.9828 | 0.0 | 0.9828 |
| 0.0222 | 22.45 | 3120 | 0.0513 | 0.4882 | 0.9764 | 0.9764 | nan | 0.9764 | 0.0 | 0.9764 |
| 0.0072 | 22.59 | 3140 | 0.0328 | 0.4920 | 0.9840 | 0.9840 | nan | 0.9840 | 0.0 | 0.9840 |
| 0.0046 | 22.73 | 3160 | 0.0334 | 0.4907 | 0.9815 | 0.9815 | nan | 0.9815 | 0.0 | 0.9815 |
| 0.0039 | 22.88 | 3180 | 0.0352 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0059 | 23.02 | 3200 | 0.0359 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0049 | 23.17 | 3220 | 0.0425 | 0.4881 | 0.9762 | 0.9762 | nan | 0.9762 | 0.0 | 0.9762 |
| 0.0244 | 23.31 | 3240 | 0.0351 | 0.4898 | 0.9796 | 0.9796 | nan | 0.9796 | 0.0 | 0.9796 |
| 0.0047 | 23.45 | 3260 | 0.0339 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0074 | 23.6 | 3280 | 0.0382 | 0.4900 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0062 | 23.74 | 3300 | 0.0366 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0339 | 23.88 | 3320 | 0.0378 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.005 | 24.03 | 3340 | 0.0395 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0038 | 24.17 | 3360 | 0.0455 | 0.4887 | 0.9773 | 0.9773 | nan | 0.9773 | 0.0 | 0.9773 |
| 0.008 | 24.32 | 3380 | 0.0389 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0071 | 24.46 | 3400 | 0.0367 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
| 0.0308 | 24.6 | 3420 | 0.0390 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0062 | 24.75 | 3440 | 0.0368 | 0.4918 | 0.9837 | 0.9837 | nan | 0.9837 | 0.0 | 0.9837 |
| 0.0062 | 24.89 | 3460 | 0.0378 | 0.4911 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
| 0.006 | 25.04 | 3480 | 0.0413 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0057 | 25.18 | 3500 | 0.0383 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0149 | 25.32 | 3520 | 0.0367 | 0.4911 | 0.9822 | 0.9822 | nan | 0.9822 | 0.0 | 0.9822 |
| 0.0185 | 25.47 | 3540 | 0.0409 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0057 | 25.61 | 3560 | 0.0390 | 0.4897 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.005 | 25.76 | 3580 | 0.0383 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0109 | 25.9 | 3600 | 0.0379 | 0.4909 | 0.9819 | 0.9819 | nan | 0.9819 | 0.0 | 0.9819 |
| 0.0055 | 26.04 | 3620 | 0.0471 | 0.4883 | 0.9767 | 0.9767 | nan | 0.9767 | 0.0 | 0.9767 |
| 0.042 | 26.19 | 3640 | 0.0481 | 0.4877 | 0.9755 | 0.9755 | nan | 0.9755 | 0.0 | 0.9755 |
| 0.0226 | 26.33 | 3660 | 0.0383 | 0.4905 | 0.9809 | 0.9809 | nan | 0.9809 | 0.0 | 0.9809 |
| 0.0143 | 26.47 | 3680 | 0.0402 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.008 | 26.62 | 3700 | 0.0381 | 0.4908 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 | 0.9817 |
| 0.0241 | 26.76 | 3720 | 0.0411 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0055 | 26.91 | 3740 | 0.0386 | 0.4910 | 0.9820 | 0.9820 | nan | 0.9820 | 0.0 | 0.9820 |
| 0.0109 | 27.05 | 3760 | 0.0376 | 0.4913 | 0.9826 | 0.9826 | nan | 0.9826 | 0.0 | 0.9826 |
| 0.0072 | 27.19 | 3780 | 0.0457 | 0.4890 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
| 0.0048 | 27.34 | 3800 | 0.0512 | 0.4882 | 0.9764 | 0.9764 | nan | 0.9764 | 0.0 | 0.9764 |
| 0.006 | 27.48 | 3820 | 0.0430 | 0.4891 | 0.9783 | 0.9783 | nan | 0.9783 | 0.0 | 0.9783 |
| 0.0161 | 27.63 | 3840 | 0.0404 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0169 | 27.77 | 3860 | 0.0386 | 0.4903 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0041 | 27.91 | 3880 | 0.0375 | 0.4917 | 0.9835 | 0.9835 | nan | 0.9835 | 0.0 | 0.9835 |
| 0.0068 | 28.06 | 3900 | 0.0381 | 0.4917 | 0.9834 | 0.9834 | nan | 0.9834 | 0.0 | 0.9834 |
| 0.0122 | 28.2 | 3920 | 0.0463 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
| 0.0055 | 28.35 | 3940 | 0.0456 | 0.4887 | 0.9774 | 0.9774 | nan | 0.9774 | 0.0 | 0.9774 |
| 0.0048 | 28.49 | 3960 | 0.0398 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0126 | 28.63 | 3980 | 0.0401 | 0.4917 | 0.9834 | 0.9834 | nan | 0.9834 | 0.0 | 0.9834 |
| 0.0134 | 28.78 | 4000 | 0.0404 | 0.4910 | 0.9820 | 0.9820 | nan | 0.9820 | 0.0 | 0.9820 |
| 0.0109 | 28.92 | 4020 | 0.0414 | 0.4894 | 0.9787 | 0.9787 | nan | 0.9787 | 0.0 | 0.9787 |
| 0.0479 | 29.06 | 4040 | 0.0409 | 0.4897 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0061 | 29.21 | 4060 | 0.0422 | 0.4895 | 0.9790 | 0.9790 | nan | 0.9790 | 0.0 | 0.9790 |
| 0.0278 | 29.35 | 4080 | 0.0416 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0049 | 29.5 | 4100 | 0.0400 | 0.4910 | 0.9820 | 0.9820 | nan | 0.9820 | 0.0 | 0.9820 |
| 0.0438 | 29.64 | 4120 | 0.0390 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0041 | 29.78 | 4140 | 0.0425 | 0.4897 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0078 | 29.93 | 4160 | 0.0411 | 0.4907 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 | 0.9813 |
| 0.0057 | 30.07 | 4180 | 0.0375 | 0.4916 | 0.9832 | 0.9832 | nan | 0.9832 | 0.0 | 0.9832 |
| 0.0053 | 30.22 | 4200 | 0.0423 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0133 | 30.36 | 4220 | 0.0429 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0045 | 30.5 | 4240 | 0.0454 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0044 | 30.65 | 4260 | 0.0415 | 0.4901 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.006 | 30.79 | 4280 | 0.0420 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0043 | 30.94 | 4300 | 0.0428 | 0.4899 | 0.9797 | 0.9797 | nan | 0.9797 | 0.0 | 0.9797 |
| 0.017 | 31.08 | 4320 | 0.0421 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0043 | 31.22 | 4340 | 0.0400 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0061 | 31.37 | 4360 | 0.0383 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0378 | 31.51 | 4380 | 0.0371 | 0.4913 | 0.9826 | 0.9826 | nan | 0.9826 | 0.0 | 0.9826 |
| 0.0052 | 31.65 | 4400 | 0.0382 | 0.4903 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0046 | 31.8 | 4420 | 0.0398 | 0.4905 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0076 | 31.94 | 4440 | 0.0400 | 0.4904 | 0.9809 | 0.9809 | nan | 0.9809 | 0.0 | 0.9809 |
| 0.0062 | 32.09 | 4460 | 0.0396 | 0.4900 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0152 | 32.23 | 4480 | 0.0399 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0044 | 32.37 | 4500 | 0.0426 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0104 | 32.52 | 4520 | 0.0431 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0041 | 32.66 | 4540 | 0.0458 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0084 | 32.81 | 4560 | 0.0457 | 0.4896 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 | 0.9793 |
| 0.0046 | 32.95 | 4580 | 0.0465 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0038 | 33.09 | 4600 | 0.0422 | 0.4907 | 0.9815 | 0.9815 | nan | 0.9815 | 0.0 | 0.9815 |
| 0.0039 | 33.24 | 4620 | 0.0410 | 0.4912 | 0.9824 | 0.9824 | nan | 0.9824 | 0.0 | 0.9824 |
| 0.004 | 33.38 | 4640 | 0.0427 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.006 | 33.53 | 4660 | 0.0458 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0039 | 33.67 | 4680 | 0.0484 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
| 0.0065 | 33.81 | 4700 | 0.0516 | 0.4894 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0065 | 33.96 | 4720 | 0.0525 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
| 0.0041 | 34.1 | 4740 | 0.0462 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0031 | 34.24 | 4760 | 0.0458 | 0.4909 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 | 0.9817 |
| 0.0039 | 34.39 | 4780 | 0.0493 | 0.4895 | 0.9791 | 0.9791 | nan | 0.9791 | 0.0 | 0.9791 |
| 0.0125 | 34.53 | 4800 | 0.0467 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0038 | 34.68 | 4820 | 0.0456 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0043 | 34.82 | 4840 | 0.0484 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0098 | 34.96 | 4860 | 0.0460 | 0.4905 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.004 | 35.11 | 4880 | 0.0475 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0087 | 35.25 | 4900 | 0.0460 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0093 | 35.4 | 4920 | 0.0455 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0052 | 35.54 | 4940 | 0.0500 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0045 | 35.68 | 4960 | 0.0482 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0036 | 35.83 | 4980 | 0.0443 | 0.4906 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0034 | 35.97 | 5000 | 0.0426 | 0.4911 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
| 0.0041 | 36.12 | 5020 | 0.0415 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
| 0.0043 | 36.26 | 5040 | 0.0450 | 0.4903 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.007 | 36.4 | 5060 | 0.0467 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.006 | 36.55 | 5080 | 0.0463 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.006 | 36.69 | 5100 | 0.0468 | 0.4898 | 0.9796 | 0.9796 | nan | 0.9796 | 0.0 | 0.9796 |
| 0.0043 | 36.83 | 5120 | 0.0428 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0073 | 36.98 | 5140 | 0.0417 | 0.4905 | 0.9809 | 0.9809 | nan | 0.9809 | 0.0 | 0.9809 |
| 0.0188 | 37.12 | 5160 | 0.0418 | 0.4908 | 0.9815 | 0.9815 | nan | 0.9815 | 0.0 | 0.9815 |
| 0.0052 | 37.27 | 5180 | 0.0450 | 0.4907 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 | 0.9813 |
| 0.0089 | 37.41 | 5200 | 0.0476 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0041 | 37.55 | 5220 | 0.0505 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0062 | 37.7 | 5240 | 0.0478 | 0.4895 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0035 | 37.84 | 5260 | 0.0463 | 0.4903 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0163 | 37.99 | 5280 | 0.0453 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0054 | 38.13 | 5300 | 0.0462 | 0.4895 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0132 | 38.27 | 5320 | 0.0481 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 |
| 0.0056 | 38.42 | 5340 | 0.0460 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
| 0.0054 | 38.56 | 5360 | 0.0449 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0037 | 38.71 | 5380 | 0.0432 | 0.4911 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
| 0.0049 | 38.85 | 5400 | 0.0449 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
| 0.0044 | 38.99 | 5420 | 0.0448 | 0.4907 | 0.9814 | 0.9814 | nan | 0.9814 | 0.0 | 0.9814 |
| 0.0037 | 39.14 | 5440 | 0.0462 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0079 | 39.28 | 5460 | 0.0490 | 0.4895 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
| 0.0033 | 39.42 | 5480 | 0.0494 | 0.4895 | 0.9790 | 0.9790 | nan | 0.9790 | 0.0 | 0.9790 |
| 0.0066 | 39.57 | 5500 | 0.0458 | 0.4897 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 | 0.9794 |
| 0.0053 | 39.71 | 5520 | 0.0482 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0044 | 39.86 | 5540 | 0.0483 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
| 0.0044 | 40.0 | 5560 | 0.0497 | 0.4897 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0062 | 40.14 | 5580 | 0.0476 | 0.4894 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 | 0.9788 |
| 0.0047 | 40.29 | 5600 | 0.0467 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.006 | 40.43 | 5620 | 0.0444 | 0.4898 | 0.9796 | 0.9796 | nan | 0.9796 | 0.0 | 0.9796 |
| 0.0041 | 40.58 | 5640 | 0.0459 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0098 | 40.72 | 5660 | 0.0447 | 0.4903 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0026 | 40.86 | 5680 | 0.0439 | 0.4907 | 0.9814 | 0.9814 | nan | 0.9814 | 0.0 | 0.9814 |
| 0.0043 | 41.01 | 5700 | 0.0466 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0044 | 41.15 | 5720 | 0.0444 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0041 | 41.29 | 5740 | 0.0452 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0043 | 41.44 | 5760 | 0.0468 | 0.4900 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0071 | 41.58 | 5780 | 0.0482 | 0.4897 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 | 0.9793 |
| 0.0187 | 41.73 | 5800 | 0.0463 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0034 | 41.87 | 5820 | 0.0456 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0238 | 42.01 | 5840 | 0.0450 | 0.4907 | 0.9814 | 0.9814 | nan | 0.9814 | 0.0 | 0.9814 |
| 0.0048 | 42.16 | 5860 | 0.0464 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0116 | 42.3 | 5880 | 0.0475 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0039 | 42.45 | 5900 | 0.0475 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0042 | 42.59 | 5920 | 0.0446 | 0.4905 | 0.9809 | 0.9809 | nan | 0.9809 | 0.0 | 0.9809 |
| 0.0069 | 42.73 | 5940 | 0.0441 | 0.4905 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0045 | 42.88 | 5960 | 0.0460 | 0.4905 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 | 0.9811 |
| 0.0038 | 43.02 | 5980 | 0.0501 | 0.4896 | 0.9791 | 0.9791 | nan | 0.9791 | 0.0 | 0.9791 |
| 0.0123 | 43.17 | 6000 | 0.0490 | 0.4898 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0079 | 43.31 | 6020 | 0.0471 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.004 | 43.45 | 6040 | 0.0453 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
| 0.0145 | 43.6 | 6060 | 0.0439 | 0.4910 | 0.9820 | 0.9820 | nan | 0.9820 | 0.0 | 0.9820 |
| 0.0038 | 43.74 | 6080 | 0.0466 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.004 | 43.88 | 6100 | 0.0467 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0044 | 44.03 | 6120 | 0.0480 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0193 | 44.17 | 6140 | 0.0458 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0036 | 44.32 | 6160 | 0.0470 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
| 0.0042 | 44.46 | 6180 | 0.0456 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0031 | 44.6 | 6200 | 0.0454 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0117 | 44.75 | 6220 | 0.0478 | 0.4901 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0036 | 44.89 | 6240 | 0.0482 | 0.4900 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0036 | 45.04 | 6260 | 0.0506 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0052 | 45.18 | 6280 | 0.0485 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0035 | 45.32 | 6300 | 0.0496 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0056 | 45.47 | 6320 | 0.0494 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0172 | 45.61 | 6340 | 0.0482 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0041 | 45.76 | 6360 | 0.0484 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0034 | 45.9 | 6380 | 0.0492 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0108 | 46.04 | 6400 | 0.0481 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0054 | 46.19 | 6420 | 0.0474 | 0.4905 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 | 0.9810 |
| 0.0102 | 46.33 | 6440 | 0.0483 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0036 | 46.47 | 6460 | 0.0493 | 0.4903 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0057 | 46.62 | 6480 | 0.0496 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.003 | 46.76 | 6500 | 0.0504 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0057 | 46.91 | 6520 | 0.0492 | 0.4901 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0048 | 47.05 | 6540 | 0.0524 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.004 | 47.19 | 6560 | 0.0500 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0218 | 47.34 | 6580 | 0.0502 | 0.4899 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 | 0.9798 |
| 0.0038 | 47.48 | 6600 | 0.0532 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
| 0.0029 | 47.63 | 6620 | 0.0496 | 0.4898 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0035 | 47.77 | 6640 | 0.0508 | 0.4898 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 | 0.9795 |
| 0.0049 | 47.91 | 6660 | 0.0501 | 0.4900 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0056 | 48.06 | 6680 | 0.0488 | 0.4907 | 0.9814 | 0.9814 | nan | 0.9814 | 0.0 | 0.9814 |
| 0.0182 | 48.2 | 6700 | 0.0482 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0056 | 48.35 | 6720 | 0.0494 | 0.4903 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0029 | 48.49 | 6740 | 0.0501 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0076 | 48.63 | 6760 | 0.0480 | 0.4901 | 0.9802 | 0.9802 | nan | 0.9802 | 0.0 | 0.9802 |
| 0.0042 | 48.78 | 6780 | 0.0514 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
| 0.0069 | 48.92 | 6800 | 0.0483 | 0.4901 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
| 0.0144 | 49.06 | 6820 | 0.0472 | 0.4903 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 | 0.9806 |
| 0.0041 | 49.21 | 6840 | 0.0491 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.0034 | 49.35 | 6860 | 0.0481 | 0.4902 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 | 0.9804 |
| 0.0117 | 49.5 | 6880 | 0.0482 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
| 0.0042 | 49.64 | 6900 | 0.0499 | 0.4899 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
| 0.0057 | 49.78 | 6920 | 0.0507 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
| 0.0183 | 49.93 | 6940 | 0.0494 | 0.4900 | 0.9799 | 0.9799 | nan | 0.9799 | 0.0 | 0.9799 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"unlabeled",
"drug-blister"
] |
gdurkin/segformer-b0-finetuned-segments-floods-S2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-floods-S2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the gdurkin/flood_dataset_S2 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu121
- Datasets 2.11.0
- Tokenizers 0.13.3
| [
"invalid",
"not water",
"water"
] |
peldrak/segformer-finetuned-coastal |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-coastal
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the peldrak/coastal3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7456
- Mean Iou: 0.0841
- Mean Accuracy: 0.1629
- Overall Accuracy: 0.3309
- Accuracy Water: 0.2728
- Accuracy Whitewater: 0.0
- Accuracy Sediment: 0.0194
- Accuracy Other Natural Terrain: 0.0
- Accuracy Vegetation: 0.7325
- Accuracy Development: 0.0055
- Accuracy Unknown: 0.1102
- Iou Water: 0.1767
- Iou Whitewater: 0.0
- Iou Sediment: 0.0157
- Iou Other Natural Terrain: 0.0
- Iou Vegetation: 0.3002
- Iou Development: 0.0052
- Iou Unknown: 0.0908
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|
| 1.8429 | 0.12 | 20 | 1.8742 | 0.0623 | 0.1432 | 0.2198 | 0.5172 | 0.0044 | 0.3137 | 0.0050 | 0.1165 | 0.0019 | 0.0435 | 0.2514 | 0.0037 | 0.0521 | 0.0034 | 0.0889 | 0.0019 | 0.0348 |
| 1.6623 | 0.25 | 40 | 1.8297 | 0.0731 | 0.1572 | 0.2536 | 0.4349 | 0.0007 | 0.3336 | 0.0010 | 0.3158 | 0.0011 | 0.0135 | 0.2462 | 0.0006 | 0.0569 | 0.0009 | 0.1940 | 0.0011 | 0.0120 |
| 1.6173 | 0.37 | 60 | 1.7856 | 0.0812 | 0.1585 | 0.3080 | 0.3151 | 0.0007 | 0.1179 | 0.0005 | 0.6339 | 0.0012 | 0.0405 | 0.2056 | 0.0007 | 0.0357 | 0.0005 | 0.2859 | 0.0012 | 0.0388 |
| 1.5078 | 0.49 | 80 | 1.7805 | 0.0764 | 0.1537 | 0.3038 | 0.2792 | 0.0 | 0.1036 | 0.0000 | 0.6639 | 0.0003 | 0.0290 | 0.1839 | 0.0 | 0.0338 | 0.0000 | 0.2895 | 0.0003 | 0.0274 |
| 1.3927 | 0.62 | 100 | 1.7549 | 0.0725 | 0.1521 | 0.3227 | 0.2589 | 0.0 | 0.0222 | 0.0001 | 0.7643 | 0.0005 | 0.0187 | 0.1703 | 0.0 | 0.0133 | 0.0001 | 0.3055 | 0.0005 | 0.0179 |
| 1.6024 | 0.74 | 120 | 1.7348 | 0.0835 | 0.1598 | 0.3271 | 0.3514 | 0.0 | 0.0204 | 0.0001 | 0.6538 | 0.0005 | 0.0926 | 0.2021 | 0.0 | 0.0147 | 0.0001 | 0.2873 | 0.0005 | 0.0796 |
| 1.3287 | 0.86 | 140 | 1.7352 | 0.0776 | 0.1556 | 0.3267 | 0.3309 | 0.0 | 0.0083 | 0.0 | 0.6910 | 0.0000 | 0.0591 | 0.1935 | 0.0 | 0.0076 | 0.0 | 0.2849 | 0.0000 | 0.0573 |
| 1.4153 | 0.99 | 160 | 1.7024 | 0.0746 | 0.1567 | 0.3356 | 0.2947 | 0.0 | 0.0011 | 0.0 | 0.7683 | 0.0006 | 0.0320 | 0.1879 | 0.0 | 0.0011 | 0.0 | 0.3021 | 0.0006 | 0.0309 |
| 1.3334 | 1.11 | 180 | 1.7262 | 0.0744 | 0.1567 | 0.3374 | 0.3130 | 0.0 | 0.0018 | 0.0 | 0.7620 | 0.0001 | 0.0203 | 0.1988 | 0.0 | 0.0017 | 0.0 | 0.3004 | 0.0001 | 0.0198 |
| 1.3956 | 1.23 | 200 | 1.7304 | 0.0858 | 0.1622 | 0.3326 | 0.4838 | 0.0 | 0.0127 | 0.0 | 0.5432 | 0.0015 | 0.0944 | 0.2373 | 0.0 | 0.0112 | 0.0 | 0.2731 | 0.0015 | 0.0777 |
| 1.5776 | 1.36 | 220 | 1.7300 | 0.0791 | 0.1622 | 0.3411 | 0.2581 | 0.0 | 0.0010 | 0.0 | 0.8012 | 0.0003 | 0.0748 | 0.1734 | 0.0 | 0.0010 | 0.0 | 0.3144 | 0.0003 | 0.0647 |
| 1.1656 | 1.48 | 240 | 1.7248 | 0.0831 | 0.1657 | 0.3440 | 0.2687 | 0.0 | 0.0026 | 0.0 | 0.7879 | 0.0014 | 0.0995 | 0.1775 | 0.0 | 0.0025 | 0.0 | 0.3183 | 0.0014 | 0.0822 |
| 1.4429 | 1.6 | 260 | 1.7308 | 0.0764 | 0.1616 | 0.3408 | 0.2091 | 0.0 | 0.0029 | 0.0 | 0.8518 | 0.0037 | 0.0637 | 0.1507 | 0.0 | 0.0028 | 0.0 | 0.3200 | 0.0036 | 0.0578 |
| 1.6649 | 1.73 | 280 | 1.7282 | 0.0743 | 0.1564 | 0.3372 | 0.3261 | 0.0 | 0.0033 | 0.0 | 0.7514 | 0.0015 | 0.0128 | 0.1994 | 0.0 | 0.0031 | 0.0 | 0.3037 | 0.0015 | 0.0125 |
| 1.3634 | 1.85 | 300 | 1.7216 | 0.0847 | 0.1653 | 0.3413 | 0.3196 | 0.0 | 0.0273 | 0.0 | 0.7402 | 0.0036 | 0.0665 | 0.2012 | 0.0 | 0.0204 | 0.0 | 0.3101 | 0.0035 | 0.0579 |
| 1.5224 | 1.98 | 320 | 1.7343 | 0.0822 | 0.1626 | 0.3410 | 0.3793 | 0.0 | 0.0277 | 0.0 | 0.6985 | 0.0017 | 0.0311 | 0.2236 | 0.0 | 0.0210 | 0.0 | 0.3000 | 0.0016 | 0.0293 |
| 1.2527 | 2.1 | 340 | 1.7149 | 0.0759 | 0.1559 | 0.3344 | 0.4108 | 0.0 | 0.0119 | 0.0 | 0.6629 | 0.0021 | 0.0034 | 0.2244 | 0.0 | 0.0105 | 0.0 | 0.2913 | 0.0021 | 0.0033 |
| 1.5931 | 2.22 | 360 | 1.7170 | 0.0838 | 0.1619 | 0.3365 | 0.4061 | 0.0 | 0.0098 | 0.0 | 0.6414 | 0.0028 | 0.0730 | 0.2228 | 0.0 | 0.0090 | 0.0 | 0.2882 | 0.0027 | 0.0641 |
| 1.2434 | 2.35 | 380 | 1.7437 | 0.0844 | 0.1619 | 0.3364 | 0.4734 | 0.0 | 0.0118 | 0.0 | 0.5785 | 0.0028 | 0.0667 | 0.2391 | 0.0 | 0.0105 | 0.0 | 0.2777 | 0.0027 | 0.0607 |
| 1.4071 | 2.47 | 400 | 1.7316 | 0.0823 | 0.1639 | 0.3433 | 0.3054 | 0.0 | 0.0053 | 0.0 | 0.7633 | 0.0057 | 0.0674 | 0.1933 | 0.0 | 0.0051 | 0.0 | 0.3125 | 0.0054 | 0.0596 |
| 1.2177 | 2.59 | 420 | 1.7195 | 0.0848 | 0.1657 | 0.3459 | 0.3442 | 0.0 | 0.0030 | 0.0 | 0.7315 | 0.0110 | 0.0705 | 0.2084 | 0.0 | 0.0029 | 0.0 | 0.3111 | 0.0102 | 0.0613 |
| 1.3724 | 2.72 | 440 | 1.7359 | 0.0843 | 0.1660 | 0.3455 | 0.3091 | 0.0 | 0.0089 | 0.0 | 0.7620 | 0.0057 | 0.0761 | 0.1946 | 0.0 | 0.0084 | 0.0 | 0.3147 | 0.0054 | 0.0669 |
| 1.3973 | 2.84 | 460 | 1.7469 | 0.0827 | 0.1617 | 0.3352 | 0.3153 | 0.0 | 0.0101 | 0.0 | 0.7231 | 0.0109 | 0.0724 | 0.1922 | 0.0 | 0.0088 | 0.0 | 0.3045 | 0.0099 | 0.0638 |
| 1.3098 | 2.96 | 480 | 1.7193 | 0.0852 | 0.1658 | 0.3447 | 0.3412 | 0.0 | 0.0032 | 0.0 | 0.7240 | 0.0038 | 0.0887 | 0.2039 | 0.0 | 0.0031 | 0.0 | 0.3076 | 0.0037 | 0.0779 |
| 0.9545 | 3.09 | 500 | 1.7256 | 0.0840 | 0.1627 | 0.3359 | 0.3366 | 0.0 | 0.0026 | 0.0 | 0.6959 | 0.0077 | 0.0960 | 0.2007 | 0.0 | 0.0025 | 0.0 | 0.2969 | 0.0072 | 0.0808 |
| 1.176 | 3.21 | 520 | 1.7334 | 0.0827 | 0.1616 | 0.3357 | 0.3396 | 0.0 | 0.0024 | 0.0 | 0.6963 | 0.0016 | 0.0915 | 0.1999 | 0.0 | 0.0024 | 0.0 | 0.2966 | 0.0015 | 0.0785 |
| 1.5622 | 3.33 | 540 | 1.7790 | 0.0689 | 0.1528 | 0.3311 | 0.2393 | 0.0 | 0.0015 | 0.0 | 0.8186 | 0.0009 | 0.0091 | 0.1638 | 0.0 | 0.0015 | 0.0 | 0.3073 | 0.0009 | 0.0089 |
| 1.2673 | 3.46 | 560 | 1.7339 | 0.0803 | 0.1585 | 0.3302 | 0.3228 | 0.0 | 0.0113 | 0.0 | 0.7035 | 0.0036 | 0.0686 | 0.1930 | 0.0 | 0.0104 | 0.0 | 0.2942 | 0.0034 | 0.0613 |
| 1.418 | 3.58 | 580 | 1.7648 | 0.0760 | 0.1563 | 0.3325 | 0.3074 | 0.0 | 0.0022 | 0.0 | 0.7416 | 0.0041 | 0.0386 | 0.1902 | 0.0 | 0.0022 | 0.0 | 0.2994 | 0.0038 | 0.0363 |
| 1.3578 | 3.7 | 600 | 1.7338 | 0.0845 | 0.1619 | 0.3327 | 0.3548 | 0.0 | 0.0119 | 0.0 | 0.6693 | 0.0076 | 0.0898 | 0.2039 | 0.0 | 0.0108 | 0.0 | 0.2940 | 0.0070 | 0.0758 |
| 1.1991 | 3.83 | 620 | 1.7711 | 0.0761 | 0.1546 | 0.3285 | 0.3473 | 0.0 | 0.0049 | 0.0 | 0.6906 | 0.0018 | 0.0379 | 0.1995 | 0.0 | 0.0046 | 0.0 | 0.2912 | 0.0017 | 0.0356 |
| 1.3699 | 3.95 | 640 | 1.7421 | 0.0829 | 0.1595 | 0.3312 | 0.4290 | 0.0 | 0.0048 | 0.0 | 0.5994 | 0.0032 | 0.0804 | 0.2223 | 0.0 | 0.0045 | 0.0 | 0.2819 | 0.0031 | 0.0687 |
| 1.308 | 4.07 | 660 | 1.7769 | 0.0709 | 0.1518 | 0.3250 | 0.2512 | 0.0 | 0.0035 | 0.0 | 0.7784 | 0.0034 | 0.0260 | 0.1656 | 0.0 | 0.0033 | 0.0 | 0.2996 | 0.0033 | 0.0245 |
| 1.3746 | 4.2 | 680 | 1.7811 | 0.0749 | 0.1538 | 0.3283 | 0.3497 | 0.0 | 0.0077 | 0.0 | 0.6953 | 0.0037 | 0.0200 | 0.2022 | 0.0 | 0.0070 | 0.0 | 0.2928 | 0.0035 | 0.0191 |
| 1.2085 | 4.32 | 700 | 1.7401 | 0.0825 | 0.1600 | 0.3319 | 0.3632 | 0.0 | 0.0106 | 0.0 | 0.6663 | 0.0042 | 0.0759 | 0.2064 | 0.0 | 0.0096 | 0.0 | 0.2912 | 0.0040 | 0.0664 |
| 0.8119 | 4.44 | 720 | 1.7638 | 0.0755 | 0.1539 | 0.3284 | 0.3660 | 0.0 | 0.0060 | 0.0 | 0.6784 | 0.0034 | 0.0237 | 0.2073 | 0.0 | 0.0053 | 0.0 | 0.2902 | 0.0033 | 0.0226 |
| 1.1547 | 4.57 | 740 | 1.7581 | 0.0795 | 0.1573 | 0.3289 | 0.3410 | 0.0 | 0.0140 | 0.0 | 0.6879 | 0.0030 | 0.0550 | 0.1996 | 0.0 | 0.0116 | 0.0 | 0.2929 | 0.0029 | 0.0497 |
| 1.2229 | 4.69 | 760 | 1.7817 | 0.0730 | 0.1550 | 0.3243 | 0.1861 | 0.0 | 0.0124 | 0.0 | 0.8198 | 0.0036 | 0.0631 | 0.1365 | 0.0 | 0.0103 | 0.0 | 0.3050 | 0.0034 | 0.0557 |
| 1.3332 | 4.81 | 780 | 1.7580 | 0.0769 | 0.1563 | 0.3276 | 0.2656 | 0.0 | 0.0044 | 0.0 | 0.7524 | 0.0042 | 0.0677 | 0.1721 | 0.0 | 0.0041 | 0.0 | 0.2998 | 0.0040 | 0.0581 |
| 1.1668 | 4.94 | 800 | 1.7456 | 0.0841 | 0.1629 | 0.3309 | 0.2728 | 0.0 | 0.0194 | 0.0 | 0.7325 | 0.0055 | 0.1102 | 0.1767 | 0.0 | 0.0157 | 0.0 | 0.3002 | 0.0052 | 0.0908 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
| [
"water",
"whitewater",
"sediment",
"other_natural_terrain",
"vegetation",
"development",
"unknown"
] |
rwood-97/test_os_counties |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_os_counties
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the rwood-97/os_counties dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8997
- Mean Iou: 0.1075
- Mean Accuracy: 0.4992
- Overall Accuracy: 0.2118
- Accuracy Non-map: 0.9899
- Accuracy Map: 0.0084
- Iou Non-map: 0.2065
- Iou Map: 0.0084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Non-map | Accuracy Map | Iou Non-map | Iou Map |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:------------:|:-----------:|:-------:|
| 0.4081 | 0.41 | 20 | 0.8267 | 0.2101 | 0.4981 | 0.3478 | 0.7548 | 0.2414 | 0.1934 | 0.2268 |
| 0.3939 | 0.82 | 40 | 0.8190 | 0.2387 | 0.4978 | 0.3898 | 0.6821 | 0.3134 | 0.1881 | 0.2894 |
| 0.3319 | 1.22 | 60 | 0.9487 | 0.1579 | 0.4976 | 0.2759 | 0.8762 | 0.1191 | 0.2005 | 0.1153 |
| 0.3234 | 1.63 | 80 | 0.9275 | 0.1847 | 0.4974 | 0.3120 | 0.8138 | 0.1809 | 0.1969 | 0.1725 |
| 0.3932 | 2.04 | 100 | 0.9053 | 0.1892 | 0.4974 | 0.3183 | 0.8031 | 0.1916 | 0.1962 | 0.1822 |
| 0.3412 | 2.45 | 120 | 0.8265 | 0.2385 | 0.4973 | 0.3895 | 0.6814 | 0.3132 | 0.1878 | 0.2891 |
| 0.2976 | 2.86 | 140 | 1.3713 | 0.1127 | 0.4987 | 0.2182 | 0.9778 | 0.0197 | 0.2058 | 0.0195 |
| 0.2803 | 3.27 | 160 | 1.6436 | 0.1095 | 0.4993 | 0.2143 | 0.9860 | 0.0126 | 0.2064 | 0.0125 |
| 0.3686 | 3.67 | 180 | 1.2379 | 0.1221 | 0.4982 | 0.2298 | 0.9564 | 0.0399 | 0.2047 | 0.0395 |
| 0.3434 | 4.08 | 200 | 1.1857 | 0.1385 | 0.4978 | 0.2507 | 0.9197 | 0.0758 | 0.2028 | 0.0743 |
| 0.2951 | 4.49 | 220 | 1.3947 | 0.1160 | 0.4986 | 0.2223 | 0.9704 | 0.0268 | 0.2054 | 0.0266 |
| 0.2333 | 4.9 | 240 | 1.5480 | 0.1170 | 0.4988 | 0.2236 | 0.9687 | 0.0288 | 0.2054 | 0.0286 |
| 0.2491 | 5.31 | 260 | 1.6563 | 0.1136 | 0.4990 | 0.2194 | 0.9764 | 0.0215 | 0.2058 | 0.0214 |
| 0.2706 | 5.71 | 280 | 1.9766 | 0.1058 | 0.4995 | 0.2098 | 0.9942 | 0.0048 | 0.2068 | 0.0048 |
| 0.2171 | 6.12 | 300 | 1.6191 | 0.1117 | 0.4989 | 0.2170 | 0.9804 | 0.0175 | 0.2060 | 0.0174 |
| 0.2352 | 6.53 | 320 | 1.8075 | 0.1102 | 0.4992 | 0.2151 | 0.9842 | 0.0141 | 0.2062 | 0.0141 |
| 0.2953 | 6.94 | 340 | 1.4709 | 0.1178 | 0.4986 | 0.2245 | 0.9667 | 0.0305 | 0.2053 | 0.0303 |
| 0.2799 | 7.35 | 360 | 1.3843 | 0.1300 | 0.4982 | 0.2399 | 0.9392 | 0.0571 | 0.2038 | 0.0562 |
| 0.2285 | 7.76 | 380 | 1.7799 | 0.1101 | 0.4991 | 0.2150 | 0.9842 | 0.0140 | 0.2062 | 0.0139 |
| 0.3461 | 8.16 | 400 | 1.7282 | 0.1106 | 0.4989 | 0.2157 | 0.9826 | 0.0153 | 0.2061 | 0.0152 |
| 0.1867 | 8.57 | 420 | 2.3356 | 0.1042 | 0.4997 | 0.2079 | 0.9981 | 0.0014 | 0.2070 | 0.0014 |
| 0.1731 | 8.98 | 440 | 2.1465 | 0.1050 | 0.4996 | 0.2089 | 0.9959 | 0.0032 | 0.2069 | 0.0032 |
| 0.224 | 9.39 | 460 | 2.3467 | 0.1047 | 0.4996 | 0.2084 | 0.9969 | 0.0024 | 0.2070 | 0.0024 |
| 0.2199 | 9.8 | 480 | 1.8997 | 0.1075 | 0.4992 | 0.2118 | 0.9899 | 0.0084 | 0.2065 | 0.0084 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.5
- Tokenizers 0.14.1
| [
"non-map",
"map"
] |
rishitunu/new_ecc_segformer |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# new_ecc_segformer
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ECC_crackdataset_withsplit dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0663
- Mean Iou: 0.1943
- Mean Accuracy: 0.3915
- Overall Accuracy: 0.3915
- Accuracy Background: nan
- Accuracy Crack: 0.3915
- Iou Background: 0.0
- Iou Crack: 0.3887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.0489 | 1.0 | 438 | 0.0634 | 0.1464 | 0.2933 | 0.2933 | nan | 0.2933 | 0.0 | 0.2929 |
| 0.0542 | 2.0 | 876 | 0.0439 | 0.1956 | 0.3917 | 0.3917 | nan | 0.3917 | 0.0 | 0.3912 |
| 0.0484 | 3.0 | 1314 | 0.0434 | 0.1719 | 0.3551 | 0.3551 | nan | 0.3551 | 0.0 | 0.3439 |
| 0.0539 | 4.0 | 1752 | 0.0447 | 0.1871 | 0.3820 | 0.3820 | nan | 0.3820 | 0.0 | 0.3741 |
| 0.0565 | 5.0 | 2190 | 0.0435 | 0.1888 | 0.3937 | 0.3937 | nan | 0.3937 | 0.0 | 0.3777 |
| 0.0544 | 6.0 | 2628 | 0.0442 | 0.1904 | 0.3930 | 0.3930 | nan | 0.3930 | 0.0 | 0.3808 |
| 0.0421 | 7.0 | 3066 | 0.0449 | 0.2256 | 0.4651 | 0.4651 | nan | 0.4651 | 0.0 | 0.4513 |
| 0.0352 | 8.0 | 3504 | 0.0587 | 0.1569 | 0.3165 | 0.3165 | nan | 0.3165 | 0.0 | 0.3138 |
| 0.0394 | 9.0 | 3942 | 0.0442 | 0.1842 | 0.3710 | 0.3710 | nan | 0.3710 | 0.0 | 0.3684 |
| 0.0445 | 10.0 | 4380 | 0.0609 | 0.1167 | 0.4173 | 0.4173 | nan | 0.4173 | 0.0 | 0.2334 |
| 0.0503 | 11.0 | 4818 | 0.0504 | 0.1702 | 0.3714 | 0.3714 | nan | 0.3714 | 0.0 | 0.3403 |
| 0.0379 | 12.0 | 5256 | 0.0460 | 0.1903 | 0.3869 | 0.3869 | nan | 0.3869 | 0.0 | 0.3807 |
| 0.0405 | 13.0 | 5694 | 0.0452 | 0.2017 | 0.4084 | 0.4084 | nan | 0.4084 | 0.0 | 0.4034 |
| 0.0367 | 14.0 | 6132 | 0.0477 | 0.1995 | 0.4060 | 0.4060 | nan | 0.4060 | 0.0 | 0.3990 |
| 0.0315 | 15.0 | 6570 | 0.0498 | 0.2073 | 0.4208 | 0.4208 | nan | 0.4208 | 0.0 | 0.4147 |
| 0.0244 | 16.0 | 7008 | 0.0486 | 0.1963 | 0.4029 | 0.4029 | nan | 0.4029 | 0.0 | 0.3926 |
| 0.031 | 17.0 | 7446 | 0.0568 | 0.1927 | 0.3892 | 0.3892 | nan | 0.3892 | 0.0 | 0.3855 |
| 0.0288 | 18.0 | 7884 | 0.0560 | 0.2033 | 0.4092 | 0.4092 | nan | 0.4092 | 0.0 | 0.4067 |
| 0.0354 | 19.0 | 8322 | 0.0613 | 0.2007 | 0.4056 | 0.4056 | nan | 0.4056 | 0.0 | 0.4013 |
| 0.0315 | 20.0 | 8760 | 0.0605 | 0.1865 | 0.3752 | 0.3752 | nan | 0.3752 | 0.0 | 0.3731 |
| 0.0343 | 21.0 | 9198 | 0.0653 | 0.1991 | 0.4019 | 0.4019 | nan | 0.4019 | 0.0 | 0.3981 |
| 0.0327 | 22.0 | 9636 | 0.0660 | 0.1945 | 0.3924 | 0.3924 | nan | 0.3924 | 0.0 | 0.3891 |
| 0.0252 | 22.83 | 10000 | 0.0663 | 0.1943 | 0.3915 | 0.3915 | nan | 0.3915 | 0.0 | 0.3887 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cpu
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"background",
"crack"
] |
peldrak/segformer-finetuned-coastalDataset |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-coastalDataset
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the peldrak/coastal_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6091
- Mean Iou: 0.6876
- Mean Accuracy: 0.7945
- Overall Accuracy: 0.8704
- Accuracy Water: 0.9332
- Accuracy Whitewater: 0.7904
- Accuracy Sediment: 0.8591
- Accuracy Other Natural Terrain: 0.4778
- Accuracy Vegetation: 0.9017
- Accuracy Development: 0.8549
- Accuracy Unknown: 0.7443
- Iou Water: 0.8671
- Iou Whitewater: 0.6713
- Iou Sediment: 0.7452
- Iou Other Natural Terrain: 0.3782
- Iou Vegetation: 0.7799
- Iou Development: 0.6736
- Iou Unknown: 0.6978
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|
| 1.7886 | 0.05 | 20 | 1.6491 | 0.1498 | 0.2460 | 0.4112 | 0.4687 | 0.0287 | 0.0048 | 0.0144 | 0.6736 | 0.4392 | 0.0923 | 0.3518 | 0.0098 | 0.0048 | 0.0058 | 0.3662 | 0.2469 | 0.0632 |
| 1.7534 | 0.11 | 40 | 1.4097 | 0.2254 | 0.3388 | 0.5545 | 0.7079 | 0.0074 | 0.0185 | 0.0066 | 0.7428 | 0.5723 | 0.3159 | 0.4839 | 0.0069 | 0.0184 | 0.0047 | 0.4440 | 0.3124 | 0.3073 |
| 1.3223 | 0.16 | 60 | 1.3142 | 0.2096 | 0.3198 | 0.5687 | 0.7425 | 0.0013 | 0.0487 | 0.0054 | 0.8736 | 0.5420 | 0.0248 | 0.5201 | 0.0013 | 0.0468 | 0.0041 | 0.4890 | 0.3818 | 0.0242 |
| 1.2429 | 0.22 | 80 | 1.1734 | 0.2616 | 0.3747 | 0.6300 | 0.8271 | 0.0011 | 0.0271 | 0.0000 | 0.8500 | 0.6156 | 0.3021 | 0.5954 | 0.0011 | 0.0265 | 0.0000 | 0.5267 | 0.3806 | 0.3011 |
| 1.3556 | 0.27 | 100 | 1.1141 | 0.2878 | 0.4016 | 0.6536 | 0.8384 | 0.0114 | 0.0710 | 0.0000 | 0.8670 | 0.6799 | 0.3432 | 0.6140 | 0.0113 | 0.0655 | 0.0000 | 0.5632 | 0.4226 | 0.3381 |
| 0.8995 | 0.32 | 120 | 1.0387 | 0.3096 | 0.4245 | 0.6724 | 0.8439 | 0.0148 | 0.1242 | 0.0 | 0.8742 | 0.7178 | 0.3966 | 0.6438 | 0.0147 | 0.1147 | 0.0 | 0.5733 | 0.4289 | 0.3921 |
| 1.0435 | 0.38 | 140 | 1.0234 | 0.3135 | 0.4294 | 0.6615 | 0.7801 | 0.0023 | 0.1835 | 0.0000 | 0.8794 | 0.7321 | 0.4284 | 0.6033 | 0.0023 | 0.1685 | 0.0000 | 0.5538 | 0.4573 | 0.4094 |
| 1.7516 | 0.43 | 160 | 1.0258 | 0.3287 | 0.4534 | 0.6665 | 0.7874 | 0.0122 | 0.3467 | 0.0 | 0.8209 | 0.7619 | 0.4449 | 0.6094 | 0.0121 | 0.3020 | 0.0 | 0.5660 | 0.4476 | 0.3638 |
| 1.1561 | 0.49 | 180 | 0.9637 | 0.3662 | 0.4967 | 0.6989 | 0.8001 | 0.0003 | 0.5674 | 0.0 | 0.8247 | 0.8164 | 0.4682 | 0.6765 | 0.0003 | 0.4476 | 0.0 | 0.5738 | 0.4173 | 0.4477 |
| 1.2007 | 0.54 | 200 | 0.8883 | 0.3867 | 0.5175 | 0.7210 | 0.8696 | 0.0006 | 0.6747 | 0.0 | 0.7787 | 0.8218 | 0.4771 | 0.6801 | 0.0006 | 0.4996 | 0.0 | 0.6154 | 0.4621 | 0.4495 |
| 0.8308 | 0.59 | 220 | 0.8686 | 0.3936 | 0.5091 | 0.7279 | 0.8239 | 0.0035 | 0.6613 | 0.0 | 0.8950 | 0.7065 | 0.4738 | 0.6718 | 0.0035 | 0.4924 | 0.0 | 0.6390 | 0.5353 | 0.4134 |
| 1.3709 | 0.65 | 240 | 0.8437 | 0.3847 | 0.5166 | 0.7198 | 0.8709 | 0.0081 | 0.6150 | 0.0 | 0.7759 | 0.8590 | 0.4872 | 0.6789 | 0.0081 | 0.4558 | 0.0 | 0.6192 | 0.4765 | 0.4545 |
| 1.0652 | 0.7 | 260 | 0.8299 | 0.3842 | 0.4930 | 0.7246 | 0.8817 | 0.0420 | 0.4268 | 0.0 | 0.8581 | 0.7229 | 0.5196 | 0.6779 | 0.0418 | 0.3285 | 0.0 | 0.6367 | 0.5153 | 0.4892 |
| 0.8973 | 0.76 | 280 | 0.8115 | 0.4030 | 0.5232 | 0.7436 | 0.8562 | 0.0126 | 0.6910 | 0.0 | 0.8836 | 0.7093 | 0.5098 | 0.7304 | 0.0126 | 0.4955 | 0.0 | 0.6481 | 0.4535 | 0.4811 |
| 0.6368 | 0.81 | 300 | 0.8043 | 0.4291 | 0.5447 | 0.7516 | 0.8700 | 0.1096 | 0.6775 | 0.0 | 0.8668 | 0.7688 | 0.5198 | 0.7217 | 0.1079 | 0.5182 | 0.0 | 0.6438 | 0.5261 | 0.4860 |
| 1.946 | 0.86 | 320 | 0.7983 | 0.4245 | 0.5350 | 0.7481 | 0.8194 | 0.0592 | 0.6388 | 0.0 | 0.9216 | 0.7385 | 0.5671 | 0.7116 | 0.0582 | 0.5212 | 0.0 | 0.6329 | 0.5278 | 0.5199 |
| 0.9624 | 0.92 | 340 | 0.8263 | 0.4067 | 0.5372 | 0.7345 | 0.8064 | 0.0394 | 0.7976 | 0.0 | 0.8713 | 0.7507 | 0.4953 | 0.6855 | 0.0391 | 0.4348 | 0.0 | 0.6591 | 0.5461 | 0.4821 |
| 0.7984 | 0.97 | 360 | 0.7752 | 0.4175 | 0.5430 | 0.7456 | 0.8623 | 0.0198 | 0.7372 | 0.0 | 0.8328 | 0.8482 | 0.5007 | 0.7137 | 0.0198 | 0.5537 | 0.0 | 0.6271 | 0.5259 | 0.4821 |
| 0.7808 | 1.03 | 380 | 0.7499 | 0.4329 | 0.5442 | 0.7642 | 0.8970 | 0.0194 | 0.7168 | 0.0 | 0.8745 | 0.8007 | 0.5010 | 0.7389 | 0.0193 | 0.5562 | 0.0 | 0.6543 | 0.5754 | 0.4860 |
| 0.9687 | 1.08 | 400 | 0.7386 | 0.4288 | 0.5348 | 0.7645 | 0.8957 | 0.0001 | 0.7287 | 0.0 | 0.8980 | 0.7178 | 0.5034 | 0.7365 | 0.0001 | 0.5451 | 0.0 | 0.6627 | 0.5687 | 0.4884 |
| 0.7036 | 1.14 | 420 | 0.7221 | 0.4424 | 0.5739 | 0.7627 | 0.8876 | 0.1237 | 0.8011 | 0.0 | 0.8096 | 0.8442 | 0.5511 | 0.7576 | 0.1223 | 0.5346 | 0.0 | 0.6532 | 0.5191 | 0.5103 |
| 0.5789 | 1.19 | 440 | 0.7387 | 0.4409 | 0.5588 | 0.7688 | 0.9018 | 0.0959 | 0.8107 | 0.0 | 0.8672 | 0.7453 | 0.4904 | 0.7527 | 0.0945 | 0.5342 | 0.0 | 0.6773 | 0.5507 | 0.4773 |
| 0.5338 | 1.24 | 460 | 0.6946 | 0.4416 | 0.5639 | 0.7645 | 0.9112 | 0.1294 | 0.7190 | 0.0 | 0.8238 | 0.8345 | 0.5296 | 0.7535 | 0.1236 | 0.5391 | 0.0 | 0.6670 | 0.5441 | 0.4639 |
| 0.7953 | 1.3 | 480 | 0.7493 | 0.4686 | 0.5872 | 0.7794 | 0.9053 | 0.2310 | 0.8043 | 0.0 | 0.8665 | 0.8091 | 0.4944 | 0.7708 | 0.2220 | 0.5434 | 0.0 | 0.6828 | 0.5814 | 0.4798 |
| 1.0133 | 1.35 | 500 | 0.7158 | 0.4634 | 0.5757 | 0.7767 | 0.9061 | 0.1974 | 0.7773 | 0.0 | 0.8755 | 0.7682 | 0.5051 | 0.7564 | 0.1901 | 0.5548 | 0.0 | 0.6792 | 0.5743 | 0.4893 |
| 0.6369 | 1.41 | 520 | 0.7021 | 0.4645 | 0.5829 | 0.7781 | 0.8936 | 0.2029 | 0.7963 | 0.0 | 0.8787 | 0.8036 | 0.5054 | 0.7735 | 0.1920 | 0.5585 | 0.0 | 0.6762 | 0.5605 | 0.4907 |
| 0.5932 | 1.46 | 540 | 0.6935 | 0.4591 | 0.5654 | 0.7807 | 0.9025 | 0.1195 | 0.7795 | 0.0 | 0.9085 | 0.7415 | 0.5061 | 0.7705 | 0.1135 | 0.5608 | 0.0 | 0.6785 | 0.5978 | 0.4927 |
| 0.7677 | 1.51 | 560 | 0.6552 | 0.4872 | 0.6003 | 0.7875 | 0.9044 | 0.3022 | 0.7881 | 0.0006 | 0.8814 | 0.7990 | 0.5267 | 0.7754 | 0.2845 | 0.5843 | 0.0006 | 0.6876 | 0.5780 | 0.4998 |
| 0.5607 | 1.57 | 580 | 0.6682 | 0.4871 | 0.5980 | 0.7867 | 0.8976 | 0.3117 | 0.7955 | 0.0 | 0.8992 | 0.7793 | 0.5028 | 0.7697 | 0.2911 | 0.5902 | 0.0 | 0.6878 | 0.5807 | 0.4901 |
| 0.7269 | 1.62 | 600 | 0.6849 | 0.4823 | 0.5975 | 0.7853 | 0.9091 | 0.2905 | 0.8256 | 0.0003 | 0.8768 | 0.7944 | 0.4861 | 0.7729 | 0.2647 | 0.5936 | 0.0003 | 0.6846 | 0.5836 | 0.4761 |
| 0.4449 | 1.68 | 620 | 0.6690 | 0.4930 | 0.6175 | 0.7831 | 0.8831 | 0.3929 | 0.8275 | 0.0009 | 0.8606 | 0.8298 | 0.5280 | 0.7744 | 0.3556 | 0.5759 | 0.0009 | 0.6753 | 0.5654 | 0.5040 |
| 0.6588 | 1.73 | 640 | 0.6417 | 0.5054 | 0.6210 | 0.7914 | 0.9059 | 0.4289 | 0.7604 | 0.0 | 0.8640 | 0.8192 | 0.5685 | 0.7932 | 0.3960 | 0.5968 | 0.0 | 0.6779 | 0.5516 | 0.5226 |
| 0.8525 | 1.78 | 660 | 0.6499 | 0.4952 | 0.6075 | 0.7905 | 0.8953 | 0.3919 | 0.7930 | 0.0 | 0.9060 | 0.7254 | 0.5409 | 0.7884 | 0.3341 | 0.5840 | 0.0 | 0.6871 | 0.5555 | 0.5175 |
| 0.7697 | 1.84 | 680 | 0.6378 | 0.5138 | 0.6339 | 0.7969 | 0.8922 | 0.4613 | 0.8212 | 0.0004 | 0.8760 | 0.8083 | 0.5777 | 0.7860 | 0.3819 | 0.6104 | 0.0004 | 0.6916 | 0.5844 | 0.5424 |
| 0.5325 | 1.89 | 700 | 0.6448 | 0.5178 | 0.6301 | 0.8011 | 0.8963 | 0.4397 | 0.8236 | 0.0072 | 0.8988 | 0.7742 | 0.5709 | 0.7955 | 0.3818 | 0.6057 | 0.0072 | 0.6929 | 0.5915 | 0.5502 |
| 0.7487 | 1.95 | 720 | 0.5989 | 0.5416 | 0.6563 | 0.8108 | 0.8980 | 0.5287 | 0.8194 | 0.0077 | 0.8714 | 0.7934 | 0.6758 | 0.7995 | 0.4509 | 0.6198 | 0.0077 | 0.6996 | 0.6079 | 0.6059 |
| 1.8711 | 2.0 | 740 | 0.6323 | 0.5173 | 0.6399 | 0.7992 | 0.9035 | 0.5213 | 0.7845 | 0.0088 | 0.8817 | 0.8414 | 0.5378 | 0.7977 | 0.4148 | 0.6028 | 0.0088 | 0.6987 | 0.5864 | 0.5123 |
| 0.4823 | 2.05 | 760 | 0.6463 | 0.5050 | 0.6120 | 0.7958 | 0.9088 | 0.4049 | 0.7904 | 0.0078 | 0.9076 | 0.7275 | 0.5368 | 0.7895 | 0.3503 | 0.5980 | 0.0078 | 0.6907 | 0.5788 | 0.5196 |
| 0.6854 | 2.11 | 780 | 0.6507 | 0.5066 | 0.6351 | 0.7889 | 0.9002 | 0.5056 | 0.8252 | 0.0130 | 0.8507 | 0.8364 | 0.5145 | 0.7809 | 0.4048 | 0.6104 | 0.0130 | 0.6831 | 0.5572 | 0.4964 |
| 0.5534 | 2.16 | 800 | 0.6499 | 0.4977 | 0.6310 | 0.7870 | 0.8875 | 0.4178 | 0.8700 | 0.0133 | 0.8414 | 0.8439 | 0.5428 | 0.7735 | 0.3444 | 0.5597 | 0.0133 | 0.6990 | 0.5860 | 0.5082 |
| 1.6573 | 2.22 | 820 | 0.6379 | 0.5041 | 0.6137 | 0.7944 | 0.9105 | 0.4303 | 0.7719 | 0.0039 | 0.9020 | 0.7513 | 0.5256 | 0.7882 | 0.3374 | 0.6124 | 0.0039 | 0.6883 | 0.6030 | 0.4955 |
| 0.422 | 2.27 | 840 | 0.6730 | 0.4999 | 0.6418 | 0.7800 | 0.8509 | 0.5520 | 0.8265 | 0.0241 | 0.8649 | 0.8507 | 0.5237 | 0.7707 | 0.4076 | 0.5670 | 0.0240 | 0.6808 | 0.5550 | 0.4941 |
| 0.7256 | 2.32 | 860 | 0.6374 | 0.5134 | 0.6478 | 0.7898 | 0.8793 | 0.5758 | 0.8032 | 0.0284 | 0.8657 | 0.8556 | 0.5266 | 0.7931 | 0.4553 | 0.5835 | 0.0276 | 0.6888 | 0.5477 | 0.4980 |
| 0.3261 | 2.38 | 880 | 0.6084 | 0.5307 | 0.6678 | 0.8026 | 0.8987 | 0.7237 | 0.7705 | 0.0299 | 0.8830 | 0.8401 | 0.5288 | 0.8012 | 0.4855 | 0.6110 | 0.0299 | 0.7123 | 0.5715 | 0.5037 |
| 0.9935 | 2.43 | 900 | 0.6262 | 0.5298 | 0.6550 | 0.8025 | 0.8743 | 0.5612 | 0.8547 | 0.0157 | 0.8966 | 0.8177 | 0.5645 | 0.7868 | 0.4467 | 0.6069 | 0.0157 | 0.7097 | 0.6212 | 0.5217 |
| 1.2977 | 2.49 | 920 | 0.6661 | 0.5119 | 0.6417 | 0.7924 | 0.8757 | 0.5019 | 0.8213 | 0.0103 | 0.8746 | 0.8719 | 0.5365 | 0.7896 | 0.4260 | 0.5785 | 0.0103 | 0.6917 | 0.5665 | 0.5211 |
| 0.4984 | 2.54 | 940 | 0.5994 | 0.5452 | 0.6678 | 0.8086 | 0.9115 | 0.6257 | 0.8113 | 0.0159 | 0.8524 | 0.8568 | 0.6009 | 0.8123 | 0.5189 | 0.6264 | 0.0159 | 0.6904 | 0.6049 | 0.5473 |
| 0.6221 | 2.59 | 960 | 0.6465 | 0.5342 | 0.6660 | 0.7959 | 0.9048 | 0.6706 | 0.8602 | 0.0221 | 0.8192 | 0.7986 | 0.5866 | 0.7858 | 0.5098 | 0.5983 | 0.0221 | 0.6700 | 0.6201 | 0.5335 |
| 0.3674 | 2.65 | 980 | 0.6477 | 0.5323 | 0.6529 | 0.8017 | 0.8813 | 0.6333 | 0.8210 | 0.0130 | 0.9148 | 0.7782 | 0.5286 | 0.8052 | 0.5073 | 0.6330 | 0.0130 | 0.6904 | 0.5653 | 0.5121 |
| 0.4939 | 2.7 | 1000 | 0.6064 | 0.5424 | 0.6765 | 0.8087 | 0.9061 | 0.6742 | 0.8566 | 0.0241 | 0.8567 | 0.8603 | 0.5579 | 0.8141 | 0.5124 | 0.6231 | 0.0241 | 0.7060 | 0.5928 | 0.5246 |
| 0.4825 | 2.76 | 1020 | 0.6061 | 0.5371 | 0.6714 | 0.8050 | 0.9102 | 0.6962 | 0.8545 | 0.0245 | 0.8540 | 0.8060 | 0.5546 | 0.8184 | 0.5311 | 0.6143 | 0.0245 | 0.7033 | 0.5607 | 0.5077 |
| 0.2858 | 2.81 | 1040 | 0.6032 | 0.5408 | 0.6806 | 0.8019 | 0.8807 | 0.7392 | 0.8252 | 0.0246 | 0.8606 | 0.8663 | 0.5675 | 0.8098 | 0.5620 | 0.6315 | 0.0245 | 0.6985 | 0.5374 | 0.5220 |
| 0.6248 | 2.86 | 1060 | 0.6321 | 0.5317 | 0.6489 | 0.8059 | 0.9103 | 0.6419 | 0.7859 | 0.0122 | 0.9188 | 0.7799 | 0.4933 | 0.8025 | 0.4770 | 0.6247 | 0.0122 | 0.7102 | 0.6242 | 0.4709 |
| 0.5328 | 2.92 | 1080 | 0.5913 | 0.5412 | 0.6815 | 0.8091 | 0.9023 | 0.7421 | 0.8144 | 0.0280 | 0.8715 | 0.8700 | 0.5422 | 0.8102 | 0.4764 | 0.6364 | 0.0279 | 0.7111 | 0.6099 | 0.5161 |
| 0.3748 | 2.97 | 1100 | 0.6328 | 0.5279 | 0.6739 | 0.7984 | 0.9168 | 0.7236 | 0.8730 | 0.0248 | 0.8217 | 0.8466 | 0.5111 | 0.8111 | 0.5002 | 0.6253 | 0.0247 | 0.6869 | 0.5492 | 0.4976 |
| 0.5079 | 3.03 | 1120 | 0.6226 | 0.5361 | 0.6568 | 0.8084 | 0.9069 | 0.6303 | 0.8483 | 0.0226 | 0.9101 | 0.7806 | 0.4986 | 0.8151 | 0.4983 | 0.6206 | 0.0225 | 0.7104 | 0.5992 | 0.4862 |
| 1.1987 | 3.08 | 1140 | 0.5712 | 0.5714 | 0.6993 | 0.8244 | 0.8928 | 0.7590 | 0.8263 | 0.0269 | 0.8931 | 0.8668 | 0.6305 | 0.8213 | 0.5669 | 0.6592 | 0.0268 | 0.7241 | 0.6041 | 0.5972 |
| 0.7254 | 3.14 | 1160 | 0.6330 | 0.5416 | 0.6696 | 0.8088 | 0.8986 | 0.6701 | 0.8139 | 0.0237 | 0.8958 | 0.8757 | 0.5094 | 0.8103 | 0.5280 | 0.6353 | 0.0236 | 0.7146 | 0.5816 | 0.4980 |
| 0.4003 | 3.19 | 1180 | 0.6043 | 0.5385 | 0.6659 | 0.8092 | 0.9123 | 0.6244 | 0.8237 | 0.0240 | 0.8793 | 0.8897 | 0.5081 | 0.8140 | 0.4894 | 0.6426 | 0.0239 | 0.7104 | 0.5954 | 0.4938 |
| 0.3748 | 3.24 | 1200 | 0.5919 | 0.5438 | 0.6621 | 0.8102 | 0.9296 | 0.5921 | 0.8031 | 0.0300 | 0.8633 | 0.8873 | 0.5289 | 0.8136 | 0.5033 | 0.6481 | 0.0299 | 0.6993 | 0.6011 | 0.5113 |
| 0.6813 | 3.3 | 1220 | 0.5742 | 0.5589 | 0.6683 | 0.8179 | 0.9073 | 0.5921 | 0.8173 | 0.0311 | 0.8975 | 0.8354 | 0.5973 | 0.8079 | 0.5053 | 0.6427 | 0.0309 | 0.7055 | 0.6439 | 0.5764 |
| 0.3824 | 3.35 | 1240 | 0.5503 | 0.5679 | 0.6963 | 0.8207 | 0.9115 | 0.7776 | 0.8276 | 0.0345 | 0.8744 | 0.8579 | 0.5906 | 0.8203 | 0.5693 | 0.6410 | 0.0342 | 0.7103 | 0.6310 | 0.5693 |
| 0.7603 | 3.41 | 1260 | 0.5712 | 0.5638 | 0.6821 | 0.8174 | 0.8986 | 0.7138 | 0.8280 | 0.0439 | 0.9093 | 0.8306 | 0.5506 | 0.8160 | 0.5587 | 0.6624 | 0.0433 | 0.7065 | 0.6286 | 0.5310 |
| 0.7926 | 3.46 | 1280 | 0.5728 | 0.5673 | 0.6926 | 0.8185 | 0.9123 | 0.6875 | 0.8869 | 0.0490 | 0.8531 | 0.8686 | 0.5909 | 0.8117 | 0.5581 | 0.6424 | 0.0483 | 0.7068 | 0.6355 | 0.5681 |
| 0.5149 | 3.51 | 1300 | 0.5715 | 0.5679 | 0.6958 | 0.8194 | 0.9052 | 0.6954 | 0.8254 | 0.0548 | 0.8556 | 0.9054 | 0.6290 | 0.8223 | 0.5488 | 0.6569 | 0.0544 | 0.7048 | 0.5916 | 0.5967 |
| 0.623 | 3.57 | 1320 | 0.5723 | 0.5752 | 0.6931 | 0.8245 | 0.9129 | 0.6938 | 0.8519 | 0.0379 | 0.8771 | 0.8737 | 0.6042 | 0.8195 | 0.5656 | 0.6468 | 0.0371 | 0.7112 | 0.6614 | 0.5844 |
| 0.5331 | 3.62 | 1340 | 0.5802 | 0.5694 | 0.6758 | 0.8221 | 0.9283 | 0.6637 | 0.8086 | 0.0427 | 0.8874 | 0.7865 | 0.6136 | 0.8052 | 0.5426 | 0.6474 | 0.0418 | 0.7151 | 0.6460 | 0.5877 |
| 0.4966 | 3.68 | 1360 | 0.5776 | 0.5653 | 0.6944 | 0.8189 | 0.9041 | 0.7890 | 0.8019 | 0.0577 | 0.8948 | 0.8461 | 0.5674 | 0.8222 | 0.5665 | 0.6527 | 0.0565 | 0.7171 | 0.5995 | 0.5425 |
| 0.7875 | 3.73 | 1380 | 0.5500 | 0.5825 | 0.7075 | 0.8249 | 0.9192 | 0.7436 | 0.8403 | 0.1109 | 0.8625 | 0.8702 | 0.6056 | 0.8167 | 0.5658 | 0.6609 | 0.1036 | 0.7230 | 0.6398 | 0.5679 |
| 0.4906 | 3.78 | 1400 | 0.5681 | 0.5805 | 0.7036 | 0.8191 | 0.8903 | 0.6878 | 0.7936 | 0.1968 | 0.8973 | 0.8741 | 0.5855 | 0.8242 | 0.5382 | 0.6658 | 0.1750 | 0.7098 | 0.6022 | 0.5484 |
| 0.3565 | 3.84 | 1420 | 0.6125 | 0.5640 | 0.6908 | 0.8155 | 0.9136 | 0.7074 | 0.8146 | 0.1141 | 0.8803 | 0.8820 | 0.5234 | 0.8172 | 0.5596 | 0.6229 | 0.1071 | 0.7207 | 0.6137 | 0.5068 |
| 1.3393 | 3.89 | 1440 | 0.5608 | 0.5915 | 0.7116 | 0.8272 | 0.8975 | 0.7789 | 0.8623 | 0.1120 | 0.8902 | 0.7977 | 0.6430 | 0.8131 | 0.6059 | 0.6366 | 0.1083 | 0.7236 | 0.6506 | 0.6027 |
| 0.864 | 3.95 | 1460 | 0.5728 | 0.5831 | 0.7010 | 0.8272 | 0.9050 | 0.7358 | 0.7942 | 0.0735 | 0.8930 | 0.8686 | 0.6372 | 0.8239 | 0.5722 | 0.6571 | 0.0716 | 0.7173 | 0.6471 | 0.5923 |
| 0.4925 | 4.0 | 1480 | 0.5538 | 0.5883 | 0.6994 | 0.8313 | 0.9121 | 0.6628 | 0.8424 | 0.0866 | 0.8914 | 0.8586 | 0.6421 | 0.8283 | 0.5531 | 0.6734 | 0.0811 | 0.7206 | 0.6540 | 0.6076 |
| 0.4559 | 4.05 | 1500 | 0.5789 | 0.5725 | 0.6901 | 0.8233 | 0.9219 | 0.6579 | 0.8358 | 0.0760 | 0.8747 | 0.8848 | 0.5795 | 0.8222 | 0.5401 | 0.6579 | 0.0735 | 0.7155 | 0.6462 | 0.5521 |
| 0.4295 | 4.11 | 1520 | 0.6088 | 0.5705 | 0.6949 | 0.8165 | 0.9330 | 0.6590 | 0.8607 | 0.0876 | 0.8127 | 0.9066 | 0.6045 | 0.7917 | 0.5603 | 0.6283 | 0.0844 | 0.7159 | 0.6390 | 0.5737 |
| 0.5591 | 4.16 | 1540 | 0.5385 | 0.6038 | 0.7106 | 0.8364 | 0.9136 | 0.6978 | 0.7744 | 0.1493 | 0.8992 | 0.8430 | 0.6971 | 0.8240 | 0.5594 | 0.6594 | 0.1425 | 0.7283 | 0.6668 | 0.6462 |
| 0.536 | 4.22 | 1560 | 0.6030 | 0.5814 | 0.7128 | 0.8229 | 0.8963 | 0.7285 | 0.8589 | 0.1084 | 0.8596 | 0.9171 | 0.6206 | 0.8224 | 0.5719 | 0.6460 | 0.1042 | 0.7128 | 0.6234 | 0.5890 |
| 1.0689 | 4.27 | 1580 | 0.5964 | 0.5930 | 0.7215 | 0.8262 | 0.9036 | 0.7625 | 0.8329 | 0.1609 | 0.8663 | 0.9100 | 0.6144 | 0.8191 | 0.5807 | 0.6749 | 0.1523 | 0.7192 | 0.6189 | 0.5861 |
| 0.2286 | 4.32 | 1600 | 0.5731 | 0.6002 | 0.7168 | 0.8319 | 0.9089 | 0.7182 | 0.8832 | 0.1414 | 0.8752 | 0.8408 | 0.6502 | 0.8171 | 0.5893 | 0.6404 | 0.1364 | 0.7279 | 0.6738 | 0.6166 |
| 0.4283 | 4.38 | 1620 | 0.5744 | 0.6147 | 0.7181 | 0.8372 | 0.8998 | 0.6260 | 0.8260 | 0.2497 | 0.9142 | 0.8480 | 0.6631 | 0.8316 | 0.5335 | 0.6976 | 0.2223 | 0.7171 | 0.6660 | 0.6351 |
| 0.4222 | 4.43 | 1640 | 0.5881 | 0.6014 | 0.6982 | 0.8337 | 0.9133 | 0.6604 | 0.8085 | 0.1416 | 0.9237 | 0.8171 | 0.6224 | 0.8244 | 0.5747 | 0.6702 | 0.1357 | 0.7182 | 0.6822 | 0.6041 |
| 0.7353 | 4.49 | 1660 | 0.5441 | 0.6086 | 0.7291 | 0.8298 | 0.9064 | 0.7696 | 0.8084 | 0.2185 | 0.8724 | 0.8933 | 0.6352 | 0.8266 | 0.6096 | 0.6655 | 0.2029 | 0.7105 | 0.6564 | 0.5887 |
| 0.3957 | 4.54 | 1680 | 0.6038 | 0.5958 | 0.7275 | 0.8192 | 0.8897 | 0.7436 | 0.8966 | 0.2666 | 0.8646 | 0.8630 | 0.5688 | 0.8015 | 0.5760 | 0.6355 | 0.2409 | 0.7136 | 0.6558 | 0.5474 |
| 0.2487 | 4.59 | 1700 | 0.5658 | 0.6187 | 0.7409 | 0.8320 | 0.9057 | 0.7238 | 0.8779 | 0.3069 | 0.8613 | 0.8739 | 0.6365 | 0.8163 | 0.6037 | 0.6622 | 0.2484 | 0.7229 | 0.6738 | 0.6033 |
| 0.3008 | 4.65 | 1720 | 0.5535 | 0.6035 | 0.7189 | 0.8289 | 0.9121 | 0.7453 | 0.7740 | 0.2170 | 0.8902 | 0.8903 | 0.6032 | 0.8225 | 0.5837 | 0.6813 | 0.1916 | 0.7119 | 0.6491 | 0.5841 |
| 0.6365 | 4.7 | 1740 | 0.5208 | 0.6136 | 0.7279 | 0.8371 | 0.9263 | 0.7461 | 0.8308 | 0.1831 | 0.8638 | 0.8811 | 0.6639 | 0.8202 | 0.6155 | 0.6586 | 0.1628 | 0.7354 | 0.6755 | 0.6269 |
| 0.4279 | 4.76 | 1760 | 0.6134 | 0.5704 | 0.6952 | 0.8183 | 0.9179 | 0.6845 | 0.8761 | 0.1342 | 0.8760 | 0.8668 | 0.5109 | 0.8247 | 0.5764 | 0.6442 | 0.1245 | 0.7225 | 0.5997 | 0.5010 |
| 0.6908 | 4.81 | 1780 | 0.5553 | 0.6059 | 0.7304 | 0.8273 | 0.9250 | 0.7461 | 0.8168 | 0.2998 | 0.8635 | 0.9004 | 0.5613 | 0.8287 | 0.6168 | 0.6874 | 0.2536 | 0.7293 | 0.5799 | 0.5453 |
| 0.5609 | 4.86 | 1800 | 0.5144 | 0.6264 | 0.7445 | 0.8389 | 0.9163 | 0.7618 | 0.8524 | 0.3185 | 0.8861 | 0.8515 | 0.6247 | 0.8349 | 0.6154 | 0.7107 | 0.2581 | 0.7332 | 0.6332 | 0.5991 |
| 1.0128 | 4.92 | 1820 | 0.5699 | 0.6074 | 0.7300 | 0.8298 | 0.9006 | 0.7923 | 0.8483 | 0.2638 | 0.9048 | 0.8210 | 0.5789 | 0.8302 | 0.6199 | 0.6829 | 0.2303 | 0.7278 | 0.5999 | 0.5610 |
| 0.516 | 4.97 | 1840 | 0.5578 | 0.6022 | 0.7351 | 0.8286 | 0.9112 | 0.7915 | 0.8450 | 0.2377 | 0.8619 | 0.9054 | 0.5928 | 0.8346 | 0.6146 | 0.6743 | 0.1882 | 0.7268 | 0.6007 | 0.5763 |
| 0.3054 | 5.03 | 1860 | 0.5368 | 0.6154 | 0.7584 | 0.8301 | 0.9143 | 0.7967 | 0.8678 | 0.4105 | 0.8507 | 0.8955 | 0.5728 | 0.8363 | 0.6110 | 0.6948 | 0.2822 | 0.7338 | 0.5973 | 0.5523 |
| 0.6332 | 5.08 | 1880 | 0.5266 | 0.6299 | 0.7423 | 0.8414 | 0.9295 | 0.7338 | 0.8080 | 0.3166 | 0.8789 | 0.8939 | 0.6356 | 0.8371 | 0.6080 | 0.6962 | 0.2749 | 0.7321 | 0.6483 | 0.6128 |
| 0.4124 | 5.14 | 1900 | 0.5191 | 0.6227 | 0.7240 | 0.8400 | 0.9238 | 0.6855 | 0.7834 | 0.2553 | 0.8945 | 0.8449 | 0.6803 | 0.8282 | 0.5864 | 0.6731 | 0.2227 | 0.7297 | 0.6979 | 0.6208 |
| 0.3046 | 5.19 | 1920 | 0.5244 | 0.6272 | 0.7438 | 0.8437 | 0.9192 | 0.7810 | 0.8585 | 0.2385 | 0.8838 | 0.8707 | 0.6552 | 0.8372 | 0.6193 | 0.6793 | 0.1982 | 0.7389 | 0.6853 | 0.6323 |
| 0.5471 | 5.24 | 1940 | 0.4855 | 0.6292 | 0.7565 | 0.8412 | 0.8930 | 0.8240 | 0.8479 | 0.2628 | 0.8820 | 0.9020 | 0.6839 | 0.8266 | 0.6157 | 0.6929 | 0.2276 | 0.7393 | 0.6698 | 0.6326 |
| 0.2924 | 5.3 | 1960 | 0.5475 | 0.6145 | 0.7243 | 0.8377 | 0.9260 | 0.6746 | 0.8684 | 0.2452 | 0.8921 | 0.8872 | 0.5767 | 0.8220 | 0.5689 | 0.6825 | 0.2239 | 0.7409 | 0.6992 | 0.5639 |
| 0.7133 | 5.35 | 1980 | 0.4943 | 0.6401 | 0.7533 | 0.8468 | 0.9030 | 0.7853 | 0.8514 | 0.2992 | 0.9117 | 0.8727 | 0.6501 | 0.8375 | 0.6315 | 0.7148 | 0.2638 | 0.7475 | 0.6811 | 0.6041 |
| 0.3775 | 5.41 | 2000 | 0.5023 | 0.6105 | 0.7239 | 0.8412 | 0.9024 | 0.7428 | 0.8539 | 0.1445 | 0.9132 | 0.8469 | 0.6636 | 0.8286 | 0.6235 | 0.6728 | 0.1400 | 0.7618 | 0.6342 | 0.6125 |
| 0.8475 | 5.46 | 2020 | 0.5247 | 0.6125 | 0.7384 | 0.8312 | 0.8990 | 0.7531 | 0.8370 | 0.2787 | 0.8786 | 0.9103 | 0.6121 | 0.8195 | 0.6126 | 0.7011 | 0.2521 | 0.7470 | 0.5952 | 0.5598 |
| 0.2725 | 5.51 | 2040 | 0.5264 | 0.6263 | 0.7294 | 0.8445 | 0.9250 | 0.7440 | 0.8590 | 0.2303 | 0.9168 | 0.8122 | 0.6183 | 0.8321 | 0.6192 | 0.6931 | 0.2099 | 0.7482 | 0.6815 | 0.5999 |
| 0.5317 | 5.57 | 2060 | 0.5177 | 0.6208 | 0.7396 | 0.8372 | 0.9330 | 0.7005 | 0.8587 | 0.2808 | 0.8339 | 0.8877 | 0.6823 | 0.8095 | 0.5866 | 0.6802 | 0.2380 | 0.7451 | 0.6555 | 0.6306 |
| 0.6395 | 5.62 | 2080 | 0.5292 | 0.6252 | 0.7410 | 0.8365 | 0.8861 | 0.7238 | 0.8425 | 0.3135 | 0.9041 | 0.8495 | 0.6674 | 0.8211 | 0.6161 | 0.6870 | 0.2707 | 0.7388 | 0.6309 | 0.6120 |
| 0.3586 | 5.68 | 2100 | 0.4814 | 0.6412 | 0.7579 | 0.8492 | 0.9053 | 0.8220 | 0.8115 | 0.2991 | 0.9051 | 0.8471 | 0.7149 | 0.8402 | 0.6208 | 0.6996 | 0.2540 | 0.7490 | 0.6618 | 0.6634 |
| 0.3127 | 5.73 | 2120 | 0.4579 | 0.6571 | 0.7653 | 0.8566 | 0.9160 | 0.8202 | 0.8085 | 0.3566 | 0.9232 | 0.8290 | 0.7034 | 0.8397 | 0.6271 | 0.7127 | 0.2927 | 0.7648 | 0.6997 | 0.6628 |
| 0.6651 | 5.78 | 2140 | 0.5767 | 0.6326 | 0.7389 | 0.8437 | 0.9129 | 0.7090 | 0.8142 | 0.3383 | 0.9263 | 0.8663 | 0.6056 | 0.8355 | 0.5889 | 0.7222 | 0.2958 | 0.7460 | 0.6529 | 0.5868 |
| 0.2858 | 5.84 | 2160 | 0.5401 | 0.6216 | 0.7492 | 0.8346 | 0.9231 | 0.6579 | 0.8866 | 0.3958 | 0.8346 | 0.9036 | 0.6429 | 0.8273 | 0.5633 | 0.6981 | 0.3002 | 0.7283 | 0.6183 | 0.6156 |
| 0.2566 | 5.89 | 2180 | 0.5070 | 0.6388 | 0.7608 | 0.8433 | 0.9055 | 0.7782 | 0.8674 | 0.3469 | 0.8775 | 0.8787 | 0.6715 | 0.8361 | 0.6347 | 0.7050 | 0.2857 | 0.7392 | 0.6408 | 0.6301 |
| 0.4278 | 5.95 | 2200 | 0.5319 | 0.6431 | 0.7485 | 0.8506 | 0.8914 | 0.7504 | 0.8633 | 0.2503 | 0.9239 | 0.8485 | 0.7118 | 0.8342 | 0.6068 | 0.7183 | 0.2295 | 0.7408 | 0.6970 | 0.6752 |
| 0.3374 | 6.0 | 2220 | 0.5220 | 0.6446 | 0.7587 | 0.8504 | 0.9149 | 0.7802 | 0.8598 | 0.3481 | 0.9145 | 0.8635 | 0.6300 | 0.8448 | 0.6248 | 0.7057 | 0.3009 | 0.7573 | 0.6588 | 0.6198 |
| 0.4162 | 6.05 | 2240 | 0.5373 | 0.6312 | 0.7413 | 0.8445 | 0.9082 | 0.7615 | 0.8502 | 0.2900 | 0.9255 | 0.8356 | 0.6185 | 0.8390 | 0.6241 | 0.7017 | 0.2609 | 0.7497 | 0.6446 | 0.5982 |
| 0.3659 | 6.11 | 2260 | 0.5100 | 0.6503 | 0.7555 | 0.8558 | 0.9271 | 0.7673 | 0.8519 | 0.3182 | 0.9162 | 0.8447 | 0.6630 | 0.8468 | 0.6269 | 0.7024 | 0.2766 | 0.7626 | 0.6856 | 0.6513 |
| 0.3019 | 6.16 | 2280 | 0.5076 | 0.6437 | 0.7600 | 0.8502 | 0.9256 | 0.7714 | 0.8497 | 0.3067 | 0.8644 | 0.8754 | 0.7266 | 0.8413 | 0.6254 | 0.6728 | 0.2581 | 0.7460 | 0.6784 | 0.6838 |
| 0.419 | 6.22 | 2300 | 0.5132 | 0.6403 | 0.7579 | 0.8483 | 0.9121 | 0.7802 | 0.8602 | 0.3012 | 0.8819 | 0.8600 | 0.7096 | 0.8394 | 0.6169 | 0.6742 | 0.2599 | 0.7437 | 0.6698 | 0.6782 |
| 0.3698 | 6.27 | 2320 | 0.5154 | 0.6424 | 0.7488 | 0.8505 | 0.9401 | 0.7680 | 0.8024 | 0.3329 | 0.9022 | 0.8523 | 0.6434 | 0.8390 | 0.6141 | 0.6964 | 0.2846 | 0.7549 | 0.6732 | 0.6348 |
| 0.3336 | 6.32 | 2340 | 0.5687 | 0.6079 | 0.7314 | 0.8337 | 0.9302 | 0.7395 | 0.8798 | 0.2330 | 0.8582 | 0.8943 | 0.5849 | 0.8411 | 0.6169 | 0.6405 | 0.2012 | 0.7290 | 0.6507 | 0.5757 |
| 0.3567 | 6.38 | 2360 | 0.5166 | 0.6322 | 0.7639 | 0.8435 | 0.9016 | 0.8075 | 0.8436 | 0.3007 | 0.8602 | 0.9100 | 0.7236 | 0.8399 | 0.6166 | 0.6671 | 0.2515 | 0.7433 | 0.6095 | 0.6972 |
| 0.4141 | 6.43 | 2380 | 0.4746 | 0.6610 | 0.7868 | 0.8559 | 0.9129 | 0.8145 | 0.8264 | 0.4202 | 0.8670 | 0.9008 | 0.7660 | 0.8423 | 0.6173 | 0.6954 | 0.3593 | 0.7663 | 0.6171 | 0.7296 |
| 1.0648 | 6.49 | 2400 | 0.4916 | 0.6551 | 0.7625 | 0.8531 | 0.9221 | 0.7768 | 0.8518 | 0.3922 | 0.9069 | 0.7967 | 0.6909 | 0.8407 | 0.6314 | 0.7027 | 0.3444 | 0.7561 | 0.6446 | 0.6659 |
| 0.3123 | 6.54 | 2420 | 0.4354 | 0.6802 | 0.7896 | 0.8663 | 0.8954 | 0.7670 | 0.8441 | 0.4503 | 0.9090 | 0.8037 | 0.8579 | 0.8356 | 0.6152 | 0.7331 | 0.3740 | 0.7816 | 0.6607 | 0.7611 |
| 0.3032 | 6.59 | 2440 | 0.4324 | 0.6820 | 0.7943 | 0.8670 | 0.9154 | 0.7967 | 0.8428 | 0.4614 | 0.8942 | 0.8423 | 0.8070 | 0.8411 | 0.6355 | 0.7143 | 0.3655 | 0.7800 | 0.6673 | 0.7703 |
| 0.4145 | 6.65 | 2460 | 0.5008 | 0.6531 | 0.7604 | 0.8555 | 0.9128 | 0.7721 | 0.8558 | 0.3218 | 0.9130 | 0.8410 | 0.7061 | 0.8412 | 0.6222 | 0.7058 | 0.2820 | 0.7575 | 0.6801 | 0.6831 |
| 0.241 | 6.7 | 2480 | 0.5001 | 0.6470 | 0.7684 | 0.8514 | 0.9097 | 0.8170 | 0.8686 | 0.3234 | 0.8854 | 0.8659 | 0.7087 | 0.8413 | 0.6228 | 0.7038 | 0.2625 | 0.7491 | 0.6655 | 0.6840 |
| 0.5881 | 6.76 | 2500 | 0.4669 | 0.6416 | 0.7549 | 0.8518 | 0.9329 | 0.8055 | 0.8571 | 0.2522 | 0.8717 | 0.8462 | 0.7189 | 0.8367 | 0.6359 | 0.6855 | 0.2267 | 0.7549 | 0.6625 | 0.6889 |
| 0.6851 | 6.81 | 2520 | 0.5335 | 0.6332 | 0.7561 | 0.8480 | 0.9172 | 0.8463 | 0.8290 | 0.2526 | 0.8877 | 0.8747 | 0.6852 | 0.8404 | 0.6112 | 0.6837 | 0.2164 | 0.7485 | 0.6639 | 0.6686 |
| 0.3773 | 6.86 | 2540 | 0.5191 | 0.6317 | 0.7559 | 0.8453 | 0.9217 | 0.7878 | 0.8746 | 0.2958 | 0.8702 | 0.8793 | 0.6617 | 0.8440 | 0.6182 | 0.6861 | 0.2415 | 0.7457 | 0.6392 | 0.6474 |
| 0.5092 | 6.92 | 2560 | 0.4745 | 0.6505 | 0.7763 | 0.8521 | 0.9234 | 0.8219 | 0.8182 | 0.3888 | 0.8668 | 0.8939 | 0.7211 | 0.8481 | 0.6088 | 0.6894 | 0.3175 | 0.7488 | 0.6412 | 0.6999 |
| 0.3652 | 6.97 | 2580 | 0.4222 | 0.6749 | 0.7796 | 0.8686 | 0.9326 | 0.7960 | 0.8283 | 0.3546 | 0.8916 | 0.8440 | 0.8104 | 0.8442 | 0.6262 | 0.7074 | 0.3021 | 0.7813 | 0.6852 | 0.7777 |
| 0.3016 | 7.03 | 2600 | 0.4632 | 0.6570 | 0.7702 | 0.8602 | 0.9343 | 0.8038 | 0.8335 | 0.3145 | 0.8827 | 0.8947 | 0.7276 | 0.8449 | 0.6266 | 0.6963 | 0.2810 | 0.7739 | 0.6594 | 0.7169 |
| 0.9354 | 7.08 | 2620 | 0.4494 | 0.6551 | 0.7692 | 0.8545 | 0.9277 | 0.7874 | 0.8065 | 0.3745 | 0.8844 | 0.8996 | 0.7043 | 0.8435 | 0.6262 | 0.7053 | 0.3194 | 0.7577 | 0.6523 | 0.6814 |
| 0.8554 | 7.14 | 2640 | 0.4588 | 0.6492 | 0.7579 | 0.8527 | 0.9130 | 0.7053 | 0.8017 | 0.4151 | 0.9105 | 0.8226 | 0.7374 | 0.8395 | 0.5736 | 0.7068 | 0.3074 | 0.7560 | 0.6831 | 0.6783 |
| 0.1009 | 7.19 | 2660 | 0.4967 | 0.6422 | 0.7690 | 0.8439 | 0.9088 | 0.8026 | 0.8285 | 0.3227 | 0.8242 | 0.8732 | 0.8231 | 0.8260 | 0.6197 | 0.6833 | 0.2669 | 0.7236 | 0.6736 | 0.7024 |
| 0.5878 | 7.24 | 2680 | 0.4940 | 0.6499 | 0.7592 | 0.8555 | 0.9238 | 0.7939 | 0.8104 | 0.3196 | 0.9069 | 0.8481 | 0.7119 | 0.8408 | 0.6032 | 0.6907 | 0.2835 | 0.7620 | 0.6881 | 0.6809 |
| 0.3527 | 7.3 | 2700 | 0.4924 | 0.6378 | 0.7595 | 0.8482 | 0.9264 | 0.8187 | 0.8311 | 0.2991 | 0.8702 | 0.8720 | 0.6992 | 0.8383 | 0.6033 | 0.6794 | 0.2624 | 0.7467 | 0.6595 | 0.6750 |
| 0.3733 | 7.35 | 2720 | 0.5420 | 0.6321 | 0.7384 | 0.8446 | 0.9223 | 0.7199 | 0.8052 | 0.3394 | 0.9110 | 0.8042 | 0.6671 | 0.8367 | 0.5826 | 0.6743 | 0.2822 | 0.7412 | 0.6629 | 0.6450 |
| 0.2743 | 7.41 | 2740 | 0.5190 | 0.6463 | 0.7655 | 0.8483 | 0.9182 | 0.7957 | 0.8177 | 0.3926 | 0.8902 | 0.8732 | 0.6707 | 0.8416 | 0.6282 | 0.7044 | 0.3097 | 0.7491 | 0.6528 | 0.6385 |
| 0.6321 | 7.46 | 2760 | 0.5105 | 0.6427 | 0.7447 | 0.8529 | 0.9358 | 0.7341 | 0.8344 | 0.2998 | 0.9051 | 0.8230 | 0.6807 | 0.8437 | 0.6225 | 0.6947 | 0.2592 | 0.7593 | 0.6632 | 0.6567 |
| 0.7369 | 7.51 | 2780 | 0.5156 | 0.6364 | 0.7543 | 0.8434 | 0.9160 | 0.7795 | 0.8035 | 0.3590 | 0.8889 | 0.8646 | 0.6685 | 0.8289 | 0.6335 | 0.6704 | 0.3000 | 0.7561 | 0.6414 | 0.6245 |
| 0.2981 | 7.57 | 2800 | 0.5989 | 0.6172 | 0.7461 | 0.8338 | 0.8977 | 0.6911 | 0.8723 | 0.3880 | 0.8857 | 0.8817 | 0.6059 | 0.8271 | 0.5719 | 0.6510 | 0.3053 | 0.7454 | 0.6301 | 0.5892 |
| 0.4012 | 7.62 | 2820 | 0.5105 | 0.6539 | 0.7702 | 0.8487 | 0.9265 | 0.8119 | 0.7934 | 0.4344 | 0.8756 | 0.8344 | 0.7152 | 0.8218 | 0.6226 | 0.6768 | 0.3363 | 0.7478 | 0.6871 | 0.6846 |
| 0.3812 | 7.68 | 2840 | 0.5101 | 0.6602 | 0.7640 | 0.8547 | 0.9132 | 0.7615 | 0.7728 | 0.4581 | 0.9319 | 0.7872 | 0.7229 | 0.8344 | 0.6247 | 0.6867 | 0.3336 | 0.7610 | 0.6983 | 0.6824 |
| 2.1456 | 7.73 | 2860 | 0.5119 | 0.6437 | 0.7641 | 0.8458 | 0.9168 | 0.7538 | 0.8622 | 0.3724 | 0.8550 | 0.8562 | 0.7322 | 0.8331 | 0.6207 | 0.6904 | 0.3005 | 0.7397 | 0.6531 | 0.6685 |
| 0.3138 | 7.78 | 2880 | 0.5153 | 0.6446 | 0.7572 | 0.8519 | 0.9389 | 0.7837 | 0.8490 | 0.3067 | 0.8751 | 0.8660 | 0.6808 | 0.8358 | 0.6323 | 0.6872 | 0.2656 | 0.7627 | 0.6731 | 0.6553 |
| 0.3975 | 7.84 | 2900 | 0.4575 | 0.6640 | 0.7735 | 0.8570 | 0.9125 | 0.7619 | 0.8285 | 0.3969 | 0.8894 | 0.8522 | 0.7731 | 0.8417 | 0.6410 | 0.7047 | 0.3399 | 0.7579 | 0.6468 | 0.7160 |
| 0.138 | 7.89 | 2920 | 0.4832 | 0.6531 | 0.7794 | 0.8500 | 0.9183 | 0.8233 | 0.8272 | 0.4431 | 0.8725 | 0.8669 | 0.7047 | 0.8386 | 0.6239 | 0.6978 | 0.3327 | 0.7489 | 0.6565 | 0.6735 |
| 1.2288 | 7.95 | 2940 | 0.5300 | 0.6530 | 0.7646 | 0.8526 | 0.9186 | 0.8154 | 0.7786 | 0.3941 | 0.9151 | 0.8382 | 0.6919 | 0.8355 | 0.6158 | 0.6870 | 0.3192 | 0.7584 | 0.6955 | 0.6596 |
| 0.2467 | 8.0 | 2960 | 0.4991 | 0.6630 | 0.7906 | 0.8548 | 0.9189 | 0.8304 | 0.8237 | 0.4906 | 0.8798 | 0.8931 | 0.6975 | 0.8475 | 0.6185 | 0.7209 | 0.3837 | 0.7599 | 0.6494 | 0.6610 |
| 0.4246 | 8.05 | 2980 | 0.5756 | 0.6489 | 0.7639 | 0.8513 | 0.9129 | 0.7837 | 0.8474 | 0.3609 | 0.8986 | 0.8498 | 0.6938 | 0.8375 | 0.6280 | 0.6816 | 0.2919 | 0.7553 | 0.6776 | 0.6706 |
| 0.6102 | 8.11 | 3000 | 0.5444 | 0.6359 | 0.7444 | 0.8520 | 0.9323 | 0.7862 | 0.8062 | 0.2210 | 0.8929 | 0.8628 | 0.7094 | 0.8397 | 0.6343 | 0.6563 | 0.2024 | 0.7613 | 0.6760 | 0.6813 |
| 0.5901 | 8.16 | 3020 | 0.5296 | 0.6434 | 0.7519 | 0.8538 | 0.9221 | 0.8084 | 0.8229 | 0.2617 | 0.9094 | 0.8298 | 0.7092 | 0.8441 | 0.6404 | 0.6818 | 0.2361 | 0.7613 | 0.6664 | 0.6739 |
| 0.7706 | 8.22 | 3040 | 0.5710 | 0.6410 | 0.7500 | 0.8467 | 0.9227 | 0.7546 | 0.8326 | 0.3445 | 0.8991 | 0.8377 | 0.6586 | 0.8363 | 0.6332 | 0.6955 | 0.2874 | 0.7468 | 0.6499 | 0.6377 |
| 0.2613 | 8.27 | 3060 | 0.4850 | 0.6706 | 0.7869 | 0.8569 | 0.9173 | 0.7762 | 0.8292 | 0.5361 | 0.8933 | 0.8203 | 0.7362 | 0.8406 | 0.6317 | 0.7262 | 0.3816 | 0.7588 | 0.6762 | 0.6791 |
| 0.3787 | 8.32 | 3080 | 0.5123 | 0.6724 | 0.7794 | 0.8608 | 0.9303 | 0.7850 | 0.8282 | 0.4586 | 0.9080 | 0.8630 | 0.6827 | 0.8453 | 0.6354 | 0.7207 | 0.3831 | 0.7686 | 0.6930 | 0.6607 |
| 0.2027 | 8.38 | 3100 | 0.5467 | 0.6577 | 0.7658 | 0.8547 | 0.9104 | 0.7148 | 0.8596 | 0.4194 | 0.9114 | 0.8503 | 0.6949 | 0.8470 | 0.5904 | 0.7081 | 0.3613 | 0.7506 | 0.6764 | 0.6699 |
| 0.2585 | 8.43 | 3120 | 0.5285 | 0.6540 | 0.7727 | 0.8509 | 0.9137 | 0.7336 | 0.8450 | 0.4543 | 0.8851 | 0.8879 | 0.6896 | 0.8468 | 0.6090 | 0.6951 | 0.3664 | 0.7487 | 0.6517 | 0.6603 |
| 1.3011 | 8.49 | 3140 | 0.5199 | 0.6615 | 0.7847 | 0.8541 | 0.9062 | 0.8103 | 0.8696 | 0.4618 | 0.8940 | 0.8486 | 0.7024 | 0.8446 | 0.6277 | 0.7115 | 0.3608 | 0.7552 | 0.6605 | 0.6703 |
| 0.4755 | 8.54 | 3160 | 0.4897 | 0.6631 | 0.7860 | 0.8533 | 0.9125 | 0.8131 | 0.8255 | 0.4825 | 0.8793 | 0.8535 | 0.7360 | 0.8390 | 0.6284 | 0.7110 | 0.3724 | 0.7533 | 0.6619 | 0.6759 |
| 1.0989 | 8.59 | 3180 | 0.5838 | 0.6376 | 0.7531 | 0.8451 | 0.9081 | 0.7302 | 0.8004 | 0.4229 | 0.9152 | 0.8258 | 0.6692 | 0.8425 | 0.5774 | 0.7018 | 0.3407 | 0.7489 | 0.6215 | 0.6307 |
| 0.2332 | 8.65 | 3200 | 0.4615 | 0.6701 | 0.7911 | 0.8600 | 0.9218 | 0.7880 | 0.8669 | 0.4674 | 0.8654 | 0.8479 | 0.7801 | 0.8409 | 0.6291 | 0.7166 | 0.3506 | 0.7689 | 0.6726 | 0.7122 |
| 0.8864 | 8.7 | 3220 | 0.5110 | 0.6600 | 0.7710 | 0.8540 | 0.9048 | 0.7695 | 0.8619 | 0.4088 | 0.9046 | 0.8200 | 0.7270 | 0.8333 | 0.6345 | 0.6866 | 0.3386 | 0.7581 | 0.6790 | 0.6897 |
| 0.1611 | 8.76 | 3240 | 0.4700 | 0.6711 | 0.7814 | 0.8612 | 0.9116 | 0.7684 | 0.8589 | 0.4298 | 0.9013 | 0.8437 | 0.7561 | 0.8420 | 0.6227 | 0.7142 | 0.3619 | 0.7678 | 0.6764 | 0.7128 |
| 0.4228 | 8.81 | 3260 | 0.4747 | 0.6717 | 0.7968 | 0.8588 | 0.9180 | 0.8397 | 0.8264 | 0.4786 | 0.8719 | 0.8969 | 0.7463 | 0.8504 | 0.6326 | 0.7152 | 0.3934 | 0.7592 | 0.6400 | 0.7109 |
| 0.2511 | 8.86 | 3280 | 0.5220 | 0.6704 | 0.7833 | 0.8600 | 0.9261 | 0.8208 | 0.8527 | 0.4542 | 0.9033 | 0.8320 | 0.6943 | 0.8505 | 0.6246 | 0.7248 | 0.3880 | 0.7629 | 0.6744 | 0.6678 |
| 0.2103 | 8.92 | 3300 | 0.4626 | 0.6784 | 0.7827 | 0.8642 | 0.9136 | 0.7540 | 0.8653 | 0.4562 | 0.9063 | 0.7931 | 0.7904 | 0.8421 | 0.6237 | 0.7221 | 0.3783 | 0.7716 | 0.6970 | 0.7139 |
| 0.3643 | 8.97 | 3320 | 0.4803 | 0.6726 | 0.7760 | 0.8625 | 0.9124 | 0.7542 | 0.8562 | 0.3939 | 0.9034 | 0.8287 | 0.7829 | 0.8432 | 0.6269 | 0.7278 | 0.3554 | 0.7672 | 0.6791 | 0.7084 |
| 0.2641 | 9.03 | 3340 | 0.4765 | 0.6783 | 0.8001 | 0.8637 | 0.9147 | 0.8312 | 0.8584 | 0.4151 | 0.8551 | 0.9011 | 0.8251 | 0.8528 | 0.6453 | 0.7192 | 0.3693 | 0.7606 | 0.6432 | 0.7575 |
| 0.2143 | 9.08 | 3360 | 0.5518 | 0.6610 | 0.7748 | 0.8540 | 0.9158 | 0.7887 | 0.8516 | 0.4334 | 0.9013 | 0.8551 | 0.6778 | 0.8508 | 0.6459 | 0.7176 | 0.3734 | 0.7556 | 0.6398 | 0.6439 |
| 0.3505 | 9.14 | 3380 | 0.5120 | 0.6642 | 0.7757 | 0.8588 | 0.9292 | 0.7881 | 0.8391 | 0.4038 | 0.8775 | 0.8161 | 0.7764 | 0.8389 | 0.6293 | 0.7024 | 0.3511 | 0.7709 | 0.6456 | 0.7114 |
| 0.358 | 9.19 | 3400 | 0.5251 | 0.6604 | 0.7720 | 0.8579 | 0.9340 | 0.7911 | 0.8394 | 0.4064 | 0.8972 | 0.8521 | 0.6837 | 0.8526 | 0.6403 | 0.7061 | 0.3513 | 0.7708 | 0.6472 | 0.6547 |
| 0.5739 | 9.24 | 3420 | 0.4954 | 0.6654 | 0.7883 | 0.8615 | 0.9251 | 0.8190 | 0.8580 | 0.4015 | 0.8678 | 0.8745 | 0.7726 | 0.8513 | 0.6423 | 0.6940 | 0.3262 | 0.7799 | 0.6355 | 0.7285 |
| 0.3859 | 9.3 | 3440 | 0.5409 | 0.6563 | 0.7677 | 0.8556 | 0.9375 | 0.7684 | 0.8450 | 0.4151 | 0.8911 | 0.8357 | 0.6808 | 0.8483 | 0.6370 | 0.7071 | 0.3394 | 0.7688 | 0.6456 | 0.6483 |
| 0.2072 | 9.35 | 3460 | 0.4515 | 0.6701 | 0.7792 | 0.8644 | 0.9235 | 0.7975 | 0.8361 | 0.3910 | 0.9044 | 0.8436 | 0.7580 | 0.8473 | 0.6406 | 0.7065 | 0.3286 | 0.7822 | 0.6679 | 0.7177 |
| 0.2763 | 9.41 | 3480 | 0.4903 | 0.6651 | 0.7767 | 0.8597 | 0.9285 | 0.8032 | 0.8346 | 0.4003 | 0.8937 | 0.8548 | 0.7218 | 0.8446 | 0.6381 | 0.7099 | 0.3249 | 0.7675 | 0.6788 | 0.6920 |
| 0.4056 | 9.46 | 3500 | 0.4582 | 0.6714 | 0.7913 | 0.8648 | 0.9196 | 0.8358 | 0.8390 | 0.3835 | 0.8786 | 0.8930 | 0.7896 | 0.8485 | 0.6269 | 0.7106 | 0.3245 | 0.7766 | 0.6624 | 0.7503 |
| 0.2243 | 9.51 | 3520 | 0.5132 | 0.6559 | 0.7656 | 0.8591 | 0.9275 | 0.7915 | 0.8485 | 0.3016 | 0.8904 | 0.8661 | 0.7339 | 0.8451 | 0.6310 | 0.7043 | 0.2617 | 0.7657 | 0.6894 | 0.6945 |
| 0.7284 | 9.57 | 3540 | 0.4846 | 0.6554 | 0.7593 | 0.8617 | 0.9298 | 0.7302 | 0.8479 | 0.2907 | 0.8971 | 0.8715 | 0.7482 | 0.8547 | 0.5976 | 0.7054 | 0.2533 | 0.7619 | 0.7019 | 0.7130 |
| 0.3212 | 9.62 | 3560 | 0.4803 | 0.6572 | 0.7699 | 0.8608 | 0.9212 | 0.7555 | 0.8622 | 0.3283 | 0.8883 | 0.8770 | 0.7572 | 0.8590 | 0.5987 | 0.7006 | 0.2688 | 0.7570 | 0.6950 | 0.7215 |
| 0.6291 | 9.68 | 3580 | 0.4862 | 0.6426 | 0.7535 | 0.8544 | 0.9147 | 0.7223 | 0.8381 | 0.2837 | 0.8865 | 0.8410 | 0.7880 | 0.8526 | 0.5934 | 0.6839 | 0.2294 | 0.7511 | 0.6794 | 0.7087 |
| 0.3655 | 9.73 | 3600 | 0.4545 | 0.6705 | 0.7891 | 0.8621 | 0.8971 | 0.8076 | 0.8626 | 0.3888 | 0.8789 | 0.8207 | 0.8681 | 0.8355 | 0.6397 | 0.6816 | 0.3088 | 0.7717 | 0.6847 | 0.7717 |
| 0.2223 | 9.78 | 3620 | 0.4530 | 0.6666 | 0.7888 | 0.8596 | 0.9038 | 0.8096 | 0.8744 | 0.4158 | 0.8844 | 0.8551 | 0.7787 | 0.8421 | 0.6465 | 0.6691 | 0.3365 | 0.7757 | 0.6604 | 0.7361 |
| 0.2464 | 9.84 | 3640 | 0.5492 | 0.6501 | 0.7693 | 0.8513 | 0.9188 | 0.7944 | 0.8741 | 0.3862 | 0.8928 | 0.8657 | 0.6531 | 0.8540 | 0.6479 | 0.7151 | 0.3299 | 0.7584 | 0.6197 | 0.6259 |
| 0.3132 | 9.89 | 3660 | 0.4718 | 0.6706 | 0.7842 | 0.8630 | 0.9278 | 0.8222 | 0.8293 | 0.3615 | 0.8638 | 0.8602 | 0.8244 | 0.8415 | 0.6531 | 0.7033 | 0.3108 | 0.7700 | 0.6474 | 0.7678 |
| 0.3324 | 9.95 | 3680 | 0.4550 | 0.6790 | 0.7803 | 0.8673 | 0.9217 | 0.8007 | 0.8257 | 0.4419 | 0.9299 | 0.7736 | 0.7688 | 0.8515 | 0.6404 | 0.7304 | 0.3462 | 0.7750 | 0.6775 | 0.7321 |
| 0.2938 | 10.0 | 3700 | 0.4770 | 0.6700 | 0.8004 | 0.8599 | 0.9264 | 0.8356 | 0.8404 | 0.4655 | 0.8441 | 0.9064 | 0.7846 | 0.8502 | 0.6429 | 0.7106 | 0.3299 | 0.7600 | 0.6462 | 0.7503 |
| 0.1729 | 10.05 | 3720 | 0.5693 | 0.6432 | 0.7511 | 0.8483 | 0.9290 | 0.7376 | 0.8531 | 0.3331 | 0.8826 | 0.8375 | 0.6846 | 0.8417 | 0.6330 | 0.6959 | 0.2686 | 0.7390 | 0.6639 | 0.6601 |
| 0.2335 | 10.11 | 3740 | 0.5438 | 0.6523 | 0.7610 | 0.8543 | 0.9426 | 0.7742 | 0.8817 | 0.3151 | 0.8659 | 0.8432 | 0.7042 | 0.8419 | 0.6442 | 0.6913 | 0.2620 | 0.7497 | 0.6928 | 0.6843 |
| 0.2832 | 10.16 | 3760 | 0.5138 | 0.6525 | 0.7706 | 0.8527 | 0.9438 | 0.8356 | 0.7781 | 0.3821 | 0.8624 | 0.8700 | 0.7221 | 0.8392 | 0.6126 | 0.6875 | 0.3230 | 0.7502 | 0.6561 | 0.6986 |
| 0.8137 | 10.22 | 3780 | 0.5498 | 0.6492 | 0.7599 | 0.8514 | 0.9200 | 0.7925 | 0.8534 | 0.3559 | 0.9091 | 0.8304 | 0.6579 | 0.8508 | 0.6445 | 0.7176 | 0.3250 | 0.7553 | 0.6220 | 0.6292 |
| 0.3137 | 10.27 | 3800 | 0.5088 | 0.6593 | 0.7719 | 0.8540 | 0.9410 | 0.8104 | 0.8620 | 0.4019 | 0.8722 | 0.8296 | 0.6862 | 0.8435 | 0.6484 | 0.7093 | 0.3554 | 0.7551 | 0.6471 | 0.6563 |
| 0.2471 | 10.32 | 3820 | 0.5060 | 0.6601 | 0.7856 | 0.8546 | 0.9305 | 0.8251 | 0.8578 | 0.4243 | 0.8544 | 0.8923 | 0.7148 | 0.8498 | 0.6390 | 0.7031 | 0.3558 | 0.7563 | 0.6367 | 0.6798 |
| 0.2507 | 10.38 | 3840 | 0.5004 | 0.6596 | 0.7779 | 0.8572 | 0.9356 | 0.8184 | 0.8547 | 0.4060 | 0.8776 | 0.8508 | 0.7022 | 0.8528 | 0.6355 | 0.7072 | 0.3361 | 0.7627 | 0.6493 | 0.6736 |
| 0.2734 | 10.43 | 3860 | 0.5179 | 0.6519 | 0.7642 | 0.8567 | 0.9220 | 0.8118 | 0.8682 | 0.2989 | 0.8972 | 0.8345 | 0.7170 | 0.8491 | 0.6421 | 0.7026 | 0.2487 | 0.7605 | 0.6748 | 0.6852 |
| 0.9895 | 10.49 | 3880 | 0.4962 | 0.6658 | 0.7818 | 0.8615 | 0.9164 | 0.8324 | 0.8711 | 0.3679 | 0.8991 | 0.8569 | 0.7290 | 0.8500 | 0.6467 | 0.7104 | 0.2938 | 0.7691 | 0.6931 | 0.6973 |
| 0.1867 | 10.54 | 3900 | 0.4848 | 0.6646 | 0.7732 | 0.8621 | 0.9189 | 0.7909 | 0.8550 | 0.3523 | 0.9082 | 0.8533 | 0.7337 | 0.8511 | 0.6524 | 0.7081 | 0.2877 | 0.7739 | 0.6864 | 0.6926 |
| 0.2285 | 10.59 | 3920 | 0.4964 | 0.6639 | 0.7690 | 0.8601 | 0.9294 | 0.7393 | 0.8069 | 0.4343 | 0.9073 | 0.8280 | 0.7377 | 0.8440 | 0.6155 | 0.7073 | 0.3567 | 0.7764 | 0.6515 | 0.6956 |
| 0.236 | 10.65 | 3940 | 0.5185 | 0.6739 | 0.7955 | 0.8625 | 0.9266 | 0.8106 | 0.8428 | 0.4827 | 0.8763 | 0.8845 | 0.7446 | 0.8541 | 0.6558 | 0.7205 | 0.3622 | 0.7763 | 0.6455 | 0.7026 |
| 0.1239 | 10.7 | 3960 | 0.5523 | 0.6651 | 0.7828 | 0.8568 | 0.9286 | 0.7897 | 0.8435 | 0.4805 | 0.8873 | 0.8628 | 0.6874 | 0.8569 | 0.6587 | 0.7208 | 0.3616 | 0.7617 | 0.6427 | 0.6534 |
| 0.2032 | 10.76 | 3980 | 0.5506 | 0.6614 | 0.7776 | 0.8553 | 0.9275 | 0.7965 | 0.8530 | 0.4918 | 0.9019 | 0.7928 | 0.6798 | 0.8537 | 0.6437 | 0.7292 | 0.3746 | 0.7632 | 0.6240 | 0.6416 |
| 0.226 | 10.81 | 4000 | 0.4977 | 0.6652 | 0.7906 | 0.8569 | 0.9294 | 0.7910 | 0.8634 | 0.5039 | 0.8687 | 0.8779 | 0.7002 | 0.8540 | 0.6425 | 0.7169 | 0.3600 | 0.7622 | 0.6504 | 0.6706 |
| 0.2067 | 10.86 | 4020 | 0.5152 | 0.6573 | 0.7743 | 0.8513 | 0.9192 | 0.7888 | 0.8503 | 0.4305 | 0.8782 | 0.8423 | 0.7110 | 0.8364 | 0.6244 | 0.7229 | 0.3532 | 0.7514 | 0.6666 | 0.6465 |
| 0.4254 | 10.92 | 4040 | 0.4596 | 0.6791 | 0.8022 | 0.8614 | 0.9125 | 0.8033 | 0.8455 | 0.5592 | 0.8885 | 0.8584 | 0.7476 | 0.8421 | 0.6433 | 0.7377 | 0.3891 | 0.7717 | 0.6739 | 0.6958 |
| 1.076 | 10.97 | 4060 | 0.4386 | 0.6890 | 0.7967 | 0.8683 | 0.9162 | 0.7783 | 0.8235 | 0.5060 | 0.8973 | 0.8320 | 0.8238 | 0.8371 | 0.6368 | 0.7309 | 0.3817 | 0.7783 | 0.7000 | 0.7585 |
| 0.4622 | 11.03 | 4080 | 0.4688 | 0.6831 | 0.7961 | 0.8663 | 0.9228 | 0.7979 | 0.8488 | 0.4770 | 0.8826 | 0.8460 | 0.7975 | 0.8440 | 0.6515 | 0.7273 | 0.3719 | 0.7770 | 0.6573 | 0.7529 |
| 0.2557 | 11.08 | 4100 | 0.5033 | 0.6658 | 0.7796 | 0.8615 | 0.9334 | 0.8058 | 0.8427 | 0.4212 | 0.8923 | 0.8325 | 0.7292 | 0.8470 | 0.6434 | 0.7070 | 0.3484 | 0.7860 | 0.6294 | 0.6995 |
| 0.2339 | 11.14 | 4120 | 0.4985 | 0.6627 | 0.7835 | 0.8575 | 0.9314 | 0.8093 | 0.8638 | 0.4633 | 0.8814 | 0.8293 | 0.7056 | 0.8550 | 0.6525 | 0.7165 | 0.3499 | 0.7696 | 0.6218 | 0.6737 |
| 0.293 | 11.19 | 4140 | 0.5416 | 0.6486 | 0.7653 | 0.8508 | 0.9307 | 0.8219 | 0.8263 | 0.3641 | 0.8809 | 0.8411 | 0.6920 | 0.8436 | 0.6564 | 0.7103 | 0.3014 | 0.7591 | 0.6107 | 0.6587 |
| 0.1347 | 11.24 | 4160 | 0.4919 | 0.6628 | 0.7802 | 0.8581 | 0.9256 | 0.8205 | 0.8425 | 0.4267 | 0.8878 | 0.8205 | 0.7377 | 0.8457 | 0.6563 | 0.7114 | 0.3152 | 0.7709 | 0.6407 | 0.6992 |
| 0.3583 | 11.3 | 4180 | 0.4759 | 0.6615 | 0.7760 | 0.8565 | 0.9060 | 0.8063 | 0.8523 | 0.4017 | 0.9049 | 0.8172 | 0.7439 | 0.8435 | 0.6547 | 0.7142 | 0.3172 | 0.7643 | 0.6492 | 0.6876 |
| 0.4382 | 11.35 | 4200 | 0.6038 | 0.6373 | 0.7558 | 0.8421 | 0.9127 | 0.7383 | 0.8616 | 0.4178 | 0.8920 | 0.8279 | 0.6399 | 0.8332 | 0.6320 | 0.6805 | 0.3458 | 0.7562 | 0.6042 | 0.6096 |
| 0.3586 | 11.41 | 4220 | 0.5314 | 0.6627 | 0.7782 | 0.8553 | 0.9249 | 0.8193 | 0.8616 | 0.4531 | 0.8962 | 0.8018 | 0.6907 | 0.8483 | 0.6569 | 0.7091 | 0.3746 | 0.7638 | 0.6338 | 0.6521 |
| 0.2528 | 11.46 | 4240 | 0.5731 | 0.6546 | 0.7763 | 0.8495 | 0.9296 | 0.8141 | 0.8520 | 0.4677 | 0.8737 | 0.8220 | 0.6754 | 0.8366 | 0.6431 | 0.7088 | 0.3676 | 0.7566 | 0.6234 | 0.6460 |
| 0.4401 | 11.51 | 4260 | 0.5289 | 0.6641 | 0.7897 | 0.8533 | 0.9213 | 0.8162 | 0.8542 | 0.5106 | 0.8659 | 0.8265 | 0.7332 | 0.8398 | 0.6423 | 0.7196 | 0.3737 | 0.7539 | 0.6285 | 0.6911 |
| 0.1793 | 11.57 | 4280 | 0.5084 | 0.6584 | 0.7837 | 0.8504 | 0.9197 | 0.7662 | 0.8610 | 0.5191 | 0.8659 | 0.8455 | 0.7083 | 0.8411 | 0.6381 | 0.7032 | 0.3661 | 0.7500 | 0.6359 | 0.6740 |
| 0.4799 | 11.62 | 4300 | 0.5034 | 0.6746 | 0.8053 | 0.8576 | 0.9170 | 0.7807 | 0.8470 | 0.5406 | 0.8247 | 0.8734 | 0.8540 | 0.8432 | 0.6430 | 0.7224 | 0.3701 | 0.7474 | 0.6522 | 0.7442 |
| 0.1624 | 11.68 | 4320 | 0.4906 | 0.6740 | 0.7886 | 0.8598 | 0.9088 | 0.7923 | 0.8441 | 0.4827 | 0.8826 | 0.7731 | 0.8367 | 0.8399 | 0.6449 | 0.7167 | 0.3352 | 0.7557 | 0.6873 | 0.7381 |
| 0.8102 | 11.73 | 4340 | 0.5751 | 0.6489 | 0.7797 | 0.8484 | 0.9225 | 0.8260 | 0.8834 | 0.4228 | 0.8568 | 0.8642 | 0.6826 | 0.8541 | 0.6489 | 0.7003 | 0.3127 | 0.7414 | 0.6291 | 0.6557 |
| 0.276 | 11.78 | 4360 | 0.5836 | 0.6572 | 0.7753 | 0.8508 | 0.9281 | 0.7902 | 0.8354 | 0.5140 | 0.8948 | 0.8049 | 0.6599 | 0.8430 | 0.6425 | 0.7164 | 0.3771 | 0.7560 | 0.6329 | 0.6327 |
| 0.1517 | 11.84 | 4380 | 0.5328 | 0.6633 | 0.7821 | 0.8551 | 0.9274 | 0.8103 | 0.8505 | 0.4561 | 0.8747 | 0.8357 | 0.7202 | 0.8449 | 0.6465 | 0.7077 | 0.3596 | 0.7565 | 0.6448 | 0.6831 |
| 0.3974 | 11.89 | 4400 | 0.5615 | 0.6587 | 0.7745 | 0.8535 | 0.9407 | 0.8102 | 0.8532 | 0.4042 | 0.8589 | 0.8444 | 0.7100 | 0.8412 | 0.6467 | 0.7079 | 0.3426 | 0.7524 | 0.6433 | 0.6766 |
| 0.2477 | 11.95 | 4420 | 0.5036 | 0.6828 | 0.7966 | 0.8658 | 0.9258 | 0.8122 | 0.8544 | 0.4738 | 0.8794 | 0.8440 | 0.7865 | 0.8471 | 0.6419 | 0.7226 | 0.3875 | 0.7715 | 0.6759 | 0.7329 |
| 0.1876 | 12.0 | 4440 | 0.5161 | 0.6774 | 0.8080 | 0.8608 | 0.9253 | 0.8386 | 0.8543 | 0.5258 | 0.8468 | 0.8885 | 0.7765 | 0.8491 | 0.6436 | 0.7152 | 0.3906 | 0.7604 | 0.6463 | 0.7364 |
| 0.3552 | 12.05 | 4460 | 0.5186 | 0.6651 | 0.7778 | 0.8574 | 0.9117 | 0.7749 | 0.8590 | 0.4480 | 0.9008 | 0.8023 | 0.7483 | 0.8461 | 0.6384 | 0.7082 | 0.3417 | 0.7580 | 0.6591 | 0.7042 |
| 0.3803 | 12.11 | 4480 | 0.4803 | 0.6761 | 0.7897 | 0.8669 | 0.9237 | 0.8025 | 0.8526 | 0.4206 | 0.8850 | 0.8320 | 0.8112 | 0.8475 | 0.6370 | 0.7145 | 0.3249 | 0.7813 | 0.6757 | 0.7520 |
| 0.3355 | 12.16 | 4500 | 0.5312 | 0.6579 | 0.7699 | 0.8559 | 0.9315 | 0.7728 | 0.8423 | 0.3943 | 0.8790 | 0.8367 | 0.7328 | 0.8388 | 0.6299 | 0.7106 | 0.2987 | 0.7625 | 0.6824 | 0.6820 |
| 0.2417 | 12.22 | 4520 | 0.5646 | 0.6554 | 0.7789 | 0.8537 | 0.9142 | 0.8015 | 0.8827 | 0.4214 | 0.8845 | 0.8463 | 0.7018 | 0.8546 | 0.6449 | 0.7107 | 0.3123 | 0.7550 | 0.6418 | 0.6685 |
| 0.5121 | 12.27 | 4540 | 0.5256 | 0.6580 | 0.7809 | 0.8532 | 0.9073 | 0.7828 | 0.8720 | 0.4260 | 0.8725 | 0.8535 | 0.7526 | 0.8491 | 0.6504 | 0.7196 | 0.3252 | 0.7559 | 0.6362 | 0.6699 |
| 0.2514 | 12.32 | 4560 | 0.5088 | 0.6662 | 0.7933 | 0.8565 | 0.9103 | 0.8052 | 0.8638 | 0.4647 | 0.8684 | 0.8983 | 0.7422 | 0.8549 | 0.6506 | 0.7166 | 0.3664 | 0.7602 | 0.6327 | 0.6825 |
| 0.1052 | 12.38 | 4580 | 0.4722 | 0.6896 | 0.8055 | 0.8706 | 0.9056 | 0.8071 | 0.8511 | 0.4913 | 0.8924 | 0.8311 | 0.8599 | 0.8479 | 0.6509 | 0.7136 | 0.3808 | 0.7866 | 0.6746 | 0.7729 |
| 0.1715 | 12.43 | 4600 | 0.5683 | 0.6530 | 0.7754 | 0.8539 | 0.9251 | 0.8011 | 0.8864 | 0.3906 | 0.8757 | 0.8612 | 0.6881 | 0.8552 | 0.6512 | 0.7004 | 0.2957 | 0.7584 | 0.6524 | 0.6581 |
| 0.3604 | 12.49 | 4620 | 0.5680 | 0.6696 | 0.7885 | 0.8616 | 0.9308 | 0.8331 | 0.8639 | 0.4597 | 0.8946 | 0.8443 | 0.6931 | 0.8578 | 0.6440 | 0.7312 | 0.3553 | 0.7723 | 0.6691 | 0.6575 |
| 0.3714 | 12.54 | 4640 | 0.5835 | 0.6659 | 0.7884 | 0.8562 | 0.9224 | 0.8000 | 0.8512 | 0.4935 | 0.8794 | 0.8691 | 0.7033 | 0.8538 | 0.6472 | 0.7285 | 0.3717 | 0.7599 | 0.6454 | 0.6545 |
| 0.2263 | 12.59 | 4660 | 0.4759 | 0.6725 | 0.7893 | 0.8652 | 0.9259 | 0.7661 | 0.8610 | 0.4304 | 0.8656 | 0.8497 | 0.8266 | 0.8538 | 0.6425 | 0.7132 | 0.3036 | 0.7750 | 0.6634 | 0.7561 |
| 0.5225 | 12.65 | 4680 | 0.4786 | 0.6851 | 0.8043 | 0.8688 | 0.9180 | 0.7921 | 0.8680 | 0.4940 | 0.8808 | 0.8818 | 0.7950 | 0.8538 | 0.6470 | 0.7295 | 0.3847 | 0.7884 | 0.6532 | 0.7388 |
| 0.3626 | 12.7 | 4700 | 0.5585 | 0.6550 | 0.7612 | 0.8589 | 0.9307 | 0.6914 | 0.8602 | 0.3850 | 0.9027 | 0.8599 | 0.6985 | 0.8588 | 0.5957 | 0.7259 | 0.3158 | 0.7659 | 0.6579 | 0.6651 |
| 0.3352 | 12.76 | 4720 | 0.5811 | 0.6610 | 0.7714 | 0.8576 | 0.9286 | 0.6931 | 0.8372 | 0.4718 | 0.8974 | 0.8828 | 0.6887 | 0.8534 | 0.5920 | 0.7401 | 0.3678 | 0.7630 | 0.6525 | 0.6585 |
| 0.1431 | 12.81 | 4740 | 0.5148 | 0.6730 | 0.7917 | 0.8621 | 0.9251 | 0.8162 | 0.8604 | 0.5046 | 0.8997 | 0.8249 | 0.7111 | 0.8538 | 0.6535 | 0.7287 | 0.3494 | 0.7734 | 0.6723 | 0.6799 |
| 0.2278 | 12.86 | 4760 | 0.5648 | 0.6589 | 0.7866 | 0.8529 | 0.9235 | 0.7984 | 0.8661 | 0.4670 | 0.8616 | 0.8986 | 0.6910 | 0.8515 | 0.6571 | 0.7189 | 0.3448 | 0.7587 | 0.6227 | 0.6589 |
| 0.2733 | 12.92 | 4780 | 0.5890 | 0.6732 | 0.7910 | 0.8599 | 0.9260 | 0.8214 | 0.8534 | 0.5203 | 0.9015 | 0.8293 | 0.6848 | 0.8503 | 0.6511 | 0.7426 | 0.3901 | 0.7709 | 0.6560 | 0.6512 |
| 0.2281 | 12.97 | 4800 | 0.5588 | 0.6596 | 0.7686 | 0.8568 | 0.9229 | 0.7174 | 0.8451 | 0.4202 | 0.8968 | 0.8708 | 0.7069 | 0.8519 | 0.6191 | 0.7290 | 0.3404 | 0.7612 | 0.6532 | 0.6625 |
| 0.183 | 13.03 | 4820 | 0.5286 | 0.6607 | 0.7743 | 0.8578 | 0.9355 | 0.7726 | 0.8733 | 0.4067 | 0.8809 | 0.8563 | 0.6949 | 0.8523 | 0.6487 | 0.7186 | 0.3214 | 0.7671 | 0.6575 | 0.6593 |
| 0.2967 | 13.08 | 4840 | 0.5679 | 0.6615 | 0.7843 | 0.8564 | 0.9251 | 0.8120 | 0.8757 | 0.4203 | 0.8735 | 0.8922 | 0.6910 | 0.8546 | 0.6581 | 0.7157 | 0.3374 | 0.7639 | 0.6437 | 0.6574 |
| 0.2665 | 13.14 | 4860 | 0.5360 | 0.6636 | 0.7856 | 0.8584 | 0.9333 | 0.8339 | 0.8712 | 0.4552 | 0.8844 | 0.8341 | 0.6873 | 0.8544 | 0.6576 | 0.7082 | 0.3394 | 0.7732 | 0.6580 | 0.6542 |
| 0.1838 | 13.19 | 4880 | 0.5524 | 0.6748 | 0.7894 | 0.8623 | 0.9380 | 0.8202 | 0.8343 | 0.5153 | 0.9034 | 0.8439 | 0.6706 | 0.8562 | 0.6601 | 0.7390 | 0.3860 | 0.7759 | 0.6547 | 0.6517 |
| 0.4542 | 13.24 | 4900 | 0.4713 | 0.6811 | 0.7893 | 0.8673 | 0.9307 | 0.8204 | 0.8339 | 0.4459 | 0.9051 | 0.8505 | 0.7387 | 0.8562 | 0.6606 | 0.7316 | 0.3687 | 0.7802 | 0.6740 | 0.6964 |
| 0.1641 | 13.3 | 4920 | 0.4515 | 0.6862 | 0.8015 | 0.8679 | 0.9280 | 0.8041 | 0.8644 | 0.4573 | 0.8587 | 0.8722 | 0.8255 | 0.8481 | 0.6610 | 0.7254 | 0.3649 | 0.7742 | 0.6789 | 0.7509 |
| 0.3412 | 13.35 | 4940 | 0.5416 | 0.6607 | 0.7873 | 0.8550 | 0.9109 | 0.8503 | 0.8744 | 0.4282 | 0.8865 | 0.8621 | 0.6985 | 0.8449 | 0.6412 | 0.7099 | 0.3406 | 0.7618 | 0.6590 | 0.6675 |
| 0.4612 | 13.41 | 4960 | 0.5605 | 0.6679 | 0.7859 | 0.8566 | 0.9213 | 0.8035 | 0.8725 | 0.4759 | 0.8875 | 0.8487 | 0.6918 | 0.8472 | 0.6569 | 0.7228 | 0.3761 | 0.7624 | 0.6588 | 0.6510 |
| 0.2196 | 13.46 | 4980 | 0.5417 | 0.6690 | 0.7952 | 0.8569 | 0.9264 | 0.7930 | 0.8688 | 0.5372 | 0.8706 | 0.8781 | 0.6920 | 0.8500 | 0.6441 | 0.7425 | 0.3886 | 0.7678 | 0.6499 | 0.6399 |
| 0.7025 | 13.51 | 5000 | 0.5168 | 0.6712 | 0.7874 | 0.8581 | 0.9288 | 0.8091 | 0.8454 | 0.5175 | 0.8924 | 0.8165 | 0.7019 | 0.8416 | 0.6440 | 0.7388 | 0.3998 | 0.7765 | 0.6671 | 0.6308 |
| 0.1238 | 13.57 | 5020 | 0.5405 | 0.6739 | 0.7896 | 0.8613 | 0.9134 | 0.7864 | 0.8344 | 0.4747 | 0.8913 | 0.8576 | 0.7696 | 0.8390 | 0.6454 | 0.7264 | 0.3818 | 0.7845 | 0.6485 | 0.6919 |
| 0.1813 | 13.62 | 5040 | 0.6150 | 0.6523 | 0.7701 | 0.8504 | 0.9111 | 0.7670 | 0.8743 | 0.4085 | 0.8852 | 0.8403 | 0.7043 | 0.8415 | 0.6351 | 0.7191 | 0.3253 | 0.7541 | 0.6522 | 0.6387 |
| 0.5263 | 13.68 | 5060 | 0.5872 | 0.6592 | 0.7730 | 0.8501 | 0.9338 | 0.7673 | 0.8176 | 0.4907 | 0.8729 | 0.8338 | 0.6946 | 0.8341 | 0.6418 | 0.7174 | 0.3718 | 0.7489 | 0.6506 | 0.6496 |
| 0.3174 | 13.73 | 5080 | 0.5468 | 0.6728 | 0.7925 | 0.8599 | 0.9251 | 0.7621 | 0.8633 | 0.5261 | 0.8801 | 0.8816 | 0.7095 | 0.8532 | 0.6392 | 0.7456 | 0.4023 | 0.7725 | 0.6278 | 0.6690 |
| 0.6582 | 13.78 | 5100 | 0.5299 | 0.6786 | 0.7957 | 0.8638 | 0.9292 | 0.7859 | 0.8641 | 0.5234 | 0.8881 | 0.8596 | 0.7194 | 0.8553 | 0.6478 | 0.7414 | 0.3962 | 0.7765 | 0.6479 | 0.6848 |
| 0.8889 | 13.84 | 5120 | 0.5259 | 0.6615 | 0.7793 | 0.8560 | 0.9346 | 0.7669 | 0.8527 | 0.4365 | 0.8553 | 0.8574 | 0.7519 | 0.8439 | 0.6393 | 0.7169 | 0.3305 | 0.7599 | 0.6424 | 0.6978 |
| 0.2472 | 13.89 | 5140 | 0.5258 | 0.6621 | 0.7770 | 0.8572 | 0.9363 | 0.7882 | 0.8225 | 0.4469 | 0.8850 | 0.8630 | 0.6967 | 0.8522 | 0.6564 | 0.7134 | 0.3403 | 0.7683 | 0.6416 | 0.6626 |
| 0.1984 | 13.95 | 5160 | 0.5231 | 0.6743 | 0.7961 | 0.8606 | 0.9256 | 0.8202 | 0.8650 | 0.5210 | 0.8900 | 0.8627 | 0.6882 | 0.8602 | 0.6571 | 0.7492 | 0.3873 | 0.7665 | 0.6384 | 0.6611 |
| 0.293 | 14.0 | 5180 | 0.5337 | 0.6850 | 0.7922 | 0.8675 | 0.9405 | 0.7842 | 0.8660 | 0.5240 | 0.9062 | 0.8357 | 0.6889 | 0.8591 | 0.6501 | 0.7540 | 0.4165 | 0.7804 | 0.6725 | 0.6622 |
| 0.0932 | 14.05 | 5200 | 0.5744 | 0.6686 | 0.8039 | 0.8546 | 0.9212 | 0.8140 | 0.8778 | 0.5835 | 0.8628 | 0.8955 | 0.6726 | 0.8531 | 0.6446 | 0.7479 | 0.4070 | 0.7589 | 0.6220 | 0.6466 |
| 1.7961 | 14.11 | 5220 | 0.5400 | 0.6665 | 0.7940 | 0.8557 | 0.9216 | 0.7976 | 0.8808 | 0.5004 | 0.8603 | 0.8823 | 0.7155 | 0.8542 | 0.6424 | 0.7432 | 0.3609 | 0.7505 | 0.6406 | 0.6741 |
| 0.2783 | 14.16 | 5240 | 0.6033 | 0.6572 | 0.7874 | 0.8493 | 0.9334 | 0.7866 | 0.8922 | 0.5057 | 0.8404 | 0.8819 | 0.6718 | 0.8494 | 0.6407 | 0.7336 | 0.3738 | 0.7428 | 0.6120 | 0.6477 |
| 0.3782 | 14.22 | 5260 | 0.5731 | 0.6678 | 0.7849 | 0.8557 | 0.9300 | 0.7987 | 0.8899 | 0.4775 | 0.8734 | 0.8322 | 0.6927 | 0.8434 | 0.6574 | 0.7411 | 0.3627 | 0.7539 | 0.6534 | 0.6625 |
| 0.0964 | 14.27 | 5280 | 0.5934 | 0.6485 | 0.7755 | 0.8480 | 0.9251 | 0.7968 | 0.8610 | 0.4235 | 0.8593 | 0.8934 | 0.6696 | 0.8509 | 0.6531 | 0.7278 | 0.2966 | 0.7442 | 0.6246 | 0.6419 |
| 0.2305 | 14.32 | 5300 | 0.4892 | 0.6904 | 0.7988 | 0.8707 | 0.9198 | 0.7801 | 0.8533 | 0.5252 | 0.9124 | 0.8244 | 0.7762 | 0.8525 | 0.6445 | 0.7501 | 0.3770 | 0.7856 | 0.7124 | 0.7106 |
| 0.3662 | 14.38 | 5320 | 0.4420 | 0.7077 | 0.8096 | 0.8819 | 0.9296 | 0.7715 | 0.8475 | 0.5408 | 0.9138 | 0.8296 | 0.8347 | 0.8577 | 0.6444 | 0.7556 | 0.4044 | 0.8066 | 0.7094 | 0.7760 |
| 0.1456 | 14.43 | 5340 | 0.4490 | 0.7042 | 0.8103 | 0.8782 | 0.9334 | 0.7755 | 0.8288 | 0.5435 | 0.8972 | 0.8859 | 0.8080 | 0.8624 | 0.6527 | 0.7505 | 0.4182 | 0.7931 | 0.6729 | 0.7792 |
| 0.2907 | 14.49 | 5360 | 0.4646 | 0.6876 | 0.8047 | 0.8699 | 0.9373 | 0.7725 | 0.8833 | 0.5180 | 0.8584 | 0.8532 | 0.8101 | 0.8522 | 0.6453 | 0.7350 | 0.3536 | 0.7792 | 0.6911 | 0.7568 |
| 0.2382 | 14.54 | 5380 | 0.5256 | 0.6661 | 0.7936 | 0.8540 | 0.9247 | 0.7901 | 0.8871 | 0.5412 | 0.8609 | 0.8475 | 0.7034 | 0.8390 | 0.6473 | 0.7149 | 0.3565 | 0.7585 | 0.6907 | 0.6558 |
| 0.5997 | 14.59 | 5400 | 0.5506 | 0.6638 | 0.7806 | 0.8569 | 0.9306 | 0.7989 | 0.8488 | 0.4217 | 0.8792 | 0.9043 | 0.6806 | 0.8595 | 0.6680 | 0.7178 | 0.3565 | 0.7619 | 0.6256 | 0.6575 |
| 0.2169 | 14.65 | 5420 | 0.4596 | 0.6812 | 0.7941 | 0.8719 | 0.9319 | 0.8269 | 0.8532 | 0.3951 | 0.8856 | 0.8563 | 0.8099 | 0.8611 | 0.6533 | 0.7260 | 0.3334 | 0.7942 | 0.6397 | 0.7606 |
| 0.4158 | 14.7 | 5440 | 0.4825 | 0.6757 | 0.7914 | 0.8663 | 0.9302 | 0.8297 | 0.8431 | 0.4104 | 0.8852 | 0.8899 | 0.7515 | 0.8589 | 0.6603 | 0.7279 | 0.3425 | 0.7823 | 0.6390 | 0.7190 |
| 0.2731 | 14.76 | 5460 | 0.4921 | 0.6693 | 0.7758 | 0.8654 | 0.9363 | 0.7729 | 0.8511 | 0.3669 | 0.8939 | 0.8740 | 0.7355 | 0.8595 | 0.6582 | 0.7365 | 0.3036 | 0.7804 | 0.6435 | 0.7032 |
| 0.2632 | 14.81 | 5480 | 0.5184 | 0.6608 | 0.7736 | 0.8576 | 0.9230 | 0.7621 | 0.8457 | 0.4050 | 0.8904 | 0.8685 | 0.7206 | 0.8540 | 0.6451 | 0.7336 | 0.3116 | 0.7644 | 0.6550 | 0.6616 |
| 0.251 | 14.86 | 5500 | 0.5260 | 0.6573 | 0.7853 | 0.8539 | 0.9166 | 0.8257 | 0.8636 | 0.4380 | 0.8732 | 0.8650 | 0.7147 | 0.8556 | 0.6489 | 0.7266 | 0.3015 | 0.7549 | 0.6576 | 0.6559 |
| 1.2515 | 14.92 | 5520 | 0.5372 | 0.6612 | 0.7934 | 0.8557 | 0.9341 | 0.8601 | 0.8507 | 0.4872 | 0.8631 | 0.8660 | 0.6925 | 0.8518 | 0.6443 | 0.7224 | 0.3354 | 0.7645 | 0.6509 | 0.6593 |
| 0.3045 | 14.97 | 5540 | 0.5962 | 0.6381 | 0.7591 | 0.8482 | 0.9409 | 0.7581 | 0.8722 | 0.3525 | 0.8610 | 0.8802 | 0.6490 | 0.8545 | 0.6279 | 0.7132 | 0.2629 | 0.7500 | 0.6308 | 0.6273 |
| 0.3704 | 15.03 | 5560 | 0.5266 | 0.6592 | 0.7633 | 0.8630 | 0.9323 | 0.7273 | 0.8722 | 0.3523 | 0.9088 | 0.8266 | 0.7236 | 0.8633 | 0.6164 | 0.7280 | 0.2874 | 0.7715 | 0.6555 | 0.6927 |
| 0.2794 | 15.08 | 5580 | 0.5012 | 0.6792 | 0.7915 | 0.8685 | 0.9195 | 0.7160 | 0.8471 | 0.4489 | 0.8742 | 0.8946 | 0.8405 | 0.8594 | 0.6204 | 0.7412 | 0.3444 | 0.7757 | 0.6530 | 0.7606 |
| 0.2056 | 15.14 | 5600 | 0.5639 | 0.6621 | 0.7691 | 0.8613 | 0.9277 | 0.7933 | 0.8774 | 0.3491 | 0.9046 | 0.8036 | 0.7281 | 0.8611 | 0.6590 | 0.7253 | 0.2813 | 0.7655 | 0.6626 | 0.6801 |
| 0.2394 | 15.19 | 5620 | 0.5071 | 0.6802 | 0.8040 | 0.8661 | 0.9105 | 0.8203 | 0.8734 | 0.4962 | 0.8814 | 0.8298 | 0.8163 | 0.8554 | 0.6479 | 0.7288 | 0.3451 | 0.7744 | 0.6686 | 0.7416 |
| 0.1558 | 15.24 | 5640 | 0.4703 | 0.6941 | 0.8137 | 0.8737 | 0.9194 | 0.8197 | 0.8654 | 0.5217 | 0.8806 | 0.8437 | 0.8452 | 0.8587 | 0.6512 | 0.7389 | 0.3639 | 0.7848 | 0.6852 | 0.7759 |
| 0.4394 | 15.3 | 5660 | 0.4602 | 0.7047 | 0.8105 | 0.8796 | 0.9243 | 0.7421 | 0.8635 | 0.5609 | 0.8994 | 0.8189 | 0.8641 | 0.8556 | 0.6480 | 0.7427 | 0.3821 | 0.7983 | 0.7087 | 0.7976 |
| 0.1494 | 15.35 | 5680 | 0.5335 | 0.6770 | 0.8024 | 0.8617 | 0.9188 | 0.7986 | 0.8514 | 0.5649 | 0.8821 | 0.8571 | 0.7442 | 0.8588 | 0.6418 | 0.7489 | 0.3658 | 0.7623 | 0.6771 | 0.6846 |
| 0.1822 | 15.41 | 5700 | 0.5092 | 0.6811 | 0.7989 | 0.8656 | 0.9255 | 0.8020 | 0.8331 | 0.5376 | 0.8932 | 0.8421 | 0.7585 | 0.8585 | 0.6473 | 0.7361 | 0.3856 | 0.7764 | 0.6664 | 0.6972 |
| 0.3058 | 15.46 | 5720 | 0.4918 | 0.6802 | 0.7954 | 0.8706 | 0.9194 | 0.7899 | 0.8618 | 0.4001 | 0.8777 | 0.8769 | 0.8417 | 0.8589 | 0.6568 | 0.7226 | 0.3124 | 0.7887 | 0.6539 | 0.7681 |
| 0.3935 | 15.51 | 5740 | 0.4652 | 0.6979 | 0.8067 | 0.8774 | 0.9232 | 0.8056 | 0.8448 | 0.4917 | 0.9065 | 0.8527 | 0.8223 | 0.8610 | 0.6478 | 0.7408 | 0.4001 | 0.8026 | 0.6846 | 0.7481 |
| 0.2512 | 15.57 | 5760 | 0.4909 | 0.6962 | 0.8121 | 0.8750 | 0.9275 | 0.8334 | 0.8500 | 0.5508 | 0.9036 | 0.8298 | 0.7896 | 0.8591 | 0.6628 | 0.7455 | 0.4008 | 0.8035 | 0.6663 | 0.7356 |
| 0.2733 | 15.62 | 5780 | 0.5788 | 0.6696 | 0.7811 | 0.8604 | 0.9341 | 0.7313 | 0.8732 | 0.5224 | 0.9025 | 0.8375 | 0.6670 | 0.8598 | 0.6275 | 0.7424 | 0.3998 | 0.7718 | 0.6556 | 0.6304 |
| 0.169 | 15.68 | 5800 | 0.5864 | 0.6691 | 0.7881 | 0.8567 | 0.9258 | 0.7840 | 0.8879 | 0.4849 | 0.8772 | 0.8845 | 0.6727 | 0.8595 | 0.6625 | 0.7433 | 0.3931 | 0.7578 | 0.6336 | 0.6342 |
| 0.1417 | 15.73 | 5820 | 0.5768 | 0.6779 | 0.7897 | 0.8648 | 0.9303 | 0.7753 | 0.8797 | 0.4615 | 0.8854 | 0.8617 | 0.7343 | 0.8603 | 0.6483 | 0.7433 | 0.3798 | 0.7725 | 0.6672 | 0.6742 |
| 0.167 | 15.78 | 5840 | 0.5437 | 0.6705 | 0.7821 | 0.8620 | 0.9320 | 0.7385 | 0.8467 | 0.4932 | 0.8902 | 0.8329 | 0.7414 | 0.8533 | 0.6186 | 0.7282 | 0.3730 | 0.7755 | 0.6743 | 0.6702 |
| 0.1848 | 15.84 | 5860 | 0.5523 | 0.6718 | 0.7834 | 0.8637 | 0.9479 | 0.7919 | 0.8362 | 0.4667 | 0.8878 | 0.8478 | 0.7055 | 0.8525 | 0.6592 | 0.7111 | 0.3435 | 0.7841 | 0.6711 | 0.6813 |
| 0.2633 | 15.89 | 5880 | 0.5593 | 0.6719 | 0.7908 | 0.8619 | 0.9277 | 0.8281 | 0.8055 | 0.5113 | 0.9051 | 0.8474 | 0.7102 | 0.8546 | 0.6527 | 0.7220 | 0.3589 | 0.7781 | 0.6629 | 0.6743 |
| 0.4253 | 15.95 | 5900 | 0.5592 | 0.6702 | 0.7819 | 0.8634 | 0.9234 | 0.7766 | 0.8696 | 0.4417 | 0.9088 | 0.8397 | 0.7135 | 0.8611 | 0.6580 | 0.7278 | 0.3209 | 0.7759 | 0.6673 | 0.6801 |
| 0.2215 | 16.0 | 5920 | 0.5557 | 0.6733 | 0.7792 | 0.8650 | 0.9244 | 0.7379 | 0.8344 | 0.4831 | 0.9254 | 0.8374 | 0.7120 | 0.8621 | 0.6246 | 0.7419 | 0.3600 | 0.7752 | 0.6696 | 0.6797 |
| 0.1312 | 16.05 | 5940 | 0.5140 | 0.6661 | 0.7905 | 0.8577 | 0.9235 | 0.8223 | 0.8654 | 0.4607 | 0.8732 | 0.8718 | 0.7166 | 0.8513 | 0.6364 | 0.7172 | 0.3534 | 0.7601 | 0.6666 | 0.6773 |
| 0.2601 | 16.11 | 5960 | 0.5589 | 0.6644 | 0.7804 | 0.8577 | 0.9311 | 0.7976 | 0.8697 | 0.4033 | 0.8717 | 0.8812 | 0.7081 | 0.8468 | 0.6647 | 0.7076 | 0.3282 | 0.7644 | 0.6586 | 0.6807 |
| 0.2015 | 16.16 | 5980 | 0.5697 | 0.6602 | 0.7921 | 0.8577 | 0.9164 | 0.8626 | 0.8408 | 0.4628 | 0.8911 | 0.8656 | 0.7056 | 0.8520 | 0.6123 | 0.7242 | 0.3098 | 0.7704 | 0.6842 | 0.6689 |
| 0.7605 | 16.22 | 6000 | 0.5931 | 0.6614 | 0.7788 | 0.8597 | 0.9300 | 0.7898 | 0.8712 | 0.3997 | 0.8861 | 0.8765 | 0.6981 | 0.8554 | 0.6396 | 0.7276 | 0.2938 | 0.7699 | 0.6805 | 0.6631 |
| 0.2138 | 16.27 | 6020 | 0.5283 | 0.6785 | 0.7962 | 0.8628 | 0.9194 | 0.7919 | 0.8577 | 0.5364 | 0.9008 | 0.8538 | 0.7131 | 0.8529 | 0.6356 | 0.7431 | 0.4098 | 0.7757 | 0.6747 | 0.6581 |
| 0.1078 | 16.32 | 6040 | 0.5326 | 0.6731 | 0.7963 | 0.8601 | 0.9164 | 0.8080 | 0.8588 | 0.5105 | 0.8852 | 0.8675 | 0.7278 | 0.8514 | 0.6393 | 0.7371 | 0.3786 | 0.7677 | 0.6686 | 0.6692 |
| 0.2353 | 16.38 | 6060 | 0.6190 | 0.6729 | 0.7833 | 0.8617 | 0.9301 | 0.7918 | 0.8480 | 0.4871 | 0.9120 | 0.8401 | 0.6740 | 0.8497 | 0.6474 | 0.7350 | 0.3857 | 0.7782 | 0.6665 | 0.6477 |
| 0.2366 | 16.43 | 6080 | 0.5435 | 0.6764 | 0.7883 | 0.8650 | 0.9354 | 0.8085 | 0.8590 | 0.4732 | 0.9044 | 0.8483 | 0.6893 | 0.8548 | 0.6452 | 0.7389 | 0.3762 | 0.7820 | 0.6741 | 0.6633 |
| 0.2295 | 16.49 | 6100 | 0.5347 | 0.6782 | 0.7865 | 0.8673 | 0.9395 | 0.8152 | 0.8355 | 0.4706 | 0.9174 | 0.8422 | 0.6852 | 0.8580 | 0.6427 | 0.7344 | 0.3860 | 0.7892 | 0.6746 | 0.6629 |
| 0.1413 | 16.54 | 6120 | 0.5431 | 0.6763 | 0.7882 | 0.8669 | 0.9277 | 0.8083 | 0.8725 | 0.4629 | 0.9205 | 0.8386 | 0.6871 | 0.8616 | 0.6501 | 0.7270 | 0.3681 | 0.7885 | 0.6747 | 0.6642 |
| 0.967 | 16.59 | 6140 | 0.5356 | 0.6685 | 0.7755 | 0.8641 | 0.9359 | 0.7922 | 0.8503 | 0.3939 | 0.9090 | 0.8533 | 0.6940 | 0.8561 | 0.6626 | 0.7212 | 0.3244 | 0.7854 | 0.6656 | 0.6646 |
| 0.1501 | 16.65 | 6160 | 0.5186 | 0.6858 | 0.7926 | 0.8682 | 0.9315 | 0.8167 | 0.8330 | 0.4982 | 0.9193 | 0.8465 | 0.7030 | 0.8566 | 0.6663 | 0.7399 | 0.4115 | 0.7886 | 0.6676 | 0.6700 |
| 0.1527 | 16.7 | 6180 | 0.4952 | 0.6802 | 0.7988 | 0.8623 | 0.9312 | 0.8229 | 0.8458 | 0.4948 | 0.8677 | 0.8908 | 0.7386 | 0.8549 | 0.6666 | 0.7339 | 0.3974 | 0.7634 | 0.6400 | 0.7050 |
| 0.2878 | 16.76 | 6200 | 0.4871 | 0.6759 | 0.7870 | 0.8634 | 0.9276 | 0.7620 | 0.8634 | 0.4550 | 0.8841 | 0.8775 | 0.7392 | 0.8604 | 0.6593 | 0.7302 | 0.3735 | 0.7686 | 0.6468 | 0.6926 |
| 0.3001 | 16.81 | 6220 | 0.4844 | 0.6884 | 0.8021 | 0.8665 | 0.9231 | 0.7721 | 0.8516 | 0.5451 | 0.8885 | 0.8888 | 0.7458 | 0.8591 | 0.6591 | 0.7514 | 0.4375 | 0.7779 | 0.6351 | 0.6984 |
| 2.424 | 16.86 | 6240 | 0.5032 | 0.6759 | 0.7760 | 0.8693 | 0.9355 | 0.7415 | 0.8712 | 0.3962 | 0.9116 | 0.8358 | 0.7404 | 0.8582 | 0.6502 | 0.7282 | 0.3402 | 0.7949 | 0.6654 | 0.6946 |
| 0.1105 | 16.92 | 6260 | 0.4684 | 0.6984 | 0.8042 | 0.8785 | 0.9209 | 0.8012 | 0.8217 | 0.4430 | 0.8964 | 0.8652 | 0.8811 | 0.8552 | 0.6593 | 0.7190 | 0.3668 | 0.8010 | 0.6967 | 0.7907 |
| 0.3355 | 16.97 | 6280 | 0.4982 | 0.6788 | 0.7843 | 0.8656 | 0.9386 | 0.7810 | 0.8146 | 0.4848 | 0.9087 | 0.8580 | 0.7045 | 0.8520 | 0.6508 | 0.7215 | 0.3874 | 0.7825 | 0.6807 | 0.6768 |
| 0.1191 | 17.03 | 6300 | 0.4687 | 0.6812 | 0.7999 | 0.8670 | 0.9303 | 0.8004 | 0.8551 | 0.5189 | 0.8870 | 0.8598 | 0.7475 | 0.8538 | 0.6336 | 0.7457 | 0.3761 | 0.7847 | 0.6798 | 0.6946 |
| 0.2914 | 17.08 | 6320 | 0.4668 | 0.6869 | 0.8088 | 0.8695 | 0.9212 | 0.7948 | 0.8863 | 0.5264 | 0.8773 | 0.8666 | 0.7893 | 0.8570 | 0.6411 | 0.7525 | 0.3733 | 0.7843 | 0.6786 | 0.7214 |
| 0.1232 | 17.14 | 6340 | 0.4774 | 0.6801 | 0.7939 | 0.8704 | 0.9307 | 0.7988 | 0.8856 | 0.4509 | 0.8972 | 0.8307 | 0.7631 | 0.8620 | 0.6321 | 0.7414 | 0.3314 | 0.7876 | 0.6911 | 0.7151 |
| 0.2338 | 17.19 | 6360 | 0.5762 | 0.6572 | 0.7692 | 0.8579 | 0.9362 | 0.8172 | 0.8860 | 0.3874 | 0.9167 | 0.8342 | 0.6068 | 0.8522 | 0.6441 | 0.7254 | 0.3293 | 0.7787 | 0.6821 | 0.5886 |
| 0.6755 | 17.24 | 6380 | 0.5811 | 0.6644 | 0.7687 | 0.8618 | 0.9434 | 0.7529 | 0.8458 | 0.4083 | 0.9060 | 0.8501 | 0.6745 | 0.8556 | 0.6378 | 0.7335 | 0.3314 | 0.7767 | 0.6644 | 0.6515 |
| 1.194 | 17.3 | 6400 | 0.5682 | 0.6739 | 0.7769 | 0.8665 | 0.9349 | 0.7822 | 0.8431 | 0.4116 | 0.9165 | 0.8349 | 0.7150 | 0.8586 | 0.6539 | 0.7349 | 0.3380 | 0.7835 | 0.6700 | 0.6782 |
| 0.1116 | 17.35 | 6420 | 0.5574 | 0.6875 | 0.7958 | 0.8693 | 0.9329 | 0.8225 | 0.8437 | 0.4951 | 0.9105 | 0.8437 | 0.7219 | 0.8620 | 0.6686 | 0.7506 | 0.3975 | 0.7825 | 0.6649 | 0.6864 |
| 0.5987 | 17.41 | 6440 | 0.5782 | 0.6833 | 0.7990 | 0.8666 | 0.9311 | 0.8397 | 0.8033 | 0.5404 | 0.9096 | 0.8529 | 0.7161 | 0.8603 | 0.6482 | 0.7287 | 0.4138 | 0.7792 | 0.6665 | 0.6864 |
| 0.5289 | 17.46 | 6460 | 0.5611 | 0.6843 | 0.7995 | 0.8665 | 0.9344 | 0.8108 | 0.8677 | 0.5384 | 0.8972 | 0.8494 | 0.6990 | 0.8619 | 0.6737 | 0.7491 | 0.3982 | 0.7796 | 0.6570 | 0.6708 |
| 0.1055 | 17.51 | 6480 | 0.5299 | 0.6816 | 0.8016 | 0.8634 | 0.9276 | 0.7722 | 0.8812 | 0.5540 | 0.8755 | 0.8793 | 0.7215 | 0.8606 | 0.6600 | 0.7496 | 0.4094 | 0.7708 | 0.6508 | 0.6698 |
| 0.1996 | 17.57 | 6500 | 0.5186 | 0.6846 | 0.8096 | 0.8669 | 0.9139 | 0.8119 | 0.8522 | 0.5283 | 0.8727 | 0.8726 | 0.8154 | 0.8536 | 0.6580 | 0.7417 | 0.3706 | 0.7813 | 0.6467 | 0.7401 |
| 0.8667 | 17.62 | 6520 | 0.4990 | 0.6866 | 0.8012 | 0.8694 | 0.9243 | 0.7851 | 0.8510 | 0.4927 | 0.8820 | 0.8749 | 0.7984 | 0.8600 | 0.6594 | 0.7428 | 0.3791 | 0.7827 | 0.6482 | 0.7342 |
| 0.241 | 17.68 | 6540 | 0.5401 | 0.6882 | 0.8099 | 0.8681 | 0.9116 | 0.8045 | 0.8465 | 0.5455 | 0.8792 | 0.8454 | 0.8365 | 0.8513 | 0.6577 | 0.7394 | 0.4010 | 0.7885 | 0.6561 | 0.7231 |
| 0.2098 | 17.73 | 6560 | 0.5664 | 0.6702 | 0.7946 | 0.8594 | 0.9256 | 0.7894 | 0.8642 | 0.5095 | 0.8676 | 0.8668 | 0.7389 | 0.8593 | 0.6539 | 0.7301 | 0.3559 | 0.7628 | 0.6490 | 0.6806 |
| 0.5638 | 17.78 | 6580 | 0.5683 | 0.6764 | 0.7958 | 0.8628 | 0.9150 | 0.8131 | 0.8525 | 0.4853 | 0.8941 | 0.8735 | 0.7370 | 0.8587 | 0.6467 | 0.7469 | 0.3802 | 0.7699 | 0.6521 | 0.6804 |
| 0.2553 | 17.84 | 6600 | 0.6075 | 0.6721 | 0.7817 | 0.8644 | 0.9213 | 0.7710 | 0.8738 | 0.4099 | 0.9017 | 0.8573 | 0.7372 | 0.8562 | 0.6562 | 0.7240 | 0.3281 | 0.7796 | 0.6819 | 0.6784 |
| 0.4949 | 17.89 | 6620 | 0.5938 | 0.6702 | 0.7857 | 0.8627 | 0.9278 | 0.7916 | 0.8809 | 0.4344 | 0.8916 | 0.8662 | 0.7078 | 0.8599 | 0.6583 | 0.7253 | 0.3382 | 0.7766 | 0.6735 | 0.6599 |
| 0.3578 | 17.95 | 6640 | 0.6084 | 0.6767 | 0.7912 | 0.8650 | 0.9183 | 0.8099 | 0.8671 | 0.4311 | 0.8997 | 0.8854 | 0.7265 | 0.8619 | 0.6534 | 0.7510 | 0.3597 | 0.7749 | 0.6652 | 0.6705 |
| 0.2771 | 18.0 | 6660 | 0.5365 | 0.6951 | 0.8192 | 0.8708 | 0.9139 | 0.8194 | 0.8766 | 0.5758 | 0.8843 | 0.8783 | 0.7862 | 0.8577 | 0.6546 | 0.7497 | 0.4320 | 0.7889 | 0.6627 | 0.7200 |
| 0.1865 | 18.05 | 6680 | 0.5234 | 0.6917 | 0.7939 | 0.8786 | 0.9192 | 0.8008 | 0.8629 | 0.3839 | 0.9192 | 0.8337 | 0.8374 | 0.8585 | 0.6700 | 0.7384 | 0.3171 | 0.8105 | 0.6856 | 0.7621 |
| 0.3439 | 18.11 | 6700 | 0.5187 | 0.7022 | 0.8172 | 0.8768 | 0.9080 | 0.8281 | 0.8201 | 0.5452 | 0.9090 | 0.8610 | 0.8493 | 0.8541 | 0.6545 | 0.7509 | 0.4222 | 0.8047 | 0.6654 | 0.7633 |
| 0.4716 | 18.16 | 6720 | 0.5480 | 0.6704 | 0.7856 | 0.8639 | 0.9208 | 0.7829 | 0.8962 | 0.4060 | 0.8920 | 0.8730 | 0.7283 | 0.8575 | 0.6527 | 0.7335 | 0.3266 | 0.7814 | 0.6738 | 0.6677 |
| 0.2285 | 18.22 | 6740 | 0.5800 | 0.6786 | 0.7927 | 0.8665 | 0.9309 | 0.8055 | 0.8851 | 0.4608 | 0.8981 | 0.8685 | 0.7001 | 0.8623 | 0.6682 | 0.7501 | 0.3433 | 0.7805 | 0.6806 | 0.6655 |
| 0.2874 | 18.27 | 6760 | 0.5568 | 0.6854 | 0.7961 | 0.8692 | 0.9238 | 0.8069 | 0.8568 | 0.5064 | 0.9231 | 0.8517 | 0.7040 | 0.8607 | 0.6629 | 0.7494 | 0.3803 | 0.7894 | 0.6884 | 0.6670 |
| 0.2325 | 18.32 | 6780 | 0.5335 | 0.6784 | 0.7921 | 0.8678 | 0.9300 | 0.8023 | 0.8615 | 0.4633 | 0.9001 | 0.8499 | 0.7378 | 0.8611 | 0.6612 | 0.7392 | 0.3237 | 0.7850 | 0.6803 | 0.6981 |
| 0.4917 | 18.38 | 6800 | 0.5157 | 0.6791 | 0.7932 | 0.8678 | 0.9295 | 0.7975 | 0.8441 | 0.4491 | 0.8877 | 0.8765 | 0.7678 | 0.8603 | 0.6539 | 0.7362 | 0.3412 | 0.7829 | 0.6722 | 0.7069 |
| 0.2626 | 18.43 | 6820 | 0.5124 | 0.6862 | 0.8043 | 0.8704 | 0.9235 | 0.8027 | 0.8406 | 0.4731 | 0.8755 | 0.9020 | 0.8128 | 0.8581 | 0.6539 | 0.7425 | 0.3670 | 0.7898 | 0.6569 | 0.7354 |
| 0.2628 | 18.49 | 6840 | 0.5533 | 0.6837 | 0.7922 | 0.8687 | 0.9340 | 0.7953 | 0.8593 | 0.4783 | 0.9067 | 0.8609 | 0.7109 | 0.8617 | 0.6657 | 0.7457 | 0.3766 | 0.7853 | 0.6769 | 0.6740 |
| 0.6479 | 18.54 | 6860 | 0.6086 | 0.6772 | 0.7953 | 0.8621 | 0.9180 | 0.7915 | 0.8750 | 0.5212 | 0.8993 | 0.8629 | 0.6995 | 0.8614 | 0.6602 | 0.7503 | 0.3844 | 0.7669 | 0.6552 | 0.6620 |
| 0.1974 | 18.59 | 6880 | 0.5783 | 0.6766 | 0.7891 | 0.8652 | 0.9379 | 0.8097 | 0.8820 | 0.4458 | 0.8880 | 0.8511 | 0.7092 | 0.8621 | 0.6774 | 0.7359 | 0.3479 | 0.7762 | 0.6608 | 0.6759 |
| 0.3145 | 18.65 | 6900 | 0.5640 | 0.6844 | 0.7992 | 0.8661 | 0.9178 | 0.7956 | 0.8842 | 0.5153 | 0.8987 | 0.8417 | 0.7411 | 0.8573 | 0.6348 | 0.7569 | 0.4158 | 0.7746 | 0.6763 | 0.6749 |
| 0.1216 | 18.7 | 6920 | 0.4967 | 0.6987 | 0.8231 | 0.8751 | 0.9126 | 0.8145 | 0.8771 | 0.5640 | 0.8812 | 0.8753 | 0.8371 | 0.8588 | 0.6335 | 0.7599 | 0.4134 | 0.7943 | 0.6746 | 0.7565 |
| 0.1664 | 18.76 | 6940 | 0.5310 | 0.6900 | 0.8060 | 0.8679 | 0.9170 | 0.7942 | 0.8529 | 0.5591 | 0.8988 | 0.8622 | 0.7575 | 0.8591 | 0.6545 | 0.7631 | 0.4149 | 0.7766 | 0.6683 | 0.6936 |
| 0.2653 | 18.81 | 6960 | 0.5674 | 0.6819 | 0.7923 | 0.8660 | 0.9224 | 0.7480 | 0.8707 | 0.5060 | 0.8992 | 0.8637 | 0.7362 | 0.8612 | 0.6425 | 0.7551 | 0.3906 | 0.7732 | 0.6745 | 0.6761 |
| 0.1461 | 18.86 | 6980 | 0.5890 | 0.6794 | 0.7804 | 0.8693 | 0.9328 | 0.7151 | 0.8666 | 0.4832 | 0.9264 | 0.8316 | 0.7068 | 0.8629 | 0.6129 | 0.7558 | 0.3803 | 0.7851 | 0.6818 | 0.6770 |
| 0.2221 | 18.92 | 7000 | 0.5067 | 0.6993 | 0.8129 | 0.8735 | 0.9338 | 0.7829 | 0.8681 | 0.5879 | 0.8860 | 0.8581 | 0.7738 | 0.8635 | 0.6556 | 0.7693 | 0.4326 | 0.7850 | 0.6695 | 0.7195 |
| 0.2125 | 18.97 | 7020 | 0.5190 | 0.7000 | 0.8024 | 0.8755 | 0.9392 | 0.7639 | 0.8447 | 0.5359 | 0.9017 | 0.8645 | 0.7666 | 0.8657 | 0.6558 | 0.7583 | 0.4329 | 0.7883 | 0.6770 | 0.7221 |
| 0.1904 | 19.03 | 7040 | 0.5813 | 0.6759 | 0.7899 | 0.8618 | 0.9322 | 0.7705 | 0.8519 | 0.4998 | 0.8815 | 0.8776 | 0.7160 | 0.8604 | 0.6552 | 0.7470 | 0.3914 | 0.7667 | 0.6452 | 0.6655 |
| 0.2587 | 19.08 | 7060 | 0.5817 | 0.6675 | 0.7925 | 0.8587 | 0.9359 | 0.8122 | 0.8658 | 0.5069 | 0.8690 | 0.8550 | 0.7027 | 0.8628 | 0.6479 | 0.7377 | 0.3555 | 0.7601 | 0.6446 | 0.6638 |
| 0.1773 | 19.14 | 7080 | 0.6150 | 0.6701 | 0.7901 | 0.8583 | 0.9266 | 0.8001 | 0.8581 | 0.5196 | 0.8907 | 0.8551 | 0.6805 | 0.8601 | 0.6697 | 0.7471 | 0.3655 | 0.7629 | 0.6369 | 0.6487 |
| 0.32 | 19.19 | 7100 | 0.5867 | 0.6727 | 0.7812 | 0.8661 | 0.9307 | 0.7993 | 0.8512 | 0.3972 | 0.9027 | 0.8471 | 0.7406 | 0.8645 | 0.6655 | 0.7247 | 0.2904 | 0.7725 | 0.6829 | 0.7082 |
| 0.1643 | 19.24 | 7120 | 0.5770 | 0.6743 | 0.7900 | 0.8651 | 0.9329 | 0.8131 | 0.8479 | 0.4639 | 0.8926 | 0.8417 | 0.7377 | 0.8608 | 0.6356 | 0.7377 | 0.3433 | 0.7742 | 0.6839 | 0.6846 |
| 0.2318 | 19.3 | 7140 | 0.6071 | 0.6768 | 0.7972 | 0.8651 | 0.9316 | 0.8415 | 0.8710 | 0.4708 | 0.8879 | 0.8668 | 0.7106 | 0.8631 | 0.6620 | 0.7394 | 0.3453 | 0.7732 | 0.6689 | 0.6858 |
| 0.2215 | 19.35 | 7160 | 0.5905 | 0.6844 | 0.7986 | 0.8671 | 0.9299 | 0.8322 | 0.8591 | 0.4789 | 0.8946 | 0.8795 | 0.7163 | 0.8611 | 0.6652 | 0.7432 | 0.3924 | 0.7757 | 0.6682 | 0.6850 |
| 0.1181 | 19.41 | 7180 | 0.5889 | 0.6876 | 0.7907 | 0.8691 | 0.9314 | 0.7910 | 0.8487 | 0.4678 | 0.9082 | 0.8539 | 0.7337 | 0.8629 | 0.6766 | 0.7420 | 0.3876 | 0.7752 | 0.6697 | 0.6993 |
| 0.2127 | 19.46 | 7200 | 0.6140 | 0.6876 | 0.7902 | 0.8686 | 0.9233 | 0.7681 | 0.8369 | 0.5085 | 0.9208 | 0.8268 | 0.7468 | 0.8609 | 0.6536 | 0.7440 | 0.4109 | 0.7763 | 0.6677 | 0.6997 |
| 0.1767 | 19.51 | 7220 | 0.5347 | 0.6865 | 0.8045 | 0.8655 | 0.9298 | 0.8068 | 0.8362 | 0.5574 | 0.8796 | 0.8711 | 0.7504 | 0.8545 | 0.6559 | 0.7433 | 0.4151 | 0.7713 | 0.6658 | 0.6998 |
| 0.1436 | 19.57 | 7240 | 0.5328 | 0.6897 | 0.8028 | 0.8693 | 0.9276 | 0.7944 | 0.8557 | 0.5430 | 0.8988 | 0.8528 | 0.7470 | 0.8604 | 0.6553 | 0.7435 | 0.4161 | 0.7815 | 0.6687 | 0.7023 |
| 0.3826 | 19.62 | 7260 | 0.5324 | 0.6842 | 0.7933 | 0.8691 | 0.9348 | 0.7950 | 0.8648 | 0.4719 | 0.8966 | 0.8462 | 0.7434 | 0.8652 | 0.6548 | 0.7315 | 0.3897 | 0.7796 | 0.6686 | 0.7003 |
| 0.1237 | 19.68 | 7280 | 0.5873 | 0.6829 | 0.7902 | 0.8679 | 0.9212 | 0.7642 | 0.8508 | 0.4830 | 0.9112 | 0.8521 | 0.7490 | 0.8627 | 0.6414 | 0.7475 | 0.3882 | 0.7758 | 0.6633 | 0.7012 |
| 0.3202 | 19.73 | 7300 | 0.5673 | 0.6791 | 0.7928 | 0.8647 | 0.9204 | 0.7484 | 0.8683 | 0.5007 | 0.8901 | 0.8702 | 0.7515 | 0.8628 | 0.6275 | 0.7545 | 0.3923 | 0.7672 | 0.6612 | 0.6880 |
| 0.151 | 19.78 | 7320 | 0.5385 | 0.6796 | 0.7916 | 0.8648 | 0.9233 | 0.7913 | 0.8560 | 0.4815 | 0.8975 | 0.8501 | 0.7412 | 0.8572 | 0.6437 | 0.7462 | 0.3911 | 0.7732 | 0.6667 | 0.6787 |
| 1.8943 | 19.84 | 7340 | 0.5848 | 0.6687 | 0.7813 | 0.8632 | 0.9277 | 0.8039 | 0.8795 | 0.3675 | 0.8863 | 0.8732 | 0.7314 | 0.8603 | 0.6622 | 0.7305 | 0.3137 | 0.7705 | 0.6628 | 0.6812 |
| 2.0602 | 19.89 | 7360 | 0.6545 | 0.6648 | 0.7714 | 0.8624 | 0.9365 | 0.7130 | 0.8754 | 0.4220 | 0.9027 | 0.8739 | 0.6764 | 0.8619 | 0.6179 | 0.7413 | 0.3474 | 0.7738 | 0.6558 | 0.6558 |
| 0.1774 | 19.95 | 7380 | 0.5291 | 0.6811 | 0.7850 | 0.8668 | 0.9319 | 0.7039 | 0.8638 | 0.4985 | 0.8997 | 0.8678 | 0.7296 | 0.8574 | 0.6120 | 0.7519 | 0.4044 | 0.7726 | 0.6769 | 0.6924 |
| 0.4491 | 20.0 | 7400 | 0.5457 | 0.6885 | 0.8092 | 0.8668 | 0.9288 | 0.7781 | 0.8755 | 0.5600 | 0.8597 | 0.8784 | 0.7842 | 0.8537 | 0.6507 | 0.7424 | 0.4132 | 0.7719 | 0.6517 | 0.7357 |
| 0.2327 | 20.05 | 7420 | 0.4986 | 0.6951 | 0.8138 | 0.8718 | 0.9203 | 0.7875 | 0.8774 | 0.5437 | 0.8700 | 0.8639 | 0.8341 | 0.8540 | 0.6482 | 0.7439 | 0.4032 | 0.7815 | 0.6722 | 0.7627 |
| 0.174 | 20.11 | 7440 | 0.5225 | 0.6850 | 0.7940 | 0.8693 | 0.9285 | 0.7177 | 0.8441 | 0.5245 | 0.8854 | 0.8430 | 0.8149 | 0.8542 | 0.6089 | 0.7398 | 0.3890 | 0.7762 | 0.6749 | 0.7516 |
| 0.223 | 20.16 | 7460 | 0.5617 | 0.6735 | 0.7814 | 0.8641 | 0.9207 | 0.7170 | 0.8325 | 0.4816 | 0.9066 | 0.8579 | 0.7533 | 0.8607 | 0.6110 | 0.7362 | 0.3626 | 0.7656 | 0.6743 | 0.7039 |
| 0.1366 | 20.22 | 7480 | 0.5322 | 0.6753 | 0.7865 | 0.8674 | 0.9287 | 0.7346 | 0.8706 | 0.4498 | 0.8929 | 0.8790 | 0.7499 | 0.8666 | 0.6240 | 0.7352 | 0.3376 | 0.7741 | 0.6781 | 0.7117 |
| 0.1194 | 20.27 | 7500 | 0.5123 | 0.6821 | 0.7900 | 0.8729 | 0.9274 | 0.7172 | 0.8794 | 0.4368 | 0.8893 | 0.8580 | 0.8217 | 0.8618 | 0.6174 | 0.7346 | 0.3412 | 0.7914 | 0.6706 | 0.7576 |
| 0.4355 | 20.32 | 7520 | 0.5022 | 0.6883 | 0.7942 | 0.8700 | 0.9291 | 0.7423 | 0.8283 | 0.5127 | 0.8953 | 0.8612 | 0.7909 | 0.8556 | 0.6275 | 0.7459 | 0.4057 | 0.7788 | 0.6703 | 0.7344 |
| 0.2599 | 20.38 | 7540 | 0.5213 | 0.6843 | 0.7884 | 0.8699 | 0.9255 | 0.7675 | 0.8745 | 0.4440 | 0.9038 | 0.8239 | 0.7798 | 0.8591 | 0.6403 | 0.7475 | 0.3666 | 0.7765 | 0.6735 | 0.7268 |
| 0.1313 | 20.43 | 7560 | 0.5307 | 0.6870 | 0.7970 | 0.8715 | 0.9309 | 0.8263 | 0.8690 | 0.4340 | 0.8996 | 0.8745 | 0.7449 | 0.8690 | 0.6708 | 0.7400 | 0.3684 | 0.7822 | 0.6607 | 0.7177 |
| 0.2357 | 20.49 | 7580 | 0.5712 | 0.6687 | 0.7818 | 0.8625 | 0.9381 | 0.7413 | 0.8777 | 0.4756 | 0.8956 | 0.8785 | 0.6658 | 0.8660 | 0.6395 | 0.7327 | 0.3683 | 0.7771 | 0.6526 | 0.6443 |
| 0.0972 | 20.54 | 7600 | 0.5153 | 0.6886 | 0.8072 | 0.8707 | 0.9321 | 0.8320 | 0.8792 | 0.5420 | 0.8992 | 0.8391 | 0.7266 | 0.8704 | 0.6725 | 0.7292 | 0.3949 | 0.7864 | 0.6665 | 0.7001 |
| 0.1029 | 20.59 | 7620 | 0.5067 | 0.6902 | 0.7927 | 0.8727 | 0.9382 | 0.7702 | 0.8274 | 0.4957 | 0.9044 | 0.8297 | 0.7829 | 0.8599 | 0.6495 | 0.7447 | 0.3951 | 0.7903 | 0.6682 | 0.7236 |
| 0.5238 | 20.65 | 7640 | 0.5782 | 0.6799 | 0.7993 | 0.8650 | 0.9307 | 0.8141 | 0.8524 | 0.4980 | 0.8774 | 0.8783 | 0.7441 | 0.8642 | 0.6526 | 0.7503 | 0.3906 | 0.7734 | 0.6402 | 0.6883 |
| 1.6773 | 20.7 | 7660 | 0.5609 | 0.6822 | 0.8005 | 0.8664 | 0.9312 | 0.8056 | 0.8660 | 0.5051 | 0.8798 | 0.8725 | 0.7432 | 0.8641 | 0.6569 | 0.7514 | 0.3921 | 0.7781 | 0.6436 | 0.6894 |
| 0.1892 | 20.76 | 7680 | 0.5891 | 0.6798 | 0.7864 | 0.8684 | 0.9357 | 0.7842 | 0.8568 | 0.4363 | 0.9010 | 0.8586 | 0.7325 | 0.8671 | 0.6601 | 0.7397 | 0.3563 | 0.7793 | 0.6701 | 0.6859 |
| 0.8756 | 20.81 | 7700 | 0.6172 | 0.6740 | 0.7825 | 0.8664 | 0.9333 | 0.8033 | 0.8448 | 0.3998 | 0.9053 | 0.8823 | 0.7090 | 0.8657 | 0.6639 | 0.7382 | 0.3314 | 0.7780 | 0.6583 | 0.6828 |
| 0.2574 | 20.86 | 7720 | 0.5685 | 0.6730 | 0.7848 | 0.8657 | 0.9321 | 0.8291 | 0.8601 | 0.3877 | 0.9004 | 0.8768 | 0.7071 | 0.8641 | 0.6729 | 0.7365 | 0.3251 | 0.7792 | 0.6542 | 0.6789 |
| 0.2701 | 20.92 | 7740 | 0.5149 | 0.6892 | 0.8032 | 0.8752 | 0.9224 | 0.8254 | 0.8539 | 0.4344 | 0.8943 | 0.8636 | 0.8288 | 0.8631 | 0.6578 | 0.7363 | 0.3458 | 0.7994 | 0.6619 | 0.7604 |
| 0.5788 | 20.97 | 7760 | 0.5510 | 0.6740 | 0.7774 | 0.8681 | 0.9259 | 0.7662 | 0.8814 | 0.3868 | 0.9117 | 0.8002 | 0.7697 | 0.8639 | 0.6620 | 0.7312 | 0.3048 | 0.7825 | 0.6629 | 0.7104 |
| 0.3711 | 21.03 | 7780 | 0.5231 | 0.6849 | 0.7949 | 0.8718 | 0.9327 | 0.7757 | 0.8866 | 0.4610 | 0.8855 | 0.8102 | 0.8124 | 0.8622 | 0.6629 | 0.7369 | 0.3397 | 0.7892 | 0.6596 | 0.7439 |
| 0.2244 | 21.08 | 7800 | 0.5435 | 0.6822 | 0.8026 | 0.8675 | 0.9217 | 0.7945 | 0.8675 | 0.4906 | 0.8746 | 0.8746 | 0.7946 | 0.8641 | 0.6620 | 0.7449 | 0.3363 | 0.7738 | 0.6658 | 0.7286 |
| 0.2711 | 21.14 | 7820 | 0.6044 | 0.6836 | 0.7940 | 0.8682 | 0.9306 | 0.8000 | 0.8592 | 0.5011 | 0.9066 | 0.8271 | 0.7334 | 0.8685 | 0.6619 | 0.7554 | 0.3755 | 0.7750 | 0.6568 | 0.6922 |
| 0.1413 | 21.19 | 7840 | 0.5306 | 0.6918 | 0.8031 | 0.8733 | 0.9320 | 0.7765 | 0.8831 | 0.4888 | 0.8802 | 0.8552 | 0.8056 | 0.8615 | 0.6591 | 0.7465 | 0.3789 | 0.7903 | 0.6675 | 0.7387 |
| 0.2264 | 21.24 | 7860 | 0.5182 | 0.6880 | 0.8088 | 0.8700 | 0.9337 | 0.8223 | 0.8892 | 0.5332 | 0.8845 | 0.8725 | 0.7264 | 0.8712 | 0.6752 | 0.7285 | 0.3943 | 0.7840 | 0.6610 | 0.7017 |
| 0.0717 | 21.3 | 7880 | 0.5174 | 0.6903 | 0.8026 | 0.8729 | 0.9256 | 0.8152 | 0.8579 | 0.4825 | 0.9021 | 0.8608 | 0.7740 | 0.8675 | 0.6609 | 0.7434 | 0.3772 | 0.7865 | 0.6670 | 0.7296 |
| 0.2197 | 21.35 | 7900 | 0.5787 | 0.6807 | 0.7905 | 0.8691 | 0.9341 | 0.8186 | 0.8830 | 0.4429 | 0.9089 | 0.8356 | 0.7103 | 0.8681 | 0.6762 | 0.7340 | 0.3512 | 0.7846 | 0.6679 | 0.6827 |
| 0.316 | 21.41 | 7920 | 0.5727 | 0.6830 | 0.7970 | 0.8686 | 0.9316 | 0.8351 | 0.8586 | 0.4615 | 0.8985 | 0.8697 | 0.7243 | 0.8680 | 0.6698 | 0.7498 | 0.3609 | 0.7777 | 0.6645 | 0.6907 |
| 0.2365 | 21.46 | 7940 | 0.5699 | 0.6770 | 0.7762 | 0.8693 | 0.9408 | 0.7563 | 0.8860 | 0.3834 | 0.9086 | 0.8411 | 0.7171 | 0.8658 | 0.6654 | 0.7459 | 0.3222 | 0.7818 | 0.6689 | 0.6889 |
| 0.2017 | 21.51 | 7960 | 0.5048 | 0.6899 | 0.7966 | 0.8736 | 0.9328 | 0.8088 | 0.8570 | 0.4467 | 0.9042 | 0.8644 | 0.7625 | 0.8659 | 0.6671 | 0.7526 | 0.3645 | 0.7899 | 0.6704 | 0.7190 |
| 0.1801 | 21.57 | 7980 | 0.5304 | 0.6847 | 0.7873 | 0.8729 | 0.9377 | 0.7963 | 0.8375 | 0.4198 | 0.9089 | 0.8376 | 0.7732 | 0.8617 | 0.6613 | 0.7328 | 0.3441 | 0.7944 | 0.6750 | 0.7235 |
| 0.1469 | 21.62 | 8000 | 0.5277 | 0.6891 | 0.8025 | 0.8738 | 0.9288 | 0.8013 | 0.8589 | 0.4444 | 0.8796 | 0.8819 | 0.8228 | 0.8600 | 0.6624 | 0.7352 | 0.3509 | 0.7964 | 0.6605 | 0.7580 |
| 0.1851 | 21.68 | 8020 | 0.5037 | 0.6917 | 0.8026 | 0.8752 | 0.9236 | 0.7849 | 0.8607 | 0.4541 | 0.8874 | 0.8659 | 0.8417 | 0.8595 | 0.6612 | 0.7352 | 0.3574 | 0.7997 | 0.6688 | 0.7600 |
| 0.2767 | 21.73 | 8040 | 0.5497 | 0.6743 | 0.7824 | 0.8654 | 0.9295 | 0.7648 | 0.8667 | 0.4335 | 0.9000 | 0.8474 | 0.7347 | 0.8657 | 0.6586 | 0.7309 | 0.3443 | 0.7752 | 0.6644 | 0.6809 |
| 0.4517 | 21.78 | 8060 | 0.5216 | 0.6863 | 0.8001 | 0.8694 | 0.9328 | 0.7981 | 0.8670 | 0.4973 | 0.8863 | 0.8636 | 0.7556 | 0.8637 | 0.6652 | 0.7368 | 0.3809 | 0.7812 | 0.6670 | 0.7091 |
| 0.1079 | 21.84 | 8080 | 0.5996 | 0.6822 | 0.7995 | 0.8670 | 0.9256 | 0.8301 | 0.8706 | 0.4783 | 0.8941 | 0.8730 | 0.7251 | 0.8654 | 0.6743 | 0.7266 | 0.3776 | 0.7783 | 0.6619 | 0.6910 |
| 0.1717 | 21.89 | 8100 | 0.5482 | 0.6819 | 0.7917 | 0.8708 | 0.9316 | 0.8331 | 0.8817 | 0.4027 | 0.9023 | 0.8436 | 0.7470 | 0.8700 | 0.6738 | 0.7327 | 0.3401 | 0.7833 | 0.6612 | 0.7121 |
| 0.3239 | 21.95 | 8120 | 0.5427 | 0.6794 | 0.7976 | 0.8651 | 0.8876 | 0.7914 | 0.8811 | 0.4234 | 0.8909 | 0.8623 | 0.8468 | 0.8398 | 0.6644 | 0.7446 | 0.3468 | 0.7923 | 0.6618 | 0.7062 |
| 0.1983 | 22.0 | 8140 | 0.6081 | 0.6780 | 0.7984 | 0.8627 | 0.8777 | 0.7846 | 0.8739 | 0.4317 | 0.8891 | 0.8768 | 0.8552 | 0.8323 | 0.6606 | 0.7464 | 0.3587 | 0.7932 | 0.6566 | 0.6980 |
| 0.1484 | 22.05 | 8160 | 0.5349 | 0.6790 | 0.7993 | 0.8633 | 0.8994 | 0.8141 | 0.8562 | 0.4765 | 0.8940 | 0.8652 | 0.7899 | 0.8491 | 0.6716 | 0.7440 | 0.3733 | 0.7850 | 0.6449 | 0.6849 |
| 0.1894 | 22.11 | 8180 | 0.5522 | 0.6756 | 0.7889 | 0.8596 | 0.9088 | 0.7743 | 0.8673 | 0.4937 | 0.8993 | 0.8464 | 0.7326 | 0.8393 | 0.6720 | 0.7426 | 0.3832 | 0.7810 | 0.6632 | 0.6477 |
| 0.3145 | 22.16 | 8200 | 0.5572 | 0.6822 | 0.7993 | 0.8665 | 0.9307 | 0.8412 | 0.8772 | 0.4812 | 0.8923 | 0.8619 | 0.7103 | 0.8636 | 0.6720 | 0.7410 | 0.3873 | 0.7780 | 0.6549 | 0.6784 |
| 0.2407 | 22.22 | 8220 | 0.5461 | 0.6860 | 0.7994 | 0.8673 | 0.9205 | 0.8052 | 0.8697 | 0.4979 | 0.8992 | 0.8660 | 0.7374 | 0.8618 | 0.6721 | 0.7515 | 0.3905 | 0.7765 | 0.6633 | 0.6864 |
| 0.2316 | 22.27 | 8240 | 0.5117 | 0.6899 | 0.8124 | 0.8722 | 0.9228 | 0.8234 | 0.8740 | 0.5053 | 0.8763 | 0.8768 | 0.8084 | 0.8632 | 0.6560 | 0.7452 | 0.3687 | 0.7897 | 0.6626 | 0.7437 |
| 0.1487 | 22.32 | 8260 | 0.5589 | 0.6807 | 0.7897 | 0.8691 | 0.9372 | 0.7995 | 0.8774 | 0.4483 | 0.9010 | 0.8372 | 0.7271 | 0.8645 | 0.6632 | 0.7359 | 0.3582 | 0.7870 | 0.6715 | 0.6844 |
| 0.5139 | 22.38 | 8280 | 0.6136 | 0.6741 | 0.7883 | 0.8648 | 0.9278 | 0.8190 | 0.8847 | 0.4439 | 0.9060 | 0.8414 | 0.6949 | 0.8632 | 0.6656 | 0.7263 | 0.3530 | 0.7808 | 0.6715 | 0.6581 |
| 0.1885 | 22.43 | 8300 | 0.5952 | 0.6781 | 0.7890 | 0.8660 | 0.9278 | 0.8208 | 0.8729 | 0.4469 | 0.9098 | 0.8419 | 0.7027 | 0.8622 | 0.6664 | 0.7447 | 0.3691 | 0.7802 | 0.6591 | 0.6653 |
| 0.1655 | 22.49 | 8320 | 0.5607 | 0.6828 | 0.7937 | 0.8679 | 0.9396 | 0.8111 | 0.8783 | 0.4798 | 0.8965 | 0.8448 | 0.7055 | 0.8655 | 0.6729 | 0.7423 | 0.3851 | 0.7813 | 0.6571 | 0.6754 |
| 0.2207 | 22.54 | 8340 | 0.5650 | 0.6836 | 0.7969 | 0.8673 | 0.9392 | 0.8329 | 0.8358 | 0.5001 | 0.8973 | 0.8690 | 0.7041 | 0.8633 | 0.6696 | 0.7397 | 0.3907 | 0.7790 | 0.6637 | 0.6792 |
| 0.1021 | 22.59 | 8360 | 0.5846 | 0.6821 | 0.7936 | 0.8673 | 0.9382 | 0.8232 | 0.8513 | 0.4894 | 0.9030 | 0.8514 | 0.6990 | 0.8629 | 0.6707 | 0.7395 | 0.3838 | 0.7821 | 0.6650 | 0.6711 |
| 0.2844 | 22.65 | 8380 | 0.5945 | 0.6737 | 0.7886 | 0.8641 | 0.9414 | 0.8176 | 0.8566 | 0.4632 | 0.8908 | 0.8607 | 0.6901 | 0.8643 | 0.6701 | 0.7218 | 0.3506 | 0.7753 | 0.6670 | 0.6671 |
| 0.2364 | 22.7 | 8400 | 0.5675 | 0.6828 | 0.7980 | 0.8668 | 0.9386 | 0.8129 | 0.8429 | 0.5250 | 0.8927 | 0.8625 | 0.7115 | 0.8599 | 0.6651 | 0.7359 | 0.3909 | 0.7825 | 0.6661 | 0.6791 |
| 0.0931 | 22.76 | 8420 | 0.5758 | 0.6814 | 0.7965 | 0.8677 | 0.9280 | 0.8355 | 0.8542 | 0.4923 | 0.9146 | 0.8567 | 0.6943 | 0.8600 | 0.6565 | 0.7365 | 0.3779 | 0.7881 | 0.6878 | 0.6632 |
| 1.9535 | 22.81 | 8440 | 0.5744 | 0.6708 | 0.7846 | 0.8615 | 0.9414 | 0.8052 | 0.8589 | 0.4741 | 0.8864 | 0.8198 | 0.7064 | 0.8527 | 0.6636 | 0.7285 | 0.3274 | 0.7738 | 0.6879 | 0.6616 |
| 0.089 | 22.86 | 8460 | 0.5871 | 0.6750 | 0.7902 | 0.8621 | 0.9236 | 0.8017 | 0.8604 | 0.4905 | 0.8994 | 0.8477 | 0.7080 | 0.8547 | 0.6580 | 0.7415 | 0.3755 | 0.7767 | 0.6754 | 0.6433 |
| 0.4797 | 22.92 | 8480 | 0.5729 | 0.6792 | 0.7963 | 0.8640 | 0.9317 | 0.7961 | 0.8674 | 0.5229 | 0.8887 | 0.8601 | 0.7072 | 0.8603 | 0.6589 | 0.7385 | 0.3936 | 0.7750 | 0.6674 | 0.6609 |
| 0.3645 | 22.97 | 8500 | 0.5924 | 0.6621 | 0.7854 | 0.8574 | 0.9327 | 0.8002 | 0.8649 | 0.4443 | 0.8653 | 0.8807 | 0.7099 | 0.8588 | 0.6602 | 0.7243 | 0.3064 | 0.7636 | 0.6646 | 0.6571 |
| 1.9274 | 23.03 | 8520 | 0.5832 | 0.6716 | 0.7923 | 0.8619 | 0.9191 | 0.8040 | 0.8636 | 0.4716 | 0.8842 | 0.8479 | 0.7558 | 0.8588 | 0.6626 | 0.7375 | 0.3162 | 0.7693 | 0.6642 | 0.6928 |
| 0.4846 | 23.08 | 8540 | 0.5686 | 0.6763 | 0.8021 | 0.8606 | 0.9225 | 0.8182 | 0.8364 | 0.5516 | 0.8752 | 0.8683 | 0.7425 | 0.8571 | 0.6578 | 0.7466 | 0.3835 | 0.7664 | 0.6399 | 0.6830 |
| 0.238 | 23.14 | 8560 | 0.5864 | 0.6750 | 0.7964 | 0.8601 | 0.9281 | 0.8056 | 0.8387 | 0.5468 | 0.8832 | 0.8638 | 0.7090 | 0.8589 | 0.6643 | 0.7471 | 0.3803 | 0.7640 | 0.6465 | 0.6642 |
| 0.1989 | 23.19 | 8580 | 0.5883 | 0.6800 | 0.7955 | 0.8633 | 0.9314 | 0.8008 | 0.8531 | 0.5379 | 0.8912 | 0.8374 | 0.7170 | 0.8609 | 0.6653 | 0.7501 | 0.3932 | 0.7695 | 0.6599 | 0.6609 |
| 0.1894 | 23.24 | 8600 | 0.6118 | 0.6843 | 0.7944 | 0.8675 | 0.9321 | 0.8160 | 0.8606 | 0.4999 | 0.9119 | 0.8475 | 0.6927 | 0.8617 | 0.6717 | 0.7498 | 0.3885 | 0.7821 | 0.6766 | 0.6594 |
| 0.2921 | 23.3 | 8620 | 0.6391 | 0.6731 | 0.7798 | 0.8643 | 0.9367 | 0.7823 | 0.8612 | 0.4541 | 0.9168 | 0.8444 | 0.6629 | 0.8619 | 0.6692 | 0.7416 | 0.3576 | 0.7836 | 0.6656 | 0.6324 |
| 0.1991 | 23.35 | 8640 | 0.5604 | 0.6692 | 0.7986 | 0.8594 | 0.9283 | 0.8299 | 0.8807 | 0.4897 | 0.8591 | 0.8730 | 0.7292 | 0.8630 | 0.6569 | 0.7372 | 0.3387 | 0.7609 | 0.6585 | 0.6690 |
| 2.1941 | 23.41 | 8660 | 0.6231 | 0.6726 | 0.7960 | 0.8598 | 0.9252 | 0.7916 | 0.8704 | 0.5168 | 0.8739 | 0.8811 | 0.7128 | 0.8600 | 0.6560 | 0.7499 | 0.3834 | 0.7690 | 0.6361 | 0.6540 |
| 1.0263 | 23.46 | 8680 | 0.5725 | 0.6812 | 0.7969 | 0.8661 | 0.9317 | 0.7970 | 0.8727 | 0.4957 | 0.8853 | 0.8666 | 0.7292 | 0.8650 | 0.6602 | 0.7414 | 0.3854 | 0.7752 | 0.6646 | 0.6764 |
| 0.3965 | 23.51 | 8700 | 0.6046 | 0.6701 | 0.7845 | 0.8601 | 0.9275 | 0.7791 | 0.8538 | 0.4748 | 0.8911 | 0.8554 | 0.7099 | 0.8609 | 0.6647 | 0.7444 | 0.3495 | 0.7669 | 0.6535 | 0.6511 |
| 0.3083 | 23.57 | 8720 | 0.5639 | 0.6899 | 0.8086 | 0.8714 | 0.9230 | 0.8020 | 0.8668 | 0.5128 | 0.8775 | 0.8573 | 0.8208 | 0.8613 | 0.6656 | 0.7423 | 0.3584 | 0.7845 | 0.6696 | 0.7476 |
| 0.348 | 23.62 | 8740 | 0.5833 | 0.6772 | 0.8023 | 0.8639 | 0.9258 | 0.8096 | 0.8594 | 0.5035 | 0.8651 | 0.8836 | 0.7693 | 0.8626 | 0.6613 | 0.7440 | 0.3460 | 0.7708 | 0.6550 | 0.7010 |
| 0.2902 | 23.68 | 8760 | 0.6245 | 0.6601 | 0.7887 | 0.8543 | 0.9189 | 0.8138 | 0.8727 | 0.4692 | 0.8708 | 0.8761 | 0.6994 | 0.8602 | 0.6599 | 0.7390 | 0.3228 | 0.7571 | 0.6401 | 0.6419 |
| 0.1974 | 23.73 | 8780 | 0.5838 | 0.6695 | 0.7817 | 0.8603 | 0.9269 | 0.7834 | 0.8570 | 0.4585 | 0.8937 | 0.8266 | 0.7255 | 0.8591 | 0.6629 | 0.7404 | 0.3419 | 0.7653 | 0.6539 | 0.6629 |
| 0.206 | 23.78 | 8800 | 0.5512 | 0.6790 | 0.7919 | 0.8634 | 0.9296 | 0.7790 | 0.8484 | 0.5005 | 0.8879 | 0.8753 | 0.7230 | 0.8614 | 0.6625 | 0.7393 | 0.3936 | 0.7701 | 0.6631 | 0.6630 |
| 0.0565 | 23.84 | 8820 | 0.5502 | 0.6865 | 0.8006 | 0.8691 | 0.9266 | 0.8180 | 0.8576 | 0.4931 | 0.8943 | 0.8524 | 0.7625 | 0.8607 | 0.6622 | 0.7458 | 0.3915 | 0.7857 | 0.6619 | 0.6976 |
| 0.1328 | 23.89 | 8840 | 0.5634 | 0.6827 | 0.7948 | 0.8668 | 0.9207 | 0.7875 | 0.8474 | 0.5038 | 0.9039 | 0.8439 | 0.7562 | 0.8580 | 0.6475 | 0.7534 | 0.3939 | 0.7817 | 0.6573 | 0.6872 |
| 0.1884 | 23.95 | 8860 | 0.6300 | 0.6704 | 0.7872 | 0.8606 | 0.9145 | 0.8043 | 0.8633 | 0.4493 | 0.9001 | 0.8627 | 0.7165 | 0.8571 | 0.6550 | 0.7494 | 0.3593 | 0.7726 | 0.6456 | 0.6540 |
| 0.2707 | 24.0 | 8880 | 0.6569 | 0.6586 | 0.7709 | 0.8575 | 0.9294 | 0.7927 | 0.8687 | 0.3950 | 0.9010 | 0.8286 | 0.6807 | 0.8605 | 0.6619 | 0.7332 | 0.3093 | 0.7674 | 0.6457 | 0.6322 |
| 0.3871 | 24.05 | 8900 | 0.6504 | 0.6578 | 0.7787 | 0.8564 | 0.9356 | 0.8423 | 0.8347 | 0.4222 | 0.8869 | 0.8495 | 0.6795 | 0.8592 | 0.6567 | 0.7318 | 0.3005 | 0.7635 | 0.6441 | 0.6486 |
| 0.3144 | 24.11 | 8920 | 0.6706 | 0.6548 | 0.7795 | 0.8536 | 0.9291 | 0.8228 | 0.8620 | 0.4337 | 0.8836 | 0.8777 | 0.6475 | 0.8604 | 0.6646 | 0.7307 | 0.3255 | 0.7670 | 0.6234 | 0.6122 |
| 0.0824 | 24.16 | 8940 | 0.6211 | 0.6640 | 0.7859 | 0.8568 | 0.9224 | 0.7709 | 0.8858 | 0.4967 | 0.8808 | 0.8346 | 0.7101 | 0.8536 | 0.6410 | 0.7348 | 0.3514 | 0.7663 | 0.6524 | 0.6482 |
| 0.147 | 24.22 | 8960 | 0.6018 | 0.6663 | 0.7807 | 0.8599 | 0.9246 | 0.6985 | 0.8578 | 0.5418 | 0.9017 | 0.8264 | 0.7142 | 0.8596 | 0.6068 | 0.7480 | 0.3659 | 0.7694 | 0.6577 | 0.6565 |
| 0.2046 | 24.27 | 8980 | 0.5952 | 0.6760 | 0.7914 | 0.8632 | 0.9212 | 0.7512 | 0.8642 | 0.5368 | 0.8980 | 0.8256 | 0.7427 | 0.8591 | 0.6417 | 0.7422 | 0.3755 | 0.7736 | 0.6646 | 0.6755 |
| 0.2014 | 24.32 | 9000 | 0.5944 | 0.6783 | 0.7980 | 0.8641 | 0.9273 | 0.8022 | 0.8638 | 0.5247 | 0.8844 | 0.8371 | 0.7463 | 0.8614 | 0.6586 | 0.7374 | 0.3680 | 0.7722 | 0.6679 | 0.6826 |
| 0.0533 | 24.38 | 9020 | 0.6587 | 0.6734 | 0.7872 | 0.8619 | 0.9203 | 0.7801 | 0.8606 | 0.4876 | 0.9016 | 0.8332 | 0.7268 | 0.8595 | 0.6487 | 0.7451 | 0.3628 | 0.7684 | 0.6648 | 0.6641 |
| 0.2093 | 24.43 | 9040 | 0.6173 | 0.6763 | 0.7903 | 0.8648 | 0.9328 | 0.8158 | 0.8373 | 0.4630 | 0.8884 | 0.8442 | 0.7507 | 0.8599 | 0.6587 | 0.7291 | 0.3529 | 0.7738 | 0.6708 | 0.6886 |
| 0.1713 | 24.49 | 9060 | 0.5820 | 0.6747 | 0.7958 | 0.8626 | 0.9317 | 0.7998 | 0.8558 | 0.4790 | 0.8616 | 0.8773 | 0.7652 | 0.8635 | 0.6673 | 0.7396 | 0.3206 | 0.7610 | 0.6686 | 0.7023 |
| 0.1691 | 24.54 | 9080 | 0.5721 | 0.6751 | 0.7924 | 0.8631 | 0.9324 | 0.8007 | 0.8585 | 0.4802 | 0.8762 | 0.8532 | 0.7460 | 0.8643 | 0.6645 | 0.7445 | 0.3347 | 0.7627 | 0.6669 | 0.6883 |
| 0.1106 | 24.59 | 9100 | 0.5679 | 0.6808 | 0.7961 | 0.8660 | 0.9313 | 0.8225 | 0.8635 | 0.4743 | 0.8893 | 0.8673 | 0.7246 | 0.8669 | 0.6724 | 0.7418 | 0.3643 | 0.7698 | 0.6645 | 0.6859 |
| 0.1896 | 24.65 | 9120 | 0.5785 | 0.6783 | 0.7910 | 0.8649 | 0.9234 | 0.7689 | 0.8535 | 0.4665 | 0.8878 | 0.8821 | 0.7548 | 0.8615 | 0.6394 | 0.7505 | 0.3741 | 0.7690 | 0.6665 | 0.6871 |
| 0.5134 | 24.7 | 9140 | 0.5299 | 0.6942 | 0.8100 | 0.8722 | 0.9225 | 0.8044 | 0.8590 | 0.5211 | 0.8837 | 0.8726 | 0.8068 | 0.8600 | 0.6590 | 0.7510 | 0.4038 | 0.7866 | 0.6650 | 0.7339 |
| 0.4509 | 24.76 | 9160 | 0.5697 | 0.6858 | 0.8003 | 0.8677 | 0.9174 | 0.8081 | 0.8697 | 0.5085 | 0.9011 | 0.8324 | 0.7648 | 0.8602 | 0.6603 | 0.7489 | 0.3869 | 0.7777 | 0.6692 | 0.6972 |
| 0.1456 | 24.81 | 9180 | 0.6313 | 0.6818 | 0.7974 | 0.8656 | 0.9252 | 0.8321 | 0.8474 | 0.5258 | 0.9130 | 0.8379 | 0.7006 | 0.8625 | 0.6669 | 0.7485 | 0.3889 | 0.7775 | 0.6627 | 0.6657 |
| 0.3161 | 24.86 | 9200 | 0.5902 | 0.6805 | 0.7989 | 0.8655 | 0.9239 | 0.8146 | 0.8581 | 0.5054 | 0.8938 | 0.8657 | 0.7306 | 0.8655 | 0.6603 | 0.7480 | 0.3758 | 0.7729 | 0.6618 | 0.6794 |
| 0.1412 | 24.92 | 9220 | 0.6194 | 0.6728 | 0.7906 | 0.8624 | 0.9236 | 0.8272 | 0.8365 | 0.4650 | 0.8953 | 0.8559 | 0.7307 | 0.8560 | 0.6528 | 0.7384 | 0.3507 | 0.7740 | 0.6678 | 0.6698 |
| 0.169 | 24.97 | 9240 | 0.5721 | 0.6742 | 0.7854 | 0.8649 | 0.9276 | 0.8090 | 0.8546 | 0.4162 | 0.8956 | 0.8470 | 0.7475 | 0.8569 | 0.6604 | 0.7383 | 0.3288 | 0.7776 | 0.6754 | 0.6818 |
| 0.1168 | 25.03 | 9260 | 0.5408 | 0.6758 | 0.7857 | 0.8653 | 0.9315 | 0.8146 | 0.8371 | 0.4369 | 0.8992 | 0.8365 | 0.7444 | 0.8570 | 0.6611 | 0.7355 | 0.3402 | 0.7776 | 0.6756 | 0.6834 |
| 0.1236 | 25.08 | 9280 | 0.5989 | 0.6796 | 0.7947 | 0.8637 | 0.9337 | 0.8156 | 0.8602 | 0.5125 | 0.8951 | 0.8586 | 0.6868 | 0.8574 | 0.6684 | 0.7470 | 0.3954 | 0.7758 | 0.6597 | 0.6533 |
| 0.1402 | 25.14 | 9300 | 0.5337 | 0.6828 | 0.7902 | 0.8682 | 0.9369 | 0.8239 | 0.8565 | 0.4630 | 0.9081 | 0.8272 | 0.7161 | 0.8596 | 0.6726 | 0.7423 | 0.3713 | 0.7842 | 0.6732 | 0.6764 |
| 0.0659 | 25.19 | 9320 | 0.5782 | 0.6736 | 0.7954 | 0.8614 | 0.9302 | 0.8341 | 0.8540 | 0.4856 | 0.8799 | 0.8762 | 0.7081 | 0.8572 | 0.6569 | 0.7373 | 0.3741 | 0.7711 | 0.6594 | 0.6595 |
| 0.3301 | 25.24 | 9340 | 0.6045 | 0.6715 | 0.7866 | 0.8620 | 0.9276 | 0.7994 | 0.8715 | 0.4603 | 0.8958 | 0.8467 | 0.7047 | 0.8590 | 0.6512 | 0.7431 | 0.3611 | 0.7735 | 0.6582 | 0.6542 |
| 0.2523 | 25.3 | 9360 | 0.5964 | 0.6754 | 0.7884 | 0.8641 | 0.9323 | 0.8082 | 0.8618 | 0.4527 | 0.8947 | 0.8632 | 0.7063 | 0.8602 | 0.6700 | 0.7370 | 0.3532 | 0.7760 | 0.6639 | 0.6673 |
| 0.2483 | 25.35 | 9380 | 0.5981 | 0.6707 | 0.7816 | 0.8634 | 0.9321 | 0.7652 | 0.8546 | 0.4422 | 0.8953 | 0.8623 | 0.7191 | 0.8631 | 0.6526 | 0.7336 | 0.3334 | 0.7730 | 0.6677 | 0.6716 |
| 0.1621 | 25.41 | 9400 | 0.5591 | 0.6763 | 0.7884 | 0.8664 | 0.9338 | 0.7969 | 0.8472 | 0.4417 | 0.8910 | 0.8637 | 0.7442 | 0.8621 | 0.6397 | 0.7300 | 0.3486 | 0.7741 | 0.6882 | 0.6915 |
| 0.1596 | 25.46 | 9420 | 0.6054 | 0.6797 | 0.7894 | 0.8674 | 0.9307 | 0.8010 | 0.8502 | 0.4750 | 0.9109 | 0.8343 | 0.7235 | 0.8612 | 0.6403 | 0.7309 | 0.3735 | 0.7782 | 0.6834 | 0.6904 |
| 0.3227 | 25.51 | 9440 | 0.5901 | 0.6776 | 0.7910 | 0.8658 | 0.9212 | 0.7572 | 0.8674 | 0.4964 | 0.9057 | 0.8652 | 0.7235 | 0.8660 | 0.6386 | 0.7388 | 0.3695 | 0.7733 | 0.6707 | 0.6865 |
| 0.2153 | 25.57 | 9460 | 0.5758 | 0.6730 | 0.7875 | 0.8648 | 0.9244 | 0.7906 | 0.8777 | 0.4487 | 0.9020 | 0.8477 | 0.7211 | 0.8647 | 0.6502 | 0.7290 | 0.3387 | 0.7741 | 0.6667 | 0.6879 |
| 0.3868 | 25.62 | 9480 | 0.5591 | 0.6795 | 0.7912 | 0.8671 | 0.9252 | 0.8109 | 0.8717 | 0.4495 | 0.9042 | 0.8442 | 0.7330 | 0.8641 | 0.6580 | 0.7303 | 0.3576 | 0.7743 | 0.6755 | 0.6967 |
| 0.2817 | 25.68 | 9500 | 0.5215 | 0.6878 | 0.7959 | 0.8738 | 0.9336 | 0.8251 | 0.8433 | 0.4297 | 0.9011 | 0.8513 | 0.7875 | 0.8663 | 0.6666 | 0.7304 | 0.3412 | 0.7889 | 0.6801 | 0.7408 |
| 0.2824 | 25.73 | 9520 | 0.5074 | 0.6917 | 0.8034 | 0.8757 | 0.9264 | 0.8140 | 0.8525 | 0.4297 | 0.8823 | 0.8657 | 0.8532 | 0.8594 | 0.6615 | 0.7304 | 0.3441 | 0.7954 | 0.6741 | 0.7768 |
| 0.1215 | 25.78 | 9540 | 0.5113 | 0.6956 | 0.8073 | 0.8768 | 0.9241 | 0.8304 | 0.8311 | 0.4732 | 0.8996 | 0.8544 | 0.8380 | 0.8596 | 0.6533 | 0.7364 | 0.3791 | 0.8016 | 0.6742 | 0.7651 |
| 0.2846 | 25.84 | 9560 | 0.5507 | 0.6867 | 0.7933 | 0.8711 | 0.9280 | 0.8186 | 0.8677 | 0.4674 | 0.9230 | 0.8247 | 0.7234 | 0.8678 | 0.6740 | 0.7375 | 0.3711 | 0.7854 | 0.6774 | 0.6935 |
| 0.4948 | 25.89 | 9580 | 0.5195 | 0.6907 | 0.7986 | 0.8729 | 0.9382 | 0.8081 | 0.8478 | 0.4941 | 0.9044 | 0.8507 | 0.7467 | 0.8678 | 0.6684 | 0.7407 | 0.3734 | 0.7855 | 0.6878 | 0.7113 |
| 0.3136 | 25.95 | 9600 | 0.5447 | 0.6889 | 0.7947 | 0.8721 | 0.9387 | 0.8271 | 0.8304 | 0.4608 | 0.9087 | 0.8594 | 0.7375 | 0.8647 | 0.6735 | 0.7420 | 0.3706 | 0.7852 | 0.6748 | 0.7117 |
| 0.1665 | 26.0 | 9620 | 0.5755 | 0.6885 | 0.7950 | 0.8711 | 0.9373 | 0.8130 | 0.8596 | 0.4627 | 0.9026 | 0.8602 | 0.7300 | 0.8679 | 0.6796 | 0.7482 | 0.3707 | 0.7794 | 0.6681 | 0.7055 |
| 0.0865 | 26.05 | 9640 | 0.5778 | 0.6861 | 0.7970 | 0.8684 | 0.9328 | 0.7874 | 0.8652 | 0.4998 | 0.8920 | 0.8654 | 0.7365 | 0.8684 | 0.6677 | 0.7499 | 0.3870 | 0.7731 | 0.6623 | 0.6941 |
| 0.1036 | 26.11 | 9660 | 0.5929 | 0.6828 | 0.7923 | 0.8666 | 0.9384 | 0.7990 | 0.8381 | 0.4884 | 0.8910 | 0.8574 | 0.7335 | 0.8626 | 0.6687 | 0.7389 | 0.3858 | 0.7744 | 0.6637 | 0.6854 |
| 0.2062 | 26.16 | 9680 | 0.6145 | 0.6766 | 0.7881 | 0.8658 | 0.9364 | 0.8016 | 0.8480 | 0.4344 | 0.8859 | 0.8719 | 0.7387 | 0.8637 | 0.6647 | 0.7360 | 0.3431 | 0.7736 | 0.6675 | 0.6879 |
| 0.2066 | 26.22 | 9700 | 0.6302 | 0.6749 | 0.7899 | 0.8650 | 0.9310 | 0.7961 | 0.8787 | 0.4181 | 0.8760 | 0.8837 | 0.7460 | 0.8641 | 0.6654 | 0.7349 | 0.3311 | 0.7713 | 0.6681 | 0.6891 |
| 0.3122 | 26.27 | 9720 | 0.5919 | 0.6790 | 0.7833 | 0.8695 | 0.9322 | 0.7807 | 0.8695 | 0.3970 | 0.9022 | 0.8424 | 0.7595 | 0.8660 | 0.6666 | 0.7363 | 0.3249 | 0.7820 | 0.6801 | 0.6968 |
| 0.2804 | 26.32 | 9740 | 0.5657 | 0.6853 | 0.7938 | 0.8715 | 0.9325 | 0.8105 | 0.8793 | 0.4290 | 0.8968 | 0.8425 | 0.7658 | 0.8653 | 0.6692 | 0.7429 | 0.3469 | 0.7857 | 0.6797 | 0.7073 |
| 0.3325 | 26.38 | 9760 | 0.5954 | 0.6892 | 0.8015 | 0.8691 | 0.9321 | 0.8292 | 0.8377 | 0.5225 | 0.9006 | 0.8510 | 0.7375 | 0.8623 | 0.6595 | 0.7504 | 0.4156 | 0.7805 | 0.6716 | 0.6847 |
| 0.6275 | 26.43 | 9780 | 0.5847 | 0.6860 | 0.7970 | 0.8684 | 0.9342 | 0.8112 | 0.8649 | 0.4878 | 0.8961 | 0.8643 | 0.7204 | 0.8665 | 0.6660 | 0.7513 | 0.3979 | 0.7769 | 0.6660 | 0.6776 |
| 0.3794 | 26.49 | 9800 | 0.5874 | 0.6800 | 0.7975 | 0.8655 | 0.9268 | 0.8132 | 0.8603 | 0.4910 | 0.8874 | 0.8596 | 0.7441 | 0.8640 | 0.6618 | 0.7541 | 0.3529 | 0.7702 | 0.6686 | 0.6883 |
| 0.3265 | 26.54 | 9820 | 0.5431 | 0.6868 | 0.7962 | 0.8708 | 0.9312 | 0.8130 | 0.8648 | 0.4739 | 0.9030 | 0.8283 | 0.7593 | 0.8628 | 0.6600 | 0.7500 | 0.3676 | 0.7845 | 0.6808 | 0.7021 |
| 0.2163 | 26.59 | 9840 | 0.5910 | 0.6866 | 0.7966 | 0.8696 | 0.9273 | 0.8196 | 0.8565 | 0.4767 | 0.9066 | 0.8479 | 0.7419 | 0.8645 | 0.6613 | 0.7493 | 0.3847 | 0.7799 | 0.6765 | 0.6901 |
| 0.2469 | 26.65 | 9860 | 0.6472 | 0.6810 | 0.7872 | 0.8665 | 0.9281 | 0.8071 | 0.8293 | 0.4536 | 0.9103 | 0.8488 | 0.7333 | 0.8567 | 0.6656 | 0.7254 | 0.3819 | 0.7806 | 0.6762 | 0.6803 |
| 0.2078 | 26.7 | 9880 | 0.5434 | 0.6868 | 0.7946 | 0.8705 | 0.9330 | 0.8069 | 0.8265 | 0.4754 | 0.8997 | 0.8422 | 0.7785 | 0.8561 | 0.6640 | 0.7201 | 0.3839 | 0.7911 | 0.6748 | 0.7178 |
| 0.2536 | 26.76 | 9900 | 0.5317 | 0.6955 | 0.8006 | 0.8779 | 0.9326 | 0.8000 | 0.8603 | 0.4675 | 0.9055 | 0.8162 | 0.8222 | 0.8635 | 0.6658 | 0.7390 | 0.3615 | 0.8027 | 0.6718 | 0.7643 |
| 0.1666 | 26.81 | 9920 | 0.5297 | 0.6903 | 0.7972 | 0.8721 | 0.9321 | 0.7830 | 0.8653 | 0.4971 | 0.9042 | 0.8388 | 0.7595 | 0.8693 | 0.6671 | 0.7499 | 0.3844 | 0.7824 | 0.6657 | 0.7136 |
| 0.3875 | 26.86 | 9940 | 0.6049 | 0.6835 | 0.7915 | 0.8701 | 0.9437 | 0.8191 | 0.8704 | 0.4413 | 0.8953 | 0.8433 | 0.7278 | 0.8678 | 0.6791 | 0.7416 | 0.3449 | 0.7801 | 0.6683 | 0.7030 |
| 0.1804 | 26.92 | 9960 | 0.5804 | 0.6904 | 0.7902 | 0.8738 | 0.9399 | 0.8023 | 0.8600 | 0.4524 | 0.9183 | 0.8191 | 0.7393 | 0.8686 | 0.6755 | 0.7466 | 0.3702 | 0.7885 | 0.6844 | 0.6988 |
| 0.5588 | 26.97 | 9980 | 0.5892 | 0.6911 | 0.7966 | 0.8728 | 0.9391 | 0.8084 | 0.8569 | 0.4798 | 0.9074 | 0.8526 | 0.7320 | 0.8699 | 0.6801 | 0.7471 | 0.3797 | 0.7849 | 0.6690 | 0.7068 |
| 0.2821 | 27.03 | 10000 | 0.6022 | 0.6881 | 0.7945 | 0.8725 | 0.9408 | 0.8337 | 0.8606 | 0.4497 | 0.9088 | 0.8421 | 0.7255 | 0.8673 | 0.6786 | 0.7456 | 0.3603 | 0.7874 | 0.6745 | 0.7029 |
| 0.3519 | 27.08 | 10020 | 0.5578 | 0.6892 | 0.7975 | 0.8707 | 0.9388 | 0.8167 | 0.8569 | 0.4875 | 0.8977 | 0.8465 | 0.7385 | 0.8657 | 0.6727 | 0.7516 | 0.3869 | 0.7808 | 0.6718 | 0.6952 |
| 0.1704 | 27.14 | 10040 | 0.5708 | 0.6861 | 0.7956 | 0.8689 | 0.9361 | 0.8084 | 0.8535 | 0.4892 | 0.8961 | 0.8440 | 0.7416 | 0.8657 | 0.6736 | 0.7454 | 0.3780 | 0.7770 | 0.6687 | 0.6943 |
| 0.3597 | 27.19 | 10060 | 0.5695 | 0.6876 | 0.7976 | 0.8695 | 0.9339 | 0.7896 | 0.8656 | 0.4934 | 0.8918 | 0.8648 | 0.7440 | 0.8703 | 0.6722 | 0.7468 | 0.3854 | 0.7742 | 0.6671 | 0.6975 |
| 0.3913 | 27.24 | 10080 | 0.5464 | 0.6787 | 0.7917 | 0.8608 | 0.9082 | 0.8047 | 0.8496 | 0.4676 | 0.8936 | 0.8591 | 0.7592 | 0.8406 | 0.6733 | 0.7477 | 0.3879 | 0.7782 | 0.6667 | 0.6563 |
| 0.3059 | 27.3 | 10100 | 0.5639 | 0.6874 | 0.7933 | 0.8717 | 0.9390 | 0.8386 | 0.8589 | 0.4450 | 0.9122 | 0.8430 | 0.7161 | 0.8675 | 0.6804 | 0.7375 | 0.3737 | 0.7863 | 0.6743 | 0.6922 |
| 0.2716 | 27.35 | 10120 | 0.5449 | 0.6894 | 0.7902 | 0.8746 | 0.9436 | 0.8183 | 0.8533 | 0.4371 | 0.9208 | 0.8367 | 0.7217 | 0.8678 | 0.6694 | 0.7321 | 0.3694 | 0.7947 | 0.6974 | 0.6953 |
| 0.6047 | 27.41 | 10140 | 0.5346 | 0.6943 | 0.7947 | 0.8758 | 0.9383 | 0.8108 | 0.8538 | 0.4517 | 0.9177 | 0.8405 | 0.7500 | 0.8708 | 0.6828 | 0.7374 | 0.3747 | 0.7913 | 0.6854 | 0.7174 |
| 0.151 | 27.46 | 10160 | 0.5572 | 0.6890 | 0.7934 | 0.8717 | 0.9355 | 0.8047 | 0.8545 | 0.4600 | 0.9073 | 0.8513 | 0.7409 | 0.8698 | 0.6781 | 0.7413 | 0.3766 | 0.7808 | 0.6734 | 0.7026 |
| 0.1925 | 27.51 | 10180 | 0.5290 | 0.6971 | 0.8094 | 0.8775 | 0.9312 | 0.8126 | 0.8643 | 0.4669 | 0.8834 | 0.8820 | 0.8253 | 0.8688 | 0.6679 | 0.7391 | 0.3718 | 0.7955 | 0.6638 | 0.7726 |
| 0.2092 | 27.57 | 10200 | 0.5235 | 0.6899 | 0.7992 | 0.8743 | 0.9368 | 0.8169 | 0.8616 | 0.4508 | 0.8914 | 0.8400 | 0.7967 | 0.8674 | 0.6691 | 0.7364 | 0.3548 | 0.7895 | 0.6677 | 0.7446 |
| 0.1342 | 27.62 | 10220 | 0.5449 | 0.6871 | 0.7969 | 0.8709 | 0.9362 | 0.8072 | 0.8619 | 0.4596 | 0.8907 | 0.8692 | 0.7537 | 0.8680 | 0.6829 | 0.7420 | 0.3525 | 0.7800 | 0.6626 | 0.7218 |
| 0.2301 | 27.68 | 10240 | 0.5375 | 0.6890 | 0.8043 | 0.8713 | 0.9345 | 0.8359 | 0.8612 | 0.4908 | 0.8915 | 0.8715 | 0.7447 | 0.8686 | 0.6741 | 0.7481 | 0.3662 | 0.7806 | 0.6661 | 0.7193 |
| 0.1528 | 27.73 | 10260 | 0.5133 | 0.6878 | 0.7960 | 0.8723 | 0.9392 | 0.8050 | 0.8680 | 0.4585 | 0.8929 | 0.8435 | 0.7649 | 0.8703 | 0.6833 | 0.7429 | 0.3345 | 0.7807 | 0.6716 | 0.7310 |
| 0.1313 | 27.78 | 10280 | 0.5783 | 0.6771 | 0.7860 | 0.8671 | 0.9423 | 0.8021 | 0.8589 | 0.4187 | 0.8882 | 0.8644 | 0.7276 | 0.8679 | 0.6851 | 0.7331 | 0.3114 | 0.7731 | 0.6649 | 0.7039 |
| 0.0945 | 27.84 | 10300 | 0.5292 | 0.6898 | 0.7973 | 0.8734 | 0.9356 | 0.8261 | 0.8556 | 0.4516 | 0.9036 | 0.8470 | 0.7613 | 0.8689 | 0.6769 | 0.7382 | 0.3610 | 0.7861 | 0.6681 | 0.7293 |
| 0.1894 | 27.89 | 10320 | 0.5126 | 0.6927 | 0.8039 | 0.8739 | 0.9350 | 0.8048 | 0.8570 | 0.4898 | 0.8885 | 0.8658 | 0.7861 | 0.8686 | 0.6668 | 0.7428 | 0.3762 | 0.7854 | 0.6741 | 0.7351 |
| 0.494 | 27.95 | 10340 | 0.5499 | 0.6927 | 0.8089 | 0.8733 | 0.9358 | 0.7857 | 0.8717 | 0.5165 | 0.8665 | 0.8672 | 0.8185 | 0.8648 | 0.6660 | 0.7457 | 0.3595 | 0.7839 | 0.6729 | 0.7561 |
| 0.1046 | 28.0 | 10360 | 0.5496 | 0.6962 | 0.8084 | 0.8731 | 0.9251 | 0.7879 | 0.8410 | 0.5496 | 0.8945 | 0.8596 | 0.8012 | 0.8606 | 0.6626 | 0.7457 | 0.4125 | 0.7902 | 0.6745 | 0.7276 |
| 0.196 | 28.05 | 10380 | 0.6126 | 0.6778 | 0.7928 | 0.8640 | 0.9287 | 0.8225 | 0.8503 | 0.5001 | 0.9049 | 0.8465 | 0.6965 | 0.8619 | 0.6751 | 0.7386 | 0.3830 | 0.7784 | 0.6479 | 0.6597 |
| 0.5045 | 28.11 | 10400 | 0.5943 | 0.6726 | 0.7889 | 0.8614 | 0.9384 | 0.8178 | 0.8455 | 0.5025 | 0.8972 | 0.8583 | 0.6626 | 0.8610 | 0.6741 | 0.7375 | 0.3788 | 0.7771 | 0.6459 | 0.6336 |
| 0.1568 | 28.16 | 10420 | 0.5737 | 0.6751 | 0.7883 | 0.8654 | 0.9394 | 0.8093 | 0.8596 | 0.4498 | 0.8935 | 0.8680 | 0.6983 | 0.8628 | 0.6736 | 0.7297 | 0.3467 | 0.7823 | 0.6611 | 0.6698 |
| 0.2164 | 28.22 | 10440 | 0.5116 | 0.6823 | 0.7975 | 0.8708 | 0.9333 | 0.8081 | 0.8632 | 0.4418 | 0.8809 | 0.8672 | 0.7880 | 0.8710 | 0.6666 | 0.7358 | 0.3057 | 0.7778 | 0.6720 | 0.7472 |
| 0.2651 | 28.27 | 10460 | 0.5385 | 0.6866 | 0.7999 | 0.8708 | 0.9318 | 0.8073 | 0.8674 | 0.4666 | 0.8846 | 0.8628 | 0.7789 | 0.8699 | 0.6695 | 0.7466 | 0.3412 | 0.7748 | 0.6752 | 0.7286 |
| 0.1581 | 28.32 | 10480 | 0.5258 | 0.7004 | 0.8087 | 0.8776 | 0.9289 | 0.7974 | 0.8575 | 0.4937 | 0.8935 | 0.8703 | 0.8197 | 0.8649 | 0.6687 | 0.7515 | 0.3923 | 0.7967 | 0.6763 | 0.7522 |
| 0.161 | 28.38 | 10500 | 0.5039 | 0.6967 | 0.8080 | 0.8749 | 0.9339 | 0.7980 | 0.8717 | 0.5228 | 0.8884 | 0.8471 | 0.7941 | 0.8685 | 0.6661 | 0.7482 | 0.3973 | 0.7868 | 0.6734 | 0.7366 |
| 0.2177 | 28.43 | 10520 | 0.5610 | 0.6881 | 0.8035 | 0.8698 | 0.9305 | 0.8322 | 0.8692 | 0.5056 | 0.8966 | 0.8588 | 0.7318 | 0.8702 | 0.6773 | 0.7482 | 0.3806 | 0.7772 | 0.6648 | 0.6985 |
| 0.1825 | 28.49 | 10540 | 0.5600 | 0.6819 | 0.7925 | 0.8669 | 0.9374 | 0.8129 | 0.8308 | 0.4943 | 0.8953 | 0.8302 | 0.7467 | 0.8687 | 0.6701 | 0.7466 | 0.3572 | 0.7675 | 0.6661 | 0.6971 |
| 0.3412 | 28.54 | 10560 | 0.5749 | 0.6811 | 0.7952 | 0.8669 | 0.9277 | 0.8007 | 0.8613 | 0.4673 | 0.8851 | 0.8556 | 0.7684 | 0.8639 | 0.6714 | 0.7460 | 0.3381 | 0.7720 | 0.6707 | 0.7060 |
| 0.1687 | 28.59 | 10580 | 0.5676 | 0.6847 | 0.8014 | 0.8683 | 0.9322 | 0.7985 | 0.8455 | 0.5046 | 0.8758 | 0.8706 | 0.7828 | 0.8638 | 0.6689 | 0.7457 | 0.3469 | 0.7749 | 0.6728 | 0.7199 |
| 0.2223 | 28.65 | 10600 | 0.5701 | 0.6774 | 0.7878 | 0.8648 | 0.9342 | 0.8000 | 0.8401 | 0.4748 | 0.8960 | 0.8328 | 0.7369 | 0.8625 | 0.6639 | 0.7426 | 0.3513 | 0.7699 | 0.6685 | 0.6830 |
| 0.1686 | 28.7 | 10620 | 0.5562 | 0.6936 | 0.8015 | 0.8732 | 0.9310 | 0.7666 | 0.8577 | 0.5019 | 0.8869 | 0.8590 | 0.8072 | 0.8607 | 0.6638 | 0.7470 | 0.3897 | 0.7890 | 0.6721 | 0.7326 |
| 0.1468 | 28.76 | 10640 | 0.5762 | 0.6844 | 0.7940 | 0.8680 | 0.9349 | 0.7952 | 0.8749 | 0.4870 | 0.8933 | 0.8312 | 0.7411 | 0.8633 | 0.6666 | 0.7430 | 0.3805 | 0.7766 | 0.6717 | 0.6888 |
| 0.2564 | 28.81 | 10660 | 0.5444 | 0.7031 | 0.8104 | 0.8793 | 0.9220 | 0.7982 | 0.8617 | 0.4997 | 0.9015 | 0.8416 | 0.8484 | 0.8618 | 0.6682 | 0.7459 | 0.3963 | 0.8024 | 0.6746 | 0.7727 |
| 0.1094 | 28.86 | 10680 | 0.5362 | 0.6983 | 0.8109 | 0.8771 | 0.9224 | 0.7900 | 0.8721 | 0.5041 | 0.8903 | 0.8609 | 0.8362 | 0.8627 | 0.6654 | 0.7475 | 0.3752 | 0.7983 | 0.6734 | 0.7654 |
| 0.2855 | 28.92 | 10700 | 0.5108 | 0.6925 | 0.8033 | 0.8755 | 0.9335 | 0.7491 | 0.8749 | 0.4847 | 0.8740 | 0.8681 | 0.8390 | 0.8638 | 0.6534 | 0.7505 | 0.3432 | 0.7913 | 0.6772 | 0.7683 |
| 0.121 | 28.97 | 10720 | 0.5407 | 0.6888 | 0.8004 | 0.8717 | 0.9329 | 0.8138 | 0.8687 | 0.4840 | 0.8944 | 0.8419 | 0.7670 | 0.8660 | 0.6689 | 0.7485 | 0.3754 | 0.7861 | 0.6645 | 0.7124 |
| 0.5389 | 29.03 | 10740 | 0.5872 | 0.6803 | 0.7784 | 0.8701 | 0.9412 | 0.7895 | 0.8622 | 0.3998 | 0.9191 | 0.8209 | 0.7163 | 0.8677 | 0.6793 | 0.7382 | 0.3383 | 0.7835 | 0.6663 | 0.6887 |
| 0.2407 | 29.08 | 10760 | 0.5927 | 0.6761 | 0.7843 | 0.8656 | 0.9352 | 0.8173 | 0.8767 | 0.4338 | 0.9091 | 0.8260 | 0.6917 | 0.8661 | 0.6843 | 0.7311 | 0.3475 | 0.7762 | 0.6627 | 0.6652 |
| 0.0844 | 29.14 | 10780 | 0.5656 | 0.6827 | 0.7954 | 0.8672 | 0.9407 | 0.8211 | 0.8714 | 0.4765 | 0.8884 | 0.8615 | 0.7078 | 0.8616 | 0.6856 | 0.7376 | 0.3630 | 0.7793 | 0.6693 | 0.6826 |
| 0.3771 | 29.19 | 10800 | 0.5372 | 0.6878 | 0.7945 | 0.8720 | 0.9441 | 0.8078 | 0.8704 | 0.4439 | 0.8889 | 0.8554 | 0.7510 | 0.8645 | 0.6810 | 0.7412 | 0.3544 | 0.7860 | 0.6720 | 0.7154 |
| 1.0276 | 29.24 | 10820 | 0.5559 | 0.6891 | 0.8020 | 0.8731 | 0.9295 | 0.7942 | 0.8719 | 0.4453 | 0.8755 | 0.8764 | 0.8212 | 0.8604 | 0.6669 | 0.7405 | 0.3507 | 0.7921 | 0.6630 | 0.7501 |
| 0.2003 | 29.3 | 10840 | 0.6174 | 0.6756 | 0.7818 | 0.8656 | 0.9368 | 0.8194 | 0.8466 | 0.4171 | 0.9106 | 0.8493 | 0.6932 | 0.8639 | 0.6785 | 0.7393 | 0.3413 | 0.7760 | 0.6667 | 0.6636 |
| 0.0898 | 29.35 | 10860 | 0.6115 | 0.6727 | 0.7790 | 0.8647 | 0.9395 | 0.7981 | 0.8618 | 0.4070 | 0.9027 | 0.8527 | 0.6911 | 0.8636 | 0.6768 | 0.7372 | 0.3321 | 0.7756 | 0.6629 | 0.6608 |
| 0.2334 | 29.41 | 10880 | 0.6047 | 0.6724 | 0.7800 | 0.8653 | 0.9387 | 0.8099 | 0.8712 | 0.3895 | 0.9004 | 0.8511 | 0.6989 | 0.8659 | 0.6842 | 0.7330 | 0.3197 | 0.7772 | 0.6620 | 0.6649 |
| 0.0804 | 29.46 | 10900 | 0.5706 | 0.6802 | 0.7888 | 0.8679 | 0.9416 | 0.7941 | 0.8703 | 0.4362 | 0.8853 | 0.8550 | 0.7389 | 0.8680 | 0.6767 | 0.7409 | 0.3356 | 0.7729 | 0.6741 | 0.6933 |
| 0.1789 | 29.51 | 10920 | 0.5623 | 0.6849 | 0.7960 | 0.8688 | 0.9329 | 0.8047 | 0.8644 | 0.4843 | 0.8936 | 0.8412 | 0.7512 | 0.8691 | 0.6729 | 0.7498 | 0.3684 | 0.7749 | 0.6640 | 0.6956 |
| 0.1435 | 29.57 | 10940 | 0.5850 | 0.6812 | 0.7944 | 0.8671 | 0.9321 | 0.8034 | 0.8794 | 0.4527 | 0.8837 | 0.8672 | 0.7426 | 0.8679 | 0.6755 | 0.7446 | 0.3683 | 0.7766 | 0.6464 | 0.6892 |
| 0.2155 | 29.62 | 10960 | 0.6244 | 0.6839 | 0.7895 | 0.8685 | 0.9388 | 0.7877 | 0.8621 | 0.4645 | 0.9001 | 0.8552 | 0.7180 | 0.8682 | 0.6809 | 0.7439 | 0.3787 | 0.7786 | 0.6521 | 0.6850 |
| 0.2224 | 29.68 | 10980 | 0.6111 | 0.6886 | 0.7970 | 0.8692 | 0.9322 | 0.7919 | 0.8653 | 0.5128 | 0.9025 | 0.8449 | 0.7296 | 0.8696 | 0.6832 | 0.7454 | 0.3983 | 0.7768 | 0.6573 | 0.6897 |
| 0.1149 | 29.73 | 11000 | 0.5952 | 0.6806 | 0.7983 | 0.8665 | 0.9384 | 0.8183 | 0.8729 | 0.4753 | 0.8747 | 0.8806 | 0.7282 | 0.8712 | 0.6840 | 0.7324 | 0.3515 | 0.7705 | 0.6608 | 0.6935 |
| 0.1818 | 29.78 | 11020 | 0.5987 | 0.6814 | 0.7965 | 0.8671 | 0.9375 | 0.8148 | 0.8667 | 0.4696 | 0.8807 | 0.8742 | 0.7321 | 0.8725 | 0.6840 | 0.7402 | 0.3450 | 0.7688 | 0.6630 | 0.6959 |
| 0.1756 | 29.84 | 11040 | 0.5670 | 0.6774 | 0.7905 | 0.8668 | 0.9377 | 0.7966 | 0.8599 | 0.4413 | 0.8791 | 0.8631 | 0.7559 | 0.8693 | 0.6710 | 0.7368 | 0.3171 | 0.7699 | 0.6703 | 0.7072 |
| 0.1492 | 29.89 | 11060 | 0.5367 | 0.6823 | 0.7962 | 0.8708 | 0.9361 | 0.8053 | 0.8733 | 0.4252 | 0.8708 | 0.8506 | 0.8121 | 0.8690 | 0.6733 | 0.7339 | 0.2975 | 0.7764 | 0.6697 | 0.7562 |
| 0.1751 | 29.95 | 11080 | 0.5206 | 0.6859 | 0.7955 | 0.8723 | 0.9391 | 0.8241 | 0.8631 | 0.4284 | 0.8892 | 0.8497 | 0.7746 | 0.8672 | 0.6816 | 0.7384 | 0.3159 | 0.7823 | 0.6747 | 0.7412 |
| 1.3064 | 30.0 | 11100 | 0.5996 | 0.6743 | 0.7801 | 0.8670 | 0.9437 | 0.8023 | 0.8694 | 0.4123 | 0.9054 | 0.8260 | 0.7016 | 0.8651 | 0.6754 | 0.7186 | 0.3279 | 0.7822 | 0.6724 | 0.6786 |
| 0.3603 | 30.05 | 11120 | 0.6017 | 0.6762 | 0.7899 | 0.8670 | 0.9342 | 0.8223 | 0.8725 | 0.4273 | 0.8954 | 0.8571 | 0.7206 | 0.8687 | 0.6756 | 0.7215 | 0.3337 | 0.7795 | 0.6623 | 0.6918 |
| 0.2207 | 30.11 | 11140 | 0.5756 | 0.6827 | 0.7851 | 0.8719 | 0.9386 | 0.8051 | 0.8549 | 0.4086 | 0.9150 | 0.8366 | 0.7368 | 0.8692 | 0.6788 | 0.7276 | 0.3323 | 0.7877 | 0.6754 | 0.7082 |
| 0.3663 | 30.16 | 11160 | 0.5422 | 0.6897 | 0.7993 | 0.8723 | 0.9384 | 0.8169 | 0.8639 | 0.4655 | 0.8914 | 0.8623 | 0.7569 | 0.8694 | 0.6825 | 0.7404 | 0.3611 | 0.7819 | 0.6684 | 0.7244 |
| 0.1134 | 30.22 | 11180 | 0.5514 | 0.6917 | 0.8059 | 0.8723 | 0.9295 | 0.8160 | 0.8783 | 0.5033 | 0.8933 | 0.8629 | 0.7581 | 0.8684 | 0.6767 | 0.7455 | 0.3758 | 0.7831 | 0.6704 | 0.7219 |
| 0.1779 | 30.27 | 11200 | 0.6142 | 0.6754 | 0.7894 | 0.8651 | 0.9376 | 0.8027 | 0.8878 | 0.4476 | 0.8880 | 0.8635 | 0.6985 | 0.8634 | 0.6782 | 0.7282 | 0.3454 | 0.7792 | 0.6618 | 0.6716 |
| 0.1774 | 30.32 | 11220 | 0.6221 | 0.6834 | 0.7954 | 0.8677 | 0.9317 | 0.8304 | 0.8640 | 0.4816 | 0.9048 | 0.8428 | 0.7128 | 0.8604 | 0.6786 | 0.7377 | 0.3705 | 0.7826 | 0.6754 | 0.6785 |
| 0.0996 | 30.38 | 11240 | 0.5661 | 0.6912 | 0.7990 | 0.8715 | 0.9347 | 0.8160 | 0.8392 | 0.4970 | 0.9044 | 0.8581 | 0.7438 | 0.8625 | 0.6807 | 0.7443 | 0.3849 | 0.7860 | 0.6744 | 0.7056 |
| 0.1338 | 30.43 | 11260 | 0.5457 | 0.6903 | 0.7959 | 0.8731 | 0.9344 | 0.8023 | 0.8667 | 0.4449 | 0.8995 | 0.8613 | 0.7622 | 0.8651 | 0.6802 | 0.7445 | 0.3611 | 0.7879 | 0.6738 | 0.7193 |
| 0.1228 | 30.49 | 11280 | 0.5527 | 0.6908 | 0.7976 | 0.8727 | 0.9291 | 0.7971 | 0.8688 | 0.4670 | 0.9044 | 0.8569 | 0.7600 | 0.8664 | 0.6797 | 0.7432 | 0.3680 | 0.7855 | 0.6748 | 0.7183 |
| 0.1422 | 30.54 | 11300 | 0.5595 | 0.6907 | 0.8010 | 0.8712 | 0.9351 | 0.8085 | 0.8636 | 0.4905 | 0.8920 | 0.8701 | 0.7472 | 0.8652 | 0.6841 | 0.7470 | 0.3814 | 0.7839 | 0.6653 | 0.7078 |
| 0.1277 | 30.59 | 11320 | 0.5841 | 0.6835 | 0.7978 | 0.8687 | 0.9369 | 0.7791 | 0.8686 | 0.5062 | 0.8874 | 0.8764 | 0.7298 | 0.8653 | 0.6621 | 0.7434 | 0.3664 | 0.7820 | 0.6648 | 0.7002 |
| 0.3679 | 30.65 | 11340 | 0.5968 | 0.6760 | 0.7887 | 0.8655 | 0.9362 | 0.8030 | 0.8731 | 0.4540 | 0.8889 | 0.8327 | 0.7330 | 0.8673 | 0.6802 | 0.7292 | 0.3118 | 0.7687 | 0.6675 | 0.7075 |
| 0.1493 | 30.7 | 11360 | 0.5796 | 0.6791 | 0.7888 | 0.8671 | 0.9404 | 0.8160 | 0.8517 | 0.4411 | 0.8890 | 0.8368 | 0.7467 | 0.8671 | 0.6856 | 0.7335 | 0.3129 | 0.7696 | 0.6674 | 0.7174 |
| 0.1479 | 30.76 | 11380 | 0.5848 | 0.6839 | 0.7953 | 0.8691 | 0.9403 | 0.8206 | 0.8591 | 0.4617 | 0.8880 | 0.8564 | 0.7407 | 0.8673 | 0.6859 | 0.7356 | 0.3426 | 0.7764 | 0.6680 | 0.7117 |
| 0.1328 | 30.81 | 11400 | 0.5847 | 0.6846 | 0.7904 | 0.8705 | 0.9383 | 0.8054 | 0.8517 | 0.4391 | 0.9000 | 0.8512 | 0.7471 | 0.8684 | 0.6805 | 0.7387 | 0.3422 | 0.7781 | 0.6691 | 0.7154 |
| 0.2385 | 30.86 | 11420 | 0.5694 | 0.6856 | 0.7946 | 0.8709 | 0.9389 | 0.8115 | 0.8643 | 0.4473 | 0.8931 | 0.8599 | 0.7470 | 0.8689 | 0.6834 | 0.7410 | 0.3447 | 0.7813 | 0.6652 | 0.7147 |
| 0.3155 | 30.92 | 11440 | 0.5510 | 0.6868 | 0.7946 | 0.8707 | 0.9316 | 0.7732 | 0.8801 | 0.4731 | 0.8983 | 0.8581 | 0.7477 | 0.8668 | 0.6722 | 0.7457 | 0.3686 | 0.7833 | 0.6634 | 0.7075 |
| 0.1535 | 30.97 | 11460 | 0.5864 | 0.6868 | 0.7928 | 0.8701 | 0.9311 | 0.7825 | 0.8671 | 0.4806 | 0.9058 | 0.8358 | 0.7467 | 0.8659 | 0.6644 | 0.7488 | 0.3787 | 0.7789 | 0.6664 | 0.7042 |
| 0.097 | 31.03 | 11480 | 0.5224 | 0.6941 | 0.7999 | 0.8750 | 0.9330 | 0.7874 | 0.8563 | 0.4869 | 0.8984 | 0.8317 | 0.8057 | 0.8648 | 0.6619 | 0.7487 | 0.3868 | 0.7914 | 0.6641 | 0.7413 |
| 0.3133 | 31.08 | 11500 | 0.5746 | 0.6834 | 0.7888 | 0.8705 | 0.9364 | 0.8264 | 0.8609 | 0.3981 | 0.9002 | 0.8511 | 0.7486 | 0.8646 | 0.6800 | 0.7402 | 0.3364 | 0.7805 | 0.6718 | 0.7100 |
| 0.0855 | 31.14 | 11520 | 0.5645 | 0.6903 | 0.7952 | 0.8723 | 0.9404 | 0.8164 | 0.8666 | 0.4516 | 0.8986 | 0.8471 | 0.7453 | 0.8673 | 0.6853 | 0.7445 | 0.3686 | 0.7816 | 0.6715 | 0.7131 |
| 0.0744 | 31.19 | 11540 | 0.5626 | 0.6893 | 0.7952 | 0.8718 | 0.9387 | 0.8155 | 0.8578 | 0.4492 | 0.8961 | 0.8562 | 0.7528 | 0.8696 | 0.6861 | 0.7414 | 0.3639 | 0.7785 | 0.6722 | 0.7132 |
| 0.2231 | 31.24 | 11560 | 0.5724 | 0.6874 | 0.7940 | 0.8699 | 0.9358 | 0.8015 | 0.8501 | 0.4769 | 0.8988 | 0.8444 | 0.7507 | 0.8685 | 0.6683 | 0.7460 | 0.3839 | 0.7751 | 0.6713 | 0.6982 |
| 0.1109 | 31.3 | 11580 | 0.6260 | 0.6867 | 0.7934 | 0.8701 | 0.9380 | 0.7974 | 0.8640 | 0.4617 | 0.8965 | 0.8635 | 0.7329 | 0.8675 | 0.6758 | 0.7450 | 0.3734 | 0.7776 | 0.6658 | 0.7019 |
| 1.0078 | 31.35 | 11600 | 0.6212 | 0.6856 | 0.7888 | 0.8703 | 0.9424 | 0.7945 | 0.8673 | 0.4464 | 0.8997 | 0.8385 | 0.7329 | 0.8675 | 0.6846 | 0.7420 | 0.3578 | 0.7787 | 0.6654 | 0.7027 |
| 0.1772 | 31.41 | 11620 | 0.6059 | 0.6872 | 0.7913 | 0.8718 | 0.9407 | 0.8118 | 0.8641 | 0.4315 | 0.9000 | 0.8440 | 0.7466 | 0.8688 | 0.6868 | 0.7420 | 0.3489 | 0.7805 | 0.6684 | 0.7152 |
| 0.1711 | 31.46 | 11640 | 0.6070 | 0.6863 | 0.7947 | 0.8700 | 0.9350 | 0.8271 | 0.8735 | 0.4440 | 0.8963 | 0.8411 | 0.7457 | 0.8645 | 0.6850 | 0.7380 | 0.3600 | 0.7794 | 0.6686 | 0.7084 |
| 0.1414 | 31.51 | 11660 | 0.5673 | 0.6927 | 0.7979 | 0.8724 | 0.9349 | 0.8041 | 0.8693 | 0.4685 | 0.8992 | 0.8598 | 0.7493 | 0.8678 | 0.6843 | 0.7474 | 0.3852 | 0.7800 | 0.6699 | 0.7143 |
| 0.2769 | 31.57 | 11680 | 0.5566 | 0.6923 | 0.7990 | 0.8727 | 0.9313 | 0.8129 | 0.8601 | 0.4634 | 0.9009 | 0.8642 | 0.7603 | 0.8669 | 0.6812 | 0.7465 | 0.3811 | 0.7832 | 0.6681 | 0.7188 |
| 0.1607 | 31.62 | 11700 | 0.5462 | 0.6854 | 0.7928 | 0.8716 | 0.9336 | 0.8169 | 0.8736 | 0.4127 | 0.8973 | 0.8578 | 0.7578 | 0.8671 | 0.6828 | 0.7397 | 0.3381 | 0.7831 | 0.6684 | 0.7189 |
| 0.4752 | 31.68 | 11720 | 0.5840 | 0.6771 | 0.7857 | 0.8678 | 0.9354 | 0.8028 | 0.8720 | 0.4040 | 0.8940 | 0.8490 | 0.7424 | 0.8708 | 0.6820 | 0.7388 | 0.2953 | 0.7704 | 0.6695 | 0.7128 |
| 0.2187 | 31.73 | 11740 | 0.5990 | 0.6799 | 0.7890 | 0.8683 | 0.9355 | 0.8061 | 0.8600 | 0.4239 | 0.8928 | 0.8570 | 0.7475 | 0.8693 | 0.6805 | 0.7430 | 0.3093 | 0.7710 | 0.6734 | 0.7130 |
| 0.2686 | 31.78 | 11760 | 0.6126 | 0.6797 | 0.7898 | 0.8681 | 0.9337 | 0.8209 | 0.8567 | 0.4304 | 0.8976 | 0.8441 | 0.7454 | 0.8700 | 0.6787 | 0.7415 | 0.3112 | 0.7701 | 0.6702 | 0.7161 |
| 0.1204 | 31.84 | 11780 | 0.6013 | 0.6757 | 0.7905 | 0.8657 | 0.9353 | 0.8212 | 0.8707 | 0.4238 | 0.8796 | 0.8572 | 0.7459 | 0.8702 | 0.6781 | 0.7393 | 0.2985 | 0.7638 | 0.6724 | 0.7075 |
| 0.1468 | 31.89 | 11800 | 0.6401 | 0.6777 | 0.7915 | 0.8665 | 0.9385 | 0.8270 | 0.8623 | 0.4304 | 0.8835 | 0.8695 | 0.7291 | 0.8679 | 0.6817 | 0.7453 | 0.3132 | 0.7690 | 0.6639 | 0.7032 |
| 0.232 | 31.95 | 11820 | 0.6002 | 0.6923 | 0.8004 | 0.8712 | 0.9326 | 0.8146 | 0.8547 | 0.5084 | 0.9039 | 0.8416 | 0.7468 | 0.8673 | 0.6807 | 0.7504 | 0.3936 | 0.7786 | 0.6689 | 0.7065 |
| 0.1691 | 32.0 | 11840 | 0.5936 | 0.6901 | 0.8007 | 0.8695 | 0.9308 | 0.8029 | 0.8417 | 0.5180 | 0.8970 | 0.8671 | 0.7476 | 0.8663 | 0.6722 | 0.7471 | 0.4006 | 0.7754 | 0.6637 | 0.7055 |
| 0.2323 | 32.05 | 11860 | 0.6082 | 0.6801 | 0.7981 | 0.8658 | 0.9372 | 0.8277 | 0.8615 | 0.4913 | 0.8800 | 0.8580 | 0.7308 | 0.8672 | 0.6782 | 0.7418 | 0.3405 | 0.7674 | 0.6603 | 0.7052 |
| 2.4548 | 32.11 | 11880 | 0.6021 | 0.6788 | 0.7962 | 0.8651 | 0.9351 | 0.8213 | 0.8721 | 0.4859 | 0.8830 | 0.8548 | 0.7208 | 0.8633 | 0.6791 | 0.7419 | 0.3397 | 0.7707 | 0.6677 | 0.6894 |
| 0.2158 | 32.16 | 11900 | 0.5693 | 0.6823 | 0.7965 | 0.8679 | 0.9374 | 0.8008 | 0.8740 | 0.4830 | 0.8836 | 0.8587 | 0.7379 | 0.8674 | 0.6773 | 0.7381 | 0.3467 | 0.7750 | 0.6658 | 0.7058 |
| 0.1927 | 32.22 | 11920 | 0.5284 | 0.6910 | 0.8004 | 0.8726 | 0.9366 | 0.8123 | 0.8556 | 0.4924 | 0.8981 | 0.8492 | 0.7589 | 0.8697 | 0.6735 | 0.7471 | 0.3741 | 0.7822 | 0.6657 | 0.7245 |
| 0.2838 | 32.27 | 11940 | 0.5619 | 0.6909 | 0.8074 | 0.8702 | 0.9284 | 0.8075 | 0.8623 | 0.5499 | 0.8952 | 0.8694 | 0.7393 | 0.8664 | 0.6686 | 0.7547 | 0.4031 | 0.7818 | 0.6570 | 0.7049 |
| 0.2922 | 32.32 | 11960 | 0.5656 | 0.6856 | 0.8001 | 0.8685 | 0.9310 | 0.8307 | 0.8601 | 0.4979 | 0.9003 | 0.8625 | 0.7179 | 0.8621 | 0.6717 | 0.7440 | 0.3858 | 0.7831 | 0.6659 | 0.6866 |
| 0.1937 | 32.38 | 11980 | 0.5836 | 0.6818 | 0.7950 | 0.8690 | 0.9286 | 0.8243 | 0.8696 | 0.4326 | 0.8948 | 0.8685 | 0.7468 | 0.8660 | 0.6764 | 0.7286 | 0.3389 | 0.7805 | 0.6751 | 0.7068 |
| 0.7299 | 32.43 | 12000 | 0.5913 | 0.6810 | 0.7865 | 0.8692 | 0.9312 | 0.8205 | 0.8379 | 0.4219 | 0.9128 | 0.8312 | 0.7500 | 0.8647 | 0.6747 | 0.7242 | 0.3392 | 0.7809 | 0.6781 | 0.7049 |
| 0.1485 | 32.49 | 12020 | 0.5512 | 0.6889 | 0.7972 | 0.8717 | 0.9347 | 0.8325 | 0.8413 | 0.4624 | 0.9041 | 0.8560 | 0.7495 | 0.8646 | 0.6797 | 0.7385 | 0.3651 | 0.7850 | 0.6777 | 0.7117 |
| 0.2181 | 32.54 | 12040 | 0.5926 | 0.6830 | 0.7958 | 0.8697 | 0.9364 | 0.8359 | 0.8676 | 0.4369 | 0.8932 | 0.8717 | 0.7292 | 0.8626 | 0.6799 | 0.7326 | 0.3465 | 0.7872 | 0.6722 | 0.6997 |
| 0.1291 | 32.59 | 12060 | 0.5869 | 0.6820 | 0.7940 | 0.8692 | 0.9371 | 0.8218 | 0.8700 | 0.4356 | 0.8916 | 0.8759 | 0.7264 | 0.8644 | 0.6830 | 0.7377 | 0.3383 | 0.7844 | 0.6696 | 0.6964 |
| 0.1469 | 32.65 | 12080 | 0.5852 | 0.6802 | 0.7831 | 0.8701 | 0.9389 | 0.7942 | 0.8545 | 0.3930 | 0.9051 | 0.8628 | 0.7331 | 0.8666 | 0.6800 | 0.7414 | 0.3209 | 0.7831 | 0.6715 | 0.6982 |
| 0.263 | 32.7 | 12100 | 0.5941 | 0.6803 | 0.7892 | 0.8696 | 0.9372 | 0.8100 | 0.8631 | 0.4090 | 0.8958 | 0.8766 | 0.7331 | 0.8664 | 0.6774 | 0.7397 | 0.3267 | 0.7838 | 0.6699 | 0.6981 |
| 1.5095 | 32.76 | 12120 | 0.5723 | 0.6848 | 0.7946 | 0.8715 | 0.9285 | 0.8299 | 0.8757 | 0.4208 | 0.9067 | 0.8592 | 0.7414 | 0.8675 | 0.6780 | 0.7456 | 0.3376 | 0.7858 | 0.6736 | 0.7052 |
| 0.1808 | 32.81 | 12140 | 0.5699 | 0.6850 | 0.7913 | 0.8717 | 0.9332 | 0.8255 | 0.8600 | 0.4157 | 0.9094 | 0.8537 | 0.7413 | 0.8668 | 0.6807 | 0.7435 | 0.3382 | 0.7862 | 0.6737 | 0.7063 |
| 0.235 | 32.86 | 12160 | 0.5363 | 0.6912 | 0.7951 | 0.8751 | 0.9378 | 0.7900 | 0.8752 | 0.4286 | 0.8944 | 0.8517 | 0.7878 | 0.8678 | 0.6817 | 0.7446 | 0.3422 | 0.7900 | 0.6728 | 0.7392 |
| 1.1158 | 32.92 | 12180 | 0.5303 | 0.6872 | 0.8004 | 0.8718 | 0.9367 | 0.8376 | 0.8672 | 0.4419 | 0.8821 | 0.8578 | 0.7795 | 0.8657 | 0.6833 | 0.7439 | 0.3319 | 0.7831 | 0.6705 | 0.7317 |
| 0.1304 | 32.97 | 12200 | 0.5607 | 0.6809 | 0.7900 | 0.8689 | 0.9395 | 0.8156 | 0.8663 | 0.4354 | 0.8962 | 0.8458 | 0.7310 | 0.8681 | 0.6881 | 0.7349 | 0.3345 | 0.7811 | 0.6597 | 0.7001 |
| 0.2281 | 33.03 | 12220 | 0.5931 | 0.6836 | 0.7949 | 0.8671 | 0.9305 | 0.8126 | 0.8581 | 0.4859 | 0.8990 | 0.8518 | 0.7267 | 0.8656 | 0.6799 | 0.7423 | 0.3775 | 0.7750 | 0.6616 | 0.6833 |
| 0.1557 | 33.08 | 12240 | 0.5808 | 0.6903 | 0.7965 | 0.8705 | 0.9294 | 0.8090 | 0.8536 | 0.4897 | 0.9086 | 0.8380 | 0.7475 | 0.8660 | 0.6826 | 0.7468 | 0.3837 | 0.7779 | 0.6734 | 0.7018 |
| 0.6017 | 33.14 | 12260 | 0.5959 | 0.6844 | 0.7954 | 0.8695 | 0.9363 | 0.8391 | 0.8658 | 0.4471 | 0.8974 | 0.8538 | 0.7281 | 0.8639 | 0.6804 | 0.7448 | 0.3591 | 0.7825 | 0.6646 | 0.6957 |
| 0.2142 | 33.19 | 12280 | 0.6027 | 0.6835 | 0.7967 | 0.8679 | 0.9284 | 0.8333 | 0.8645 | 0.4702 | 0.9038 | 0.8604 | 0.7161 | 0.8653 | 0.6795 | 0.7515 | 0.3699 | 0.7802 | 0.6537 | 0.6843 |
| 0.1474 | 33.24 | 12300 | 0.5862 | 0.6777 | 0.7958 | 0.8650 | 0.9330 | 0.8353 | 0.8693 | 0.4818 | 0.8901 | 0.8462 | 0.7150 | 0.8669 | 0.6789 | 0.7468 | 0.3554 | 0.7752 | 0.6441 | 0.6768 |
| 0.1682 | 33.3 | 12320 | 0.5766 | 0.6800 | 0.7929 | 0.8660 | 0.9408 | 0.7946 | 0.8645 | 0.4906 | 0.8837 | 0.8518 | 0.7241 | 0.8663 | 0.6744 | 0.7485 | 0.3706 | 0.7762 | 0.6440 | 0.6800 |
| 0.1448 | 33.35 | 12340 | 0.5752 | 0.6824 | 0.7950 | 0.8667 | 0.9330 | 0.8126 | 0.8599 | 0.4810 | 0.8927 | 0.8587 | 0.7270 | 0.8643 | 0.6770 | 0.7509 | 0.3804 | 0.7793 | 0.6449 | 0.6800 |
| 0.1857 | 33.41 | 12360 | 0.6157 | 0.6804 | 0.7852 | 0.8665 | 0.9366 | 0.7806 | 0.8492 | 0.4680 | 0.9048 | 0.8367 | 0.7202 | 0.8631 | 0.6720 | 0.7459 | 0.3743 | 0.7777 | 0.6549 | 0.6750 |
| 0.1125 | 33.46 | 12380 | 0.5973 | 0.6810 | 0.7933 | 0.8663 | 0.9359 | 0.8104 | 0.8734 | 0.4840 | 0.8948 | 0.8440 | 0.7105 | 0.8599 | 0.6790 | 0.7413 | 0.3753 | 0.7828 | 0.6546 | 0.6740 |
| 0.2302 | 33.51 | 12400 | 0.5912 | 0.6799 | 0.7960 | 0.8649 | 0.9247 | 0.8093 | 0.8589 | 0.5027 | 0.8975 | 0.8561 | 0.7231 | 0.8639 | 0.6605 | 0.7535 | 0.3885 | 0.7751 | 0.6447 | 0.6734 |
| 0.2708 | 33.57 | 12420 | 0.5855 | 0.6800 | 0.7918 | 0.8669 | 0.9294 | 0.7983 | 0.8735 | 0.4647 | 0.8996 | 0.8533 | 0.7234 | 0.8654 | 0.6682 | 0.7515 | 0.3720 | 0.7817 | 0.6398 | 0.6815 |
| 0.2264 | 33.62 | 12440 | 0.5963 | 0.6825 | 0.7979 | 0.8658 | 0.9302 | 0.8181 | 0.8566 | 0.5026 | 0.8944 | 0.8739 | 0.7095 | 0.8654 | 0.6781 | 0.7531 | 0.3897 | 0.7770 | 0.6388 | 0.6756 |
| 0.206 | 33.68 | 12460 | 0.5587 | 0.6852 | 0.7922 | 0.8695 | 0.9287 | 0.7938 | 0.8625 | 0.4779 | 0.9121 | 0.8362 | 0.7343 | 0.8677 | 0.6742 | 0.7522 | 0.3769 | 0.7820 | 0.6499 | 0.6936 |
| 0.1734 | 33.73 | 12480 | 0.5269 | 0.6910 | 0.7995 | 0.8734 | 0.9357 | 0.8040 | 0.8626 | 0.4864 | 0.9002 | 0.8428 | 0.7648 | 0.8704 | 0.6659 | 0.7543 | 0.3811 | 0.7869 | 0.6629 | 0.7156 |
| 0.1171 | 33.78 | 12500 | 0.5463 | 0.6876 | 0.7964 | 0.8715 | 0.9350 | 0.7956 | 0.8662 | 0.4893 | 0.9022 | 0.8371 | 0.7495 | 0.8707 | 0.6670 | 0.7534 | 0.3737 | 0.7832 | 0.6624 | 0.7030 |
| 0.2482 | 33.84 | 12520 | 0.5667 | 0.6851 | 0.7959 | 0.8694 | 0.9250 | 0.8061 | 0.8682 | 0.4704 | 0.9049 | 0.8508 | 0.7461 | 0.8671 | 0.6662 | 0.7539 | 0.3678 | 0.7798 | 0.6688 | 0.6923 |
| 0.162 | 33.89 | 12540 | 0.5679 | 0.6802 | 0.7933 | 0.8679 | 0.9215 | 0.8198 | 0.8724 | 0.4372 | 0.9024 | 0.8493 | 0.7507 | 0.8641 | 0.6646 | 0.7526 | 0.3456 | 0.7807 | 0.6640 | 0.6899 |
| 0.3138 | 33.95 | 12560 | 0.5669 | 0.6866 | 0.7918 | 0.8715 | 0.9281 | 0.7997 | 0.8617 | 0.4423 | 0.9106 | 0.8405 | 0.7597 | 0.8649 | 0.6689 | 0.7510 | 0.3551 | 0.7857 | 0.6824 | 0.6984 |
| 0.1161 | 34.0 | 12580 | 0.5417 | 0.6924 | 0.7947 | 0.8745 | 0.9312 | 0.7930 | 0.8545 | 0.4611 | 0.9144 | 0.8362 | 0.7722 | 0.8672 | 0.6676 | 0.7518 | 0.3713 | 0.7895 | 0.6849 | 0.7144 |
| 0.2788 | 34.05 | 12600 | 0.5523 | 0.6907 | 0.7943 | 0.8741 | 0.9342 | 0.8215 | 0.8531 | 0.4377 | 0.9138 | 0.8457 | 0.7540 | 0.8668 | 0.6792 | 0.7494 | 0.3577 | 0.7906 | 0.6810 | 0.7101 |
| 0.3315 | 34.11 | 12620 | 0.5840 | 0.6890 | 0.7910 | 0.8734 | 0.9300 | 0.8029 | 0.8621 | 0.4280 | 0.9186 | 0.8452 | 0.7498 | 0.8672 | 0.6793 | 0.7465 | 0.3509 | 0.7883 | 0.6815 | 0.7095 |
| 0.2396 | 34.16 | 12640 | 0.5434 | 0.6875 | 0.8004 | 0.8720 | 0.9292 | 0.8108 | 0.8679 | 0.4665 | 0.8898 | 0.8431 | 0.7956 | 0.8667 | 0.6651 | 0.7541 | 0.3331 | 0.7814 | 0.6751 | 0.7367 |
| 0.1696 | 34.22 | 12660 | 0.5481 | 0.6887 | 0.8029 | 0.8734 | 0.9292 | 0.7997 | 0.8789 | 0.4458 | 0.8764 | 0.8718 | 0.8184 | 0.8659 | 0.6684 | 0.7514 | 0.3227 | 0.7849 | 0.6672 | 0.7601 |
| 0.1219 | 34.27 | 12680 | 0.5375 | 0.6820 | 0.7902 | 0.8727 | 0.9330 | 0.7890 | 0.8734 | 0.3810 | 0.8846 | 0.8562 | 0.8140 | 0.8677 | 0.6714 | 0.7417 | 0.2785 | 0.7840 | 0.6740 | 0.7569 |
| 0.1933 | 34.32 | 12700 | 0.5553 | 0.6836 | 0.7926 | 0.8707 | 0.9335 | 0.8171 | 0.8641 | 0.4131 | 0.8941 | 0.8681 | 0.7581 | 0.8672 | 0.6821 | 0.7432 | 0.3223 | 0.7801 | 0.6697 | 0.7203 |
| 0.1571 | 34.38 | 12720 | 0.5774 | 0.6904 | 0.7963 | 0.8726 | 0.9342 | 0.8166 | 0.8529 | 0.4615 | 0.9076 | 0.8535 | 0.7476 | 0.8703 | 0.6839 | 0.7477 | 0.3588 | 0.7805 | 0.6729 | 0.7185 |
| 0.0608 | 34.43 | 12740 | 0.5362 | 0.6865 | 0.8022 | 0.8711 | 0.9334 | 0.8206 | 0.8708 | 0.4746 | 0.8821 | 0.8506 | 0.7833 | 0.8711 | 0.6691 | 0.7450 | 0.3349 | 0.7752 | 0.6730 | 0.7373 |
| 0.2141 | 34.49 | 12760 | 0.5540 | 0.6939 | 0.8000 | 0.8760 | 0.9406 | 0.7782 | 0.8619 | 0.4693 | 0.8877 | 0.8645 | 0.7978 | 0.8699 | 0.6696 | 0.7435 | 0.3612 | 0.7894 | 0.6749 | 0.7489 |
| 0.1735 | 34.54 | 12780 | 0.5424 | 0.6879 | 0.7928 | 0.8738 | 0.9372 | 0.7928 | 0.8580 | 0.4286 | 0.8995 | 0.8605 | 0.7729 | 0.8702 | 0.6691 | 0.7420 | 0.3386 | 0.7852 | 0.6812 | 0.7288 |
| 0.1217 | 34.59 | 12800 | 0.5753 | 0.6933 | 0.7980 | 0.8744 | 0.9404 | 0.8221 | 0.8491 | 0.4777 | 0.9107 | 0.8456 | 0.7403 | 0.8691 | 0.6794 | 0.7448 | 0.3714 | 0.7865 | 0.6836 | 0.7180 |
| 0.1423 | 34.65 | 12820 | 0.5989 | 0.6918 | 0.7979 | 0.8728 | 0.9357 | 0.8113 | 0.8612 | 0.4718 | 0.9046 | 0.8596 | 0.7411 | 0.8699 | 0.6801 | 0.7434 | 0.3774 | 0.7808 | 0.6737 | 0.7173 |
| 0.1074 | 34.7 | 12840 | 0.5823 | 0.6906 | 0.7938 | 0.8728 | 0.9386 | 0.8146 | 0.8467 | 0.4384 | 0.9038 | 0.8714 | 0.7433 | 0.8685 | 0.6807 | 0.7451 | 0.3731 | 0.7820 | 0.6715 | 0.7132 |
| 0.1764 | 34.76 | 12860 | 0.6007 | 0.6936 | 0.7986 | 0.8733 | 0.9357 | 0.8238 | 0.8581 | 0.4647 | 0.9060 | 0.8608 | 0.7413 | 0.8687 | 0.6820 | 0.7520 | 0.3894 | 0.7832 | 0.6704 | 0.7095 |
| 0.1833 | 34.81 | 12880 | 0.5795 | 0.6925 | 0.7981 | 0.8732 | 0.9340 | 0.8254 | 0.8625 | 0.4631 | 0.9084 | 0.8488 | 0.7446 | 0.8684 | 0.6820 | 0.7482 | 0.3796 | 0.7840 | 0.6739 | 0.7114 |
| 0.1584 | 34.86 | 12900 | 0.6025 | 0.6867 | 0.7946 | 0.8703 | 0.9357 | 0.8123 | 0.8721 | 0.4592 | 0.8965 | 0.8376 | 0.7491 | 0.8684 | 0.6769 | 0.7440 | 0.3667 | 0.7765 | 0.6677 | 0.7068 |
| 0.129 | 34.92 | 12920 | 0.5499 | 0.6906 | 0.7959 | 0.8721 | 0.9341 | 0.7971 | 0.8729 | 0.4661 | 0.9007 | 0.8455 | 0.7552 | 0.8663 | 0.6828 | 0.7443 | 0.3728 | 0.7828 | 0.6686 | 0.7164 |
| 0.1255 | 34.97 | 12940 | 0.5757 | 0.6861 | 0.7956 | 0.8704 | 0.9365 | 0.8204 | 0.8667 | 0.4516 | 0.8970 | 0.8656 | 0.7316 | 0.8661 | 0.6835 | 0.7382 | 0.3643 | 0.7840 | 0.6617 | 0.7050 |
| 0.2092 | 35.03 | 12960 | 0.5626 | 0.6938 | 0.8046 | 0.8723 | 0.9337 | 0.8250 | 0.8536 | 0.5120 | 0.8993 | 0.8605 | 0.7481 | 0.8663 | 0.6784 | 0.7466 | 0.4004 | 0.7841 | 0.6658 | 0.7152 |
| 0.1811 | 35.08 | 12980 | 0.5657 | 0.6919 | 0.7958 | 0.8721 | 0.9384 | 0.7799 | 0.8454 | 0.4902 | 0.9006 | 0.8713 | 0.7447 | 0.8670 | 0.6760 | 0.7436 | 0.3916 | 0.7810 | 0.6680 | 0.7164 |
| 0.2131 | 35.14 | 13000 | 0.5284 | 0.6957 | 0.8061 | 0.8744 | 0.9357 | 0.8163 | 0.8580 | 0.5018 | 0.8940 | 0.8721 | 0.7649 | 0.8698 | 0.6769 | 0.7495 | 0.3824 | 0.7836 | 0.6734 | 0.7345 |
| 0.1875 | 35.19 | 13020 | 0.5665 | 0.6945 | 0.8023 | 0.8731 | 0.9382 | 0.8077 | 0.8550 | 0.5006 | 0.8965 | 0.8716 | 0.7464 | 0.8685 | 0.6763 | 0.7515 | 0.3943 | 0.7814 | 0.6722 | 0.7171 |
| 0.1252 | 35.24 | 13040 | 0.5460 | 0.6942 | 0.8021 | 0.8724 | 0.9346 | 0.8044 | 0.8655 | 0.5060 | 0.8979 | 0.8550 | 0.7510 | 0.8685 | 0.6785 | 0.7549 | 0.3956 | 0.7792 | 0.6715 | 0.7116 |
| 0.9007 | 35.3 | 13060 | 0.5500 | 0.6894 | 0.7948 | 0.8715 | 0.9381 | 0.7895 | 0.8665 | 0.4685 | 0.8925 | 0.8409 | 0.7677 | 0.8652 | 0.6714 | 0.7466 | 0.3765 | 0.7801 | 0.6676 | 0.7184 |
| 0.4496 | 35.35 | 13080 | 0.5447 | 0.6946 | 0.8039 | 0.8742 | 0.9275 | 0.8035 | 0.8622 | 0.4909 | 0.8957 | 0.8432 | 0.8040 | 0.8646 | 0.6690 | 0.7453 | 0.3884 | 0.7882 | 0.6636 | 0.7428 |
| 0.2982 | 35.41 | 13100 | 0.5485 | 0.6925 | 0.7993 | 0.8724 | 0.9335 | 0.7963 | 0.8511 | 0.4910 | 0.8967 | 0.8507 | 0.7760 | 0.8675 | 0.6710 | 0.7460 | 0.3931 | 0.7811 | 0.6651 | 0.7237 |
| 0.0562 | 35.46 | 13120 | 0.5580 | 0.6918 | 0.8072 | 0.8716 | 0.9344 | 0.8218 | 0.8702 | 0.5000 | 0.8812 | 0.8844 | 0.7582 | 0.8686 | 0.6842 | 0.7443 | 0.3822 | 0.7813 | 0.6536 | 0.7282 |
| 0.4671 | 35.51 | 13140 | 0.5683 | 0.6872 | 0.8005 | 0.8702 | 0.9335 | 0.8228 | 0.8739 | 0.4743 | 0.8906 | 0.8659 | 0.7425 | 0.8683 | 0.6857 | 0.7382 | 0.3660 | 0.7808 | 0.6611 | 0.7104 |
| 0.1878 | 35.57 | 13160 | 0.6551 | 0.6788 | 0.7907 | 0.8655 | 0.9340 | 0.8225 | 0.8581 | 0.4803 | 0.9071 | 0.8440 | 0.6887 | 0.8648 | 0.6817 | 0.7419 | 0.3751 | 0.7795 | 0.6427 | 0.6659 |
| 0.0784 | 35.62 | 13180 | 0.5837 | 0.6837 | 0.7996 | 0.8671 | 0.9367 | 0.8309 | 0.8542 | 0.5127 | 0.8948 | 0.8661 | 0.7021 | 0.8665 | 0.6833 | 0.7454 | 0.3876 | 0.7812 | 0.6468 | 0.6753 |
| 0.15 | 35.68 | 13200 | 0.5714 | 0.6864 | 0.7937 | 0.8705 | 0.9408 | 0.8253 | 0.8461 | 0.4674 | 0.9046 | 0.8472 | 0.7247 | 0.8672 | 0.6855 | 0.7445 | 0.3744 | 0.7863 | 0.6517 | 0.6954 |
| 0.113 | 35.73 | 13220 | 0.5633 | 0.6879 | 0.7957 | 0.8714 | 0.9385 | 0.8247 | 0.8559 | 0.4693 | 0.9055 | 0.8475 | 0.7285 | 0.8687 | 0.6867 | 0.7479 | 0.3715 | 0.7866 | 0.6522 | 0.7017 |
| 0.2453 | 35.78 | 13240 | 0.5593 | 0.6869 | 0.8005 | 0.8715 | 0.9345 | 0.8308 | 0.8694 | 0.4542 | 0.8902 | 0.8711 | 0.7532 | 0.8706 | 0.6846 | 0.7427 | 0.3448 | 0.7827 | 0.6578 | 0.7253 |
| 0.1704 | 35.84 | 13260 | 0.5220 | 0.6978 | 0.8067 | 0.8764 | 0.9364 | 0.8005 | 0.8554 | 0.5021 | 0.8921 | 0.8680 | 0.7924 | 0.8708 | 0.6704 | 0.7485 | 0.3915 | 0.7905 | 0.6676 | 0.7454 |
| 0.3966 | 35.89 | 13280 | 0.5495 | 0.6943 | 0.7998 | 0.8733 | 0.9351 | 0.7967 | 0.8509 | 0.5202 | 0.9086 | 0.8287 | 0.7588 | 0.8712 | 0.6678 | 0.7512 | 0.4067 | 0.7818 | 0.6676 | 0.7140 |
| 0.2348 | 35.95 | 13300 | 0.5630 | 0.6864 | 0.7984 | 0.8706 | 0.9355 | 0.8080 | 0.8558 | 0.4874 | 0.8900 | 0.8395 | 0.7726 | 0.8714 | 0.6699 | 0.7451 | 0.3509 | 0.7740 | 0.6662 | 0.7275 |
| 0.1803 | 36.0 | 13320 | 0.5926 | 0.6799 | 0.7877 | 0.8672 | 0.9423 | 0.7878 | 0.8591 | 0.4682 | 0.8944 | 0.8373 | 0.7245 | 0.8678 | 0.6819 | 0.7356 | 0.3364 | 0.7728 | 0.6653 | 0.6993 |
| 0.1647 | 36.05 | 13340 | 0.5567 | 0.6929 | 0.8017 | 0.8723 | 0.9345 | 0.8153 | 0.8514 | 0.5048 | 0.9030 | 0.8593 | 0.7435 | 0.8706 | 0.6842 | 0.7461 | 0.3918 | 0.7819 | 0.6626 | 0.7130 |
| 0.1053 | 36.11 | 13360 | 0.5655 | 0.6904 | 0.7969 | 0.8721 | 0.9346 | 0.8230 | 0.8569 | 0.4639 | 0.9070 | 0.8573 | 0.7358 | 0.8699 | 0.6844 | 0.7485 | 0.3822 | 0.7836 | 0.6575 | 0.7065 |
| 0.1856 | 36.16 | 13380 | 0.5469 | 0.6876 | 0.7972 | 0.8718 | 0.9382 | 0.8268 | 0.8705 | 0.4523 | 0.8964 | 0.8550 | 0.7413 | 0.8701 | 0.6858 | 0.7415 | 0.3572 | 0.7832 | 0.6617 | 0.7138 |
| 0.228 | 36.22 | 13400 | 0.5294 | 0.7021 | 0.8100 | 0.8801 | 0.9366 | 0.8260 | 0.8586 | 0.4713 | 0.8916 | 0.8604 | 0.8254 | 0.8714 | 0.6841 | 0.7491 | 0.3654 | 0.7966 | 0.6686 | 0.7798 |
| 0.2333 | 36.27 | 13420 | 0.5561 | 0.6968 | 0.8054 | 0.8753 | 0.9340 | 0.8265 | 0.8667 | 0.4814 | 0.8983 | 0.8607 | 0.7703 | 0.8710 | 0.6830 | 0.7528 | 0.3852 | 0.7864 | 0.6664 | 0.7329 |
| 0.157 | 36.32 | 13440 | 0.5574 | 0.6951 | 0.8006 | 0.8743 | 0.9385 | 0.7941 | 0.8679 | 0.4821 | 0.8959 | 0.8671 | 0.7583 | 0.8694 | 0.6798 | 0.7521 | 0.3887 | 0.7854 | 0.6646 | 0.7260 |
| 0.3018 | 36.38 | 13460 | 0.5771 | 0.6896 | 0.7940 | 0.8713 | 0.9288 | 0.7818 | 0.8672 | 0.4633 | 0.9064 | 0.8647 | 0.7459 | 0.8672 | 0.6786 | 0.7469 | 0.3785 | 0.7809 | 0.6670 | 0.7079 |
| 0.2048 | 36.43 | 13480 | 0.5862 | 0.6917 | 0.7952 | 0.8727 | 0.9341 | 0.7953 | 0.8683 | 0.4584 | 0.9043 | 0.8582 | 0.7481 | 0.8689 | 0.6857 | 0.7472 | 0.3734 | 0.7810 | 0.6718 | 0.7141 |
| 0.0848 | 36.49 | 13500 | 0.5357 | 0.6944 | 0.8027 | 0.8735 | 0.9390 | 0.8168 | 0.8557 | 0.4818 | 0.8887 | 0.8676 | 0.7695 | 0.8701 | 0.6841 | 0.7480 | 0.3829 | 0.7812 | 0.6706 | 0.7237 |
| 0.1358 | 36.54 | 13520 | 0.5912 | 0.6908 | 0.8002 | 0.8717 | 0.9312 | 0.8253 | 0.8684 | 0.4716 | 0.9010 | 0.8579 | 0.7459 | 0.8702 | 0.6827 | 0.7495 | 0.3764 | 0.7786 | 0.6677 | 0.7105 |
| 0.2787 | 36.59 | 13540 | 0.5802 | 0.6898 | 0.8003 | 0.8712 | 0.9346 | 0.8261 | 0.8675 | 0.4779 | 0.8946 | 0.8488 | 0.7525 | 0.8693 | 0.6790 | 0.7451 | 0.3759 | 0.7783 | 0.6728 | 0.7078 |
| 0.1792 | 36.65 | 13560 | 0.5838 | 0.6875 | 0.7981 | 0.8701 | 0.9352 | 0.7941 | 0.8721 | 0.4879 | 0.8900 | 0.8588 | 0.7483 | 0.8684 | 0.6681 | 0.7488 | 0.3779 | 0.7769 | 0.6712 | 0.7011 |
| 0.31 | 36.7 | 13580 | 0.5766 | 0.6867 | 0.8050 | 0.8679 | 0.9249 | 0.8010 | 0.8752 | 0.5418 | 0.8880 | 0.8490 | 0.7552 | 0.8660 | 0.6669 | 0.7520 | 0.3778 | 0.7732 | 0.6712 | 0.6998 |
| 0.1493 | 36.76 | 13600 | 0.5914 | 0.6910 | 0.7988 | 0.8716 | 0.9309 | 0.8183 | 0.8561 | 0.4823 | 0.9065 | 0.8535 | 0.7443 | 0.8686 | 0.6843 | 0.7493 | 0.3789 | 0.7808 | 0.6680 | 0.7072 |
| 0.1263 | 36.81 | 13620 | 0.5895 | 0.6931 | 0.7997 | 0.8721 | 0.9355 | 0.8179 | 0.8394 | 0.5075 | 0.9067 | 0.8425 | 0.7487 | 0.8692 | 0.6775 | 0.7478 | 0.3973 | 0.7796 | 0.6723 | 0.7078 |
| 0.1087 | 36.86 | 13640 | 0.5736 | 0.6880 | 0.7967 | 0.8705 | 0.9381 | 0.7949 | 0.8681 | 0.4828 | 0.8910 | 0.8527 | 0.7495 | 0.8685 | 0.6745 | 0.7450 | 0.3713 | 0.7769 | 0.6742 | 0.7057 |
| 0.1361 | 36.92 | 13660 | 0.5874 | 0.6901 | 0.7968 | 0.8720 | 0.9342 | 0.7967 | 0.8643 | 0.4772 | 0.9022 | 0.8556 | 0.7475 | 0.8682 | 0.6808 | 0.7457 | 0.3701 | 0.7827 | 0.6734 | 0.7100 |
| 0.2133 | 36.97 | 13680 | 0.6268 | 0.6845 | 0.7971 | 0.8679 | 0.9323 | 0.8224 | 0.8718 | 0.4855 | 0.8983 | 0.8508 | 0.7184 | 0.8622 | 0.6796 | 0.7454 | 0.3773 | 0.7818 | 0.6636 | 0.6816 |
| 0.118 | 37.03 | 13700 | 0.6365 | 0.6843 | 0.7959 | 0.8669 | 0.9297 | 0.8242 | 0.8565 | 0.4941 | 0.9071 | 0.8601 | 0.6995 | 0.8618 | 0.6778 | 0.7497 | 0.3953 | 0.7813 | 0.6603 | 0.6637 |
| 0.2593 | 37.08 | 13720 | 0.5960 | 0.6911 | 0.8020 | 0.8703 | 0.9289 | 0.8211 | 0.8531 | 0.4929 | 0.8975 | 0.8760 | 0.7444 | 0.8647 | 0.6801 | 0.7497 | 0.3965 | 0.7801 | 0.6667 | 0.7002 |
| 0.0827 | 37.14 | 13740 | 0.5955 | 0.6934 | 0.8019 | 0.8715 | 0.9332 | 0.8024 | 0.8570 | 0.5219 | 0.9006 | 0.8523 | 0.7461 | 0.8647 | 0.6788 | 0.7485 | 0.3990 | 0.7816 | 0.6778 | 0.7032 |
| 0.0814 | 37.19 | 13760 | 0.5991 | 0.6895 | 0.8009 | 0.8703 | 0.9325 | 0.8252 | 0.8515 | 0.4945 | 0.8987 | 0.8662 | 0.7377 | 0.8637 | 0.6799 | 0.7460 | 0.3810 | 0.7821 | 0.6734 | 0.7003 |
| 0.1256 | 37.24 | 13780 | 0.6215 | 0.6886 | 0.7992 | 0.8704 | 0.9319 | 0.8285 | 0.8542 | 0.4980 | 0.9101 | 0.8535 | 0.7182 | 0.8646 | 0.6778 | 0.7464 | 0.3842 | 0.7848 | 0.6722 | 0.6903 |
| 0.1831 | 37.3 | 13800 | 0.5965 | 0.6921 | 0.8039 | 0.8722 | 0.9328 | 0.8406 | 0.8499 | 0.5007 | 0.9045 | 0.8615 | 0.7375 | 0.8694 | 0.6795 | 0.7478 | 0.3885 | 0.7837 | 0.6690 | 0.7066 |
| 0.1468 | 37.35 | 13820 | 0.6292 | 0.6810 | 0.7915 | 0.8674 | 0.9363 | 0.8282 | 0.8616 | 0.4482 | 0.9026 | 0.8689 | 0.6948 | 0.8663 | 0.6815 | 0.7447 | 0.3665 | 0.7804 | 0.6584 | 0.6689 |
| 0.2897 | 37.41 | 13840 | 0.6377 | 0.6749 | 0.7849 | 0.8648 | 0.9336 | 0.8309 | 0.8658 | 0.4189 | 0.9080 | 0.8592 | 0.6781 | 0.8650 | 0.6811 | 0.7412 | 0.3519 | 0.7772 | 0.6566 | 0.6512 |
| 0.1732 | 37.46 | 13860 | 0.6302 | 0.6813 | 0.7866 | 0.8683 | 0.9395 | 0.8019 | 0.8601 | 0.4386 | 0.9064 | 0.8596 | 0.6999 | 0.8660 | 0.6827 | 0.7401 | 0.3569 | 0.7809 | 0.6685 | 0.6740 |
| 0.3542 | 37.51 | 13880 | 0.6502 | 0.6835 | 0.7933 | 0.8673 | 0.9379 | 0.8145 | 0.8609 | 0.4908 | 0.9034 | 0.8516 | 0.6937 | 0.8639 | 0.6811 | 0.7438 | 0.3849 | 0.7800 | 0.6610 | 0.6694 |
| 0.1036 | 37.57 | 13900 | 0.6033 | 0.6828 | 0.7972 | 0.8675 | 0.9271 | 0.8177 | 0.8730 | 0.4687 | 0.8950 | 0.8699 | 0.7291 | 0.8645 | 0.6811 | 0.7420 | 0.3650 | 0.7798 | 0.6560 | 0.6914 |
| 0.409 | 37.62 | 13920 | 0.6042 | 0.6853 | 0.7915 | 0.8705 | 0.9315 | 0.7980 | 0.8674 | 0.4327 | 0.9030 | 0.8662 | 0.7415 | 0.8660 | 0.6811 | 0.7433 | 0.3500 | 0.7820 | 0.6694 | 0.7054 |
| 0.1406 | 37.68 | 13940 | 0.6144 | 0.6794 | 0.7867 | 0.8687 | 0.9320 | 0.8037 | 0.8743 | 0.3970 | 0.9010 | 0.8697 | 0.7289 | 0.8639 | 0.6812 | 0.7400 | 0.3293 | 0.7831 | 0.6650 | 0.6934 |
| 1.313 | 37.73 | 13960 | 0.6022 | 0.6820 | 0.7912 | 0.8691 | 0.9333 | 0.8145 | 0.8752 | 0.4238 | 0.8973 | 0.8589 | 0.7354 | 0.8657 | 0.6834 | 0.7369 | 0.3427 | 0.7814 | 0.6650 | 0.6992 |
| 0.1975 | 37.78 | 13980 | 0.6037 | 0.6833 | 0.7923 | 0.8701 | 0.9341 | 0.8190 | 0.8761 | 0.4237 | 0.8992 | 0.8615 | 0.7326 | 0.8679 | 0.6853 | 0.7358 | 0.3423 | 0.7827 | 0.6690 | 0.6998 |
| 0.2584 | 37.84 | 14000 | 0.5807 | 0.6901 | 0.7957 | 0.8727 | 0.9347 | 0.8231 | 0.8562 | 0.4460 | 0.9069 | 0.8583 | 0.7448 | 0.8675 | 0.6826 | 0.7458 | 0.3671 | 0.7856 | 0.6739 | 0.7084 |
| 0.2032 | 37.89 | 14020 | 0.5551 | 0.6926 | 0.7968 | 0.8737 | 0.9390 | 0.8200 | 0.8492 | 0.4610 | 0.9058 | 0.8541 | 0.7482 | 0.8674 | 0.6827 | 0.7500 | 0.3784 | 0.7873 | 0.6681 | 0.7144 |
| 0.1317 | 37.95 | 14040 | 0.5509 | 0.6899 | 0.7980 | 0.8715 | 0.9342 | 0.8237 | 0.8539 | 0.4756 | 0.9026 | 0.8470 | 0.7486 | 0.8657 | 0.6836 | 0.7505 | 0.3788 | 0.7849 | 0.6588 | 0.7072 |
| 0.3604 | 38.0 | 14060 | 0.5349 | 0.6912 | 0.7985 | 0.8731 | 0.9346 | 0.7841 | 0.8664 | 0.4658 | 0.8895 | 0.8672 | 0.7822 | 0.8660 | 0.6780 | 0.7456 | 0.3673 | 0.7874 | 0.6647 | 0.7294 |
| 0.2222 | 38.05 | 14080 | 0.5328 | 0.6934 | 0.8066 | 0.8727 | 0.9309 | 0.8128 | 0.8685 | 0.4980 | 0.8868 | 0.8755 | 0.7734 | 0.8666 | 0.6802 | 0.7526 | 0.3808 | 0.7849 | 0.6649 | 0.7238 |
| 0.2449 | 38.11 | 14100 | 0.5987 | 0.6862 | 0.7949 | 0.8699 | 0.9331 | 0.8197 | 0.8593 | 0.4756 | 0.9094 | 0.8469 | 0.7204 | 0.8669 | 0.6817 | 0.7497 | 0.3721 | 0.7831 | 0.6583 | 0.6917 |
| 0.1192 | 38.16 | 14120 | 0.5685 | 0.6854 | 0.7936 | 0.8716 | 0.9370 | 0.8237 | 0.8656 | 0.4263 | 0.9006 | 0.8654 | 0.7364 | 0.8683 | 0.6840 | 0.7460 | 0.3447 | 0.7864 | 0.6622 | 0.7064 |
| 0.1802 | 38.22 | 14140 | 0.5572 | 0.6864 | 0.7974 | 0.8706 | 0.9384 | 0.8201 | 0.8507 | 0.4702 | 0.8938 | 0.8650 | 0.7433 | 0.8693 | 0.6860 | 0.7460 | 0.3442 | 0.7802 | 0.6655 | 0.7138 |
| 0.1099 | 38.27 | 14160 | 0.5273 | 0.6947 | 0.8008 | 0.8757 | 0.9340 | 0.8020 | 0.8591 | 0.4683 | 0.8998 | 0.8542 | 0.7885 | 0.8683 | 0.6787 | 0.7498 | 0.3568 | 0.7892 | 0.6763 | 0.7435 |
| 0.1271 | 38.32 | 14180 | 0.5254 | 0.6958 | 0.8033 | 0.8761 | 0.9346 | 0.8124 | 0.8634 | 0.4681 | 0.8967 | 0.8600 | 0.7880 | 0.8691 | 0.6809 | 0.7508 | 0.3583 | 0.7892 | 0.6761 | 0.7461 |
| 0.2621 | 38.38 | 14200 | 0.5331 | 0.6914 | 0.8033 | 0.8727 | 0.9300 | 0.8093 | 0.8749 | 0.4784 | 0.8887 | 0.8572 | 0.7849 | 0.8678 | 0.6814 | 0.7501 | 0.3479 | 0.7809 | 0.6761 | 0.7354 |
| 0.1324 | 38.43 | 14220 | 0.5733 | 0.6884 | 0.7913 | 0.8725 | 0.9396 | 0.7890 | 0.8555 | 0.4533 | 0.9036 | 0.8445 | 0.7535 | 0.8690 | 0.6752 | 0.7446 | 0.3556 | 0.7818 | 0.6776 | 0.7145 |
| 0.2456 | 38.49 | 14240 | 0.5537 | 0.6811 | 0.7909 | 0.8691 | 0.9311 | 0.7956 | 0.8796 | 0.4251 | 0.8921 | 0.8550 | 0.7580 | 0.8669 | 0.6773 | 0.7350 | 0.3256 | 0.7791 | 0.6777 | 0.7062 |
| 0.1776 | 38.54 | 14260 | 0.5484 | 0.6846 | 0.7967 | 0.8702 | 0.9346 | 0.8246 | 0.8577 | 0.4512 | 0.8922 | 0.8647 | 0.7521 | 0.8666 | 0.6817 | 0.7389 | 0.3411 | 0.7820 | 0.6697 | 0.7125 |
| 0.0734 | 38.59 | 14280 | 0.5084 | 0.6870 | 0.8004 | 0.8719 | 0.9307 | 0.8319 | 0.8716 | 0.4560 | 0.8947 | 0.8509 | 0.7672 | 0.8691 | 0.6835 | 0.7401 | 0.3239 | 0.7826 | 0.6831 | 0.7267 |
| 0.148 | 38.65 | 14300 | 0.5462 | 0.6909 | 0.7990 | 0.8734 | 0.9311 | 0.8299 | 0.8548 | 0.4524 | 0.9069 | 0.8641 | 0.7541 | 0.8685 | 0.6792 | 0.7504 | 0.3577 | 0.7858 | 0.6809 | 0.7136 |
| 0.2257 | 38.7 | 14320 | 0.5883 | 0.6896 | 0.7977 | 0.8735 | 0.9362 | 0.8310 | 0.8678 | 0.4374 | 0.9021 | 0.8645 | 0.7452 | 0.8677 | 0.6782 | 0.7464 | 0.3489 | 0.7870 | 0.6866 | 0.7121 |
| 0.2438 | 38.76 | 14340 | 0.5733 | 0.6899 | 0.7938 | 0.8737 | 0.9393 | 0.8069 | 0.8720 | 0.4422 | 0.9046 | 0.8429 | 0.7489 | 0.8688 | 0.6787 | 0.7507 | 0.3463 | 0.7847 | 0.6856 | 0.7149 |
| 0.3243 | 38.81 | 14360 | 0.5874 | 0.6858 | 0.7993 | 0.8701 | 0.9368 | 0.8230 | 0.8774 | 0.4547 | 0.8836 | 0.8765 | 0.7430 | 0.8699 | 0.6823 | 0.7501 | 0.3330 | 0.7733 | 0.6795 | 0.7122 |
| 1.404 | 38.86 | 14380 | 0.6100 | 0.6864 | 0.7991 | 0.8700 | 0.9364 | 0.8289 | 0.8609 | 0.4629 | 0.8904 | 0.8808 | 0.7335 | 0.8682 | 0.6790 | 0.7495 | 0.3527 | 0.7767 | 0.6739 | 0.7045 |
| 0.1701 | 38.92 | 14400 | 0.5984 | 0.6881 | 0.7996 | 0.8700 | 0.9313 | 0.8191 | 0.8529 | 0.4826 | 0.8977 | 0.8748 | 0.7388 | 0.8657 | 0.6784 | 0.7495 | 0.3718 | 0.7800 | 0.6704 | 0.7010 |
| 0.1059 | 38.97 | 14420 | 0.5984 | 0.6861 | 0.7914 | 0.8710 | 0.9374 | 0.8123 | 0.8498 | 0.4406 | 0.9055 | 0.8613 | 0.7328 | 0.8665 | 0.6823 | 0.7450 | 0.3535 | 0.7830 | 0.6716 | 0.7012 |
| 0.12 | 39.03 | 14440 | 0.6271 | 0.6814 | 0.7880 | 0.8693 | 0.9408 | 0.8146 | 0.8609 | 0.4222 | 0.9020 | 0.8635 | 0.7120 | 0.8637 | 0.6826 | 0.7393 | 0.3380 | 0.7841 | 0.6756 | 0.6866 |
| 0.1683 | 39.08 | 14460 | 0.5926 | 0.6871 | 0.7967 | 0.8710 | 0.9393 | 0.8177 | 0.8623 | 0.4680 | 0.8966 | 0.8592 | 0.7340 | 0.8662 | 0.6814 | 0.7366 | 0.3594 | 0.7843 | 0.6762 | 0.7055 |
| 0.2943 | 39.14 | 14480 | 0.5866 | 0.6918 | 0.8027 | 0.8716 | 0.9340 | 0.8184 | 0.8565 | 0.5067 | 0.8983 | 0.8610 | 0.7440 | 0.8657 | 0.6794 | 0.7444 | 0.3851 | 0.7827 | 0.6765 | 0.7092 |
| 0.1408 | 39.19 | 14500 | 0.5564 | 0.6949 | 0.8101 | 0.8720 | 0.9309 | 0.8207 | 0.8574 | 0.5468 | 0.8937 | 0.8708 | 0.7504 | 0.8662 | 0.6776 | 0.7480 | 0.3995 | 0.7821 | 0.6761 | 0.7151 |
| 0.1082 | 39.24 | 14520 | 0.5643 | 0.6929 | 0.8061 | 0.8712 | 0.9298 | 0.8192 | 0.8561 | 0.5210 | 0.8954 | 0.8730 | 0.7483 | 0.8654 | 0.6766 | 0.7484 | 0.3964 | 0.7805 | 0.6728 | 0.7101 |
| 0.0968 | 39.3 | 14540 | 0.5755 | 0.6852 | 0.8011 | 0.8686 | 0.9351 | 0.8134 | 0.8756 | 0.4924 | 0.8807 | 0.8623 | 0.7483 | 0.8651 | 0.6733 | 0.7371 | 0.3614 | 0.7761 | 0.6791 | 0.7044 |
| 0.2545 | 39.35 | 14560 | 0.5966 | 0.6834 | 0.7974 | 0.8674 | 0.9279 | 0.8092 | 0.8527 | 0.4868 | 0.8930 | 0.8675 | 0.7449 | 0.8660 | 0.6733 | 0.7499 | 0.3469 | 0.7702 | 0.6733 | 0.7040 |
| 0.1329 | 39.41 | 14580 | 0.5686 | 0.6871 | 0.7964 | 0.8703 | 0.9331 | 0.8087 | 0.8529 | 0.4747 | 0.8990 | 0.8579 | 0.7486 | 0.8675 | 0.6719 | 0.7497 | 0.3583 | 0.7761 | 0.6762 | 0.7100 |
| 0.2681 | 39.46 | 14600 | 0.5751 | 0.6901 | 0.7980 | 0.8719 | 0.9340 | 0.8132 | 0.8697 | 0.4691 | 0.8993 | 0.8493 | 0.7515 | 0.8660 | 0.6751 | 0.7442 | 0.3771 | 0.7826 | 0.6776 | 0.7084 |
| 0.2 | 39.51 | 14620 | 0.5701 | 0.6920 | 0.8018 | 0.8713 | 0.9335 | 0.8146 | 0.8519 | 0.4990 | 0.8949 | 0.8640 | 0.7546 | 0.8642 | 0.6691 | 0.7492 | 0.3978 | 0.7803 | 0.6759 | 0.7074 |
| 0.2699 | 39.57 | 14640 | 0.5471 | 0.6912 | 0.7975 | 0.8729 | 0.9307 | 0.7951 | 0.8601 | 0.4642 | 0.8994 | 0.8551 | 0.7780 | 0.8644 | 0.6666 | 0.7483 | 0.3761 | 0.7850 | 0.6755 | 0.7225 |
| 0.3498 | 39.62 | 14660 | 0.5512 | 0.6915 | 0.7995 | 0.8733 | 0.9313 | 0.8081 | 0.8764 | 0.4658 | 0.9028 | 0.8590 | 0.7531 | 0.8672 | 0.6789 | 0.7416 | 0.3679 | 0.7869 | 0.6813 | 0.7165 |
| 0.2973 | 39.68 | 14680 | 0.5437 | 0.6932 | 0.8031 | 0.8732 | 0.9291 | 0.8143 | 0.8607 | 0.4818 | 0.8990 | 0.8706 | 0.7660 | 0.8667 | 0.6742 | 0.7480 | 0.3785 | 0.7840 | 0.6784 | 0.7226 |
| 0.1419 | 39.73 | 14700 | 0.5355 | 0.6952 | 0.8051 | 0.8753 | 0.9312 | 0.8024 | 0.8720 | 0.4789 | 0.8898 | 0.8601 | 0.8017 | 0.8662 | 0.6684 | 0.7473 | 0.3741 | 0.7893 | 0.6771 | 0.7443 |
| 0.0852 | 39.78 | 14720 | 0.5293 | 0.6959 | 0.8066 | 0.8756 | 0.9318 | 0.8143 | 0.8604 | 0.4872 | 0.8932 | 0.8656 | 0.7939 | 0.8680 | 0.6670 | 0.7500 | 0.3789 | 0.7895 | 0.6785 | 0.7393 |
| 0.2802 | 39.84 | 14740 | 0.5564 | 0.6967 | 0.8063 | 0.8765 | 0.9361 | 0.8137 | 0.8491 | 0.4888 | 0.8909 | 0.8590 | 0.8065 | 0.8668 | 0.6649 | 0.7473 | 0.3778 | 0.7922 | 0.6751 | 0.7525 |
| 0.2943 | 39.89 | 14760 | 0.5502 | 0.6917 | 0.8007 | 0.8729 | 0.9309 | 0.8013 | 0.8420 | 0.4998 | 0.9022 | 0.8526 | 0.7759 | 0.8675 | 0.6637 | 0.7483 | 0.3821 | 0.7843 | 0.6731 | 0.7233 |
| 1.6794 | 39.95 | 14780 | 0.5218 | 0.6937 | 0.8051 | 0.8750 | 0.9322 | 0.8053 | 0.8602 | 0.4909 | 0.8909 | 0.8536 | 0.8028 | 0.8683 | 0.6670 | 0.7508 | 0.3589 | 0.7873 | 0.6775 | 0.7463 |
| 0.1365 | 40.0 | 14800 | 0.5598 | 0.6912 | 0.8028 | 0.8714 | 0.9296 | 0.8137 | 0.8529 | 0.5126 | 0.9004 | 0.8539 | 0.7566 | 0.8667 | 0.6711 | 0.7530 | 0.3841 | 0.7810 | 0.6735 | 0.7090 |
| 0.2468 | 40.05 | 14820 | 0.5624 | 0.6893 | 0.8013 | 0.8703 | 0.9332 | 0.7991 | 0.8578 | 0.5107 | 0.8911 | 0.8601 | 0.7568 | 0.8657 | 0.6739 | 0.7522 | 0.3772 | 0.7799 | 0.6658 | 0.7102 |
| 0.1003 | 40.11 | 14840 | 0.5568 | 0.6938 | 0.8027 | 0.8731 | 0.9307 | 0.8190 | 0.8441 | 0.4911 | 0.9014 | 0.8655 | 0.7668 | 0.8659 | 0.6782 | 0.7516 | 0.3845 | 0.7851 | 0.6677 | 0.7235 |
| 0.1876 | 40.16 | 14860 | 0.5569 | 0.6948 | 0.8014 | 0.8735 | 0.9317 | 0.8163 | 0.8593 | 0.4999 | 0.9088 | 0.8370 | 0.7569 | 0.8669 | 0.6796 | 0.7488 | 0.3910 | 0.7847 | 0.6742 | 0.7186 |
| 0.1911 | 40.22 | 14880 | 0.5425 | 0.6941 | 0.8083 | 0.8738 | 0.9302 | 0.8237 | 0.8678 | 0.4900 | 0.8875 | 0.8798 | 0.7791 | 0.8681 | 0.6750 | 0.7483 | 0.3762 | 0.7852 | 0.6759 | 0.7304 |
| 0.2452 | 40.27 | 14900 | 0.5416 | 0.6949 | 0.8067 | 0.8761 | 0.9335 | 0.8207 | 0.8548 | 0.4748 | 0.8882 | 0.8637 | 0.8113 | 0.8696 | 0.6707 | 0.7449 | 0.3573 | 0.7889 | 0.6750 | 0.7582 |
| 0.1584 | 40.32 | 14920 | 0.5212 | 0.6915 | 0.8043 | 0.8746 | 0.9345 | 0.8157 | 0.8682 | 0.4560 | 0.8813 | 0.8720 | 0.8024 | 0.8679 | 0.6698 | 0.7462 | 0.3467 | 0.7874 | 0.6759 | 0.7467 |
| 0.1308 | 40.38 | 14940 | 0.5571 | 0.6847 | 0.7996 | 0.8701 | 0.9315 | 0.8329 | 0.8717 | 0.4544 | 0.8927 | 0.8726 | 0.7413 | 0.8677 | 0.6802 | 0.7430 | 0.3440 | 0.7825 | 0.6649 | 0.7103 |
| 0.1618 | 40.43 | 14960 | 0.5995 | 0.6829 | 0.7980 | 0.8685 | 0.9332 | 0.8245 | 0.8659 | 0.4842 | 0.8970 | 0.8592 | 0.7217 | 0.8683 | 0.6802 | 0.7435 | 0.3530 | 0.7801 | 0.6599 | 0.6956 |
| 0.1534 | 40.49 | 14980 | 0.5638 | 0.6891 | 0.7991 | 0.8720 | 0.9338 | 0.8280 | 0.8527 | 0.4667 | 0.9008 | 0.8612 | 0.7509 | 0.8675 | 0.6793 | 0.7472 | 0.3558 | 0.7829 | 0.6735 | 0.7177 |
| 0.2106 | 40.54 | 15000 | 0.5425 | 0.6857 | 0.7977 | 0.8703 | 0.9336 | 0.8019 | 0.8692 | 0.4726 | 0.8889 | 0.8523 | 0.7654 | 0.8677 | 0.6708 | 0.7480 | 0.3436 | 0.7780 | 0.6774 | 0.7144 |
| 0.354 | 40.59 | 15020 | 0.5624 | 0.6866 | 0.8001 | 0.8704 | 0.9353 | 0.8050 | 0.8576 | 0.4813 | 0.8845 | 0.8732 | 0.7634 | 0.8688 | 0.6659 | 0.7478 | 0.3570 | 0.7772 | 0.6741 | 0.7150 |
| 0.2076 | 40.65 | 15040 | 0.5313 | 0.6878 | 0.7973 | 0.8718 | 0.9335 | 0.7936 | 0.8647 | 0.4629 | 0.8919 | 0.8648 | 0.7696 | 0.8685 | 0.6698 | 0.7495 | 0.3525 | 0.7810 | 0.6749 | 0.7187 |
| 0.2259 | 40.7 | 15060 | 0.5863 | 0.6810 | 0.7920 | 0.8680 | 0.9389 | 0.7749 | 0.8614 | 0.4676 | 0.8837 | 0.8760 | 0.7416 | 0.8690 | 0.6671 | 0.7470 | 0.3448 | 0.7737 | 0.6645 | 0.7009 |
| 0.1089 | 40.76 | 15080 | 0.5667 | 0.6846 | 0.7934 | 0.8700 | 0.9306 | 0.7920 | 0.8619 | 0.4550 | 0.8983 | 0.8608 | 0.7552 | 0.8689 | 0.6689 | 0.7460 | 0.3516 | 0.7774 | 0.6731 | 0.7064 |
| 0.1985 | 40.81 | 15100 | 0.5746 | 0.6852 | 0.7922 | 0.8710 | 0.9395 | 0.8048 | 0.8625 | 0.4457 | 0.9008 | 0.8620 | 0.7298 | 0.8702 | 0.6842 | 0.7426 | 0.3464 | 0.7827 | 0.6672 | 0.7032 |
| 0.2077 | 40.86 | 15120 | 0.6194 | 0.6860 | 0.7942 | 0.8708 | 0.9381 | 0.8099 | 0.8644 | 0.4613 | 0.9026 | 0.8608 | 0.7223 | 0.8702 | 0.6848 | 0.7435 | 0.3577 | 0.7832 | 0.6654 | 0.6969 |
| 0.3211 | 40.92 | 15140 | 0.5721 | 0.6908 | 0.8018 | 0.8724 | 0.9329 | 0.7984 | 0.8731 | 0.4909 | 0.8950 | 0.8706 | 0.7519 | 0.8700 | 0.6818 | 0.7414 | 0.3629 | 0.7829 | 0.6786 | 0.7181 |
| 0.1905 | 40.97 | 15160 | 0.6226 | 0.6913 | 0.8014 | 0.8726 | 0.9336 | 0.8158 | 0.8653 | 0.4835 | 0.8994 | 0.8663 | 0.7461 | 0.8706 | 0.6841 | 0.7474 | 0.3639 | 0.7819 | 0.6761 | 0.7149 |
| 0.1425 | 41.03 | 15180 | 0.6056 | 0.6930 | 0.7992 | 0.8737 | 0.9356 | 0.8152 | 0.8504 | 0.4829 | 0.9080 | 0.8536 | 0.7489 | 0.8702 | 0.6834 | 0.7472 | 0.3659 | 0.7834 | 0.6829 | 0.7179 |
| 0.1168 | 41.08 | 15200 | 0.5751 | 0.6940 | 0.8069 | 0.8735 | 0.9348 | 0.8303 | 0.8649 | 0.5107 | 0.8983 | 0.8643 | 0.7448 | 0.8706 | 0.6811 | 0.7456 | 0.3795 | 0.7845 | 0.6799 | 0.7166 |
| 0.086 | 41.14 | 15220 | 0.5493 | 0.6947 | 0.8031 | 0.8743 | 0.9343 | 0.8231 | 0.8562 | 0.4884 | 0.9041 | 0.8623 | 0.7533 | 0.8703 | 0.6848 | 0.7461 | 0.3760 | 0.7863 | 0.6785 | 0.7208 |
| 0.1855 | 41.19 | 15240 | 0.5724 | 0.6924 | 0.7966 | 0.8740 | 0.9333 | 0.8292 | 0.8535 | 0.4596 | 0.9158 | 0.8325 | 0.7525 | 0.8691 | 0.6858 | 0.7451 | 0.3649 | 0.7859 | 0.6784 | 0.7174 |
| 0.0492 | 41.24 | 15260 | 0.6137 | 0.6902 | 0.7969 | 0.8727 | 0.9405 | 0.8323 | 0.8365 | 0.4716 | 0.9080 | 0.8575 | 0.7321 | 0.8679 | 0.6820 | 0.7423 | 0.3731 | 0.7871 | 0.6706 | 0.7081 |
| 0.1612 | 41.3 | 15280 | 0.5675 | 0.6914 | 0.8014 | 0.8733 | 0.9367 | 0.8226 | 0.8679 | 0.4751 | 0.8979 | 0.8623 | 0.7475 | 0.8702 | 0.6836 | 0.7426 | 0.3659 | 0.7861 | 0.6748 | 0.7164 |
| 0.1317 | 41.35 | 15300 | 0.6373 | 0.6892 | 0.8021 | 0.8703 | 0.9340 | 0.8263 | 0.8559 | 0.5042 | 0.8989 | 0.8713 | 0.7244 | 0.8683 | 0.6790 | 0.7479 | 0.3902 | 0.7821 | 0.6606 | 0.6961 |
| 0.2445 | 41.41 | 15320 | 0.5977 | 0.6866 | 0.8012 | 0.8681 | 0.9275 | 0.8100 | 0.8435 | 0.5090 | 0.8927 | 0.8800 | 0.7459 | 0.8665 | 0.6677 | 0.7469 | 0.3924 | 0.7757 | 0.6653 | 0.6918 |
| 0.1636 | 41.46 | 15340 | 0.5728 | 0.6885 | 0.8013 | 0.8701 | 0.9312 | 0.7956 | 0.8557 | 0.5054 | 0.8891 | 0.8701 | 0.7623 | 0.8667 | 0.6663 | 0.7506 | 0.3795 | 0.7786 | 0.6739 | 0.7043 |
| 0.1409 | 41.51 | 15360 | 0.6116 | 0.6890 | 0.7989 | 0.8703 | 0.9343 | 0.8016 | 0.8489 | 0.5056 | 0.8979 | 0.8582 | 0.7456 | 0.8677 | 0.6651 | 0.7539 | 0.3910 | 0.7786 | 0.6701 | 0.6964 |
| 0.1588 | 41.57 | 15380 | 0.5694 | 0.6898 | 0.7994 | 0.8714 | 0.9346 | 0.7957 | 0.8644 | 0.4974 | 0.8945 | 0.8505 | 0.7590 | 0.8684 | 0.6684 | 0.7535 | 0.3769 | 0.7800 | 0.6750 | 0.7063 |
| 0.1663 | 41.62 | 15400 | 0.5666 | 0.6901 | 0.8053 | 0.8707 | 0.9302 | 0.8135 | 0.8689 | 0.5097 | 0.8881 | 0.8691 | 0.7574 | 0.8670 | 0.6729 | 0.7533 | 0.3769 | 0.7791 | 0.6741 | 0.7077 |
| 0.1314 | 41.68 | 15420 | 0.5718 | 0.6937 | 0.8029 | 0.8727 | 0.9314 | 0.8171 | 0.8418 | 0.5087 | 0.9047 | 0.8625 | 0.7544 | 0.8666 | 0.6782 | 0.7517 | 0.3845 | 0.7834 | 0.6774 | 0.7139 |
| 0.2941 | 41.73 | 15440 | 0.5796 | 0.6922 | 0.8003 | 0.8725 | 0.9328 | 0.8158 | 0.8496 | 0.4832 | 0.9020 | 0.8643 | 0.7542 | 0.8663 | 0.6794 | 0.7494 | 0.3763 | 0.7830 | 0.6768 | 0.7143 |
| 0.1006 | 41.78 | 15460 | 0.5848 | 0.6879 | 0.7983 | 0.8705 | 0.9349 | 0.8157 | 0.8510 | 0.4731 | 0.8927 | 0.8676 | 0.7532 | 0.8661 | 0.6816 | 0.7458 | 0.3534 | 0.7778 | 0.6742 | 0.7163 |
| 0.083 | 41.84 | 15480 | 0.5681 | 0.6853 | 0.8023 | 0.8688 | 0.9312 | 0.8305 | 0.8626 | 0.4771 | 0.8814 | 0.8734 | 0.7595 | 0.8661 | 0.6839 | 0.7471 | 0.3324 | 0.7733 | 0.6750 | 0.7195 |
| 0.133 | 41.89 | 15500 | 0.5777 | 0.6856 | 0.7990 | 0.8691 | 0.9364 | 0.8230 | 0.8427 | 0.4706 | 0.8831 | 0.8800 | 0.7569 | 0.8654 | 0.6831 | 0.7483 | 0.3344 | 0.7736 | 0.6757 | 0.7190 |
| 0.2027 | 41.95 | 15520 | 0.5768 | 0.6863 | 0.8004 | 0.8686 | 0.9301 | 0.8058 | 0.8600 | 0.5054 | 0.8898 | 0.8587 | 0.7532 | 0.8669 | 0.6841 | 0.7468 | 0.3422 | 0.7715 | 0.6754 | 0.7173 |
| 0.2747 | 42.0 | 15540 | 0.5677 | 0.6844 | 0.7915 | 0.8694 | 0.9351 | 0.7751 | 0.8569 | 0.4625 | 0.8912 | 0.8537 | 0.7657 | 0.8663 | 0.6772 | 0.7467 | 0.3274 | 0.7734 | 0.6753 | 0.7242 |
| 0.1922 | 42.05 | 15560 | 0.5835 | 0.6852 | 0.7977 | 0.8685 | 0.9404 | 0.8020 | 0.8617 | 0.4933 | 0.8807 | 0.8569 | 0.7491 | 0.8654 | 0.6851 | 0.7424 | 0.3382 | 0.7725 | 0.6742 | 0.7185 |
| 0.0675 | 42.11 | 15580 | 0.6323 | 0.6829 | 0.7929 | 0.8682 | 0.9452 | 0.8078 | 0.8576 | 0.4661 | 0.8825 | 0.8532 | 0.7377 | 0.8639 | 0.6849 | 0.7410 | 0.3311 | 0.7731 | 0.6738 | 0.7128 |
| 0.344 | 42.16 | 15600 | 0.5709 | 0.6870 | 0.7964 | 0.8701 | 0.9394 | 0.7835 | 0.8659 | 0.4898 | 0.8870 | 0.8564 | 0.7524 | 0.8661 | 0.6786 | 0.7474 | 0.3460 | 0.7764 | 0.6774 | 0.7173 |
| 0.125 | 42.22 | 15620 | 0.5475 | 0.6960 | 0.8002 | 0.8737 | 0.9331 | 0.7964 | 0.8468 | 0.5046 | 0.9077 | 0.8527 | 0.7598 | 0.8662 | 0.6806 | 0.7539 | 0.3933 | 0.7843 | 0.6768 | 0.7171 |
| 0.1713 | 42.27 | 15640 | 0.5458 | 0.6953 | 0.8001 | 0.8743 | 0.9405 | 0.8079 | 0.8563 | 0.4827 | 0.8983 | 0.8567 | 0.7584 | 0.8664 | 0.6831 | 0.7485 | 0.3822 | 0.7861 | 0.6786 | 0.7221 |
| 1.7043 | 42.32 | 15660 | 0.5768 | 0.6964 | 0.8020 | 0.8740 | 0.9388 | 0.8151 | 0.8449 | 0.4936 | 0.9001 | 0.8707 | 0.7506 | 0.8667 | 0.6813 | 0.7503 | 0.3968 | 0.7842 | 0.6772 | 0.7182 |
| 0.2095 | 42.38 | 15680 | 0.5594 | 0.6969 | 0.8035 | 0.8747 | 0.9433 | 0.8076 | 0.8542 | 0.5005 | 0.8914 | 0.8655 | 0.7617 | 0.8656 | 0.6815 | 0.7481 | 0.3907 | 0.7876 | 0.6779 | 0.7273 |
| 0.2733 | 42.43 | 15700 | 0.5576 | 0.6942 | 0.8026 | 0.8739 | 0.9435 | 0.8113 | 0.8656 | 0.4881 | 0.8876 | 0.8656 | 0.7568 | 0.8680 | 0.6844 | 0.7441 | 0.3746 | 0.7846 | 0.6772 | 0.7261 |
| 0.1815 | 42.49 | 15720 | 0.5334 | 0.6928 | 0.8016 | 0.8730 | 0.9367 | 0.8150 | 0.8411 | 0.4963 | 0.8961 | 0.8553 | 0.7707 | 0.8689 | 0.6745 | 0.7472 | 0.3774 | 0.7808 | 0.6770 | 0.7239 |
| 0.6893 | 42.54 | 15740 | 0.5713 | 0.6868 | 0.8000 | 0.8697 | 0.9306 | 0.7965 | 0.8702 | 0.4901 | 0.8868 | 0.8600 | 0.7657 | 0.8692 | 0.6693 | 0.7456 | 0.3598 | 0.7730 | 0.6764 | 0.7146 |
| 0.2895 | 42.59 | 15760 | 0.5742 | 0.6908 | 0.8016 | 0.8712 | 0.9326 | 0.8033 | 0.8497 | 0.5158 | 0.8978 | 0.8543 | 0.7574 | 0.8693 | 0.6655 | 0.7480 | 0.3885 | 0.7770 | 0.6769 | 0.7103 |
| 0.1651 | 42.65 | 15780 | 0.5621 | 0.6913 | 0.8010 | 0.8726 | 0.9350 | 0.7999 | 0.8561 | 0.5020 | 0.8951 | 0.8461 | 0.7726 | 0.8686 | 0.6651 | 0.7467 | 0.3770 | 0.7808 | 0.6783 | 0.7230 |
| 0.449 | 42.7 | 15800 | 0.5858 | 0.6869 | 0.8018 | 0.8699 | 0.9356 | 0.8069 | 0.8563 | 0.5081 | 0.8846 | 0.8587 | 0.7623 | 0.8693 | 0.6651 | 0.7477 | 0.3575 | 0.7732 | 0.6769 | 0.7184 |
| 0.1698 | 42.76 | 15820 | 0.5816 | 0.6848 | 0.7945 | 0.8693 | 0.9375 | 0.7910 | 0.8581 | 0.4779 | 0.8894 | 0.8547 | 0.7528 | 0.8690 | 0.6786 | 0.7444 | 0.3352 | 0.7715 | 0.6771 | 0.7180 |
| 0.2006 | 42.81 | 15840 | 0.6001 | 0.6854 | 0.7968 | 0.8691 | 0.9409 | 0.8045 | 0.8469 | 0.4956 | 0.8878 | 0.8578 | 0.7444 | 0.8687 | 0.6803 | 0.7442 | 0.3423 | 0.7725 | 0.6735 | 0.7161 |
| 0.1577 | 42.86 | 15860 | 0.5450 | 0.6840 | 0.7929 | 0.8694 | 0.9403 | 0.7646 | 0.8591 | 0.4852 | 0.8863 | 0.8611 | 0.7537 | 0.8685 | 0.6691 | 0.7435 | 0.3371 | 0.7739 | 0.6774 | 0.7185 |
| 0.1936 | 42.92 | 15880 | 0.5545 | 0.6879 | 0.7945 | 0.8718 | 0.9361 | 0.7968 | 0.8605 | 0.4570 | 0.8976 | 0.8518 | 0.7614 | 0.8684 | 0.6781 | 0.7421 | 0.3501 | 0.7804 | 0.6758 | 0.7205 |
| 0.187 | 42.97 | 15900 | 0.5604 | 0.6892 | 0.8003 | 0.8719 | 0.9387 | 0.8140 | 0.8597 | 0.4801 | 0.8886 | 0.8594 | 0.7619 | 0.8692 | 0.6803 | 0.7403 | 0.3501 | 0.7794 | 0.6754 | 0.7298 |
| 0.1292 | 43.03 | 15920 | 0.5918 | 0.6899 | 0.7987 | 0.8723 | 0.9343 | 0.8061 | 0.8655 | 0.4822 | 0.9014 | 0.8520 | 0.7494 | 0.8705 | 0.6816 | 0.7414 | 0.3591 | 0.7811 | 0.6760 | 0.7198 |
| 0.2654 | 43.08 | 15940 | 0.5506 | 0.6924 | 0.8040 | 0.8733 | 0.9316 | 0.8047 | 0.8668 | 0.5038 | 0.8963 | 0.8558 | 0.7690 | 0.8702 | 0.6782 | 0.7449 | 0.3624 | 0.7832 | 0.6761 | 0.7316 |
| 0.1696 | 43.14 | 15960 | 0.5600 | 0.6910 | 0.8012 | 0.8727 | 0.9401 | 0.7865 | 0.8614 | 0.4967 | 0.8849 | 0.8721 | 0.7668 | 0.8702 | 0.6720 | 0.7463 | 0.3690 | 0.7820 | 0.6737 | 0.7236 |
| 0.2917 | 43.19 | 15980 | 0.5430 | 0.6926 | 0.7988 | 0.8744 | 0.9379 | 0.7929 | 0.8628 | 0.4769 | 0.8968 | 0.8486 | 0.7756 | 0.8706 | 0.6744 | 0.7458 | 0.3646 | 0.7850 | 0.6774 | 0.7302 |
| 0.0827 | 43.24 | 16000 | 0.5455 | 0.6914 | 0.7944 | 0.8734 | 0.9381 | 0.7788 | 0.8395 | 0.4787 | 0.9044 | 0.8579 | 0.7635 | 0.8699 | 0.6717 | 0.7451 | 0.3722 | 0.7834 | 0.6767 | 0.7209 |
| 0.2404 | 43.3 | 16020 | 0.5516 | 0.6906 | 0.7971 | 0.8732 | 0.9376 | 0.7851 | 0.8611 | 0.4708 | 0.8933 | 0.8598 | 0.7722 | 0.8706 | 0.6717 | 0.7443 | 0.3645 | 0.7817 | 0.6772 | 0.7243 |
| 0.1556 | 43.35 | 16040 | 0.5462 | 0.6925 | 0.8005 | 0.8740 | 0.9348 | 0.8013 | 0.8643 | 0.4726 | 0.8955 | 0.8622 | 0.7731 | 0.8710 | 0.6781 | 0.7439 | 0.3634 | 0.7834 | 0.6764 | 0.7314 |
| 0.1845 | 43.41 | 16060 | 0.5758 | 0.6900 | 0.7977 | 0.8726 | 0.9373 | 0.8043 | 0.8549 | 0.4728 | 0.8985 | 0.8616 | 0.7542 | 0.8716 | 0.6811 | 0.7436 | 0.3533 | 0.7796 | 0.6770 | 0.7236 |
| 0.0959 | 43.46 | 16080 | 0.5496 | 0.6879 | 0.7945 | 0.8715 | 0.9385 | 0.7898 | 0.8393 | 0.4796 | 0.8961 | 0.8472 | 0.7711 | 0.8710 | 0.6724 | 0.7427 | 0.3525 | 0.7764 | 0.6759 | 0.7241 |
| 0.1834 | 43.51 | 16100 | 0.5518 | 0.6892 | 0.7975 | 0.8726 | 0.9407 | 0.7930 | 0.8585 | 0.4830 | 0.8892 | 0.8362 | 0.7816 | 0.8708 | 0.6710 | 0.7472 | 0.3442 | 0.7781 | 0.6783 | 0.7348 |
| 0.2178 | 43.57 | 16120 | 0.5328 | 0.6921 | 0.8030 | 0.8734 | 0.9350 | 0.8053 | 0.8563 | 0.5076 | 0.8924 | 0.8315 | 0.7927 | 0.8709 | 0.6699 | 0.7490 | 0.3533 | 0.7788 | 0.6799 | 0.7427 |
| 0.1988 | 43.62 | 16140 | 0.5387 | 0.6941 | 0.8093 | 0.8742 | 0.9337 | 0.8106 | 0.8586 | 0.5149 | 0.8813 | 0.8615 | 0.8042 | 0.8718 | 0.6710 | 0.7514 | 0.3541 | 0.7794 | 0.6751 | 0.7559 |
| 0.3371 | 43.68 | 16160 | 0.5451 | 0.6948 | 0.8107 | 0.8745 | 0.9361 | 0.8125 | 0.8608 | 0.5162 | 0.8753 | 0.8655 | 0.8087 | 0.8707 | 0.6722 | 0.7527 | 0.3544 | 0.7810 | 0.6747 | 0.7576 |
| 1.6466 | 43.73 | 16180 | 0.5541 | 0.6939 | 0.8030 | 0.8738 | 0.9353 | 0.8098 | 0.8611 | 0.4924 | 0.8941 | 0.8530 | 0.7751 | 0.8704 | 0.6773 | 0.7537 | 0.3695 | 0.7808 | 0.6745 | 0.7312 |
| 0.2617 | 43.78 | 16200 | 0.5834 | 0.6951 | 0.8019 | 0.8739 | 0.9381 | 0.8178 | 0.8479 | 0.4975 | 0.9021 | 0.8580 | 0.7523 | 0.8700 | 0.6792 | 0.7536 | 0.3892 | 0.7828 | 0.6701 | 0.7209 |
| 0.2101 | 43.84 | 16220 | 0.5582 | 0.6940 | 0.8025 | 0.8735 | 0.9336 | 0.8114 | 0.8511 | 0.4866 | 0.8968 | 0.8705 | 0.7675 | 0.8678 | 0.6763 | 0.7535 | 0.3827 | 0.7837 | 0.6701 | 0.7243 |
| 0.248 | 43.89 | 16240 | 0.5753 | 0.6913 | 0.8026 | 0.8719 | 0.9363 | 0.8156 | 0.8578 | 0.4772 | 0.8858 | 0.8880 | 0.7575 | 0.8660 | 0.6777 | 0.7501 | 0.3793 | 0.7831 | 0.6637 | 0.7189 |
| 0.0976 | 43.95 | 16260 | 0.5836 | 0.6927 | 0.7998 | 0.8728 | 0.9350 | 0.8089 | 0.8572 | 0.4870 | 0.9019 | 0.8582 | 0.7504 | 0.8679 | 0.6799 | 0.7492 | 0.3808 | 0.7828 | 0.6723 | 0.7159 |
| 0.1359 | 44.0 | 16280 | 0.5986 | 0.6928 | 0.8023 | 0.8729 | 0.9355 | 0.8258 | 0.8575 | 0.4942 | 0.9022 | 0.8580 | 0.7430 | 0.8687 | 0.6795 | 0.7498 | 0.3827 | 0.7839 | 0.6713 | 0.7136 |
| 0.218 | 44.05 | 16300 | 0.5782 | 0.6934 | 0.8002 | 0.8732 | 0.9368 | 0.8057 | 0.8505 | 0.4946 | 0.9012 | 0.8595 | 0.7528 | 0.8682 | 0.6810 | 0.7469 | 0.3838 | 0.7839 | 0.6711 | 0.7190 |
| 0.0846 | 44.11 | 16320 | 0.5503 | 0.6929 | 0.8037 | 0.8732 | 0.9361 | 0.8267 | 0.8657 | 0.4897 | 0.8946 | 0.8532 | 0.7598 | 0.8685 | 0.6821 | 0.7442 | 0.3739 | 0.7838 | 0.6730 | 0.7250 |
| 0.0841 | 44.16 | 16340 | 0.5649 | 0.6924 | 0.8015 | 0.8730 | 0.9346 | 0.8188 | 0.8560 | 0.4862 | 0.8994 | 0.8579 | 0.7576 | 0.8685 | 0.6774 | 0.7467 | 0.3787 | 0.7833 | 0.6699 | 0.7220 |
| 0.138 | 44.22 | 16360 | 0.5352 | 0.6917 | 0.8020 | 0.8722 | 0.9318 | 0.7998 | 0.8597 | 0.5036 | 0.8948 | 0.8518 | 0.7726 | 0.8673 | 0.6706 | 0.7498 | 0.3805 | 0.7817 | 0.6724 | 0.7198 |
| 0.2396 | 44.27 | 16380 | 0.5898 | 0.6893 | 0.7971 | 0.8713 | 0.9356 | 0.7989 | 0.8599 | 0.4779 | 0.8967 | 0.8606 | 0.7503 | 0.8678 | 0.6759 | 0.7459 | 0.3729 | 0.7798 | 0.6699 | 0.7128 |
| 0.1535 | 44.32 | 16400 | 0.5528 | 0.6914 | 0.8003 | 0.8720 | 0.9319 | 0.8086 | 0.8525 | 0.4884 | 0.8988 | 0.8591 | 0.7626 | 0.8666 | 0.6793 | 0.7472 | 0.3750 | 0.7816 | 0.6698 | 0.7205 |
| 0.1736 | 44.38 | 16420 | 0.5528 | 0.6919 | 0.7969 | 0.8735 | 0.9377 | 0.8168 | 0.8477 | 0.4540 | 0.9000 | 0.8561 | 0.7660 | 0.8655 | 0.6819 | 0.7432 | 0.3698 | 0.7864 | 0.6703 | 0.7263 |
| 0.1992 | 44.43 | 16440 | 0.5871 | 0.6912 | 0.7981 | 0.8723 | 0.9371 | 0.8070 | 0.8657 | 0.4709 | 0.8975 | 0.8629 | 0.7452 | 0.8669 | 0.6839 | 0.7436 | 0.3786 | 0.7839 | 0.6676 | 0.7137 |
| 0.2313 | 44.49 | 16460 | 0.5677 | 0.6935 | 0.8018 | 0.8732 | 0.9371 | 0.8135 | 0.8642 | 0.4868 | 0.8965 | 0.8653 | 0.7494 | 0.8665 | 0.6815 | 0.7453 | 0.3865 | 0.7861 | 0.6714 | 0.7173 |
| 0.124 | 44.54 | 16480 | 0.6107 | 0.6914 | 0.8017 | 0.8711 | 0.9335 | 0.8205 | 0.8562 | 0.5112 | 0.9042 | 0.8585 | 0.7275 | 0.8683 | 0.6794 | 0.7500 | 0.3988 | 0.7815 | 0.6621 | 0.6997 |
| 0.1359 | 44.59 | 16500 | 0.5790 | 0.6935 | 0.8042 | 0.8727 | 0.9342 | 0.8224 | 0.8697 | 0.5065 | 0.8998 | 0.8527 | 0.7441 | 0.8671 | 0.6789 | 0.7465 | 0.3922 | 0.7851 | 0.6728 | 0.7117 |
| 0.2572 | 44.65 | 16520 | 0.5907 | 0.6919 | 0.8025 | 0.8724 | 0.9346 | 0.8322 | 0.8607 | 0.4982 | 0.9031 | 0.8458 | 0.7428 | 0.8675 | 0.6778 | 0.7443 | 0.3847 | 0.7843 | 0.6715 | 0.7128 |
| 0.1618 | 44.7 | 16540 | 0.5507 | 0.6949 | 0.8049 | 0.8737 | 0.9316 | 0.8115 | 0.8589 | 0.5026 | 0.8969 | 0.8590 | 0.7734 | 0.8672 | 0.6752 | 0.7483 | 0.3889 | 0.7855 | 0.6723 | 0.7270 |
| 0.1022 | 44.76 | 16560 | 0.5530 | 0.6934 | 0.8010 | 0.8735 | 0.9352 | 0.7987 | 0.8503 | 0.4847 | 0.8931 | 0.8648 | 0.7801 | 0.8665 | 0.6719 | 0.7473 | 0.3849 | 0.7856 | 0.6711 | 0.7265 |
| 0.0975 | 44.81 | 16580 | 0.5464 | 0.6923 | 0.7998 | 0.8733 | 0.9321 | 0.8051 | 0.8521 | 0.4701 | 0.8961 | 0.8606 | 0.7827 | 0.8662 | 0.6718 | 0.7458 | 0.3799 | 0.7855 | 0.6720 | 0.7252 |
| 0.1967 | 44.86 | 16600 | 0.5835 | 0.6893 | 0.8004 | 0.8704 | 0.9298 | 0.8013 | 0.8634 | 0.5021 | 0.8976 | 0.8577 | 0.7508 | 0.8662 | 0.6693 | 0.7460 | 0.3878 | 0.7799 | 0.6712 | 0.7049 |
| 0.1643 | 44.92 | 16620 | 0.5923 | 0.6886 | 0.7946 | 0.8704 | 0.9351 | 0.7896 | 0.8547 | 0.4878 | 0.9003 | 0.8447 | 0.7501 | 0.8662 | 0.6708 | 0.7443 | 0.3847 | 0.7786 | 0.6743 | 0.7012 |
| 0.2977 | 44.97 | 16640 | 0.5870 | 0.6887 | 0.7951 | 0.8709 | 0.9369 | 0.7886 | 0.8553 | 0.4781 | 0.8971 | 0.8644 | 0.7453 | 0.8680 | 0.6709 | 0.7468 | 0.3824 | 0.7792 | 0.6728 | 0.7007 |
| 0.1541 | 45.03 | 16660 | 0.5820 | 0.6859 | 0.7942 | 0.8699 | 0.9342 | 0.7986 | 0.8597 | 0.4528 | 0.8924 | 0.8690 | 0.7524 | 0.8667 | 0.6706 | 0.7448 | 0.3690 | 0.7776 | 0.6711 | 0.7018 |
| 0.1896 | 45.08 | 16680 | 0.5527 | 0.6892 | 0.7964 | 0.8718 | 0.9328 | 0.8019 | 0.8546 | 0.4620 | 0.8974 | 0.8574 | 0.7687 | 0.8670 | 0.6703 | 0.7458 | 0.3736 | 0.7821 | 0.6740 | 0.7117 |
| 1.3552 | 45.14 | 16700 | 0.5711 | 0.6900 | 0.8013 | 0.8716 | 0.9352 | 0.8069 | 0.8606 | 0.4923 | 0.8914 | 0.8660 | 0.7568 | 0.8686 | 0.6672 | 0.7452 | 0.3851 | 0.7815 | 0.6740 | 0.7088 |
| 0.2574 | 45.19 | 16720 | 0.5742 | 0.6898 | 0.8009 | 0.8712 | 0.9328 | 0.8003 | 0.8590 | 0.4953 | 0.8929 | 0.8698 | 0.7563 | 0.8690 | 0.6677 | 0.7465 | 0.3846 | 0.7797 | 0.6740 | 0.7068 |
| 0.0881 | 45.24 | 16740 | 0.5674 | 0.6899 | 0.7971 | 0.8714 | 0.9339 | 0.7903 | 0.8497 | 0.4926 | 0.8995 | 0.8543 | 0.7595 | 0.8684 | 0.6678 | 0.7465 | 0.3848 | 0.7800 | 0.6756 | 0.7059 |
| 0.1921 | 45.3 | 16760 | 0.5661 | 0.6893 | 0.7965 | 0.8721 | 0.9360 | 0.7912 | 0.8675 | 0.4678 | 0.8936 | 0.8550 | 0.7646 | 0.8683 | 0.6688 | 0.7459 | 0.3729 | 0.7818 | 0.6767 | 0.7106 |
| 0.2151 | 45.35 | 16780 | 0.5675 | 0.6882 | 0.7980 | 0.8706 | 0.9294 | 0.8043 | 0.8658 | 0.4780 | 0.8980 | 0.8512 | 0.7594 | 0.8679 | 0.6692 | 0.7463 | 0.3759 | 0.7789 | 0.6771 | 0.7020 |
| 0.2561 | 45.41 | 16800 | 0.5671 | 0.6863 | 0.7922 | 0.8707 | 0.9321 | 0.7896 | 0.8597 | 0.4527 | 0.9011 | 0.8521 | 0.7581 | 0.8678 | 0.6706 | 0.7433 | 0.3635 | 0.7798 | 0.6768 | 0.7022 |
| 0.2134 | 45.46 | 16820 | 0.5914 | 0.6850 | 0.7933 | 0.8697 | 0.9293 | 0.7952 | 0.8649 | 0.4569 | 0.9003 | 0.8540 | 0.7524 | 0.8677 | 0.6685 | 0.7414 | 0.3652 | 0.7775 | 0.6756 | 0.6994 |
| 0.1302 | 45.51 | 16840 | 0.5701 | 0.6869 | 0.7950 | 0.8701 | 0.9313 | 0.7960 | 0.8615 | 0.4770 | 0.8996 | 0.8421 | 0.7574 | 0.8668 | 0.6689 | 0.7441 | 0.3744 | 0.7788 | 0.6752 | 0.7002 |
| 0.1511 | 45.57 | 16860 | 0.5676 | 0.6885 | 0.7989 | 0.8704 | 0.9319 | 0.7977 | 0.8592 | 0.4974 | 0.8958 | 0.8547 | 0.7556 | 0.8666 | 0.6675 | 0.7457 | 0.3834 | 0.7801 | 0.6762 | 0.7004 |
| 0.107 | 45.62 | 16880 | 0.5839 | 0.6881 | 0.7957 | 0.8710 | 0.9380 | 0.7988 | 0.8588 | 0.4721 | 0.8950 | 0.8595 | 0.7477 | 0.8681 | 0.6709 | 0.7444 | 0.3747 | 0.7800 | 0.6769 | 0.7015 |
| 0.1537 | 45.68 | 16900 | 0.5476 | 0.6871 | 0.7989 | 0.8701 | 0.9338 | 0.7988 | 0.8663 | 0.4889 | 0.8887 | 0.8529 | 0.7627 | 0.8672 | 0.6707 | 0.7451 | 0.3635 | 0.7779 | 0.6774 | 0.7080 |
| 0.2827 | 45.73 | 16920 | 0.5664 | 0.6887 | 0.7985 | 0.8711 | 0.9355 | 0.8167 | 0.8571 | 0.4762 | 0.8957 | 0.8578 | 0.7505 | 0.8672 | 0.6798 | 0.7419 | 0.3660 | 0.7808 | 0.6775 | 0.7077 |
| 0.1563 | 45.78 | 16940 | 0.5821 | 0.6871 | 0.7969 | 0.8700 | 0.9316 | 0.7993 | 0.8576 | 0.4792 | 0.8967 | 0.8643 | 0.7493 | 0.8675 | 0.6746 | 0.7431 | 0.3696 | 0.7782 | 0.6743 | 0.7022 |
| 0.2185 | 45.84 | 16960 | 0.5599 | 0.6836 | 0.7929 | 0.8692 | 0.9370 | 0.7951 | 0.8652 | 0.4628 | 0.8910 | 0.8473 | 0.7516 | 0.8663 | 0.6747 | 0.7374 | 0.3487 | 0.7781 | 0.6768 | 0.7032 |
| 0.222 | 45.89 | 16980 | 0.6002 | 0.6813 | 0.7913 | 0.8685 | 0.9413 | 0.7986 | 0.8563 | 0.4529 | 0.8878 | 0.8653 | 0.7372 | 0.8660 | 0.6771 | 0.7349 | 0.3389 | 0.7782 | 0.6722 | 0.7019 |
| 0.1177 | 45.95 | 17000 | 0.5830 | 0.6806 | 0.7892 | 0.8682 | 0.9355 | 0.7860 | 0.8612 | 0.4440 | 0.8911 | 0.8532 | 0.7537 | 0.8660 | 0.6708 | 0.7367 | 0.3370 | 0.7763 | 0.6765 | 0.7010 |
| 0.1475 | 46.0 | 17020 | 0.6041 | 0.6798 | 0.7864 | 0.8690 | 0.9365 | 0.7879 | 0.8659 | 0.4130 | 0.8942 | 0.8586 | 0.7485 | 0.8657 | 0.6742 | 0.7364 | 0.3253 | 0.7791 | 0.6752 | 0.7028 |
| 0.1955 | 46.05 | 17040 | 0.5875 | 0.6802 | 0.7932 | 0.8670 | 0.9361 | 0.7959 | 0.8552 | 0.4665 | 0.8825 | 0.8654 | 0.7506 | 0.8647 | 0.6700 | 0.7418 | 0.3382 | 0.7731 | 0.6742 | 0.6997 |
| 0.1266 | 46.11 | 17060 | 0.5758 | 0.6832 | 0.7978 | 0.8680 | 0.9279 | 0.8001 | 0.8576 | 0.4831 | 0.8856 | 0.8557 | 0.7744 | 0.8660 | 0.6712 | 0.7465 | 0.3394 | 0.7728 | 0.6729 | 0.7134 |
| 0.1401 | 46.16 | 17080 | 0.5915 | 0.6821 | 0.7904 | 0.8681 | 0.9319 | 0.7868 | 0.8599 | 0.4571 | 0.8955 | 0.8477 | 0.7542 | 0.8658 | 0.6716 | 0.7430 | 0.3456 | 0.7749 | 0.6748 | 0.6988 |
| 0.1667 | 46.22 | 17100 | 0.6235 | 0.6830 | 0.7912 | 0.8685 | 0.9305 | 0.7992 | 0.8465 | 0.4527 | 0.8998 | 0.8588 | 0.7507 | 0.8658 | 0.6710 | 0.7446 | 0.3528 | 0.7758 | 0.6744 | 0.6963 |
| 0.3457 | 46.27 | 17120 | 0.5880 | 0.6838 | 0.7940 | 0.8684 | 0.9266 | 0.7901 | 0.8612 | 0.4706 | 0.8981 | 0.8572 | 0.7539 | 0.8662 | 0.6699 | 0.7492 | 0.3538 | 0.7748 | 0.6751 | 0.6976 |
| 0.1532 | 46.32 | 17140 | 0.5769 | 0.6822 | 0.7960 | 0.8676 | 0.9343 | 0.8066 | 0.8563 | 0.4731 | 0.8835 | 0.8635 | 0.7543 | 0.8653 | 0.6705 | 0.7443 | 0.3464 | 0.7732 | 0.6757 | 0.6998 |
| 0.0841 | 46.38 | 17160 | 0.5844 | 0.6853 | 0.7975 | 0.8691 | 0.9308 | 0.8124 | 0.8582 | 0.4786 | 0.8940 | 0.8537 | 0.7544 | 0.8657 | 0.6693 | 0.7440 | 0.3639 | 0.7776 | 0.6767 | 0.6997 |
| 0.1693 | 46.43 | 17180 | 0.5783 | 0.6858 | 0.7952 | 0.8695 | 0.9338 | 0.8027 | 0.8494 | 0.4747 | 0.8957 | 0.8583 | 0.7518 | 0.8658 | 0.6697 | 0.7443 | 0.3679 | 0.7785 | 0.6771 | 0.6971 |
| 0.301 | 46.49 | 17200 | 0.5805 | 0.6854 | 0.7922 | 0.8697 | 0.9351 | 0.8009 | 0.8429 | 0.4677 | 0.9017 | 0.8494 | 0.7479 | 0.8657 | 0.6696 | 0.7444 | 0.3678 | 0.7798 | 0.6750 | 0.6954 |
| 0.2313 | 46.54 | 17220 | 0.6168 | 0.6833 | 0.7940 | 0.8685 | 0.9329 | 0.8082 | 0.8601 | 0.4705 | 0.8977 | 0.8502 | 0.7383 | 0.8659 | 0.6692 | 0.7442 | 0.3659 | 0.7786 | 0.6701 | 0.6893 |
| 0.0797 | 46.59 | 17240 | 0.5888 | 0.6855 | 0.7917 | 0.8697 | 0.9337 | 0.7843 | 0.8561 | 0.4666 | 0.9007 | 0.8532 | 0.7472 | 0.8663 | 0.6702 | 0.7459 | 0.3682 | 0.7795 | 0.6745 | 0.6941 |
| 0.1081 | 46.65 | 17260 | 0.5985 | 0.6837 | 0.7910 | 0.8697 | 0.9352 | 0.8008 | 0.8645 | 0.4397 | 0.8965 | 0.8499 | 0.7502 | 0.8659 | 0.6712 | 0.7410 | 0.3553 | 0.7799 | 0.6765 | 0.6965 |
| 0.1764 | 46.7 | 17280 | 0.5906 | 0.6859 | 0.7944 | 0.8698 | 0.9319 | 0.7982 | 0.8652 | 0.4635 | 0.8976 | 0.8563 | 0.7484 | 0.8669 | 0.6721 | 0.7459 | 0.3668 | 0.7787 | 0.6742 | 0.6965 |
| 0.2976 | 46.76 | 17300 | 0.5939 | 0.6864 | 0.7952 | 0.8698 | 0.9328 | 0.7964 | 0.8673 | 0.4718 | 0.8958 | 0.8514 | 0.7507 | 0.8668 | 0.6716 | 0.7455 | 0.3705 | 0.7785 | 0.6752 | 0.6967 |
| 0.1649 | 46.81 | 17320 | 0.6012 | 0.6851 | 0.7915 | 0.8698 | 0.9349 | 0.8003 | 0.8531 | 0.4458 | 0.8986 | 0.8610 | 0.7467 | 0.8662 | 0.6728 | 0.7438 | 0.3637 | 0.7792 | 0.6741 | 0.6957 |
| 0.3159 | 46.86 | 17340 | 0.5776 | 0.6861 | 0.7962 | 0.8695 | 0.9327 | 0.7969 | 0.8685 | 0.4762 | 0.8924 | 0.8533 | 0.7535 | 0.8661 | 0.6711 | 0.7428 | 0.3709 | 0.7787 | 0.6760 | 0.6975 |
| 0.0889 | 46.92 | 17360 | 0.5593 | 0.6858 | 0.7952 | 0.8695 | 0.9327 | 0.7738 | 0.8665 | 0.4856 | 0.8908 | 0.8584 | 0.7587 | 0.8658 | 0.6671 | 0.7409 | 0.3702 | 0.7788 | 0.6769 | 0.7009 |
| 0.1136 | 46.97 | 17380 | 0.5620 | 0.6860 | 0.7935 | 0.8697 | 0.9372 | 0.7844 | 0.8580 | 0.4767 | 0.8920 | 0.8514 | 0.7551 | 0.8647 | 0.6699 | 0.7409 | 0.3701 | 0.7796 | 0.6774 | 0.6998 |
| 0.0898 | 47.03 | 17400 | 0.6127 | 0.6875 | 0.7960 | 0.8705 | 0.9371 | 0.8083 | 0.8603 | 0.4688 | 0.8956 | 0.8601 | 0.7417 | 0.8651 | 0.6765 | 0.7419 | 0.3717 | 0.7821 | 0.6742 | 0.7007 |
| 0.2659 | 47.08 | 17420 | 0.5871 | 0.6894 | 0.7979 | 0.8712 | 0.9316 | 0.8010 | 0.8654 | 0.4770 | 0.8997 | 0.8614 | 0.7489 | 0.8665 | 0.6771 | 0.7450 | 0.3736 | 0.7817 | 0.6756 | 0.7062 |
| 0.1993 | 47.14 | 17440 | 0.6110 | 0.6910 | 0.7991 | 0.8719 | 0.9334 | 0.8201 | 0.8481 | 0.4852 | 0.9056 | 0.8585 | 0.7429 | 0.8666 | 0.6801 | 0.7452 | 0.3807 | 0.7836 | 0.6729 | 0.7081 |
| 0.6759 | 47.19 | 17460 | 0.6108 | 0.6898 | 0.7991 | 0.8715 | 0.9319 | 0.8170 | 0.8590 | 0.4770 | 0.9020 | 0.8624 | 0.7440 | 0.8666 | 0.6792 | 0.7455 | 0.3756 | 0.7828 | 0.6720 | 0.7072 |
| 0.3493 | 47.24 | 17480 | 0.5807 | 0.6884 | 0.7973 | 0.8715 | 0.9325 | 0.8143 | 0.8716 | 0.4591 | 0.8995 | 0.8553 | 0.7490 | 0.8666 | 0.6794 | 0.7428 | 0.3630 | 0.7836 | 0.6768 | 0.7065 |
| 1.1969 | 47.3 | 17500 | 0.5830 | 0.6894 | 0.8009 | 0.8716 | 0.9343 | 0.8273 | 0.8659 | 0.4762 | 0.8958 | 0.8589 | 0.7475 | 0.8660 | 0.6793 | 0.7426 | 0.3681 | 0.7841 | 0.6766 | 0.7088 |
| 0.2925 | 47.35 | 17520 | 0.5777 | 0.6890 | 0.7957 | 0.8710 | 0.9350 | 0.7949 | 0.8508 | 0.4839 | 0.9005 | 0.8514 | 0.7531 | 0.8664 | 0.6765 | 0.7452 | 0.3728 | 0.7812 | 0.6753 | 0.7056 |
| 0.1624 | 47.41 | 17540 | 0.5718 | 0.6887 | 0.7983 | 0.8709 | 0.9360 | 0.8097 | 0.8584 | 0.4825 | 0.8944 | 0.8563 | 0.7509 | 0.8659 | 0.6795 | 0.7429 | 0.3686 | 0.7816 | 0.6760 | 0.7063 |
| 0.1431 | 47.46 | 17560 | 0.5648 | 0.6864 | 0.7947 | 0.8703 | 0.9367 | 0.8056 | 0.8620 | 0.4635 | 0.8951 | 0.8503 | 0.7495 | 0.8654 | 0.6778 | 0.7402 | 0.3609 | 0.7816 | 0.6755 | 0.7032 |
| 0.3399 | 47.51 | 17580 | 0.5932 | 0.6888 | 0.7999 | 0.8708 | 0.9332 | 0.8139 | 0.8631 | 0.4861 | 0.8959 | 0.8598 | 0.7474 | 0.8665 | 0.6779 | 0.7434 | 0.3730 | 0.7818 | 0.6751 | 0.7040 |
| 0.2807 | 47.57 | 17600 | 0.6147 | 0.6890 | 0.7964 | 0.8713 | 0.9327 | 0.8105 | 0.8611 | 0.4676 | 0.9040 | 0.8567 | 0.7421 | 0.8670 | 0.6795 | 0.7461 | 0.3726 | 0.7826 | 0.6718 | 0.7032 |
| 0.1749 | 47.62 | 17620 | 0.5876 | 0.6866 | 0.7996 | 0.8696 | 0.9365 | 0.8126 | 0.8634 | 0.4794 | 0.8840 | 0.8724 | 0.7493 | 0.8651 | 0.6754 | 0.7383 | 0.3706 | 0.7801 | 0.6764 | 0.7002 |
| 0.2923 | 47.68 | 17640 | 0.6136 | 0.6892 | 0.7968 | 0.8711 | 0.9332 | 0.8137 | 0.8570 | 0.4787 | 0.9054 | 0.8508 | 0.7390 | 0.8666 | 0.6781 | 0.7455 | 0.3797 | 0.7821 | 0.6700 | 0.7020 |
| 0.11 | 47.73 | 17660 | 0.6215 | 0.6886 | 0.7977 | 0.8710 | 0.9334 | 0.8180 | 0.8694 | 0.4789 | 0.9041 | 0.8476 | 0.7327 | 0.8668 | 0.6787 | 0.7454 | 0.3778 | 0.7833 | 0.6690 | 0.6992 |
| 0.1884 | 47.78 | 17680 | 0.5969 | 0.6886 | 0.7962 | 0.8707 | 0.9348 | 0.8053 | 0.8524 | 0.4755 | 0.8989 | 0.8604 | 0.7464 | 0.8665 | 0.6752 | 0.7465 | 0.3785 | 0.7804 | 0.6724 | 0.7005 |
| 0.2251 | 47.84 | 17700 | 0.5911 | 0.6846 | 0.7895 | 0.8701 | 0.9340 | 0.8002 | 0.8500 | 0.4295 | 0.9015 | 0.8602 | 0.7509 | 0.8664 | 0.6723 | 0.7441 | 0.3568 | 0.7790 | 0.6746 | 0.6986 |
| 0.2057 | 47.89 | 17720 | 0.5940 | 0.6863 | 0.7949 | 0.8699 | 0.9365 | 0.8072 | 0.8506 | 0.4683 | 0.8947 | 0.8569 | 0.7498 | 0.8658 | 0.6692 | 0.7432 | 0.3744 | 0.7794 | 0.6750 | 0.6972 |
| 0.1724 | 47.95 | 17740 | 0.5831 | 0.6872 | 0.7950 | 0.8701 | 0.9323 | 0.8035 | 0.8605 | 0.4827 | 0.9031 | 0.8323 | 0.7508 | 0.8667 | 0.6696 | 0.7456 | 0.3780 | 0.7792 | 0.6732 | 0.6980 |
| 0.1173 | 48.0 | 17760 | 0.6074 | 0.6874 | 0.7990 | 0.8698 | 0.9319 | 0.8008 | 0.8714 | 0.4907 | 0.8939 | 0.8605 | 0.7435 | 0.8673 | 0.6719 | 0.7454 | 0.3795 | 0.7793 | 0.6723 | 0.6961 |
| 0.8592 | 48.05 | 17780 | 0.5757 | 0.6849 | 0.7921 | 0.8699 | 0.9348 | 0.8001 | 0.8577 | 0.4457 | 0.8958 | 0.8550 | 0.7555 | 0.8655 | 0.6690 | 0.7424 | 0.3621 | 0.7799 | 0.6757 | 0.6995 |
| 0.1753 | 48.11 | 17800 | 0.5664 | 0.6867 | 0.7929 | 0.8704 | 0.9332 | 0.7859 | 0.8596 | 0.4656 | 0.8998 | 0.8509 | 0.7554 | 0.8666 | 0.6685 | 0.7448 | 0.3710 | 0.7806 | 0.6761 | 0.6991 |
| 0.1293 | 48.16 | 17820 | 0.5801 | 0.6847 | 0.7894 | 0.8702 | 0.9362 | 0.7863 | 0.8680 | 0.4540 | 0.9021 | 0.8296 | 0.7498 | 0.8659 | 0.6696 | 0.7414 | 0.3637 | 0.7818 | 0.6726 | 0.6980 |
| 0.1466 | 48.22 | 17840 | 0.6018 | 0.6865 | 0.7967 | 0.8699 | 0.9352 | 0.8069 | 0.8598 | 0.4755 | 0.8944 | 0.8620 | 0.7429 | 0.8661 | 0.6711 | 0.7429 | 0.3759 | 0.7812 | 0.6732 | 0.6951 |
| 0.1305 | 48.27 | 17860 | 0.5926 | 0.6869 | 0.7944 | 0.8700 | 0.9330 | 0.7882 | 0.8580 | 0.4770 | 0.8985 | 0.8558 | 0.7502 | 0.8668 | 0.6682 | 0.7448 | 0.3776 | 0.7791 | 0.6749 | 0.6969 |
| 0.252 | 48.32 | 17880 | 0.6012 | 0.6852 | 0.7916 | 0.8692 | 0.9317 | 0.7725 | 0.8558 | 0.4697 | 0.8987 | 0.8640 | 0.7490 | 0.8667 | 0.6671 | 0.7437 | 0.3736 | 0.7775 | 0.6720 | 0.6959 |
| 0.176 | 48.38 | 17900 | 0.5816 | 0.6857 | 0.7896 | 0.8704 | 0.9382 | 0.7821 | 0.8497 | 0.4503 | 0.8985 | 0.8567 | 0.7516 | 0.8653 | 0.6686 | 0.7437 | 0.3667 | 0.7814 | 0.6756 | 0.6984 |
| 0.1354 | 48.43 | 17920 | 0.5885 | 0.6866 | 0.7965 | 0.8698 | 0.9383 | 0.7939 | 0.8655 | 0.4795 | 0.8873 | 0.8632 | 0.7481 | 0.8653 | 0.6703 | 0.7420 | 0.3758 | 0.7805 | 0.6744 | 0.6981 |
| 0.0773 | 48.49 | 17940 | 0.5890 | 0.6846 | 0.7979 | 0.8692 | 0.9380 | 0.8073 | 0.8778 | 0.4728 | 0.8817 | 0.8590 | 0.7486 | 0.8643 | 0.6719 | 0.7348 | 0.3646 | 0.7812 | 0.6761 | 0.6993 |
| 0.1057 | 48.54 | 17960 | 0.5929 | 0.6855 | 0.7928 | 0.8703 | 0.9382 | 0.8082 | 0.8636 | 0.4427 | 0.8942 | 0.8564 | 0.7460 | 0.8652 | 0.6748 | 0.7406 | 0.3605 | 0.7815 | 0.6761 | 0.6998 |
| 0.1428 | 48.59 | 17980 | 0.5724 | 0.6871 | 0.7995 | 0.8699 | 0.9311 | 0.8045 | 0.8725 | 0.4847 | 0.8916 | 0.8622 | 0.7498 | 0.8666 | 0.6723 | 0.7415 | 0.3745 | 0.7800 | 0.6748 | 0.6997 |
| 0.1607 | 48.65 | 18000 | 0.5906 | 0.6874 | 0.7968 | 0.8705 | 0.9340 | 0.8172 | 0.8630 | 0.4680 | 0.8982 | 0.8524 | 0.7449 | 0.8655 | 0.6750 | 0.7424 | 0.3728 | 0.7821 | 0.6742 | 0.6998 |
| 0.159 | 48.7 | 18020 | 0.6010 | 0.6882 | 0.8004 | 0.8701 | 0.9354 | 0.8119 | 0.8650 | 0.4949 | 0.8912 | 0.8634 | 0.7409 | 0.8658 | 0.6757 | 0.7414 | 0.3813 | 0.7810 | 0.6721 | 0.6999 |
| 0.8972 | 48.76 | 18040 | 0.5830 | 0.6852 | 0.7904 | 0.8705 | 0.9348 | 0.8012 | 0.8621 | 0.4320 | 0.9007 | 0.8526 | 0.7492 | 0.8659 | 0.6747 | 0.7424 | 0.3570 | 0.7810 | 0.6744 | 0.7008 |
| 0.1339 | 48.81 | 18060 | 0.5907 | 0.6863 | 0.7959 | 0.8700 | 0.9335 | 0.7957 | 0.8694 | 0.4691 | 0.8929 | 0.8591 | 0.7513 | 0.8662 | 0.6717 | 0.7408 | 0.3699 | 0.7802 | 0.6751 | 0.7005 |
| 0.1247 | 48.86 | 18080 | 0.5731 | 0.6889 | 0.7992 | 0.8706 | 0.9324 | 0.8044 | 0.8637 | 0.4928 | 0.8965 | 0.8554 | 0.7496 | 0.8665 | 0.6725 | 0.7444 | 0.3816 | 0.7807 | 0.6754 | 0.7010 |
| 0.2777 | 48.92 | 18100 | 0.5914 | 0.6881 | 0.7955 | 0.8706 | 0.9306 | 0.7950 | 0.8613 | 0.4777 | 0.9030 | 0.8501 | 0.7509 | 0.8671 | 0.6716 | 0.7448 | 0.3763 | 0.7797 | 0.6759 | 0.7013 |
| 0.1174 | 48.97 | 18120 | 0.5918 | 0.6879 | 0.7934 | 0.8710 | 0.9356 | 0.8026 | 0.8500 | 0.4661 | 0.9041 | 0.8506 | 0.7451 | 0.8664 | 0.6750 | 0.7432 | 0.3734 | 0.7818 | 0.6741 | 0.7012 |
| 0.1679 | 49.03 | 18140 | 0.6104 | 0.6886 | 0.7963 | 0.8708 | 0.9340 | 0.8055 | 0.8518 | 0.4844 | 0.9041 | 0.8542 | 0.7403 | 0.8664 | 0.6750 | 0.7451 | 0.3803 | 0.7825 | 0.6717 | 0.6993 |
| 0.1887 | 49.08 | 18160 | 0.6064 | 0.6856 | 0.7934 | 0.8696 | 0.9332 | 0.7898 | 0.8612 | 0.4606 | 0.8952 | 0.8644 | 0.7493 | 0.8668 | 0.6719 | 0.7422 | 0.3693 | 0.7783 | 0.6729 | 0.6981 |
| 0.2318 | 49.14 | 18180 | 0.5992 | 0.6876 | 0.7973 | 0.8701 | 0.9329 | 0.8117 | 0.8590 | 0.4754 | 0.8966 | 0.8567 | 0.7490 | 0.8664 | 0.6727 | 0.7442 | 0.3777 | 0.7794 | 0.6744 | 0.6986 |
| 0.298 | 49.19 | 18200 | 0.5877 | 0.6846 | 0.7942 | 0.8695 | 0.9321 | 0.8075 | 0.8668 | 0.4455 | 0.8935 | 0.8625 | 0.7517 | 0.8663 | 0.6718 | 0.7405 | 0.3614 | 0.7788 | 0.6750 | 0.6985 |
| 0.0678 | 49.24 | 18220 | 0.5772 | 0.6867 | 0.7934 | 0.8705 | 0.9371 | 0.8053 | 0.8553 | 0.4609 | 0.8981 | 0.8475 | 0.7496 | 0.8654 | 0.6719 | 0.7419 | 0.3718 | 0.7813 | 0.6760 | 0.6989 |
| 0.156 | 49.3 | 18240 | 0.5871 | 0.6862 | 0.7925 | 0.8702 | 0.9372 | 0.8002 | 0.8573 | 0.4599 | 0.8979 | 0.8466 | 0.7483 | 0.8657 | 0.6720 | 0.7417 | 0.3707 | 0.7802 | 0.6745 | 0.6984 |
| 0.1281 | 49.35 | 18260 | 0.5737 | 0.6857 | 0.7913 | 0.8702 | 0.9357 | 0.7840 | 0.8605 | 0.4548 | 0.8979 | 0.8570 | 0.7494 | 0.8660 | 0.6711 | 0.7417 | 0.3669 | 0.7811 | 0.6754 | 0.6980 |
| 0.1969 | 49.41 | 18280 | 0.5778 | 0.6881 | 0.7983 | 0.8701 | 0.9323 | 0.7933 | 0.8588 | 0.4953 | 0.8948 | 0.8609 | 0.7525 | 0.8669 | 0.6693 | 0.7445 | 0.3819 | 0.7794 | 0.6754 | 0.6992 |
| 0.6113 | 49.46 | 18300 | 0.5947 | 0.6868 | 0.7978 | 0.8696 | 0.9324 | 0.7983 | 0.8647 | 0.4854 | 0.8932 | 0.8637 | 0.7466 | 0.8669 | 0.6712 | 0.7427 | 0.3775 | 0.7788 | 0.6726 | 0.6976 |
| 0.1182 | 49.51 | 18320 | 0.6038 | 0.6865 | 0.7949 | 0.8700 | 0.9366 | 0.8004 | 0.8610 | 0.4717 | 0.8948 | 0.8539 | 0.7455 | 0.8660 | 0.6720 | 0.7418 | 0.3743 | 0.7801 | 0.6738 | 0.6977 |
| 0.2847 | 49.57 | 18340 | 0.5843 | 0.6879 | 0.7966 | 0.8701 | 0.9318 | 0.7919 | 0.8567 | 0.4863 | 0.8970 | 0.8583 | 0.7545 | 0.8663 | 0.6683 | 0.7453 | 0.3815 | 0.7793 | 0.6757 | 0.6989 |
| 0.1221 | 49.62 | 18360 | 0.5991 | 0.6883 | 0.7973 | 0.8702 | 0.9357 | 0.8075 | 0.8487 | 0.4922 | 0.8977 | 0.8538 | 0.7456 | 0.8660 | 0.6707 | 0.7450 | 0.3860 | 0.7800 | 0.6730 | 0.6975 |
| 0.3461 | 49.68 | 18380 | 0.6064 | 0.6875 | 0.7930 | 0.8702 | 0.9378 | 0.7899 | 0.8451 | 0.4777 | 0.8990 | 0.8562 | 0.7456 | 0.8659 | 0.6714 | 0.7432 | 0.3807 | 0.7798 | 0.6736 | 0.6977 |
| 0.3113 | 49.73 | 18400 | 0.5789 | 0.6872 | 0.7957 | 0.8701 | 0.9312 | 0.8022 | 0.8621 | 0.4767 | 0.9000 | 0.8423 | 0.7555 | 0.8663 | 0.6698 | 0.7435 | 0.3764 | 0.7796 | 0.6755 | 0.6991 |
| 0.143 | 49.78 | 18420 | 0.5968 | 0.6831 | 0.7882 | 0.8699 | 0.9359 | 0.7844 | 0.8689 | 0.4298 | 0.8975 | 0.8514 | 0.7497 | 0.8661 | 0.6701 | 0.7386 | 0.3526 | 0.7804 | 0.6758 | 0.6983 |
| 0.1059 | 49.84 | 18440 | 0.6216 | 0.6848 | 0.7897 | 0.8704 | 0.9392 | 0.7951 | 0.8648 | 0.4421 | 0.9001 | 0.8480 | 0.7386 | 0.8656 | 0.6749 | 0.7390 | 0.3603 | 0.7832 | 0.6731 | 0.6977 |
| 0.1687 | 49.89 | 18460 | 0.5976 | 0.6875 | 0.7969 | 0.8700 | 0.9327 | 0.8021 | 0.8562 | 0.4814 | 0.8967 | 0.8616 | 0.7479 | 0.8665 | 0.6708 | 0.7448 | 0.3803 | 0.7790 | 0.6739 | 0.6973 |
| 0.1931 | 49.95 | 18480 | 0.6122 | 0.6876 | 0.7979 | 0.8699 | 0.9317 | 0.7972 | 0.8658 | 0.4922 | 0.8967 | 0.8553 | 0.7464 | 0.8671 | 0.6702 | 0.7440 | 0.3812 | 0.7790 | 0.6737 | 0.6980 |
| 0.1159 | 50.0 | 18500 | 0.6091 | 0.6876 | 0.7945 | 0.8704 | 0.9332 | 0.7904 | 0.8591 | 0.4778 | 0.9017 | 0.8549 | 0.7443 | 0.8671 | 0.6713 | 0.7452 | 0.3782 | 0.7799 | 0.6736 | 0.6978 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
| [
"water",
"whitewater",
"sediment",
"other_natural_terrain",
"vegetation",
"development",
"unknown"
] |
peldrak/segformer-finetuned-coasts-final |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-coasts-final
This model is a fine-tuned version of [peldrak/segformer-finetuned-coastalDataset](https://huggingface.co/peldrak/segformer-finetuned-coastalDataset) on the peldrak/coastal2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2563
- Mean Iou: 0.5765
- Mean Accuracy: 0.7934
- Overall Accuracy: 0.8942
- Accuracy Water: 0.9204
- Accuracy Whitewater: 0.6450
- Accuracy Sediment: 0.8936
- Accuracy Other Natural Terrain: 0.5526
- Accuracy Vegetation: 0.9077
- Accuracy Development: 0.8415
- Accuracy Unknown: nan
- Iou Water: 0.8847
- Iou Whitewater: 0.4614
- Iou Sediment: 0.7695
- Iou Other Natural Terrain: 0.4632
- Iou Vegetation: 0.8233
- Iou Development: 0.6331
- Iou Unknown: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sediment | Accuracy Other Natural Terrain | Accuracy Vegetation | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sediment | Iou Other Natural Terrain | Iou Vegetation | Iou Development | Iou Unknown |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-----------------:|:------------------------------:|:-------------------:|:--------------------:|:----------------:|:---------:|:--------------:|:------------:|:-------------------------:|:--------------:|:---------------:|:-----------:|
| 0.6692 | 0.01 | 20 | 0.4614 | 0.4642 | 0.6595 | 0.8193 | 0.8313 | 0.4104 | 0.7626 | 0.3112 | 0.9007 | 0.7410 | nan | 0.7682 | 0.3175 | 0.6041 | 0.2766 | 0.7352 | 0.5478 | 0.0 |
| 0.6263 | 0.02 | 40 | 0.4235 | 0.4592 | 0.6471 | 0.8295 | 0.9136 | 0.3421 | 0.7720 | 0.2776 | 0.8233 | 0.7542 | nan | 0.8087 | 0.2990 | 0.6199 | 0.2471 | 0.7340 | 0.5055 | 0.0 |
| 1.3017 | 0.04 | 60 | 0.4394 | 0.4653 | 0.6590 | 0.8330 | 0.8610 | 0.3290 | 0.9077 | 0.2547 | 0.8425 | 0.7591 | nan | 0.8012 | 0.2886 | 0.6560 | 0.2308 | 0.7409 | 0.5394 | 0.0 |
| 0.4226 | 0.05 | 80 | 0.4617 | 0.4769 | 0.6540 | 0.8418 | 0.9305 | 0.4493 | 0.7371 | 0.2628 | 0.8645 | 0.6799 | nan | 0.8198 | 0.3649 | 0.6261 | 0.2443 | 0.7488 | 0.5347 | 0.0 |
| 0.8408 | 0.06 | 100 | 0.4295 | 0.4505 | 0.6816 | 0.8087 | 0.8050 | 0.4237 | 0.8763 | 0.2882 | 0.8330 | 0.8634 | nan | 0.7757 | 0.3119 | 0.6338 | 0.2439 | 0.7017 | 0.4861 | 0.0 |
| 1.474 | 0.07 | 120 | 0.4297 | 0.4708 | 0.6926 | 0.8290 | 0.8725 | 0.5252 | 0.8807 | 0.2439 | 0.8128 | 0.8206 | nan | 0.8183 | 0.3891 | 0.6635 | 0.2246 | 0.7283 | 0.4714 | 0.0 |
| 0.5739 | 0.08 | 140 | 0.3918 | 0.4891 | 0.6964 | 0.8398 | 0.8682 | 0.4291 | 0.8989 | 0.3777 | 0.8434 | 0.7609 | nan | 0.8206 | 0.3611 | 0.6719 | 0.3271 | 0.7499 | 0.4930 | 0.0 |
| 1.8433 | 0.1 | 160 | 0.4038 | 0.4801 | 0.7087 | 0.8276 | 0.8590 | 0.4685 | 0.9100 | 0.3518 | 0.7974 | 0.8656 | nan | 0.8192 | 0.3831 | 0.6661 | 0.3156 | 0.7184 | 0.4585 | 0.0 |
| 0.3492 | 0.11 | 180 | 0.3186 | 0.5025 | 0.7143 | 0.8507 | 0.9192 | 0.5610 | 0.8231 | 0.3873 | 0.8404 | 0.7547 | nan | 0.8615 | 0.3949 | 0.7214 | 0.3523 | 0.7304 | 0.4573 | 0.0 |
| 1.4639 | 0.12 | 200 | 0.4100 | 0.4907 | 0.7152 | 0.8368 | 0.8950 | 0.5659 | 0.8607 | 0.3800 | 0.8092 | 0.7800 | nan | 0.8302 | 0.4098 | 0.6733 | 0.3275 | 0.7245 | 0.4700 | 0.0 |
| 0.4228 | 0.13 | 220 | 0.4499 | 0.4825 | 0.7167 | 0.8290 | 0.8528 | 0.6444 | 0.9074 | 0.3113 | 0.8265 | 0.7581 | nan | 0.8071 | 0.4126 | 0.6496 | 0.2843 | 0.7270 | 0.4967 | 0.0 |
| 0.4334 | 0.15 | 240 | 0.3982 | 0.4789 | 0.7042 | 0.8384 | 0.8739 | 0.6612 | 0.8529 | 0.2549 | 0.8633 | 0.7188 | nan | 0.8264 | 0.3878 | 0.6766 | 0.2461 | 0.7383 | 0.4771 | 0.0 |
| 0.2844 | 0.16 | 260 | 0.4778 | 0.4594 | 0.6958 | 0.8264 | 0.8630 | 0.6156 | 0.8865 | 0.2021 | 0.8209 | 0.7869 | nan | 0.8210 | 0.3735 | 0.6681 | 0.1918 | 0.7157 | 0.4459 | 0.0 |
| 0.4044 | 0.17 | 280 | 0.4410 | 0.4585 | 0.6861 | 0.8289 | 0.8873 | 0.5803 | 0.8906 | 0.1865 | 0.8000 | 0.7719 | nan | 0.8319 | 0.3753 | 0.6804 | 0.1753 | 0.7113 | 0.4354 | 0.0 |
| 0.3748 | 0.18 | 300 | 0.4839 | 0.4393 | 0.6829 | 0.7970 | 0.8379 | 0.5714 | 0.9223 | 0.2301 | 0.7465 | 0.7892 | nan | 0.7826 | 0.3613 | 0.5881 | 0.1983 | 0.6774 | 0.4673 | 0.0 |
| 0.4755 | 0.19 | 320 | 0.3532 | 0.4889 | 0.7063 | 0.8552 | 0.8869 | 0.5985 | 0.8407 | 0.2399 | 0.8972 | 0.7746 | nan | 0.8519 | 0.3580 | 0.7004 | 0.2270 | 0.7688 | 0.5159 | 0.0 |
| 0.1647 | 0.21 | 340 | 0.4263 | 0.4482 | 0.6750 | 0.8275 | 0.8739 | 0.4728 | 0.8689 | 0.1326 | 0.8123 | 0.8897 | nan | 0.8275 | 0.3375 | 0.6691 | 0.1279 | 0.7168 | 0.4589 | 0.0 |
| 0.1324 | 0.22 | 360 | 0.3186 | 0.4722 | 0.7102 | 0.8414 | 0.9062 | 0.6599 | 0.8066 | 0.1877 | 0.8335 | 0.8674 | nan | 0.8473 | 0.3452 | 0.6860 | 0.1817 | 0.7490 | 0.4958 | 0.0 |
| 1.2721 | 0.23 | 380 | 0.4527 | 0.4562 | 0.6524 | 0.8415 | 0.9224 | 0.5242 | 0.7128 | 0.0855 | 0.8813 | 0.7885 | nan | 0.8233 | 0.3347 | 0.6008 | 0.0845 | 0.7683 | 0.5818 | 0.0 |
| 1.5569 | 0.24 | 400 | 0.3610 | 0.4686 | 0.7072 | 0.8468 | 0.8868 | 0.6755 | 0.8329 | 0.1835 | 0.8760 | 0.7884 | nan | 0.8391 | 0.3119 | 0.6641 | 0.1672 | 0.7827 | 0.5152 | 0.0 |
| 0.3027 | 0.25 | 420 | 0.3637 | 0.4659 | 0.7499 | 0.8159 | 0.8104 | 0.7363 | 0.8482 | 0.4076 | 0.8415 | 0.8554 | nan | 0.7855 | 0.2747 | 0.7003 | 0.3160 | 0.7191 | 0.4658 | 0.0 |
| 0.2337 | 0.27 | 440 | 0.3187 | 0.4821 | 0.7265 | 0.8479 | 0.9054 | 0.5871 | 0.8284 | 0.3716 | 0.8357 | 0.8309 | nan | 0.8486 | 0.2510 | 0.7033 | 0.3185 | 0.7569 | 0.4964 | 0.0 |
| 0.9241 | 0.28 | 460 | 0.3566 | 0.4981 | 0.6725 | 0.8624 | 0.9099 | 0.4308 | 0.7761 | 0.3893 | 0.9400 | 0.5890 | nan | 0.8466 | 0.3307 | 0.6713 | 0.3407 | 0.7924 | 0.5048 | 0.0 |
| 0.3494 | 0.29 | 480 | 0.3679 | 0.5070 | 0.7207 | 0.8460 | 0.8849 | 0.5082 | 0.7560 | 0.4808 | 0.8855 | 0.8088 | nan | 0.8284 | 0.3782 | 0.6844 | 0.4029 | 0.7387 | 0.5163 | 0.0 |
| 0.1691 | 0.3 | 500 | 0.3436 | 0.5198 | 0.7262 | 0.8638 | 0.9274 | 0.5366 | 0.7800 | 0.4651 | 0.8808 | 0.7675 | nan | 0.8564 | 0.3869 | 0.6920 | 0.4037 | 0.7766 | 0.5232 | 0.0 |
| 0.5782 | 0.32 | 520 | 0.4702 | 0.5067 | 0.7430 | 0.8398 | 0.8207 | 0.5963 | 0.8942 | 0.4582 | 0.8883 | 0.8005 | nan | 0.7941 | 0.3921 | 0.6395 | 0.4094 | 0.7838 | 0.5280 | 0.0 |
| 0.7752 | 0.33 | 540 | 0.6535 | 0.4591 | 0.6686 | 0.7923 | 0.7106 | 0.5371 | 0.8396 | 0.3616 | 0.9534 | 0.6090 | nan | 0.6940 | 0.4164 | 0.5151 | 0.3090 | 0.7622 | 0.5171 | 0.0 |
| 0.2089 | 0.34 | 560 | 0.3457 | 0.5121 | 0.7382 | 0.8549 | 0.8789 | 0.6058 | 0.8199 | 0.4140 | 0.8932 | 0.8171 | nan | 0.8497 | 0.3949 | 0.7054 | 0.3535 | 0.7516 | 0.5294 | 0.0 |
| 0.1504 | 0.35 | 580 | 0.3299 | 0.5208 | 0.7438 | 0.8605 | 0.8912 | 0.6374 | 0.8511 | 0.3967 | 0.8831 | 0.8036 | nan | 0.8542 | 0.4207 | 0.7280 | 0.3507 | 0.7619 | 0.5301 | 0.0 |
| 0.1052 | 0.36 | 600 | 0.3514 | 0.5118 | 0.7143 | 0.8557 | 0.9408 | 0.5685 | 0.8064 | 0.3304 | 0.8314 | 0.8086 | nan | 0.8346 | 0.4004 | 0.7211 | 0.3147 | 0.7433 | 0.5682 | 0.0 |
| 0.3436 | 0.38 | 620 | 0.3174 | 0.5293 | 0.7225 | 0.8702 | 0.9170 | 0.5454 | 0.8581 | 0.3863 | 0.8901 | 0.7380 | nan | 0.8482 | 0.3866 | 0.7412 | 0.3614 | 0.7797 | 0.5882 | 0.0 |
| 0.2951 | 0.39 | 640 | 0.3557 | 0.5297 | 0.7490 | 0.8605 | 0.8547 | 0.6049 | 0.8916 | 0.4654 | 0.9130 | 0.7643 | nan | 0.8272 | 0.4138 | 0.7145 | 0.3913 | 0.7777 | 0.5834 | 0.0 |
| 0.3383 | 0.4 | 660 | 0.3802 | 0.5108 | 0.7373 | 0.8460 | 0.9167 | 0.5489 | 0.8977 | 0.4706 | 0.7794 | 0.8104 | nan | 0.8249 | 0.3975 | 0.7184 | 0.3596 | 0.7186 | 0.5569 | 0.0 |
| 0.4272 | 0.41 | 680 | 0.2963 | 0.5330 | 0.7518 | 0.8669 | 0.9489 | 0.6026 | 0.7575 | 0.5282 | 0.8565 | 0.8174 | nan | 0.8580 | 0.4109 | 0.7019 | 0.4198 | 0.7806 | 0.5601 | 0.0 |
| 0.3004 | 0.42 | 700 | 0.3287 | 0.5242 | 0.7068 | 0.8728 | 0.9485 | 0.4648 | 0.7569 | 0.4087 | 0.8993 | 0.7628 | nan | 0.8661 | 0.3948 | 0.6820 | 0.3687 | 0.7975 | 0.5607 | 0.0 |
| 0.368 | 0.44 | 720 | 0.3581 | 0.5145 | 0.7082 | 0.8678 | 0.8976 | 0.4916 | 0.9031 | 0.3196 | 0.8945 | 0.7427 | nan | 0.8625 | 0.4132 | 0.6936 | 0.2926 | 0.7928 | 0.5464 | 0.0 |
| 0.5273 | 0.45 | 740 | 0.3392 | 0.5172 | 0.7461 | 0.8659 | 0.8987 | 0.6086 | 0.8829 | 0.3754 | 0.8723 | 0.8384 | nan | 0.8710 | 0.3943 | 0.7320 | 0.3510 | 0.7704 | 0.5018 | 0.0 |
| 0.8596 | 0.46 | 760 | 0.2994 | 0.5144 | 0.7075 | 0.8733 | 0.9402 | 0.5261 | 0.8305 | 0.2849 | 0.8849 | 0.7781 | nan | 0.8820 | 0.4074 | 0.7324 | 0.2753 | 0.7808 | 0.5227 | 0.0 |
| 0.3141 | 0.47 | 780 | 0.2862 | 0.5220 | 0.7148 | 0.8762 | 0.9304 | 0.6100 | 0.8318 | 0.2835 | 0.9128 | 0.7206 | nan | 0.8776 | 0.4229 | 0.7512 | 0.2734 | 0.7838 | 0.5453 | 0.0 |
| 0.4501 | 0.49 | 800 | 0.3087 | 0.5179 | 0.7518 | 0.8713 | 0.9077 | 0.7417 | 0.8486 | 0.3256 | 0.9016 | 0.7858 | nan | 0.8720 | 0.3803 | 0.7325 | 0.3019 | 0.7876 | 0.5509 | 0.0 |
| 0.5333 | 0.5 | 820 | 0.3242 | 0.5222 | 0.7365 | 0.8736 | 0.9122 | 0.6724 | 0.8373 | 0.2926 | 0.9118 | 0.7930 | nan | 0.8753 | 0.4221 | 0.7275 | 0.2756 | 0.7903 | 0.5645 | 0.0 |
| 0.4082 | 0.51 | 840 | 0.3147 | 0.5108 | 0.7301 | 0.8651 | 0.8951 | 0.6418 | 0.8918 | 0.2432 | 0.8836 | 0.8253 | nan | 0.8640 | 0.4205 | 0.7213 | 0.2295 | 0.7843 | 0.5561 | 0.0 |
| 0.1804 | 0.52 | 860 | 0.3430 | 0.5104 | 0.7248 | 0.8642 | 0.8920 | 0.6020 | 0.8910 | 0.2571 | 0.8860 | 0.8208 | nan | 0.8544 | 0.4244 | 0.7103 | 0.2378 | 0.7834 | 0.5628 | 0.0 |
| 0.2636 | 0.53 | 880 | 0.2953 | 0.5190 | 0.7434 | 0.8647 | 0.9241 | 0.6135 | 0.8433 | 0.3692 | 0.8507 | 0.8594 | nan | 0.8685 | 0.4108 | 0.7447 | 0.3300 | 0.7575 | 0.5215 | 0.0 |
| 0.9171 | 0.55 | 900 | 0.2782 | 0.5373 | 0.7328 | 0.8752 | 0.9118 | 0.5616 | 0.8318 | 0.4369 | 0.9192 | 0.7355 | nan | 0.8710 | 0.4169 | 0.7506 | 0.3880 | 0.7798 | 0.5546 | 0.0 |
| 0.1809 | 0.56 | 920 | 0.2736 | 0.5392 | 0.7376 | 0.8749 | 0.9108 | 0.5501 | 0.8474 | 0.4279 | 0.9061 | 0.7835 | nan | 0.8691 | 0.4246 | 0.7473 | 0.3769 | 0.7837 | 0.5728 | 0.0 |
| 0.3095 | 0.57 | 940 | 0.2762 | 0.5405 | 0.7460 | 0.8771 | 0.9084 | 0.5879 | 0.8590 | 0.4068 | 0.9076 | 0.8066 | nan | 0.8716 | 0.4199 | 0.7538 | 0.3667 | 0.7874 | 0.5842 | 0.0 |
| 0.6095 | 0.58 | 960 | 0.2831 | 0.5220 | 0.7405 | 0.8655 | 0.9084 | 0.6134 | 0.8646 | 0.3468 | 0.8689 | 0.8412 | nan | 0.8645 | 0.4026 | 0.7262 | 0.3220 | 0.7696 | 0.5695 | 0.0 |
| 0.6369 | 0.59 | 980 | 0.3259 | 0.5190 | 0.7511 | 0.8612 | 0.8955 | 0.6528 | 0.9060 | 0.3588 | 0.8511 | 0.8425 | nan | 0.8545 | 0.4057 | 0.7171 | 0.3390 | 0.7648 | 0.5522 | 0.0 |
| 1.711 | 0.61 | 1000 | 0.3439 | 0.5268 | 0.7580 | 0.8615 | 0.8617 | 0.6757 | 0.8944 | 0.4164 | 0.9026 | 0.7975 | nan | 0.8434 | 0.4338 | 0.7032 | 0.3844 | 0.7818 | 0.5411 | 0.0 |
| 0.2443 | 0.62 | 1020 | 0.2789 | 0.5429 | 0.7415 | 0.8809 | 0.8993 | 0.6534 | 0.8807 | 0.4180 | 0.9425 | 0.6553 | nan | 0.8714 | 0.4214 | 0.7501 | 0.3893 | 0.8031 | 0.5651 | 0.0 |
| 0.1833 | 0.63 | 1040 | 0.3325 | 0.5356 | 0.7394 | 0.8787 | 0.9275 | 0.6594 | 0.8686 | 0.3051 | 0.8942 | 0.7819 | nan | 0.8675 | 0.4338 | 0.7404 | 0.2979 | 0.7905 | 0.6189 | 0.0 |
| 0.0592 | 0.64 | 1060 | 0.3044 | 0.5287 | 0.7271 | 0.8714 | 0.9078 | 0.6267 | 0.8723 | 0.2993 | 0.9020 | 0.7541 | nan | 0.8564 | 0.4381 | 0.7202 | 0.2867 | 0.7899 | 0.6094 | 0.0 |
| 0.5377 | 0.65 | 1080 | 0.2896 | 0.5328 | 0.7307 | 0.8780 | 0.9091 | 0.5475 | 0.8544 | 0.3355 | 0.9168 | 0.8209 | nan | 0.8693 | 0.4136 | 0.7217 | 0.3155 | 0.8081 | 0.6012 | 0.0 |
| 0.25 | 0.67 | 1100 | 0.3252 | 0.5161 | 0.7578 | 0.8583 | 0.8770 | 0.6339 | 0.9036 | 0.3850 | 0.8583 | 0.8890 | nan | 0.8596 | 0.4195 | 0.7235 | 0.3470 | 0.7676 | 0.4955 | 0.0 |
| 0.3291 | 0.68 | 1120 | 0.3295 | 0.5100 | 0.7740 | 0.8550 | 0.8794 | 0.6870 | 0.9169 | 0.4707 | 0.8352 | 0.8547 | nan | 0.8526 | 0.3684 | 0.7032 | 0.3674 | 0.7645 | 0.5141 | 0.0 |
| 0.1965 | 0.69 | 1140 | 0.2703 | 0.5336 | 0.7583 | 0.8752 | 0.9154 | 0.6437 | 0.8906 | 0.4315 | 0.8769 | 0.7919 | nan | 0.8785 | 0.4010 | 0.7532 | 0.3803 | 0.7833 | 0.5385 | 0.0 |
| 0.129 | 0.7 | 1160 | 0.2486 | 0.5496 | 0.7453 | 0.8864 | 0.9272 | 0.5909 | 0.8937 | 0.4061 | 0.9048 | 0.7493 | nan | 0.8838 | 0.4231 | 0.7696 | 0.3737 | 0.7984 | 0.5990 | 0.0 |
| 0.5261 | 0.72 | 1180 | 0.2643 | 0.5498 | 0.7565 | 0.8759 | 0.9306 | 0.6428 | 0.8678 | 0.4760 | 0.8724 | 0.7493 | nan | 0.8654 | 0.4343 | 0.7636 | 0.4222 | 0.7719 | 0.5914 | 0.0 |
| 0.1468 | 0.73 | 1200 | 0.2658 | 0.5414 | 0.7664 | 0.8706 | 0.9212 | 0.6083 | 0.9012 | 0.5039 | 0.8395 | 0.8244 | nan | 0.8717 | 0.4338 | 0.7665 | 0.4223 | 0.7572 | 0.5382 | 0.0 |
| 1.0941 | 0.74 | 1220 | 0.2715 | 0.5423 | 0.7611 | 0.8718 | 0.9043 | 0.5967 | 0.8793 | 0.4764 | 0.8766 | 0.8333 | nan | 0.8692 | 0.4257 | 0.7705 | 0.4168 | 0.7701 | 0.5438 | 0.0 |
| 0.418 | 0.75 | 1240 | 0.2988 | 0.5385 | 0.7575 | 0.8631 | 0.8481 | 0.6181 | 0.8973 | 0.4993 | 0.9246 | 0.7573 | nan | 0.8263 | 0.4090 | 0.6882 | 0.4314 | 0.8081 | 0.6062 | 0.0 |
| 0.173 | 0.76 | 1260 | 0.2824 | 0.5602 | 0.7812 | 0.8816 | 0.8983 | 0.6148 | 0.9039 | 0.5562 | 0.8982 | 0.8157 | nan | 0.8658 | 0.4415 | 0.7486 | 0.4542 | 0.8029 | 0.6083 | 0.0 |
| 0.2501 | 0.78 | 1280 | 0.2893 | 0.5345 | 0.7801 | 0.8579 | 0.8856 | 0.6174 | 0.8920 | 0.5393 | 0.8337 | 0.9126 | nan | 0.8537 | 0.4336 | 0.7198 | 0.4689 | 0.7618 | 0.5034 | 0.0 |
| 0.2213 | 0.79 | 1300 | 0.2579 | 0.5536 | 0.7501 | 0.8840 | 0.9223 | 0.5794 | 0.8305 | 0.4354 | 0.9198 | 0.8130 | nan | 0.8825 | 0.4336 | 0.7614 | 0.4142 | 0.7924 | 0.5915 | 0.0 |
| 0.6845 | 0.8 | 1320 | 0.2766 | 0.5574 | 0.7593 | 0.8816 | 0.9103 | 0.5735 | 0.8930 | 0.4722 | 0.8971 | 0.8099 | nan | 0.8684 | 0.4448 | 0.7728 | 0.4200 | 0.7871 | 0.6083 | 0.0 |
| 0.3139 | 0.81 | 1340 | 0.2591 | 0.5600 | 0.7617 | 0.8861 | 0.9095 | 0.5474 | 0.9057 | 0.4920 | 0.9052 | 0.8103 | nan | 0.8801 | 0.4356 | 0.7602 | 0.4273 | 0.8075 | 0.6096 | 0.0 |
| 0.2207 | 0.82 | 1360 | 0.3023 | 0.5519 | 0.7398 | 0.8842 | 0.9065 | 0.4921 | 0.8773 | 0.4597 | 0.9261 | 0.7774 | nan | 0.8717 | 0.4113 | 0.7559 | 0.4242 | 0.8022 | 0.5979 | 0.0 |
| 0.055 | 0.84 | 1380 | 0.2899 | 0.5583 | 0.7640 | 0.8801 | 0.9062 | 0.6091 | 0.8915 | 0.4858 | 0.8992 | 0.7923 | nan | 0.8653 | 0.4651 | 0.7603 | 0.4424 | 0.7933 | 0.5815 | 0.0 |
| 0.1648 | 0.85 | 1400 | 0.3026 | 0.5493 | 0.7529 | 0.8830 | 0.9021 | 0.6004 | 0.9090 | 0.4134 | 0.9147 | 0.7780 | nan | 0.8722 | 0.4553 | 0.7478 | 0.3737 | 0.8087 | 0.5877 | 0.0 |
| 0.1717 | 0.86 | 1420 | 0.2719 | 0.5577 | 0.7945 | 0.8802 | 0.9051 | 0.6636 | 0.8980 | 0.5765 | 0.8797 | 0.8441 | nan | 0.8782 | 0.4527 | 0.7591 | 0.4554 | 0.7931 | 0.5656 | 0.0 |
| 1.2901 | 0.87 | 1440 | 0.2583 | 0.5666 | 0.7906 | 0.8837 | 0.9008 | 0.6385 | 0.8771 | 0.5761 | 0.9061 | 0.8453 | nan | 0.8801 | 0.4551 | 0.7863 | 0.4752 | 0.7929 | 0.5766 | 0.0 |
| 0.3958 | 0.89 | 1460 | 0.2567 | 0.5636 | 0.7722 | 0.8856 | 0.9209 | 0.5674 | 0.8749 | 0.5567 | 0.8950 | 0.8186 | nan | 0.8795 | 0.4382 | 0.7648 | 0.4645 | 0.8065 | 0.5913 | 0.0 |
| 0.132 | 0.9 | 1480 | 0.3065 | 0.5529 | 0.7824 | 0.8769 | 0.8965 | 0.6280 | 0.8995 | 0.5739 | 0.8871 | 0.8096 | nan | 0.8637 | 0.4402 | 0.7403 | 0.4606 | 0.8000 | 0.5655 | 0.0 |
| 0.1086 | 0.91 | 1500 | 0.3508 | 0.5322 | 0.7658 | 0.8560 | 0.8395 | 0.6086 | 0.9102 | 0.5617 | 0.9003 | 0.7743 | nan | 0.8166 | 0.4316 | 0.6703 | 0.4462 | 0.7977 | 0.5629 | 0.0 |
| 0.1127 | 0.92 | 1520 | 0.3589 | 0.5310 | 0.7720 | 0.8529 | 0.8399 | 0.6515 | 0.9186 | 0.5537 | 0.8843 | 0.7840 | nan | 0.8100 | 0.4318 | 0.6527 | 0.4291 | 0.7970 | 0.5963 | 0.0 |
| 0.3807 | 0.93 | 1540 | 0.2715 | 0.5554 | 0.7927 | 0.8792 | 0.8975 | 0.6704 | 0.8713 | 0.5857 | 0.8995 | 0.8319 | nan | 0.8742 | 0.4380 | 0.7658 | 0.4537 | 0.7898 | 0.5663 | 0.0 |
| 0.3847 | 0.95 | 1560 | 0.2537 | 0.5589 | 0.7988 | 0.8847 | 0.9184 | 0.6811 | 0.8729 | 0.5827 | 0.8849 | 0.8530 | nan | 0.8863 | 0.4253 | 0.7846 | 0.4582 | 0.7933 | 0.5645 | 0.0 |
| 0.2076 | 0.96 | 1580 | 0.2669 | 0.5517 | 0.7704 | 0.8865 | 0.9249 | 0.6891 | 0.8583 | 0.4244 | 0.9084 | 0.8171 | nan | 0.8811 | 0.4304 | 0.7516 | 0.3920 | 0.8123 | 0.5943 | 0.0 |
| 0.1031 | 0.97 | 1600 | 0.2806 | 0.5474 | 0.7524 | 0.8853 | 0.9163 | 0.6332 | 0.8666 | 0.3833 | 0.9215 | 0.7932 | nan | 0.8782 | 0.4432 | 0.7448 | 0.3527 | 0.8112 | 0.6020 | 0.0 |
| 0.2727 | 0.98 | 1620 | 0.3023 | 0.5370 | 0.7711 | 0.8710 | 0.8763 | 0.6717 | 0.9048 | 0.4370 | 0.8998 | 0.8370 | nan | 0.8557 | 0.4296 | 0.7258 | 0.3803 | 0.7962 | 0.5714 | 0.0 |
| 0.2601 | 0.99 | 1640 | 0.3792 | 0.5187 | 0.7649 | 0.8554 | 0.8331 | 0.7026 | 0.9221 | 0.4155 | 0.9061 | 0.8097 | nan | 0.8181 | 0.3941 | 0.6737 | 0.3592 | 0.7989 | 0.5868 | 0.0 |
| 0.239 | 1.01 | 1660 | 0.3111 | 0.5377 | 0.7876 | 0.8674 | 0.8753 | 0.6883 | 0.9208 | 0.5076 | 0.8718 | 0.8621 | nan | 0.8552 | 0.4240 | 0.7277 | 0.4169 | 0.7868 | 0.5533 | 0.0 |
| 0.2939 | 1.02 | 1680 | 0.2581 | 0.5698 | 0.7874 | 0.8910 | 0.9218 | 0.6397 | 0.9075 | 0.5464 | 0.8947 | 0.8144 | nan | 0.8834 | 0.4488 | 0.7785 | 0.4475 | 0.8142 | 0.6161 | 0.0 |
| 0.1292 | 1.03 | 1700 | 0.2495 | 0.5694 | 0.7724 | 0.8886 | 0.9291 | 0.6174 | 0.8777 | 0.5010 | 0.8964 | 0.8129 | nan | 0.8768 | 0.4587 | 0.7841 | 0.4434 | 0.8067 | 0.6160 | 0.0 |
| 0.4733 | 1.04 | 1720 | 0.2527 | 0.5662 | 0.7743 | 0.8881 | 0.9246 | 0.6255 | 0.8860 | 0.4842 | 0.8958 | 0.8297 | nan | 0.8793 | 0.4605 | 0.7759 | 0.4335 | 0.8041 | 0.6104 | 0.0 |
| 0.1835 | 1.06 | 1740 | 0.2607 | 0.5558 | 0.7705 | 0.8842 | 0.8955 | 0.6777 | 0.8876 | 0.4263 | 0.9280 | 0.8080 | nan | 0.8712 | 0.4401 | 0.7581 | 0.4051 | 0.8096 | 0.6061 | 0.0 |
| 0.4408 | 1.07 | 1760 | 0.2765 | 0.5536 | 0.7802 | 0.8793 | 0.8830 | 0.6812 | 0.8959 | 0.4971 | 0.9197 | 0.8046 | nan | 0.8569 | 0.4205 | 0.7288 | 0.4439 | 0.8175 | 0.6073 | 0.0 |
| 0.1692 | 1.08 | 1780 | 0.2987 | 0.5517 | 0.7740 | 0.8819 | 0.8844 | 0.6921 | 0.9004 | 0.4412 | 0.9298 | 0.7961 | nan | 0.8635 | 0.4247 | 0.7442 | 0.4119 | 0.8119 | 0.6054 | 0.0 |
| 0.0829 | 1.09 | 1800 | 0.2804 | 0.5394 | 0.7624 | 0.8797 | 0.9094 | 0.7067 | 0.8563 | 0.3608 | 0.9121 | 0.8289 | nan | 0.8706 | 0.4162 | 0.7470 | 0.3457 | 0.8019 | 0.5943 | 0.0 |
| 0.6807 | 1.1 | 1820 | 0.3080 | 0.5373 | 0.7638 | 0.8729 | 0.8821 | 0.6748 | 0.9134 | 0.4184 | 0.9030 | 0.7915 | nan | 0.8532 | 0.4092 | 0.7250 | 0.3750 | 0.7992 | 0.5993 | 0.0 |
| 0.2518 | 1.12 | 1840 | 0.2835 | 0.5332 | 0.7744 | 0.8669 | 0.8880 | 0.6827 | 0.9181 | 0.4495 | 0.8632 | 0.8447 | nan | 0.8575 | 0.4012 | 0.7213 | 0.3993 | 0.7805 | 0.5729 | 0.0 |
| 0.7864 | 1.13 | 1860 | 0.2637 | 0.5532 | 0.7737 | 0.8879 | 0.9086 | 0.6829 | 0.9120 | 0.4406 | 0.9137 | 0.7842 | nan | 0.8832 | 0.4071 | 0.7702 | 0.3902 | 0.8153 | 0.6065 | 0.0 |
| 0.0924 | 1.14 | 1880 | 0.2864 | 0.5621 | 0.7705 | 0.8949 | 0.9200 | 0.6569 | 0.8994 | 0.4515 | 0.9284 | 0.7665 | nan | 0.8908 | 0.4259 | 0.7806 | 0.4054 | 0.8209 | 0.6114 | 0.0 |
| 0.1686 | 1.15 | 1900 | 0.2654 | 0.5637 | 0.7854 | 0.8912 | 0.9187 | 0.6555 | 0.8953 | 0.4942 | 0.9044 | 0.8445 | nan | 0.8892 | 0.4345 | 0.7787 | 0.4371 | 0.8110 | 0.5950 | 0.0 |
| 0.1225 | 1.16 | 1920 | 0.2667 | 0.5587 | 0.7855 | 0.8852 | 0.9104 | 0.6479 | 0.9008 | 0.5066 | 0.8918 | 0.8552 | nan | 0.8832 | 0.4434 | 0.7668 | 0.4407 | 0.8031 | 0.5738 | 0.0 |
| 0.1435 | 1.18 | 1940 | 0.2704 | 0.5619 | 0.7807 | 0.8860 | 0.8959 | 0.6520 | 0.8953 | 0.5080 | 0.9226 | 0.8107 | nan | 0.8726 | 0.4417 | 0.7566 | 0.4386 | 0.8158 | 0.6082 | 0.0 |
| 0.2853 | 1.19 | 1960 | 0.2792 | 0.5523 | 0.7959 | 0.8822 | 0.9074 | 0.7239 | 0.8853 | 0.5060 | 0.8900 | 0.8628 | nan | 0.8801 | 0.4154 | 0.7708 | 0.4392 | 0.7978 | 0.5625 | 0.0 |
| 0.1169 | 1.2 | 1980 | 0.2879 | 0.5629 | 0.7787 | 0.8900 | 0.9085 | 0.6766 | 0.8683 | 0.4738 | 0.9324 | 0.8124 | nan | 0.8797 | 0.4266 | 0.7629 | 0.4292 | 0.8164 | 0.6251 | 0.0 |
| 0.1685 | 1.21 | 2000 | 0.2960 | 0.5645 | 0.7948 | 0.8899 | 0.9075 | 0.6827 | 0.8744 | 0.5332 | 0.9189 | 0.8520 | nan | 0.8793 | 0.4256 | 0.7577 | 0.4546 | 0.8224 | 0.6117 | 0.0 |
| 0.7038 | 1.22 | 2020 | 0.2923 | 0.5641 | 0.7853 | 0.8874 | 0.8949 | 0.6525 | 0.8828 | 0.5251 | 0.9296 | 0.8266 | nan | 0.8714 | 0.4343 | 0.7489 | 0.4541 | 0.8219 | 0.6178 | 0.0 |
| 0.6504 | 1.24 | 2040 | 0.2727 | 0.5656 | 0.7799 | 0.8906 | 0.9181 | 0.6237 | 0.9048 | 0.5272 | 0.9039 | 0.8017 | nan | 0.8771 | 0.4327 | 0.7616 | 0.4410 | 0.8245 | 0.6224 | 0.0 |
| 0.3215 | 1.25 | 2060 | 0.2697 | 0.5692 | 0.7798 | 0.8921 | 0.9109 | 0.6537 | 0.9027 | 0.4922 | 0.9214 | 0.7980 | nan | 0.8794 | 0.4591 | 0.7621 | 0.4293 | 0.8272 | 0.6271 | 0.0 |
| 0.7559 | 1.26 | 2080 | 0.2841 | 0.5703 | 0.7909 | 0.8938 | 0.9121 | 0.6957 | 0.8969 | 0.4812 | 0.9210 | 0.8386 | nan | 0.8861 | 0.4526 | 0.7802 | 0.4258 | 0.8202 | 0.6275 | 0.0 |
| 0.0888 | 1.27 | 2100 | 0.2607 | 0.5670 | 0.7677 | 0.8935 | 0.9342 | 0.6483 | 0.8855 | 0.4075 | 0.9070 | 0.8234 | nan | 0.8861 | 0.4785 | 0.7798 | 0.3772 | 0.8168 | 0.6305 | 0.0 |
| 0.4145 | 1.29 | 2120 | 0.2646 | 0.5615 | 0.7702 | 0.8867 | 0.9221 | 0.6530 | 0.8885 | 0.4237 | 0.8969 | 0.8367 | nan | 0.8752 | 0.4703 | 0.7690 | 0.3822 | 0.8086 | 0.6253 | 0.0 |
| 0.059 | 1.3 | 2140 | 0.2673 | 0.5619 | 0.7662 | 0.8893 | 0.9142 | 0.6207 | 0.9007 | 0.4401 | 0.9140 | 0.8076 | nan | 0.8776 | 0.4666 | 0.7564 | 0.3822 | 0.8222 | 0.6286 | 0.0 |
| 0.2973 | 1.31 | 2160 | 0.2817 | 0.5660 | 0.7736 | 0.8912 | 0.9093 | 0.6434 | 0.8961 | 0.4758 | 0.9269 | 0.7901 | nan | 0.8798 | 0.4608 | 0.7590 | 0.4140 | 0.8216 | 0.6265 | 0.0 |
| 0.4088 | 1.32 | 2180 | 0.2859 | 0.5479 | 0.7895 | 0.8790 | 0.9071 | 0.6934 | 0.9058 | 0.4804 | 0.8722 | 0.8782 | nan | 0.8749 | 0.4309 | 0.7583 | 0.4013 | 0.8000 | 0.5703 | 0.0 |
| 0.6954 | 1.33 | 2200 | 0.2905 | 0.5541 | 0.7861 | 0.8764 | 0.8848 | 0.6835 | 0.8968 | 0.5118 | 0.9013 | 0.8386 | nan | 0.8572 | 0.4295 | 0.7496 | 0.4346 | 0.8012 | 0.6064 | 0.0 |
| 0.5832 | 1.35 | 2220 | 0.3119 | 0.5508 | 0.7683 | 0.8747 | 0.8692 | 0.6771 | 0.8894 | 0.4628 | 0.9345 | 0.7771 | nan | 0.8459 | 0.4351 | 0.7185 | 0.4202 | 0.8111 | 0.6249 | 0.0 |
| 0.0921 | 1.36 | 2240 | 0.3298 | 0.5461 | 0.7714 | 0.8718 | 0.8627 | 0.7034 | 0.8801 | 0.4590 | 0.9362 | 0.7869 | nan | 0.8396 | 0.4272 | 0.6938 | 0.4216 | 0.8149 | 0.6257 | 0.0 |
| 0.3714 | 1.37 | 2260 | 0.2859 | 0.5629 | 0.7798 | 0.8866 | 0.9126 | 0.6515 | 0.8707 | 0.4921 | 0.9104 | 0.8414 | nan | 0.8783 | 0.4474 | 0.7555 | 0.4428 | 0.8119 | 0.6045 | 0.0 |
| 0.1119 | 1.38 | 2280 | 0.2804 | 0.5521 | 0.7694 | 0.8821 | 0.9107 | 0.6123 | 0.8938 | 0.4466 | 0.8905 | 0.8629 | nan | 0.8753 | 0.4630 | 0.7505 | 0.3926 | 0.8054 | 0.5777 | 0.0 |
| 0.256 | 1.39 | 2300 | 0.2871 | 0.5641 | 0.7823 | 0.8843 | 0.8895 | 0.6507 | 0.8879 | 0.5237 | 0.9270 | 0.8150 | nan | 0.8622 | 0.4488 | 0.7299 | 0.4582 | 0.8236 | 0.6261 | 0.0 |
| 1.856 | 1.41 | 2320 | 0.3132 | 0.5445 | 0.7815 | 0.8742 | 0.8851 | 0.6856 | 0.9064 | 0.4533 | 0.8902 | 0.8684 | nan | 0.8555 | 0.4349 | 0.7115 | 0.4077 | 0.8106 | 0.5913 | 0.0 |
| 0.2095 | 1.42 | 2340 | 0.2954 | 0.5624 | 0.7891 | 0.8844 | 0.8890 | 0.6993 | 0.8840 | 0.4935 | 0.9264 | 0.8427 | nan | 0.8638 | 0.4331 | 0.7320 | 0.4606 | 0.8214 | 0.6255 | 0.0 |
| 0.4009 | 1.43 | 2360 | 0.2798 | 0.5565 | 0.8003 | 0.8818 | 0.9017 | 0.7110 | 0.9015 | 0.5252 | 0.8853 | 0.8769 | nan | 0.8714 | 0.4175 | 0.7538 | 0.4672 | 0.8064 | 0.5789 | 0.0 |
| 0.324 | 1.44 | 2380 | 0.2871 | 0.5622 | 0.7878 | 0.8838 | 0.8877 | 0.6549 | 0.9034 | 0.5290 | 0.9171 | 0.8345 | nan | 0.8595 | 0.4275 | 0.7316 | 0.4622 | 0.8243 | 0.6302 | 0.0 |
| 0.1967 | 1.46 | 2400 | 0.2866 | 0.5607 | 0.7792 | 0.8862 | 0.8918 | 0.6889 | 0.9070 | 0.5223 | 0.9336 | 0.7318 | nan | 0.8663 | 0.4122 | 0.7426 | 0.4698 | 0.8234 | 0.6108 | 0.0 |
| 0.3549 | 1.47 | 2420 | 0.2846 | 0.5661 | 0.7802 | 0.8907 | 0.9066 | 0.6648 | 0.8892 | 0.4930 | 0.9283 | 0.7996 | nan | 0.8749 | 0.4221 | 0.7503 | 0.4583 | 0.8237 | 0.6336 | 0.0 |
| 0.1298 | 1.48 | 2440 | 0.2927 | 0.5576 | 0.7861 | 0.8844 | 0.8865 | 0.7135 | 0.9022 | 0.4713 | 0.9275 | 0.8154 | nan | 0.8638 | 0.4191 | 0.7356 | 0.4254 | 0.8226 | 0.6368 | 0.0 |
| 0.1442 | 1.49 | 2460 | 0.2714 | 0.5632 | 0.7953 | 0.8880 | 0.9137 | 0.6747 | 0.8955 | 0.5360 | 0.8946 | 0.8574 | nan | 0.8757 | 0.4123 | 0.7575 | 0.4568 | 0.8186 | 0.6218 | 0.0 |
| 0.1179 | 1.5 | 2480 | 0.2873 | 0.5739 | 0.7854 | 0.8936 | 0.9142 | 0.6517 | 0.8819 | 0.5194 | 0.9252 | 0.8201 | nan | 0.8803 | 0.4460 | 0.7597 | 0.4696 | 0.8249 | 0.6369 | 0.0 |
| 0.8153 | 1.52 | 2500 | 0.3244 | 0.5628 | 0.7819 | 0.8828 | 0.8855 | 0.6434 | 0.8990 | 0.4903 | 0.9196 | 0.8538 | nan | 0.8601 | 0.4594 | 0.7278 | 0.4458 | 0.8205 | 0.6262 | 0.0 |
| 0.1386 | 1.53 | 2520 | 0.3220 | 0.5548 | 0.7648 | 0.8788 | 0.8843 | 0.6161 | 0.9062 | 0.4492 | 0.9163 | 0.8168 | nan | 0.8494 | 0.4596 | 0.7033 | 0.4101 | 0.8261 | 0.6350 | 0.0 |
| 0.3631 | 1.54 | 2540 | 0.2927 | 0.5611 | 0.7734 | 0.8852 | 0.9010 | 0.6518 | 0.8930 | 0.4558 | 0.9176 | 0.8214 | nan | 0.8666 | 0.4574 | 0.7316 | 0.4180 | 0.8232 | 0.6306 | 0.0 |
| 0.1358 | 1.55 | 2560 | 0.2741 | 0.5618 | 0.7824 | 0.8875 | 0.9088 | 0.6661 | 0.8972 | 0.4611 | 0.9061 | 0.8551 | nan | 0.8760 | 0.4523 | 0.7497 | 0.4236 | 0.8184 | 0.6127 | 0.0 |
| 0.1636 | 1.56 | 2580 | 0.2639 | 0.5716 | 0.7802 | 0.8943 | 0.9340 | 0.6282 | 0.8823 | 0.4880 | 0.9004 | 0.8484 | nan | 0.8878 | 0.4554 | 0.7736 | 0.4482 | 0.8186 | 0.6174 | 0.0 |
| 0.218 | 1.58 | 2600 | 0.2771 | 0.5722 | 0.7804 | 0.8914 | 0.9113 | 0.6134 | 0.8914 | 0.4984 | 0.9160 | 0.8517 | nan | 0.8823 | 0.4693 | 0.7641 | 0.4576 | 0.8154 | 0.6165 | 0.0 |
| 0.6271 | 1.59 | 2620 | 0.2715 | 0.5713 | 0.7803 | 0.8871 | 0.8985 | 0.6390 | 0.8907 | 0.5256 | 0.9244 | 0.8038 | nan | 0.8682 | 0.4587 | 0.7446 | 0.4759 | 0.8199 | 0.6316 | 0.0 |
| 0.307 | 1.6 | 2640 | 0.3499 | 0.5620 | 0.7852 | 0.8789 | 0.8686 | 0.6577 | 0.9099 | 0.5258 | 0.9260 | 0.8234 | nan | 0.8479 | 0.4454 | 0.7133 | 0.4692 | 0.8217 | 0.6363 | 0.0 |
| 0.2482 | 1.61 | 2660 | 0.2980 | 0.5654 | 0.7890 | 0.8830 | 0.8834 | 0.6598 | 0.9082 | 0.5263 | 0.9173 | 0.8390 | nan | 0.8598 | 0.4448 | 0.7340 | 0.4643 | 0.8210 | 0.6338 | 0.0 |
| 0.1496 | 1.63 | 2680 | 0.2893 | 0.5750 | 0.7881 | 0.8922 | 0.9088 | 0.6366 | 0.8930 | 0.5268 | 0.9191 | 0.8445 | nan | 0.8799 | 0.4588 | 0.7638 | 0.4720 | 0.8201 | 0.6304 | 0.0 |
| 0.2405 | 1.64 | 2700 | 0.2712 | 0.5738 | 0.7958 | 0.8884 | 0.8965 | 0.6660 | 0.8927 | 0.5553 | 0.9199 | 0.8441 | nan | 0.8731 | 0.4552 | 0.7597 | 0.4861 | 0.8167 | 0.6260 | 0.0 |
| 0.0689 | 1.65 | 2720 | 0.2699 | 0.5773 | 0.8004 | 0.8916 | 0.9093 | 0.6645 | 0.8839 | 0.5675 | 0.9127 | 0.8645 | nan | 0.8818 | 0.4697 | 0.7649 | 0.4878 | 0.8179 | 0.6192 | 0.0 |
| 1.3023 | 1.66 | 2740 | 0.2776 | 0.5739 | 0.8043 | 0.8902 | 0.9055 | 0.6846 | 0.8874 | 0.5705 | 0.9107 | 0.8673 | nan | 0.8798 | 0.4549 | 0.7620 | 0.4845 | 0.8171 | 0.6193 | 0.0 |
| 0.401 | 1.67 | 2760 | 0.2705 | 0.5721 | 0.7931 | 0.8883 | 0.9074 | 0.6542 | 0.8896 | 0.5540 | 0.9072 | 0.8462 | nan | 0.8721 | 0.4551 | 0.7475 | 0.4782 | 0.8221 | 0.6295 | 0.0 |
| 0.2472 | 1.69 | 2780 | 0.3258 | 0.5705 | 0.7939 | 0.8852 | 0.8866 | 0.6562 | 0.9042 | 0.5490 | 0.9180 | 0.8494 | nan | 0.8631 | 0.4681 | 0.7336 | 0.4728 | 0.8223 | 0.6338 | 0.0 |
| 0.4908 | 1.7 | 2800 | 0.3074 | 0.5651 | 0.7893 | 0.8807 | 0.8882 | 0.6278 | 0.9025 | 0.5567 | 0.9016 | 0.8588 | nan | 0.8577 | 0.4620 | 0.7193 | 0.4756 | 0.8178 | 0.6234 | 0.0 |
| 0.1247 | 1.71 | 2820 | 0.2845 | 0.5739 | 0.7789 | 0.8909 | 0.9063 | 0.6080 | 0.8883 | 0.5422 | 0.9268 | 0.8014 | nan | 0.8726 | 0.4572 | 0.7445 | 0.4782 | 0.8260 | 0.6386 | 0.0 |
| 0.9431 | 1.72 | 2840 | 0.2788 | 0.5753 | 0.7823 | 0.8900 | 0.8967 | 0.6380 | 0.8976 | 0.5355 | 0.9333 | 0.7929 | nan | 0.8721 | 0.4694 | 0.7523 | 0.4729 | 0.8222 | 0.6386 | 0.0 |
| 0.1346 | 1.73 | 2860 | 0.2942 | 0.5749 | 0.7819 | 0.8907 | 0.8988 | 0.6226 | 0.9048 | 0.5251 | 0.9280 | 0.8121 | nan | 0.8736 | 0.4707 | 0.7525 | 0.4630 | 0.8226 | 0.6417 | 0.0 |
| 0.1469 | 1.75 | 2880 | 0.2782 | 0.5762 | 0.7808 | 0.8933 | 0.9093 | 0.6225 | 0.8923 | 0.5319 | 0.9289 | 0.8001 | nan | 0.8793 | 0.4653 | 0.7595 | 0.4657 | 0.8239 | 0.6395 | 0.0 |
| 0.1829 | 1.76 | 2900 | 0.2748 | 0.5727 | 0.7899 | 0.8908 | 0.9105 | 0.6307 | 0.9093 | 0.5512 | 0.9050 | 0.8326 | nan | 0.8795 | 0.4647 | 0.7606 | 0.4629 | 0.8195 | 0.6217 | 0.0 |
| 0.1476 | 1.77 | 2920 | 0.2591 | 0.5729 | 0.7936 | 0.8911 | 0.9130 | 0.6489 | 0.8955 | 0.5441 | 0.9053 | 0.8549 | nan | 0.8828 | 0.4653 | 0.7657 | 0.4666 | 0.8169 | 0.6131 | 0.0 |
| 0.09 | 1.78 | 2940 | 0.2802 | 0.5692 | 0.7887 | 0.8892 | 0.9127 | 0.6333 | 0.9030 | 0.5209 | 0.8974 | 0.8651 | nan | 0.8830 | 0.4768 | 0.7639 | 0.4502 | 0.8116 | 0.5989 | 0.0 |
| 0.2123 | 1.8 | 2960 | 0.2605 | 0.5653 | 0.7857 | 0.8868 | 0.9139 | 0.6362 | 0.8964 | 0.5169 | 0.8930 | 0.8581 | nan | 0.8819 | 0.4653 | 0.7632 | 0.4462 | 0.8091 | 0.5913 | 0.0 |
| 0.4904 | 1.81 | 2980 | 0.2484 | 0.5707 | 0.7754 | 0.8939 | 0.9314 | 0.5966 | 0.8876 | 0.5218 | 0.9042 | 0.8109 | nan | 0.8847 | 0.4367 | 0.7715 | 0.4485 | 0.8230 | 0.6308 | 0.0 |
| 0.3414 | 1.82 | 3000 | 0.2569 | 0.5722 | 0.7811 | 0.8929 | 0.9166 | 0.6386 | 0.8934 | 0.5163 | 0.9180 | 0.8038 | nan | 0.8820 | 0.4596 | 0.7572 | 0.4440 | 0.8246 | 0.6380 | 0.0 |
| 0.0498 | 1.83 | 3020 | 0.2547 | 0.5738 | 0.7870 | 0.8923 | 0.9148 | 0.6430 | 0.8918 | 0.5312 | 0.9144 | 0.8268 | nan | 0.8817 | 0.4658 | 0.7594 | 0.4496 | 0.8235 | 0.6365 | 0.0 |
| 0.3362 | 1.84 | 3040 | 0.2595 | 0.5756 | 0.7856 | 0.8937 | 0.9173 | 0.6259 | 0.8873 | 0.5339 | 0.9167 | 0.8325 | nan | 0.8833 | 0.4694 | 0.7628 | 0.4537 | 0.8248 | 0.6352 | 0.0 |
| 0.1219 | 1.86 | 3060 | 0.2537 | 0.5750 | 0.7841 | 0.8947 | 0.9217 | 0.6318 | 0.8915 | 0.5239 | 0.9145 | 0.8211 | nan | 0.8846 | 0.4633 | 0.7649 | 0.4475 | 0.8255 | 0.6395 | 0.0 |
| 0.123 | 1.87 | 3080 | 0.2808 | 0.5758 | 0.7945 | 0.8934 | 0.9069 | 0.6636 | 0.9036 | 0.5391 | 0.9199 | 0.8339 | nan | 0.8822 | 0.4694 | 0.7664 | 0.4539 | 0.8238 | 0.6346 | 0.0 |
| 0.3721 | 1.88 | 3100 | 0.2523 | 0.5777 | 0.7885 | 0.8954 | 0.9207 | 0.6431 | 0.8826 | 0.5526 | 0.9209 | 0.8111 | nan | 0.8858 | 0.4599 | 0.7679 | 0.4677 | 0.8257 | 0.6367 | 0.0 |
| 0.284 | 1.89 | 3120 | 0.2545 | 0.5786 | 0.7927 | 0.8948 | 0.9151 | 0.6464 | 0.8905 | 0.5516 | 0.9188 | 0.8336 | nan | 0.8854 | 0.4687 | 0.7707 | 0.4664 | 0.8241 | 0.6350 | 0.0 |
| 0.5131 | 1.9 | 3140 | 0.2502 | 0.5768 | 0.7875 | 0.8948 | 0.9234 | 0.6250 | 0.8978 | 0.5439 | 0.9072 | 0.8275 | nan | 0.8856 | 0.4619 | 0.7722 | 0.4582 | 0.8243 | 0.6357 | 0.0 |
| 0.1381 | 1.92 | 3160 | 0.2580 | 0.5760 | 0.7772 | 0.8954 | 0.9194 | 0.6006 | 0.9047 | 0.5318 | 0.9194 | 0.7870 | nan | 0.8853 | 0.4661 | 0.7702 | 0.4505 | 0.8260 | 0.6338 | 0.0 |
| 0.3162 | 1.93 | 3180 | 0.2739 | 0.5775 | 0.7918 | 0.8935 | 0.9066 | 0.6439 | 0.9006 | 0.5423 | 0.9222 | 0.8350 | nan | 0.8822 | 0.4750 | 0.7676 | 0.4609 | 0.8230 | 0.6338 | 0.0 |
| 0.1153 | 1.94 | 3200 | 0.2678 | 0.5704 | 0.7631 | 0.8953 | 0.9273 | 0.5727 | 0.8881 | 0.5334 | 0.9260 | 0.7312 | nan | 0.8843 | 0.4380 | 0.7696 | 0.4600 | 0.8251 | 0.6161 | 0.0 |
| 0.0417 | 1.95 | 3220 | 0.2650 | 0.5775 | 0.7906 | 0.8950 | 0.9137 | 0.6581 | 0.8944 | 0.5503 | 0.9244 | 0.8028 | nan | 0.8844 | 0.4627 | 0.7687 | 0.4657 | 0.8250 | 0.6359 | 0.0 |
| 0.1364 | 1.96 | 3240 | 0.2696 | 0.5771 | 0.7861 | 0.8953 | 0.9133 | 0.6531 | 0.8970 | 0.5482 | 0.9295 | 0.7756 | nan | 0.8844 | 0.4652 | 0.7692 | 0.4642 | 0.8254 | 0.6317 | 0.0 |
| 0.0806 | 1.98 | 3260 | 0.2718 | 0.5771 | 0.7957 | 0.8945 | 0.9151 | 0.6654 | 0.9009 | 0.5405 | 0.9130 | 0.8391 | nan | 0.8844 | 0.4683 | 0.7680 | 0.4590 | 0.8247 | 0.6356 | 0.0 |
| 0.1196 | 1.99 | 3280 | 0.2563 | 0.5765 | 0.7934 | 0.8942 | 0.9204 | 0.6450 | 0.8936 | 0.5526 | 0.9077 | 0.8415 | nan | 0.8847 | 0.4614 | 0.7695 | 0.4632 | 0.8233 | 0.6331 | 0.0 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
| [
"water",
"whitewater",
"sediment",
"other_natural_terrain",
"vegetation",
"development",
"unknown"
] |
vigneshgs7/segformer-b0-finetuned-segments-docboundary-nov-13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-docboundary-nov-13
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the vigneshgs7/doc-boundary dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2806
- Mean Iou: 0.4886
- Mean Accuracy: 0.9771
- Overall Accuracy: 0.9771
- Accuracy Page: nan
- Accuracy Surface: 0.9771
- Iou Page: 0.0
- Iou Surface: 0.9771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Page | Accuracy Surface | Iou Page | Iou Surface |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:----------------:|:--------:|:-----------:|
| 0.4191 | 2.22 | 20 | 0.5643 | 0.4651 | 0.9301 | 0.9301 | nan | 0.9301 | 0.0 | 0.9301 |
| 0.3141 | 4.44 | 40 | 0.3959 | 0.4866 | 0.9733 | 0.9733 | nan | 0.9733 | 0.0 | 0.9733 |
| 0.2865 | 6.67 | 60 | 0.2889 | 0.4870 | 0.9740 | 0.9740 | nan | 0.9740 | 0.0 | 0.9740 |
| 0.3955 | 8.89 | 80 | 0.2806 | 0.4886 | 0.9771 | 0.9771 | nan | 0.9771 | 0.0 | 0.9771 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"page",
"surface"
] |
piecurus/segformer-finetuned-segments-opit |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-segments-opit
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3483
- Mean Iou: 0.1474
- Mean Accuracy: 0.1958
- Overall Accuracy: 0.7227
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.7892
- Accuracy Flat-sidewalk: 0.9075
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.1029
- Accuracy Flat-parkingdriveway: 0.0001
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.8749
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8943
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0
- Accuracy Construction-fenceguardrail: 0.0
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9118
- Accuracy Nature-terrain: 0.6546
- Accuracy Sky: 0.9352
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.4282
- Iou Flat-sidewalk: 0.7768
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.1021
- Iou Flat-parkingdriveway: 0.0001
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.6372
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.5530
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0
- Iou Construction-fenceguardrail: 0.0
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.7392
- Iou Nature-terrain: 0.5009
- Iou Sky: 0.8328
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.8103 | 0.06 | 25 | 3.0462 | 0.0835 | 0.1351 | 0.5790 | nan | 0.1892 | 0.9330 | 0.0 | 0.0048 | 0.0006 | nan | 0.0005 | 0.0002 | 0.0 | 0.5793 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8849 | 0.0 | 0.0000 | 0.0002 | 0.0 | nan | 0.0003 | 0.0009 | 0.0 | 0.0 | 0.6599 | 0.4398 | 0.4779 | 0.0004 | 0.0 | 0.0151 | 0.0 | 0.0 | 0.1368 | 0.6091 | 0.0 | 0.0046 | 0.0006 | 0.0 | 0.0005 | 0.0002 | 0.0 | 0.4916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3537 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0003 | 0.0008 | 0.0 | 0.0 | 0.5851 | 0.2698 | 0.4572 | 0.0004 | 0.0 | 0.0123 | 0.0 |
| 2.3833 | 0.12 | 50 | 2.3708 | 0.1025 | 0.1539 | 0.6295 | nan | 0.6185 | 0.8261 | 0.0 | 0.0007 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.7749 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8688 | 0.0568 | 0.6944 | 0.0 | 0.0 | 0.0016 | 0.0 | nan | 0.3347 | 0.6672 | 0.0 | 0.0007 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.5428 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4369 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6274 | 0.0451 | 0.6247 | 0.0 | 0.0 | 0.0015 | 0.0 |
| 2.1946 | 0.19 | 75 | 1.9680 | 0.1145 | 0.1612 | 0.6615 | nan | 0.6725 | 0.8726 | 0.0 | 0.0011 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.7496 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9185 | 0.0333 | 0.8355 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.3738 | 0.7037 | 0.0 | 0.0011 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5385 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4836 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6493 | 0.0311 | 0.7684 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 1.959 | 0.25 | 100 | 1.8828 | 0.1179 | 0.1636 | 0.6727 | nan | 0.6801 | 0.8928 | 0.0 | 0.0006 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.7736 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8784 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9482 | 0.0389 | 0.8584 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.3884 | 0.7151 | 0.0 | 0.0006 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5705 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5160 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6418 | 0.0360 | 0.7878 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 1.8759 | 0.31 | 125 | 1.7092 | 0.1260 | 0.1758 | 0.6862 | nan | 0.7247 | 0.8976 | 0.0 | 0.0000 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.9094 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8479 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9024 | 0.2625 | 0.9054 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3977 | 0.7307 | 0.0 | 0.0000 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5237 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5329 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6911 | 0.2245 | 0.8065 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2.0333 | 0.38 | 150 | 1.5558 | 0.1267 | 0.1751 | 0.6898 | nan | 0.7565 | 0.8952 | 0.0 | 0.0007 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8792 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8874 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9104 | 0.1928 | 0.9055 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4083 | 0.7455 | 0.0 | 0.0007 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5928 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5267 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6820 | 0.1637 | 0.8069 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.8985 | 0.44 | 175 | 1.5370 | 0.1277 | 0.1752 | 0.6939 | nan | 0.7438 | 0.9025 | 0.0 | 0.0068 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8237 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9307 | 0.1976 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4223 | 0.7553 | 0.0 | 0.0068 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6077 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5131 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6724 | 0.1691 | 0.8133 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7908 | 0.5 | 200 | 1.4854 | 0.1339 | 0.1843 | 0.7020 | nan | 0.7612 | 0.9068 | 0.0 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.9215 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8381 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9078 | 0.4480 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4095 | 0.7591 | 0.0 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5471 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5386 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7168 | 0.3673 | 0.8119 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4371 | 0.56 | 225 | 1.4176 | 0.1367 | 0.1830 | 0.7079 | nan | 0.7035 | 0.9303 | 0.0 | 0.0255 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8694 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9287 | 0.4230 | 0.9065 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4233 | 0.7534 | 0.0 | 0.0255 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.6246 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5331 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7049 | 0.3427 | 0.8312 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4506 | 0.62 | 250 | 1.4011 | 0.1350 | 0.1827 | 0.7079 | nan | 0.6936 | 0.9362 | 0.0 | 0.0364 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8612 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9299 | 0.3720 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4251 | 0.7533 | 0.0 | 0.0363 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5961 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5472 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6990 | 0.3026 | 0.8250 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3095 | 0.69 | 275 | 1.4039 | 0.1398 | 0.1861 | 0.7134 | nan | 0.6873 | 0.9430 | 0.0 | 0.0260 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8960 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9156 | 0.5055 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4187 | 0.7531 | 0.0 | 0.0260 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6172 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5457 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7261 | 0.4143 | 0.8343 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4218 | 0.75 | 300 | 1.3735 | 0.1370 | 0.1856 | 0.7082 | nan | 0.7701 | 0.8980 | 0.0 | 0.0524 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8776 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8762 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.4052 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4267 | 0.7668 | 0.0 | 0.0522 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6148 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5481 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6931 | 0.3263 | 0.8172 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3986 | 0.81 | 325 | 1.3224 | 0.1451 | 0.1917 | 0.7223 | nan | 0.7354 | 0.9296 | 0.0 | 0.1261 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.8747 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8946 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9269 | 0.5292 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4389 | 0.7700 | 0.0 | 0.1253 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6395 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5541 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7200 | 0.4083 | 0.8409 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3335 | 0.88 | 350 | 1.2909 | 0.1454 | 0.1921 | 0.7230 | nan | 0.7157 | 0.9388 | 0.0 | 0.1024 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8896 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8932 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9207 | 0.5667 | 0.9276 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4347 | 0.7657 | 0.0 | 0.1020 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6232 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5533 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7300 | 0.4607 | 0.8376 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6376 | 0.94 | 375 | 1.3109 | 0.1476 | 0.1964 | 0.7253 | nan | 0.7617 | 0.9215 | 0.0 | 0.1225 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.9008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8842 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9118 | 0.6529 | 0.9335 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4357 | 0.7750 | 0.0 | 0.1216 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6139 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5572 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7387 | 0.5011 | 0.8333 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4354 | 1.0 | 400 | 1.3483 | 0.1474 | 0.1958 | 0.7227 | nan | 0.7892 | 0.9075 | 0.0 | 0.1029 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8749 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8943 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9118 | 0.6546 | 0.9352 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4282 | 0.7768 | 0.0 | 0.1021 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.6372 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5530 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7392 | 0.5009 | 0.8328 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
jfdpastor/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0243
- Mean Iou: 0.9582
- Mean Accuracy: 0.9792
- Overall Accuracy: 0.9965
- Accuracy Unlabeled: 0.9981
- Accuracy Numero: 0.9603
- Iou Unlabeled: 0.9963
- Iou Numero: 0.9200
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Numero | Iou Unlabeled | Iou Numero |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:----------:|
| 0.1406 | 5.0 | 20 | 0.1672 | 0.7389 | 0.7497 | 0.9790 | 1.0000 | 0.4994 | 0.9785 | 0.4993 |
| 0.045 | 10.0 | 40 | 0.0498 | 0.9398 | 0.9476 | 0.9951 | 0.9994 | 0.8958 | 0.9949 | 0.8846 |
| 0.0361 | 15.0 | 60 | 0.0296 | 0.9575 | 0.9811 | 0.9964 | 0.9978 | 0.9643 | 0.9963 | 0.9187 |
| 0.026 | 20.0 | 80 | 0.0243 | 0.9582 | 0.9792 | 0.9965 | 0.9981 | 0.9603 | 0.9963 | 0.9200 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"numero"
] |
peldrak/segformer-finetuned-riviera |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-riviera
This model is a fine-tuned version of [peldrak/segformer-finetuned-coasts-final](https://huggingface.co/peldrak/segformer-finetuned-coasts-final) on the peldrak/riviera_labeled_split dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1898
- Mean Iou: 0.5029
- Mean Accuracy: 0.6197
- Overall Accuracy: 0.9030
- Accuracy Water: 0.9790
- Accuracy Whitewater: 0.0
- Accuracy Sand: 0.8826
- Accuracy Rocky Terrain: 0.8951
- Accuracy Agricultural: 0.8809
- Accuracy Vegetation: 0.9396
- Accuracy Road: 0.6302
- Accuracy Building: 0.5410
- Accuracy Soil: 0.4486
- Accuracy Boat: nan
- Accuracy Development: 0.0
- Accuracy Unknown: nan
- Iou Water: 0.9539
- Iou Whitewater: 0.0
- Iou Sand: 0.8064
- Iou Rocky Terrain: 0.8292
- Iou Agricultural: 0.8190
- Iou Vegetation: 0.7979
- Iou Road: 0.5135
- Iou Building: 0.4346
- Iou Soil: 0.3769
- Iou Boat: nan
- Iou Development: 0.0
- Iou Unknown: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sand | Accuracy Rocky Terrain | Accuracy Agricultural | Accuracy Vegetation | Accuracy Road | Accuracy Building | Accuracy Soil | Accuracy Boat | Accuracy Development | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sand | Iou Rocky Terrain | Iou Agricultural | Iou Vegetation | Iou Road | Iou Building | Iou Soil | Iou Boat | Iou Development | Iou Unknown |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------:|:-----------------:|:-------------:|:-------------:|:--------------------:|:----------------:|:---------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------:|:------------:|:--------:|:--------:|:---------------:|:-----------:|
| 1.908 | 0.43 | 20 | 1.5006 | 0.1386 | 0.2716 | 0.5245 | 0.5673 | 0.0015 | 0.1051 | 0.7783 | 0.0605 | 0.9687 | 0.0004 | 0.2337 | 0.0003 | nan | 0.0 | nan | 0.5526 | 0.0002 | 0.0967 | 0.5020 | 0.0515 | 0.4225 | 0.0004 | 0.0371 | 0.0003 | 0.0 | 0.0 | 0.0 |
| 1.4398 | 0.87 | 40 | 0.9640 | 0.2528 | 0.3806 | 0.7203 | 0.9531 | 0.0 | 0.8145 | 0.9034 | 0.1560 | 0.9690 | 0.0 | 0.0075 | 0.0027 | nan | 0.0 | nan | 0.9207 | 0.0 | 0.7481 | 0.6936 | 0.1539 | 0.5106 | 0.0 | 0.0046 | 0.0027 | 0.0 | 0.0 | 0.0 |
| 1.0307 | 1.3 | 60 | 0.7848 | 0.2878 | 0.3859 | 0.7291 | 0.9583 | 0.0 | 0.8569 | 0.8883 | 0.1763 | 0.9791 | 0.0 | 0.0 | 0.0000 | nan | 0.0 | nan | 0.9395 | 0.0 | 0.8017 | 0.7539 | 0.1747 | 0.4960 | 0.0 | 0.0 | 0.0000 | nan | 0.0 | 0.0 |
| 0.8326 | 1.74 | 80 | 0.6153 | 0.2889 | 0.3878 | 0.7374 | 0.9785 | 0.0 | 0.8393 | 0.8917 | 0.1999 | 0.9681 | 0.0 | 0.0 | 0.0000 | nan | 0.0 | nan | 0.9483 | 0.0 | 0.8011 | 0.7193 | 0.1976 | 0.5110 | 0.0 | 0.0 | 0.0000 | nan | 0.0 | 0.0 |
| 0.8073 | 2.17 | 100 | 0.4691 | 0.3205 | 0.4189 | 0.8037 | 0.9808 | 0.0 | 0.8498 | 0.8368 | 0.5480 | 0.9713 | 0.0 | 0.0 | 0.0022 | nan | 0.0 | nan | 0.9307 | 0.0 | 0.6741 | 0.7811 | 0.5204 | 0.6174 | 0.0 | 0.0 | 0.0022 | nan | 0.0 | 0.0 |
| 0.704 | 2.61 | 120 | 0.4258 | 0.3332 | 0.4358 | 0.8194 | 0.9702 | 0.0 | 0.8729 | 0.8962 | 0.6086 | 0.9639 | 0.0 | 0.0 | 0.0457 | nan | 0.0 | nan | 0.9486 | 0.0 | 0.6774 | 0.7899 | 0.5665 | 0.6374 | 0.0 | 0.0 | 0.0455 | nan | 0.0 | 0.0 |
| 0.6908 | 3.04 | 140 | 0.3838 | 0.3652 | 0.4545 | 0.8613 | 0.9801 | 0.0 | 0.8479 | 0.8894 | 0.8547 | 0.9289 | 0.0 | 0.0 | 0.0435 | nan | 0.0 | nan | 0.9418 | 0.0 | 0.8003 | 0.7730 | 0.7470 | 0.7114 | 0.0 | 0.0 | 0.0434 | nan | 0.0 | 0.0 |
| 0.8322 | 3.48 | 160 | 0.3320 | 0.3723 | 0.4625 | 0.8673 | 0.9825 | 0.0 | 0.8877 | 0.8569 | 0.8891 | 0.9189 | 0.0 | 0.0 | 0.0898 | nan | 0.0 | nan | 0.9352 | 0.0 | 0.7833 | 0.7893 | 0.7687 | 0.7353 | 0.0 | 0.0 | 0.0832 | nan | 0.0 | 0.0 |
| 0.4966 | 3.91 | 180 | 0.2892 | 0.3848 | 0.4793 | 0.8732 | 0.9715 | 0.0 | 0.8962 | 0.8724 | 0.8856 | 0.9257 | 0.0 | 0.0 | 0.2418 | nan | 0.0 | nan | 0.9447 | 0.0 | 0.7618 | 0.7963 | 0.7712 | 0.7571 | 0.0 | 0.0 | 0.2014 | nan | 0.0 | 0.0 |
| 0.5418 | 4.35 | 200 | 0.2968 | 0.3658 | 0.4564 | 0.8647 | 0.9697 | 0.0 | 0.8268 | 0.8930 | 0.8605 | 0.9519 | 0.0 | 0.0 | 0.0625 | nan | 0.0 | nan | 0.9464 | 0.0 | 0.7798 | 0.7485 | 0.7633 | 0.7261 | 0.0 | 0.0 | 0.0601 | nan | 0.0 | 0.0 |
| 0.6316 | 4.78 | 220 | 0.2704 | 0.3803 | 0.4742 | 0.8606 | 0.9748 | 0.0 | 0.8969 | 0.9011 | 0.7804 | 0.9430 | 0.0 | 0.0 | 0.2453 | nan | 0.0 | nan | 0.9473 | 0.0 | 0.7903 | 0.8128 | 0.7240 | 0.7156 | 0.0 | 0.0 | 0.1931 | nan | 0.0 | 0.0 |
| 0.6079 | 5.22 | 240 | 0.2406 | 0.3930 | 0.4851 | 0.8765 | 0.9742 | 0.0 | 0.8936 | 0.8915 | 0.9013 | 0.9088 | 0.0 | 0.0 | 0.2812 | nan | 0.0 | nan | 0.9356 | 0.0 | 0.7964 | 0.8103 | 0.7827 | 0.7700 | 0.0 | 0.0 | 0.2281 | nan | 0.0 | 0.0 |
| 0.3053 | 5.65 | 260 | 0.2500 | 0.3926 | 0.4892 | 0.8681 | 0.9674 | 0.0 | 0.8905 | 0.9148 | 0.9038 | 0.8597 | 0.0 | 0.0 | 0.3563 | nan | 0.0 | nan | 0.9246 | 0.0 | 0.8017 | 0.8123 | 0.7713 | 0.7575 | 0.0 | 0.0 | 0.2513 | nan | 0.0 | 0.0 |
| 0.2995 | 6.09 | 280 | 0.2654 | 0.3756 | 0.4619 | 0.8622 | 0.9758 | 0.0 | 0.8820 | 0.8759 | 0.8019 | 0.9671 | 0.0 | 0.0 | 0.1161 | nan | 0.0 | nan | 0.9458 | 0.0 | 0.8107 | 0.8151 | 0.7566 | 0.6975 | 0.0 | 0.0 | 0.1056 | nan | 0.0 | 0.0 |
| 0.2772 | 6.52 | 300 | 0.2242 | 0.4013 | 0.4916 | 0.8844 | 0.9834 | 0.0 | 0.8714 | 0.8650 | 0.9075 | 0.9231 | 0.0 | 0.0 | 0.3653 | nan | 0.0 | nan | 0.9429 | 0.0 | 0.8099 | 0.7963 | 0.8043 | 0.7682 | 0.0 | 0.0 | 0.2922 | nan | 0.0 | 0.0 |
| 0.4586 | 6.96 | 320 | 0.2596 | 0.3783 | 0.4670 | 0.8555 | 0.9771 | 0.0 | 0.8875 | 0.8424 | 0.7514 | 0.9690 | 0.0 | 0.0 | 0.2426 | nan | 0.0 | nan | 0.9414 | 0.0 | 0.8145 | 0.7988 | 0.7052 | 0.6870 | 0.0 | 0.0 | 0.2148 | nan | 0.0 | 0.0 |
| 0.4574 | 7.39 | 340 | 0.2196 | 0.4007 | 0.4989 | 0.8832 | 0.9701 | 0.0 | 0.8993 | 0.9037 | 0.9086 | 0.9088 | 0.0 | 0.0 | 0.3981 | nan | 0.0 | nan | 0.9464 | 0.0 | 0.7823 | 0.8113 | 0.8016 | 0.7711 | 0.0 | 0.0 | 0.2950 | nan | 0.0 | 0.0 |
| 0.5272 | 7.83 | 360 | 0.2229 | 0.3997 | 0.4979 | 0.8804 | 0.9830 | 0.0 | 0.9013 | 0.8904 | 0.8637 | 0.9164 | 0.0 | 0.0 | 0.4245 | nan | 0.0 | nan | 0.9426 | 0.0 | 0.7984 | 0.8113 | 0.7873 | 0.7681 | 0.0 | 0.0 | 0.2895 | nan | 0.0 | 0.0 |
| 0.3955 | 8.26 | 380 | 0.2135 | 0.4035 | 0.5020 | 0.8833 | 0.9786 | 0.0 | 0.8921 | 0.8926 | 0.9247 | 0.8807 | 0.0 | 0.0 | 0.4515 | nan | 0.0 | nan | 0.9452 | 0.0 | 0.7945 | 0.8264 | 0.7946 | 0.7726 | 0.0 | 0.0 | 0.3048 | nan | 0.0 | 0.0 |
| 0.5612 | 8.7 | 400 | 0.2228 | 0.4009 | 0.4919 | 0.8849 | 0.9892 | 0.0 | 0.8790 | 0.8097 | 0.8977 | 0.9389 | 0.0 | 0.0 | 0.4042 | nan | 0.0 | nan | 0.9419 | 0.0 | 0.8002 | 0.7755 | 0.8134 | 0.7698 | 0.0 | 0.0 | 0.3086 | nan | 0.0 | 0.0 |
| 0.1692 | 9.13 | 420 | 0.2094 | 0.4046 | 0.5041 | 0.8853 | 0.9658 | 0.0 | 0.9087 | 0.9039 | 0.8833 | 0.9330 | 0.0 | 0.0 | 0.4467 | nan | 0.0 | nan | 0.9479 | 0.0 | 0.7794 | 0.8138 | 0.8039 | 0.7686 | 0.0 | 0.0 | 0.3368 | nan | 0.0 | 0.0 |
| 0.4642 | 9.57 | 440 | 0.2251 | 0.3966 | 0.4857 | 0.8790 | 0.9910 | 0.0 | 0.8899 | 0.8028 | 0.8914 | 0.9269 | 0.0 | 0.0 | 0.3552 | nan | 0.0 | nan | 0.9288 | 0.0 | 0.8090 | 0.7718 | 0.7912 | 0.7577 | 0.0 | 0.0 | 0.3036 | nan | 0.0 | 0.0 |
| 0.2049 | 10.0 | 460 | 0.1939 | 0.4101 | 0.5068 | 0.8893 | 0.9763 | 0.0 | 0.8918 | 0.8915 | 0.8887 | 0.9321 | 0.0061 | 0.0 | 0.4817 | nan | 0.0 | nan | 0.9501 | 0.0 | 0.8010 | 0.8156 | 0.8126 | 0.7766 | 0.0061 | 0.0 | 0.3493 | nan | 0.0 | 0.0 |
| 0.2509 | 10.43 | 480 | 0.2103 | 0.4012 | 0.4950 | 0.8773 | 0.9847 | 0.0 | 0.8763 | 0.8441 | 0.8569 | 0.9243 | 0.0069 | 0.0 | 0.4566 | nan | 0.0 | nan | 0.9417 | 0.0 | 0.8099 | 0.7984 | 0.7737 | 0.7506 | 0.0069 | 0.0 | 0.3319 | nan | 0.0 | 0.0 |
| 0.2327 | 10.87 | 500 | 0.2140 | 0.4026 | 0.4977 | 0.8841 | 0.9813 | 0.0 | 0.8971 | 0.8575 | 0.8907 | 0.9270 | 0.0105 | 0.0 | 0.4126 | nan | 0.0 | nan | 0.9486 | 0.0 | 0.7858 | 0.8034 | 0.7947 | 0.7634 | 0.0105 | 0.0 | 0.3218 | nan | 0.0 | 0.0 |
| 0.2991 | 11.3 | 520 | 0.2111 | 0.3995 | 0.4917 | 0.8787 | 0.9828 | 0.0 | 0.8797 | 0.8606 | 0.8767 | 0.9223 | 0.0151 | 0.0 | 0.3794 | nan | 0.0 | nan | 0.9402 | 0.0 | 0.8020 | 0.7913 | 0.7812 | 0.7541 | 0.0151 | 0.0 | 0.3105 | nan | 0.0 | 0.0 |
| 0.2296 | 11.74 | 540 | 0.2011 | 0.4054 | 0.4998 | 0.8862 | 0.9755 | 0.0 | 0.8746 | 0.8879 | 0.8974 | 0.9281 | 0.0060 | 0.0 | 0.4286 | nan | 0.0 | nan | 0.9508 | 0.0 | 0.8014 | 0.8092 | 0.8019 | 0.7688 | 0.0060 | 0.0 | 0.3209 | nan | 0.0 | 0.0 |
| 1.0788 | 12.17 | 560 | 0.1957 | 0.4251 | 0.5366 | 0.8836 | 0.9853 | 0.0 | 0.9076 | 0.8684 | 0.8856 | 0.8582 | 0.1839 | 0.0 | 0.6768 | nan | 0.0 | nan | 0.9360 | 0.0 | 0.7905 | 0.8101 | 0.8059 | 0.7701 | 0.1835 | 0.0 | 0.3802 | nan | 0.0 | 0.0 |
| 0.2605 | 12.61 | 580 | 0.1892 | 0.4191 | 0.5156 | 0.8896 | 0.9833 | 0.0 | 0.8800 | 0.8779 | 0.8794 | 0.9283 | 0.0863 | 0.0121 | 0.5091 | nan | 0.0 | nan | 0.9490 | 0.0 | 0.7897 | 0.8130 | 0.8217 | 0.7759 | 0.0862 | 0.0121 | 0.3627 | nan | 0.0 | 0.0 |
| 0.0813 | 13.04 | 600 | 0.1897 | 0.4230 | 0.5230 | 0.8907 | 0.9813 | 0.0 | 0.8939 | 0.8806 | 0.8869 | 0.9180 | 0.1234 | 0.0078 | 0.5375 | nan | 0.0 | nan | 0.9482 | 0.0 | 0.7897 | 0.8206 | 0.8134 | 0.7772 | 0.1234 | 0.0078 | 0.3729 | nan | 0.0 | 0.0 |
| 0.1048 | 13.48 | 620 | 0.1922 | 0.4193 | 0.5126 | 0.8877 | 0.9825 | 0.0 | 0.8779 | 0.8872 | 0.8628 | 0.9418 | 0.1405 | 0.0 | 0.4337 | nan | 0.0 | nan | 0.9486 | 0.0 | 0.7928 | 0.8189 | 0.7970 | 0.7656 | 0.1403 | 0.0 | 0.3486 | nan | 0.0 | 0.0 |
| 0.5566 | 13.91 | 640 | 0.1864 | 0.4260 | 0.5238 | 0.8922 | 0.9771 | 0.0 | 0.9038 | 0.8912 | 0.9021 | 0.9222 | 0.1904 | 0.0 | 0.4507 | nan | 0.0 | nan | 0.9487 | 0.0 | 0.7827 | 0.8262 | 0.8114 | 0.7797 | 0.1894 | 0.0 | 0.3479 | nan | 0.0 | 0.0 |
| 0.1057 | 14.35 | 660 | 0.1946 | 0.4181 | 0.5078 | 0.8910 | 0.9873 | 0.0 | 0.8601 | 0.8752 | 0.8917 | 0.9425 | 0.1355 | 0.0 | 0.3856 | nan | 0.0 | nan | 0.9483 | 0.0 | 0.7937 | 0.8148 | 0.8133 | 0.7715 | 0.1349 | 0.0 | 0.3226 | nan | 0.0 | 0.0 |
| 0.1439 | 14.78 | 680 | 0.1795 | 0.4398 | 0.5410 | 0.8934 | 0.9836 | 0.0 | 0.8812 | 0.8729 | 0.9105 | 0.8974 | 0.3216 | 0.0 | 0.5430 | nan | 0.0 | nan | 0.9457 | 0.0 | 0.7858 | 0.8205 | 0.8126 | 0.7930 | 0.3162 | 0.0 | 0.3637 | nan | 0.0 | 0.0 |
| 0.2824 | 15.22 | 700 | 0.1861 | 0.4336 | 0.5321 | 0.8931 | 0.9800 | 0.0 | 0.8835 | 0.9116 | 0.8853 | 0.9227 | 0.2573 | 0.0090 | 0.4711 | nan | 0.0 | nan | 0.9529 | 0.0 | 0.7882 | 0.8265 | 0.8065 | 0.7834 | 0.2549 | 0.0090 | 0.3478 | nan | 0.0 | 0.0 |
| 0.1526 | 15.65 | 720 | 0.1906 | 0.4393 | 0.5373 | 0.8937 | 0.9825 | 0.0 | 0.9053 | 0.8791 | 0.9102 | 0.9116 | 0.3373 | 0.0175 | 0.4292 | nan | 0.0 | nan | 0.9494 | 0.0 | 0.7948 | 0.8218 | 0.7996 | 0.7924 | 0.3272 | 0.0175 | 0.3300 | nan | 0.0 | 0.0 |
| 0.2005 | 16.09 | 740 | 0.2003 | 0.4357 | 0.5370 | 0.8935 | 0.9823 | 0.0 | 0.9005 | 0.8834 | 0.8703 | 0.9318 | 0.2638 | 0.0170 | 0.5209 | nan | 0.0 | nan | 0.9518 | 0.0 | 0.7887 | 0.8264 | 0.8059 | 0.7930 | 0.2606 | 0.0168 | 0.3492 | nan | 0.0 | 0.0 |
| 0.2036 | 16.52 | 760 | 0.1838 | 0.4435 | 0.5415 | 0.8945 | 0.9871 | 0.0 | 0.8860 | 0.8864 | 0.9123 | 0.9028 | 0.3602 | 0.0335 | 0.4468 | nan | 0.0 | nan | 0.9537 | 0.0 | 0.7910 | 0.8258 | 0.8032 | 0.7884 | 0.3456 | 0.0334 | 0.3371 | nan | 0.0 | 0.0 |
| 0.2055 | 16.96 | 780 | 0.1869 | 0.4504 | 0.5608 | 0.8918 | 0.9767 | 0.0 | 0.9097 | 0.9289 | 0.8528 | 0.9078 | 0.4082 | 0.0591 | 0.5649 | nan | 0.0 | nan | 0.9562 | 0.0 | 0.8009 | 0.8215 | 0.7875 | 0.7943 | 0.3743 | 0.0567 | 0.3631 | nan | 0.0 | 0.0 |
| 0.3388 | 17.39 | 800 | 0.1877 | 0.4429 | 0.5406 | 0.8969 | 0.9833 | 0.0 | 0.9198 | 0.8840 | 0.9019 | 0.9237 | 0.3276 | 0.0213 | 0.4441 | nan | 0.0 | nan | 0.9538 | 0.0 | 0.8057 | 0.8268 | 0.8104 | 0.7897 | 0.3181 | 0.0213 | 0.3467 | nan | 0.0 | 0.0 |
| 0.2979 | 17.83 | 820 | 0.1659 | 0.4508 | 0.5498 | 0.8986 | 0.9788 | 0.0 | 0.9080 | 0.8993 | 0.9090 | 0.9164 | 0.4007 | 0.0071 | 0.4783 | nan | 0.0 | nan | 0.9526 | 0.0 | 0.8108 | 0.8275 | 0.8099 | 0.7985 | 0.3902 | 0.0071 | 0.3619 | nan | 0.0 | 0.0 |
| 0.2011 | 18.26 | 840 | 0.1894 | 0.4475 | 0.5465 | 0.8967 | 0.9815 | 0.0 | 0.9013 | 0.8978 | 0.8898 | 0.9281 | 0.3918 | 0.0271 | 0.4472 | nan | 0.0 | nan | 0.9541 | 0.0 | 0.8001 | 0.8326 | 0.8058 | 0.7907 | 0.3727 | 0.0268 | 0.3394 | nan | 0.0 | 0.0 |
| 0.2616 | 18.7 | 860 | 0.1768 | 0.4599 | 0.5629 | 0.9003 | 0.9787 | 0.0 | 0.8992 | 0.9177 | 0.9072 | 0.9140 | 0.4964 | 0.0517 | 0.4638 | nan | 0.0 | nan | 0.9548 | 0.0 | 0.7989 | 0.8413 | 0.8094 | 0.7996 | 0.4472 | 0.0507 | 0.3566 | nan | 0.0 | 0.0 |
| 0.1374 | 19.13 | 880 | 0.1818 | 0.4574 | 0.5580 | 0.8986 | 0.9885 | 0.0 | 0.8604 | 0.8578 | 0.8910 | 0.9292 | 0.5430 | 0.0049 | 0.5051 | nan | 0.0 | nan | 0.9514 | 0.0 | 0.8067 | 0.8207 | 0.8126 | 0.7994 | 0.4787 | 0.0049 | 0.3568 | nan | 0.0 | 0.0 |
| 0.4279 | 19.57 | 900 | 0.1698 | 0.4761 | 0.5908 | 0.8989 | 0.9739 | 0.0 | 0.9051 | 0.9403 | 0.9099 | 0.8918 | 0.5825 | 0.2412 | 0.4630 | nan | 0.0 | nan | 0.9536 | 0.0 | 0.8065 | 0.8213 | 0.8168 | 0.8022 | 0.4816 | 0.2106 | 0.3449 | nan | 0.0 | 0.0 |
| 0.1616 | 20.0 | 920 | 0.1756 | 0.4670 | 0.5709 | 0.8988 | 0.9765 | 0.0 | 0.8972 | 0.9157 | 0.9099 | 0.9152 | 0.4892 | 0.1875 | 0.4178 | nan | 0.0 | nan | 0.9540 | 0.0 | 0.7955 | 0.8372 | 0.8129 | 0.7971 | 0.4375 | 0.1709 | 0.3319 | nan | 0.0 | 0.0 |
| 0.1919 | 20.43 | 940 | 0.1604 | 0.4676 | 0.5748 | 0.9024 | 0.9800 | 0.0 | 0.8835 | 0.9098 | 0.9301 | 0.8918 | 0.5902 | 0.0423 | 0.5207 | nan | 0.0 | nan | 0.9535 | 0.0 | 0.8118 | 0.8462 | 0.8284 | 0.8078 | 0.4979 | 0.0412 | 0.3564 | nan | 0.0 | 0.0 |
| 0.2451 | 20.87 | 960 | 0.1640 | 0.4733 | 0.5909 | 0.8996 | 0.9784 | 0.0 | 0.8962 | 0.9061 | 0.9132 | 0.8778 | 0.6155 | 0.1235 | 0.5980 | nan | 0.0 | nan | 0.9502 | 0.0 | 0.8104 | 0.8375 | 0.8307 | 0.8073 | 0.4862 | 0.1120 | 0.3723 | nan | 0.0 | 0.0 |
| 0.3232 | 21.3 | 980 | 0.1749 | 0.4743 | 0.5760 | 0.9007 | 0.9839 | 0.0 | 0.8839 | 0.8859 | 0.9054 | 0.9281 | 0.5201 | 0.2357 | 0.4168 | nan | 0.0 | nan | 0.9558 | 0.0 | 0.8040 | 0.8320 | 0.8197 | 0.7934 | 0.4538 | 0.2167 | 0.3415 | nan | 0.0 | 0.0 |
| 0.1096 | 21.74 | 1000 | 0.1663 | 0.4741 | 0.5870 | 0.8996 | 0.9817 | 0.0 | 0.8991 | 0.8940 | 0.8923 | 0.9046 | 0.5485 | 0.1900 | 0.5595 | nan | 0.0 | nan | 0.9524 | 0.0 | 0.8085 | 0.8322 | 0.8204 | 0.8010 | 0.4463 | 0.1727 | 0.3818 | nan | 0.0 | 0.0 |
| 0.0849 | 22.17 | 1020 | 0.1842 | 0.4726 | 0.5788 | 0.9019 | 0.9792 | 0.0 | 0.8916 | 0.9083 | 0.9011 | 0.9196 | 0.5674 | 0.1386 | 0.4818 | nan | 0.0 | nan | 0.9548 | 0.0 | 0.8071 | 0.8381 | 0.8157 | 0.8027 | 0.4867 | 0.1327 | 0.3609 | nan | 0.0 | 0.0 |
| 0.28 | 22.61 | 1040 | 0.1841 | 0.4814 | 0.5925 | 0.9031 | 0.9753 | 0.0 | 0.9142 | 0.9124 | 0.9188 | 0.9145 | 0.5855 | 0.2764 | 0.4275 | nan | 0.0 | nan | 0.9542 | 0.0 | 0.8005 | 0.8341 | 0.8146 | 0.8048 | 0.4811 | 0.2472 | 0.3589 | nan | 0.0 | 0.0 |
| 0.3515 | 23.04 | 1060 | 0.1875 | 0.4773 | 0.5847 | 0.8997 | 0.9851 | 0.0 | 0.8938 | 0.8555 | 0.9027 | 0.9324 | 0.5401 | 0.3279 | 0.4096 | nan | 0.0 | nan | 0.9494 | 0.0 | 0.7907 | 0.8135 | 0.8221 | 0.7940 | 0.4402 | 0.2804 | 0.3601 | nan | 0.0 | 0.0 |
| 0.2499 | 23.48 | 1080 | 0.1807 | 0.4796 | 0.5940 | 0.8965 | 0.9705 | 0.0 | 0.8706 | 0.9246 | 0.8663 | 0.9262 | 0.5712 | 0.3009 | 0.5100 | nan | 0.0 | nan | 0.9511 | 0.0 | 0.7995 | 0.8286 | 0.8060 | 0.8026 | 0.4593 | 0.2677 | 0.3605 | nan | 0.0 | 0.0 |
| 0.1632 | 23.91 | 1100 | 0.1788 | 0.4839 | 0.5988 | 0.8990 | 0.9779 | 0.0 | 0.9129 | 0.9039 | 0.8835 | 0.9191 | 0.6179 | 0.3242 | 0.4487 | nan | 0.0 | nan | 0.9497 | 0.0 | 0.8102 | 0.8378 | 0.8036 | 0.8011 | 0.4888 | 0.2808 | 0.3514 | nan | 0.0 | 0.0 |
| 0.099 | 24.35 | 1120 | 0.1757 | 0.4872 | 0.6020 | 0.9007 | 0.9820 | 0.0 | 0.8959 | 0.9089 | 0.8962 | 0.9048 | 0.6043 | 0.3368 | 0.4915 | nan | 0.0 | nan | 0.9517 | 0.0 | 0.8099 | 0.8424 | 0.8083 | 0.8020 | 0.5038 | 0.2829 | 0.3583 | nan | 0.0 | 0.0 |
| 0.4929 | 24.78 | 1140 | 0.1815 | 0.4739 | 0.5880 | 0.8978 | 0.9747 | 0.0 | 0.8931 | 0.9110 | 0.9018 | 0.8914 | 0.6130 | 0.1439 | 0.5510 | nan | 0.0 | nan | 0.9482 | 0.0 | 0.7966 | 0.8351 | 0.8117 | 0.7985 | 0.5134 | 0.1375 | 0.3723 | nan | 0.0 | 0.0 |
| 0.1068 | 25.22 | 1160 | 0.1735 | 0.4870 | 0.6002 | 0.9025 | 0.9788 | 0.0 | 0.9070 | 0.9055 | 0.9000 | 0.9107 | 0.6189 | 0.2777 | 0.5030 | nan | 0.0 | nan | 0.9528 | 0.0 | 0.8086 | 0.8388 | 0.8150 | 0.8055 | 0.5062 | 0.2559 | 0.3739 | nan | 0.0 | 0.0 |
| 0.1619 | 25.65 | 1180 | 0.2112 | 0.4802 | 0.5975 | 0.8927 | 0.9747 | 0.0 | 0.8930 | 0.9126 | 0.8258 | 0.9279 | 0.5779 | 0.2974 | 0.5657 | nan | 0.0 | nan | 0.9543 | 0.0 | 0.8057 | 0.8380 | 0.7781 | 0.7911 | 0.4740 | 0.2635 | 0.3775 | nan | 0.0 | 0.0 |
| 0.1147 | 26.09 | 1200 | 0.1840 | 0.4895 | 0.6056 | 0.8986 | 0.9826 | 0.0 | 0.8927 | 0.8858 | 0.8902 | 0.9032 | 0.6027 | 0.3710 | 0.5275 | nan | 0.0 | nan | 0.9497 | 0.0 | 0.8161 | 0.8296 | 0.8054 | 0.8056 | 0.5088 | 0.2954 | 0.3736 | nan | 0.0 | 0.0 |
| 0.1106 | 26.52 | 1220 | 0.2082 | 0.4780 | 0.5868 | 0.8931 | 0.9814 | 0.0 | 0.8777 | 0.8927 | 0.8463 | 0.9429 | 0.5490 | 0.3677 | 0.4107 | nan | 0.0 | nan | 0.9539 | 0.0 | 0.8048 | 0.8265 | 0.7864 | 0.7734 | 0.4618 | 0.3047 | 0.3467 | nan | 0.0 | 0.0 |
| 0.1019 | 26.96 | 1240 | 0.1741 | 0.4906 | 0.6002 | 0.9021 | 0.9802 | 0.0 | 0.8946 | 0.8912 | 0.9047 | 0.9228 | 0.5771 | 0.3889 | 0.4420 | nan | 0.0 | nan | 0.9546 | 0.0 | 0.8079 | 0.8331 | 0.8130 | 0.8005 | 0.4971 | 0.3282 | 0.3624 | nan | 0.0 | 0.0 |
| 0.1566 | 27.39 | 1260 | 0.1982 | 0.4930 | 0.6067 | 0.8989 | 0.9807 | 0.0 | 0.8996 | 0.8879 | 0.8647 | 0.9430 | 0.5618 | 0.5036 | 0.4259 | nan | 0.0 | nan | 0.9546 | 0.0 | 0.8068 | 0.8311 | 0.8025 | 0.7808 | 0.4765 | 0.4065 | 0.3646 | nan | 0.0 | 0.0 |
| 0.1307 | 27.83 | 1280 | 0.1957 | 0.4988 | 0.6173 | 0.8993 | 0.9837 | 0.0 | 0.8992 | 0.8860 | 0.8612 | 0.9329 | 0.6201 | 0.5265 | 0.4633 | nan | 0.0 | nan | 0.9533 | 0.0 | 0.8102 | 0.8357 | 0.7989 | 0.7835 | 0.5001 | 0.4210 | 0.3846 | nan | 0.0 | 0.0 |
| 0.3709 | 28.26 | 1300 | 0.1761 | 0.4998 | 0.6132 | 0.9042 | 0.9854 | 0.0 | 0.8862 | 0.8905 | 0.8969 | 0.9201 | 0.6066 | 0.4549 | 0.4919 | nan | 0.0 | nan | 0.9519 | 0.0 | 0.8211 | 0.8331 | 0.8191 | 0.8051 | 0.5097 | 0.3766 | 0.3807 | nan | 0.0 | 0.0 |
| 0.1188 | 28.7 | 1320 | 0.1788 | 0.4940 | 0.6100 | 0.8998 | 0.9852 | 0.0 | 0.8999 | 0.8697 | 0.8697 | 0.9414 | 0.6017 | 0.5108 | 0.4218 | nan | 0.0 | nan | 0.9493 | 0.0 | 0.8232 | 0.8243 | 0.8091 | 0.7932 | 0.4950 | 0.3705 | 0.3695 | nan | 0.0 | 0.0 |
| 0.1173 | 29.13 | 1340 | 0.1626 | 0.5031 | 0.6225 | 0.9073 | 0.9794 | 0.0 | 0.9253 | 0.9190 | 0.9075 | 0.9157 | 0.6297 | 0.4858 | 0.4621 | nan | 0.0 | nan | 0.9551 | 0.0 | 0.8261 | 0.8429 | 0.8273 | 0.8112 | 0.4861 | 0.4026 | 0.3823 | nan | 0.0 | 0.0 |
| 0.113 | 29.57 | 1360 | 0.1880 | 0.5000 | 0.6237 | 0.9023 | 0.9809 | 0.0 | 0.9132 | 0.9085 | 0.8644 | 0.9310 | 0.6079 | 0.5466 | 0.4847 | nan | 0.0 | nan | 0.9543 | 0.0 | 0.8245 | 0.8391 | 0.8084 | 0.8025 | 0.4856 | 0.3998 | 0.3854 | nan | 0.0 | 0.0 |
| 0.1002 | 30.0 | 1380 | 0.1767 | 0.5000 | 0.6287 | 0.9011 | 0.9794 | 0.0 | 0.9151 | 0.8999 | 0.8781 | 0.9104 | 0.6512 | 0.5282 | 0.5245 | nan | 0.0 | nan | 0.9525 | 0.0 | 0.8241 | 0.8392 | 0.8049 | 0.8057 | 0.5064 | 0.3795 | 0.3881 | nan | 0.0 | 0.0 |
| 0.1108 | 30.43 | 1400 | 0.1767 | 0.5017 | 0.6256 | 0.9023 | 0.9836 | 0.0 | 0.9006 | 0.9011 | 0.8708 | 0.9210 | 0.6497 | 0.5210 | 0.5086 | nan | 0.0 | nan | 0.9544 | 0.0 | 0.8193 | 0.8402 | 0.8055 | 0.8035 | 0.5106 | 0.3919 | 0.3932 | nan | 0.0 | 0.0 |
| 0.3149 | 30.87 | 1420 | 0.1749 | 0.4987 | 0.6121 | 0.9019 | 0.9800 | 0.0 | 0.8933 | 0.8955 | 0.8844 | 0.9353 | 0.6261 | 0.4876 | 0.4187 | nan | 0.0 | nan | 0.9521 | 0.0 | 0.8120 | 0.8369 | 0.8133 | 0.8002 | 0.4998 | 0.4099 | 0.3621 | nan | 0.0 | 0.0 |
| 0.0742 | 31.3 | 1440 | 0.1684 | 0.4996 | 0.6206 | 0.9022 | 0.9802 | 0.0 | 0.8933 | 0.9001 | 0.8860 | 0.9096 | 0.6485 | 0.4379 | 0.5506 | nan | 0.0 | nan | 0.9509 | 0.0 | 0.8178 | 0.8327 | 0.8114 | 0.8110 | 0.5176 | 0.3538 | 0.4006 | nan | 0.0 | 0.0 |
| 0.1199 | 31.74 | 1460 | 0.1784 | 0.4989 | 0.6242 | 0.9008 | 0.9795 | 0.0 | 0.9031 | 0.8940 | 0.8800 | 0.9248 | 0.6414 | 0.5655 | 0.4540 | nan | 0.0 | nan | 0.9517 | 0.0 | 0.8162 | 0.8322 | 0.8076 | 0.8021 | 0.5085 | 0.3951 | 0.3748 | nan | 0.0 | 0.0 |
| 0.0889 | 32.17 | 1480 | 0.1994 | 0.4930 | 0.6116 | 0.8949 | 0.9809 | 0.0 | 0.9031 | 0.8725 | 0.8473 | 0.9406 | 0.6060 | 0.5287 | 0.4367 | nan | 0.0 | nan | 0.9497 | 0.0 | 0.8134 | 0.8244 | 0.7915 | 0.7827 | 0.4829 | 0.4020 | 0.3765 | nan | 0.0 | 0.0 |
| 0.1348 | 32.61 | 1500 | 0.1751 | 0.4897 | 0.6067 | 0.8997 | 0.9801 | 0.0 | 0.9140 | 0.8786 | 0.8865 | 0.9283 | 0.6049 | 0.4488 | 0.4262 | nan | 0.0 | nan | 0.9516 | 0.0 | 0.8119 | 0.8287 | 0.8064 | 0.8012 | 0.4851 | 0.3438 | 0.3585 | nan | 0.0 | 0.0 |
| 0.0824 | 33.04 | 1520 | 0.2008 | 0.4911 | 0.6102 | 0.8963 | 0.9818 | 0.0 | 0.8937 | 0.8893 | 0.8384 | 0.9462 | 0.5993 | 0.5037 | 0.4493 | nan | 0.0 | nan | 0.9547 | 0.0 | 0.8114 | 0.8321 | 0.7839 | 0.7881 | 0.4963 | 0.3691 | 0.3666 | nan | 0.0 | 0.0 |
| 0.2206 | 33.48 | 1540 | 0.1816 | 0.4997 | 0.6190 | 0.9049 | 0.9793 | 0.0 | 0.9133 | 0.9083 | 0.9027 | 0.9249 | 0.6156 | 0.5286 | 0.4172 | nan | 0.0 | nan | 0.9560 | 0.0 | 0.8168 | 0.8359 | 0.8192 | 0.8045 | 0.4901 | 0.4187 | 0.3556 | nan | 0.0 | 0.0 |
| 0.2564 | 33.91 | 1560 | 0.1816 | 0.5030 | 0.6190 | 0.9055 | 0.9793 | 0.0 | 0.8910 | 0.9106 | 0.8974 | 0.9267 | 0.6259 | 0.4937 | 0.4653 | nan | 0.0 | nan | 0.9575 | 0.0 | 0.8166 | 0.8366 | 0.8212 | 0.8020 | 0.5080 | 0.4151 | 0.3756 | nan | 0.0 | 0.0 |
| 0.7781 | 34.35 | 1580 | 0.1789 | 0.5015 | 0.6268 | 0.9026 | 0.9822 | 0.0 | 0.9084 | 0.8930 | 0.8861 | 0.9127 | 0.6613 | 0.5154 | 0.5090 | nan | 0.0 | nan | 0.9517 | 0.0 | 0.8238 | 0.8372 | 0.8176 | 0.8066 | 0.4996 | 0.3958 | 0.3838 | nan | 0.0 | 0.0 |
| 0.1307 | 34.78 | 1600 | 0.1819 | 0.4971 | 0.6269 | 0.9005 | 0.9814 | 0.0 | 0.9058 | 0.8986 | 0.8647 | 0.9231 | 0.6565 | 0.5438 | 0.4953 | nan | 0.0 | nan | 0.9520 | 0.0 | 0.8230 | 0.8387 | 0.8107 | 0.8020 | 0.4825 | 0.3801 | 0.3787 | nan | 0.0 | 0.0 |
| 0.1537 | 35.22 | 1620 | 0.1882 | 0.4975 | 0.6133 | 0.9003 | 0.9849 | 0.0 | 0.8850 | 0.8805 | 0.8719 | 0.9344 | 0.6117 | 0.5106 | 0.4542 | nan | 0.0 | nan | 0.9539 | 0.0 | 0.8155 | 0.8300 | 0.8080 | 0.7942 | 0.4903 | 0.4111 | 0.3691 | nan | 0.0 | 0.0 |
| 0.3649 | 35.65 | 1640 | 0.1842 | 0.4998 | 0.6161 | 0.9028 | 0.9850 | 0.0 | 0.8915 | 0.8816 | 0.8819 | 0.9255 | 0.6284 | 0.4610 | 0.5064 | nan | 0.0 | nan | 0.9535 | 0.0 | 0.8140 | 0.8306 | 0.8151 | 0.7999 | 0.5073 | 0.3892 | 0.3882 | nan | 0.0 | 0.0 |
| 0.1117 | 36.09 | 1660 | 0.1835 | 0.4993 | 0.6205 | 0.9012 | 0.9844 | 0.0 | 0.8968 | 0.8939 | 0.8717 | 0.9304 | 0.6331 | 0.5485 | 0.4457 | nan | 0.0 | nan | 0.9548 | 0.0 | 0.8168 | 0.8367 | 0.8063 | 0.7964 | 0.4972 | 0.4147 | 0.3689 | nan | 0.0 | 0.0 |
| 0.3235 | 36.52 | 1680 | 0.1805 | 0.5016 | 0.6294 | 0.9012 | 0.9789 | 0.0 | 0.8928 | 0.9158 | 0.8713 | 0.9192 | 0.6496 | 0.5691 | 0.4976 | nan | 0.0 | nan | 0.9543 | 0.0 | 0.8171 | 0.8398 | 0.8126 | 0.8037 | 0.4998 | 0.4098 | 0.3807 | nan | 0.0 | 0.0 |
| 0.1136 | 36.96 | 1700 | 0.1833 | 0.5018 | 0.6181 | 0.9033 | 0.9837 | 0.0 | 0.8949 | 0.9012 | 0.8819 | 0.9230 | 0.6126 | 0.4889 | 0.4946 | nan | 0.0 | nan | 0.9564 | 0.0 | 0.8155 | 0.8392 | 0.8128 | 0.8028 | 0.5070 | 0.4067 | 0.3794 | nan | 0.0 | 0.0 |
| 0.0901 | 37.39 | 1720 | 0.1862 | 0.4974 | 0.6077 | 0.9026 | 0.9816 | 0.0 | 0.8790 | 0.8881 | 0.8917 | 0.9380 | 0.5725 | 0.4988 | 0.4273 | nan | 0.0 | nan | 0.9552 | 0.0 | 0.8102 | 0.8308 | 0.8218 | 0.7934 | 0.4915 | 0.4088 | 0.3594 | nan | 0.0 | 0.0 |
| 0.2317 | 37.83 | 1740 | 0.1824 | 0.5044 | 0.6259 | 0.9042 | 0.9829 | 0.0 | 0.8811 | 0.9026 | 0.8869 | 0.9203 | 0.6555 | 0.5244 | 0.5049 | nan | 0.0 | nan | 0.9548 | 0.0 | 0.8146 | 0.8359 | 0.8189 | 0.8042 | 0.5142 | 0.4207 | 0.3854 | nan | 0.0 | 0.0 |
| 0.0893 | 38.26 | 1760 | 0.1893 | 0.5002 | 0.6251 | 0.9036 | 0.9810 | 0.0 | 0.8931 | 0.9047 | 0.8649 | 0.9285 | 0.6431 | 0.4835 | 0.5527 | nan | 0.0 | nan | 0.9565 | 0.0 | 0.8097 | 0.8389 | 0.8180 | 0.8079 | 0.4992 | 0.3713 | 0.4004 | nan | 0.0 | 0.0 |
| 0.2952 | 38.7 | 1780 | 0.1832 | 0.4990 | 0.6201 | 0.9018 | 0.9811 | 0.0 | 0.8979 | 0.8879 | 0.8947 | 0.9246 | 0.6275 | 0.5634 | 0.4235 | nan | 0.0 | nan | 0.9522 | 0.0 | 0.8077 | 0.8323 | 0.8147 | 0.8033 | 0.5077 | 0.4146 | 0.3562 | nan | 0.0 | 0.0 |
| 0.1111 | 39.13 | 1800 | 0.1769 | 0.5015 | 0.6316 | 0.9018 | 0.9818 | 0.0 | 0.9004 | 0.8883 | 0.8842 | 0.9185 | 0.6708 | 0.5974 | 0.4743 | nan | 0.0 | nan | 0.9525 | 0.0 | 0.8107 | 0.8304 | 0.8132 | 0.8045 | 0.5118 | 0.4135 | 0.3799 | nan | 0.0 | 0.0 |
| 0.1 | 39.57 | 1820 | 0.1738 | 0.5041 | 0.6271 | 0.9042 | 0.9794 | 0.0 | 0.8911 | 0.8970 | 0.8915 | 0.9162 | 0.6539 | 0.5031 | 0.5385 | nan | 0.0 | nan | 0.9555 | 0.0 | 0.8088 | 0.8301 | 0.8191 | 0.8064 | 0.5209 | 0.4062 | 0.3979 | nan | 0.0 | 0.0 |
| 0.2137 | 40.0 | 1840 | 0.1747 | 0.5048 | 0.6263 | 0.9047 | 0.9846 | 0.0 | 0.8822 | 0.8788 | 0.9000 | 0.9183 | 0.6654 | 0.5311 | 0.5028 | nan | 0.0 | nan | 0.9527 | 0.0 | 0.8094 | 0.8257 | 0.8270 | 0.8071 | 0.5224 | 0.4186 | 0.3901 | nan | 0.0 | 0.0 |
| 0.0432 | 40.43 | 1860 | 0.1944 | 0.4978 | 0.6195 | 0.9009 | 0.9813 | 0.0 | 0.8832 | 0.8845 | 0.8725 | 0.9384 | 0.6305 | 0.5560 | 0.4488 | nan | 0.0 | nan | 0.9550 | 0.0 | 0.8099 | 0.8251 | 0.8098 | 0.7980 | 0.5071 | 0.4025 | 0.3683 | nan | 0.0 | 0.0 |
| 0.0705 | 40.87 | 1880 | 0.1915 | 0.4989 | 0.6289 | 0.8996 | 0.9818 | 0.0 | 0.8845 | 0.8985 | 0.8555 | 0.9340 | 0.6647 | 0.6050 | 0.4652 | nan | 0.0 | nan | 0.9559 | 0.0 | 0.8117 | 0.8332 | 0.8002 | 0.7950 | 0.5122 | 0.4033 | 0.3761 | nan | 0.0 | 0.0 |
| 0.1875 | 41.3 | 1900 | 0.1808 | 0.5035 | 0.6284 | 0.9014 | 0.9784 | 0.0 | 0.8915 | 0.8955 | 0.8781 | 0.9244 | 0.6737 | 0.5559 | 0.4863 | nan | 0.0 | nan | 0.9538 | 0.0 | 0.8075 | 0.8298 | 0.8104 | 0.7990 | 0.5307 | 0.4133 | 0.3934 | nan | 0.0 | 0.0 |
| 0.041 | 41.74 | 1920 | 0.1772 | 0.5040 | 0.6316 | 0.9030 | 0.9790 | 0.0 | 0.8964 | 0.9038 | 0.8777 | 0.9238 | 0.6675 | 0.5689 | 0.4989 | nan | 0.0 | nan | 0.9555 | 0.0 | 0.8123 | 0.8319 | 0.8131 | 0.8050 | 0.5199 | 0.4136 | 0.3931 | nan | 0.0 | 0.0 |
| 0.1552 | 42.17 | 1940 | 0.1809 | 0.5044 | 0.6265 | 0.9025 | 0.9807 | 0.0 | 0.8953 | 0.8909 | 0.8869 | 0.9270 | 0.6385 | 0.5922 | 0.4534 | nan | 0.0 | nan | 0.9529 | 0.0 | 0.8134 | 0.8321 | 0.8114 | 0.8023 | 0.5260 | 0.4335 | 0.3768 | nan | 0.0 | 0.0 |
| 0.5015 | 42.61 | 1960 | 0.1770 | 0.5030 | 0.6263 | 0.9025 | 0.9782 | 0.0 | 0.8934 | 0.8864 | 0.8939 | 0.9262 | 0.6580 | 0.5736 | 0.4532 | nan | 0.0 | nan | 0.9517 | 0.0 | 0.8116 | 0.8269 | 0.8184 | 0.8047 | 0.5204 | 0.4251 | 0.3737 | nan | 0.0 | 0.0 |
| 0.1057 | 43.04 | 1980 | 0.1809 | 0.4991 | 0.6197 | 0.9006 | 0.9812 | 0.0 | 0.8849 | 0.8871 | 0.8775 | 0.9361 | 0.6232 | 0.5822 | 0.4248 | nan | 0.0 | nan | 0.9531 | 0.0 | 0.8106 | 0.8272 | 0.8123 | 0.7967 | 0.5061 | 0.4258 | 0.3585 | nan | 0.0 | 0.0 |
| 0.0832 | 43.48 | 2000 | 0.1802 | 0.5042 | 0.6240 | 0.9032 | 0.9776 | 0.0 | 0.8946 | 0.8932 | 0.8916 | 0.9287 | 0.6458 | 0.5483 | 0.4599 | nan | 0.0 | nan | 0.9519 | 0.0 | 0.8075 | 0.8274 | 0.8211 | 0.8033 | 0.5229 | 0.4312 | 0.3810 | nan | 0.0 | 0.0 |
| 0.0851 | 43.91 | 2020 | 0.1826 | 0.5033 | 0.6257 | 0.9037 | 0.9795 | 0.0 | 0.9015 | 0.8938 | 0.8928 | 0.9311 | 0.6515 | 0.5854 | 0.4217 | nan | 0.0 | nan | 0.9539 | 0.0 | 0.8098 | 0.8285 | 0.8192 | 0.8015 | 0.5246 | 0.4349 | 0.3637 | nan | 0.0 | 0.0 |
| 0.3671 | 44.35 | 2040 | 0.1850 | 0.5028 | 0.6233 | 0.9007 | 0.9792 | 0.0 | 0.8862 | 0.8917 | 0.8732 | 0.9317 | 0.6350 | 0.5619 | 0.4743 | nan | 0.0 | nan | 0.9503 | 0.0 | 0.8076 | 0.8289 | 0.8138 | 0.7987 | 0.5204 | 0.4218 | 0.3889 | nan | 0.0 | 0.0 |
| 0.0769 | 44.78 | 2060 | 0.1957 | 0.5002 | 0.6240 | 0.9016 | 0.9768 | 0.0 | 0.8906 | 0.8940 | 0.8726 | 0.9344 | 0.6404 | 0.5415 | 0.4901 | nan | 0.0 | nan | 0.9531 | 0.0 | 0.8011 | 0.8250 | 0.8149 | 0.7996 | 0.5125 | 0.4037 | 0.3928 | nan | 0.0 | 0.0 |
| 0.0754 | 45.22 | 2080 | 0.1943 | 0.4992 | 0.6205 | 0.9007 | 0.9772 | 0.0 | 0.8831 | 0.8980 | 0.8669 | 0.9415 | 0.6323 | 0.5524 | 0.4536 | nan | 0.0 | nan | 0.9544 | 0.0 | 0.8029 | 0.8287 | 0.8108 | 0.7929 | 0.5148 | 0.4063 | 0.3805 | nan | 0.0 | 0.0 |
| 0.1296 | 45.65 | 2100 | 0.1879 | 0.5014 | 0.6278 | 0.9008 | 0.9763 | 0.0 | 0.8937 | 0.9025 | 0.8724 | 0.9312 | 0.6504 | 0.5896 | 0.4622 | nan | 0.0 | nan | 0.9534 | 0.0 | 0.8029 | 0.8333 | 0.8086 | 0.7965 | 0.5233 | 0.4111 | 0.3863 | nan | 0.0 | 0.0 |
| 0.1158 | 46.09 | 2120 | 0.1835 | 0.5033 | 0.6266 | 0.9021 | 0.9833 | 0.0 | 0.8874 | 0.8859 | 0.8737 | 0.9294 | 0.6400 | 0.5732 | 0.4934 | nan | 0.0 | nan | 0.9531 | 0.0 | 0.8069 | 0.8320 | 0.8101 | 0.8015 | 0.5208 | 0.4155 | 0.3966 | nan | 0.0 | 0.0 |
| 0.0872 | 46.52 | 2140 | 0.1891 | 0.5017 | 0.6269 | 0.9026 | 0.9845 | 0.0 | 0.8937 | 0.8879 | 0.8760 | 0.9310 | 0.6513 | 0.5860 | 0.4583 | nan | 0.0 | nan | 0.9537 | 0.0 | 0.8097 | 0.8323 | 0.8113 | 0.8016 | 0.5129 | 0.4153 | 0.3815 | nan | 0.0 | 0.0 |
| 0.0851 | 46.96 | 2160 | 0.1803 | 0.5039 | 0.6309 | 0.9024 | 0.9799 | 0.0 | 0.8952 | 0.9048 | 0.8685 | 0.9292 | 0.6604 | 0.5796 | 0.4910 | nan | 0.0 | nan | 0.9533 | 0.0 | 0.8096 | 0.8372 | 0.8117 | 0.8031 | 0.5144 | 0.4165 | 0.3975 | nan | 0.0 | 0.0 |
| 0.061 | 47.39 | 2180 | 0.1820 | 0.5061 | 0.6296 | 0.9045 | 0.9792 | 0.0 | 0.9011 | 0.9064 | 0.8802 | 0.9305 | 0.6656 | 0.5608 | 0.4717 | nan | 0.0 | nan | 0.9546 | 0.0 | 0.8103 | 0.8377 | 0.8172 | 0.8049 | 0.5148 | 0.4388 | 0.3886 | nan | 0.0 | 0.0 |
| 0.094 | 47.83 | 2200 | 0.1817 | 0.5077 | 0.6281 | 0.9056 | 0.9821 | 0.0 | 0.8850 | 0.8979 | 0.8903 | 0.9287 | 0.6542 | 0.5599 | 0.4831 | nan | 0.0 | nan | 0.9555 | 0.0 | 0.8091 | 0.8353 | 0.8209 | 0.8058 | 0.5259 | 0.4400 | 0.3926 | nan | 0.0 | 0.0 |
| 0.0832 | 48.26 | 2220 | 0.1822 | 0.5050 | 0.6208 | 0.9050 | 0.9810 | 0.0 | 0.8805 | 0.9008 | 0.8954 | 0.9313 | 0.6348 | 0.5361 | 0.4480 | nan | 0.0 | nan | 0.9550 | 0.0 | 0.8100 | 0.8339 | 0.8193 | 0.8038 | 0.5261 | 0.4307 | 0.3757 | nan | 0.0 | 0.0 |
| 0.4708 | 48.7 | 2240 | 0.1810 | 0.5065 | 0.6273 | 0.9048 | 0.9828 | 0.0 | 0.8856 | 0.8951 | 0.8892 | 0.9279 | 0.6487 | 0.5682 | 0.4758 | nan | 0.0 | nan | 0.9544 | 0.0 | 0.8085 | 0.8336 | 0.8189 | 0.8051 | 0.5249 | 0.4356 | 0.3900 | nan | 0.0 | 0.0 |
| 0.0847 | 49.13 | 2260 | 0.1841 | 0.5043 | 0.6209 | 0.9036 | 0.9783 | 0.0 | 0.8842 | 0.8957 | 0.8915 | 0.9332 | 0.6351 | 0.5396 | 0.4515 | nan | 0.0 | nan | 0.9531 | 0.0 | 0.8072 | 0.8299 | 0.8201 | 0.8014 | 0.5221 | 0.4353 | 0.3777 | nan | 0.0 | 0.0 |
| 0.0518 | 49.57 | 2280 | 0.1782 | 0.5066 | 0.6298 | 0.9046 | 0.9814 | 0.0 | 0.8872 | 0.8958 | 0.8905 | 0.9256 | 0.6696 | 0.5721 | 0.4752 | nan | 0.0 | nan | 0.9532 | 0.0 | 0.8083 | 0.8334 | 0.8209 | 0.8067 | 0.5232 | 0.4383 | 0.3889 | nan | 0.0 | 0.0 |
| 0.109 | 50.0 | 2300 | 0.1898 | 0.5029 | 0.6197 | 0.9030 | 0.9790 | 0.0 | 0.8826 | 0.8951 | 0.8809 | 0.9396 | 0.6302 | 0.5410 | 0.4486 | nan | 0.0 | nan | 0.9539 | 0.0 | 0.8064 | 0.8292 | 0.8190 | 0.7979 | 0.5135 | 0.4346 | 0.3769 | nan | 0.0 | 0.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
| [
"water",
"whitewater",
"sand",
"rocky_terrain",
"agricultural",
"vegetation",
"road",
"building",
"soil",
"boat",
"development",
"unknown"
] |
maratuly/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the maratuly/Pseudo-echo dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3463
- Mean Iou: 0.7622
- Mean Accuracy: 0.9528
- Overall Accuracy: 0.9581
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.9931
- Accuracy Rv: 0.9354
- Accuracy La: 0.9533
- Accuracy Ra: 0.9293
- Iou Unlabeled: 0.0
- Iou Lv: 0.9931
- Iou Rv: 0.9354
- Iou La: 0.9533
- Iou Ra: 0.9293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy La | Accuracy Ra | Iou Unlabeled | Iou Lv | Iou Rv | Iou La | Iou Ra |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|
| 1.0046 | 5.0 | 20 | 1.3540 | 0.4931 | 0.7263 | 0.7606 | nan | 0.9742 | 0.6789 | 0.5862 | 0.6657 | 0.0 | 0.6545 | 0.6789 | 0.5540 | 0.5783 |
| 0.7304 | 10.0 | 40 | 0.8262 | 0.6901 | 0.8908 | 0.9017 | nan | 0.9906 | 0.8147 | 0.9192 | 0.8387 | 0.0 | 0.9028 | 0.8145 | 0.9046 | 0.8287 |
| 0.5957 | 15.0 | 60 | 0.5683 | 0.7395 | 0.9277 | 0.9367 | nan | 0.9896 | 0.9141 | 0.9225 | 0.8845 | 0.0 | 0.9766 | 0.9141 | 0.9225 | 0.8845 |
| 0.5094 | 20.0 | 80 | 0.4881 | 0.7541 | 0.9426 | 0.9499 | nan | 0.9909 | 0.9368 | 0.9312 | 0.9116 | 0.0 | 0.9909 | 0.9368 | 0.9312 | 0.9116 |
| 0.4681 | 25.0 | 100 | 0.4384 | 0.7689 | 0.9612 | 0.9653 | nan | 0.9942 | 0.9434 | 0.9650 | 0.9421 | 0.0 | 0.9942 | 0.9434 | 0.9650 | 0.9421 |
| 0.4045 | 30.0 | 120 | 0.4078 | 0.7639 | 0.9549 | 0.9602 | nan | 0.9933 | 0.9418 | 0.9519 | 0.9328 | 0.0 | 0.9933 | 0.9418 | 0.9519 | 0.9328 |
| 0.3956 | 35.0 | 140 | 0.3844 | 0.7664 | 0.9580 | 0.9625 | nan | 0.9939 | 0.9406 | 0.9551 | 0.9425 | 0.0 | 0.9939 | 0.9406 | 0.9551 | 0.9425 |
| 0.3736 | 40.0 | 160 | 0.3736 | 0.7687 | 0.9609 | 0.9652 | nan | 0.9961 | 0.9409 | 0.9631 | 0.9436 | 0.0 | 0.9961 | 0.9409 | 0.9631 | 0.9436 |
| 0.3431 | 45.0 | 180 | 0.3528 | 0.7622 | 0.9528 | 0.9577 | nan | 0.9923 | 0.9321 | 0.9539 | 0.9327 | 0.0 | 0.9923 | 0.9321 | 0.9539 | 0.9327 |
| 0.3428 | 50.0 | 200 | 0.3463 | 0.7622 | 0.9528 | 0.9581 | nan | 0.9931 | 0.9354 | 0.9533 | 0.9293 | 0.0 | 0.9931 | 0.9354 | 0.9533 | 0.9293 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"lv",
"rv",
"la",
"ra"
] |
khalidddd/dinat_l_oneformer_coco |
# OneFormer
OneFormer model trained on the COCO dataset (large-sized version, Dinat backbone). It was introduced in the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jain et al. and first released in [this repository](https://github.com/SHI-Labs/OneFormer).

## Model description
OneFormer is the first multi-task universal image segmentation framework. It needs to be trained only once with a single universal architecture, a single model, and on a single dataset, to outperform existing specialized models across semantic, instance, and panoptic segmentation tasks. OneFormer uses a task token to condition the model on the task in focus, making the architecture task-guided for training, and task-dynamic for inference, all with a single model.

## Intended uses & limitations
You can use this particular checkpoint for semantic, instance and panoptic segmentation. See the [model hub](https://huggingface.co/models?search=oneformer) to look for other fine-tuned versions on a different dataset.
### How to use
Here is how to use this model:
```python
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
from PIL import Image
import requests
url = "https://huggingface.co/datasets/shi-labs/oneformer_demo/blob/main/coco.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Loading a single model for all three tasks
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_dinat_large")
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_coco_dinat_large")
# Semantic Segmentation
semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
semantic_outputs = model(**semantic_inputs)
# pass through image_processor for postprocessing
predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# Instance Segmentation
instance_inputs = processor(images=image, task_inputs=["instance"], return_tensors="pt")
instance_outputs = model(**instance_inputs)
# pass through image_processor for postprocessing
predicted_instance_map = processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
# Panoptic Segmentation
panoptic_inputs = processor(images=image, task_inputs=["panoptic"], return_tensors="pt")
panoptic_outputs = model(**panoptic_inputs)
# pass through image_processor for postprocessing
predicted_semantic_map = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]["segmentation"]
```
For more examples, please refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/oneformer).
### Citation
```bibtex
@article{jain2022oneformer,
title={{OneFormer: One Transformer to Rule Universal Image Segmentation}},
author={Jitesh Jain and Jiachen Li and MangTik Chiu and Ali Hassani and Nikita Orlov and Humphrey Shi},
journal={arXiv},
year={2022}
}
```
| [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
"banner",
"blanket",
"bridge",
"cardboard",
"counter",
"curtain",
"door-stuff",
"floor-wood",
"flower",
"fruit",
"gravel",
"house",
"light",
"mirror-stuff",
"net",
"pillow",
"platform",
"playingfield",
"railroad",
"river",
"road",
"roof",
"sand",
"sea",
"shelf",
"snow",
"stairs",
"tent",
"towel",
"wall-brick",
"wall-stone",
"wall-tile",
"wall-wood",
"water-other",
"window-blind",
"window-other",
"tree-merged",
"fence-merged",
"ceiling-merged",
"sky-other-merged",
"cabinet-merged",
"table-merged",
"floor-other-merged",
"pavement-merged",
"mountain-merged",
"grass-merged",
"dirt-merged",
"paper-merged",
"food-other-merged",
"building-other-merged",
"rock-merged",
"wall-other-merged",
"rug-merged"
] |
peldrak/segformer-finetuned-riviera2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-riviera2
This model is a fine-tuned version of [peldrak/segformer-finetuned-coasts-final](https://huggingface.co/peldrak/segformer-finetuned-coasts-final) on the peldrak/riviera_labeled_split2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2172
- Mean Iou: 0.5684
- Mean Accuracy: 0.7041
- Overall Accuracy: 0.9037
- Accuracy Water: 0.9782
- Accuracy Whitewater: 0.0031
- Accuracy Sand: 0.9694
- Accuracy Rocky Terrain: 0.8474
- Accuracy Agricultural: 0.8818
- Accuracy Vegetation: 0.9453
- Accuracy Road: 0.5085
- Accuracy Development: 0.7910
- Accuracy Other Natural Terrain: 0.4118
- Accuracy Unknown: nan
- Iou Water: 0.9541
- Iou Whitewater: 0.0031
- Iou Sand: 0.8472
- Iou Rocky Terrain: 0.7939
- Iou Agricultural: 0.7881
- Iou Vegetation: 0.8610
- Iou Road: 0.4506
- Iou Development: 0.6761
- Iou Other Natural Terrain: 0.3104
- Iou Unknown: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Water | Accuracy Whitewater | Accuracy Sand | Accuracy Rocky Terrain | Accuracy Agricultural | Accuracy Vegetation | Accuracy Road | Accuracy Development | Accuracy Other Natural Terrain | Accuracy Unknown | Iou Water | Iou Whitewater | Iou Sand | Iou Rocky Terrain | Iou Agricultural | Iou Vegetation | Iou Road | Iou Development | Iou Other Natural Terrain | Iou Unknown |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------:|:--------------------:|:------------------------------:|:----------------:|:---------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------:|:---------------:|:-------------------------:|:-----------:|
| 1.6151 | 0.24 | 20 | 1.4156 | 0.0850 | 0.1749 | 0.3514 | 0.9391 | 0.0113 | 0.0 | 0.1553 | 0.0248 | 0.1658 | 0.0035 | 0.1890 | 0.0857 | nan | 0.3854 | 0.0012 | 0.0 | 0.1345 | 0.0110 | 0.1615 | 0.0017 | 0.1034 | 0.0518 | 0.0 |
| 1.3149 | 0.49 | 40 | 1.0378 | 0.2239 | 0.3363 | 0.6043 | 0.9571 | 0.0318 | 0.2679 | 0.5472 | 0.0248 | 0.6780 | 0.0 | 0.4390 | 0.0811 | nan | 0.6123 | 0.0184 | 0.2520 | 0.5089 | 0.0141 | 0.5632 | 0.0 | 0.2247 | 0.0456 | 0.0 |
| 1.1554 | 0.73 | 60 | 0.7989 | 0.3289 | 0.4401 | 0.7722 | 0.9818 | 0.0 | 0.8295 | 0.6482 | 0.0581 | 0.9606 | 0.0008 | 0.4676 | 0.0146 | nan | 0.8261 | 0.0 | 0.7142 | 0.6253 | 0.0523 | 0.7241 | 0.0008 | 0.3334 | 0.0130 | 0.0 |
| 1.0181 | 0.98 | 80 | 0.6544 | 0.3592 | 0.4747 | 0.8043 | 0.9692 | 0.0 | 0.8957 | 0.7580 | 0.3678 | 0.9693 | 0.0001 | 0.3088 | 0.0032 | nan | 0.9121 | 0.0 | 0.6664 | 0.7171 | 0.2835 | 0.7605 | 0.0001 | 0.2489 | 0.0031 | 0.0 |
| 1.119 | 1.22 | 100 | 0.5360 | 0.3739 | 0.4880 | 0.8252 | 0.9764 | 0.0 | 0.9123 | 0.7932 | 0.5894 | 0.9776 | 0.0 | 0.1422 | 0.0008 | nan | 0.9300 | 0.0 | 0.7082 | 0.7339 | 0.4630 | 0.7700 | 0.0 | 0.1329 | 0.0008 | 0.0 |
| 0.8191 | 1.46 | 120 | 0.4732 | 0.4115 | 0.5270 | 0.8487 | 0.9860 | 0.0 | 0.8930 | 0.8134 | 0.7485 | 0.9750 | 0.0 | 0.3256 | 0.0019 | nan | 0.9360 | 0.0 | 0.7421 | 0.7490 | 0.6024 | 0.8003 | 0.0 | 0.2832 | 0.0018 | 0.0 |
| 0.7274 | 1.71 | 140 | 0.4744 | 0.4010 | 0.5172 | 0.8459 | 0.9847 | 0.0 | 0.8945 | 0.7845 | 0.7891 | 0.9754 | 0.0 | 0.2258 | 0.0011 | nan | 0.9485 | 0.0 | 0.7668 | 0.7512 | 0.5327 | 0.8076 | 0.0 | 0.2025 | 0.0011 | 0.0 |
| 0.3963 | 1.95 | 160 | 0.4212 | 0.4143 | 0.5289 | 0.8491 | 0.9835 | 0.0 | 0.9249 | 0.8669 | 0.6654 | 0.9796 | 0.0 | 0.3312 | 0.0084 | nan | 0.9514 | 0.0 | 0.7786 | 0.7736 | 0.5481 | 0.7861 | 0.0 | 0.2971 | 0.0082 | 0.0 |
| 0.8763 | 2.2 | 180 | 0.3832 | 0.4210 | 0.5390 | 0.8587 | 0.9798 | 0.0 | 0.9471 | 0.7914 | 0.9032 | 0.9688 | 0.0 | 0.2596 | 0.0012 | nan | 0.9483 | 0.0 | 0.8401 | 0.7517 | 0.6183 | 0.8151 | 0.0 | 0.2348 | 0.0012 | 0.0 |
| 0.868 | 2.44 | 200 | 0.3764 | 0.4061 | 0.5216 | 0.8472 | 0.9793 | 0.0 | 0.9666 | 0.8200 | 0.7151 | 0.9764 | 0.0 | 0.2267 | 0.0103 | nan | 0.9514 | 0.0 | 0.6926 | 0.7764 | 0.6398 | 0.7901 | 0.0 | 0.2007 | 0.0102 | 0.0 |
| 0.7492 | 2.68 | 220 | 0.3502 | 0.4267 | 0.5626 | 0.8629 | 0.9742 | 0.0 | 0.9717 | 0.8473 | 0.9721 | 0.9408 | 0.0 | 0.3376 | 0.0200 | nan | 0.9493 | 0.0 | 0.7071 | 0.7902 | 0.6701 | 0.8511 | 0.0 | 0.2796 | 0.0192 | 0.0 |
| 0.9957 | 2.93 | 240 | 0.3382 | 0.4572 | 0.5778 | 0.8688 | 0.9842 | 0.0 | 0.9534 | 0.8633 | 0.7888 | 0.9593 | 0.0 | 0.5910 | 0.0602 | nan | 0.9527 | 0.0 | 0.8231 | 0.8012 | 0.6499 | 0.8112 | 0.0 | 0.4790 | 0.0545 | 0.0 |
| 0.416 | 3.17 | 260 | 0.3426 | 0.4475 | 0.5700 | 0.8617 | 0.9725 | 0.0 | 0.9648 | 0.8810 | 0.7076 | 0.9640 | 0.0 | 0.5665 | 0.0738 | nan | 0.9499 | 0.0 | 0.7928 | 0.7900 | 0.6095 | 0.8113 | 0.0 | 0.4584 | 0.0628 | 0.0 |
| 0.3574 | 3.41 | 280 | 0.3294 | 0.4534 | 0.5701 | 0.8659 | 0.9835 | 0.0 | 0.9498 | 0.7931 | 0.7716 | 0.9674 | 0.0 | 0.6177 | 0.0481 | nan | 0.9441 | 0.0 | 0.8365 | 0.7578 | 0.6388 | 0.8089 | 0.0 | 0.5038 | 0.0438 | 0.0 |
| 0.2504 | 3.66 | 300 | 0.3045 | 0.4381 | 0.5590 | 0.8596 | 0.9787 | 0.0 | 0.9376 | 0.8223 | 0.8269 | 0.9575 | 0.0 | 0.4316 | 0.0765 | nan | 0.9492 | 0.0 | 0.7856 | 0.7767 | 0.6163 | 0.8214 | 0.0 | 0.3681 | 0.0637 | 0.0 |
| 0.3342 | 3.9 | 320 | 0.3037 | 0.4675 | 0.5986 | 0.8712 | 0.9712 | 0.0 | 0.9625 | 0.9100 | 0.7707 | 0.9492 | 0.0 | 0.7293 | 0.0942 | nan | 0.9492 | 0.0 | 0.8752 | 0.7814 | 0.6541 | 0.8159 | 0.0 | 0.5153 | 0.0836 | 0.0 |
| 0.7272 | 4.15 | 340 | 0.3025 | 0.4617 | 0.5795 | 0.8694 | 0.9742 | 0.0 | 0.9665 | 0.8396 | 0.7763 | 0.9678 | 0.0 | 0.6223 | 0.0689 | nan | 0.9486 | 0.0 | 0.8327 | 0.7980 | 0.6451 | 0.8157 | 0.0 | 0.5163 | 0.0605 | 0.0 |
| 0.452 | 4.39 | 360 | 0.2799 | 0.4589 | 0.5891 | 0.8688 | 0.9723 | 0.0 | 0.9796 | 0.8554 | 0.8382 | 0.9439 | 0.0 | 0.5294 | 0.1836 | nan | 0.9510 | 0.0 | 0.7637 | 0.7978 | 0.6793 | 0.8367 | 0.0 | 0.4202 | 0.1405 | 0.0 |
| 0.2372 | 4.63 | 380 | 0.2749 | 0.4642 | 0.5891 | 0.8765 | 0.9755 | 0.0 | 0.9684 | 0.8436 | 0.9190 | 0.9569 | 0.0 | 0.5282 | 0.1100 | nan | 0.9493 | 0.0 | 0.7809 | 0.7960 | 0.7737 | 0.8389 | 0.0 | 0.4060 | 0.0969 | 0.0 |
| 1.3141 | 4.88 | 400 | 0.2875 | 0.4723 | 0.6004 | 0.8726 | 0.9700 | 0.0 | 0.9573 | 0.8714 | 0.7878 | 0.9529 | 0.0 | 0.7587 | 0.1054 | nan | 0.9449 | 0.0 | 0.8715 | 0.7964 | 0.6752 | 0.8177 | 0.0 | 0.5243 | 0.0929 | 0.0 |
| 0.605 | 5.12 | 420 | 0.2752 | 0.4653 | 0.6031 | 0.8722 | 0.9752 | 0.0 | 0.9356 | 0.8359 | 0.9082 | 0.9332 | 0.0010 | 0.7404 | 0.0986 | nan | 0.9462 | 0.0 | 0.8710 | 0.7879 | 0.6188 | 0.8482 | 0.0010 | 0.4905 | 0.0892 | 0.0 |
| 0.3456 | 5.37 | 440 | 0.2907 | 0.4721 | 0.5955 | 0.8717 | 0.9761 | 0.0 | 0.9655 | 0.8499 | 0.7721 | 0.9535 | 0.0 | 0.6785 | 0.1641 | nan | 0.9531 | 0.0 | 0.8718 | 0.7986 | 0.6161 | 0.8207 | 0.0 | 0.5316 | 0.1291 | 0.0 |
| 0.4065 | 5.61 | 460 | 0.2588 | 0.4707 | 0.6035 | 0.8751 | 0.9735 | 0.0 | 0.9728 | 0.8768 | 0.8025 | 0.9485 | 0.0 | 0.5470 | 0.3100 | nan | 0.9528 | 0.0 | 0.7724 | 0.8075 | 0.6647 | 0.8490 | 0.0 | 0.4260 | 0.2346 | 0.0 |
| 0.5515 | 5.85 | 480 | 0.2509 | 0.4817 | 0.6075 | 0.8803 | 0.9607 | 0.0 | 0.9654 | 0.8643 | 0.8910 | 0.9597 | 0.0000 | 0.6962 | 0.1303 | nan | 0.9444 | 0.0 | 0.8502 | 0.7854 | 0.7400 | 0.8362 | 0.0000 | 0.5515 | 0.1096 | 0.0 |
| 0.7913 | 6.1 | 500 | 0.2392 | 0.4835 | 0.6074 | 0.8854 | 0.9772 | 0.0 | 0.9578 | 0.8821 | 0.9384 | 0.9594 | 0.0244 | 0.6102 | 0.1169 | nan | 0.9511 | 0.0 | 0.8279 | 0.8049 | 0.7936 | 0.8365 | 0.0244 | 0.4897 | 0.1072 | 0.0 |
| 0.3186 | 6.34 | 520 | 0.2556 | 0.4736 | 0.6009 | 0.8775 | 0.9769 | 0.0 | 0.9765 | 0.8601 | 0.9007 | 0.9478 | 0.0386 | 0.5438 | 0.1636 | nan | 0.9521 | 0.0 | 0.7805 | 0.8029 | 0.7483 | 0.8328 | 0.0385 | 0.4392 | 0.1420 | 0.0 |
| 0.2549 | 6.59 | 540 | 0.2342 | 0.5138 | 0.6555 | 0.8909 | 0.9748 | 0.0 | 0.9533 | 0.8514 | 0.8781 | 0.9276 | 0.0280 | 0.7772 | 0.5094 | nan | 0.9512 | 0.0 | 0.8886 | 0.7891 | 0.7547 | 0.8588 | 0.0279 | 0.5303 | 0.3371 | 0.0 |
| 0.3034 | 6.83 | 560 | 0.2574 | 0.4892 | 0.6058 | 0.8794 | 0.9819 | 0.0 | 0.9563 | 0.7993 | 0.7777 | 0.9666 | 0.0356 | 0.7305 | 0.2041 | nan | 0.9505 | 0.0 | 0.8925 | 0.7697 | 0.6993 | 0.8226 | 0.0355 | 0.5656 | 0.1561 | 0.0 |
| 0.2759 | 7.07 | 580 | 0.2417 | 0.5055 | 0.6355 | 0.8899 | 0.9735 | 0.0 | 0.9789 | 0.8397 | 0.9129 | 0.9483 | 0.0845 | 0.6354 | 0.3465 | nan | 0.9530 | 0.0 | 0.8171 | 0.7897 | 0.7572 | 0.8530 | 0.0840 | 0.5311 | 0.2698 | 0.0 |
| 0.4661 | 7.32 | 600 | 0.2272 | 0.5198 | 0.6647 | 0.8944 | 0.9787 | 0.0 | 0.9780 | 0.8505 | 0.8440 | 0.9286 | 0.0697 | 0.6809 | 0.6515 | nan | 0.9552 | 0.0 | 0.8088 | 0.7960 | 0.7438 | 0.8682 | 0.0691 | 0.5247 | 0.4328 | 0.0 |
| 0.1629 | 7.56 | 620 | 0.2331 | 0.5248 | 0.6639 | 0.8916 | 0.9782 | 0.0 | 0.9591 | 0.8574 | 0.8627 | 0.9262 | 0.1268 | 0.7364 | 0.5286 | nan | 0.9539 | 0.0 | 0.8723 | 0.8011 | 0.6613 | 0.8493 | 0.1252 | 0.5734 | 0.4116 | 0.0 |
| 0.1212 | 7.8 | 640 | 0.2431 | 0.5138 | 0.6604 | 0.8841 | 0.9727 | 0.0 | 0.9811 | 0.8664 | 0.7576 | 0.9201 | 0.1052 | 0.7484 | 0.5919 | nan | 0.9543 | 0.0 | 0.8160 | 0.7970 | 0.6137 | 0.8406 | 0.1039 | 0.5809 | 0.4314 | 0.0 |
| 0.4444 | 8.05 | 660 | 0.2277 | 0.5174 | 0.6470 | 0.8938 | 0.9807 | 0.0 | 0.9616 | 0.8141 | 0.9088 | 0.9461 | 0.0907 | 0.7961 | 0.3247 | nan | 0.9518 | 0.0 | 0.8687 | 0.7832 | 0.7780 | 0.8490 | 0.0901 | 0.5943 | 0.2586 | 0.0 |
| 0.2176 | 8.29 | 680 | 0.2123 | 0.5327 | 0.6734 | 0.9001 | 0.9774 | 0.0 | 0.9701 | 0.8768 | 0.8724 | 0.9365 | 0.1111 | 0.8156 | 0.5004 | nan | 0.9541 | 0.0 | 0.8617 | 0.8040 | 0.7823 | 0.8657 | 0.1092 | 0.5785 | 0.3715 | 0.0 |
| 0.4515 | 8.54 | 700 | 0.2545 | 0.5198 | 0.6586 | 0.8886 | 0.9852 | 0.0 | 0.9652 | 0.8208 | 0.9443 | 0.9214 | 0.2593 | 0.7064 | 0.3252 | nan | 0.9517 | 0.0 | 0.8370 | 0.7896 | 0.6680 | 0.8531 | 0.2441 | 0.5716 | 0.2833 | 0.0 |
| 0.2276 | 8.78 | 720 | 0.2427 | 0.5161 | 0.6488 | 0.8869 | 0.9730 | 0.0 | 0.9757 | 0.8662 | 0.8668 | 0.9466 | 0.2834 | 0.7261 | 0.2011 | nan | 0.9521 | 0.0 | 0.8300 | 0.8106 | 0.7177 | 0.8432 | 0.2632 | 0.5765 | 0.1681 | 0.0 |
| 0.1664 | 9.02 | 740 | 0.2403 | 0.5174 | 0.6477 | 0.8924 | 0.9731 | 0.0 | 0.9722 | 0.8425 | 0.8760 | 0.9551 | 0.1686 | 0.7817 | 0.2597 | nan | 0.9516 | 0.0 | 0.8776 | 0.7910 | 0.7536 | 0.8527 | 0.1648 | 0.5767 | 0.2062 | 0.0 |
| 0.1256 | 9.27 | 760 | 0.2232 | 0.5293 | 0.6719 | 0.8913 | 0.9753 | 0.0 | 0.9694 | 0.8536 | 0.8344 | 0.9224 | 0.1563 | 0.7175 | 0.6187 | nan | 0.9520 | 0.0 | 0.8567 | 0.7925 | 0.7405 | 0.8617 | 0.1530 | 0.5946 | 0.3420 | 0.0 |
| 0.336 | 9.51 | 780 | 0.2125 | 0.5451 | 0.6873 | 0.9017 | 0.9794 | 0.0 | 0.9741 | 0.8796 | 0.8795 | 0.9323 | 0.2422 | 0.7836 | 0.5153 | nan | 0.9522 | 0.0 | 0.8579 | 0.7945 | 0.7699 | 0.8705 | 0.2256 | 0.5934 | 0.3870 | 0.0 |
| 0.2018 | 9.76 | 800 | 0.2224 | 0.5404 | 0.6681 | 0.8984 | 0.9822 | 0.0 | 0.9652 | 0.8555 | 0.8950 | 0.9519 | 0.3185 | 0.7221 | 0.3220 | nan | 0.9531 | 0.0 | 0.8535 | 0.8067 | 0.7567 | 0.8584 | 0.2949 | 0.6183 | 0.2621 | 0.0 |
| 0.1682 | 10.0 | 820 | 0.2187 | 0.5320 | 0.6820 | 0.8924 | 0.9718 | 0.0 | 0.9814 | 0.8696 | 0.8334 | 0.9177 | 0.1967 | 0.8444 | 0.5228 | nan | 0.9521 | 0.0 | 0.8742 | 0.7917 | 0.7417 | 0.8515 | 0.1852 | 0.5529 | 0.3707 | 0.0 |
| 0.176 | 10.24 | 840 | 0.2228 | 0.5335 | 0.6621 | 0.8964 | 0.9811 | 0.0 | 0.9741 | 0.8623 | 0.8578 | 0.9513 | 0.2482 | 0.7291 | 0.3547 | nan | 0.9553 | 0.0 | 0.8520 | 0.8082 | 0.7474 | 0.8587 | 0.2369 | 0.6102 | 0.2662 | 0.0 |
| 0.4021 | 10.49 | 860 | 0.2221 | 0.5370 | 0.6793 | 0.8973 | 0.9742 | 0.0 | 0.9634 | 0.8676 | 0.9133 | 0.9356 | 0.2970 | 0.7645 | 0.3982 | nan | 0.9533 | 0.0 | 0.8641 | 0.7969 | 0.7135 | 0.8725 | 0.2745 | 0.5827 | 0.3125 | 0.0 |
| 0.2189 | 10.73 | 880 | 0.2594 | 0.5157 | 0.6489 | 0.8857 | 0.9846 | 0.0 | 0.9684 | 0.8699 | 0.7198 | 0.9467 | 0.2024 | 0.8028 | 0.3458 | nan | 0.9562 | 0.0 | 0.8654 | 0.8160 | 0.6462 | 0.8367 | 0.1928 | 0.5791 | 0.2648 | 0.0 |
| 0.218 | 10.98 | 900 | 0.2445 | 0.5208 | 0.6623 | 0.8853 | 0.9734 | 0.0 | 0.9834 | 0.8650 | 0.7271 | 0.9380 | 0.2457 | 0.7985 | 0.4296 | nan | 0.9561 | 0.0 | 0.8233 | 0.8043 | 0.6560 | 0.8406 | 0.2276 | 0.5827 | 0.3177 | 0.0 |
| 0.3402 | 11.22 | 920 | 0.2789 | 0.5181 | 0.6438 | 0.8821 | 0.9728 | 0.0 | 0.9665 | 0.8725 | 0.6840 | 0.9599 | 0.2502 | 0.7863 | 0.3024 | nan | 0.9507 | 0.0 | 0.8598 | 0.8023 | 0.6413 | 0.8265 | 0.2387 | 0.6396 | 0.2225 | 0.0 |
| 0.2232 | 11.46 | 940 | 0.2219 | 0.5387 | 0.6810 | 0.8920 | 0.9705 | 0.0 | 0.9498 | 0.9055 | 0.7311 | 0.9404 | 0.2678 | 0.7632 | 0.6004 | nan | 0.9490 | 0.0 | 0.8674 | 0.7808 | 0.6552 | 0.8561 | 0.2553 | 0.6268 | 0.3965 | 0.0 |
| 0.1727 | 11.71 | 960 | 0.2741 | 0.5328 | 0.6593 | 0.8880 | 0.9812 | 0.0 | 0.9682 | 0.8166 | 0.7600 | 0.9648 | 0.4642 | 0.7672 | 0.2112 | nan | 0.9554 | 0.0 | 0.8701 | 0.7751 | 0.6763 | 0.8300 | 0.4070 | 0.6312 | 0.1824 | 0.0 |
| 0.3027 | 11.95 | 980 | 0.2126 | 0.5477 | 0.6784 | 0.9005 | 0.9774 | 0.0 | 0.9702 | 0.8705 | 0.8597 | 0.9570 | 0.3690 | 0.7887 | 0.3127 | nan | 0.9542 | 0.0 | 0.8645 | 0.8041 | 0.7646 | 0.8582 | 0.3354 | 0.6361 | 0.2600 | 0.0 |
| 0.2245 | 12.2 | 1000 | 0.2490 | 0.5254 | 0.6482 | 0.8899 | 0.9833 | 0.0 | 0.9638 | 0.8135 | 0.7925 | 0.9626 | 0.2752 | 0.8146 | 0.2286 | nan | 0.9548 | 0.0 | 0.8727 | 0.7852 | 0.7239 | 0.8352 | 0.2619 | 0.6371 | 0.1834 | 0.0 |
| 0.1551 | 12.44 | 1020 | 0.2332 | 0.5364 | 0.6875 | 0.8924 | 0.9766 | 0.0 | 0.9856 | 0.8760 | 0.8783 | 0.9118 | 0.3322 | 0.6270 | 0.5995 | nan | 0.9571 | 0.0 | 0.7598 | 0.8028 | 0.7604 | 0.8562 | 0.2982 | 0.5043 | 0.4247 | 0.0 |
| 0.3828 | 12.68 | 1040 | 0.2138 | 0.5437 | 0.6753 | 0.8979 | 0.9799 | 0.0 | 0.9477 | 0.8984 | 0.8723 | 0.9574 | 0.4473 | 0.6534 | 0.3209 | nan | 0.9542 | 0.0 | 0.8187 | 0.8072 | 0.7887 | 0.8580 | 0.3793 | 0.5674 | 0.2640 | 0.0 |
| 0.0929 | 12.93 | 1060 | 0.2544 | 0.5186 | 0.6501 | 0.8855 | 0.9783 | 0.0 | 0.9709 | 0.8634 | 0.7491 | 0.9542 | 0.3067 | 0.6526 | 0.3757 | nan | 0.9549 | 0.0 | 0.8048 | 0.8069 | 0.6771 | 0.8418 | 0.2878 | 0.5185 | 0.2948 | 0.0 |
| 0.2362 | 13.17 | 1080 | 0.2353 | 0.5278 | 0.6661 | 0.8877 | 0.9763 | 0.0 | 0.9807 | 0.8577 | 0.8281 | 0.9374 | 0.3786 | 0.6547 | 0.3816 | nan | 0.9531 | 0.0 | 0.7907 | 0.8045 | 0.7260 | 0.8447 | 0.3395 | 0.5196 | 0.3001 | 0.0 |
| 0.1954 | 13.41 | 1100 | 0.2073 | 0.5580 | 0.7009 | 0.9019 | 0.9762 | 0.0 | 0.9681 | 0.8902 | 0.8184 | 0.9348 | 0.3367 | 0.7731 | 0.6111 | nan | 0.9548 | 0.0 | 0.8642 | 0.8120 | 0.7373 | 0.8679 | 0.3120 | 0.6404 | 0.3918 | 0.0 |
| 0.2412 | 13.66 | 1120 | 0.2144 | 0.5520 | 0.6946 | 0.9022 | 0.9808 | 0.0 | 0.9764 | 0.8460 | 0.8418 | 0.9352 | 0.3048 | 0.7065 | 0.6605 | nan | 0.9554 | 0.0 | 0.8265 | 0.7963 | 0.7536 | 0.8773 | 0.2868 | 0.6078 | 0.4162 | 0.0 |
| 0.2167 | 13.9 | 1140 | 0.2111 | 0.5577 | 0.6947 | 0.9005 | 0.9753 | 0.0 | 0.9744 | 0.8242 | 0.8303 | 0.9442 | 0.3808 | 0.7631 | 0.5597 | nan | 0.9516 | 0.0 | 0.8487 | 0.7825 | 0.7616 | 0.8716 | 0.3440 | 0.6640 | 0.3534 | 0.0 |
| 0.0952 | 14.15 | 1160 | 0.2637 | 0.5279 | 0.6724 | 0.8863 | 0.9740 | 0.0 | 0.9860 | 0.8767 | 0.7933 | 0.9334 | 0.4219 | 0.5904 | 0.4754 | nan | 0.9531 | 0.0 | 0.7480 | 0.8056 | 0.7181 | 0.8535 | 0.3615 | 0.4894 | 0.3497 | 0.0 |
| 0.1032 | 14.39 | 1180 | 0.2484 | 0.5403 | 0.6730 | 0.8921 | 0.9769 | 0.0 | 0.9724 | 0.8537 | 0.7452 | 0.9591 | 0.4251 | 0.8313 | 0.2934 | nan | 0.9553 | 0.0 | 0.8613 | 0.7993 | 0.6934 | 0.8405 | 0.3786 | 0.6417 | 0.2331 | 0.0 |
| 0.2301 | 14.63 | 1200 | 0.2167 | 0.5450 | 0.6843 | 0.8969 | 0.9752 | 0.0 | 0.9785 | 0.8525 | 0.9088 | 0.9402 | 0.4511 | 0.6742 | 0.3782 | nan | 0.9534 | 0.0 | 0.8015 | 0.7952 | 0.7726 | 0.8610 | 0.3911 | 0.5705 | 0.3044 | 0.0 |
| 0.3602 | 14.88 | 1220 | 0.2154 | 0.5522 | 0.7015 | 0.8960 | 0.9738 | 0.0 | 0.9770 | 0.8642 | 0.7977 | 0.9202 | 0.3336 | 0.7938 | 0.6533 | nan | 0.9495 | 0.0 | 0.8433 | 0.7947 | 0.7288 | 0.8638 | 0.3085 | 0.6520 | 0.3817 | 0.0 |
| 0.1081 | 15.12 | 1240 | 0.2512 | 0.5321 | 0.6634 | 0.8872 | 0.9717 | 0.0 | 0.9707 | 0.8631 | 0.7590 | 0.9627 | 0.4839 | 0.6768 | 0.2828 | nan | 0.9508 | 0.0 | 0.8181 | 0.7973 | 0.6834 | 0.8401 | 0.4158 | 0.5872 | 0.2285 | 0.0 |
| 0.138 | 15.37 | 1260 | 0.1995 | 0.5660 | 0.7144 | 0.9028 | 0.9747 | 0.0 | 0.9687 | 0.8627 | 0.8566 | 0.9240 | 0.3978 | 0.8400 | 0.6048 | nan | 0.9511 | 0.0 | 0.8700 | 0.7965 | 0.7700 | 0.8698 | 0.3606 | 0.6542 | 0.3876 | 0.0 |
| 0.1254 | 15.61 | 1280 | 0.2302 | 0.5517 | 0.6866 | 0.8994 | 0.9652 | 0.0 | 0.9730 | 0.8691 | 0.9000 | 0.9510 | 0.4196 | 0.7253 | 0.3762 | nan | 0.9483 | 0.0 | 0.8413 | 0.7915 | 0.7688 | 0.8603 | 0.3770 | 0.6323 | 0.2976 | 0.0 |
| 0.0939 | 15.85 | 1300 | 0.2252 | 0.5506 | 0.6884 | 0.8930 | 0.9853 | 0.0 | 0.9585 | 0.8488 | 0.7720 | 0.9348 | 0.4332 | 0.7397 | 0.5235 | nan | 0.9494 | 0.0 | 0.8510 | 0.8047 | 0.6791 | 0.8478 | 0.3833 | 0.6327 | 0.3582 | 0.0 |
| 0.079 | 16.1 | 1320 | 0.2439 | 0.5381 | 0.6686 | 0.8888 | 0.9764 | 0.0 | 0.9686 | 0.8422 | 0.7464 | 0.9577 | 0.4522 | 0.6807 | 0.3930 | nan | 0.9544 | 0.0 | 0.8271 | 0.7930 | 0.6805 | 0.8475 | 0.3958 | 0.6125 | 0.2706 | 0.0 |
| 0.1409 | 16.34 | 1340 | 0.2244 | 0.5567 | 0.7105 | 0.8928 | 0.9660 | 0.0 | 0.9787 | 0.8779 | 0.7602 | 0.9191 | 0.4474 | 0.7951 | 0.6504 | nan | 0.9501 | 0.0 | 0.8409 | 0.7902 | 0.6957 | 0.8539 | 0.3926 | 0.6588 | 0.3851 | 0.0 |
| 0.3714 | 16.59 | 1360 | 0.2480 | 0.5451 | 0.6732 | 0.8965 | 0.9827 | 0.0 | 0.9692 | 0.8453 | 0.9122 | 0.9530 | 0.4942 | 0.7125 | 0.1900 | nan | 0.9553 | 0.0 | 0.8439 | 0.8058 | 0.7744 | 0.8417 | 0.4262 | 0.6336 | 0.1704 | 0.0 |
| 0.2288 | 16.83 | 1380 | 0.2100 | 0.5634 | 0.7029 | 0.9011 | 0.9767 | 0.0 | 0.9704 | 0.8758 | 0.8995 | 0.9382 | 0.5412 | 0.7601 | 0.3645 | nan | 0.9520 | 0.0 | 0.8497 | 0.8046 | 0.7688 | 0.8513 | 0.4448 | 0.6575 | 0.3057 | 0.0 |
| 0.2297 | 17.07 | 1400 | 0.2083 | 0.5629 | 0.7053 | 0.9023 | 0.9720 | 0.0 | 0.9721 | 0.8785 | 0.9438 | 0.9305 | 0.4819 | 0.7221 | 0.4466 | nan | 0.9514 | 0.0 | 0.8451 | 0.7942 | 0.7728 | 0.8596 | 0.4149 | 0.6409 | 0.3503 | 0.0 |
| 0.1961 | 17.32 | 1420 | 0.2102 | 0.5588 | 0.6962 | 0.9023 | 0.9768 | 0.0 | 0.9704 | 0.8353 | 0.8819 | 0.9435 | 0.4188 | 0.7559 | 0.4831 | nan | 0.9528 | 0.0 | 0.8311 | 0.7837 | 0.7888 | 0.8673 | 0.3779 | 0.6372 | 0.3493 | 0.0 |
| 0.1938 | 17.56 | 1440 | 0.2151 | 0.5554 | 0.6917 | 0.8999 | 0.9775 | 0.0 | 0.9638 | 0.8859 | 0.8447 | 0.9448 | 0.4199 | 0.8143 | 0.3742 | nan | 0.9525 | 0.0 | 0.8517 | 0.8075 | 0.7688 | 0.8574 | 0.3760 | 0.6574 | 0.2831 | 0.0 |
| 0.283 | 17.8 | 1460 | 0.2285 | 0.5502 | 0.6886 | 0.8971 | 0.9752 | 0.0 | 0.9658 | 0.8285 | 0.7796 | 0.9470 | 0.3540 | 0.8388 | 0.5087 | nan | 0.9553 | 0.0 | 0.8671 | 0.7779 | 0.7223 | 0.8636 | 0.3317 | 0.6615 | 0.3227 | 0.0 |
| 0.2744 | 18.05 | 1480 | 0.2301 | 0.5532 | 0.6929 | 0.8974 | 0.9741 | 0.0 | 0.9831 | 0.8644 | 0.7817 | 0.9473 | 0.4503 | 0.7601 | 0.4751 | nan | 0.9550 | 0.0 | 0.8186 | 0.7977 | 0.7268 | 0.8598 | 0.3918 | 0.6399 | 0.3421 | 0.0 |
| 0.0956 | 18.29 | 1500 | 0.2140 | 0.5637 | 0.7149 | 0.9026 | 0.9717 | 0.0 | 0.9813 | 0.8585 | 0.9085 | 0.9223 | 0.4672 | 0.7189 | 0.6055 | nan | 0.9535 | 0.0 | 0.8169 | 0.7947 | 0.7597 | 0.8727 | 0.3985 | 0.6146 | 0.4264 | 0.0 |
| 0.0477 | 18.54 | 1520 | 0.2209 | 0.5551 | 0.6878 | 0.8975 | 0.9692 | 0.0 | 0.9696 | 0.8742 | 0.8338 | 0.9573 | 0.5019 | 0.7648 | 0.3190 | nan | 0.9495 | 0.0 | 0.8549 | 0.7934 | 0.7518 | 0.8579 | 0.4426 | 0.6592 | 0.2416 | 0.0 |
| 0.3598 | 18.78 | 1540 | 0.2430 | 0.5330 | 0.6704 | 0.8890 | 0.9762 | 0.0 | 0.9813 | 0.8502 | 0.8685 | 0.9383 | 0.4623 | 0.5791 | 0.3782 | nan | 0.9527 | 0.0 | 0.7785 | 0.7953 | 0.7300 | 0.8520 | 0.4042 | 0.5312 | 0.2861 | 0.0 |
| 0.1007 | 19.02 | 1560 | 0.2182 | 0.5626 | 0.7106 | 0.8983 | 0.9772 | 0.0 | 0.9776 | 0.8621 | 0.8359 | 0.9232 | 0.4950 | 0.7717 | 0.5527 | nan | 0.9560 | 0.0 | 0.8457 | 0.7943 | 0.7189 | 0.8602 | 0.4321 | 0.6575 | 0.3613 | 0.0 |
| 0.1631 | 19.27 | 1580 | 0.2335 | 0.5543 | 0.6887 | 0.8983 | 0.9767 | 0.0 | 0.9741 | 0.8444 | 0.8350 | 0.9533 | 0.5018 | 0.6999 | 0.4135 | nan | 0.9555 | 0.0 | 0.8328 | 0.7923 | 0.7482 | 0.8629 | 0.4291 | 0.6299 | 0.2924 | 0.0 |
| 0.4344 | 19.51 | 1600 | 0.2087 | 0.5602 | 0.6987 | 0.9025 | 0.9797 | 0.0 | 0.9657 | 0.8446 | 0.8997 | 0.9404 | 0.4632 | 0.7297 | 0.4654 | nan | 0.9533 | 0.0 | 0.8205 | 0.7975 | 0.7871 | 0.8685 | 0.4160 | 0.6058 | 0.3531 | 0.0 |
| 0.0956 | 19.76 | 1620 | 0.2287 | 0.5574 | 0.6894 | 0.9007 | 0.9774 | 0.0 | 0.9667 | 0.8465 | 0.8975 | 0.9511 | 0.4834 | 0.8058 | 0.2760 | nan | 0.9546 | 0.0 | 0.8582 | 0.7967 | 0.7856 | 0.8517 | 0.4333 | 0.6646 | 0.2291 | 0.0 |
| 0.1634 | 20.0 | 1640 | 0.2126 | 0.5576 | 0.6997 | 0.9003 | 0.9725 | 0.0 | 0.9783 | 0.8538 | 0.8832 | 0.9374 | 0.4600 | 0.7096 | 0.5020 | nan | 0.9523 | 0.0 | 0.8042 | 0.7903 | 0.7842 | 0.8664 | 0.4073 | 0.5994 | 0.3719 | 0.0 |
| 0.1048 | 20.24 | 1660 | 0.2254 | 0.5588 | 0.6831 | 0.9017 | 0.9784 | 0.0 | 0.9590 | 0.8543 | 0.8564 | 0.9646 | 0.4542 | 0.7924 | 0.2885 | nan | 0.9534 | 0.0 | 0.8616 | 0.7995 | 0.7886 | 0.8552 | 0.4168 | 0.6842 | 0.2289 | 0.0 |
| 0.1636 | 20.49 | 1680 | 0.2063 | 0.5713 | 0.7097 | 0.9046 | 0.9746 | 0.0 | 0.9741 | 0.8597 | 0.8250 | 0.9483 | 0.5023 | 0.7629 | 0.5409 | nan | 0.9537 | 0.0 | 0.8468 | 0.7972 | 0.7660 | 0.8728 | 0.4351 | 0.6817 | 0.3597 | 0.0 |
| 0.0753 | 20.73 | 1700 | 0.2005 | 0.5738 | 0.7122 | 0.9053 | 0.9742 | 0.0 | 0.9762 | 0.8687 | 0.8586 | 0.9470 | 0.5485 | 0.7920 | 0.4442 | nan | 0.9536 | 0.0 | 0.8456 | 0.8049 | 0.7854 | 0.8662 | 0.4710 | 0.6828 | 0.3289 | 0.0 |
| 0.1346 | 20.98 | 1720 | 0.1977 | 0.5762 | 0.7246 | 0.9065 | 0.9759 | 0.0 | 0.9775 | 0.8651 | 0.8993 | 0.9239 | 0.5007 | 0.7995 | 0.5794 | nan | 0.9548 | 0.0 | 0.8379 | 0.7961 | 0.7913 | 0.8679 | 0.4392 | 0.6660 | 0.4089 | 0.0 |
| 0.1527 | 21.22 | 1740 | 0.2123 | 0.5662 | 0.7087 | 0.9025 | 0.9759 | 0.0002 | 0.9621 | 0.8524 | 0.9264 | 0.9353 | 0.5505 | 0.7677 | 0.4078 | nan | 0.9542 | 0.0002 | 0.8533 | 0.7906 | 0.7497 | 0.8610 | 0.4724 | 0.6514 | 0.3290 | 0.0 |
| 0.1149 | 21.46 | 1760 | 0.2262 | 0.5623 | 0.6926 | 0.9003 | 0.9734 | 0.0 | 0.9632 | 0.8380 | 0.8228 | 0.9623 | 0.5167 | 0.7898 | 0.3669 | nan | 0.9523 | 0.0 | 0.8536 | 0.7847 | 0.7638 | 0.8602 | 0.4552 | 0.6804 | 0.2725 | 0.0 |
| 0.3336 | 21.71 | 1780 | 0.2176 | 0.5647 | 0.7053 | 0.9023 | 0.9713 | 0.0003 | 0.9803 | 0.8546 | 0.8731 | 0.9426 | 0.4990 | 0.7902 | 0.4361 | nan | 0.9543 | 0.0003 | 0.8273 | 0.7953 | 0.7841 | 0.8632 | 0.4397 | 0.6565 | 0.3267 | 0.0 |
| 0.0924 | 21.95 | 1800 | 0.2271 | 0.5608 | 0.6933 | 0.9011 | 0.9834 | 0.0 | 0.9709 | 0.8338 | 0.8657 | 0.9472 | 0.4902 | 0.7430 | 0.4059 | nan | 0.9577 | 0.0 | 0.8354 | 0.7946 | 0.7788 | 0.8591 | 0.4359 | 0.6520 | 0.2945 | 0.0 |
| 0.256 | 22.2 | 1820 | 0.2140 | 0.5659 | 0.7010 | 0.9038 | 0.9820 | 0.0 | 0.9697 | 0.8401 | 0.9119 | 0.9435 | 0.5189 | 0.7867 | 0.3560 | nan | 0.9560 | 0.0 | 0.8462 | 0.7987 | 0.8078 | 0.8582 | 0.4515 | 0.6594 | 0.2817 | 0.0 |
| 0.202 | 22.44 | 1840 | 0.2358 | 0.5589 | 0.6907 | 0.9001 | 0.9766 | 0.0 | 0.9760 | 0.8359 | 0.8945 | 0.9526 | 0.5406 | 0.7420 | 0.2981 | nan | 0.9553 | 0.0 | 0.8391 | 0.7915 | 0.7924 | 0.8522 | 0.4572 | 0.6613 | 0.2397 | 0.0 |
| 0.1456 | 22.68 | 1860 | 0.2115 | 0.5669 | 0.7125 | 0.9016 | 0.9762 | 0.0 | 0.9801 | 0.8582 | 0.8871 | 0.9267 | 0.5130 | 0.8054 | 0.4657 | nan | 0.9556 | 0.0 | 0.8310 | 0.8008 | 0.7886 | 0.8585 | 0.4425 | 0.6588 | 0.3335 | 0.0 |
| 0.1198 | 22.93 | 1880 | 0.2233 | 0.5631 | 0.6997 | 0.9020 | 0.9745 | 0.0 | 0.9731 | 0.8563 | 0.9047 | 0.9484 | 0.5580 | 0.7858 | 0.2967 | nan | 0.9529 | 0.0 | 0.8405 | 0.8011 | 0.7914 | 0.8561 | 0.4715 | 0.6652 | 0.2520 | 0.0 |
| 0.0804 | 23.17 | 1900 | 0.2075 | 0.5719 | 0.7090 | 0.9047 | 0.9791 | 0.0 | 0.9686 | 0.8542 | 0.8664 | 0.9434 | 0.5174 | 0.7723 | 0.4800 | nan | 0.9552 | 0.0 | 0.8456 | 0.7995 | 0.7842 | 0.8636 | 0.4512 | 0.6765 | 0.3429 | 0.0 |
| 0.0779 | 23.41 | 1920 | 0.2217 | 0.5630 | 0.7025 | 0.9007 | 0.9736 | 0.0001 | 0.9774 | 0.8596 | 0.8837 | 0.9422 | 0.5470 | 0.7558 | 0.3832 | nan | 0.9544 | 0.0001 | 0.8258 | 0.7991 | 0.7705 | 0.8559 | 0.4602 | 0.6611 | 0.3032 | 0.0 |
| 0.1159 | 23.66 | 1940 | 0.2122 | 0.5690 | 0.7134 | 0.9030 | 0.9772 | 0.0002 | 0.9767 | 0.8574 | 0.8913 | 0.9275 | 0.4955 | 0.7959 | 0.4990 | nan | 0.9538 | 0.0002 | 0.8307 | 0.8004 | 0.7766 | 0.8612 | 0.4343 | 0.6650 | 0.3683 | 0.0 |
| 0.1 | 23.9 | 1960 | 0.1988 | 0.5762 | 0.7116 | 0.9078 | 0.9834 | 0.0 | 0.9523 | 0.8439 | 0.8919 | 0.9463 | 0.5231 | 0.8031 | 0.4608 | nan | 0.9543 | 0.0 | 0.8620 | 0.7983 | 0.7991 | 0.8662 | 0.4611 | 0.6719 | 0.3492 | 0.0 |
| 0.1052 | 24.15 | 1980 | 0.2147 | 0.5672 | 0.7012 | 0.9048 | 0.9778 | 0.0 | 0.9704 | 0.8441 | 0.8915 | 0.9499 | 0.5004 | 0.7622 | 0.4146 | nan | 0.9550 | 0.0 | 0.8396 | 0.7916 | 0.8009 | 0.8624 | 0.4403 | 0.6608 | 0.3219 | 0.0 |
| 0.1478 | 24.39 | 2000 | 0.2206 | 0.5638 | 0.6950 | 0.9040 | 0.9815 | 0.0 | 0.9657 | 0.8313 | 0.8904 | 0.9530 | 0.4869 | 0.7536 | 0.3929 | nan | 0.9557 | 0.0 | 0.8433 | 0.7884 | 0.7959 | 0.8606 | 0.4347 | 0.6515 | 0.3081 | 0.0 |
| 0.1752 | 24.63 | 2020 | 0.2048 | 0.5700 | 0.7085 | 0.9058 | 0.9793 | 0.0 | 0.9668 | 0.8566 | 0.9095 | 0.9430 | 0.5319 | 0.7519 | 0.4372 | nan | 0.9535 | 0.0 | 0.8458 | 0.7987 | 0.7801 | 0.8670 | 0.4597 | 0.6460 | 0.3492 | 0.0 |
| 0.0451 | 24.88 | 2040 | 0.2171 | 0.5666 | 0.7053 | 0.9025 | 0.9799 | 0.0 | 0.9748 | 0.8552 | 0.8761 | 0.9405 | 0.5371 | 0.7711 | 0.4131 | nan | 0.9545 | 0.0 | 0.8309 | 0.8008 | 0.7878 | 0.8586 | 0.4534 | 0.6644 | 0.3154 | 0.0 |
| 0.4243 | 25.12 | 2060 | 0.2341 | 0.5595 | 0.6916 | 0.8999 | 0.9746 | 0.0 | 0.9764 | 0.8444 | 0.8887 | 0.9491 | 0.4996 | 0.7703 | 0.3211 | nan | 0.9515 | 0.0 | 0.8327 | 0.7956 | 0.7984 | 0.8537 | 0.4397 | 0.6689 | 0.2545 | 0.0 |
| 0.0585 | 25.37 | 2080 | 0.2213 | 0.5660 | 0.7007 | 0.9033 | 0.9820 | 0.0 | 0.9652 | 0.8551 | 0.9015 | 0.9435 | 0.5187 | 0.7915 | 0.3485 | nan | 0.9542 | 0.0 | 0.8466 | 0.8024 | 0.7984 | 0.8564 | 0.4574 | 0.6699 | 0.2748 | 0.0 |
| 0.2001 | 25.61 | 2100 | 0.2246 | 0.5644 | 0.7026 | 0.9009 | 0.9783 | 0.0 | 0.9724 | 0.8691 | 0.8753 | 0.9397 | 0.5349 | 0.7871 | 0.3667 | nan | 0.9539 | 0.0 | 0.8358 | 0.8023 | 0.7863 | 0.8541 | 0.4617 | 0.6681 | 0.2817 | 0.0 |
| 0.0681 | 25.85 | 2120 | 0.2243 | 0.5653 | 0.7001 | 0.9033 | 0.9774 | 0.0071 | 0.9602 | 0.8607 | 0.8942 | 0.9492 | 0.5104 | 0.8085 | 0.3328 | nan | 0.9538 | 0.0071 | 0.8526 | 0.7975 | 0.7950 | 0.8573 | 0.4517 | 0.6706 | 0.2679 | 0.0 |
| 0.3011 | 26.1 | 2140 | 0.2142 | 0.5695 | 0.7099 | 0.9029 | 0.9755 | 0.0022 | 0.9730 | 0.8624 | 0.8863 | 0.9383 | 0.5417 | 0.7982 | 0.4115 | nan | 0.9541 | 0.0021 | 0.8424 | 0.8006 | 0.7913 | 0.8590 | 0.4633 | 0.6755 | 0.3067 | 0.0 |
| 0.1124 | 26.34 | 2160 | 0.2134 | 0.5678 | 0.7069 | 0.9014 | 0.9740 | 0.0097 | 0.9692 | 0.8475 | 0.8710 | 0.9399 | 0.5086 | 0.8119 | 0.4309 | nan | 0.9526 | 0.0097 | 0.8497 | 0.7935 | 0.7773 | 0.8598 | 0.4480 | 0.6745 | 0.3125 | 0.0 |
| 0.2631 | 26.59 | 2180 | 0.2171 | 0.5685 | 0.7043 | 0.9042 | 0.9764 | 0.0165 | 0.9626 | 0.8486 | 0.8985 | 0.9481 | 0.5077 | 0.8124 | 0.3682 | nan | 0.9540 | 0.0164 | 0.8554 | 0.7937 | 0.7880 | 0.8606 | 0.4499 | 0.6734 | 0.2935 | 0.0 |
| 0.0783 | 26.83 | 2200 | 0.2094 | 0.5699 | 0.7120 | 0.9031 | 0.9788 | 0.0 | 0.9649 | 0.8464 | 0.9089 | 0.9335 | 0.5525 | 0.8184 | 0.4045 | nan | 0.9525 | 0.0 | 0.8521 | 0.7966 | 0.7837 | 0.8604 | 0.4736 | 0.6675 | 0.3123 | 0.0 |
| 0.0412 | 27.07 | 2220 | 0.2115 | 0.5688 | 0.7096 | 0.9041 | 0.9772 | 0.0057 | 0.9679 | 0.8448 | 0.8925 | 0.9363 | 0.4727 | 0.8228 | 0.4667 | nan | 0.9545 | 0.0057 | 0.8544 | 0.7909 | 0.7903 | 0.8633 | 0.4230 | 0.6677 | 0.3380 | 0.0 |
| 0.096 | 27.32 | 2240 | 0.2224 | 0.5626 | 0.6939 | 0.9029 | 0.9788 | 0.0 | 0.9699 | 0.8440 | 0.8945 | 0.9502 | 0.4758 | 0.7877 | 0.3443 | nan | 0.9551 | 0.0 | 0.8461 | 0.7956 | 0.7958 | 0.8576 | 0.4303 | 0.6747 | 0.2704 | 0.0 |
| 0.1542 | 27.56 | 2260 | 0.2251 | 0.5646 | 0.6958 | 0.9027 | 0.9755 | 0.0040 | 0.9674 | 0.8465 | 0.9004 | 0.9548 | 0.5310 | 0.7762 | 0.3064 | nan | 0.9531 | 0.0040 | 0.8489 | 0.7935 | 0.7997 | 0.8566 | 0.4623 | 0.6790 | 0.2493 | 0.0 |
| 0.2322 | 27.8 | 2280 | 0.2243 | 0.5641 | 0.6943 | 0.9029 | 0.9739 | 0.0024 | 0.9733 | 0.8549 | 0.8847 | 0.9570 | 0.5096 | 0.7569 | 0.3360 | nan | 0.9533 | 0.0024 | 0.8427 | 0.7961 | 0.7998 | 0.8584 | 0.4475 | 0.6741 | 0.2668 | 0.0 |
| 0.1025 | 28.05 | 2300 | 0.2217 | 0.5665 | 0.7022 | 0.9034 | 0.9726 | 0.0077 | 0.9750 | 0.8541 | 0.9116 | 0.9503 | 0.5514 | 0.7723 | 0.3243 | nan | 0.9519 | 0.0077 | 0.8415 | 0.7960 | 0.7986 | 0.8598 | 0.4700 | 0.6711 | 0.2689 | 0.0 |
| 0.1405 | 28.29 | 2320 | 0.2244 | 0.5680 | 0.7009 | 0.9042 | 0.9761 | 0.0087 | 0.9650 | 0.8600 | 0.8864 | 0.9543 | 0.5317 | 0.7668 | 0.3590 | nan | 0.9539 | 0.0087 | 0.8512 | 0.7963 | 0.7881 | 0.8603 | 0.4623 | 0.6746 | 0.2846 | 0.0 |
| 0.1002 | 28.54 | 2340 | 0.2165 | 0.5682 | 0.7088 | 0.9031 | 0.9742 | 0.0035 | 0.9769 | 0.8598 | 0.8865 | 0.9408 | 0.5402 | 0.7832 | 0.4139 | nan | 0.9535 | 0.0035 | 0.8365 | 0.7943 | 0.7853 | 0.8610 | 0.4612 | 0.6691 | 0.3179 | 0.0 |
| 0.0803 | 28.78 | 2360 | 0.2233 | 0.5655 | 0.7000 | 0.9019 | 0.9759 | 0.0059 | 0.9706 | 0.8529 | 0.8577 | 0.9497 | 0.5112 | 0.7560 | 0.4199 | nan | 0.9541 | 0.0059 | 0.8452 | 0.7923 | 0.7727 | 0.8604 | 0.4468 | 0.6716 | 0.3062 | 0.0 |
| 0.1149 | 29.02 | 2380 | 0.2215 | 0.5663 | 0.7008 | 0.9027 | 0.9749 | 0.0078 | 0.9712 | 0.8512 | 0.8789 | 0.9503 | 0.5218 | 0.7721 | 0.3787 | nan | 0.9534 | 0.0078 | 0.8440 | 0.7935 | 0.7823 | 0.8596 | 0.4542 | 0.6740 | 0.2941 | 0.0 |
| 0.0773 | 29.27 | 2400 | 0.2228 | 0.5675 | 0.7068 | 0.9027 | 0.9762 | 0.0070 | 0.9763 | 0.8517 | 0.8750 | 0.9405 | 0.5117 | 0.7937 | 0.4288 | nan | 0.9547 | 0.0070 | 0.8381 | 0.7930 | 0.7838 | 0.8606 | 0.4480 | 0.6735 | 0.3166 | 0.0 |
| 0.1085 | 29.51 | 2420 | 0.2225 | 0.5650 | 0.6974 | 0.9033 | 0.9811 | 0.0 | 0.9693 | 0.8404 | 0.8858 | 0.9493 | 0.5061 | 0.7632 | 0.3816 | nan | 0.9550 | 0.0 | 0.8423 | 0.7940 | 0.7873 | 0.8597 | 0.4464 | 0.6708 | 0.2944 | 0.0 |
| 0.0874 | 29.76 | 2440 | 0.2147 | 0.5680 | 0.7047 | 0.9033 | 0.9776 | 0.0012 | 0.9709 | 0.8514 | 0.8785 | 0.9432 | 0.5078 | 0.7886 | 0.4235 | nan | 0.9536 | 0.0012 | 0.8450 | 0.7948 | 0.7865 | 0.8610 | 0.4482 | 0.6751 | 0.3149 | 0.0 |
| 0.1308 | 30.0 | 2460 | 0.2172 | 0.5684 | 0.7041 | 0.9037 | 0.9782 | 0.0031 | 0.9694 | 0.8474 | 0.8818 | 0.9453 | 0.5085 | 0.7910 | 0.4118 | nan | 0.9541 | 0.0031 | 0.8472 | 0.7939 | 0.7881 | 0.8610 | 0.4506 | 0.6761 | 0.3104 | 0.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
| [
"water",
"whitewater",
"sand",
"rocky_terrain",
"agricultural",
"vegetation",
"road",
"development",
"other_natural_terrain",
"unknown"
] |
unreal-hug/segformer-b0-finetuned-segments-ECHO-dev-01-v1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-ECHO-dev-01-v1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the unreal-hug/SYNTH_DATASET_SEG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1147
- Mean Iou: 0.7718
- Mean Accuracy: 0.9647
- Overall Accuracy: 0.9651
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.9592
- Accuracy Lr: 0.9722
- Accuracy Ra: 0.9540
- Accuracy La: 0.9733
- Iou Unlabeled: 0.0
- Iou Lv: 0.9592
- Iou Lr: 0.9722
- Iou Ra: 0.9540
- Iou La: 0.9733
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Lr | Accuracy Ra | Accuracy La | Iou Unlabeled | Iou Lv | Iou Lr | Iou Ra | Iou La |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|
| 0.9325 | 2.5 | 20 | 1.3095 | 0.4524 | 0.7068 | 0.7433 | nan | 0.9170 | 0.8666 | 0.2895 | 0.7542 | 0.0 | 0.7498 | 0.6467 | 0.2538 | 0.6116 |
| 0.6633 | 5.0 | 40 | 0.7431 | 0.6359 | 0.8411 | 0.8600 | nan | 0.9559 | 0.9196 | 0.6304 | 0.8583 | 0.0 | 0.8810 | 0.8526 | 0.6270 | 0.8191 |
| 0.5492 | 7.5 | 60 | 0.4682 | 0.7583 | 0.9515 | 0.9548 | nan | 0.9702 | 0.9610 | 0.9452 | 0.9295 | 0.0 | 0.9630 | 0.9610 | 0.9380 | 0.9295 |
| 0.5418 | 10.0 | 80 | 0.3925 | 0.7453 | 0.9323 | 0.9367 | nan | 0.9520 | 0.9515 | 0.9050 | 0.9206 | 0.0 | 0.9509 | 0.9515 | 0.9036 | 0.9206 |
| 0.3586 | 12.5 | 100 | 0.3216 | 0.7612 | 0.9515 | 0.9561 | nan | 0.9594 | 0.9767 | 0.9359 | 0.9340 | 0.0 | 0.9594 | 0.9767 | 0.9359 | 0.9340 |
| 0.2943 | 15.0 | 120 | 0.2719 | 0.7615 | 0.9518 | 0.9541 | nan | 0.9480 | 0.9691 | 0.9413 | 0.9490 | 0.0 | 0.9480 | 0.9691 | 0.9413 | 0.9490 |
| 0.3039 | 17.5 | 140 | 0.2505 | 0.7765 | 0.9763 | 0.9743 | nan | 0.9742 | 0.9650 | 0.9799 | 0.9861 | 0.0 | 0.9742 | 0.9650 | 0.9572 | 0.9861 |
| 0.2639 | 20.0 | 160 | 0.2208 | 0.7743 | 0.9679 | 0.9690 | nan | 0.9676 | 0.9784 | 0.9477 | 0.9778 | 0.0 | 0.9676 | 0.9784 | 0.9477 | 0.9778 |
| 0.2252 | 22.5 | 180 | 0.1928 | 0.7710 | 0.9637 | 0.9655 | nan | 0.9618 | 0.9784 | 0.9483 | 0.9664 | 0.0 | 0.9618 | 0.9784 | 0.9483 | 0.9664 |
| 0.1816 | 25.0 | 200 | 0.1756 | 0.7690 | 0.9612 | 0.9619 | nan | 0.9574 | 0.9696 | 0.9501 | 0.9679 | 0.0 | 0.9574 | 0.9696 | 0.9501 | 0.9679 |
| 0.1676 | 27.5 | 220 | 0.1556 | 0.7610 | 0.9513 | 0.9541 | nan | 0.9483 | 0.9721 | 0.9387 | 0.9460 | 0.0 | 0.9483 | 0.9721 | 0.9387 | 0.9460 |
| 0.1833 | 30.0 | 240 | 0.1468 | 0.7786 | 0.9733 | 0.9742 | nan | 0.9669 | 0.9837 | 0.9639 | 0.9786 | 0.0 | 0.9669 | 0.9837 | 0.9639 | 0.9786 |
| 0.1487 | 32.5 | 260 | 0.1367 | 0.7708 | 0.9635 | 0.9649 | nan | 0.9580 | 0.9776 | 0.9479 | 0.9705 | 0.0 | 0.9580 | 0.9776 | 0.9479 | 0.9705 |
| 0.1482 | 35.0 | 280 | 0.1320 | 0.7712 | 0.9641 | 0.9655 | nan | 0.9576 | 0.9779 | 0.9555 | 0.9653 | 0.0 | 0.9576 | 0.9779 | 0.9555 | 0.9653 |
| 0.1412 | 37.5 | 300 | 0.1241 | 0.7763 | 0.9704 | 0.9706 | nan | 0.9696 | 0.9738 | 0.9590 | 0.9791 | 0.0 | 0.9696 | 0.9738 | 0.9590 | 0.9791 |
| 0.1282 | 40.0 | 320 | 0.1213 | 0.7724 | 0.9655 | 0.9665 | nan | 0.9588 | 0.9778 | 0.9512 | 0.9742 | 0.0 | 0.9588 | 0.9778 | 0.9512 | 0.9742 |
| 0.133 | 42.5 | 340 | 0.1155 | 0.7745 | 0.9681 | 0.9686 | nan | 0.9640 | 0.9752 | 0.9580 | 0.9751 | 0.0 | 0.9640 | 0.9752 | 0.9580 | 0.9751 |
| 0.1172 | 45.0 | 360 | 0.1178 | 0.7673 | 0.9603 | 0.9607 | nan | 0.9562 | 0.9665 | 0.9510 | 0.9676 | 0.0 | 0.9562 | 0.9665 | 0.9460 | 0.9676 |
| 0.1469 | 47.5 | 380 | 0.1138 | 0.7734 | 0.9668 | 0.9673 | nan | 0.9629 | 0.9743 | 0.9545 | 0.9753 | 0.0 | 0.9629 | 0.9743 | 0.9545 | 0.9753 |
| 0.1247 | 50.0 | 400 | 0.1147 | 0.7718 | 0.9647 | 0.9651 | nan | 0.9592 | 0.9722 | 0.9540 | 0.9733 | 0.0 | 0.9592 | 0.9722 | 0.9540 | 0.9733 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"lv",
"lr",
"ra",
"la"
] |
jinhong426/test |
# Mask2Former
Mask2Former model trained on COCO panoptic segmentation (large-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation
](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/).
Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA,
[MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without
without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks.

## Intended uses & limitations
You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
import torch
from PIL import Image
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
# load Mask2Former fine-tuned on COCO panoptic segmentation
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-coco-panoptic")
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-coco-panoptic")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to processor for postprocessing
result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
# we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs)
predicted_panoptic_map = result["segmentation"]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former). | [
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
"banner",
"blanket",
"bridge",
"cardboard",
"counter",
"curtain",
"door-stuff",
"floor-wood",
"flower",
"fruit",
"gravel",
"house",
"light",
"mirror-stuff",
"net",
"pillow",
"platform",
"playingfield",
"railroad",
"river",
"road",
"roof",
"sand",
"sea",
"shelf",
"snow",
"stairs",
"tent",
"towel",
"wall-brick",
"wall-stone",
"wall-tile",
"wall-wood",
"water-other",
"window-blind",
"window-other",
"tree-merged",
"fence-merged",
"ceiling-merged",
"sky-other-merged",
"cabinet-merged",
"table-merged",
"floor-other-merged",
"pavement-merged",
"mountain-merged",
"grass-merged",
"dirt-merged",
"paper-merged",
"food-other-merged",
"building-other-merged",
"rock-merged",
"wall-other-merged",
"rug-merged"
] |
unreal-hug/segformer-b0-finetuned-segments-ECHO-dev-05-v1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-ECHO-dev-05-v1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the unreal-hug/REAL_DATASET_SEG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4592
- Mean Iou: 0.3826
- Mean Accuracy: 0.5892
- Overall Accuracy: 0.5467
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.7143
- Accuracy Lr: 0.4323
- Accuracy Ra: 0.7629
- Accuracy La: 0.4472
- Iou Unlabeled: 0.0
- Iou Lv: 0.7065
- Iou Lr: 0.4317
- Iou Ra: 0.4223
- Iou La: 0.3527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Lr | Accuracy Ra | Accuracy La | Iou Unlabeled | Iou Lv | Iou Lr | Iou Ra | Iou La |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|
| 1.1252 | 2.86 | 20 | 1.3259 | 0.1971 | 0.3379 | 0.4375 | nan | 0.0 | 0.6365 | 0.5291 | 0.1860 | 0.0 | 0.0 | 0.4923 | 0.3492 | 0.1439 |
| 0.9104 | 5.71 | 40 | 0.9589 | 0.1818 | 0.3421 | 0.3596 | nan | 0.0145 | 0.3590 | 0.7644 | 0.2304 | 0.0 | 0.0144 | 0.3436 | 0.3778 | 0.1731 |
| 0.7567 | 8.57 | 60 | 0.7761 | 0.2203 | 0.3739 | 0.3852 | nan | 0.0808 | 0.3882 | 0.6422 | 0.3844 | 0.0 | 0.0803 | 0.3778 | 0.4073 | 0.2360 |
| 0.7035 | 11.43 | 80 | 0.7442 | 0.2729 | 0.4718 | 0.4941 | nan | 0.2145 | 0.5077 | 0.8370 | 0.3279 | 0.0 | 0.2134 | 0.4817 | 0.4073 | 0.2619 |
| 0.5781 | 14.29 | 100 | 0.6260 | 0.2876 | 0.4446 | 0.4279 | nan | 0.4235 | 0.3777 | 0.5787 | 0.3986 | 0.0 | 0.3683 | 0.3761 | 0.4063 | 0.2873 |
| 0.5438 | 17.14 | 120 | 0.5559 | 0.3877 | 0.5412 | 0.5761 | nan | 0.5803 | 0.6504 | 0.5190 | 0.4149 | 0.0 | 0.5671 | 0.6193 | 0.4171 | 0.3352 |
| 0.5198 | 20.0 | 140 | 0.5617 | 0.3724 | 0.5617 | 0.5335 | nan | 0.6661 | 0.4532 | 0.7059 | 0.4216 | 0.0 | 0.6419 | 0.4532 | 0.4129 | 0.3540 |
| 0.4435 | 22.86 | 160 | 0.5393 | 0.4160 | 0.6198 | 0.6126 | nan | 0.7555 | 0.5832 | 0.6962 | 0.4442 | 0.0 | 0.7000 | 0.5705 | 0.4873 | 0.3221 |
| 0.5002 | 25.71 | 180 | 0.5126 | 0.4094 | 0.6080 | 0.6043 | nan | 0.6854 | 0.5833 | 0.6945 | 0.4687 | 0.0 | 0.6771 | 0.5761 | 0.4762 | 0.3176 |
| 0.4142 | 28.57 | 200 | 0.4874 | 0.3503 | 0.5361 | 0.4949 | nan | 0.6967 | 0.3895 | 0.6436 | 0.4147 | 0.0 | 0.6287 | 0.3895 | 0.4106 | 0.3228 |
| 0.3092 | 31.43 | 220 | 0.4819 | 0.3857 | 0.6001 | 0.5534 | nan | 0.7296 | 0.4267 | 0.8020 | 0.4423 | 0.0 | 0.7157 | 0.4267 | 0.4266 | 0.3595 |
| 0.2895 | 34.29 | 240 | 0.4969 | 0.3983 | 0.6220 | 0.5809 | nan | 0.7353 | 0.4689 | 0.8050 | 0.4787 | 0.0 | 0.7265 | 0.4677 | 0.4474 | 0.3498 |
| 0.3046 | 37.14 | 260 | 0.4767 | 0.4248 | 0.6412 | 0.6115 | nan | 0.7853 | 0.5270 | 0.7814 | 0.4711 | 0.0 | 0.7712 | 0.5199 | 0.4587 | 0.3742 |
| 0.3514 | 40.0 | 280 | 0.4531 | 0.3978 | 0.5989 | 0.5767 | nan | 0.7112 | 0.5082 | 0.7478 | 0.4282 | 0.0 | 0.6979 | 0.5024 | 0.4353 | 0.3537 |
| 0.2891 | 42.86 | 300 | 0.4629 | 0.3842 | 0.5885 | 0.5488 | nan | 0.7046 | 0.4397 | 0.7693 | 0.4403 | 0.0 | 0.6982 | 0.4366 | 0.4237 | 0.3623 |
| 0.2512 | 45.71 | 320 | 0.4584 | 0.3783 | 0.5794 | 0.5357 | nan | 0.7144 | 0.4199 | 0.7390 | 0.4443 | 0.0 | 0.7016 | 0.4196 | 0.4134 | 0.3568 |
| 0.2695 | 48.57 | 340 | 0.4592 | 0.3826 | 0.5892 | 0.5467 | nan | 0.7143 | 0.4323 | 0.7629 | 0.4472 | 0.0 | 0.7065 | 0.4317 | 0.4223 | 0.3527 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"lv",
"lr",
"ra",
"la"
] |
yolo12138/segformer-b2-human-parse-24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b2-human-parse-24
This model is a fine-tuned version of [mattmdjaga/segformer_b2_clothes](https://huggingface.co/mattmdjaga/segformer_b2_clothes) on the human_parsing_29_mix dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818
- Mean Iou: 0.6023
- Mean Accuracy: 0.6321
- Overall Accuracy: 0.9780
- Accuracy Background: 0.9969
- Accuracy Hat: nan
- Accuracy Hair: 0.9646
- Accuracy Glove: 0.0
- Accuracy Glasses: 0.0
- Accuracy Upper Only Torso Region: 0.9747
- Accuracy Dresses Only Torso Region: 0.4939
- Accuracy Coat Only Torso Region: 0.0039
- Accuracy Socks: 0.0
- Accuracy Left Pants: 0.9604
- Accuracy Right Patns: 0.9646
- Accuracy Skin Around Neck Region: 0.9585
- Accuracy Scarf: nan
- Accuracy Skirts: 0.8904
- Accuracy Face: 0.9796
- Accuracy Left Arm: 0.9703
- Accuracy Right Arm: 0.9700
- Accuracy Left Leg: 0.9267
- Accuracy Right Leg: 0.9297
- Accuracy Left Shoe: 0.0
- Accuracy Right Shoe: 0.0
- Accuracy Left Sleeve For Upper: 0.9462
- Accuracy Right Sleeve For Upper: 0.9517
- Accuracy Bag: 0.0234
- Iou Background: 0.9941
- Iou Hat: nan
- Iou Hair: 0.9268
- Iou Glove: 0.0
- Iou Glasses: 0.0
- Iou Upper Only Torso Region: 0.9351
- Iou Dresses Only Torso Region: 0.4059
- Iou Coat Only Torso Region: 0.0035
- Iou Socks: 0.0
- Iou Left Pants: 0.9232
- Iou Right Patns: 0.9217
- Iou Skin Around Neck Region: 0.9227
- Iou Scarf: nan
- Iou Skirts: 0.7887
- Iou Face: 0.9582
- Iou Left Arm: 0.9436
- Iou Right Arm: 0.9426
- Iou Left Leg: 0.8836
- Iou Right Leg: 0.8767
- Iou Left Shoe: 0.0
- Iou Right Shoe: 0.0
- Iou Left Sleeve For Upper: 0.9005
- Iou Right Sleeve For Upper: 0.9012
- Iou Bag: 0.0232
## Model description
More information needed
```
"id2label": {
"0": "background",
"1": "hat",
"2": "hair",
"3": "glove",
"4": "glasses",
"5": "upper_only_torso_region",
"6": "dresses_only_torso_region",
"7": "coat_only_torso_region",
"8": "socks",
"9": "left_pants",
"10": "right_patns",
"11": "skin_around_neck_region",
"12": "scarf",
"13": "skirts",
"14": "face",
"15": "left_arm",
"16": "right_arm",
"17": "left_leg",
"18": "right_leg",
"19": "left_shoe",
"20": "right_shoe",
"21": "left_sleeve_for_upper",
"22": "right_sleeve_for_upper",
"23": "bag"
}
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Glove | Accuracy Glasses | Accuracy Upper Only Torso Region | Accuracy Dresses Only Torso Region | Accuracy Coat Only Torso Region | Accuracy Socks | Accuracy Left Pants | Accuracy Right Patns | Accuracy Skin Around Neck Region | Accuracy Scarf | Accuracy Skirts | Accuracy Face | Accuracy Left Arm | Accuracy Right Arm | Accuracy Left Leg | Accuracy Right Leg | Accuracy Left Shoe | Accuracy Right Shoe | Accuracy Left Sleeve For Upper | Accuracy Right Sleeve For Upper | Accuracy Bag | Iou Background | Iou Hat | Iou Hair | Iou Glove | Iou Glasses | Iou Upper Only Torso Region | Iou Dresses Only Torso Region | Iou Coat Only Torso Region | Iou Socks | Iou Left Pants | Iou Right Patns | Iou Skin Around Neck Region | Iou Scarf | Iou Skirts | Iou Face | Iou Left Arm | Iou Right Arm | Iou Left Leg | Iou Right Leg | Iou Left Shoe | Iou Right Shoe | Iou Left Sleeve For Upper | Iou Right Sleeve For Upper | Iou Bag |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:--------------:|:----------------:|:--------------------------------:|:----------------------------------:|:-------------------------------:|:--------------:|:-------------------:|:--------------------:|:--------------------------------:|:--------------:|:---------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------------:|:-------------------:|:------------------------------:|:-------------------------------:|:------------:|:--------------:|:-------:|:--------:|:---------:|:-----------:|:---------------------------:|:-----------------------------:|:--------------------------:|:---------:|:--------------:|:---------------:|:---------------------------:|:---------:|:----------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------------------------:|:--------------------------:|:-------:|
| 0.0652 | 1.62 | 1000 | 0.0802 | 0.5857 | 0.6166 | 0.9737 | 0.9963 | nan | 0.9490 | 0.0 | 0.0 | 0.9801 | 0.4034 | 0.0 | 0.0 | 0.9487 | 0.9574 | 0.9272 | nan | 0.8783 | 0.9782 | 0.9628 | 0.9534 | 0.8874 | 0.9012 | 0.0 | 0.0 | 0.9227 | 0.9197 | 0.0 | 0.9926 | nan | 0.9117 | 0.0 | 0.0 | 0.9217 | 0.3541 | 0.0 | 0.0 | 0.9084 | 0.9073 | 0.8963 | nan | 0.7766 | 0.9455 | 0.9210 | 0.9191 | 0.8405 | 0.8496 | 0.0 | 0.0 | 0.8673 | 0.8728 | 0.0 |
| 0.061 | 3.23 | 2000 | 0.0843 | 0.5977 | 0.6335 | 0.9747 | 0.9967 | nan | 0.9580 | 0.0 | 0.0 | 0.9657 | 0.5733 | 0.1504 | 0.0 | 0.9591 | 0.9600 | 0.9497 | nan | 0.8169 | 0.9789 | 0.9667 | 0.9645 | 0.8906 | 0.9165 | 0.0 | 0.0 | 0.9444 | 0.9445 | 0.0003 | 0.9935 | nan | 0.9199 | 0.0 | 0.0 | 0.9273 | 0.4058 | 0.1206 | 0.0 | 0.9131 | 0.9082 | 0.9128 | nan | 0.7330 | 0.9527 | 0.9355 | 0.9343 | 0.8534 | 0.8651 | 0.0 | 0.0 | 0.8860 | 0.8879 | 0.0003 |
| 0.0653 | 4.85 | 3000 | 0.0823 | 0.6000 | 0.6295 | 0.9775 | 0.9967 | nan | 0.9621 | 0.0 | 0.0 | 0.9780 | 0.4991 | 0.0044 | 0.0 | 0.9587 | 0.9649 | 0.9562 | nan | 0.8842 | 0.9769 | 0.9692 | 0.9651 | 0.9198 | 0.9273 | 0.0 | 0.0 | 0.9422 | 0.9415 | 0.0037 | 0.9939 | nan | 0.9247 | 0.0 | 0.0 | 0.9341 | 0.4136 | 0.0042 | 0.0 | 0.9202 | 0.9193 | 0.9193 | nan | 0.7899 | 0.9563 | 0.9403 | 0.9388 | 0.8745 | 0.8741 | 0.0 | 0.0 | 0.8963 | 0.8970 | 0.0037 |
| 0.0402 | 6.46 | 4000 | 0.0818 | 0.6023 | 0.6321 | 0.9780 | 0.9969 | nan | 0.9646 | 0.0 | 0.0 | 0.9747 | 0.4939 | 0.0039 | 0.0 | 0.9604 | 0.9646 | 0.9585 | nan | 0.8904 | 0.9796 | 0.9703 | 0.9700 | 0.9267 | 0.9297 | 0.0 | 0.0 | 0.9462 | 0.9517 | 0.0234 | 0.9941 | nan | 0.9268 | 0.0 | 0.0 | 0.9351 | 0.4059 | 0.0035 | 0.0 | 0.9232 | 0.9217 | 0.9227 | nan | 0.7887 | 0.9582 | 0.9436 | 0.9426 | 0.8836 | 0.8767 | 0.0 | 0.0 | 0.9005 | 0.9012 | 0.0232 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0 | [
"background",
"hat",
"hair",
"glove",
"glasses",
"upper_only_torso_region",
"dresses_only_torso_region",
"coat_only_torso_region",
"socks",
"left_pants",
"right_patns",
"skin_around_neck_region",
"scarf",
"skirts",
"face",
"left_arm",
"right_arm",
"left_leg",
"right_leg",
"left_shoe",
"right_shoe",
"left_sleeve_for_upper",
"right_sleeve_for_upper",
"bag"
] |
sam1120/safety-utcustom-terrain |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-terrain-final
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-terrain-jackal-full-391 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0892
- Mean Iou: 0.7759
- Mean Accuracy: 0.8195
- Overall Accuracy: 0.9811
- Accuracy Unlabeled: nan
- Accuracy Nat: 0.9942
- Accuracy Concrete: 0.9592
- Accuracy Grass: 0.9021
- Accuracy Speedway bricks: 0.9902
- Accuracy Steel: 0.9315
- Accuracy Rough concrete: 0.6330
- Accuracy Dark bricks: 0.8554
- Accuracy Road: 0.9821
- Accuracy Rough red sidewalk: 0.7662
- Accuracy Tiles: 0.2392
- Accuracy Red bricks: 0.9438
- Accuracy Concrete tiles: 0.9536
- Accuracy Rest: 0.5024
- Iou Unlabeled: nan
- Iou Nat: 0.9848
- Iou Concrete: 0.8976
- Iou Grass: 0.8486
- Iou Speedway bricks: 0.9809
- Iou Steel: 0.8822
- Iou Rough concrete: 0.6278
- Iou Dark bricks: 0.8418
- Iou Road: 0.9618
- Iou Rough red sidewalk: 0.6046
- Iou Tiles: 0.2381
- Iou Red bricks: 0.9093
- Iou Concrete tiles: 0.8939
- Iou Rest: 0.4153
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Accuracy Nat | Accuracy Rest | Accuracy Concrete | Accuracy Concrete tiles | Accuracy Dark bricks | Accuracy Grass | Accuracy Red bricks | Accuracy Road | Accuracy Rough concrete | Accuracy Rough red sidewalk | Accuracy Speedway bricks | Accuracy Steel | Accuracy Tiles | Accuracy Unlabeled | Iou Nat | Iou Rest | Iou Concrete | Iou Concrete tiles | Iou Dark bricks | Iou Grass | Iou Red bricks | Iou Road | Iou Rough concrete | Iou Rough red sidewalk | Iou Speedway bricks | Iou Steel | Iou Tiles | Iou Unlabeled | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:------:|:----:|:------------:|:-------------:|:-----------------:|:-----------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-----------------------:|:---------------------------:|:------------------------:|:--------------:|:--------------:|:------------------:|:-------:|:--------:|:------------:|:------------------:|:---------------:|:---------:|:--------------:|:--------:|:------------------:|:----------------------:|:-------------------:|:---------:|:---------:|:-------------:|:---------------:|:-------------:|:--------:|:----------------:|
| 2.51 | 1.18 | 20 | 0.0902 | 0.1772 | 0.2184 | 0.1090 | 0.0127 | 0.0271 | 0.0004 | 0.0071 | 0.0027 | 0.0 | 0.6742 | 0.0008 | 0.2799 | nan | 0.0901 | 0.0000 | 0.0797 | 0.0012 | 0.0031 | 0.0192 | 0.0000 | 0.0068 | 0.0001 | 0.0 | 0.4633 | 0.0007 | 0.0032 | 0.0 | 2.5071 | 0.1230 | 0.0477 | 0.2016 |
| 1.5504 | 2.35 | 40 | 0.7602 | 0.0 | 0.3387 | 0.0079 | 0.0014 | 0.0745 | 0.0 | 0.3332 | 0.0010 | 0.0 | 0.9880 | 0.0 | 0.0088 | nan | 0.7577 | 0.0 | 0.2038 | 0.0003 | 0.0010 | 0.0682 | 0.0 | 0.3127 | 0.0002 | 0.0 | 0.5711 | 0.0 | 0.0008 | 0.0 | 1.8408 | 0.1934 | 0.1368 | 0.6936 |
| 0.6271 | 3.53 | 60 | 0.9551 | 0.0 | 0.8127 | 0.0 | 0.0 | 0.2590 | 0.0 | 0.8979 | 0.0 | 0.0 | 0.9793 | 0.0 | 0.0000 | nan | 0.9405 | 0.0 | 0.5259 | 0.0 | 0.0 | 0.2392 | 0.0 | 0.6993 | 0.0 | 0.0 | 0.8263 | 0.0 | 0.0000 | nan | 0.8083 | 0.3003 | 0.2486 | 0.8894 |
| 0.3963 | 4.71 | 80 | 0.9698 | 0.0 | 0.7973 | 0.0443 | 0.0 | 0.7826 | 0.0 | 0.9651 | 0.0 | 0.0 | 0.9777 | 0.0004 | 0.0 | nan | 0.9532 | 0.0 | 0.6901 | 0.0443 | 0.0 | 0.5632 | 0.0 | 0.7280 | 0.0 | 0.0 | 0.8641 | 0.0004 | 0.0 | nan | 0.4204 | 0.3490 | 0.2956 | 0.9186 |
| 0.3558 | 5.88 | 100 | 0.9806 | 0.0 | 0.9025 | 0.3050 | 0.0 | 0.7816 | 0.0 | 0.9135 | 0.0031 | 0.0 | 0.9632 | 0.2874 | 0.0 | nan | 0.9618 | 0.0 | 0.6868 | 0.3027 | 0.0 | 0.6345 | 0.0 | 0.8305 | 0.0031 | 0.0 | 0.8915 | 0.2804 | 0.0 | nan | 0.3091 | 0.3952 | 0.3532 | 0.9322 |
| 0.2654 | 7.06 | 120 | 0.9793 | 0.0 | 0.8161 | 0.3875 | 0.0 | 0.8487 | 0.0 | 0.9769 | 0.0002 | 0.0009 | 0.9862 | 0.4149 | 0.0 | nan | 0.9636 | 0.0 | 0.7301 | 0.3046 | 0.0 | 0.6491 | 0.0 | 0.7846 | 0.0002 | 0.0009 | 0.9014 | 0.4015 | 0.0 | nan | 0.2554 | 0.4162 | 0.3643 | 0.9363 |
| 0.1938 | 8.24 | 140 | 0.9830 | 0.0 | 0.9010 | 0.6649 | 0.0 | 0.8719 | 0.0 | 0.9517 | 0.1663 | 0.0374 | 0.9779 | 0.6445 | 0.0 | nan | 0.9681 | 0.0 | 0.7740 | 0.1887 | 0.0 | 0.6642 | 0.0 | 0.8746 | 0.1660 | 0.0374 | 0.9354 | 0.5996 | 0.0 | nan | 0.2059 | 0.4768 | 0.4006 | 0.9478 |
| 0.202 | 9.41 | 160 | 0.9873 | 0.0 | 0.8667 | 0.7499 | 0.0282 | 0.8553 | 0.0 | 0.9539 | 0.5565 | 0.1631 | 0.9878 | 0.6794 | 0.0172 | nan | 0.9705 | 0.0 | 0.7775 | 0.2007 | 0.0282 | 0.7107 | 0.0 | 0.9073 | 0.4995 | 0.1493 | 0.9308 | 0.6268 | 0.0166 | nan | 0.1785 | 0.5266 | 0.4475 | 0.9524 |
| 0.174 | 10.59 | 180 | 0.9880 | 0.0 | 0.9067 | 0.7555 | 0.0684 | 0.8559 | 0.0881 | 0.9470 | 0.5194 | 0.4768 | 0.9831 | 0.7462 | 0.0 | nan | 0.9711 | 0.0 | 0.7934 | 0.2110 | 0.0680 | 0.7406 | 0.0881 | 0.9141 | 0.5091 | 0.3846 | 0.9482 | 0.6883 | 0.0 | nan | 0.1571 | 0.5642 | 0.4859 | 0.9572 |
| 0.1317 | 11.76 | 200 | 0.9865 | 0.0 | 0.9250 | 0.7600 | 0.7836 | 0.8949 | 0.1046 | 0.9492 | 0.5791 | 0.5757 | 0.9715 | 0.7851 | 0.0 | nan | 0.9720 | 0.0 | 0.8087 | 0.6147 | 0.7372 | 0.7440 | 0.1044 | 0.9256 | 0.5756 | 0.4397 | 0.9522 | 0.7135 | 0.0 | nan | 0.1391 | 0.6396 | 0.5837 | 0.9632 |
| 0.0915 | 12.94 | 220 | 0.9860 | 0.0 | 0.9262 | 0.7639 | 0.7600 | 0.9003 | 0.5878 | 0.9337 | 0.6388 | 0.5331 | 0.9805 | 0.7937 | 0.0115 | nan | 0.9733 | 0.0 | 0.8116 | 0.6127 | 0.7370 | 0.7638 | 0.5787 | 0.9065 | 0.5673 | 0.4644 | 0.9561 | 0.7260 | 0.0114 | nan | 0.1252 | 0.6781 | 0.6238 | 0.9644 |
| 0.1027 | 14.12 | 240 | 0.9917 | 0.0 | 0.9190 | 0.7523 | 0.7272 | 0.8350 | 0.6341 | 0.9736 | 0.6123 | 0.5560 | 0.9814 | 0.7842 | 0.0590 | nan | 0.9741 | 0.0 | 0.8297 | 0.6982 | 0.7163 | 0.7690 | 0.6251 | 0.9232 | 0.5949 | 0.4768 | 0.9583 | 0.7348 | 0.0588 | nan | 0.1175 | 0.6789 | 0.6430 | 0.9672 |
| 0.1055 | 15.29 | 260 | 0.9881 | 0.0 | 0.9170 | 0.6841 | 0.7566 | 0.8499 | 0.6607 | 0.9807 | 0.6126 | 0.6318 | 0.9881 | 0.7435 | 0.0304 | nan | 0.9746 | 0.0 | 0.8274 | 0.6670 | 0.7390 | 0.7777 | 0.6508 | 0.9133 | 0.5831 | 0.5124 | 0.9579 | 0.7130 | 0.0301 | nan | 0.1139 | 0.6803 | 0.6420 | 0.9669 |
| 0.089 | 16.47 | 280 | 0.9883 | 0.0 | 0.9266 | 0.7338 | 0.7679 | 0.8684 | 0.7259 | 0.9741 | 0.6241 | 0.7053 | 0.9872 | 0.7572 | 0.0675 | nan | 0.9757 | 0.0 | 0.8339 | 0.6869 | 0.7546 | 0.7875 | 0.7145 | 0.9367 | 0.5637 | 0.5270 | 0.9598 | 0.7243 | 0.0665 | nan | 0.1049 | 0.7020 | 0.6562 | 0.9687 |
| 0.0982 | 17.65 | 300 | 0.9932 | 0.0 | 0.9315 | 0.7460 | 0.8016 | 0.8161 | 0.8457 | 0.9702 | 0.6211 | 0.6153 | 0.9799 | 0.8352 | 0.0917 | nan | 0.9753 | 0.0 | 0.8406 | 0.7205 | 0.7828 | 0.7713 | 0.8009 | 0.9369 | 0.5512 | 0.5013 | 0.9641 | 0.7745 | 0.0881 | nan | 0.1024 | 0.7113 | 0.6698 | 0.9696 |
| 0.0787 | 18.82 | 320 | 0.9902 | 0.0 | 0.9380 | 0.7392 | 0.8253 | 0.8625 | 0.8736 | 0.9765 | 0.6109 | 0.7008 | 0.9773 | 0.8889 | 0.1198 | nan | 0.9772 | 0.0 | 0.8491 | 0.6967 | 0.8024 | 0.7964 | 0.8242 | 0.9342 | 0.5884 | 0.5514 | 0.9625 | 0.7733 | 0.1164 | nan | 0.1005 | 0.7310 | 0.6825 | 0.9711 |
| 0.0659 | 20.0 | 340 | 0.9924 | 0.0 | 0.9213 | 0.8308 | 0.8275 | 0.8675 | 0.8678 | 0.9701 | 0.6168 | 0.7045 | 0.9838 | 0.8907 | 0.1436 | nan | 0.9771 | 0.0 | 0.8576 | 0.7540 | 0.8017 | 0.8037 | 0.8045 | 0.9477 | 0.5888 | 0.5288 | 0.9634 | 0.7818 | 0.1388 | nan | 0.0948 | 0.7398 | 0.6883 | 0.9722 |
| 0.0615 | 21.18 | 360 | 0.9914 | 0.0 | 0.9523 | 0.7668 | 0.8173 | 0.8567 | 0.7849 | 0.9601 | 0.6088 | 0.6383 | 0.9756 | 0.8970 | 0.0394 | nan | 0.9766 | 0.0 | 0.8440 | 0.7240 | 0.8007 | 0.7904 | 0.7613 | 0.9455 | 0.6013 | 0.5302 | 0.9648 | 0.7870 | 0.0386 | nan | 0.0998 | 0.7145 | 0.6742 | 0.9711 |
| 0.0671 | 22.35 | 380 | 0.9918 | 0.0 | 0.9463 | 0.7548 | 0.8054 | 0.8489 | 0.8876 | 0.9673 | 0.6129 | 0.7477 | 0.9791 | 0.8704 | 0.1060 | nan | 0.9774 | 0.0 | 0.8497 | 0.7045 | 0.7850 | 0.7915 | 0.8271 | 0.9405 | 0.5940 | 0.5749 | 0.9671 | 0.7935 | 0.1040 | nan | 0.0957 | 0.7322 | 0.6853 | 0.9719 |
| 0.0917 | 23.53 | 400 | 0.9909 | 0.0 | 0.9336 | 0.7850 | 0.8096 | 0.8687 | 0.8738 | 0.9780 | 0.6158 | 0.6849 | 0.9868 | 0.8362 | 0.1046 | nan | 0.9777 | 0.0 | 0.8545 | 0.7320 | 0.7838 | 0.8004 | 0.8380 | 0.9417 | 0.5996 | 0.5411 | 0.9665 | 0.7895 | 0.1043 | nan | 0.0935 | 0.7283 | 0.6869 | 0.9725 |
| 0.0649 | 24.71 | 420 | 0.9925 | 0.0 | 0.9283 | 0.8514 | 0.8465 | 0.8542 | 0.9041 | 0.9788 | 0.6238 | 0.6471 | 0.9883 | 0.8563 | 0.1356 | nan | 0.9783 | 0.0 | 0.8609 | 0.7683 | 0.8168 | 0.8034 | 0.8423 | 0.9410 | 0.6038 | 0.5446 | 0.9664 | 0.7955 | 0.1335 | nan | 0.0880 | 0.7390 | 0.6965 | 0.9733 |
| 0.0648 | 25.88 | 440 | 0.9920 | 0.0 | 0.9411 | 0.8344 | 0.8282 | 0.8705 | 0.8488 | 0.9759 | 0.6163 | 0.7026 | 0.9870 | 0.8342 | 0.1031 | nan | 0.9789 | 0.0 | 0.8594 | 0.7905 | 0.8074 | 0.8149 | 0.8212 | 0.9523 | 0.5988 | 0.5236 | 0.9685 | 0.7926 | 0.1028 | nan | 0.0886 | 0.7334 | 0.6931 | 0.9739 |
| 0.0633 | 27.06 | 460 | 0.9913 | 0.0 | 0.9298 | 0.8931 | 0.8600 | 0.8680 | 0.9230 | 0.9770 | 0.6187 | 0.7837 | 0.9905 | 0.8313 | 0.1321 | nan | 0.9785 | 0.0 | 0.8658 | 0.7637 | 0.8113 | 0.8027 | 0.8376 | 0.9457 | 0.6000 | 0.6097 | 0.9674 | 0.7922 | 0.1316 | nan | 0.0885 | 0.7537 | 0.7005 | 0.9739 |
| 0.0504 | 28.24 | 480 | 0.9911 | 0.0 | 0.9332 | 0.8848 | 0.8469 | 0.8925 | 0.9045 | 0.9779 | 0.6205 | 0.7196 | 0.9882 | 0.8626 | 0.1751 | nan | 0.9790 | 0.0 | 0.8676 | 0.7879 | 0.8161 | 0.8156 | 0.8464 | 0.9503 | 0.5961 | 0.5367 | 0.9697 | 0.8085 | 0.1739 | nan | 0.0862 | 0.7536 | 0.7037 | 0.9746 |
| 0.0603 | 29.41 | 500 | 0.9932 | 0.0 | 0.9429 | 0.8191 | 0.8274 | 0.8523 | 0.8900 | 0.9719 | 0.6164 | 0.7170 | 0.9858 | 0.8697 | 0.1381 | nan | 0.9783 | 0.0 | 0.8635 | 0.7952 | 0.8105 | 0.8027 | 0.8526 | 0.9460 | 0.6043 | 0.5907 | 0.9711 | 0.8125 | 0.1370 | nan | 0.0885 | 0.7403 | 0.7050 | 0.9743 |
| 0.0447 | 30.59 | 520 | 0.9902 | 0.0 | 0.9484 | 0.8591 | 0.8759 | 0.8866 | 0.9197 | 0.9788 | 0.6183 | 0.7369 | 0.9854 | 0.8896 | 0.2666 | nan | 0.9795 | 0.0 | 0.8699 | 0.8193 | 0.8352 | 0.8187 | 0.8540 | 0.9470 | 0.6008 | 0.5913 | 0.9714 | 0.8157 | 0.2453 | nan | 0.0824 | 0.7658 | 0.7191 | 0.9753 |
| 0.0517 | 31.76 | 540 | 0.9910 | 0.0 | 0.9372 | 0.8937 | 0.8920 | 0.8815 | 0.9331 | 0.9784 | 0.6245 | 0.8062 | 0.9904 | 0.8431 | 0.3040 | nan | 0.9799 | 0.0 | 0.8732 | 0.8217 | 0.8341 | 0.8191 | 0.8354 | 0.9495 | 0.6024 | 0.5985 | 0.9702 | 0.8045 | 0.2819 | nan | 0.0807 | 0.7750 | 0.7208 | 0.9755 |
| 0.0512 | 32.94 | 560 | 0.9934 | 0.0 | 0.9411 | 0.8627 | 0.7835 | 0.8619 | 0.8360 | 0.9789 | 0.6166 | 0.7804 | 0.9853 | 0.8938 | 0.1282 | nan | 0.9793 | 0.0 | 0.8740 | 0.8110 | 0.7669 | 0.8082 | 0.8223 | 0.9476 | 0.6077 | 0.6209 | 0.9704 | 0.8202 | 0.1262 | nan | 0.0856 | 0.7432 | 0.7042 | 0.9752 |
| 0.0474 | 34.12 | 580 | 0.9925 | 0.0 | 0.9511 | 0.8677 | 0.8661 | 0.8697 | 0.8806 | 0.9743 | 0.6254 | 0.7290 | 0.9838 | 0.8987 | 0.2127 | nan | 0.9795 | 0.0 | 0.8724 | 0.8249 | 0.8305 | 0.8163 | 0.8461 | 0.9532 | 0.5900 | 0.6061 | 0.9724 | 0.8224 | 0.2101 | nan | 0.0796 | 0.7578 | 0.7172 | 0.9758 |
| 0.0471 | 35.29 | 600 | 0.9922 | 0.0 | 0.9352 | 0.9168 | 0.8880 | 0.8596 | 0.9220 | 0.9797 | 0.6205 | 0.8090 | 0.9876 | 0.8911 | 0.4564 | nan | 0.9789 | 0.0 | 0.8785 | 0.8174 | 0.8203 | 0.8034 | 0.8567 | 0.9530 | 0.6048 | 0.5828 | 0.9728 | 0.8208 | 0.4101 | nan | 0.0815 | 0.7891 | 0.7307 | 0.9757 |
| 0.0522 | 36.47 | 620 | 0.9943 | 0.0 | 0.9353 | 0.8650 | 0.8185 | 0.8543 | 0.8783 | 0.9783 | 0.6238 | 0.7479 | 0.9850 | 0.9008 | 0.1075 | nan | 0.9786 | 0.0 | 0.8728 | 0.8187 | 0.7978 | 0.8036 | 0.8519 | 0.9475 | 0.6092 | 0.6031 | 0.9727 | 0.8254 | 0.1075 | nan | 0.0846 | 0.7453 | 0.7068 | 0.9752 |
| 0.043 | 37.65 | 640 | 0.9938 | 0.0 | 0.9391 | 0.9101 | 0.8167 | 0.8672 | 0.9004 | 0.9800 | 0.6179 | 0.7609 | 0.9853 | 0.9130 | 0.1707 | nan | 0.9796 | 0.0 | 0.8763 | 0.8325 | 0.7965 | 0.8145 | 0.8582 | 0.9520 | 0.6101 | 0.6211 | 0.9728 | 0.8251 | 0.1693 | nan | 0.0813 | 0.7581 | 0.7160 | 0.9761 |
| 0.0429 | 38.82 | 660 | 0.9931 | 0.0 | 0.9416 | 0.8665 | 0.8163 | 0.8894 | 0.9095 | 0.9792 | 0.6195 | 0.7703 | 0.9876 | 0.8956 | 0.1931 | nan | 0.9804 | 0.0 | 0.8790 | 0.8424 | 0.7970 | 0.8264 | 0.8589 | 0.9544 | 0.6086 | 0.6180 | 0.9729 | 0.8282 | 0.1904 | nan | 0.0792 | 0.7586 | 0.7197 | 0.9768 |
| 0.0506 | 40.0 | 680 | 0.9916 | 0.0 | 0.9474 | 0.8906 | 0.8488 | 0.8903 | 0.8936 | 0.9796 | 0.6164 | 0.7507 | 0.9894 | 0.8788 | 0.2110 | nan | 0.9807 | 0.0 | 0.8770 | 0.8471 | 0.8198 | 0.8269 | 0.8523 | 0.9516 | 0.6061 | 0.6140 | 0.9726 | 0.8269 | 0.2069 | nan | 0.0794 | 0.7606 | 0.7217 | 0.9767 |
| 0.0426 | 41.18 | 700 | 0.9921 | 0.0 | 0.9513 | 0.9062 | 0.8437 | 0.8701 | 0.9256 | 0.9788 | 0.6143 | 0.7620 | 0.9887 | 0.8859 | 0.2141 | nan | 0.9804 | 0.0 | 0.8763 | 0.8417 | 0.8206 | 0.8174 | 0.8579 | 0.9524 | 0.6066 | 0.6145 | 0.9741 | 0.8318 | 0.2104 | nan | 0.0813 | 0.7641 | 0.7219 | 0.9766 |
| 0.043 | 42.35 | 720 | 0.9924 | 0.0 | 0.9485 | 0.8467 | 0.8488 | 0.8918 | 0.9142 | 0.9799 | 0.6665 | 0.7487 | 0.9883 | 0.8804 | 0.1911 | nan | 0.9810 | 0.0 | 0.8794 | 0.8212 | 0.8281 | 0.8290 | 0.8633 | 0.9536 | 0.6521 | 0.6152 | 0.9744 | 0.8307 | 0.1892 | nan | 0.0758 | 0.7613 | 0.7244 | 0.9773 |
| 0.0369 | 43.53 | 740 | 0.9928 | 0.0 | 0.9526 | 0.8837 | 0.8391 | 0.8761 | 0.9155 | 0.9745 | 0.6171 | 0.7684 | 0.9882 | 0.8889 | 0.2243 | nan | 0.9808 | 0.0 | 0.8761 | 0.8354 | 0.8189 | 0.8243 | 0.8648 | 0.9536 | 0.6082 | 0.6259 | 0.9747 | 0.8328 | 0.2171 | nan | 0.0800 | 0.7632 | 0.7241 | 0.9770 |
| 0.0373 | 44.71 | 760 | 0.9928 | 0.0 | 0.9444 | 0.8855 | 0.8561 | 0.8601 | 0.8866 | 0.9836 | 0.6149 | 0.7557 | 0.9886 | 0.8776 | 0.2033 | nan | 0.9803 | 0.0 | 0.8743 | 0.8405 | 0.8347 | 0.8131 | 0.8579 | 0.9458 | 0.6082 | 0.6064 | 0.9741 | 0.8309 | 0.1965 | nan | 0.0832 | 0.7576 | 0.7202 | 0.9762 |
| 0.0332 | 45.88 | 780 | 0.9923 | 0.0 | 0.9401 | 0.8656 | 0.8542 | 0.8879 | 0.8911 | 0.9791 | 0.6248 | 0.8070 | 0.9859 | 0.9102 | 0.2295 | nan | 0.9807 | 0.0 | 0.8770 | 0.8293 | 0.8286 | 0.8240 | 0.8598 | 0.9451 | 0.5887 | 0.5983 | 0.9746 | 0.8353 | 0.2259 | nan | 0.0818 | 0.7668 | 0.7205 | 0.9765 |
| 0.0386 | 47.06 | 800 | 0.9926 | 0.0325 | 0.9593 | 0.8440 | 0.8593 | 0.8725 | 0.8980 | 0.9703 | 0.6201 | 0.7499 | 0.9851 | 0.9043 | 0.1994 | nan | 0.9810 | 0.0325 | 0.8732 | 0.8141 | 0.8340 | 0.8222 | 0.8616 | 0.9529 | 0.5787 | 0.5951 | 0.9753 | 0.8392 | 0.1945 | nan | 0.0835 | 0.7606 | 0.7196 | 0.9767 |
| 0.0457 | 48.24 | 820 | 0.9933 | 0.0114 | 0.9413 | 0.9301 | 0.8847 | 0.8748 | 0.9043 | 0.9777 | 0.6238 | 0.7846 | 0.9887 | 0.8896 | 0.2452 | nan | 0.9810 | 0.0114 | 0.8789 | 0.8180 | 0.8470 | 0.8198 | 0.8569 | 0.9515 | 0.6110 | 0.6043 | 0.9751 | 0.8365 | 0.2376 | nan | 0.0799 | 0.7730 | 0.7253 | 0.9771 |
| 0.045 | 49.41 | 840 | 0.9927 | 0.0 | 0.9411 | 0.8221 | 0.8123 | 0.8807 | 0.8406 | 0.9732 | 0.6200 | 0.7598 | 0.9920 | 0.8704 | 0.1768 | nan | 0.9807 | 0.0 | 0.8722 | 0.7926 | 0.7954 | 0.8200 | 0.8261 | 0.9524 | 0.6057 | 0.6041 | 0.9720 | 0.8282 | 0.1756 | nan | 0.0856 | 0.7447 | 0.7096 | 0.9762 |
| 0.0414 | 50.59 | 860 | 0.9926 | 0.1220 | 0.9469 | 0.8722 | 0.8333 | 0.8965 | 0.8889 | 0.9775 | 0.6201 | 0.7202 | 0.9903 | 0.8716 | 0.2122 | nan | 0.9814 | 0.1218 | 0.8780 | 0.8280 | 0.8171 | 0.8290 | 0.8561 | 0.9514 | 0.6120 | 0.5965 | 0.9745 | 0.8299 | 0.2088 | nan | 0.0802 | 0.7649 | 0.7296 | 0.9772 |
| 0.038 | 51.76 | 880 | 0.9934 | 0.0341 | 0.9430 | 0.8840 | 0.8400 | 0.8810 | 0.8959 | 0.9795 | 0.6205 | 0.7668 | 0.9909 | 0.8688 | 0.1805 | nan | 0.9812 | 0.0341 | 0.8798 | 0.8270 | 0.8212 | 0.8243 | 0.8576 | 0.9539 | 0.6108 | 0.6118 | 0.9746 | 0.8286 | 0.1792 | nan | 0.0805 | 0.7599 | 0.7219 | 0.9773 |
| 0.0348 | 52.94 | 900 | 0.9889 | 0.3008 | 0.9530 | 0.9012 | 0.8565 | 0.9122 | 0.9022 | 0.9801 | 0.6242 | 0.8273 | 0.9888 | 0.8903 | 0.2021 | nan | 0.9810 | 0.2998 | 0.8773 | 0.8303 | 0.8292 | 0.8277 | 0.8710 | 0.9463 | 0.5850 | 0.6260 | 0.9757 | 0.8368 | 0.1981 | nan | 0.0810 | 0.7944 | 0.7449 | 0.9768 |
| 0.0386 | 54.12 | 920 | 0.9938 | 0.0537 | 0.9512 | 0.8835 | 0.8350 | 0.8486 | 0.9054 | 0.9783 | 0.6164 | 0.7138 | 0.9896 | 0.8807 | 0.1991 | nan | 0.9803 | 0.0537 | 0.8779 | 0.8351 | 0.8194 | 0.8058 | 0.8772 | 0.9517 | 0.6106 | 0.6058 | 0.9751 | 0.8357 | 0.1963 | nan | 0.0854 | 0.7576 | 0.7250 | 0.9766 |
| 0.0387 | 55.29 | 940 | 0.9936 | 0.0829 | 0.9422 | 0.8882 | 0.8625 | 0.8795 | 0.8723 | 0.9796 | 0.6231 | 0.8037 | 0.9910 | 0.8757 | 0.2241 | nan | 0.9811 | 0.0828 | 0.8820 | 0.8280 | 0.8400 | 0.8260 | 0.8475 | 0.9557 | 0.6126 | 0.6468 | 0.9754 | 0.8335 | 0.2217 | nan | 0.0794 | 0.7706 | 0.7333 | 0.9777 |
| 0.0283 | 56.47 | 960 | 0.9940 | 0.1073 | 0.9472 | 0.8996 | 0.8596 | 0.8739 | 0.9006 | 0.9807 | 0.6203 | 0.7863 | 0.9864 | 0.8994 | 0.2271 | nan | 0.9810 | 0.1070 | 0.8836 | 0.8254 | 0.8396 | 0.8187 | 0.8586 | 0.9543 | 0.6134 | 0.6249 | 0.9763 | 0.8406 | 0.2245 | nan | 0.0813 | 0.7756 | 0.7345 | 0.9776 |
| 0.0384 | 57.65 | 980 | 0.9925 | 0.1577 | 0.9499 | 0.9201 | 0.8493 | 0.8903 | 0.8871 | 0.9788 | 0.6250 | 0.7860 | 0.9886 | 0.8914 | 0.2491 | nan | 0.9817 | 0.1575 | 0.8825 | 0.8383 | 0.8280 | 0.8280 | 0.8572 | 0.9502 | 0.5993 | 0.6357 | 0.9760 | 0.8399 | 0.2445 | nan | 0.0800 | 0.7820 | 0.7399 | 0.9777 |
| 0.0284 | 58.82 | 1000 | 0.9922 | 0.4341 | 0.9423 | 0.8988 | 0.8606 | 0.8817 | 0.8903 | 0.9850 | 0.6222 | 0.7714 | 0.9912 | 0.8787 | 0.2188 | nan | 0.9813 | 0.4070 | 0.8806 | 0.8373 | 0.8310 | 0.8225 | 0.8639 | 0.9464 | 0.6076 | 0.6204 | 0.9753 | 0.8363 | 0.2159 | nan | 0.0827 | 0.7975 | 0.7558 | 0.9772 |
| 0.0282 | 60.0 | 1020 | 0.9918 | 0.4016 | 0.9464 | 0.9251 | 0.8827 | 0.8950 | 0.8991 | 0.9836 | 0.6233 | 0.7761 | 0.9871 | 0.9167 | 0.2432 | nan | 0.9815 | 0.3927 | 0.8841 | 0.8398 | 0.8436 | 0.8236 | 0.8689 | 0.9497 | 0.6084 | 0.6328 | 0.9760 | 0.8398 | 0.2396 | nan | 0.0809 | 0.8055 | 0.7600 | 0.9777 |
| 0.0327 | 61.18 | 1040 | 0.9918 | 0.4114 | 0.9499 | 0.9102 | 0.8241 | 0.9009 | 0.8756 | 0.9790 | 0.6216 | 0.7633 | 0.9883 | 0.9068 | 0.2295 | nan | 0.9817 | 0.4081 | 0.8796 | 0.8338 | 0.8084 | 0.8279 | 0.8530 | 0.9510 | 0.6062 | 0.6306 | 0.9756 | 0.8438 | 0.2259 | nan | 0.0825 | 0.7963 | 0.7558 | 0.9775 |
| 0.033 | 62.35 | 1060 | 0.9924 | 0.3024 | 0.9527 | 0.8912 | 0.8402 | 0.8845 | 0.9115 | 0.9813 | 0.6220 | 0.7280 | 0.9887 | 0.9029 | 0.2298 | nan | 0.9816 | 0.2995 | 0.8806 | 0.8413 | 0.8209 | 0.8232 | 0.8705 | 0.9529 | 0.6107 | 0.6132 | 0.9762 | 0.8435 | 0.2262 | nan | 0.0824 | 0.7868 | 0.7493 | 0.9776 |
| 0.0368 | 63.53 | 1080 | 0.9934 | 0.1106 | 0.9447 | 0.8896 | 0.8379 | 0.8801 | 0.9108 | 0.9836 | 0.6245 | 0.7779 | 0.9905 | 0.8842 | 0.2147 | nan | 0.9817 | 0.1106 | 0.8837 | 0.8379 | 0.8201 | 0.8246 | 0.8741 | 0.9522 | 0.6121 | 0.6342 | 0.9760 | 0.8399 | 0.2128 | nan | 0.0803 | 0.7725 | 0.7354 | 0.9779 |
| 0.0395 | 64.71 | 1100 | 0.9933 | 0.0553 | 0.9391 | 0.9201 | 0.8681 | 0.8875 | 0.9200 | 0.9820 | 0.6582 | 0.7844 | 0.9909 | 0.8916 | 0.2336 | nan | 0.9816 | 0.0553 | 0.8854 | 0.8479 | 0.8407 | 0.8273 | 0.8752 | 0.9526 | 0.6441 | 0.6288 | 0.9760 | 0.8418 | 0.2306 | nan | 0.0766 | 0.7788 | 0.7375 | 0.9782 |
| 0.0355 | 65.88 | 1120 | 0.9935 | 0.1577 | 0.9472 | 0.9118 | 0.8493 | 0.8630 | 0.9045 | 0.9832 | 0.6617 | 0.7930 | 0.9891 | 0.8981 | 0.2304 | nan | 0.9811 | 0.1575 | 0.8863 | 0.8400 | 0.8324 | 0.8154 | 0.8784 | 0.9513 | 0.6451 | 0.6217 | 0.9769 | 0.8456 | 0.2256 | nan | 0.0792 | 0.7833 | 0.7429 | 0.9778 |
| 0.0326 | 67.06 | 1140 | 0.9919 | 0.1919 | 0.9547 | 0.8761 | 0.8499 | 0.8893 | 0.9099 | 0.9822 | 0.6300 | 0.7588 | 0.9882 | 0.9022 | 0.1801 | nan | 0.9820 | 0.1919 | 0.8805 | 0.8213 | 0.8275 | 0.8292 | 0.8831 | 0.9492 | 0.6199 | 0.6253 | 0.9767 | 0.8458 | 0.1768 | nan | 0.0798 | 0.7773 | 0.7392 | 0.9778 |
| 0.03 | 68.24 | 1160 | 0.9935 | 0.3057 | 0.9438 | 0.9097 | 0.8682 | 0.8853 | 0.9112 | 0.9814 | 0.7520 | 0.7964 | 0.9891 | 0.9062 | 0.2278 | nan | 0.9820 | 0.2998 | 0.8900 | 0.8445 | 0.8443 | 0.8281 | 0.8803 | 0.9556 | 0.7380 | 0.6151 | 0.9768 | 0.8482 | 0.2242 | nan | 0.0735 | 0.8054 | 0.7636 | 0.9789 |
| 0.0304 | 69.41 | 1180 | 0.9931 | 0.2634 | 0.9452 | 0.9119 | 0.8890 | 0.8894 | 0.9082 | 0.9829 | 0.6426 | 0.7216 | 0.9899 | 0.9068 | 0.2100 | nan | 0.9820 | 0.2613 | 0.8847 | 0.8445 | 0.8600 | 0.8291 | 0.8779 | 0.9486 | 0.6299 | 0.6227 | 0.9780 | 0.8495 | 0.2039 | nan | 0.0749 | 0.7888 | 0.7517 | 0.9784 |
| 0.0366 | 70.59 | 1200 | 0.9927 | 0.0472 | 0.9582 | 0.8675 | 0.8251 | 0.8619 | 0.9024 | 0.9774 | 0.6224 | 0.8008 | 0.9870 | 0.9060 | 0.1424 | nan | 0.9819 | 0.0471 | 0.8767 | 0.8272 | 0.8106 | 0.8130 | 0.8767 | 0.9599 | 0.6055 | 0.5239 | 0.9777 | 0.8490 | 0.1354 | nan | 0.0830 | 0.7609 | 0.7142 | 0.9771 |
| 0.0296 | 71.76 | 1220 | 0.9916 | 0.1431 | 0.9524 | 0.9023 | 0.8712 | 0.9014 | 0.8903 | 0.9791 | 0.6243 | 0.7556 | 0.9916 | 0.8860 | 0.1754 | nan | 0.9819 | 0.1431 | 0.8808 | 0.8397 | 0.8471 | 0.8321 | 0.8665 | 0.9586 | 0.6103 | 0.6133 | 0.9772 | 0.8449 | 0.1710 | nan | 0.0791 | 0.7742 | 0.7359 | 0.9782 |
| 0.0313 | 72.94 | 1240 | 0.9927 | 0.0894 | 0.9468 | 0.9155 | 0.8566 | 0.8993 | 0.8841 | 0.9796 | 0.6253 | 0.7843 | 0.9926 | 0.8653 | 0.2090 | nan | 0.9821 | 0.0894 | 0.8860 | 0.8653 | 0.8393 | 0.8309 | 0.8594 | 0.9601 | 0.6150 | 0.6127 | 0.9755 | 0.8342 | 0.2065 | nan | 0.0774 | 0.7724 | 0.7351 | 0.9784 |
| 0.0272 | 74.12 | 1260 | 0.9942 | 0.2228 | 0.9498 | 0.9141 | 0.8849 | 0.8712 | 0.9235 | 0.9781 | 0.6261 | 0.7730 | 0.9907 | 0.8943 | 0.2644 | nan | 0.9817 | 0.2164 | 0.8902 | 0.8554 | 0.8587 | 0.8241 | 0.8853 | 0.9617 | 0.6170 | 0.6001 | 0.9772 | 0.8477 | 0.2536 | nan | 0.0761 | 0.7913 | 0.7515 | 0.9787 |
| 0.0329 | 75.29 | 1280 | 0.9928 | 0.1902 | 0.9563 | 0.8935 | 0.8582 | 0.8855 | 0.8926 | 0.9794 | 0.6249 | 0.7687 | 0.9893 | 0.8970 | 0.2109 | nan | 0.9821 | 0.1896 | 0.8856 | 0.8492 | 0.8390 | 0.8261 | 0.8720 | 0.9610 | 0.6129 | 0.5996 | 0.9775 | 0.8492 | 0.2071 | nan | 0.0783 | 0.7800 | 0.7424 | 0.9785 |
| 0.0297 | 76.47 | 1300 | 0.9925 | 0.2602 | 0.9522 | 0.9211 | 0.8558 | 0.9005 | 0.8835 | 0.9813 | 0.6233 | 0.7873 | 0.9882 | 0.9161 | 0.2259 | nan | 0.9823 | 0.2581 | 0.8877 | 0.8522 | 0.8369 | 0.8292 | 0.8674 | 0.9597 | 0.6142 | 0.6165 | 0.9772 | 0.8511 | 0.2211 | nan | 0.0783 | 0.7914 | 0.7503 | 0.9787 |
| 0.0316 | 77.65 | 1320 | 0.9950 | 0.0683 | 0.9489 | 0.9051 | 0.8369 | 0.8689 | 0.8564 | 0.9788 | 0.6222 | 0.7373 | 0.9890 | 0.9112 | 0.2202 | nan | 0.9813 | 0.0681 | 0.8873 | 0.8526 | 0.8250 | 0.8239 | 0.8418 | 0.9599 | 0.6145 | 0.6000 | 0.9773 | 0.8518 | 0.2182 | nan | 0.0802 | 0.7645 | 0.7309 | 0.9783 |
| 0.0295 | 78.82 | 1340 | 0.9931 | 0.2309 | 0.9575 | 0.8918 | 0.8445 | 0.8918 | 0.8780 | 0.9784 | 0.6227 | 0.7670 | 0.9876 | 0.9198 | 0.2125 | nan | 0.9825 | 0.2276 | 0.8858 | 0.8543 | 0.8294 | 0.8329 | 0.8619 | 0.9603 | 0.6136 | 0.6130 | 0.9771 | 0.8528 | 0.2104 | nan | 0.0793 | 0.7827 | 0.7463 | 0.9787 |
| 0.0363 | 80.0 | 1360 | 0.9935 | 0.2293 | 0.9455 | 0.9084 | 0.8572 | 0.8976 | 0.8853 | 0.9827 | 0.6365 | 0.7868 | 0.9908 | 0.8975 | 0.2276 | nan | 0.9824 | 0.2267 | 0.8881 | 0.8519 | 0.8387 | 0.8352 | 0.8649 | 0.9615 | 0.6243 | 0.6143 | 0.9772 | 0.8497 | 0.2253 | nan | 0.0758 | 0.7876 | 0.7493 | 0.9790 |
| 0.0278 | 81.18 | 1380 | 0.9933 | 0.1659 | 0.9558 | 0.9068 | 0.8466 | 0.8911 | 0.8826 | 0.9817 | 0.6237 | 0.7761 | 0.9879 | 0.8980 | 0.2160 | nan | 0.9825 | 0.1656 | 0.8856 | 0.8531 | 0.8324 | 0.8328 | 0.8661 | 0.9615 | 0.6169 | 0.6027 | 0.9773 | 0.8501 | 0.2138 | nan | 0.0779 | 0.7789 | 0.7416 | 0.9787 |
| 0.0349 | 82.35 | 1400 | 0.9919 | 0.2244 | 0.9584 | 0.8933 | 0.8434 | 0.9011 | 0.8807 | 0.9809 | 0.6226 | 0.7732 | 0.9893 | 0.8945 | 0.2060 | nan | 0.9826 | 0.2240 | 0.8839 | 0.8456 | 0.8265 | 0.8310 | 0.8619 | 0.9604 | 0.6152 | 0.6070 | 0.9772 | 0.8500 | 0.2038 | nan | 0.0789 | 0.7815 | 0.7438 | 0.9785 |
| 0.0334 | 83.53 | 1420 | 0.9938 | 0.2081 | 0.9553 | 0.9087 | 0.8442 | 0.8773 | 0.8931 | 0.9789 | 0.6275 | 0.7603 | 0.9896 | 0.8964 | 0.2237 | nan | 0.9822 | 0.2055 | 0.8865 | 0.8505 | 0.8299 | 0.8272 | 0.8748 | 0.9599 | 0.6198 | 0.6036 | 0.9772 | 0.8502 | 0.2211 | nan | 0.0789 | 0.7813 | 0.7452 | 0.9786 |
| 0.0271 | 84.71 | 1440 | 0.9929 | 0.3496 | 0.9541 | 0.9276 | 0.8700 | 0.8941 | 0.8969 | 0.9810 | 0.6276 | 0.7772 | 0.9882 | 0.9110 | 0.2436 | nan | 0.9825 | 0.3418 | 0.8882 | 0.8426 | 0.8466 | 0.8327 | 0.8717 | 0.9594 | 0.6172 | 0.6108 | 0.9775 | 0.8514 | 0.2407 | nan | 0.0779 | 0.8011 | 0.7587 | 0.9789 |
| 0.0269 | 85.88 | 1460 | 0.9929 | 0.2959 | 0.9507 | 0.9229 | 0.8474 | 0.8995 | 0.9106 | 0.9824 | 0.6299 | 0.7745 | 0.9895 | 0.9106 | 0.2364 | nan | 0.9826 | 0.2940 | 0.8884 | 0.8451 | 0.8318 | 0.8361 | 0.8758 | 0.9576 | 0.6199 | 0.6215 | 0.9774 | 0.8516 | 0.2340 | nan | 0.0778 | 0.7956 | 0.7551 | 0.9790 |
| 0.0273 | 87.06 | 1480 | 0.9937 | 0.0894 | 0.9506 | 0.9190 | 0.8680 | 0.8860 | 0.9251 | 0.9807 | 0.6401 | 0.7765 | 0.9898 | 0.9120 | 0.2603 | nan | 0.9826 | 0.0894 | 0.8905 | 0.8519 | 0.8466 | 0.8315 | 0.8874 | 0.9592 | 0.6285 | 0.6164 | 0.9774 | 0.8540 | 0.2562 | nan | 0.0758 | 0.7839 | 0.7440 | 0.9791 |
| 0.0288 | 88.24 | 1500 | 0.9932 | 0.1854 | 0.9524 | 0.9075 | 0.8556 | 0.8900 | 0.8910 | 0.9808 | 0.6311 | 0.7878 | 0.9903 | 0.9093 | 0.2340 | nan | 0.9828 | 0.1848 | 0.8889 | 0.8508 | 0.8370 | 0.8321 | 0.8751 | 0.9591 | 0.6224 | 0.6146 | 0.9774 | 0.8555 | 0.2317 | nan | 0.0780 | 0.7852 | 0.7471 | 0.9790 |
| 0.0258 | 89.41 | 1520 | 0.9924 | 0.3057 | 0.9572 | 0.9354 | 0.8573 | 0.8933 | 0.8876 | 0.9823 | 0.6272 | 0.7935 | 0.9876 | 0.9146 | 0.2306 | nan | 0.9826 | 0.3003 | 0.8866 | 0.8465 | 0.8400 | 0.8322 | 0.8710 | 0.9575 | 0.6192 | 0.6181 | 0.9778 | 0.8540 | 0.2259 | nan | 0.0794 | 0.7973 | 0.7548 | 0.9788 |
| 0.023 | 90.59 | 1540 | 0.9927 | 0.3252 | 0.9555 | 0.9297 | 0.8655 | 0.8867 | 0.9231 | 0.9818 | 0.6278 | 0.7999 | 0.9899 | 0.9057 | 0.2339 | nan | 0.9828 | 0.3135 | 0.8881 | 0.8506 | 0.8438 | 0.8323 | 0.8904 | 0.9598 | 0.6192 | 0.6107 | 0.9778 | 0.8548 | 0.2281 | nan | 0.0783 | 0.8014 | 0.7578 | 0.9790 |
| 0.0263 | 91.76 | 1560 | 0.9935 | 0.2634 | 0.9549 | 0.9192 | 0.8576 | 0.8835 | 0.9122 | 0.9809 | 0.6293 | 0.7828 | 0.9882 | 0.9137 | 0.2440 | nan | 0.9826 | 0.2576 | 0.8877 | 0.8496 | 0.8401 | 0.8323 | 0.8877 | 0.9592 | 0.6229 | 0.6039 | 0.9777 | 0.8543 | 0.2387 | nan | 0.0788 | 0.7941 | 0.7534 | 0.9789 |
| 0.0308 | 92.94 | 1580 | 0.9933 | 0.2195 | 0.9518 | 0.9267 | 0.8570 | 0.8981 | 0.8983 | 0.9813 | 0.6285 | 0.7817 | 0.9884 | 0.9184 | 0.2340 | nan | 0.9828 | 0.2181 | 0.8883 | 0.8554 | 0.8391 | 0.8335 | 0.8765 | 0.9603 | 0.6199 | 0.6176 | 0.9778 | 0.8563 | 0.2311 | nan | 0.0786 | 0.7905 | 0.7505 | 0.9791 |
| 0.0255 | 94.12 | 1600 | 0.9936 | 0.2065 | 0.9601 | 0.9187 | 0.8598 | 0.8876 | 0.8846 | 0.9775 | 0.6275 | 0.7880 | 0.9860 | 0.9239 | 0.2229 | nan | 0.9829 | 0.2058 | 0.8874 | 0.8559 | 0.8419 | 0.8333 | 0.8670 | 0.9607 | 0.6197 | 0.6095 | 0.9777 | 0.8581 | 0.2203 | nan | 0.0799 | 0.7874 | 0.7477 | 0.9791 |
| 0.0288 | 95.29 | 1620 | 0.9932 | 0.2878 | 0.9565 | 0.9128 | 0.8604 | 0.8750 | 0.9047 | 0.9825 | 0.6288 | 0.7858 | 0.9910 | 0.8878 | 0.2249 | nan | 0.9828 | 0.2846 | 0.8870 | 0.8520 | 0.8408 | 0.8290 | 0.8824 | 0.9594 | 0.6188 | 0.6095 | 0.9775 | 0.8493 | 0.2224 | nan | 0.0808 | 0.7916 | 0.7535 | 0.9789 |
| 0.0278 | 96.47 | 1640 | 0.9944 | 0.1593 | 0.9515 | 0.9112 | 0.8437 | 0.8814 | 0.8830 | 0.9805 | 0.6292 | 0.7454 | 0.9892 | 0.9099 | 0.2248 | nan | 0.9825 | 0.1593 | 0.8880 | 0.8545 | 0.8285 | 0.8316 | 0.8652 | 0.9586 | 0.6228 | 0.5959 | 0.9778 | 0.8548 | 0.2228 | nan | 0.0802 | 0.7772 | 0.7417 | 0.9789 |
| 0.0266 | 97.65 | 1660 | 0.9933 | 0.2033 | 0.9569 | 0.9173 | 0.8506 | 0.8898 | 0.8823 | 0.9815 | 0.6297 | 0.7677 | 0.9875 | 0.9221 | 0.2112 | nan | 0.9829 | 0.2029 | 0.8874 | 0.8550 | 0.8348 | 0.8321 | 0.8654 | 0.9597 | 0.6215 | 0.6081 | 0.9780 | 0.8558 | 0.2093 | nan | 0.0801 | 0.7841 | 0.7456 | 0.9790 |
| 0.025 | 98.82 | 1680 | 0.9930 | 0.2081 | 0.9597 | 0.8978 | 0.8492 | 0.9013 | 0.8684 | 0.9799 | 0.6333 | 0.7604 | 0.9864 | 0.9254 | 0.2005 | nan | 0.9832 | 0.2075 | 0.8871 | 0.8506 | 0.8329 | 0.8398 | 0.8552 | 0.9606 | 0.6287 | 0.6087 | 0.9772 | 0.8545 | 0.1986 | nan | 0.0787 | 0.7818 | 0.7450 | 0.9792 |
| 0.0268 | 100.0 | 1700 | 0.9931 | 0.1870 | 0.9549 | 0.9206 | 0.8659 | 0.8962 | 0.8848 | 0.9826 | 0.6367 | 0.7757 | 0.9882 | 0.9147 | 0.2171 | nan | 0.9830 | 0.1861 | 0.8891 | 0.8483 | 0.8460 | 0.8333 | 0.8671 | 0.9596 | 0.6281 | 0.6210 | 0.9784 | 0.8557 | 0.2148 | nan | 0.0788 | 0.7860 | 0.7470 | 0.9793 |
| 0.0256 | 101.18 | 1720 | 0.9942 | 0.1902 | 0.9516 | 0.9301 | 0.8468 | 0.8849 | 0.9161 | 0.9808 | 0.6354 | 0.7714 | 0.9889 | 0.9183 | 0.2331 | nan | 0.9826 | 0.1896 | 0.8895 | 0.8524 | 0.8318 | 0.8335 | 0.8921 | 0.9605 | 0.6271 | 0.6191 | 0.9780 | 0.8559 | 0.2303 | nan | 0.0785 | 0.7878 | 0.7494 | 0.9792 |
| 0.0256 | 102.35 | 1740 | 0.9930 | 0.3220 | 0.9563 | 0.9174 | 0.8542 | 0.8969 | 0.9228 | 0.9798 | 0.6242 | 0.7796 | 0.9893 | 0.9139 | 0.2347 | nan | 0.9831 | 0.3163 | 0.8872 | 0.8580 | 0.8359 | 0.8384 | 0.8959 | 0.9590 | 0.6187 | 0.6221 | 0.9785 | 0.8583 | 0.2265 | nan | 0.0795 | 0.7988 | 0.7598 | 0.9793 |
| 0.0243 | 103.53 | 1760 | 0.9933 | 0.1967 | 0.9556 | 0.9194 | 0.8592 | 0.9019 | 0.9078 | 0.9791 | 0.6303 | 0.7629 | 0.9883 | 0.9218 | 0.2304 | nan | 0.9830 | 0.1961 | 0.8895 | 0.8594 | 0.8390 | 0.8391 | 0.8899 | 0.9602 | 0.6230 | 0.6181 | 0.9782 | 0.8581 | 0.2273 | nan | 0.0781 | 0.7882 | 0.7509 | 0.9794 |
| 0.0299 | 104.71 | 1780 | 0.9931 | 0.2033 | 0.9584 | 0.9250 | 0.8485 | 0.9021 | 0.8709 | 0.9783 | 0.6225 | 0.7794 | 0.9884 | 0.9216 | 0.2051 | nan | 0.9831 | 0.2026 | 0.8884 | 0.8548 | 0.8335 | 0.8379 | 0.8556 | 0.9612 | 0.6179 | 0.6252 | 0.9788 | 0.8587 | 0.2033 | nan | 0.0785 | 0.7843 | 0.7462 | 0.9794 |
| 0.0238 | 105.88 | 1800 | 0.9939 | 0.1789 | 0.9530 | 0.9209 | 0.8513 | 0.8998 | 0.8795 | 0.9815 | 0.6352 | 0.7671 | 0.9888 | 0.9116 | 0.2369 | nan | 0.9830 | 0.1789 | 0.8912 | 0.8586 | 0.8351 | 0.8372 | 0.8654 | 0.9615 | 0.6288 | 0.6171 | 0.9785 | 0.8580 | 0.2351 | nan | 0.0770 | 0.7845 | 0.7483 | 0.9796 |
| 0.0283 | 107.06 | 1820 | 0.9930 | 0.2358 | 0.9605 | 0.9187 | 0.8514 | 0.8910 | 0.9089 | 0.9780 | 0.6273 | 0.8059 | 0.9888 | 0.9097 | 0.2182 | nan | 0.9829 | 0.2342 | 0.8885 | 0.8595 | 0.8352 | 0.8344 | 0.8892 | 0.9608 | 0.6210 | 0.6203 | 0.9786 | 0.8585 | 0.2165 | nan | 0.0792 | 0.7913 | 0.7523 | 0.9792 |
| 0.0236 | 108.24 | 1840 | 0.9934 | 0.3024 | 0.9579 | 0.9291 | 0.8560 | 0.8895 | 0.9201 | 0.9805 | 0.6352 | 0.7655 | 0.9884 | 0.9079 | 0.2409 | nan | 0.9828 | 0.2981 | 0.8888 | 0.8550 | 0.8388 | 0.8342 | 0.8929 | 0.9592 | 0.6231 | 0.6139 | 0.9783 | 0.8570 | 0.2367 | nan | 0.0789 | 0.7974 | 0.7584 | 0.9792 |
| 0.0248 | 109.41 | 1860 | 0.9936 | 0.2927 | 0.9553 | 0.9286 | 0.8521 | 0.8933 | 0.9070 | 0.9819 | 0.6299 | 0.7726 | 0.9893 | 0.9061 | 0.2390 | nan | 0.9830 | 0.2885 | 0.8901 | 0.8463 | 0.8344 | 0.8375 | 0.8853 | 0.9592 | 0.6220 | 0.6224 | 0.9784 | 0.8568 | 0.2365 | nan | 0.0784 | 0.7955 | 0.7570 | 0.9794 |
| 0.0296 | 110.59 | 1880 | 0.9933 | 0.1561 | 0.9523 | 0.9349 | 0.8549 | 0.9022 | 0.8833 | 0.9830 | 0.6291 | 0.7902 | 0.9888 | 0.9162 | 0.2348 | nan | 0.9831 | 0.1561 | 0.8907 | 0.8562 | 0.8386 | 0.8375 | 0.8652 | 0.9607 | 0.6205 | 0.6305 | 0.9783 | 0.8588 | 0.2331 | nan | 0.0777 | 0.7861 | 0.7469 | 0.9795 |
| 0.0234 | 111.76 | 1900 | 0.9937 | 0.2764 | 0.9536 | 0.9374 | 0.8559 | 0.8959 | 0.9211 | 0.9791 | 0.6245 | 0.7706 | 0.9896 | 0.9138 | 0.2421 | nan | 0.9828 | 0.2742 | 0.8901 | 0.8577 | 0.8386 | 0.8378 | 0.8941 | 0.9596 | 0.6196 | 0.6235 | 0.9785 | 0.8596 | 0.2400 | nan | 0.0799 | 0.7964 | 0.7582 | 0.9794 |
| 0.0256 | 112.94 | 1920 | 0.9931 | 0.3415 | 0.9587 | 0.9101 | 0.8473 | 0.8977 | 0.9016 | 0.9780 | 0.6255 | 0.7751 | 0.9892 | 0.9108 | 0.2290 | nan | 0.9830 | 0.3371 | 0.8884 | 0.8634 | 0.8312 | 0.8370 | 0.8852 | 0.9599 | 0.6191 | 0.6203 | 0.9783 | 0.8605 | 0.2273 | nan | 0.0801 | 0.7967 | 0.7608 | 0.9793 |
| 0.022 | 114.12 | 1940 | 0.9933 | 0.3789 | 0.9556 | 0.9383 | 0.8550 | 0.8948 | 0.9147 | 0.9789 | 0.6288 | 0.7992 | 0.9892 | 0.9181 | 0.2431 | nan | 0.9830 | 0.3612 | 0.8901 | 0.8594 | 0.8375 | 0.8357 | 0.8922 | 0.9607 | 0.6224 | 0.6209 | 0.9785 | 0.8616 | 0.2407 | nan | 0.0786 | 0.8068 | 0.7649 | 0.9794 |
| 0.0235 | 115.29 | 1960 | 0.9932 | 0.3480 | 0.9560 | 0.9251 | 0.8506 | 0.8939 | 0.9053 | 0.9799 | 0.6274 | 0.7836 | 0.9905 | 0.9063 | 0.2364 | nan | 0.9830 | 0.3424 | 0.8901 | 0.8615 | 0.8324 | 0.8352 | 0.8878 | 0.9598 | 0.6207 | 0.6235 | 0.9783 | 0.8597 | 0.2343 | nan | 0.0790 | 0.7997 | 0.7622 | 0.9794 |
| 0.0292 | 116.47 | 1980 | 0.9939 | 0.3545 | 0.9550 | 0.9267 | 0.8588 | 0.8872 | 0.9186 | 0.9809 | 0.6221 | 0.7914 | 0.9883 | 0.9215 | 0.2433 | nan | 0.9829 | 0.3455 | 0.8907 | 0.8650 | 0.8402 | 0.8341 | 0.8967 | 0.9594 | 0.6182 | 0.6286 | 0.9787 | 0.8614 | 0.2409 | nan | 0.0803 | 0.8032 | 0.7648 | 0.9795 |
| 0.0252 | 117.65 | 2000 | 0.9940 | 0.3480 | 0.9533 | 0.9367 | 0.8492 | 0.8846 | 0.9283 | 0.9816 | 0.6248 | 0.7847 | 0.9894 | 0.9175 | 0.2436 | nan | 0.9829 | 0.3386 | 0.8908 | 0.8639 | 0.8326 | 0.8315 | 0.8974 | 0.9589 | 0.6189 | 0.6293 | 0.9788 | 0.8600 | 0.2391 | nan | 0.0801 | 0.8027 | 0.7633 | 0.9794 |
| 0.0266 | 118.82 | 2020 | 0.9924 | 0.4439 | 0.9605 | 0.9216 | 0.8813 | 0.9003 | 0.9196 | 0.9826 | 0.6329 | 0.7891 | 0.9875 | 0.9215 | 0.1686 | nan | 0.9834 | 0.4326 | 0.8888 | 0.8657 | 0.8562 | 0.8397 | 0.8957 | 0.9589 | 0.6227 | 0.6283 | 0.9782 | 0.8601 | 0.1679 | nan | 0.0790 | 0.8078 | 0.7676 | 0.9795 |
| 0.0257 | 120.0 | 2040 | 0.9935 | 0.3317 | 0.9584 | 0.9307 | 0.8576 | 0.8875 | 0.9198 | 0.9791 | 0.6243 | 0.8030 | 0.9882 | 0.9262 | 0.1780 | nan | 0.9831 | 0.3259 | 0.8903 | 0.8655 | 0.8413 | 0.8344 | 0.8958 | 0.9607 | 0.6169 | 0.6193 | 0.9788 | 0.8634 | 0.1772 | nan | 0.0813 | 0.7983 | 0.7579 | 0.9795 |
| 0.0246 | 121.18 | 2060 | 0.9937 | 0.2504 | 0.9544 | 0.9303 | 0.8725 | 0.8938 | 0.9228 | 0.9800 | 0.6265 | 0.7641 | 0.9910 | 0.9045 | 0.2586 | nan | 0.9833 | 0.2476 | 0.8922 | 0.8671 | 0.8509 | 0.8386 | 0.9003 | 0.9603 | 0.6180 | 0.6211 | 0.9782 | 0.8594 | 0.2520 | nan | 0.0773 | 0.7956 | 0.7592 | 0.9797 |
| 0.0273 | 122.35 | 2080 | 0.9939 | 0.1935 | 0.9529 | 0.9174 | 0.8531 | 0.8845 | 0.9048 | 0.9814 | 0.6249 | 0.7741 | 0.9913 | 0.9008 | 0.2092 | nan | 0.9832 | 0.1926 | 0.8896 | 0.8640 | 0.8383 | 0.8356 | 0.8907 | 0.9592 | 0.6192 | 0.6205 | 0.9774 | 0.8581 | 0.2077 | nan | 0.0812 | 0.7832 | 0.7489 | 0.9794 |
| 0.0209 | 123.53 | 2100 | 0.9933 | 0.2455 | 0.9573 | 0.9207 | 0.8545 | 0.9000 | 0.9154 | 0.9801 | 0.6232 | 0.7778 | 0.9897 | 0.9137 | 0.2016 | nan | 0.9834 | 0.2439 | 0.8904 | 0.8679 | 0.8394 | 0.8419 | 0.8981 | 0.9600 | 0.6177 | 0.6289 | 0.9784 | 0.8627 | 0.2002 | nan | 0.0805 | 0.7902 | 0.7548 | 0.9797 |
| 0.0233 | 124.71 | 2120 | 0.9930 | 0.2423 | 0.9551 | 0.9354 | 0.8548 | 0.9022 | 0.9183 | 0.9807 | 0.6224 | 0.7888 | 0.9906 | 0.9106 | 0.2290 | nan | 0.9834 | 0.2407 | 0.8903 | 0.8648 | 0.8388 | 0.8394 | 0.8962 | 0.9600 | 0.6161 | 0.6274 | 0.9785 | 0.8623 | 0.2271 | nan | 0.0803 | 0.7941 | 0.7558 | 0.9797 |
| 0.0206 | 125.88 | 2140 | 0.9938 | 0.3089 | 0.9518 | 0.9177 | 0.8557 | 0.8886 | 0.9249 | 0.9814 | 0.6287 | 0.7948 | 0.9914 | 0.9048 | 0.2116 | nan | 0.9832 | 0.3035 | 0.8902 | 0.8658 | 0.8395 | 0.8396 | 0.9013 | 0.9591 | 0.6217 | 0.6244 | 0.9783 | 0.8598 | 0.2103 | nan | 0.0804 | 0.7965 | 0.7598 | 0.9796 |
| 0.0252 | 127.06 | 2160 | 0.9933 | 0.3285 | 0.9544 | 0.9381 | 0.8706 | 0.8985 | 0.9303 | 0.9813 | 0.6272 | 0.7816 | 0.9902 | 0.9175 | 0.2381 | nan | 0.9834 | 0.3211 | 0.8908 | 0.8686 | 0.8502 | 0.8415 | 0.9023 | 0.9597 | 0.6207 | 0.6264 | 0.9788 | 0.8633 | 0.2337 | nan | 0.0794 | 0.8038 | 0.7646 | 0.9798 |
| 0.0274 | 128.24 | 2180 | 0.9935 | 0.3366 | 0.9562 | 0.9205 | 0.8627 | 0.8976 | 0.9170 | 0.9812 | 0.6234 | 0.7904 | 0.9889 | 0.9198 | 0.2291 | nan | 0.9833 | 0.3312 | 0.8904 | 0.8680 | 0.8469 | 0.8408 | 0.8969 | 0.9593 | 0.6176 | 0.6297 | 0.9789 | 0.8639 | 0.2272 | nan | 0.0801 | 0.8013 | 0.7642 | 0.9797 |
| 0.0254 | 129.41 | 2200 | 0.9936 | 0.2537 | 0.9551 | 0.9270 | 0.8635 | 0.8960 | 0.9123 | 0.9819 | 0.6250 | 0.7929 | 0.9886 | 0.9260 | 0.2223 | nan | 0.9833 | 0.2512 | 0.8911 | 0.8658 | 0.8461 | 0.8386 | 0.8925 | 0.9590 | 0.6188 | 0.6304 | 0.9792 | 0.8636 | 0.2206 | nan | 0.0796 | 0.7952 | 0.7569 | 0.9797 |
| 0.024 | 130.59 | 2220 | 0.9936 | 0.1951 | 0.9572 | 0.9302 | 0.8622 | 0.8970 | 0.9229 | 0.9811 | 0.6275 | 0.7900 | 0.9893 | 0.9206 | 0.2262 | nan | 0.9835 | 0.1942 | 0.8927 | 0.8688 | 0.8467 | 0.8410 | 0.8989 | 0.9612 | 0.6217 | 0.6272 | 0.9791 | 0.8650 | 0.2247 | nan | 0.0783 | 0.7918 | 0.7542 | 0.9800 |
| 0.027 | 131.76 | 2240 | 0.9933 | 0.2813 | 0.9517 | 0.9241 | 0.8712 | 0.9027 | 0.9345 | 0.9833 | 0.6333 | 0.7869 | 0.9902 | 0.9146 | 0.2275 | nan | 0.9834 | 0.2777 | 0.8926 | 0.8661 | 0.8497 | 0.8405 | 0.9018 | 0.9597 | 0.6237 | 0.6262 | 0.9790 | 0.8631 | 0.2257 | nan | 0.0786 | 0.7996 | 0.7607 | 0.9799 |
| 0.0208 | 132.94 | 2260 | 0.9935 | 0.2358 | 0.9551 | 0.9257 | 0.8583 | 0.8920 | 0.9265 | 0.9821 | 0.6282 | 0.8028 | 0.9903 | 0.9136 | 0.2308 | nan | 0.9833 | 0.2339 | 0.8921 | 0.8694 | 0.8426 | 0.8365 | 0.8995 | 0.9604 | 0.6216 | 0.6271 | 0.9791 | 0.8638 | 0.2291 | nan | 0.0801 | 0.7950 | 0.7568 | 0.9798 |
| 0.0251 | 134.12 | 2280 | 0.9937 | 0.2894 | 0.9541 | 0.9327 | 0.8687 | 0.8883 | 0.9182 | 0.9822 | 0.6234 | 0.7846 | 0.9905 | 0.9137 | 0.2341 | nan | 0.9833 | 0.2848 | 0.8915 | 0.8688 | 0.8491 | 0.8362 | 0.8970 | 0.9603 | 0.6178 | 0.6223 | 0.9790 | 0.8634 | 0.2323 | nan | 0.0810 | 0.7980 | 0.7604 | 0.9797 |
| 0.0217 | 135.29 | 2300 | 0.9942 | 0.3285 | 0.9531 | 0.9385 | 0.8568 | 0.8883 | 0.9183 | 0.9803 | 0.6244 | 0.7928 | 0.9904 | 0.9173 | 0.2393 | nan | 0.9833 | 0.3201 | 0.8922 | 0.8765 | 0.8403 | 0.8374 | 0.8983 | 0.9603 | 0.6188 | 0.6297 | 0.9789 | 0.8644 | 0.2366 | nan | 0.0809 | 0.8017 | 0.7644 | 0.9798 |
| 0.0249 | 136.47 | 2320 | 0.9937 | 0.2976 | 0.9560 | 0.9356 | 0.8588 | 0.8969 | 0.8910 | 0.9818 | 0.6262 | 0.7744 | 0.9887 | 0.9167 | 0.2345 | nan | 0.9833 | 0.2928 | 0.8913 | 0.8725 | 0.8419 | 0.8377 | 0.8746 | 0.9608 | 0.6198 | 0.6203 | 0.9789 | 0.8643 | 0.2324 | nan | 0.0812 | 0.7963 | 0.7593 | 0.9797 |
| 0.0229 | 137.65 | 2340 | 0.9940 | 0.3398 | 0.9522 | 0.9262 | 0.8622 | 0.8958 | 0.9253 | 0.9809 | 0.6251 | 0.7975 | 0.9905 | 0.9102 | 0.2338 | nan | 0.9834 | 0.3333 | 0.8922 | 0.8732 | 0.8430 | 0.8405 | 0.9013 | 0.9609 | 0.6189 | 0.6253 | 0.9788 | 0.8638 | 0.2321 | nan | 0.0800 | 0.8026 | 0.7651 | 0.9799 |
| 0.0255 | 138.82 | 2360 | 0.9942 | 0.3220 | 0.9547 | 0.9288 | 0.8616 | 0.8916 | 0.9138 | 0.9814 | 0.6246 | 0.7646 | 0.9898 | 0.9134 | 0.2408 | nan | 0.9832 | 0.3153 | 0.8923 | 0.8761 | 0.8445 | 0.8383 | 0.8958 | 0.9602 | 0.6180 | 0.6198 | 0.9792 | 0.8644 | 0.2385 | nan | 0.0807 | 0.7986 | 0.7635 | 0.9798 |
| 0.025 | 140.0 | 2380 | 0.9932 | 0.3626 | 0.9544 | 0.9285 | 0.8567 | 0.8978 | 0.9276 | 0.9807 | 0.6266 | 0.7963 | 0.9910 | 0.9159 | 0.2400 | nan | 0.9836 | 0.3551 | 0.8904 | 0.8750 | 0.8394 | 0.8405 | 0.9008 | 0.9601 | 0.6177 | 0.6291 | 0.9785 | 0.8647 | 0.2366 | nan | 0.0811 | 0.8055 | 0.7670 | 0.9798 |
| 0.0203 | 141.18 | 2400 | 0.9937 | 0.3220 | 0.9577 | 0.9230 | 0.8747 | 0.8940 | 0.9281 | 0.9797 | 0.6233 | 0.7675 | 0.9893 | 0.9159 | 0.2408 | nan | 0.9834 | 0.3163 | 0.8907 | 0.8699 | 0.8540 | 0.8388 | 0.8999 | 0.9594 | 0.6165 | 0.6187 | 0.9794 | 0.8643 | 0.2345 | nan | 0.0815 | 0.8007 | 0.7635 | 0.9798 |
| 0.0245 | 142.35 | 2420 | 0.9939 | 0.3122 | 0.9541 | 0.9387 | 0.8693 | 0.8924 | 0.9261 | 0.9827 | 0.6251 | 0.7980 | 0.9883 | 0.9334 | 0.2442 | nan | 0.9834 | 0.3077 | 0.8928 | 0.8696 | 0.8511 | 0.8393 | 0.9012 | 0.9599 | 0.6196 | 0.6327 | 0.9793 | 0.8639 | 0.2411 | nan | 0.0800 | 0.8045 | 0.7647 | 0.9800 |
| 0.021 | 143.53 | 2440 | 0.9934 | 0.3626 | 0.9557 | 0.9449 | 0.8650 | 0.8963 | 0.9220 | 0.9824 | 0.6284 | 0.7961 | 0.9896 | 0.9210 | 0.2369 | nan | 0.9836 | 0.3562 | 0.8920 | 0.8759 | 0.8457 | 0.8395 | 0.8999 | 0.9591 | 0.6215 | 0.6309 | 0.9794 | 0.8647 | 0.2342 | nan | 0.0797 | 0.8073 | 0.7679 | 0.9799 |
| 0.0235 | 144.71 | 2460 | 0.9943 | 0.2911 | 0.9581 | 0.9411 | 0.8603 | 0.8844 | 0.9149 | 0.9794 | 0.6232 | 0.7764 | 0.9884 | 0.9207 | 0.2400 | nan | 0.9832 | 0.2869 | 0.8910 | 0.8680 | 0.8450 | 0.8354 | 0.8936 | 0.9600 | 0.6179 | 0.6198 | 0.9793 | 0.8658 | 0.2369 | nan | 0.0825 | 0.7979 | 0.7602 | 0.9797 |
| 0.0254 | 145.88 | 2480 | 0.9941 | 0.2846 | 0.9532 | 0.9409 | 0.8680 | 0.8930 | 0.9247 | 0.9798 | 0.6242 | 0.7814 | 0.9903 | 0.9162 | 0.2461 | nan | 0.9833 | 0.2809 | 0.8925 | 0.8708 | 0.8467 | 0.8382 | 0.9010 | 0.9607 | 0.6183 | 0.6232 | 0.9792 | 0.8653 | 0.2431 | nan | 0.0812 | 0.7997 | 0.7618 | 0.9799 |
| 0.0216 | 147.06 | 2500 | 0.9935 | 0.2927 | 0.9526 | 0.9281 | 0.8561 | 0.8995 | 0.9277 | 0.9810 | 0.6235 | 0.7848 | 0.9913 | 0.9075 | 0.2323 | nan | 0.9834 | 0.2903 | 0.8914 | 0.8714 | 0.8393 | 0.8375 | 0.9033 | 0.9601 | 0.6180 | 0.6270 | 0.9788 | 0.8628 | 0.2305 | nan | 0.0810 | 0.7977 | 0.7611 | 0.9798 |
| 0.0229 | 148.24 | 2520 | 0.9936 | 0.3642 | 0.9542 | 0.9384 | 0.8601 | 0.8935 | 0.9304 | 0.9833 | 0.6248 | 0.7977 | 0.9898 | 0.9155 | 0.2459 | nan | 0.9835 | 0.3544 | 0.8921 | 0.8637 | 0.8429 | 0.8380 | 0.8966 | 0.9593 | 0.6182 | 0.6257 | 0.9792 | 0.8650 | 0.2430 | nan | 0.0810 | 0.8070 | 0.7663 | 0.9798 |
| 0.022 | 149.41 | 2540 | 0.9934 | 0.3138 | 0.9572 | 0.9460 | 0.8611 | 0.8924 | 0.9241 | 0.9815 | 0.6235 | 0.7865 | 0.9897 | 0.9176 | 0.2397 | nan | 0.9835 | 0.3030 | 0.8909 | 0.8671 | 0.8420 | 0.8378 | 0.8953 | 0.9597 | 0.6182 | 0.6212 | 0.9792 | 0.8652 | 0.2377 | nan | 0.0817 | 0.8020 | 0.7616 | 0.9798 |
| 0.0235 | 150.59 | 2560 | 0.9938 | 0.2667 | 0.9539 | 0.9397 | 0.8590 | 0.8940 | 0.9200 | 0.9818 | 0.6240 | 0.7736 | 0.9897 | 0.9229 | 0.2428 | nan | 0.9834 | 0.2641 | 0.8916 | 0.8688 | 0.8425 | 0.8378 | 0.8992 | 0.9601 | 0.6176 | 0.6177 | 0.9790 | 0.8660 | 0.2402 | nan | 0.0817 | 0.7971 | 0.7591 | 0.9798 |
| 0.0224 | 151.76 | 2580 | 0.9938 | 0.3561 | 0.9555 | 0.9403 | 0.8661 | 0.8892 | 0.9244 | 0.9814 | 0.6238 | 0.7724 | 0.9899 | 0.9214 | 0.2453 | nan | 0.9834 | 0.3471 | 0.8912 | 0.8688 | 0.8470 | 0.8374 | 0.8984 | 0.9600 | 0.6176 | 0.6209 | 0.9793 | 0.8658 | 0.2398 | nan | 0.0820 | 0.8046 | 0.7659 | 0.9798 |
| 0.0205 | 152.94 | 2600 | 0.9939 | 0.2943 | 0.9546 | 0.9375 | 0.8547 | 0.8966 | 0.9193 | 0.9801 | 0.6246 | 0.7738 | 0.9904 | 0.9152 | 0.2378 | nan | 0.9835 | 0.2896 | 0.8918 | 0.8715 | 0.8392 | 0.8383 | 0.8984 | 0.9611 | 0.6185 | 0.6206 | 0.9793 | 0.8657 | 0.2359 | nan | 0.0810 | 0.7979 | 0.7610 | 0.9799 |
| 0.0197 | 154.12 | 2620 | 0.9929 | 0.3382 | 0.9570 | 0.9462 | 0.8656 | 0.9036 | 0.9324 | 0.9828 | 0.6258 | 0.7921 | 0.9891 | 0.9219 | 0.2389 | nan | 0.9836 | 0.3323 | 0.8919 | 0.8674 | 0.8475 | 0.8405 | 0.9058 | 0.9604 | 0.6171 | 0.6255 | 0.9794 | 0.8656 | 0.2358 | nan | 0.0808 | 0.8067 | 0.7656 | 0.9799 |
| 0.0209 | 155.29 | 2640 | 0.9943 | 0.2423 | 0.9555 | 0.9340 | 0.8575 | 0.8939 | 0.9254 | 0.9817 | 0.6240 | 0.7638 | 0.9886 | 0.9252 | 0.2443 | nan | 0.9835 | 0.2399 | 0.8926 | 0.8723 | 0.8421 | 0.8398 | 0.9027 | 0.9610 | 0.6175 | 0.6173 | 0.9793 | 0.8657 | 0.2419 | nan | 0.0812 | 0.7946 | 0.7581 | 0.9800 |
| 0.0203 | 156.47 | 2660 | 0.9940 | 0.3496 | 0.9558 | 0.9387 | 0.8629 | 0.8939 | 0.9251 | 0.9808 | 0.6245 | 0.7735 | 0.9892 | 0.9231 | 0.2499 | nan | 0.9834 | 0.3429 | 0.8926 | 0.8695 | 0.8463 | 0.8400 | 0.9050 | 0.9608 | 0.6177 | 0.6220 | 0.9796 | 0.8664 | 0.2460 | nan | 0.0809 | 0.8047 | 0.7671 | 0.9800 |
| 0.0225 | 157.65 | 2680 | 0.9938 | 0.3203 | 0.9571 | 0.9292 | 0.8643 | 0.8980 | 0.9265 | 0.9810 | 0.6220 | 0.7662 | 0.9885 | 0.9237 | 0.2427 | nan | 0.9836 | 0.3152 | 0.8912 | 0.8653 | 0.8467 | 0.8419 | 0.9053 | 0.9602 | 0.6169 | 0.6222 | 0.9794 | 0.8654 | 0.2388 | nan | 0.0808 | 0.8010 | 0.7640 | 0.9800 |
| 0.0269 | 158.82 | 2700 | 0.9943 | 0.2553 | 0.9558 | 0.9247 | 0.8603 | 0.8894 | 0.9212 | 0.9807 | 0.6250 | 0.7761 | 0.9899 | 0.9177 | 0.2444 | nan | 0.9834 | 0.2516 | 0.8928 | 0.8697 | 0.8439 | 0.8390 | 0.9014 | 0.9609 | 0.6184 | 0.6272 | 0.9795 | 0.8653 | 0.2418 | nan | 0.0806 | 0.7950 | 0.7596 | 0.9800 |
| 0.0204 | 160.0 | 2720 | 0.9940 | 0.3480 | 0.9543 | 0.9310 | 0.8668 | 0.8949 | 0.9281 | 0.9816 | 0.6257 | 0.7981 | 0.9892 | 0.9248 | 0.2527 | nan | 0.9835 | 0.3391 | 0.8932 | 0.8665 | 0.8497 | 0.8404 | 0.9049 | 0.9605 | 0.6187 | 0.6308 | 0.9796 | 0.8656 | 0.2475 | nan | 0.0805 | 0.8069 | 0.7677 | 0.9801 |
| 0.0188 | 161.18 | 2740 | 0.9934 | 0.3659 | 0.9579 | 0.9386 | 0.8677 | 0.8992 | 0.9274 | 0.9823 | 0.6255 | 0.7694 | 0.9896 | 0.9168 | 0.2531 | nan | 0.9837 | 0.3571 | 0.8920 | 0.8709 | 0.8494 | 0.8420 | 0.9019 | 0.9608 | 0.6191 | 0.6213 | 0.9794 | 0.8654 | 0.2484 | nan | 0.0801 | 0.8067 | 0.7686 | 0.9801 |
| 0.0218 | 162.35 | 2760 | 0.9936 | 0.3577 | 0.9578 | 0.9321 | 0.8665 | 0.9000 | 0.9290 | 0.9800 | 0.6247 | 0.7756 | 0.9894 | 0.9216 | 0.2515 | nan | 0.9837 | 0.3514 | 0.8919 | 0.8732 | 0.8478 | 0.8421 | 0.9041 | 0.9609 | 0.6183 | 0.6240 | 0.9795 | 0.8674 | 0.2469 | nan | 0.0805 | 0.8061 | 0.7686 | 0.9801 |
| 0.0203 | 163.53 | 2780 | 0.9931 | 0.3268 | 0.9580 | 0.9177 | 0.8569 | 0.9023 | 0.9230 | 0.9822 | 0.6227 | 0.7698 | 0.9898 | 0.9155 | 0.2411 | nan | 0.9836 | 0.3216 | 0.8910 | 0.8713 | 0.8405 | 0.8406 | 0.9018 | 0.9599 | 0.6167 | 0.6242 | 0.9795 | 0.8664 | 0.2384 | nan | 0.0815 | 0.7999 | 0.7643 | 0.9799 |
| 0.0229 | 164.71 | 2800 | 0.9933 | 0.3301 | 0.9548 | 0.9399 | 0.8574 | 0.9024 | 0.9303 | 0.9801 | 0.6251 | 0.7891 | 0.9912 | 0.9162 | 0.2512 | nan | 0.9836 | 0.3248 | 0.8924 | 0.8793 | 0.8401 | 0.8410 | 0.9061 | 0.9611 | 0.6190 | 0.6316 | 0.9792 | 0.8669 | 0.2481 | nan | 0.0805 | 0.8047 | 0.7672 | 0.9801 |
| 0.0189 | 165.88 | 2820 | 0.9940 | 0.3350 | 0.9556 | 0.9351 | 0.8622 | 0.8921 | 0.9278 | 0.9821 | 0.6248 | 0.7816 | 0.9890 | 0.9258 | 0.2524 | nan | 0.9835 | 0.3285 | 0.8930 | 0.8755 | 0.8450 | 0.8390 | 0.9041 | 0.9605 | 0.6187 | 0.6255 | 0.9795 | 0.8665 | 0.2472 | nan | 0.0816 | 0.8044 | 0.7667 | 0.9800 |
| 0.0235 | 167.06 | 2840 | 0.9933 | 0.3772 | 0.9555 | 0.9379 | 0.8622 | 0.9032 | 0.9265 | 0.9822 | 0.6231 | 0.7864 | 0.9899 | 0.9224 | 0.2539 | nan | 0.9837 | 0.3700 | 0.8925 | 0.8772 | 0.8443 | 0.8412 | 0.9049 | 0.9603 | 0.6176 | 0.6272 | 0.9795 | 0.8669 | 0.2486 | nan | 0.0809 | 0.8087 | 0.7703 | 0.9801 |
| 0.0218 | 168.24 | 2860 | 0.9935 | 0.3350 | 0.9582 | 0.9314 | 0.8572 | 0.8961 | 0.9207 | 0.9809 | 0.6220 | 0.7770 | 0.9906 | 0.9125 | 0.2426 | nan | 0.9837 | 0.3291 | 0.8914 | 0.8749 | 0.8395 | 0.8412 | 0.9003 | 0.9613 | 0.6170 | 0.6243 | 0.9792 | 0.8658 | 0.2400 | nan | 0.0825 | 0.8013 | 0.7652 | 0.9800 |
| 0.0225 | 169.41 | 2880 | 0.9941 | 0.3089 | 0.9553 | 0.9303 | 0.8597 | 0.8913 | 0.9232 | 0.9819 | 0.6236 | 0.7837 | 0.9896 | 0.9214 | 0.2450 | nan | 0.9835 | 0.304 | 0.8928 | 0.8759 | 0.8426 | 0.8392 | 0.9029 | 0.9611 | 0.6185 | 0.6286 | 0.9794 | 0.8665 | 0.2414 | nan | 0.0818 | 0.8006 | 0.7643 | 0.9800 |
| 0.0204 | 170.59 | 2900 | 0.9937 | 0.3870 | 0.9557 | 0.9338 | 0.8589 | 0.8986 | 0.9322 | 0.9815 | 0.6253 | 0.7736 | 0.9902 | 0.9196 | 0.2531 | nan | 0.9837 | 0.3766 | 0.8928 | 0.8770 | 0.8424 | 0.8412 | 0.9061 | 0.9611 | 0.6192 | 0.6238 | 0.9793 | 0.8667 | 0.2497 | nan | 0.0808 | 0.8079 | 0.7707 | 0.9801 |
| 0.0184 | 171.76 | 2920 | 0.9939 | 0.3577 | 0.9575 | 0.9346 | 0.8621 | 0.8910 | 0.9337 | 0.9813 | 0.6253 | 0.7793 | 0.9892 | 0.9239 | 0.2545 | nan | 0.9836 | 0.3487 | 0.8927 | 0.8715 | 0.8450 | 0.8385 | 0.9022 | 0.9612 | 0.6189 | 0.6238 | 0.9795 | 0.8668 | 0.2488 | nan | 0.0817 | 0.8065 | 0.7678 | 0.9800 |
| 0.0234 | 172.94 | 2940 | 0.9938 | 0.3301 | 0.9576 | 0.9343 | 0.8640 | 0.8945 | 0.9314 | 0.9801 | 0.6259 | 0.7919 | 0.9890 | 0.9268 | 0.2530 | nan | 0.9837 | 0.3232 | 0.8928 | 0.8738 | 0.8453 | 0.8400 | 0.9008 | 0.9615 | 0.6194 | 0.6259 | 0.9794 | 0.8671 | 0.2474 | nan | 0.0814 | 0.8056 | 0.7662 | 0.9801 |
| 0.0213 | 174.12 | 2960 | 0.9934 | 0.3528 | 0.9570 | 0.9312 | 0.8599 | 0.9020 | 0.9337 | 0.9818 | 0.6259 | 0.7751 | 0.9894 | 0.9218 | 0.2475 | nan | 0.9837 | 0.3461 | 0.8921 | 0.8755 | 0.8432 | 0.8416 | 0.9035 | 0.9609 | 0.6192 | 0.6199 | 0.9796 | 0.8672 | 0.2440 | nan | 0.0815 | 0.8055 | 0.7674 | 0.9801 |
| 0.0182 | 175.29 | 2980 | 0.9934 | 0.3610 | 0.9574 | 0.9413 | 0.8613 | 0.8957 | 0.9366 | 0.9802 | 0.6249 | 0.7775 | 0.9902 | 0.9251 | 0.2460 | nan | 0.9836 | 0.3535 | 0.8918 | 0.8758 | 0.8435 | 0.8402 | 0.9023 | 0.9612 | 0.6179 | 0.6216 | 0.9794 | 0.8677 | 0.2437 | nan | 0.0820 | 0.8070 | 0.7679 | 0.9800 |
| 0.0203 | 176.47 | 3000 | 0.9934 | 0.3236 | 0.9573 | 0.9337 | 0.8583 | 0.8992 | 0.9322 | 0.9811 | 0.6247 | 0.7840 | 0.9893 | 0.9246 | 0.2318 | nan | 0.9836 | 0.3184 | 0.8917 | 0.8729 | 0.8421 | 0.8399 | 0.9037 | 0.9607 | 0.6183 | 0.6227 | 0.9795 | 0.8674 | 0.2303 | nan | 0.0825 | 0.8026 | 0.7639 | 0.9800 |
| 0.024 | 177.65 | 3020 | 0.9938 | 0.3236 | 0.9539 | 0.9346 | 0.8584 | 0.8971 | 0.9300 | 0.9825 | 0.6259 | 0.7842 | 0.9899 | 0.9241 | 0.2416 | nan | 0.9837 | 0.3179 | 0.8926 | 0.8711 | 0.8415 | 0.8404 | 0.9034 | 0.9607 | 0.6197 | 0.6244 | 0.9794 | 0.8673 | 0.2400 | nan | 0.0821 | 0.8030 | 0.7648 | 0.9800 |
| 0.0182 | 178.82 | 3040 | 0.9933 | 0.3740 | 0.9574 | 0.9400 | 0.8569 | 0.9011 | 0.9271 | 0.9818 | 0.6261 | 0.7775 | 0.9900 | 0.9205 | 0.2384 | nan | 0.9838 | 0.3668 | 0.8916 | 0.8713 | 0.8399 | 0.8421 | 0.9023 | 0.9607 | 0.6196 | 0.6247 | 0.9794 | 0.8675 | 0.2366 | nan | 0.0814 | 0.8065 | 0.7682 | 0.9801 |
| 0.0227 | 180.0 | 3060 | 0.9932 | 0.3447 | 0.9574 | 0.9368 | 0.8584 | 0.9025 | 0.9287 | 0.9817 | 0.6249 | 0.7810 | 0.9896 | 0.9228 | 0.2408 | nan | 0.9838 | 0.3387 | 0.8918 | 0.8728 | 0.8409 | 0.8411 | 0.9050 | 0.9605 | 0.6186 | 0.6261 | 0.9795 | 0.8672 | 0.2391 | nan | 0.0813 | 0.8048 | 0.7665 | 0.9800 |
| 0.0198 | 181.18 | 3080 | 0.9940 | 0.3593 | 0.9564 | 0.9417 | 0.8583 | 0.8938 | 0.9340 | 0.9814 | 0.6248 | 0.7771 | 0.9889 | 0.9282 | 0.2478 | nan | 0.9837 | 0.3508 | 0.8918 | 0.8712 | 0.8429 | 0.8406 | 0.9037 | 0.9606 | 0.6177 | 0.6240 | 0.9794 | 0.8673 | 0.2456 | nan | 0.0816 | 0.8066 | 0.7676 | 0.9800 |
| 0.0249 | 182.35 | 3100 | 0.9939 | 0.3122 | 0.9550 | 0.9416 | 0.8634 | 0.8990 | 0.9334 | 0.9814 | 0.6256 | 0.7774 | 0.9899 | 0.9186 | 0.2534 | nan | 0.9838 | 0.3062 | 0.8929 | 0.8700 | 0.8448 | 0.8416 | 0.9050 | 0.9611 | 0.6180 | 0.6212 | 0.9795 | 0.8677 | 0.2501 | nan | 0.0812 | 0.8034 | 0.7648 | 0.9801 |
| 0.0201 | 183.53 | 3120 | 0.9934 | 0.3008 | 0.9578 | 0.9378 | 0.8544 | 0.8992 | 0.9277 | 0.9808 | 0.6233 | 0.7769 | 0.9899 | 0.9199 | 0.2465 | nan | 0.9838 | 0.2955 | 0.8920 | 0.8724 | 0.8382 | 0.8405 | 0.9022 | 0.9609 | 0.6166 | 0.6208 | 0.9794 | 0.8678 | 0.2438 | nan | 0.0822 | 0.8007 | 0.7626 | 0.9800 |
| 0.0262 | 184.71 | 3140 | 0.9936 | 0.3382 | 0.9554 | 0.9305 | 0.8554 | 0.8991 | 0.9308 | 0.9814 | 0.6254 | 0.7831 | 0.9905 | 0.9193 | 0.2475 | nan | 0.9838 | 0.3323 | 0.8927 | 0.8766 | 0.8390 | 0.8408 | 0.9037 | 0.9610 | 0.6180 | 0.6240 | 0.9794 | 0.8674 | 0.2455 | nan | 0.0807 | 0.8039 | 0.7665 | 0.9801 |
| 0.0217 | 185.88 | 3160 | 0.9937 | 0.3740 | 0.9571 | 0.9372 | 0.8574 | 0.8971 | 0.9322 | 0.9816 | 0.6257 | 0.7808 | 0.9894 | 0.9236 | 0.2459 | nan | 0.9838 | 0.3651 | 0.8924 | 0.8744 | 0.8419 | 0.8408 | 0.9036 | 0.9608 | 0.6183 | 0.6234 | 0.9796 | 0.8684 | 0.2437 | nan | 0.0813 | 0.8073 | 0.7689 | 0.9801 |
| 0.0193 | 187.06 | 3180 | 0.9937 | 0.3854 | 0.9561 | 0.9362 | 0.8592 | 0.8967 | 0.9305 | 0.9825 | 0.6256 | 0.7832 | 0.9895 | 0.9242 | 0.2482 | nan | 0.9837 | 0.375 | 0.8928 | 0.8725 | 0.8426 | 0.8408 | 0.9029 | 0.9606 | 0.6183 | 0.6244 | 0.9796 | 0.8681 | 0.2457 | nan | 0.0813 | 0.8085 | 0.7698 | 0.9801 |
| 0.0252 | 188.24 | 3200 | 0.9938 | 0.3691 | 0.9568 | 0.9326 | 0.8565 | 0.8948 | 0.9250 | 0.9813 | 0.6246 | 0.7735 | 0.9899 | 0.9238 | 0.2452 | nan | 0.9837 | 0.3603 | 0.8923 | 0.8751 | 0.8404 | 0.8403 | 0.9006 | 0.9608 | 0.6178 | 0.6210 | 0.9794 | 0.8683 | 0.2428 | nan | 0.0817 | 0.8051 | 0.7679 | 0.9801 |
| 0.0204 | 189.41 | 3220 | 0.9938 | 0.3626 | 0.9558 | 0.9326 | 0.8602 | 0.8968 | 0.9294 | 0.9805 | 0.6239 | 0.7823 | 0.9902 | 0.9197 | 0.2490 | nan | 0.9837 | 0.3557 | 0.8927 | 0.8750 | 0.8431 | 0.8403 | 0.9029 | 0.9610 | 0.6175 | 0.6246 | 0.9795 | 0.8682 | 0.2456 | nan | 0.0819 | 0.8059 | 0.7684 | 0.9801 |
| 0.0249 | 190.59 | 3240 | 0.9936 | 0.3366 | 0.9576 | 0.9339 | 0.8609 | 0.8992 | 0.9281 | 0.9814 | 0.6233 | 0.7887 | 0.9894 | 0.9215 | 0.2500 | nan | 0.9838 | 0.3307 | 0.8927 | 0.8725 | 0.8438 | 0.8409 | 0.9025 | 0.9609 | 0.6170 | 0.6282 | 0.9796 | 0.8679 | 0.2464 | nan | 0.0822 | 0.8049 | 0.7667 | 0.9801 |
| 0.0215 | 191.76 | 3260 | 0.9939 | 0.3463 | 0.9557 | 0.9361 | 0.8647 | 0.8962 | 0.9289 | 0.9821 | 0.6244 | 0.7839 | 0.9894 | 0.9245 | 0.2526 | nan | 0.9837 | 0.3397 | 0.8932 | 0.8727 | 0.8466 | 0.8406 | 0.9027 | 0.9609 | 0.6172 | 0.6255 | 0.9796 | 0.8678 | 0.2487 | nan | 0.0820 | 0.8060 | 0.7676 | 0.9801 |
| 0.0225 | 192.94 | 3280 | 0.9937 | 0.3821 | 0.9572 | 0.9380 | 0.8615 | 0.8938 | 0.9264 | 0.9820 | 0.6240 | 0.7830 | 0.9897 | 0.9226 | 0.2461 | nan | 0.9838 | 0.3718 | 0.8921 | 0.8718 | 0.8438 | 0.8402 | 0.8987 | 0.9607 | 0.6166 | 0.6233 | 0.9795 | 0.8679 | 0.2435 | nan | 0.0824 | 0.8077 | 0.7687 | 0.9801 |
| 0.0221 | 194.12 | 3300 | 0.9937 | 0.3675 | 0.9554 | 0.9395 | 0.8611 | 0.8971 | 0.9268 | 0.9819 | 0.6245 | 0.7911 | 0.9899 | 0.9238 | 0.2495 | nan | 0.9838 | 0.3604 | 0.8930 | 0.8720 | 0.8434 | 0.8408 | 0.9010 | 0.9610 | 0.6170 | 0.6262 | 0.9795 | 0.8679 | 0.2472 | nan | 0.0816 | 0.8078 | 0.7687 | 0.9801 |
| 0.0198 | 195.29 | 3320 | 0.9939 | 0.3561 | 0.9560 | 0.9346 | 0.8574 | 0.8955 | 0.9280 | 0.9815 | 0.6237 | 0.7885 | 0.9897 | 0.9187 | 0.2494 | nan | 0.9837 | 0.3493 | 0.8926 | 0.8724 | 0.8411 | 0.8404 | 0.9010 | 0.9609 | 0.6173 | 0.6257 | 0.9796 | 0.8679 | 0.2463 | nan | 0.0821 | 0.8056 | 0.7675 | 0.9801 |
| 0.0182 | 196.47 | 3340 | 0.9936 | 0.3545 | 0.9579 | 0.9313 | 0.8589 | 0.8976 | 0.9259 | 0.9813 | 0.6236 | 0.7862 | 0.9891 | 0.9238 | 0.2451 | nan | 0.9838 | 0.3482 | 0.8920 | 0.8730 | 0.8417 | 0.8409 | 0.9003 | 0.9609 | 0.6171 | 0.6250 | 0.9795 | 0.8682 | 0.2426 | nan | 0.0824 | 0.8053 | 0.7672 | 0.9801 |
| 0.0186 | 197.65 | 3360 | 0.9936 | 0.3593 | 0.9573 | 0.9342 | 0.8621 | 0.8982 | 0.9247 | 0.9811 | 0.6239 | 0.7856 | 0.9894 | 0.9232 | 0.2462 | nan | 0.9838 | 0.3530 | 0.8923 | 0.8729 | 0.8439 | 0.8413 | 0.9004 | 0.9610 | 0.6173 | 0.6248 | 0.9796 | 0.8684 | 0.2439 | nan | 0.0821 | 0.8061 | 0.7679 | 0.9801 |
| 0.0241 | 198.82 | 3380 | 0.9940 | 0.3431 | 0.9557 | 0.9396 | 0.8677 | 0.8904 | 0.9302 | 0.9817 | 0.6260 | 0.7848 | 0.9899 | 0.9173 | 0.2559 | nan | 0.9836 | 0.3344 | 0.8929 | 0.8736 | 0.8493 | 0.8387 | 0.9028 | 0.9606 | 0.6195 | 0.6250 | 0.9796 | 0.8669 | 0.2493 | nan | 0.0823 | 0.8059 | 0.7674 | 0.9801 |
| 0.0212 | 200.0 | 3400 | 0.9945 | 0.3252 | 0.9566 | 0.9141 | 0.8484 | 0.8866 | 0.9209 | 0.9818 | 0.6251 | 0.7763 | 0.9894 | 0.9187 | 0.2221 | nan | 0.9835 | 0.3175 | 0.8928 | 0.8665 | 0.8352 | 0.8386 | 0.8999 | 0.9615 | 0.6194 | 0.6165 | 0.9793 | 0.8673 | 0.2204 | nan | 0.0827 | 0.7969 | 0.7614 | 0.9800 |
| 0.0204 | 201.18 | 3420 | 0.9936 | 0.3870 | 0.9568 | 0.9381 | 0.8583 | 0.9025 | 0.9272 | 0.9818 | 0.6253 | 0.7838 | 0.9885 | 0.9281 | 0.2431 | nan | 0.9839 | 0.3802 | 0.8919 | 0.8633 | 0.8419 | 0.8438 | 0.9017 | 0.9610 | 0.6190 | 0.6216 | 0.9794 | 0.8688 | 0.2403 | nan | 0.0817 | 0.8088 | 0.7690 | 0.9801 |
| 0.0216 | 202.35 | 3440 | 0.9938 | 0.3919 | 0.9606 | 0.9362 | 0.8438 | 0.8912 | 0.9277 | 0.9803 | 0.6227 | 0.7608 | 0.9890 | 0.9203 | 0.2388 | nan | 0.9837 | 0.3813 | 0.8904 | 0.8701 | 0.8296 | 0.8408 | 0.9007 | 0.9610 | 0.6166 | 0.6171 | 0.9791 | 0.8668 | 0.2372 | nan | 0.0829 | 0.8044 | 0.7673 | 0.9799 |
| 0.0192 | 203.53 | 3460 | 0.9938 | 0.3951 | 0.9581 | 0.9246 | 0.8510 | 0.8967 | 0.9139 | 0.9803 | 0.6228 | 0.7711 | 0.9886 | 0.9360 | 0.2317 | nan | 0.9839 | 0.3857 | 0.8910 | 0.8700 | 0.8356 | 0.8436 | 0.8956 | 0.9600 | 0.6176 | 0.6196 | 0.9792 | 0.8666 | 0.2299 | nan | 0.0827 | 0.8049 | 0.7676 | 0.9800 |
| 0.0189 | 204.71 | 3480 | 0.9939 | 0.3561 | 0.9578 | 0.9363 | 0.8616 | 0.8993 | 0.9235 | 0.9806 | 0.6256 | 0.7930 | 0.9867 | 0.9351 | 0.2401 | nan | 0.9837 | 0.3471 | 0.8919 | 0.8699 | 0.8441 | 0.8427 | 0.8997 | 0.9608 | 0.6185 | 0.6242 | 0.9791 | 0.8657 | 0.2386 | nan | 0.0822 | 0.8069 | 0.7666 | 0.9800 |
| 0.0226 | 205.88 | 3500 | 0.9929 | 0.3024 | 0.9535 | 0.9352 | 0.8572 | 0.9105 | 0.9212 | 0.9821 | 0.6284 | 0.7859 | 0.9912 | 0.9195 | 0.2203 | nan | 0.9840 | 0.2948 | 0.8917 | 0.8777 | 0.8367 | 0.8440 | 0.8974 | 0.9606 | 0.6222 | 0.6266 | 0.9788 | 0.8678 | 0.2190 | nan | 0.0807 | 0.8000 | 0.7616 | 0.9801 |
| 0.019 | 207.06 | 3520 | 0.9932 | 0.2927 | 0.9541 | 0.9493 | 0.8537 | 0.9081 | 0.9246 | 0.9808 | 0.6292 | 0.7824 | 0.9918 | 0.9102 | 0.2333 | nan | 0.9840 | 0.2894 | 0.8920 | 0.8771 | 0.8380 | 0.8451 | 0.9021 | 0.9604 | 0.6222 | 0.6305 | 0.9791 | 0.8668 | 0.2318 | nan | 0.0816 | 0.8003 | 0.7630 | 0.9802 |
| 0.0192 | 208.24 | 3540 | 0.9940 | 0.3691 | 0.9518 | 0.9420 | 0.8676 | 0.8984 | 0.9314 | 0.9820 | 0.6263 | 0.7955 | 0.9912 | 0.9161 | 0.2501 | nan | 0.9838 | 0.3586 | 0.8937 | 0.8717 | 0.8469 | 0.8416 | 0.9064 | 0.9613 | 0.6197 | 0.6279 | 0.9798 | 0.8693 | 0.2475 | nan | 0.0819 | 0.8089 | 0.7699 | 0.9803 |
| 0.0183 | 209.41 | 3560 | 0.9934 | 0.3593 | 0.9579 | 0.9417 | 0.8505 | 0.9046 | 0.9235 | 0.9808 | 0.6222 | 0.7652 | 0.9898 | 0.9218 | 0.2416 | nan | 0.9839 | 0.3469 | 0.8911 | 0.8719 | 0.8347 | 0.8452 | 0.9017 | 0.9597 | 0.6160 | 0.6251 | 0.9797 | 0.8693 | 0.2332 | nan | 0.0829 | 0.8040 | 0.7660 | 0.9801 |
| 0.0203 | 210.59 | 3580 | 0.9936 | 0.2732 | 0.9575 | 0.9368 | 0.8535 | 0.8987 | 0.9253 | 0.9809 | 0.6303 | 0.8001 | 0.9898 | 0.9163 | 0.2412 | nan | 0.9838 | 0.2701 | 0.8924 | 0.8761 | 0.8377 | 0.8418 | 0.9035 | 0.9605 | 0.6226 | 0.6354 | 0.9795 | 0.8694 | 0.2368 | nan | 0.0813 | 0.7998 | 0.7623 | 0.9801 |
| 0.0202 | 211.76 | 3600 | 0.9940 | 0.4033 | 0.9544 | 0.9563 | 0.8578 | 0.8902 | 0.9383 | 0.9820 | 0.6282 | 0.7908 | 0.9894 | 0.9287 | 0.2551 | nan | 0.9837 | 0.3899 | 0.8925 | 0.8662 | 0.8412 | 0.8385 | 0.9049 | 0.9599 | 0.6211 | 0.6218 | 0.9795 | 0.8693 | 0.2502 | nan | 0.0827 | 0.8130 | 0.7707 | 0.9800 |
| 0.0166 | 212.94 | 3620 | 0.9944 | 0.2878 | 0.9547 | 0.9338 | 0.8550 | 0.8885 | 0.9356 | 0.9824 | 0.6238 | 0.7580 | 0.9892 | 0.9279 | 0.2508 | nan | 0.9836 | 0.2823 | 0.8923 | 0.8738 | 0.8384 | 0.8381 | 0.9061 | 0.9597 | 0.6176 | 0.6064 | 0.9797 | 0.8700 | 0.2483 | nan | 0.0835 | 0.7986 | 0.7612 | 0.9799 |
| 0.0211 | 214.12 | 3640 | 0.9942 | 0.3252 | 0.9542 | 0.9483 | 0.8648 | 0.8890 | 0.9359 | 0.9806 | 0.6263 | 0.7818 | 0.9906 | 0.9218 | 0.2551 | nan | 0.9836 | 0.3180 | 0.8936 | 0.8714 | 0.8477 | 0.8378 | 0.9079 | 0.9612 | 0.6199 | 0.6162 | 0.9796 | 0.8705 | 0.2513 | nan | 0.0829 | 0.8052 | 0.7661 | 0.9801 |
| 0.0217 | 215.29 | 3660 | 0.9938 | 0.4683 | 0.9548 | 0.9303 | 0.8702 | 0.8987 | 0.9307 | 0.9829 | 0.6275 | 0.7809 | 0.9910 | 0.9140 | 0.2478 | nan | 0.9841 | 0.4486 | 0.8930 | 0.8733 | 0.8507 | 0.8446 | 0.9020 | 0.9605 | 0.6205 | 0.6242 | 0.9797 | 0.8681 | 0.2431 | nan | 0.0806 | 0.8147 | 0.7763 | 0.9804 |
| 0.0191 | 216.47 | 3680 | 0.9941 | 0.3772 | 0.9546 | 0.9322 | 0.8528 | 0.8988 | 0.9296 | 0.9824 | 0.6285 | 0.7986 | 0.9893 | 0.9253 | 0.2534 | nan | 0.9839 | 0.3694 | 0.8941 | 0.8726 | 0.8372 | 0.8427 | 0.9067 | 0.9605 | 0.6208 | 0.6240 | 0.9797 | 0.8702 | 0.2514 | nan | 0.0811 | 0.8090 | 0.7703 | 0.9803 |
| 0.0202 | 217.65 | 3700 | 0.9936 | 0.3724 | 0.9585 | 0.9363 | 0.8553 | 0.9000 | 0.9307 | 0.9813 | 0.6279 | 0.7648 | 0.9895 | 0.9255 | 0.2396 | nan | 0.9840 | 0.3658 | 0.8923 | 0.8793 | 0.8386 | 0.8432 | 0.9073 | 0.9599 | 0.6208 | 0.6136 | 0.9798 | 0.8708 | 0.2372 | nan | 0.0823 | 0.8058 | 0.7687 | 0.9802 |
| 0.0192 | 218.82 | 3720 | 0.9938 | 0.3886 | 0.9556 | 0.9488 | 0.8705 | 0.8988 | 0.9315 | 0.9813 | 0.6290 | 0.7774 | 0.9897 | 0.9304 | 0.2487 | nan | 0.9840 | 0.3794 | 0.8944 | 0.8817 | 0.8481 | 0.8429 | 0.9072 | 0.9610 | 0.6228 | 0.6140 | 0.9797 | 0.8704 | 0.2451 | nan | 0.0816 | 0.8111 | 0.7716 | 0.9803 |
| 0.0211 | 220.0 | 3740 | 0.9943 | 0.3447 | 0.9568 | 0.9372 | 0.8628 | 0.8932 | 0.9251 | 0.9793 | 0.6242 | 0.7699 | 0.9897 | 0.9231 | 0.2349 | nan | 0.9839 | 0.3387 | 0.8930 | 0.8822 | 0.8455 | 0.8413 | 0.9037 | 0.9600 | 0.6190 | 0.6111 | 0.9799 | 0.8703 | 0.2297 | nan | 0.0837 | 0.8027 | 0.7660 | 0.9802 |
| 0.0169 | 221.18 | 3760 | 0.9934 | 0.4260 | 0.9574 | 0.9449 | 0.8633 | 0.9003 | 0.9379 | 0.9820 | 0.6276 | 0.7915 | 0.9893 | 0.9292 | 0.2544 | nan | 0.9840 | 0.4031 | 0.8935 | 0.8798 | 0.8463 | 0.8396 | 0.9068 | 0.9605 | 0.6209 | 0.6207 | 0.9801 | 0.8713 | 0.2485 | nan | 0.0826 | 0.8152 | 0.7735 | 0.9802 |
| 0.0179 | 222.35 | 3780 | 0.9943 | 0.4455 | 0.9546 | 0.9557 | 0.8707 | 0.8969 | 0.9343 | 0.9812 | 0.6284 | 0.7858 | 0.9895 | 0.9230 | 0.2580 | nan | 0.9838 | 0.4295 | 0.8944 | 0.8720 | 0.8492 | 0.8404 | 0.9090 | 0.9619 | 0.6224 | 0.6242 | 0.9801 | 0.8724 | 0.2549 | nan | 0.0818 | 0.8168 | 0.7765 | 0.9804 |
| 0.0174 | 223.53 | 3800 | 0.9941 | 0.2683 | 0.9578 | 0.9291 | 0.8487 | 0.8960 | 0.9115 | 0.9813 | 0.6218 | 0.7664 | 0.9891 | 0.9271 | 0.2324 | nan | 0.9839 | 0.2657 | 0.8924 | 0.8757 | 0.8345 | 0.8414 | 0.8948 | 0.9607 | 0.6180 | 0.6167 | 0.9797 | 0.8718 | 0.2309 | nan | 0.0845 | 0.7941 | 0.7589 | 0.9801 |
| 0.0177 | 224.71 | 3820 | 0.9939 | 0.3512 | 0.9566 | 0.9368 | 0.8628 | 0.8967 | 0.9329 | 0.9826 | 0.6266 | 0.7956 | 0.9894 | 0.9307 | 0.2566 | nan | 0.9840 | 0.3445 | 0.8948 | 0.8795 | 0.8452 | 0.8426 | 0.9045 | 0.9618 | 0.6203 | 0.6299 | 0.9799 | 0.8718 | 0.2531 | nan | 0.0815 | 0.8086 | 0.7701 | 0.9805 |
| 0.0207 | 225.88 | 3840 | 0.9934 | 0.4341 | 0.9566 | 0.9327 | 0.8625 | 0.8968 | 0.9374 | 0.9825 | 0.6270 | 0.7652 | 0.9907 | 0.9247 | 0.2518 | nan | 0.9840 | 0.4205 | 0.8920 | 0.8749 | 0.8435 | 0.8427 | 0.8982 | 0.9601 | 0.6198 | 0.6150 | 0.9796 | 0.8708 | 0.2468 | nan | 0.0825 | 0.8120 | 0.7729 | 0.9802 |
| 0.0186 | 227.06 | 3860 | 0.9944 | 0.3593 | 0.9568 | 0.9338 | 0.8586 | 0.8876 | 0.9340 | 0.9812 | 0.6258 | 0.7708 | 0.9903 | 0.9223 | 0.2453 | nan | 0.9839 | 0.3491 | 0.8931 | 0.8787 | 0.8429 | 0.8409 | 0.8995 | 0.9609 | 0.6192 | 0.6172 | 0.9798 | 0.8716 | 0.2401 | nan | 0.0832 | 0.8046 | 0.7675 | 0.9802 |
| 0.0215 | 228.24 | 3880 | 0.9938 | 0.4341 | 0.9571 | 0.9345 | 0.8621 | 0.8989 | 0.9379 | 0.9819 | 0.6253 | 0.7557 | 0.9900 | 0.9258 | 0.2545 | nan | 0.9839 | 0.4192 | 0.8930 | 0.8791 | 0.8442 | 0.8447 | 0.9060 | 0.9598 | 0.6205 | 0.6098 | 0.9800 | 0.8715 | 0.2500 | nan | 0.0826 | 0.8117 | 0.7740 | 0.9803 |
| 0.0191 | 229.41 | 3900 | 0.9935 | 0.4228 | 0.9609 | 0.9298 | 0.8530 | 0.8971 | 0.9220 | 0.9810 | 0.6242 | 0.7614 | 0.9892 | 0.9239 | 0.2450 | nan | 0.9840 | 0.4107 | 0.8910 | 0.8748 | 0.8368 | 0.8431 | 0.8969 | 0.9596 | 0.6181 | 0.6114 | 0.9798 | 0.8712 | 0.2416 | nan | 0.0839 | 0.8080 | 0.7707 | 0.9801 |
| 0.0194 | 230.59 | 3920 | 0.9935 | 0.4114 | 0.9572 | 0.9463 | 0.8608 | 0.9017 | 0.9329 | 0.9809 | 0.6252 | 0.7815 | 0.9901 | 0.9263 | 0.2493 | nan | 0.9841 | 0.4003 | 0.8930 | 0.8789 | 0.8421 | 0.8443 | 0.9048 | 0.9610 | 0.6189 | 0.6224 | 0.9797 | 0.8721 | 0.2465 | nan | 0.0825 | 0.8121 | 0.7729 | 0.9803 |
| 0.0181 | 231.76 | 3940 | 0.9935 | 0.3984 | 0.9567 | 0.9417 | 0.8638 | 0.9068 | 0.9288 | 0.9793 | 0.6239 | 0.7886 | 0.9905 | 0.9218 | 0.2480 | nan | 0.9841 | 0.3907 | 0.8936 | 0.8811 | 0.8454 | 0.8443 | 0.9052 | 0.9609 | 0.6184 | 0.6328 | 0.9800 | 0.8721 | 0.2439 | nan | 0.0813 | 0.8109 | 0.7733 | 0.9804 |
| 0.0219 | 232.94 | 3960 | 0.9933 | 0.4797 | 0.9603 | 0.9400 | 0.8654 | 0.9075 | 0.9241 | 0.9802 | 0.6246 | 0.7859 | 0.9884 | 0.9301 | 0.2488 | nan | 0.9841 | 0.4531 | 0.8924 | 0.8777 | 0.8482 | 0.8453 | 0.9005 | 0.9612 | 0.6176 | 0.6328 | 0.9800 | 0.8722 | 0.2445 | nan | 0.0816 | 0.8176 | 0.7777 | 0.9804 |
| 0.017 | 234.12 | 3980 | 0.9943 | 0.3984 | 0.9591 | 0.9360 | 0.8552 | 0.8959 | 0.9249 | 0.9810 | 0.6254 | 0.7733 | 0.9886 | 0.9256 | 0.2392 | nan | 0.9840 | 0.3834 | 0.8924 | 0.8772 | 0.8409 | 0.8454 | 0.9022 | 0.9609 | 0.6199 | 0.6260 | 0.9798 | 0.8721 | 0.2357 | nan | 0.0822 | 0.8075 | 0.7708 | 0.9803 |
| 0.0178 | 235.29 | 4000 | 0.9938 | 0.4504 | 0.9568 | 0.9284 | 0.8601 | 0.8952 | 0.9263 | 0.9842 | 0.6245 | 0.7851 | 0.9895 | 0.9196 | 0.2356 | nan | 0.9841 | 0.4321 | 0.8926 | 0.8717 | 0.8432 | 0.8439 | 0.9021 | 0.9587 | 0.6172 | 0.6180 | 0.9801 | 0.8699 | 0.2261 | nan | 0.0836 | 0.8115 | 0.7723 | 0.9802 |
| 0.0198 | 236.47 | 4020 | 0.9939 | 0.3886 | 0.9591 | 0.9406 | 0.8569 | 0.8932 | 0.9280 | 0.9807 | 0.6237 | 0.7595 | 0.9902 | 0.9249 | 0.2407 | nan | 0.9842 | 0.3776 | 0.8928 | 0.8755 | 0.8403 | 0.8432 | 0.9005 | 0.9603 | 0.6186 | 0.6093 | 0.9797 | 0.8717 | 0.2346 | nan | 0.0836 | 0.8062 | 0.7683 | 0.9803 |
| 0.017 | 237.65 | 4040 | 0.9941 | 0.4065 | 0.9591 | 0.9322 | 0.8549 | 0.8945 | 0.9281 | 0.9806 | 0.6263 | 0.7652 | 0.9907 | 0.9183 | 0.2460 | nan | 0.9842 | 0.3937 | 0.8937 | 0.8821 | 0.8395 | 0.8443 | 0.9029 | 0.9611 | 0.6205 | 0.6150 | 0.9798 | 0.8723 | 0.2421 | nan | 0.0826 | 0.8074 | 0.7716 | 0.9804 |
| 0.0195 | 238.82 | 4060 | 0.9942 | 0.3805 | 0.9595 | 0.9244 | 0.8475 | 0.8913 | 0.9235 | 0.9799 | 0.6239 | 0.7692 | 0.9901 | 0.9209 | 0.2439 | nan | 0.9840 | 0.3685 | 0.8931 | 0.8770 | 0.8345 | 0.8419 | 0.9021 | 0.9607 | 0.6195 | 0.6139 | 0.9798 | 0.8725 | 0.2412 | nan | 0.0848 | 0.8037 | 0.7684 | 0.9803 |
| 0.0195 | 240.0 | 4080 | 0.9939 | 0.3740 | 0.9576 | 0.9336 | 0.8518 | 0.9005 | 0.9294 | 0.9802 | 0.6219 | 0.7682 | 0.9900 | 0.9267 | 0.2434 | nan | 0.9841 | 0.3668 | 0.8932 | 0.8810 | 0.8362 | 0.8436 | 0.9046 | 0.9609 | 0.6179 | 0.6148 | 0.9798 | 0.8731 | 0.2409 | nan | 0.0841 | 0.8055 | 0.7690 | 0.9803 |
| 0.019 | 241.18 | 4100 | 0.9934 | 0.4130 | 0.9557 | 0.9383 | 0.8568 | 0.9091 | 0.9265 | 0.9816 | 0.6237 | 0.7526 | 0.9907 | 0.9207 | 0.2527 | nan | 0.9842 | 0.4032 | 0.8923 | 0.8823 | 0.8388 | 0.8452 | 0.9044 | 0.9596 | 0.6181 | 0.6075 | 0.9801 | 0.8726 | 0.2473 | nan | 0.0839 | 0.8088 | 0.7720 | 0.9803 |
| 0.0155 | 242.35 | 4120 | 0.9937 | 0.4146 | 0.9588 | 0.9401 | 0.8506 | 0.8980 | 0.9292 | 0.9800 | 0.6262 | 0.7814 | 0.9903 | 0.9263 | 0.2435 | nan | 0.9841 | 0.3966 | 0.8933 | 0.8803 | 0.8337 | 0.8436 | 0.9036 | 0.9615 | 0.6203 | 0.6218 | 0.9796 | 0.8736 | 0.2413 | nan | 0.0827 | 0.8102 | 0.7718 | 0.9803 |
| 0.0185 | 243.53 | 4140 | 0.9933 | 0.4407 | 0.9586 | 0.9358 | 0.8511 | 0.9064 | 0.9302 | 0.9809 | 0.6269 | 0.7668 | 0.9902 | 0.9265 | 0.2348 | nan | 0.9842 | 0.4274 | 0.8925 | 0.8811 | 0.8337 | 0.8460 | 0.9038 | 0.9601 | 0.6209 | 0.6185 | 0.9797 | 0.8737 | 0.2329 | nan | 0.0827 | 0.8109 | 0.7734 | 0.9803 |
| 0.0197 | 244.71 | 4160 | 0.9941 | 0.4016 | 0.9574 | 0.9368 | 0.8594 | 0.8953 | 0.9265 | 0.9816 | 0.6265 | 0.7806 | 0.9889 | 0.9315 | 0.2460 | nan | 0.9840 | 0.3914 | 0.8931 | 0.8748 | 0.8421 | 0.8429 | 0.9029 | 0.9601 | 0.6198 | 0.6194 | 0.9800 | 0.8737 | 0.2438 | nan | 0.0838 | 0.8097 | 0.7714 | 0.9803 |
| 0.0178 | 245.88 | 4180 | 0.9942 | 0.4211 | 0.9549 | 0.9475 | 0.8526 | 0.8957 | 0.9281 | 0.9834 | 0.6257 | 0.7645 | 0.9887 | 0.9300 | 0.2505 | nan | 0.9838 | 0.4098 | 0.8933 | 0.8740 | 0.8387 | 0.8414 | 0.9039 | 0.9585 | 0.6200 | 0.6099 | 0.9801 | 0.8723 | 0.2476 | nan | 0.0851 | 0.8105 | 0.7718 | 0.9802 |
| 0.0181 | 247.06 | 4200 | 0.9934 | 0.4797 | 0.9565 | 0.9473 | 0.8639 | 0.9014 | 0.9278 | 0.9820 | 0.6290 | 0.7834 | 0.9903 | 0.9272 | 0.2492 | nan | 0.9841 | 0.4631 | 0.8940 | 0.8791 | 0.8450 | 0.8423 | 0.9042 | 0.9606 | 0.6226 | 0.6200 | 0.9799 | 0.8731 | 0.2465 | nan | 0.0819 | 0.8178 | 0.7780 | 0.9804 |
| 0.0222 | 248.24 | 4220 | 0.9938 | 0.4049 | 0.9570 | 0.9411 | 0.8531 | 0.9025 | 0.9344 | 0.9807 | 0.6242 | 0.7708 | 0.9900 | 0.9230 | 0.2420 | nan | 0.9841 | 0.3934 | 0.8930 | 0.8778 | 0.8377 | 0.8430 | 0.9060 | 0.9607 | 0.6193 | 0.6136 | 0.9800 | 0.8723 | 0.2393 | nan | 0.0837 | 0.8090 | 0.7708 | 0.9803 |
| 0.0197 | 249.41 | 4240 | 0.9936 | 0.3740 | 0.9589 | 0.9474 | 0.8535 | 0.9008 | 0.9293 | 0.9819 | 0.6252 | 0.7759 | 0.9897 | 0.9225 | 0.2403 | nan | 0.9841 | 0.3633 | 0.8932 | 0.8757 | 0.8384 | 0.8433 | 0.9037 | 0.9607 | 0.6193 | 0.6239 | 0.9800 | 0.8733 | 0.2382 | nan | 0.0835 | 0.8072 | 0.7690 | 0.9803 |
| 0.0198 | 250.59 | 4260 | 0.9939 | 0.3854 | 0.9596 | 0.9399 | 0.8664 | 0.8952 | 0.9290 | 0.9808 | 0.6238 | 0.7739 | 0.9886 | 0.9305 | 0.2437 | nan | 0.9840 | 0.3652 | 0.8927 | 0.8747 | 0.8457 | 0.8428 | 0.9030 | 0.9609 | 0.6167 | 0.6180 | 0.9799 | 0.8736 | 0.2415 | nan | 0.0848 | 0.8085 | 0.7691 | 0.9803 |
| 0.0194 | 251.76 | 4280 | 0.9936 | 0.4553 | 0.9588 | 0.9327 | 0.8496 | 0.9022 | 0.9293 | 0.9809 | 0.6247 | 0.7580 | 0.9897 | 0.9296 | 0.2382 | nan | 0.9842 | 0.4355 | 0.8918 | 0.8756 | 0.8360 | 0.8450 | 0.9026 | 0.9606 | 0.6185 | 0.6111 | 0.9799 | 0.8738 | 0.2361 | nan | 0.0835 | 0.8110 | 0.7731 | 0.9803 |
| 0.0181 | 252.94 | 4300 | 0.9935 | 0.4602 | 0.9567 | 0.9443 | 0.8640 | 0.9062 | 0.9366 | 0.9819 | 0.6251 | 0.7717 | 0.9900 | 0.9281 | 0.2511 | nan | 0.9842 | 0.4388 | 0.8939 | 0.8769 | 0.8460 | 0.8454 | 0.9043 | 0.9610 | 0.6190 | 0.6160 | 0.9800 | 0.8732 | 0.2487 | nan | 0.0834 | 0.8161 | 0.7760 | 0.9805 |
| 0.024 | 254.12 | 4320 | 0.9944 | 0.3919 | 0.9566 | 0.9335 | 0.8590 | 0.8940 | 0.9317 | 0.9804 | 0.6241 | 0.7724 | 0.9891 | 0.9283 | 0.2530 | nan | 0.9839 | 0.3813 | 0.8934 | 0.8777 | 0.8436 | 0.8412 | 0.9047 | 0.9602 | 0.6196 | 0.6129 | 0.9800 | 0.8729 | 0.2507 | nan | 0.0847 | 0.8083 | 0.7709 | 0.9803 |
| 0.0186 | 255.29 | 4340 | 0.9942 | 0.4455 | 0.9557 | 0.9383 | 0.8635 | 0.9019 | 0.9373 | 0.9813 | 0.6262 | 0.7775 | 0.9895 | 0.9279 | 0.2574 | nan | 0.9842 | 0.4281 | 0.8947 | 0.8749 | 0.8463 | 0.8457 | 0.9051 | 0.9605 | 0.6209 | 0.6189 | 0.9801 | 0.8731 | 0.2546 | nan | 0.0830 | 0.8151 | 0.7759 | 0.9805 |
| 0.0222 | 256.47 | 4360 | 0.9940 | 0.4325 | 0.9572 | 0.9444 | 0.8710 | 0.8992 | 0.9341 | 0.9807 | 0.6243 | 0.7862 | 0.9897 | 0.9272 | 0.2564 | nan | 0.9841 | 0.4130 | 0.8945 | 0.8743 | 0.8524 | 0.8440 | 0.9022 | 0.9603 | 0.6192 | 0.6287 | 0.9804 | 0.8735 | 0.2526 | nan | 0.0845 | 0.8152 | 0.7753 | 0.9805 |
| 0.0218 | 257.65 | 4380 | 0.9937 | 0.4309 | 0.9583 | 0.9415 | 0.8610 | 0.8997 | 0.9356 | 0.9813 | 0.6261 | 0.7693 | 0.9900 | 0.9263 | 0.2509 | nan | 0.9842 | 0.4033 | 0.8936 | 0.8816 | 0.8437 | 0.8442 | 0.9018 | 0.9600 | 0.6198 | 0.6182 | 0.9800 | 0.8737 | 0.2489 | nan | 0.0837 | 0.8127 | 0.7733 | 0.9804 |
| 0.0192 | 258.82 | 4400 | 0.9938 | 0.4650 | 0.9569 | 0.9477 | 0.8656 | 0.8980 | 0.9341 | 0.9821 | 0.6272 | 0.7713 | 0.9900 | 0.9276 | 0.2486 | nan | 0.9841 | 0.4269 | 0.8939 | 0.8792 | 0.8465 | 0.8449 | 0.9027 | 0.9603 | 0.6197 | 0.6161 | 0.9799 | 0.8731 | 0.2468 | nan | 0.0834 | 0.8160 | 0.7749 | 0.9804 |
| 0.0184 | 260.0 | 4420 | 0.9941 | 0.4472 | 0.9547 | 0.9486 | 0.8584 | 0.8966 | 0.9336 | 0.9813 | 0.6281 | 0.7855 | 0.9907 | 0.9238 | 0.2488 | nan | 0.9841 | 0.4224 | 0.8939 | 0.8808 | 0.8417 | 0.8439 | 0.9044 | 0.9600 | 0.6214 | 0.6226 | 0.9801 | 0.8740 | 0.2469 | nan | 0.0842 | 0.8147 | 0.7751 | 0.9804 |
| 0.022 | 261.18 | 4440 | 0.9941 | 0.3902 | 0.9557 | 0.9395 | 0.8583 | 0.8976 | 0.9382 | 0.9808 | 0.6246 | 0.7736 | 0.9910 | 0.9207 | 0.2465 | nan | 0.9841 | 0.3756 | 0.8935 | 0.8816 | 0.8425 | 0.8451 | 0.9033 | 0.9606 | 0.6192 | 0.6170 | 0.9798 | 0.8739 | 0.2445 | nan | 0.0853 | 0.8085 | 0.7708 | 0.9804 |
| 0.0171 | 262.35 | 4460 | 0.9938 | 0.3902 | 0.9571 | 0.9364 | 0.8589 | 0.9032 | 0.9348 | 0.9815 | 0.6240 | 0.7598 | 0.9902 | 0.9245 | 0.2466 | nan | 0.9842 | 0.3785 | 0.8933 | 0.8816 | 0.8419 | 0.8455 | 0.9045 | 0.9605 | 0.6179 | 0.6089 | 0.9801 | 0.8745 | 0.2446 | nan | 0.0846 | 0.8078 | 0.7705 | 0.9804 |
| 0.0186 | 263.53 | 4480 | 0.9938 | 0.4049 | 0.9589 | 0.9366 | 0.8536 | 0.8974 | 0.9305 | 0.9810 | 0.6224 | 0.7809 | 0.9894 | 0.9279 | 0.2440 | nan | 0.9841 | 0.3915 | 0.8926 | 0.8789 | 0.8384 | 0.8423 | 0.9034 | 0.9601 | 0.6177 | 0.6193 | 0.9802 | 0.8740 | 0.2417 | nan | 0.0860 | 0.8093 | 0.7711 | 0.9803 |
| 0.0161 | 264.71 | 4500 | 0.9936 | 0.4325 | 0.9587 | 0.9336 | 0.8584 | 0.9029 | 0.9324 | 0.9817 | 0.6250 | 0.7839 | 0.9893 | 0.9286 | 0.2442 | nan | 0.9842 | 0.4111 | 0.8937 | 0.8809 | 0.8413 | 0.8443 | 0.9049 | 0.9605 | 0.6189 | 0.6239 | 0.9801 | 0.8744 | 0.2420 | nan | 0.0846 | 0.8127 | 0.7739 | 0.9804 |
| 0.0159 | 265.88 | 4520 | 0.9938 | 0.4163 | 0.9579 | 0.9452 | 0.8556 | 0.9034 | 0.9332 | 0.9812 | 0.6251 | 0.7862 | 0.9897 | 0.9289 | 0.2462 | nan | 0.9842 | 0.4 | 0.8942 | 0.8814 | 0.8398 | 0.8449 | 0.9062 | 0.9611 | 0.6194 | 0.6278 | 0.9802 | 0.8750 | 0.2443 | nan | 0.0841 | 0.8125 | 0.7737 | 0.9805 |
| 0.0195 | 267.06 | 4540 | 0.9940 | 0.4407 | 0.9593 | 0.9412 | 0.8514 | 0.8952 | 0.9284 | 0.9814 | 0.6239 | 0.7695 | 0.9897 | 0.9249 | 0.2377 | nan | 0.9842 | 0.4215 | 0.8929 | 0.8807 | 0.8358 | 0.8433 | 0.9019 | 0.9603 | 0.6183 | 0.6176 | 0.9800 | 0.8746 | 0.2360 | nan | 0.0858 | 0.8105 | 0.7729 | 0.9803 |
| 0.0172 | 268.24 | 4560 | 0.9934 | 0.4634 | 0.9586 | 0.9494 | 0.8576 | 0.9058 | 0.9289 | 0.9817 | 0.6260 | 0.7862 | 0.9899 | 0.9261 | 0.2372 | nan | 0.9843 | 0.4286 | 0.8937 | 0.8813 | 0.8384 | 0.8461 | 0.9010 | 0.9609 | 0.6199 | 0.6251 | 0.9800 | 0.8740 | 0.2354 | nan | 0.0835 | 0.8157 | 0.7745 | 0.9805 |
| 0.019 | 269.41 | 4580 | 0.9940 | 0.4081 | 0.9559 | 0.9444 | 0.8570 | 0.9055 | 0.9306 | 0.9818 | 0.6256 | 0.7708 | 0.9897 | 0.9284 | 0.2432 | nan | 0.9843 | 0.3885 | 0.8943 | 0.8814 | 0.8404 | 0.8466 | 0.9033 | 0.9613 | 0.6203 | 0.6223 | 0.9800 | 0.8742 | 0.2415 | nan | 0.0834 | 0.8104 | 0.7722 | 0.9806 |
| 0.018 | 270.59 | 4600 | 0.9938 | 0.4293 | 0.9568 | 0.9400 | 0.8524 | 0.9018 | 0.9287 | 0.9821 | 0.6257 | 0.7869 | 0.9904 | 0.9227 | 0.2394 | nan | 0.9843 | 0.3923 | 0.8938 | 0.8821 | 0.8364 | 0.8462 | 0.9013 | 0.9614 | 0.6200 | 0.6244 | 0.9799 | 0.8736 | 0.2377 | nan | 0.0835 | 0.8115 | 0.7718 | 0.9805 |
| 0.0223 | 271.76 | 4620 | 0.9937 | 0.4081 | 0.9571 | 0.9406 | 0.8528 | 0.9023 | 0.9291 | 0.9811 | 0.6254 | 0.7921 | 0.9903 | 0.9257 | 0.2447 | nan | 0.9843 | 0.3769 | 0.8937 | 0.8822 | 0.8364 | 0.8446 | 0.9017 | 0.9610 | 0.6194 | 0.6266 | 0.9799 | 0.8734 | 0.2425 | nan | 0.0839 | 0.8110 | 0.7710 | 0.9805 |
| 0.0227 | 272.94 | 4640 | 0.9940 | 0.4 | 0.9574 | 0.9357 | 0.8553 | 0.8968 | 0.9276 | 0.9807 | 0.6246 | 0.7851 | 0.9906 | 0.9236 | 0.2449 | nan | 0.9842 | 0.3814 | 0.8941 | 0.8830 | 0.8386 | 0.8435 | 0.9026 | 0.9612 | 0.6195 | 0.6246 | 0.9801 | 0.8743 | 0.2430 | nan | 0.0845 | 0.8089 | 0.7715 | 0.9805 |
| 0.0165 | 274.12 | 4660 | 0.9940 | 0.4033 | 0.9576 | 0.9453 | 0.8601 | 0.8980 | 0.9318 | 0.9805 | 0.6254 | 0.7957 | 0.9900 | 0.9278 | 0.2541 | nan | 0.9842 | 0.3758 | 0.8946 | 0.8774 | 0.8433 | 0.8438 | 0.9025 | 0.9615 | 0.6199 | 0.6288 | 0.9802 | 0.8743 | 0.2517 | nan | 0.0850 | 0.8126 | 0.7722 | 0.9806 |
| 0.0192 | 275.29 | 4680 | 0.9941 | 0.4033 | 0.9571 | 0.9376 | 0.8547 | 0.8986 | 0.9298 | 0.9805 | 0.6271 | 0.7904 | 0.9903 | 0.9243 | 0.2444 | nan | 0.9842 | 0.3887 | 0.8946 | 0.8788 | 0.8394 | 0.8444 | 0.9025 | 0.9617 | 0.6214 | 0.6275 | 0.9801 | 0.8747 | 0.2426 | nan | 0.0836 | 0.8102 | 0.7724 | 0.9806 |
| 0.0172 | 276.47 | 4700 | 0.9940 | 0.4049 | 0.9573 | 0.9333 | 0.8525 | 0.8995 | 0.9312 | 0.9818 | 0.6278 | 0.7866 | 0.9894 | 0.9315 | 0.2391 | nan | 0.9842 | 0.3879 | 0.8943 | 0.8779 | 0.8361 | 0.8443 | 0.9031 | 0.9609 | 0.6212 | 0.6245 | 0.9798 | 0.8740 | 0.2374 | nan | 0.0843 | 0.8099 | 0.7712 | 0.9804 |
| 0.0173 | 277.65 | 4720 | 0.9942 | 0.3984 | 0.9576 | 0.9424 | 0.8548 | 0.8968 | 0.9321 | 0.9812 | 0.6268 | 0.7832 | 0.9892 | 0.9319 | 0.2483 | nan | 0.9842 | 0.3834 | 0.8948 | 0.8782 | 0.8391 | 0.8436 | 0.9037 | 0.9609 | 0.6215 | 0.6230 | 0.9800 | 0.8738 | 0.2464 | nan | 0.0851 | 0.8105 | 0.7717 | 0.9805 |
| 0.0183 | 278.82 | 4740 | 0.9941 | 0.3951 | 0.9570 | 0.9430 | 0.8546 | 0.8972 | 0.9328 | 0.9814 | 0.6268 | 0.7811 | 0.9901 | 0.9249 | 0.2505 | nan | 0.9842 | 0.3767 | 0.8947 | 0.8781 | 0.8386 | 0.8437 | 0.9043 | 0.9609 | 0.6208 | 0.6215 | 0.9799 | 0.8737 | 0.2485 | nan | 0.0844 | 0.8099 | 0.7712 | 0.9805 |
| 0.0193 | 280.0 | 4760 | 0.9941 | 0.4179 | 0.9565 | 0.9445 | 0.8497 | 0.8988 | 0.9308 | 0.9818 | 0.6264 | 0.7781 | 0.9901 | 0.9254 | 0.2521 | nan | 0.9842 | 0.3984 | 0.8945 | 0.8806 | 0.8353 | 0.8440 | 0.9032 | 0.9607 | 0.6205 | 0.6244 | 0.9799 | 0.8737 | 0.2500 | nan | 0.0838 | 0.8113 | 0.7730 | 0.9805 |
| 0.0207 | 281.18 | 4780 | 0.9939 | 0.4081 | 0.9582 | 0.9366 | 0.8501 | 0.9014 | 0.9304 | 0.9805 | 0.6262 | 0.7810 | 0.9905 | 0.9217 | 0.2484 | nan | 0.9843 | 0.3928 | 0.8940 | 0.8790 | 0.8351 | 0.8462 | 0.9038 | 0.9610 | 0.6204 | 0.6277 | 0.9800 | 0.8740 | 0.2463 | nan | 0.0842 | 0.8098 | 0.7727 | 0.9805 |
| 0.0166 | 282.35 | 4800 | 0.9942 | 0.4228 | 0.9571 | 0.9356 | 0.8498 | 0.8966 | 0.9317 | 0.9815 | 0.6259 | 0.7806 | 0.9900 | 0.9290 | 0.2540 | nan | 0.9842 | 0.4075 | 0.8946 | 0.8781 | 0.8356 | 0.8444 | 0.9057 | 0.9609 | 0.6203 | 0.6242 | 0.9800 | 0.8741 | 0.2518 | nan | 0.0846 | 0.8114 | 0.7740 | 0.9805 |
| 0.0203 | 283.53 | 4820 | 0.9941 | 0.4244 | 0.9571 | 0.9421 | 0.8525 | 0.8984 | 0.9327 | 0.9813 | 0.6270 | 0.7913 | 0.9901 | 0.9257 | 0.2532 | nan | 0.9842 | 0.4078 | 0.8948 | 0.8788 | 0.8370 | 0.8445 | 0.9065 | 0.9613 | 0.6204 | 0.6273 | 0.9801 | 0.8745 | 0.2510 | nan | 0.0843 | 0.8131 | 0.7745 | 0.9805 |
| 0.0153 | 284.71 | 4840 | 0.9939 | 0.4 | 0.9586 | 0.9311 | 0.8477 | 0.9007 | 0.9293 | 0.9805 | 0.6264 | 0.7916 | 0.9900 | 0.9249 | 0.2477 | nan | 0.9842 | 0.3862 | 0.8942 | 0.8752 | 0.8333 | 0.8451 | 0.9043 | 0.9614 | 0.6202 | 0.6283 | 0.9799 | 0.8742 | 0.2458 | nan | 0.0842 | 0.8094 | 0.7717 | 0.9805 |
| 0.017 | 285.88 | 4860 | 0.9938 | 0.4049 | 0.9583 | 0.9444 | 0.8532 | 0.9027 | 0.9308 | 0.9802 | 0.6260 | 0.7857 | 0.9899 | 0.9276 | 0.2542 | nan | 0.9843 | 0.3921 | 0.8941 | 0.8785 | 0.8372 | 0.8460 | 0.9050 | 0.9611 | 0.6199 | 0.6283 | 0.9800 | 0.8744 | 0.2516 | nan | 0.0843 | 0.8117 | 0.7733 | 0.9805 |
| 0.0192 | 287.06 | 4880 | 0.9941 | 0.4065 | 0.9575 | 0.9453 | 0.8526 | 0.8979 | 0.9343 | 0.9813 | 0.6260 | 0.7883 | 0.9896 | 0.9279 | 0.2535 | nan | 0.9842 | 0.3925 | 0.8945 | 0.8776 | 0.8372 | 0.8446 | 0.9069 | 0.9612 | 0.6202 | 0.6266 | 0.9801 | 0.8744 | 0.2513 | nan | 0.0848 | 0.8119 | 0.7732 | 0.9805 |
| 0.0173 | 288.24 | 4900 | 0.9941 | 0.4098 | 0.9586 | 0.9355 | 0.8501 | 0.8983 | 0.9294 | 0.9805 | 0.6255 | 0.7836 | 0.9899 | 0.9256 | 0.2480 | nan | 0.9842 | 0.3962 | 0.8940 | 0.8788 | 0.8350 | 0.8452 | 0.9048 | 0.9611 | 0.6197 | 0.6256 | 0.9800 | 0.8744 | 0.2459 | nan | 0.0854 | 0.8099 | 0.7727 | 0.9805 |
| 0.0162 | 289.41 | 4920 | 0.9940 | 0.4390 | 0.9584 | 0.9386 | 0.8496 | 0.9000 | 0.9311 | 0.9803 | 0.6253 | 0.7781 | 0.9900 | 0.9283 | 0.2452 | nan | 0.9843 | 0.4225 | 0.8938 | 0.8789 | 0.8341 | 0.8458 | 0.9055 | 0.9611 | 0.6198 | 0.6240 | 0.9800 | 0.8746 | 0.2433 | nan | 0.0848 | 0.8121 | 0.7744 | 0.9805 |
| 0.0181 | 290.59 | 4940 | 0.9940 | 0.4244 | 0.9578 | 0.9367 | 0.8518 | 0.8986 | 0.9304 | 0.9817 | 0.6253 | 0.7813 | 0.9900 | 0.9262 | 0.2500 | nan | 0.9842 | 0.4085 | 0.8941 | 0.8775 | 0.8356 | 0.8452 | 0.9054 | 0.9608 | 0.6197 | 0.6246 | 0.9801 | 0.8743 | 0.2476 | nan | 0.0856 | 0.8114 | 0.7737 | 0.9805 |
| 0.02 | 291.76 | 4960 | 0.9938 | 0.4293 | 0.9577 | 0.9439 | 0.8527 | 0.9013 | 0.9346 | 0.9820 | 0.6250 | 0.7868 | 0.9899 | 0.9269 | 0.2499 | nan | 0.9843 | 0.4106 | 0.8941 | 0.8791 | 0.8363 | 0.8456 | 0.9060 | 0.9609 | 0.6197 | 0.6259 | 0.9801 | 0.8745 | 0.2476 | nan | 0.0854 | 0.8134 | 0.7742 | 0.9805 |
| 0.0202 | 292.94 | 4980 | 0.9939 | 0.4244 | 0.9585 | 0.9413 | 0.8516 | 0.9000 | 0.9309 | 0.9804 | 0.6256 | 0.7881 | 0.9902 | 0.9257 | 0.2459 | nan | 0.9843 | 0.4078 | 0.8940 | 0.8797 | 0.8353 | 0.8456 | 0.9054 | 0.9615 | 0.6198 | 0.6272 | 0.9801 | 0.8748 | 0.2440 | nan | 0.0845 | 0.8120 | 0.7738 | 0.9805 |
| 0.0179 | 294.12 | 5000 | 0.9939 | 0.4423 | 0.9586 | 0.9298 | 0.8508 | 0.9009 | 0.9313 | 0.9810 | 0.6256 | 0.7896 | 0.9899 | 0.9268 | 0.2483 | nan | 0.9843 | 0.4243 | 0.8940 | 0.8800 | 0.8353 | 0.8459 | 0.9060 | 0.9614 | 0.6199 | 0.6280 | 0.9801 | 0.8749 | 0.2463 | nan | 0.0847 | 0.8130 | 0.7754 | 0.9805 |
| 0.0163 | 295.29 | 5020 | 0.9938 | 0.4472 | 0.9584 | 0.9438 | 0.8520 | 0.9005 | 0.9351 | 0.9814 | 0.6257 | 0.7885 | 0.9902 | 0.9256 | 0.2510 | nan | 0.9843 | 0.4198 | 0.8940 | 0.8804 | 0.8358 | 0.8459 | 0.9061 | 0.9613 | 0.6200 | 0.6274 | 0.9801 | 0.8747 | 0.2488 | nan | 0.0845 | 0.8149 | 0.7753 | 0.9805 |
| 0.0172 | 296.47 | 5040 | 0.9939 | 0.4423 | 0.9577 | 0.9471 | 0.8509 | 0.9005 | 0.9342 | 0.9814 | 0.6260 | 0.7869 | 0.9902 | 0.9259 | 0.2548 | nan | 0.9843 | 0.4146 | 0.8944 | 0.8798 | 0.8355 | 0.8456 | 0.9066 | 0.9613 | 0.6198 | 0.6271 | 0.9801 | 0.8747 | 0.2524 | nan | 0.0843 | 0.8148 | 0.7751 | 0.9806 |
| 0.0203 | 297.65 | 5060 | 0.0854 | 0.7753 | 0.8134 | 0.9804 | nan | 0.9945 | 0.9549 | 0.8916 | 0.9913 | 0.9137 | 0.6245 | 0.8581 | 0.9801 | 0.7858 | 0.2508 | 0.9343 | 0.9540 | 0.4407 | nan | 0.9839 | 0.8947 | 0.8421 | 0.9799 | 0.8705 | 0.6197 | 0.8416 | 0.9614 | 0.6280 | 0.2472 | 0.9054 | 0.8846 | 0.4195 |
| 0.0205 | 298.82 | 5080 | 0.0871 | 0.7626 | 0.8020 | 0.9801 | nan | 0.9931 | 0.9611 | 0.9024 | 0.9895 | 0.9241 | 0.6243 | 0.8558 | 0.9790 | 0.7904 | 0.2323 | 0.9215 | 0.9416 | 0.3106 | nan | 0.9840 | 0.8921 | 0.8393 | 0.9800 | 0.8719 | 0.6151 | 0.8377 | 0.9609 | 0.6236 | 0.2302 | 0.9017 | 0.8872 | 0.2898 |
| 0.0188 | 300.0 | 5100 | 0.0845 | 0.7689 | 0.8070 | 0.9804 | nan | 0.9940 | 0.9574 | 0.8962 | 0.9902 | 0.9197 | 0.6269 | 0.8422 | 0.9827 | 0.7988 | 0.2310 | 0.9154 | 0.9435 | 0.3935 | nan | 0.9842 | 0.8939 | 0.8437 | 0.9794 | 0.8726 | 0.6211 | 0.8274 | 0.9616 | 0.6333 | 0.2295 | 0.8987 | 0.8783 | 0.3717 |
| 0.0206 | 301.18 | 5120 | 0.0832 | 0.7768 | 0.8159 | 0.9805 | nan | 0.9936 | 0.9556 | 0.9060 | 0.9911 | 0.9237 | 0.6286 | 0.8542 | 0.9815 | 0.7855 | 0.2610 | 0.9257 | 0.9445 | 0.4553 | nan | 0.9844 | 0.8934 | 0.8474 | 0.9795 | 0.8737 | 0.6225 | 0.8381 | 0.9608 | 0.6310 | 0.2587 | 0.9043 | 0.8865 | 0.4179 |
| 0.0193 | 302.35 | 5140 | 0.0867 | 0.7780 | 0.8209 | 0.9801 | nan | 0.9937 | 0.9592 | 0.8986 | 0.9880 | 0.9259 | 0.6240 | 0.8541 | 0.9825 | 0.7898 | 0.2379 | 0.9193 | 0.9365 | 0.5626 | nan | 0.9841 | 0.8905 | 0.8436 | 0.9801 | 0.8725 | 0.6174 | 0.8376 | 0.9586 | 0.6280 | 0.2327 | 0.8946 | 0.8769 | 0.4971 |
| 0.0208 | 303.53 | 5160 | 0.0848 | 0.7725 | 0.8100 | 0.9805 | nan | 0.9938 | 0.9579 | 0.8993 | 0.9905 | 0.9238 | 0.6241 | 0.8569 | 0.9811 | 0.7872 | 0.2388 | 0.9215 | 0.9274 | 0.4276 | nan | 0.9844 | 0.8929 | 0.8451 | 0.9798 | 0.8744 | 0.6190 | 0.8393 | 0.9609 | 0.6293 | 0.2325 | 0.8954 | 0.8792 | 0.4103 |
| 0.0217 | 304.71 | 5180 | 0.0816 | 0.7778 | 0.8182 | 0.9806 | nan | 0.9930 | 0.9544 | 0.9174 | 0.9897 | 0.9243 | 0.6281 | 0.8733 | 0.9847 | 0.7901 | 0.2384 | 0.9351 | 0.9500 | 0.4585 | nan | 0.9844 | 0.8931 | 0.8497 | 0.9803 | 0.8737 | 0.6188 | 0.8540 | 0.9584 | 0.6310 | 0.2370 | 0.9060 | 0.8821 | 0.4434 |
| 0.02 | 305.88 | 5200 | 0.0823 | 0.7771 | 0.8183 | 0.9805 | nan | 0.9935 | 0.9587 | 0.9048 | 0.9891 | 0.9334 | 0.6309 | 0.8489 | 0.9818 | 0.7880 | 0.2463 | 0.9414 | 0.9495 | 0.4715 | nan | 0.9844 | 0.8931 | 0.8467 | 0.9798 | 0.8730 | 0.6252 | 0.8337 | 0.9604 | 0.6265 | 0.2440 | 0.9043 | 0.8854 | 0.4462 |
| 0.0216 | 307.06 | 5220 | 0.0838 | 0.7722 | 0.8099 | 0.9804 | nan | 0.9936 | 0.9595 | 0.8957 | 0.9918 | 0.9096 | 0.6247 | 0.8559 | 0.9791 | 0.8019 | 0.2321 | 0.9240 | 0.9352 | 0.4260 | nan | 0.9843 | 0.8921 | 0.8419 | 0.9799 | 0.8723 | 0.6176 | 0.8409 | 0.9613 | 0.6354 | 0.2293 | 0.8969 | 0.8748 | 0.4119 |
| 0.0181 | 308.24 | 5240 | 0.0851 | 0.7724 | 0.8131 | 0.9804 | nan | 0.9938 | 0.9602 | 0.8987 | 0.9875 | 0.9376 | 0.6258 | 0.8607 | 0.9818 | 0.7931 | 0.2409 | 0.9377 | 0.9427 | 0.4098 | nan | 0.9843 | 0.8927 | 0.8436 | 0.9799 | 0.8725 | 0.6198 | 0.8439 | 0.9611 | 0.6237 | 0.2393 | 0.9071 | 0.8850 | 0.3877 |
| 0.0206 | 309.41 | 5260 | 0.0842 | 0.7819 | 0.8284 | 0.9806 | nan | 0.9933 | 0.9567 | 0.9048 | 0.9903 | 0.9186 | 0.6272 | 0.8752 | 0.9835 | 0.8066 | 0.2561 | 0.9462 | 0.9472 | 0.5642 | nan | 0.9843 | 0.8949 | 0.8457 | 0.9805 | 0.8736 | 0.6186 | 0.8517 | 0.9598 | 0.6297 | 0.2533 | 0.9011 | 0.8833 | 0.4880 |
| 0.0168 | 310.59 | 5280 | 0.0851 | 0.7785 | 0.8190 | 0.9805 | nan | 0.9944 | 0.9578 | 0.8907 | 0.9885 | 0.9279 | 0.6256 | 0.8771 | 0.9826 | 0.7949 | 0.2443 | 0.9371 | 0.9498 | 0.4764 | nan | 0.9841 | 0.8934 | 0.8397 | 0.9808 | 0.8769 | 0.6197 | 0.8586 | 0.9610 | 0.6243 | 0.2429 | 0.9081 | 0.8825 | 0.4480 |
| 0.0153 | 311.76 | 5300 | 0.0753 | 0.7878 | 0.8268 | 0.9809 | nan | 0.9948 | 0.9401 | 0.8909 | 0.9905 | 0.9115 | 0.8866 | 0.8532 | 0.9862 | 0.8041 | 0.2192 | 0.9210 | 0.9295 | 0.4211 | nan | 0.9841 | 0.8982 | 0.8439 | 0.9787 | 0.8682 | 0.8549 | 0.8367 | 0.9515 | 0.6267 | 0.2180 | 0.9013 | 0.8796 | 0.3991 |
| 0.0199 | 312.94 | 5320 | 0.0868 | 0.7613 | 0.7949 | 0.9792 | nan | 0.9942 | 0.9650 | 0.8893 | 0.9877 | 0.9383 | 0.6267 | 0.8545 | 0.9722 | 0.5985 | 0.2032 | 0.9396 | 0.9374 | 0.4276 | nan | 0.9840 | 0.8846 | 0.8418 | 0.9790 | 0.8723 | 0.6225 | 0.8339 | 0.9520 | 0.5141 | 0.2010 | 0.9139 | 0.8863 | 0.4116 |
| 0.0178 | 314.12 | 5340 | 0.0850 | 0.7697 | 0.8068 | 0.9805 | nan | 0.9939 | 0.9599 | 0.9062 | 0.9907 | 0.9161 | 0.6306 | 0.8499 | 0.9758 | 0.7884 | 0.2163 | 0.9081 | 0.9348 | 0.4179 | nan | 0.9842 | 0.8935 | 0.8489 | 0.9799 | 0.8708 | 0.6261 | 0.8356 | 0.9646 | 0.6107 | 0.2151 | 0.8895 | 0.8810 | 0.4060 |
| 0.017 | 315.29 | 5360 | 0.0872 | 0.7739 | 0.8119 | 0.9804 | nan | 0.9942 | 0.9653 | 0.8954 | 0.9886 | 0.9236 | 0.6239 | 0.8803 | 0.9739 | 0.7395 | 0.2294 | 0.9410 | 0.9470 | 0.4520 | nan | 0.9838 | 0.8924 | 0.8439 | 0.9810 | 0.8726 | 0.6182 | 0.8629 | 0.9623 | 0.6111 | 0.2177 | 0.9017 | 0.8837 | 0.4297 |
| 0.0214 | 316.47 | 5380 | 0.0780 | 0.7554 | 0.7923 | 0.9805 | nan | 0.9944 | 0.9553 | 0.8832 | 0.9898 | 0.9253 | 0.7320 | 0.8456 | 0.9838 | 0.7827 | 0.1308 | 0.9238 | 0.9396 | 0.2130 | nan | 0.9835 | 0.8995 | 0.8368 | 0.9787 | 0.8746 | 0.7223 | 0.8282 | 0.9635 | 0.6154 | 0.1301 | 0.8980 | 0.8782 | 0.2120 |
| 0.0192 | 317.65 | 5400 | 0.0794 | 0.7672 | 0.8048 | 0.9801 | nan | 0.9931 | 0.9617 | 0.9034 | 0.9888 | 0.9378 | 0.7786 | 0.8047 | 0.9713 | 0.7534 | 0.1816 | 0.9131 | 0.9216 | 0.3528 | nan | 0.9841 | 0.8940 | 0.8434 | 0.9781 | 0.8732 | 0.7684 | 0.7948 | 0.9531 | 0.5930 | 0.1806 | 0.8918 | 0.8682 | 0.3506 |
| 0.0199 | 318.82 | 5420 | 0.0806 | 0.7680 | 0.7966 | 0.9800 | nan | 0.9934 | 0.9598 | 0.9019 | 0.9903 | 0.9157 | 0.7492 | 0.8477 | 0.9818 | 0.5849 | 0.1813 | 0.8985 | 0.9140 | 0.4374 | nan | 0.9841 | 0.8917 | 0.8419 | 0.9800 | 0.8735 | 0.7441 | 0.8360 | 0.9487 | 0.5177 | 0.1794 | 0.8826 | 0.8756 | 0.4290 |
| 0.0522 | 320.0 | 5440 | 0.0767 | 0.7813 | 0.8402 | 0.9796 | nan | 0.9939 | 0.9494 | 0.9045 | 0.9897 | 0.9328 | 0.8251 | 0.8745 | 0.9511 | 0.8380 | 0.2580 | 0.9385 | 0.9516 | 0.5154 | nan | 0.9835 | 0.9003 | 0.8501 | 0.9807 | 0.8752 | 0.8062 | 0.8536 | 0.9432 | 0.4502 | 0.2562 | 0.9162 | 0.8516 | 0.4900 |
| 0.0183 | 321.18 | 5460 | 0.0721 | 0.7875 | 0.8286 | 0.9813 | nan | 0.9938 | 0.9601 | 0.9028 | 0.9891 | 0.9246 | 0.8399 | 0.8574 | 0.9798 | 0.7226 | 0.1786 | 0.9456 | 0.9131 | 0.5642 | nan | 0.9842 | 0.9066 | 0.8467 | 0.9800 | 0.8756 | 0.8286 | 0.8383 | 0.9568 | 0.5555 | 0.1776 | 0.9117 | 0.8482 | 0.5282 |
| 0.0224 | 322.35 | 5480 | 0.0707 | 0.7849 | 0.8216 | 0.9813 | nan | 0.9940 | 0.9585 | 0.9074 | 0.9907 | 0.9264 | 0.7408 | 0.8514 | 0.9840 | 0.6871 | 0.2202 | 0.9366 | 0.9440 | 0.5398 | nan | 0.9843 | 0.9055 | 0.8501 | 0.9803 | 0.8770 | 0.7348 | 0.8349 | 0.9602 | 0.5580 | 0.2191 | 0.9116 | 0.8847 | 0.5038 |
| 0.0145 | 323.53 | 5500 | 0.0739 | 0.7783 | 0.8199 | 0.9812 | nan | 0.9939 | 0.9629 | 0.8979 | 0.9902 | 0.9209 | 0.6621 | 0.8560 | 0.9834 | 0.8037 | 0.1874 | 0.9307 | 0.9302 | 0.5398 | nan | 0.9844 | 0.9003 | 0.8474 | 0.9802 | 0.8753 | 0.6562 | 0.8379 | 0.9712 | 0.5973 | 0.1862 | 0.9012 | 0.8796 | 0.5 |
| 0.0167 | 324.71 | 5520 | 0.0751 | 0.7809 | 0.8219 | 0.9811 | nan | 0.9940 | 0.9595 | 0.9052 | 0.9896 | 0.9284 | 0.6530 | 0.8600 | 0.9835 | 0.7705 | 0.2407 | 0.9443 | 0.9504 | 0.5057 | nan | 0.9842 | 0.9006 | 0.8473 | 0.9804 | 0.8766 | 0.6480 | 0.8405 | 0.9679 | 0.5969 | 0.2393 | 0.9117 | 0.8859 | 0.4726 |
| 0.0167 | 325.88 | 5540 | 0.0757 | 0.7792 | 0.8172 | 0.9810 | nan | 0.9943 | 0.9591 | 0.9005 | 0.9897 | 0.9241 | 0.6657 | 0.8523 | 0.9829 | 0.7736 | 0.2321 | 0.9343 | 0.9331 | 0.4813 | nan | 0.9841 | 0.9011 | 0.8447 | 0.9802 | 0.8778 | 0.6593 | 0.8347 | 0.9667 | 0.5967 | 0.2306 | 0.9053 | 0.8844 | 0.4639 |
| 0.018 | 327.06 | 5560 | 0.0733 | 0.7836 | 0.8218 | 0.9815 | nan | 0.9938 | 0.9587 | 0.9098 | 0.9896 | 0.9323 | 0.7120 | 0.8470 | 0.9847 | 0.7838 | 0.2247 | 0.9277 | 0.9430 | 0.4764 | nan | 0.9845 | 0.9039 | 0.8514 | 0.9800 | 0.8768 | 0.7052 | 0.8317 | 0.9655 | 0.6138 | 0.2237 | 0.9037 | 0.8878 | 0.4585 |
| 0.0168 | 328.24 | 5580 | 0.0745 | 0.7829 | 0.8221 | 0.9813 | nan | 0.9936 | 0.9593 | 0.9110 | 0.9905 | 0.9306 | 0.7000 | 0.8505 | 0.9825 | 0.7681 | 0.2374 | 0.9332 | 0.9366 | 0.4943 | nan | 0.9845 | 0.9028 | 0.8487 | 0.9801 | 0.8782 | 0.6912 | 0.8345 | 0.9664 | 0.5946 | 0.2362 | 0.9035 | 0.8832 | 0.4735 |
| 0.0175 | 329.41 | 5600 | 0.0757 | 0.7841 | 0.8254 | 0.9811 | nan | 0.9938 | 0.9617 | 0.9038 | 0.9894 | 0.9297 | 0.6870 | 0.8482 | 0.9825 | 0.7651 | 0.2317 | 0.9259 | 0.9476 | 0.5642 | nan | 0.9845 | 0.9005 | 0.8476 | 0.9800 | 0.8785 | 0.6805 | 0.8328 | 0.9647 | 0.5972 | 0.2304 | 0.9003 | 0.8830 | 0.5133 |
| 0.0164 | 330.59 | 5620 | 0.0787 | 0.7808 | 0.8214 | 0.9808 | nan | 0.9940 | 0.9603 | 0.9011 | 0.9895 | 0.9351 | 0.6607 | 0.8453 | 0.9814 | 0.7521 | 0.2425 | 0.9304 | 0.9317 | 0.5545 | nan | 0.9843 | 0.8983 | 0.8475 | 0.9798 | 0.8765 | 0.6549 | 0.8299 | 0.9633 | 0.5923 | 0.2410 | 0.9038 | 0.8818 | 0.4964 |
| 0.0179 | 331.76 | 5640 | 0.0778 | 0.7818 | 0.8227 | 0.9810 | nan | 0.9938 | 0.9612 | 0.9026 | 0.9895 | 0.9322 | 0.6636 | 0.8488 | 0.9825 | 0.7723 | 0.2528 | 0.9212 | 0.9530 | 0.5220 | nan | 0.9844 | 0.8995 | 0.8489 | 0.9797 | 0.8779 | 0.6562 | 0.8323 | 0.9637 | 0.6118 | 0.2507 | 0.9000 | 0.8859 | 0.4728 |
| 0.019 | 332.94 | 5660 | 0.0804 | 0.7753 | 0.8132 | 0.9807 | nan | 0.9940 | 0.9583 | 0.8986 | 0.9906 | 0.9298 | 0.6477 | 0.8399 | 0.9824 | 0.7718 | 0.2279 | 0.9242 | 0.9402 | 0.4667 | nan | 0.9841 | 0.8987 | 0.8444 | 0.9797 | 0.8781 | 0.6414 | 0.8257 | 0.9641 | 0.6016 | 0.2267 | 0.8997 | 0.8870 | 0.4477 |
| 0.0126 | 334.12 | 5680 | 0.0798 | 0.7735 | 0.8106 | 0.9809 | nan | 0.9941 | 0.9575 | 0.9043 | 0.9906 | 0.9254 | 0.6521 | 0.8461 | 0.9820 | 0.7726 | 0.2260 | 0.9259 | 0.9372 | 0.4244 | nan | 0.9843 | 0.8987 | 0.8474 | 0.9800 | 0.8780 | 0.6472 | 0.8309 | 0.9637 | 0.6034 | 0.2248 | 0.9020 | 0.8843 | 0.4104 |
| 0.0167 | 335.29 | 5700 | 0.0788 | 0.7771 | 0.8177 | 0.9809 | nan | 0.9941 | 0.9593 | 0.9045 | 0.9896 | 0.9284 | 0.6608 | 0.8483 | 0.9817 | 0.7561 | 0.2539 | 0.9400 | 0.9584 | 0.4553 | nan | 0.9844 | 0.8990 | 0.8486 | 0.9801 | 0.8784 | 0.6551 | 0.8324 | 0.9629 | 0.5952 | 0.2523 | 0.9068 | 0.8795 | 0.4281 |
| 0.0199 | 336.47 | 5720 | 0.0800 | 0.7829 | 0.8225 | 0.9809 | nan | 0.9933 | 0.9610 | 0.9132 | 0.9895 | 0.9275 | 0.6461 | 0.8501 | 0.9814 | 0.7706 | 0.2532 | 0.9303 | 0.9451 | 0.5317 | nan | 0.9843 | 0.8977 | 0.8488 | 0.9802 | 0.8786 | 0.6404 | 0.8345 | 0.9625 | 0.6099 | 0.2511 | 0.9028 | 0.8930 | 0.4940 |
| 0.0148 | 337.65 | 5740 | 0.0814 | 0.7736 | 0.8127 | 0.9808 | nan | 0.9946 | 0.9606 | 0.8911 | 0.9900 | 0.9238 | 0.6395 | 0.8454 | 0.9811 | 0.7812 | 0.2523 | 0.9277 | 0.9406 | 0.4374 | nan | 0.9841 | 0.8981 | 0.8436 | 0.9801 | 0.8773 | 0.6347 | 0.8311 | 0.9651 | 0.6175 | 0.2502 | 0.9010 | 0.8881 | 0.3854 |
| 0.016 | 338.82 | 5760 | 0.0792 | 0.7829 | 0.8301 | 0.9810 | nan | 0.9931 | 0.9610 | 0.9094 | 0.9907 | 0.9274 | 0.6476 | 0.8547 | 0.9813 | 0.8063 | 0.2462 | 0.9472 | 0.9573 | 0.5691 | nan | 0.9845 | 0.8977 | 0.8480 | 0.9801 | 0.8788 | 0.6406 | 0.8354 | 0.9653 | 0.6268 | 0.2439 | 0.9063 | 0.8886 | 0.4821 |
| 0.0199 | 340.0 | 5780 | 0.0800 | 0.7762 | 0.8147 | 0.9810 | nan | 0.9941 | 0.9587 | 0.9087 | 0.9896 | 0.9298 | 0.6454 | 0.8490 | 0.9809 | 0.7833 | 0.2335 | 0.9356 | 0.9332 | 0.4488 | nan | 0.9844 | 0.8985 | 0.8488 | 0.9802 | 0.8788 | 0.6408 | 0.8330 | 0.9650 | 0.6192 | 0.2319 | 0.9081 | 0.8861 | 0.4157 |
| 0.0174 | 341.18 | 5800 | 0.0804 | 0.7764 | 0.8164 | 0.9809 | nan | 0.9939 | 0.9600 | 0.9025 | 0.9896 | 0.9298 | 0.6367 | 0.8582 | 0.9819 | 0.7819 | 0.2368 | 0.9369 | 0.9449 | 0.4602 | nan | 0.9843 | 0.8980 | 0.8454 | 0.9805 | 0.8793 | 0.6314 | 0.8407 | 0.9639 | 0.6147 | 0.2351 | 0.9070 | 0.8868 | 0.4256 |
| 0.0154 | 342.35 | 5820 | 0.0806 | 0.7798 | 0.8230 | 0.9809 | nan | 0.9937 | 0.9583 | 0.9049 | 0.9910 | 0.9229 | 0.6410 | 0.8561 | 0.9834 | 0.7681 | 0.2487 | 0.9395 | 0.9550 | 0.5366 | nan | 0.9846 | 0.8978 | 0.8499 | 0.9803 | 0.8778 | 0.6348 | 0.8378 | 0.9621 | 0.6047 | 0.2465 | 0.9055 | 0.8833 | 0.4728 |
| 0.0183 | 343.53 | 5840 | 0.0813 | 0.7791 | 0.8207 | 0.9809 | nan | 0.9940 | 0.9606 | 0.9000 | 0.9899 | 0.9282 | 0.6387 | 0.8518 | 0.9822 | 0.7755 | 0.2453 | 0.9338 | 0.9375 | 0.5317 | nan | 0.9844 | 0.8975 | 0.8469 | 0.9802 | 0.8789 | 0.6325 | 0.8372 | 0.9643 | 0.6081 | 0.2434 | 0.9069 | 0.8862 | 0.4619 |
| 0.016 | 344.71 | 5860 | 0.0784 | 0.7812 | 0.8259 | 0.9811 | nan | 0.9939 | 0.9609 | 0.9019 | 0.9902 | 0.9314 | 0.6573 | 0.8590 | 0.9817 | 0.7669 | 0.2522 | 0.9553 | 0.9484 | 0.5382 | nan | 0.9844 | 0.8996 | 0.8478 | 0.9804 | 0.8786 | 0.6501 | 0.8423 | 0.9639 | 0.6110 | 0.2502 | 0.8980 | 0.8922 | 0.4566 |
| 0.0149 | 345.88 | 5880 | 0.0794 | 0.7759 | 0.8167 | 0.9811 | nan | 0.9938 | 0.9576 | 0.9067 | 0.9907 | 0.9308 | 0.6571 | 0.8498 | 0.9834 | 0.7812 | 0.2183 | 0.9416 | 0.9471 | 0.4585 | nan | 0.9846 | 0.8996 | 0.8499 | 0.9802 | 0.8787 | 0.6509 | 0.8342 | 0.9627 | 0.6134 | 0.2174 | 0.9059 | 0.8921 | 0.4165 |
| 0.0163 | 347.06 | 5900 | 0.0789 | 0.7814 | 0.8240 | 0.9811 | nan | 0.9939 | 0.9579 | 0.9034 | 0.9911 | 0.9261 | 0.6744 | 0.8515 | 0.9834 | 0.7660 | 0.2308 | 0.9402 | 0.9386 | 0.5545 | nan | 0.9845 | 0.9000 | 0.8485 | 0.9800 | 0.8791 | 0.6665 | 0.8360 | 0.9634 | 0.6086 | 0.2294 | 0.9029 | 0.8884 | 0.4703 |
| 0.0145 | 348.24 | 5920 | 0.0813 | 0.7778 | 0.8159 | 0.9809 | nan | 0.9945 | 0.9596 | 0.8964 | 0.9898 | 0.9303 | 0.6516 | 0.8508 | 0.9812 | 0.7580 | 0.2286 | 0.9312 | 0.9455 | 0.4894 | nan | 0.9843 | 0.8992 | 0.8457 | 0.9802 | 0.8800 | 0.6468 | 0.8360 | 0.9636 | 0.6023 | 0.2273 | 0.9038 | 0.8864 | 0.4561 |
| 0.0131 | 349.41 | 5940 | 0.0812 | 0.7794 | 0.8175 | 0.9809 | nan | 0.9942 | 0.9605 | 0.8982 | 0.9905 | 0.9285 | 0.6388 | 0.8540 | 0.9813 | 0.7538 | 0.2441 | 0.9348 | 0.9416 | 0.5073 | nan | 0.9844 | 0.8984 | 0.8468 | 0.9805 | 0.8793 | 0.6339 | 0.8375 | 0.9627 | 0.6020 | 0.2424 | 0.9083 | 0.8903 | 0.4650 |
| 0.0161 | 350.59 | 5960 | 0.0798 | 0.7816 | 0.8190 | 0.9811 | nan | 0.9941 | 0.9602 | 0.9037 | 0.9905 | 0.9309 | 0.6560 | 0.8494 | 0.9810 | 0.7680 | 0.2377 | 0.9310 | 0.9369 | 0.5073 | nan | 0.9846 | 0.8992 | 0.8494 | 0.9802 | 0.8792 | 0.6491 | 0.8345 | 0.9637 | 0.6106 | 0.2360 | 0.9081 | 0.8880 | 0.4778 |
| 0.0155 | 351.76 | 5980 | 0.0787 | 0.7809 | 0.8176 | 0.9813 | nan | 0.9937 | 0.9589 | 0.9104 | 0.9918 | 0.9208 | 0.6665 | 0.8498 | 0.9817 | 0.7653 | 0.2358 | 0.9344 | 0.9451 | 0.4748 | nan | 0.9847 | 0.8998 | 0.8526 | 0.9797 | 0.8781 | 0.6597 | 0.8339 | 0.9647 | 0.6131 | 0.2344 | 0.9110 | 0.8917 | 0.4485 |
| 0.0143 | 352.94 | 6000 | 0.0802 | 0.7834 | 0.8233 | 0.9811 | nan | 0.9939 | 0.9601 | 0.9068 | 0.9892 | 0.9346 | 0.6400 | 0.8534 | 0.9825 | 0.7932 | 0.2468 | 0.9422 | 0.9463 | 0.5138 | nan | 0.9845 | 0.8987 | 0.8502 | 0.9801 | 0.8784 | 0.6352 | 0.8373 | 0.9650 | 0.6210 | 0.2448 | 0.9135 | 0.8887 | 0.4869 |
| 0.0142 | 354.12 | 6020 | 0.0830 | 0.7801 | 0.8185 | 0.9809 | nan | 0.9942 | 0.9580 | 0.8996 | 0.9906 | 0.9292 | 0.6345 | 0.8529 | 0.9820 | 0.7825 | 0.2270 | 0.9368 | 0.9447 | 0.5089 | nan | 0.9844 | 0.8980 | 0.8473 | 0.9803 | 0.8797 | 0.6287 | 0.8374 | 0.9634 | 0.6151 | 0.2255 | 0.9101 | 0.8900 | 0.4808 |
| 0.0176 | 355.29 | 6040 | 0.0822 | 0.7770 | 0.8179 | 0.9809 | nan | 0.9938 | 0.9582 | 0.9086 | 0.9904 | 0.9291 | 0.6323 | 0.8537 | 0.9827 | 0.7620 | 0.2408 | 0.9336 | 0.9404 | 0.5073 | nan | 0.9845 | 0.8972 | 0.8504 | 0.9802 | 0.8788 | 0.6268 | 0.8372 | 0.9625 | 0.6082 | 0.2393 | 0.9082 | 0.8906 | 0.4370 |
| 0.0155 | 356.47 | 6060 | 0.0822 | 0.7834 | 0.8251 | 0.9809 | nan | 0.9940 | 0.9606 | 0.9042 | 0.9901 | 0.9284 | 0.6369 | 0.8456 | 0.9803 | 0.7700 | 0.2431 | 0.9318 | 0.9489 | 0.5919 | nan | 0.9845 | 0.8967 | 0.8493 | 0.9804 | 0.8797 | 0.6313 | 0.8330 | 0.9631 | 0.6089 | 0.2417 | 0.9055 | 0.8927 | 0.5170 |
| 0.0157 | 357.65 | 6080 | 0.0823 | 0.7775 | 0.8172 | 0.9808 | nan | 0.9941 | 0.9604 | 0.8986 | 0.9902 | 0.9303 | 0.6334 | 0.8564 | 0.9814 | 0.7666 | 0.2261 | 0.9380 | 0.9454 | 0.5024 | nan | 0.9845 | 0.8965 | 0.8475 | 0.9803 | 0.8801 | 0.6285 | 0.8363 | 0.9628 | 0.6066 | 0.2250 | 0.9051 | 0.8907 | 0.4640 |
| 0.0183 | 358.82 | 6100 | 0.0830 | 0.7770 | 0.8150 | 0.9807 | nan | 0.9941 | 0.9597 | 0.9015 | 0.9898 | 0.9287 | 0.6385 | 0.8428 | 0.9826 | 0.7569 | 0.2303 | 0.9378 | 0.9431 | 0.4894 | nan | 0.9844 | 0.8967 | 0.8470 | 0.9803 | 0.8796 | 0.6318 | 0.8298 | 0.9619 | 0.6016 | 0.2294 | 0.9082 | 0.8910 | 0.4588 |
| 0.0193 | 360.0 | 6120 | 0.0827 | 0.7779 | 0.8179 | 0.9808 | nan | 0.9942 | 0.9596 | 0.8990 | 0.9909 | 0.9198 | 0.6361 | 0.8494 | 0.9809 | 0.7656 | 0.2428 | 0.9407 | 0.9479 | 0.5057 | nan | 0.9844 | 0.8968 | 0.8472 | 0.9802 | 0.8780 | 0.6311 | 0.8345 | 0.9629 | 0.6084 | 0.2412 | 0.9063 | 0.8930 | 0.4481 |
| 0.0175 | 361.18 | 6140 | 0.0824 | 0.7758 | 0.8156 | 0.9808 | nan | 0.9941 | 0.9581 | 0.9025 | 0.9905 | 0.9268 | 0.6345 | 0.8485 | 0.9820 | 0.7693 | 0.2345 | 0.9352 | 0.9371 | 0.4894 | nan | 0.9844 | 0.8971 | 0.8471 | 0.9804 | 0.8793 | 0.6291 | 0.8344 | 0.9623 | 0.6060 | 0.2334 | 0.9054 | 0.8897 | 0.4362 |
| 0.0188 | 362.35 | 6160 | 0.0828 | 0.7759 | 0.8161 | 0.9809 | nan | 0.9940 | 0.9591 | 0.9031 | 0.9909 | 0.9237 | 0.6369 | 0.8463 | 0.9817 | 0.7660 | 0.2411 | 0.9363 | 0.9467 | 0.4829 | nan | 0.9844 | 0.8975 | 0.8469 | 0.9803 | 0.8798 | 0.6303 | 0.8325 | 0.9628 | 0.6088 | 0.2396 | 0.9072 | 0.8898 | 0.4267 |
| 0.018 | 363.53 | 6180 | 0.0823 | 0.7776 | 0.8196 | 0.9810 | nan | 0.9942 | 0.9583 | 0.9025 | 0.9905 | 0.9247 | 0.6379 | 0.8545 | 0.9819 | 0.7668 | 0.2543 | 0.9499 | 0.9477 | 0.4911 | nan | 0.9845 | 0.8980 | 0.8489 | 0.9804 | 0.8785 | 0.6320 | 0.8376 | 0.9624 | 0.6121 | 0.2526 | 0.9085 | 0.8856 | 0.4272 |
| 0.0182 | 364.71 | 6200 | 0.0805 | 0.7784 | 0.8179 | 0.9811 | nan | 0.9938 | 0.9591 | 0.9102 | 0.9906 | 0.9244 | 0.6425 | 0.8608 | 0.9818 | 0.7789 | 0.2407 | 0.9394 | 0.9405 | 0.4699 | nan | 0.9846 | 0.8986 | 0.8499 | 0.9806 | 0.8794 | 0.6369 | 0.8443 | 0.9626 | 0.6202 | 0.2393 | 0.9092 | 0.8896 | 0.4244 |
| 0.0134 | 365.88 | 6220 | 0.0818 | 0.7802 | 0.8213 | 0.9810 | nan | 0.9939 | 0.9608 | 0.9063 | 0.9895 | 0.9316 | 0.6353 | 0.8563 | 0.9826 | 0.7626 | 0.2332 | 0.9301 | 0.9447 | 0.5496 | nan | 0.9846 | 0.8969 | 0.8505 | 0.9805 | 0.8805 | 0.6308 | 0.8411 | 0.9620 | 0.6115 | 0.2321 | 0.9018 | 0.8917 | 0.4788 |
| 0.0151 | 367.06 | 6240 | 0.0829 | 0.7799 | 0.8221 | 0.9809 | nan | 0.9937 | 0.9595 | 0.9031 | 0.9901 | 0.9348 | 0.6398 | 0.8571 | 0.9827 | 0.7771 | 0.2305 | 0.9308 | 0.9515 | 0.5366 | nan | 0.9846 | 0.8973 | 0.8482 | 0.9802 | 0.8796 | 0.6346 | 0.8409 | 0.9620 | 0.6127 | 0.2292 | 0.9017 | 0.8930 | 0.4741 |
| 0.0191 | 368.24 | 6260 | 0.0838 | 0.7805 | 0.8252 | 0.9808 | nan | 0.9936 | 0.9591 | 0.9048 | 0.9901 | 0.9324 | 0.6411 | 0.8566 | 0.9825 | 0.7689 | 0.2388 | 0.9461 | 0.9518 | 0.5626 | nan | 0.9845 | 0.8968 | 0.8469 | 0.9803 | 0.8801 | 0.6341 | 0.8403 | 0.9610 | 0.6096 | 0.2375 | 0.9042 | 0.8904 | 0.4806 |
| 0.0149 | 369.41 | 6280 | 0.0830 | 0.7762 | 0.8152 | 0.9809 | nan | 0.9942 | 0.9584 | 0.9036 | 0.9899 | 0.9309 | 0.6430 | 0.8511 | 0.9819 | 0.7671 | 0.2318 | 0.9366 | 0.9493 | 0.4602 | nan | 0.9845 | 0.8981 | 0.8485 | 0.9802 | 0.8802 | 0.6382 | 0.8359 | 0.9618 | 0.6090 | 0.2306 | 0.9093 | 0.8882 | 0.4256 |
| 0.0159 | 370.59 | 6300 | 0.0831 | 0.7828 | 0.8245 | 0.9811 | nan | 0.9940 | 0.9601 | 0.9058 | 0.9898 | 0.9324 | 0.6392 | 0.8581 | 0.9819 | 0.7696 | 0.2508 | 0.9445 | 0.9494 | 0.5431 | nan | 0.9847 | 0.8975 | 0.8497 | 0.9805 | 0.8806 | 0.6338 | 0.8429 | 0.9625 | 0.6132 | 0.2492 | 0.9053 | 0.8870 | 0.4890 |
| 0.0168 | 371.76 | 6320 | 0.0826 | 0.7797 | 0.8191 | 0.9810 | nan | 0.9946 | 0.9582 | 0.8949 | 0.9904 | 0.9307 | 0.6373 | 0.8570 | 0.9820 | 0.7708 | 0.2460 | 0.9435 | 0.9518 | 0.4911 | nan | 0.9844 | 0.8986 | 0.8460 | 0.9806 | 0.8804 | 0.6325 | 0.8417 | 0.9624 | 0.6131 | 0.2448 | 0.9056 | 0.8869 | 0.4590 |
| 0.017 | 372.94 | 6340 | 0.0827 | 0.7824 | 0.8220 | 0.9810 | nan | 0.9938 | 0.9587 | 0.9091 | 0.9897 | 0.9373 | 0.6388 | 0.8545 | 0.9818 | 0.7691 | 0.2442 | 0.9389 | 0.9406 | 0.5301 | nan | 0.9847 | 0.8976 | 0.8496 | 0.9805 | 0.8796 | 0.6334 | 0.8399 | 0.9615 | 0.6071 | 0.2429 | 0.9090 | 0.8898 | 0.4962 |
| 0.0165 | 374.12 | 6360 | 0.0834 | 0.7825 | 0.8236 | 0.9810 | nan | 0.9938 | 0.9597 | 0.9054 | 0.9905 | 0.9282 | 0.6359 | 0.8550 | 0.9821 | 0.7719 | 0.2534 | 0.9416 | 0.9532 | 0.5366 | nan | 0.9847 | 0.8976 | 0.8496 | 0.9806 | 0.8804 | 0.6301 | 0.8408 | 0.9617 | 0.6117 | 0.2517 | 0.9045 | 0.8926 | 0.4867 |
| 0.0159 | 375.29 | 6380 | 0.0834 | 0.7815 | 0.8244 | 0.9810 | nan | 0.9942 | 0.9586 | 0.8998 | 0.9900 | 0.9282 | 0.6385 | 0.8632 | 0.9827 | 0.7744 | 0.2471 | 0.9433 | 0.9503 | 0.5463 | nan | 0.9845 | 0.8980 | 0.8473 | 0.9809 | 0.8802 | 0.6320 | 0.8461 | 0.9613 | 0.6087 | 0.2457 | 0.9106 | 0.8898 | 0.4739 |
| 0.0138 | 376.47 | 6400 | 0.0830 | 0.7878 | 0.8311 | 0.9809 | nan | 0.9932 | 0.9580 | 0.9116 | 0.9912 | 0.9286 | 0.6430 | 0.8590 | 0.9831 | 0.7723 | 0.2505 | 0.9405 | 0.9516 | 0.6211 | nan | 0.9847 | 0.8970 | 0.8497 | 0.9804 | 0.8802 | 0.6352 | 0.8422 | 0.9605 | 0.6079 | 0.2486 | 0.9064 | 0.8916 | 0.5569 |
| 0.0122 | 377.65 | 6420 | 0.0841 | 0.7819 | 0.8203 | 0.9809 | nan | 0.9942 | 0.9597 | 0.8999 | 0.9896 | 0.9349 | 0.6352 | 0.8539 | 0.9814 | 0.7718 | 0.2446 | 0.9339 | 0.9450 | 0.5203 | nan | 0.9845 | 0.8973 | 0.8475 | 0.9807 | 0.8809 | 0.6299 | 0.8395 | 0.9616 | 0.6135 | 0.2431 | 0.9070 | 0.8900 | 0.4893 |
| 0.0182 | 378.82 | 6440 | 0.0838 | 0.7803 | 0.8197 | 0.9809 | nan | 0.9940 | 0.9587 | 0.9042 | 0.9905 | 0.9276 | 0.6341 | 0.8534 | 0.9815 | 0.7783 | 0.2354 | 0.9376 | 0.9534 | 0.5073 | nan | 0.9845 | 0.8976 | 0.8480 | 0.9806 | 0.8795 | 0.6292 | 0.8388 | 0.9614 | 0.6157 | 0.2341 | 0.9103 | 0.8939 | 0.4699 |
| 0.0177 | 380.0 | 6460 | 0.0830 | 0.7854 | 0.8328 | 0.9810 | nan | 0.9931 | 0.9604 | 0.9114 | 0.9906 | 0.9274 | 0.6435 | 0.8592 | 0.9823 | 0.7762 | 0.2498 | 0.9456 | 0.9515 | 0.6358 | nan | 0.9847 | 0.8973 | 0.8493 | 0.9805 | 0.8794 | 0.6360 | 0.8425 | 0.9613 | 0.6131 | 0.2480 | 0.9113 | 0.8956 | 0.5118 |
| 0.0144 | 381.18 | 6480 | 0.0834 | 0.7799 | 0.8235 | 0.9810 | nan | 0.9941 | 0.9593 | 0.8995 | 0.9904 | 0.9250 | 0.6398 | 0.8570 | 0.9831 | 0.7834 | 0.2409 | 0.9433 | 0.9473 | 0.5431 | nan | 0.9846 | 0.8980 | 0.8474 | 0.9807 | 0.8801 | 0.6341 | 0.8414 | 0.9621 | 0.6104 | 0.2397 | 0.9097 | 0.8909 | 0.4601 |
| 0.0158 | 382.35 | 6500 | 0.0878 | 0.7685 | 0.8145 | 0.9806 | nan | 0.9942 | 0.9590 | 0.8857 | 0.9900 | 0.9321 | 0.6415 | 0.8506 | 0.9834 | 0.7825 | 0.2307 | 0.9454 | 0.9544 | 0.4390 | nan | 0.9843 | 0.8984 | 0.8365 | 0.9803 | 0.8799 | 0.6354 | 0.8363 | 0.9624 | 0.5821 | 0.2293 | 0.9056 | 0.8859 | 0.3734 |
| 0.0166 | 383.53 | 6520 | 0.0841 | 0.7749 | 0.8166 | 0.9809 | nan | 0.9941 | 0.9565 | 0.8992 | 0.9913 | 0.9226 | 0.6385 | 0.8618 | 0.9833 | 0.7698 | 0.2447 | 0.9405 | 0.9533 | 0.4602 | nan | 0.9845 | 0.8983 | 0.8447 | 0.9805 | 0.8796 | 0.6329 | 0.8449 | 0.9621 | 0.6013 | 0.2433 | 0.9085 | 0.8908 | 0.4026 |
| 0.0175 | 384.71 | 6540 | 0.0854 | 0.7701 | 0.8109 | 0.9809 | nan | 0.9941 | 0.9587 | 0.9005 | 0.9906 | 0.9271 | 0.6375 | 0.8499 | 0.9820 | 0.7882 | 0.2268 | 0.9342 | 0.9389 | 0.4130 | nan | 0.9845 | 0.8986 | 0.8455 | 0.9806 | 0.8808 | 0.6315 | 0.8366 | 0.9631 | 0.6051 | 0.2258 | 0.9090 | 0.8870 | 0.3629 |
| 0.0183 | 385.88 | 6560 | 0.0850 | 0.7753 | 0.8173 | 0.9808 | nan | 0.9937 | 0.9593 | 0.9063 | 0.9908 | 0.9280 | 0.6389 | 0.8468 | 0.9820 | 0.7561 | 0.2393 | 0.9362 | 0.9504 | 0.4976 | nan | 0.9847 | 0.8974 | 0.8464 | 0.9804 | 0.8799 | 0.6340 | 0.8340 | 0.9614 | 0.5945 | 0.2379 | 0.9073 | 0.8919 | 0.4286 |
| 0.0132 | 387.06 | 6580 | 0.0858 | 0.7780 | 0.8173 | 0.9808 | nan | 0.9945 | 0.9573 | 0.8936 | 0.9905 | 0.9336 | 0.6400 | 0.8506 | 0.9823 | 0.7634 | 0.2441 | 0.9468 | 0.9480 | 0.4797 | nan | 0.9844 | 0.8981 | 0.8433 | 0.9806 | 0.8810 | 0.6353 | 0.8376 | 0.9619 | 0.5958 | 0.2427 | 0.9079 | 0.8894 | 0.4560 |
| 0.0164 | 388.24 | 6600 | 0.0835 | 0.7774 | 0.8197 | 0.9810 | nan | 0.9942 | 0.9572 | 0.8993 | 0.9910 | 0.9280 | 0.6455 | 0.8550 | 0.9830 | 0.7761 | 0.2508 | 0.9418 | 0.9484 | 0.4862 | nan | 0.9846 | 0.8988 | 0.8451 | 0.9807 | 0.8811 | 0.6402 | 0.8416 | 0.9633 | 0.6048 | 0.2493 | 0.9116 | 0.8885 | 0.4164 |
| 0.0169 | 389.41 | 6620 | 0.0826 | 0.7791 | 0.8170 | 0.9812 | nan | 0.9944 | 0.9582 | 0.8922 | 0.9910 | 0.9285 | 0.6970 | 0.8513 | 0.9819 | 0.7809 | 0.2323 | 0.9360 | 0.9385 | 0.4390 | nan | 0.9844 | 0.9009 | 0.8434 | 0.9806 | 0.8812 | 0.6911 | 0.8371 | 0.9622 | 0.6115 | 0.2314 | 0.9040 | 0.8857 | 0.4147 |
| 0.0174 | 390.59 | 6640 | 0.0850 | 0.7770 | 0.8154 | 0.9809 | nan | 0.9943 | 0.9611 | 0.8892 | 0.9902 | 0.9333 | 0.6636 | 0.8497 | 0.9806 | 0.7781 | 0.2386 | 0.9328 | 0.9409 | 0.4472 | nan | 0.9844 | 0.8983 | 0.8408 | 0.9805 | 0.8816 | 0.6591 | 0.8373 | 0.9629 | 0.6062 | 0.2376 | 0.9021 | 0.8848 | 0.4257 |
| 0.0136 | 391.76 | 6660 | 0.0832 | 0.7800 | 0.8234 | 0.9811 | nan | 0.9939 | 0.9601 | 0.8985 | 0.9905 | 0.9343 | 0.6811 | 0.8530 | 0.9808 | 0.7674 | 0.2534 | 0.9437 | 0.9554 | 0.4927 | nan | 0.9846 | 0.8998 | 0.8440 | 0.9806 | 0.8804 | 0.6752 | 0.8382 | 0.9619 | 0.6016 | 0.2518 | 0.9071 | 0.8898 | 0.4256 |
| 0.0154 | 392.94 | 6680 | 0.0839 | 0.7790 | 0.8178 | 0.9810 | nan | 0.9942 | 0.9600 | 0.8961 | 0.9901 | 0.9288 | 0.6741 | 0.8511 | 0.9816 | 0.7804 | 0.2303 | 0.9383 | 0.9465 | 0.4602 | nan | 0.9845 | 0.8989 | 0.8447 | 0.9807 | 0.8813 | 0.6691 | 0.8380 | 0.9618 | 0.6088 | 0.2293 | 0.9087 | 0.8900 | 0.4307 |
| 0.017 | 394.12 | 6700 | 0.0831 | 0.7782 | 0.8191 | 0.9811 | nan | 0.9941 | 0.9573 | 0.8999 | 0.9906 | 0.9314 | 0.6706 | 0.8559 | 0.9826 | 0.7835 | 0.2388 | 0.9406 | 0.9473 | 0.4553 | nan | 0.9845 | 0.8998 | 0.8445 | 0.9806 | 0.8809 | 0.6654 | 0.8407 | 0.9622 | 0.6109 | 0.2378 | 0.9084 | 0.8928 | 0.4076 |
| 0.0167 | 395.29 | 6720 | 0.0841 | 0.7793 | 0.8205 | 0.9810 | nan | 0.9944 | 0.9576 | 0.8970 | 0.9897 | 0.9379 | 0.6649 | 0.8526 | 0.9817 | 0.7850 | 0.2475 | 0.9416 | 0.9481 | 0.4683 | nan | 0.9844 | 0.8996 | 0.8437 | 0.9807 | 0.8800 | 0.6595 | 0.8390 | 0.9622 | 0.6118 | 0.2463 | 0.9091 | 0.8902 | 0.4248 |
| 0.0158 | 396.47 | 6740 | 0.0833 | 0.7808 | 0.8225 | 0.9812 | nan | 0.9938 | 0.9576 | 0.9064 | 0.9907 | 0.9314 | 0.6662 | 0.8514 | 0.9828 | 0.7837 | 0.2379 | 0.9403 | 0.9485 | 0.5024 | nan | 0.9847 | 0.8993 | 0.8481 | 0.9806 | 0.8806 | 0.6605 | 0.8369 | 0.9623 | 0.6130 | 0.2367 | 0.9103 | 0.8936 | 0.4433 |
| 0.0183 | 397.65 | 6760 | 0.0830 | 0.7765 | 0.8210 | 0.9811 | nan | 0.9939 | 0.9580 | 0.9014 | 0.9905 | 0.9318 | 0.6794 | 0.8495 | 0.9832 | 0.7843 | 0.2060 | 0.9401 | 0.9481 | 0.5073 | nan | 0.9846 | 0.9003 | 0.8466 | 0.9797 | 0.8786 | 0.6724 | 0.8336 | 0.9628 | 0.6114 | 0.2051 | 0.9017 | 0.8936 | 0.4245 |
| 0.0155 | 398.82 | 6780 | 0.0842 | 0.7763 | 0.8177 | 0.9811 | nan | 0.9944 | 0.9598 | 0.8961 | 0.9898 | 0.9287 | 0.6737 | 0.8478 | 0.9829 | 0.7680 | 0.2345 | 0.9411 | 0.9471 | 0.4667 | nan | 0.9846 | 0.9004 | 0.8456 | 0.9802 | 0.8793 | 0.6689 | 0.8338 | 0.9628 | 0.6017 | 0.2334 | 0.9042 | 0.8903 | 0.4065 |
| 0.0149 | 400.0 | 6800 | 0.0845 | 0.7825 | 0.8292 | 0.9811 | nan | 0.9939 | 0.9578 | 0.9039 | 0.9903 | 0.9277 | 0.6656 | 0.8527 | 0.9839 | 0.7760 | 0.2570 | 0.9447 | 0.9540 | 0.5724 | nan | 0.9847 | 0.8996 | 0.8469 | 0.9805 | 0.8805 | 0.6588 | 0.8382 | 0.9619 | 0.6028 | 0.2550 | 0.9095 | 0.8910 | 0.4632 |
| 0.0184 | 401.18 | 6820 | 0.0845 | 0.7789 | 0.8230 | 0.9810 | nan | 0.9941 | 0.9596 | 0.8991 | 0.9900 | 0.9340 | 0.6628 | 0.8511 | 0.9818 | 0.7708 | 0.2505 | 0.9413 | 0.9530 | 0.5106 | nan | 0.9845 | 0.8991 | 0.8445 | 0.9807 | 0.8808 | 0.6573 | 0.8382 | 0.9632 | 0.6002 | 0.2489 | 0.9130 | 0.8904 | 0.4249 |
| 0.0162 | 402.35 | 6840 | 0.0857 | 0.7757 | 0.8189 | 0.9810 | nan | 0.9938 | 0.9589 | 0.9035 | 0.9899 | 0.9319 | 0.6466 | 0.8547 | 0.9838 | 0.7756 | 0.2385 | 0.9432 | 0.9419 | 0.4829 | nan | 0.9846 | 0.8982 | 0.8459 | 0.9806 | 0.8811 | 0.6418 | 0.8401 | 0.9627 | 0.6004 | 0.2374 | 0.9112 | 0.8876 | 0.4119 |
| 0.0157 | 403.53 | 6860 | 0.0855 | 0.7766 | 0.8192 | 0.9810 | nan | 0.9942 | 0.9586 | 0.8980 | 0.9901 | 0.9347 | 0.6456 | 0.8568 | 0.9830 | 0.7649 | 0.2415 | 0.9432 | 0.9477 | 0.4911 | nan | 0.9847 | 0.8980 | 0.8453 | 0.9807 | 0.8806 | 0.6403 | 0.8419 | 0.9628 | 0.5964 | 0.2402 | 0.9092 | 0.8897 | 0.4260 |
| 0.0167 | 404.71 | 6880 | 0.0847 | 0.7781 | 0.8199 | 0.9811 | nan | 0.9942 | 0.9586 | 0.9025 | 0.9902 | 0.9307 | 0.6442 | 0.8535 | 0.9831 | 0.7756 | 0.2390 | 0.9388 | 0.9479 | 0.5008 | nan | 0.9847 | 0.8988 | 0.8471 | 0.9807 | 0.8811 | 0.6389 | 0.8401 | 0.9631 | 0.6059 | 0.2378 | 0.9088 | 0.8913 | 0.4369 |
| 0.0145 | 405.88 | 6900 | 0.0845 | 0.7806 | 0.8236 | 0.9811 | nan | 0.9942 | 0.9569 | 0.9016 | 0.9908 | 0.9292 | 0.6595 | 0.8572 | 0.9826 | 0.7626 | 0.2518 | 0.9434 | 0.9532 | 0.5236 | nan | 0.9846 | 0.8990 | 0.8467 | 0.9806 | 0.8809 | 0.6513 | 0.8423 | 0.9626 | 0.5981 | 0.2502 | 0.9122 | 0.8929 | 0.4466 |
| 0.0154 | 407.06 | 6920 | 0.0846 | 0.7780 | 0.8198 | 0.9810 | nan | 0.9940 | 0.9580 | 0.9016 | 0.9909 | 0.9292 | 0.6557 | 0.8550 | 0.9827 | 0.7667 | 0.2377 | 0.9383 | 0.9445 | 0.5024 | nan | 0.9846 | 0.8985 | 0.8464 | 0.9807 | 0.8818 | 0.6496 | 0.8409 | 0.9625 | 0.5998 | 0.2364 | 0.9099 | 0.8916 | 0.4316 |
| 0.0159 | 408.24 | 6940 | 0.0859 | 0.7788 | 0.8219 | 0.9811 | nan | 0.9942 | 0.9589 | 0.9006 | 0.9906 | 0.9286 | 0.6487 | 0.8535 | 0.9823 | 0.7609 | 0.2400 | 0.9457 | 0.9549 | 0.5252 | nan | 0.9847 | 0.8986 | 0.8475 | 0.9807 | 0.8805 | 0.6431 | 0.8395 | 0.9621 | 0.5973 | 0.2386 | 0.9077 | 0.8927 | 0.4511 |
| 0.0152 | 409.41 | 6960 | 0.0859 | 0.7766 | 0.8179 | 0.9809 | nan | 0.9945 | 0.9577 | 0.8985 | 0.9903 | 0.9332 | 0.6384 | 0.8520 | 0.9815 | 0.7575 | 0.2407 | 0.9382 | 0.9442 | 0.5057 | nan | 0.9845 | 0.8982 | 0.8462 | 0.9807 | 0.8808 | 0.6337 | 0.8390 | 0.9615 | 0.5976 | 0.2394 | 0.9080 | 0.8938 | 0.4319 |
| 0.014 | 410.59 | 6980 | 0.0862 | 0.7784 | 0.8199 | 0.9810 | nan | 0.9943 | 0.9577 | 0.9012 | 0.9907 | 0.9288 | 0.6393 | 0.8494 | 0.9817 | 0.7704 | 0.2373 | 0.9383 | 0.9504 | 0.5187 | nan | 0.9847 | 0.8976 | 0.8476 | 0.9807 | 0.8812 | 0.6343 | 0.8363 | 0.9617 | 0.6033 | 0.2360 | 0.9078 | 0.8940 | 0.4538 |
| 0.0155 | 411.76 | 7000 | 0.0866 | 0.7776 | 0.8204 | 0.9809 | nan | 0.9941 | 0.9595 | 0.8999 | 0.9903 | 0.9335 | 0.6357 | 0.8580 | 0.9816 | 0.7542 | 0.2504 | 0.9424 | 0.9521 | 0.5138 | nan | 0.9847 | 0.8972 | 0.8465 | 0.9808 | 0.8807 | 0.6306 | 0.8432 | 0.9614 | 0.5978 | 0.2488 | 0.9089 | 0.8948 | 0.4335 |
| 0.0165 | 412.94 | 7020 | 0.0861 | 0.7777 | 0.8232 | 0.9810 | nan | 0.9939 | 0.9580 | 0.9050 | 0.9909 | 0.9307 | 0.6354 | 0.8595 | 0.9819 | 0.7652 | 0.2393 | 0.9467 | 0.9501 | 0.5447 | nan | 0.9848 | 0.8973 | 0.8482 | 0.9808 | 0.8813 | 0.6300 | 0.8442 | 0.9620 | 0.5964 | 0.2380 | 0.9081 | 0.8922 | 0.4473 |
| 0.0147 | 414.12 | 7040 | 0.0868 | 0.7762 | 0.8173 | 0.9809 | nan | 0.9943 | 0.9576 | 0.9003 | 0.9908 | 0.9307 | 0.6357 | 0.8572 | 0.9813 | 0.7540 | 0.2318 | 0.9396 | 0.9442 | 0.5073 | nan | 0.9846 | 0.8969 | 0.8462 | 0.9807 | 0.8819 | 0.6305 | 0.8419 | 0.9614 | 0.5952 | 0.2306 | 0.9080 | 0.8922 | 0.4401 |
| 0.0147 | 415.29 | 7060 | 0.0859 | 0.7789 | 0.8220 | 0.9810 | nan | 0.9942 | 0.9590 | 0.9003 | 0.9901 | 0.9344 | 0.6386 | 0.8597 | 0.9813 | 0.7823 | 0.2422 | 0.9429 | 0.9514 | 0.5089 | nan | 0.9847 | 0.8983 | 0.8453 | 0.9809 | 0.8819 | 0.6343 | 0.8453 | 0.9627 | 0.6063 | 0.2409 | 0.9091 | 0.8923 | 0.4433 |
| 0.0158 | 416.47 | 7080 | 0.0858 | 0.7813 | 0.8262 | 0.9811 | nan | 0.9939 | 0.9586 | 0.9062 | 0.9911 | 0.9282 | 0.6393 | 0.8540 | 0.9814 | 0.7755 | 0.2555 | 0.9404 | 0.9571 | 0.5593 | nan | 0.9849 | 0.8979 | 0.8486 | 0.9807 | 0.8821 | 0.6345 | 0.8402 | 0.9629 | 0.6057 | 0.2538 | 0.9084 | 0.8935 | 0.4642 |
| 0.0151 | 417.65 | 7100 | 0.0854 | 0.7789 | 0.8210 | 0.9811 | nan | 0.9943 | 0.9591 | 0.9029 | 0.9899 | 0.9325 | 0.6451 | 0.8519 | 0.9822 | 0.7760 | 0.2511 | 0.9344 | 0.9516 | 0.5024 | nan | 0.9848 | 0.8983 | 0.8483 | 0.9809 | 0.8823 | 0.6402 | 0.8389 | 0.9633 | 0.6066 | 0.2495 | 0.9069 | 0.8937 | 0.4322 |
| 0.0163 | 418.82 | 7120 | 0.0861 | 0.7775 | 0.8202 | 0.9811 | nan | 0.9940 | 0.9587 | 0.9058 | 0.9903 | 0.9305 | 0.6370 | 0.8553 | 0.9830 | 0.7598 | 0.2476 | 0.9382 | 0.9567 | 0.5057 | nan | 0.9848 | 0.8978 | 0.8482 | 0.9809 | 0.8820 | 0.6311 | 0.8414 | 0.9618 | 0.5989 | 0.2462 | 0.9092 | 0.8933 | 0.4319 |
| 0.0171 | 420.0 | 7140 | 0.0856 | 0.7772 | 0.8200 | 0.9811 | nan | 0.9939 | 0.9580 | 0.9083 | 0.9903 | 0.9342 | 0.6387 | 0.8617 | 0.9827 | 0.7644 | 0.2490 | 0.9373 | 0.9507 | 0.4911 | nan | 0.9848 | 0.8985 | 0.8481 | 0.9808 | 0.8814 | 0.6331 | 0.8453 | 0.9621 | 0.6018 | 0.2476 | 0.9088 | 0.8942 | 0.4177 |
| 0.0154 | 421.18 | 7160 | 0.0854 | 0.7797 | 0.8232 | 0.9811 | nan | 0.9940 | 0.9592 | 0.9080 | 0.9899 | 0.9359 | 0.6397 | 0.8581 | 0.9822 | 0.7639 | 0.2410 | 0.9424 | 0.9495 | 0.5382 | nan | 0.9848 | 0.8983 | 0.8497 | 0.9808 | 0.8815 | 0.6349 | 0.8422 | 0.9623 | 0.6027 | 0.2399 | 0.9120 | 0.8955 | 0.4510 |
| 0.0132 | 422.35 | 7180 | 0.0857 | 0.7810 | 0.8238 | 0.9811 | nan | 0.9942 | 0.9590 | 0.9042 | 0.9902 | 0.9314 | 0.6393 | 0.8514 | 0.9818 | 0.7735 | 0.2489 | 0.9383 | 0.9541 | 0.5431 | nan | 0.9848 | 0.8983 | 0.8485 | 0.9806 | 0.8806 | 0.6338 | 0.8375 | 0.9625 | 0.6084 | 0.2473 | 0.9103 | 0.8953 | 0.4645 |
| 0.0146 | 423.53 | 7200 | 0.0858 | 0.7792 | 0.8235 | 0.9811 | nan | 0.9940 | 0.9591 | 0.9052 | 0.9900 | 0.9371 | 0.6385 | 0.8489 | 0.9822 | 0.7739 | 0.2488 | 0.9457 | 0.9539 | 0.5285 | nan | 0.9848 | 0.8983 | 0.8487 | 0.9805 | 0.8800 | 0.6331 | 0.8356 | 0.9627 | 0.6083 | 0.2472 | 0.9115 | 0.8948 | 0.4440 |
| 0.0172 | 424.71 | 7220 | 0.0854 | 0.7790 | 0.8231 | 0.9811 | nan | 0.9940 | 0.9597 | 0.9055 | 0.9893 | 0.9388 | 0.6390 | 0.8526 | 0.9825 | 0.7776 | 0.2414 | 0.9422 | 0.9490 | 0.5285 | nan | 0.9848 | 0.8983 | 0.8488 | 0.9804 | 0.8796 | 0.6333 | 0.8386 | 0.9629 | 0.6116 | 0.2400 | 0.9114 | 0.8941 | 0.4434 |
| 0.0169 | 425.88 | 7240 | 0.0869 | 0.7769 | 0.8230 | 0.9810 | nan | 0.9942 | 0.9600 | 0.9021 | 0.9894 | 0.9341 | 0.6328 | 0.8560 | 0.9824 | 0.7743 | 0.2400 | 0.9456 | 0.9583 | 0.5301 | nan | 0.9847 | 0.8978 | 0.8481 | 0.9806 | 0.8801 | 0.6279 | 0.8419 | 0.9623 | 0.6093 | 0.2387 | 0.9108 | 0.8897 | 0.4278 |
| 0.0159 | 427.06 | 7260 | 0.0870 | 0.7777 | 0.8192 | 0.9811 | nan | 0.9943 | 0.9567 | 0.9060 | 0.9904 | 0.9334 | 0.6365 | 0.8581 | 0.9830 | 0.7613 | 0.2368 | 0.9406 | 0.9463 | 0.5057 | nan | 0.9847 | 0.8981 | 0.8493 | 0.9808 | 0.8816 | 0.6315 | 0.8431 | 0.9620 | 0.6033 | 0.2358 | 0.9098 | 0.8946 | 0.4350 |
| 0.0171 | 428.24 | 7280 | 0.0865 | 0.7808 | 0.8271 | 0.9811 | nan | 0.9939 | 0.9589 | 0.9037 | 0.9912 | 0.9259 | 0.6339 | 0.8552 | 0.9822 | 0.7752 | 0.2475 | 0.9462 | 0.9557 | 0.5821 | nan | 0.9848 | 0.8977 | 0.8483 | 0.9807 | 0.8815 | 0.6286 | 0.8404 | 0.9625 | 0.6075 | 0.2459 | 0.9050 | 0.8970 | 0.4711 |
| 0.0131 | 429.41 | 7300 | 0.0865 | 0.7791 | 0.8237 | 0.9811 | nan | 0.9938 | 0.9621 | 0.9062 | 0.9896 | 0.9333 | 0.6360 | 0.8605 | 0.9818 | 0.7703 | 0.2459 | 0.9388 | 0.9502 | 0.5398 | nan | 0.9849 | 0.8970 | 0.8497 | 0.9809 | 0.8819 | 0.6299 | 0.8469 | 0.9627 | 0.6100 | 0.2445 | 0.9079 | 0.8959 | 0.4363 |
| 0.0164 | 430.59 | 7320 | 0.0864 | 0.7792 | 0.8261 | 0.9810 | nan | 0.9938 | 0.9598 | 0.9064 | 0.9904 | 0.9271 | 0.6358 | 0.8581 | 0.9822 | 0.7538 | 0.2504 | 0.9422 | 0.9560 | 0.5837 | nan | 0.9849 | 0.8967 | 0.8489 | 0.9807 | 0.8810 | 0.6313 | 0.8426 | 0.9610 | 0.5967 | 0.2490 | 0.9051 | 0.8957 | 0.4556 |
| 0.0132 | 431.76 | 7340 | 0.0873 | 0.7747 | 0.8162 | 0.9811 | nan | 0.9939 | 0.9582 | 0.9055 | 0.9910 | 0.9262 | 0.6361 | 0.8753 | 0.9827 | 0.7511 | 0.2465 | 0.9367 | 0.9509 | 0.4569 | nan | 0.9848 | 0.8975 | 0.8471 | 0.9813 | 0.8818 | 0.6313 | 0.8594 | 0.9605 | 0.5933 | 0.2454 | 0.9084 | 0.8957 | 0.3844 |
| 0.0127 | 432.94 | 7360 | 0.0863 | 0.7789 | 0.8217 | 0.9811 | nan | 0.9941 | 0.9588 | 0.9027 | 0.9909 | 0.9249 | 0.6431 | 0.8660 | 0.9820 | 0.7604 | 0.2497 | 0.9388 | 0.9556 | 0.5154 | nan | 0.9848 | 0.8984 | 0.8481 | 0.9809 | 0.8808 | 0.6372 | 0.8503 | 0.9609 | 0.6001 | 0.2484 | 0.9068 | 0.8972 | 0.4319 |
| 0.0152 | 434.12 | 7380 | 0.0877 | 0.7794 | 0.8228 | 0.9810 | nan | 0.9944 | 0.9600 | 0.8963 | 0.9905 | 0.9251 | 0.6386 | 0.8668 | 0.9813 | 0.7583 | 0.2581 | 0.9397 | 0.9525 | 0.5350 | nan | 0.9848 | 0.8974 | 0.8471 | 0.9810 | 0.8809 | 0.6328 | 0.8512 | 0.9611 | 0.5993 | 0.2562 | 0.9069 | 0.8945 | 0.4393 |
| 0.018 | 435.29 | 7400 | 0.0881 | 0.7752 | 0.8171 | 0.9810 | nan | 0.9940 | 0.9590 | 0.9032 | 0.9912 | 0.9265 | 0.6346 | 0.8597 | 0.9815 | 0.7511 | 0.2454 | 0.9358 | 0.9511 | 0.4894 | nan | 0.9848 | 0.8968 | 0.8484 | 0.9808 | 0.8807 | 0.6296 | 0.8455 | 0.9607 | 0.5962 | 0.2441 | 0.9066 | 0.8951 | 0.4079 |
| 0.0148 | 436.47 | 7420 | 0.0879 | 0.7788 | 0.8208 | 0.9810 | nan | 0.9942 | 0.9594 | 0.8996 | 0.9906 | 0.9274 | 0.6353 | 0.8614 | 0.9816 | 0.7678 | 0.2475 | 0.9396 | 0.9505 | 0.5154 | nan | 0.9848 | 0.8972 | 0.8474 | 0.9810 | 0.8812 | 0.6303 | 0.8471 | 0.9617 | 0.6016 | 0.2462 | 0.9093 | 0.8943 | 0.4421 |
| 0.0144 | 437.65 | 7440 | 0.0879 | 0.7763 | 0.8174 | 0.9810 | nan | 0.9945 | 0.9593 | 0.8979 | 0.9901 | 0.9302 | 0.6345 | 0.8570 | 0.9816 | 0.7623 | 0.2468 | 0.9385 | 0.9495 | 0.4846 | nan | 0.9847 | 0.8974 | 0.8472 | 0.9808 | 0.8812 | 0.6298 | 0.8431 | 0.9615 | 0.6031 | 0.2455 | 0.9074 | 0.8924 | 0.4180 |
| 0.0135 | 438.82 | 7460 | 0.0870 | 0.7788 | 0.8227 | 0.9810 | nan | 0.9938 | 0.9582 | 0.9080 | 0.9908 | 0.9288 | 0.6338 | 0.8619 | 0.9823 | 0.7745 | 0.2426 | 0.9383 | 0.9475 | 0.5350 | nan | 0.9849 | 0.8974 | 0.8482 | 0.9809 | 0.8813 | 0.6276 | 0.8461 | 0.9613 | 0.6064 | 0.2414 | 0.9074 | 0.8957 | 0.4452 |
| 0.0163 | 440.0 | 7480 | 0.0866 | 0.7789 | 0.8234 | 0.9810 | nan | 0.9938 | 0.9589 | 0.9074 | 0.9913 | 0.9244 | 0.6372 | 0.8584 | 0.9818 | 0.7663 | 0.2434 | 0.9421 | 0.9501 | 0.5496 | nan | 0.9848 | 0.8973 | 0.8492 | 0.9807 | 0.8805 | 0.6311 | 0.8438 | 0.9616 | 0.6055 | 0.2423 | 0.9108 | 0.8945 | 0.4436 |
| 0.0163 | 441.18 | 7500 | 0.0880 | 0.7785 | 0.8228 | 0.9810 | nan | 0.9942 | 0.9596 | 0.9017 | 0.9901 | 0.9297 | 0.6381 | 0.8557 | 0.9820 | 0.7674 | 0.2384 | 0.9387 | 0.9451 | 0.5561 | nan | 0.9847 | 0.8976 | 0.8473 | 0.9808 | 0.8806 | 0.6324 | 0.8425 | 0.9619 | 0.6035 | 0.2372 | 0.9088 | 0.8933 | 0.4494 |
| 0.0161 | 442.35 | 7520 | 0.0883 | 0.7755 | 0.8213 | 0.9809 | nan | 0.9941 | 0.9604 | 0.9010 | 0.9900 | 0.9294 | 0.6327 | 0.8547 | 0.9819 | 0.7662 | 0.2359 | 0.9429 | 0.9515 | 0.5366 | nan | 0.9847 | 0.8970 | 0.8475 | 0.9808 | 0.8810 | 0.6276 | 0.8416 | 0.9614 | 0.6022 | 0.2348 | 0.9081 | 0.8918 | 0.4231 |
| 0.0139 | 443.53 | 7540 | 0.0880 | 0.7763 | 0.8199 | 0.9810 | nan | 0.9941 | 0.9591 | 0.9030 | 0.9903 | 0.9309 | 0.6363 | 0.8543 | 0.9827 | 0.7530 | 0.2365 | 0.9432 | 0.9456 | 0.5301 | nan | 0.9848 | 0.8972 | 0.8486 | 0.9809 | 0.8813 | 0.6311 | 0.8415 | 0.9612 | 0.5959 | 0.2355 | 0.9104 | 0.8932 | 0.4301 |
| 0.0131 | 444.71 | 7560 | 0.0876 | 0.7763 | 0.8197 | 0.9810 | nan | 0.9942 | 0.9587 | 0.8992 | 0.9910 | 0.9280 | 0.6356 | 0.8559 | 0.9820 | 0.7614 | 0.2425 | 0.9400 | 0.9472 | 0.5203 | nan | 0.9848 | 0.8972 | 0.8478 | 0.9807 | 0.8809 | 0.6303 | 0.8410 | 0.9610 | 0.6026 | 0.2412 | 0.9092 | 0.8955 | 0.4194 |
| 0.0159 | 445.88 | 7580 | 0.0872 | 0.7756 | 0.8196 | 0.9810 | nan | 0.9939 | 0.9604 | 0.9046 | 0.9901 | 0.9297 | 0.6339 | 0.8545 | 0.9825 | 0.7557 | 0.2425 | 0.9373 | 0.9463 | 0.5236 | nan | 0.9848 | 0.8969 | 0.8490 | 0.9808 | 0.8810 | 0.6285 | 0.8404 | 0.9610 | 0.5993 | 0.2411 | 0.9099 | 0.8946 | 0.4149 |
| 0.0148 | 447.06 | 7600 | 0.0879 | 0.7775 | 0.8218 | 0.9810 | nan | 0.9941 | 0.9594 | 0.9045 | 0.9906 | 0.9247 | 0.6363 | 0.8524 | 0.9819 | 0.7584 | 0.2471 | 0.9341 | 0.9502 | 0.5496 | nan | 0.9848 | 0.8969 | 0.8491 | 0.9808 | 0.8802 | 0.6306 | 0.8393 | 0.9613 | 0.6004 | 0.2453 | 0.9100 | 0.8955 | 0.4339 |
| 0.0134 | 448.24 | 7620 | 0.0879 | 0.7771 | 0.8228 | 0.9810 | nan | 0.9941 | 0.9592 | 0.9036 | 0.9909 | 0.9285 | 0.6344 | 0.8575 | 0.9804 | 0.7698 | 0.2428 | 0.9385 | 0.9567 | 0.5398 | nan | 0.9848 | 0.8967 | 0.8490 | 0.9809 | 0.8812 | 0.6284 | 0.8430 | 0.9617 | 0.6081 | 0.2415 | 0.9081 | 0.8957 | 0.4235 |
| 0.0147 | 449.41 | 7640 | 0.0888 | 0.7747 | 0.8171 | 0.9810 | nan | 0.9946 | 0.9583 | 0.8969 | 0.9905 | 0.9287 | 0.6332 | 0.8589 | 0.9821 | 0.7671 | 0.2446 | 0.9396 | 0.9494 | 0.4780 | nan | 0.9847 | 0.8973 | 0.8473 | 0.9810 | 0.8814 | 0.6283 | 0.8446 | 0.9620 | 0.6066 | 0.2435 | 0.9079 | 0.8920 | 0.3941 |
| 0.0166 | 450.59 | 7660 | 0.0864 | 0.7770 | 0.8206 | 0.9811 | nan | 0.9942 | 0.9587 | 0.9036 | 0.9910 | 0.9256 | 0.6334 | 0.8584 | 0.9817 | 0.7694 | 0.2435 | 0.9328 | 0.9501 | 0.5252 | nan | 0.9848 | 0.8971 | 0.8498 | 0.9809 | 0.8809 | 0.6286 | 0.8440 | 0.9622 | 0.6110 | 0.2423 | 0.9077 | 0.8956 | 0.4157 |
| 0.0154 | 451.76 | 7680 | 0.0869 | 0.7774 | 0.8202 | 0.9811 | nan | 0.9942 | 0.9594 | 0.9022 | 0.9907 | 0.9295 | 0.6352 | 0.8584 | 0.9813 | 0.7750 | 0.2382 | 0.9341 | 0.9468 | 0.5171 | nan | 0.9848 | 0.8973 | 0.8489 | 0.9809 | 0.8814 | 0.6299 | 0.8439 | 0.9619 | 0.6129 | 0.2371 | 0.9071 | 0.8967 | 0.4229 |
| 0.0117 | 452.94 | 7700 | 0.0869 | 0.7781 | 0.8221 | 0.9811 | nan | 0.9942 | 0.9585 | 0.9022 | 0.9906 | 0.9303 | 0.6360 | 0.8611 | 0.9819 | 0.7771 | 0.2489 | 0.9394 | 0.9513 | 0.5154 | nan | 0.9848 | 0.8981 | 0.8487 | 0.9809 | 0.8816 | 0.6306 | 0.8460 | 0.9621 | 0.6115 | 0.2475 | 0.9078 | 0.8934 | 0.4221 |
| 0.0128 | 454.12 | 7720 | 0.0884 | 0.7798 | 0.8240 | 0.9811 | nan | 0.9940 | 0.9583 | 0.9037 | 0.9907 | 0.9270 | 0.6335 | 0.8599 | 0.9833 | 0.7809 | 0.2439 | 0.9433 | 0.9506 | 0.5431 | nan | 0.9848 | 0.8976 | 0.8489 | 0.9810 | 0.8810 | 0.6280 | 0.8452 | 0.9620 | 0.6110 | 0.2427 | 0.9089 | 0.8950 | 0.4507 |
| 0.0139 | 455.29 | 7740 | 0.0883 | 0.7783 | 0.8237 | 0.9810 | nan | 0.9938 | 0.9600 | 0.9046 | 0.9906 | 0.9306 | 0.6308 | 0.8584 | 0.9814 | 0.7676 | 0.2412 | 0.9439 | 0.9537 | 0.5512 | nan | 0.9848 | 0.8965 | 0.8491 | 0.9807 | 0.8813 | 0.6252 | 0.8438 | 0.9618 | 0.6057 | 0.2398 | 0.9089 | 0.8956 | 0.4443 |
| 0.0134 | 456.47 | 7760 | 0.0879 | 0.7775 | 0.8208 | 0.9810 | nan | 0.9941 | 0.9589 | 0.9037 | 0.9906 | 0.9296 | 0.6326 | 0.8550 | 0.9823 | 0.7643 | 0.2371 | 0.9394 | 0.9466 | 0.5366 | nan | 0.9849 | 0.8969 | 0.8496 | 0.9807 | 0.8809 | 0.6271 | 0.8410 | 0.9618 | 0.6053 | 0.2356 | 0.9073 | 0.8953 | 0.4412 |
| 0.0115 | 457.65 | 7780 | 0.0886 | 0.7789 | 0.8224 | 0.9811 | nan | 0.9941 | 0.9591 | 0.9027 | 0.9908 | 0.9295 | 0.6308 | 0.8579 | 0.9818 | 0.7714 | 0.2381 | 0.9397 | 0.9502 | 0.5447 | nan | 0.9849 | 0.8970 | 0.8495 | 0.9808 | 0.8814 | 0.6263 | 0.8435 | 0.9618 | 0.6085 | 0.2369 | 0.9082 | 0.8955 | 0.4521 |
| 0.0123 | 458.82 | 7800 | 0.0888 | 0.7774 | 0.8198 | 0.9810 | nan | 0.9940 | 0.9594 | 0.9044 | 0.9908 | 0.9286 | 0.6295 | 0.8554 | 0.9819 | 0.7670 | 0.2368 | 0.9354 | 0.9530 | 0.5220 | nan | 0.9848 | 0.8965 | 0.8496 | 0.9808 | 0.8814 | 0.6249 | 0.8415 | 0.9615 | 0.6062 | 0.2356 | 0.9062 | 0.8941 | 0.4428 |
| 0.0149 | 460.0 | 7820 | 0.0879 | 0.7799 | 0.8228 | 0.9811 | nan | 0.9941 | 0.9588 | 0.9047 | 0.9907 | 0.9300 | 0.6342 | 0.8599 | 0.9815 | 0.7671 | 0.2414 | 0.9422 | 0.9521 | 0.5398 | nan | 0.9849 | 0.8971 | 0.8501 | 0.9808 | 0.8813 | 0.6289 | 0.8448 | 0.9619 | 0.6067 | 0.2401 | 0.9084 | 0.8938 | 0.4598 |
| 0.0139 | 461.18 | 7840 | 0.0878 | 0.7785 | 0.8218 | 0.9811 | nan | 0.9941 | 0.9592 | 0.9047 | 0.9904 | 0.9328 | 0.6346 | 0.8575 | 0.9819 | 0.7639 | 0.2464 | 0.9443 | 0.9531 | 0.5203 | nan | 0.9848 | 0.8975 | 0.8496 | 0.9809 | 0.8814 | 0.6294 | 0.8430 | 0.9619 | 0.6070 | 0.2451 | 0.9101 | 0.8956 | 0.4348 |
| 0.0143 | 462.35 | 7860 | 0.0888 | 0.7793 | 0.8223 | 0.9810 | nan | 0.9942 | 0.9596 | 0.9033 | 0.9901 | 0.9313 | 0.6324 | 0.8589 | 0.9813 | 0.7688 | 0.2494 | 0.9387 | 0.9505 | 0.5317 | nan | 0.9848 | 0.8970 | 0.8490 | 0.9809 | 0.8815 | 0.6275 | 0.8452 | 0.9617 | 0.6075 | 0.2479 | 0.9063 | 0.8942 | 0.4479 |
| 0.0155 | 463.53 | 7880 | 0.0878 | 0.7807 | 0.8242 | 0.9812 | nan | 0.9941 | 0.9584 | 0.9066 | 0.9905 | 0.9315 | 0.6383 | 0.8593 | 0.9817 | 0.7721 | 0.2556 | 0.9436 | 0.9568 | 0.5268 | nan | 0.9848 | 0.8979 | 0.8499 | 0.9810 | 0.8818 | 0.6327 | 0.8452 | 0.9620 | 0.6103 | 0.2540 | 0.9084 | 0.8965 | 0.4451 |
| 0.0152 | 464.71 | 7900 | 0.0876 | 0.7804 | 0.8217 | 0.9811 | nan | 0.9942 | 0.9595 | 0.9025 | 0.9901 | 0.9319 | 0.6367 | 0.8621 | 0.9825 | 0.7643 | 0.2459 | 0.9366 | 0.9553 | 0.5203 | nan | 0.9847 | 0.8978 | 0.8482 | 0.9812 | 0.8817 | 0.6314 | 0.8486 | 0.9623 | 0.6089 | 0.2446 | 0.9103 | 0.8950 | 0.4501 |
| 0.0137 | 465.88 | 7920 | 0.0880 | 0.7804 | 0.8231 | 0.9812 | nan | 0.9942 | 0.9587 | 0.9029 | 0.9906 | 0.9292 | 0.6363 | 0.8634 | 0.9827 | 0.7728 | 0.2493 | 0.9413 | 0.9501 | 0.5285 | nan | 0.9848 | 0.8981 | 0.8488 | 0.9811 | 0.8818 | 0.6312 | 0.8486 | 0.9624 | 0.6111 | 0.2480 | 0.9110 | 0.8958 | 0.4422 |
| 0.0164 | 467.06 | 7940 | 0.0887 | 0.7780 | 0.8214 | 0.9811 | nan | 0.9942 | 0.9599 | 0.9015 | 0.9902 | 0.9318 | 0.6311 | 0.8595 | 0.9821 | 0.7624 | 0.2502 | 0.9410 | 0.9508 | 0.5236 | nan | 0.9848 | 0.8972 | 0.8484 | 0.9811 | 0.8819 | 0.6262 | 0.8456 | 0.9620 | 0.6046 | 0.2487 | 0.9097 | 0.8948 | 0.4293 |
| 0.0142 | 468.24 | 7960 | 0.0887 | 0.7770 | 0.8194 | 0.9810 | nan | 0.9941 | 0.9595 | 0.9015 | 0.9906 | 0.9295 | 0.6287 | 0.8614 | 0.9816 | 0.7750 | 0.2461 | 0.9390 | 0.9504 | 0.4943 | nan | 0.9847 | 0.8974 | 0.8472 | 0.9811 | 0.8820 | 0.6239 | 0.8472 | 0.9623 | 0.6098 | 0.2449 | 0.9106 | 0.8934 | 0.4164 |
| 0.0152 | 469.41 | 7980 | 0.0887 | 0.7778 | 0.8212 | 0.9811 | nan | 0.9943 | 0.9591 | 0.9029 | 0.9903 | 0.9306 | 0.6300 | 0.8576 | 0.9814 | 0.7729 | 0.2470 | 0.9437 | 0.9521 | 0.5138 | nan | 0.9847 | 0.8978 | 0.8485 | 0.9810 | 0.8822 | 0.6249 | 0.8437 | 0.9624 | 0.6101 | 0.2457 | 0.9109 | 0.8944 | 0.4247 |
| 0.0134 | 470.59 | 8000 | 0.0885 | 0.7757 | 0.8181 | 0.9810 | nan | 0.9944 | 0.9594 | 0.8983 | 0.9904 | 0.9307 | 0.6323 | 0.8549 | 0.9819 | 0.7692 | 0.2428 | 0.9365 | 0.9536 | 0.4911 | nan | 0.9847 | 0.8979 | 0.8465 | 0.9808 | 0.8819 | 0.6273 | 0.8411 | 0.9621 | 0.6099 | 0.2417 | 0.9091 | 0.8937 | 0.4070 |
| 0.0132 | 471.76 | 8020 | 0.0883 | 0.7795 | 0.8240 | 0.9811 | nan | 0.9942 | 0.9598 | 0.9034 | 0.9904 | 0.9288 | 0.6340 | 0.8547 | 0.9808 | 0.7711 | 0.2508 | 0.9408 | 0.9569 | 0.5463 | nan | 0.9848 | 0.8978 | 0.8489 | 0.9808 | 0.8822 | 0.6286 | 0.8408 | 0.9620 | 0.6114 | 0.2492 | 0.9090 | 0.8932 | 0.4450 |
| 0.0136 | 472.94 | 8040 | 0.0882 | 0.7783 | 0.8230 | 0.9810 | nan | 0.9941 | 0.9588 | 0.9048 | 0.9906 | 0.9312 | 0.6301 | 0.8533 | 0.9820 | 0.7679 | 0.2477 | 0.9404 | 0.9491 | 0.5496 | nan | 0.9848 | 0.8974 | 0.8494 | 0.9808 | 0.8819 | 0.6249 | 0.8391 | 0.9617 | 0.6097 | 0.2462 | 0.9087 | 0.8952 | 0.4390 |
| 0.0149 | 474.12 | 8060 | 0.0882 | 0.7777 | 0.8217 | 0.9811 | nan | 0.9942 | 0.9596 | 0.9020 | 0.9904 | 0.9313 | 0.6301 | 0.8545 | 0.9815 | 0.7732 | 0.2458 | 0.9380 | 0.9464 | 0.5350 | nan | 0.9848 | 0.8974 | 0.8488 | 0.9808 | 0.8822 | 0.6250 | 0.8401 | 0.9621 | 0.6110 | 0.2444 | 0.9086 | 0.8937 | 0.4306 |
| 0.0139 | 475.29 | 8080 | 0.0883 | 0.7786 | 0.8224 | 0.9811 | nan | 0.9940 | 0.9599 | 0.9042 | 0.9908 | 0.9271 | 0.6312 | 0.8554 | 0.9822 | 0.7699 | 0.2503 | 0.9405 | 0.9458 | 0.5398 | nan | 0.9849 | 0.8973 | 0.8495 | 0.9809 | 0.8817 | 0.6257 | 0.8413 | 0.9620 | 0.6087 | 0.2488 | 0.9095 | 0.8944 | 0.4374 |
| 0.0164 | 476.47 | 8100 | 0.0886 | 0.7773 | 0.8202 | 0.9810 | nan | 0.9943 | 0.9591 | 0.9030 | 0.9903 | 0.9299 | 0.6293 | 0.8524 | 0.9818 | 0.7669 | 0.2504 | 0.9393 | 0.9485 | 0.5171 | nan | 0.9848 | 0.8974 | 0.8490 | 0.9809 | 0.8820 | 0.6246 | 0.8395 | 0.9618 | 0.6073 | 0.2491 | 0.9096 | 0.8938 | 0.4251 |
| 0.0168 | 477.65 | 8120 | 0.0890 | 0.7771 | 0.8195 | 0.9810 | nan | 0.9942 | 0.9592 | 0.9030 | 0.9903 | 0.9321 | 0.6308 | 0.8556 | 0.9819 | 0.7576 | 0.2493 | 0.9401 | 0.9501 | 0.5089 | nan | 0.9848 | 0.8974 | 0.8489 | 0.9809 | 0.8823 | 0.6258 | 0.8412 | 0.9614 | 0.6026 | 0.2479 | 0.9096 | 0.8945 | 0.4247 |
| 0.0148 | 478.82 | 8140 | 0.0888 | 0.7784 | 0.8230 | 0.9811 | nan | 0.9942 | 0.9589 | 0.9036 | 0.9904 | 0.9303 | 0.6333 | 0.8583 | 0.9821 | 0.7736 | 0.2514 | 0.9442 | 0.9536 | 0.5252 | nan | 0.9848 | 0.8978 | 0.8492 | 0.9809 | 0.8824 | 0.6278 | 0.8434 | 0.9618 | 0.6089 | 0.2499 | 0.9104 | 0.8933 | 0.4284 |
| 0.0141 | 480.0 | 8160 | 0.0887 | 0.7777 | 0.8221 | 0.9811 | nan | 0.9942 | 0.9586 | 0.9028 | 0.9907 | 0.9298 | 0.6325 | 0.8558 | 0.9816 | 0.7710 | 0.2474 | 0.9437 | 0.9552 | 0.5236 | nan | 0.9848 | 0.8973 | 0.8490 | 0.9809 | 0.8823 | 0.6271 | 0.8415 | 0.9616 | 0.6069 | 0.2459 | 0.9086 | 0.8943 | 0.4299 |
| 0.0175 | 481.18 | 8180 | 0.0880 | 0.7778 | 0.8223 | 0.9811 | nan | 0.9942 | 0.9593 | 0.9033 | 0.9904 | 0.9292 | 0.6337 | 0.8569 | 0.9818 | 0.7735 | 0.2448 | 0.9433 | 0.9524 | 0.5268 | nan | 0.9848 | 0.8976 | 0.8491 | 0.9809 | 0.8822 | 0.6289 | 0.8424 | 0.9619 | 0.6098 | 0.2434 | 0.9090 | 0.8949 | 0.4269 |
| 0.0141 | 482.35 | 8200 | 0.0883 | 0.7767 | 0.8201 | 0.9811 | nan | 0.9942 | 0.9591 | 0.9027 | 0.9905 | 0.9316 | 0.6338 | 0.8564 | 0.9816 | 0.7668 | 0.2413 | 0.9422 | 0.9524 | 0.5089 | nan | 0.9848 | 0.8976 | 0.8489 | 0.9808 | 0.8822 | 0.6285 | 0.8417 | 0.9619 | 0.6074 | 0.2401 | 0.9085 | 0.8960 | 0.4184 |
| 0.0141 | 483.53 | 8220 | 0.0890 | 0.7767 | 0.8201 | 0.9811 | nan | 0.9942 | 0.9594 | 0.9033 | 0.9905 | 0.9297 | 0.6310 | 0.8546 | 0.9821 | 0.7660 | 0.2430 | 0.9413 | 0.9527 | 0.5138 | nan | 0.9848 | 0.8974 | 0.8490 | 0.9809 | 0.8819 | 0.6262 | 0.8404 | 0.9617 | 0.6068 | 0.2416 | 0.9091 | 0.8956 | 0.4213 |
| 0.0132 | 484.71 | 8240 | 0.0887 | 0.7767 | 0.8211 | 0.9810 | nan | 0.9940 | 0.9598 | 0.9033 | 0.9906 | 0.9322 | 0.6318 | 0.8543 | 0.9818 | 0.7626 | 0.2416 | 0.9427 | 0.9556 | 0.5236 | nan | 0.9848 | 0.8973 | 0.8491 | 0.9808 | 0.8820 | 0.6268 | 0.8403 | 0.9616 | 0.6045 | 0.2402 | 0.9091 | 0.8956 | 0.4248 |
| 0.0148 | 485.88 | 8260 | 0.0885 | 0.7773 | 0.8210 | 0.9810 | nan | 0.9941 | 0.9599 | 0.9028 | 0.9906 | 0.9291 | 0.6326 | 0.8543 | 0.9812 | 0.7682 | 0.2418 | 0.9413 | 0.9500 | 0.5268 | nan | 0.9848 | 0.8972 | 0.8490 | 0.9808 | 0.8822 | 0.6273 | 0.8407 | 0.9617 | 0.6073 | 0.2404 | 0.9091 | 0.8946 | 0.4297 |
| 0.0138 | 487.06 | 8280 | 0.0884 | 0.7781 | 0.8226 | 0.9811 | nan | 0.9942 | 0.9592 | 0.9034 | 0.9903 | 0.9320 | 0.6341 | 0.8603 | 0.9815 | 0.7740 | 0.2397 | 0.9443 | 0.9528 | 0.5285 | nan | 0.9848 | 0.8977 | 0.8492 | 0.9809 | 0.8825 | 0.6285 | 0.8451 | 0.9619 | 0.6098 | 0.2385 | 0.9103 | 0.8943 | 0.4316 |
| 0.0122 | 488.24 | 8300 | 0.0885 | 0.7777 | 0.8220 | 0.9811 | nan | 0.9941 | 0.9592 | 0.9034 | 0.9906 | 0.9321 | 0.6326 | 0.8576 | 0.9816 | 0.7695 | 0.2422 | 0.9447 | 0.9484 | 0.5301 | nan | 0.9848 | 0.8976 | 0.8488 | 0.9809 | 0.8823 | 0.6273 | 0.8428 | 0.9617 | 0.6080 | 0.2408 | 0.9102 | 0.8965 | 0.4289 |
| 0.0138 | 489.41 | 8320 | 0.0889 | 0.7774 | 0.8212 | 0.9811 | nan | 0.9942 | 0.9594 | 0.9023 | 0.9906 | 0.9290 | 0.6331 | 0.8563 | 0.9818 | 0.7680 | 0.2399 | 0.9424 | 0.9547 | 0.5236 | nan | 0.9848 | 0.8976 | 0.8486 | 0.9809 | 0.8821 | 0.6278 | 0.8425 | 0.9617 | 0.6062 | 0.2387 | 0.9091 | 0.8949 | 0.4311 |
| 0.0136 | 490.59 | 8340 | 0.0885 | 0.7769 | 0.8208 | 0.9811 | nan | 0.9942 | 0.9585 | 0.9028 | 0.9907 | 0.9299 | 0.6321 | 0.8574 | 0.9820 | 0.7626 | 0.2412 | 0.9436 | 0.9551 | 0.5203 | nan | 0.9848 | 0.8977 | 0.8485 | 0.9809 | 0.8821 | 0.6270 | 0.8432 | 0.9615 | 0.6035 | 0.2400 | 0.9091 | 0.8956 | 0.4261 |
| 0.0162 | 491.76 | 8360 | 0.0891 | 0.7772 | 0.8214 | 0.9810 | nan | 0.9942 | 0.9593 | 0.9029 | 0.9906 | 0.9295 | 0.6303 | 0.8574 | 0.9814 | 0.7630 | 0.2443 | 0.9431 | 0.9567 | 0.5252 | nan | 0.9848 | 0.8972 | 0.8486 | 0.9809 | 0.8822 | 0.6255 | 0.8432 | 0.9615 | 0.6032 | 0.2429 | 0.9089 | 0.8944 | 0.4301 |
| 0.0159 | 492.94 | 8380 | 0.0889 | 0.7770 | 0.8215 | 0.9811 | nan | 0.9942 | 0.9589 | 0.9030 | 0.9904 | 0.9309 | 0.6332 | 0.8590 | 0.9819 | 0.7676 | 0.2435 | 0.9446 | 0.9580 | 0.5138 | nan | 0.9848 | 0.8978 | 0.8487 | 0.9809 | 0.8821 | 0.6279 | 0.8444 | 0.9618 | 0.6055 | 0.2423 | 0.9100 | 0.8933 | 0.4219 |
| 0.0154 | 494.12 | 8400 | 0.0900 | 0.7764 | 0.8206 | 0.9810 | nan | 0.9941 | 0.9602 | 0.9023 | 0.9905 | 0.9297 | 0.6290 | 0.8555 | 0.9816 | 0.7684 | 0.2415 | 0.9439 | 0.9562 | 0.5154 | nan | 0.9848 | 0.8970 | 0.8487 | 0.9808 | 0.8821 | 0.6248 | 0.8417 | 0.9618 | 0.6054 | 0.2402 | 0.9085 | 0.8940 | 0.4238 |
| 0.0135 | 495.29 | 8420 | 0.0890 | 0.7765 | 0.8210 | 0.9810 | nan | 0.9941 | 0.9596 | 0.9028 | 0.9905 | 0.9307 | 0.6315 | 0.8555 | 0.9819 | 0.7657 | 0.2423 | 0.9442 | 0.9567 | 0.5171 | nan | 0.9848 | 0.8974 | 0.8488 | 0.9808 | 0.8821 | 0.6266 | 0.8415 | 0.9617 | 0.6040 | 0.2410 | 0.9091 | 0.8943 | 0.4229 |
| 0.0148 | 496.47 | 8440 | 0.0886 | 0.7767 | 0.8206 | 0.9811 | nan | 0.9942 | 0.9591 | 0.9022 | 0.9906 | 0.9283 | 0.6328 | 0.8574 | 0.9821 | 0.7661 | 0.2425 | 0.9424 | 0.9525 | 0.5171 | nan | 0.9848 | 0.8976 | 0.8487 | 0.9809 | 0.8820 | 0.6277 | 0.8427 | 0.9617 | 0.6046 | 0.2412 | 0.9089 | 0.8946 | 0.4218 |
| 0.0165 | 497.65 | 8460 | 0.0885 | 0.7771 | 0.8214 | 0.9811 | nan | 0.9941 | 0.9591 | 0.9037 | 0.9905 | 0.9306 | 0.6345 | 0.8564 | 0.9823 | 0.7623 | 0.2447 | 0.9447 | 0.9545 | 0.5203 | nan | 0.9848 | 0.8977 | 0.8490 | 0.9809 | 0.8821 | 0.6287 | 0.8422 | 0.9615 | 0.6034 | 0.2433 | 0.9095 | 0.8950 | 0.4238 |
| 0.0138 | 498.82 | 8480 | 0.0890 | 0.7763 | 0.8202 | 0.9810 | nan | 0.9941 | 0.9594 | 0.9033 | 0.9905 | 0.9302 | 0.6320 | 0.8534 | 0.9822 | 0.7664 | 0.2426 | 0.9419 | 0.9531 | 0.5138 | nan | 0.9848 | 0.8974 | 0.8489 | 0.9809 | 0.8821 | 0.6269 | 0.8401 | 0.9617 | 0.6046 | 0.2413 | 0.9087 | 0.8949 | 0.4191 |
| 0.0162 | 500.0 | 8500 | 0.0892 | 0.7759 | 0.8195 | 0.9811 | nan | 0.9942 | 0.9592 | 0.9021 | 0.9902 | 0.9315 | 0.6330 | 0.8554 | 0.9821 | 0.7662 | 0.2392 | 0.9438 | 0.9536 | 0.5024 | nan | 0.9848 | 0.8976 | 0.8486 | 0.9809 | 0.8822 | 0.6278 | 0.8418 | 0.9618 | 0.6046 | 0.2381 | 0.9093 | 0.8939 | 0.4153 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"nat",
"concrete",
"grass",
"speedway bricks",
"steel",
"rough concrete",
"dark bricks",
"road",
"rough red sidewalk",
"tiles",
"red bricks",
"concrete tiles",
"rest"
] |
fshala/segformer-cloud |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-cloud
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
johanhag/segformer-b0-winter |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-winter
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the johanhag/winter-test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1441
- Mean Iou: 0.8861
- Mean Accuracy: 0.9456
- Overall Accuracy: 0.9660
- Accuracy Unlabeled: nan
- Accuracy Object: nan
- Accuracy Road: 0.9769
- Accuracy Side walk: 0.8930
- Accuracy Car: 0.9347
- Accuracy Pedestrian: nan
- Accuracy Other: 0.9779
- Iou Unlabeled: nan
- Iou Object: nan
- Iou Road: 0.9197
- Iou Side walk: 0.8250
- Iou Car: 0.8319
- Iou Pedestrian: nan
- Iou Other: 0.9678
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Object | Accuracy Road | Accuracy Side walk | Accuracy Car | Accuracy Pedestrian | Accuracy Other | Iou Unlabeled | Iou Object | Iou Road | Iou Side walk | Iou Car | Iou Pedestrian | Iou Other |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:------------------:|:------------:|:-------------------:|:--------------:|:-------------:|:----------:|:--------:|:-------------:|:-------:|:--------------:|:---------:|
| 0.2207 | 4.0 | 20 | 0.2300 | 0.8576 | 0.9439 | 0.9583 | nan | nan | 0.9738 | 0.8767 | 0.9564 | nan | 0.9686 | nan | nan | 0.9018 | 0.8000 | 0.7670 | nan | 0.9617 |
| 0.1792 | 8.0 | 40 | 0.2126 | 0.8696 | 0.9457 | 0.9614 | nan | nan | 0.9768 | 0.8911 | 0.9444 | nan | 0.9706 | nan | nan | 0.9106 | 0.8122 | 0.7924 | nan | 0.9633 |
| 0.1527 | 12.0 | 60 | 0.1869 | 0.8769 | 0.9470 | 0.9634 | nan | nan | 0.9776 | 0.9023 | 0.9364 | nan | 0.9718 | nan | nan | 0.9180 | 0.8165 | 0.8085 | nan | 0.9647 |
| 0.1329 | 16.0 | 80 | 0.1787 | 0.8783 | 0.9429 | 0.9634 | nan | nan | 0.9772 | 0.8880 | 0.9314 | nan | 0.9749 | nan | nan | 0.9126 | 0.8117 | 0.8229 | nan | 0.9661 |
| 0.1746 | 20.0 | 100 | 0.1651 | 0.8864 | 0.9511 | 0.9668 | nan | nan | 0.9771 | 0.9126 | 0.9395 | nan | 0.9751 | nan | nan | 0.9258 | 0.8369 | 0.8157 | nan | 0.9671 |
| 0.1218 | 24.0 | 120 | 0.1652 | 0.8798 | 0.9444 | 0.9643 | nan | nan | 0.9791 | 0.8858 | 0.9370 | nan | 0.9757 | nan | nan | 0.9140 | 0.8156 | 0.8224 | nan | 0.9673 |
| 0.0816 | 28.0 | 140 | 0.1473 | 0.8921 | 0.9521 | 0.9684 | nan | nan | 0.9723 | 0.9199 | 0.9383 | nan | 0.9780 | nan | nan | 0.9299 | 0.8478 | 0.8231 | nan | 0.9676 |
| 0.0893 | 32.0 | 160 | 0.1490 | 0.8892 | 0.9502 | 0.9672 | nan | nan | 0.9749 | 0.9140 | 0.9354 | nan | 0.9766 | nan | nan | 0.9260 | 0.8384 | 0.825 | nan | 0.9673 |
| 0.0849 | 36.0 | 180 | 0.1517 | 0.8861 | 0.9476 | 0.9660 | nan | nan | 0.9791 | 0.8987 | 0.9367 | nan | 0.9760 | nan | nan | 0.9205 | 0.8258 | 0.8308 | nan | 0.9674 |
| 0.1625 | 40.0 | 200 | 0.1519 | 0.8843 | 0.9468 | 0.9654 | nan | nan | 0.9777 | 0.8938 | 0.9394 | nan | 0.9763 | nan | nan | 0.9176 | 0.8235 | 0.8289 | nan | 0.9673 |
| 0.1396 | 44.0 | 220 | 0.1500 | 0.8850 | 0.9476 | 0.9655 | nan | nan | 0.9791 | 0.8949 | 0.9408 | nan | 0.9757 | nan | nan | 0.9187 | 0.8223 | 0.8317 | nan | 0.9674 |
| 0.0931 | 48.0 | 240 | 0.1441 | 0.8861 | 0.9456 | 0.9660 | nan | nan | 0.9769 | 0.8930 | 0.9347 | nan | 0.9779 | nan | nan | 0.9197 | 0.8250 | 0.8319 | nan | 0.9678 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"object",
"road",
"side walk",
"car",
"pedestrian",
"other"
] |
yolo12138/segformer-b2-cloth-parse-9 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b2-cloth-parse-9
This model is a fine-tuned version of [mattmdjaga/segformer_b2_clothes](https://huggingface.co/mattmdjaga/segformer_b2_clothes) on the cloth_parsing_mix dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0433
- Mean Iou: 0.8611
- Mean Accuracy: 0.9107
- Overall Accuracy: 0.9846
- Accuracy Background: 0.9964
- Accuracy Upper Torso: 0.9857
- Accuracy Left Pants: 0.9654
- Accuracy Right Patns: 0.9664
- Accuracy Skirts: 0.9065
- Accuracy Left Sleeve: 0.9591
- Accuracy Right Sleeve: 0.9662
- Accuracy Outer Collar: 0.6491
- Accuracy Inner Collar: 0.8015
- Iou Background: 0.9923
- Iou Upper Torso: 0.9655
- Iou Left Pants: 0.9017
- Iou Right Patns: 0.9085
- Iou Skirts: 0.8749
- Iou Left Sleeve: 0.9223
- Iou Right Sleeve: 0.9289
- Iou Outer Collar: 0.5394
- Iou Inner Collar: 0.7160
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Upper Torso | Accuracy Left Pants | Accuracy Right Patns | Accuracy Skirts | Accuracy Left Sleeve | Accuracy Right Sleeve | Accuracy Outer Collar | Accuracy Inner Collar | Iou Background | Iou Upper Torso | Iou Left Pants | Iou Right Patns | Iou Skirts | Iou Left Sleeve | Iou Right Sleeve | Iou Outer Collar | Iou Inner Collar |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------------:|:-------------------:|:--------------------:|:---------------:|:--------------------:|:---------------------:|:---------------------:|:---------------------:|:--------------:|:---------------:|:--------------:|:---------------:|:----------:|:---------------:|:----------------:|:----------------:|:----------------:|
| 0.1054 | 0.11 | 500 | 0.1180 | 0.7305 | 0.7971 | 0.9670 | 0.9902 | 0.9720 | 0.9654 | 0.9756 | 0.8036 | 0.9226 | 0.9289 | 0.0716 | 0.5444 | 0.9830 | 0.9234 | 0.8752 | 0.8765 | 0.7370 | 0.8236 | 0.8232 | 0.0703 | 0.4628 |
| 0.1033 | 0.22 | 1000 | 0.0851 | 0.7862 | 0.8418 | 0.9746 | 0.9924 | 0.9829 | 0.9665 | 0.9653 | 0.8491 | 0.9145 | 0.9226 | 0.3219 | 0.6608 | 0.9866 | 0.9424 | 0.8858 | 0.8875 | 0.8105 | 0.8538 | 0.8614 | 0.2833 | 0.5642 |
| 0.0944 | 0.32 | 1500 | 0.0713 | 0.8077 | 0.8595 | 0.9773 | 0.9941 | 0.9833 | 0.9566 | 0.9625 | 0.8924 | 0.9094 | 0.9181 | 0.4414 | 0.6774 | 0.9880 | 0.9481 | 0.8937 | 0.8950 | 0.8437 | 0.8668 | 0.8751 | 0.3629 | 0.5958 |
| 0.0746 | 0.43 | 2000 | 0.0683 | 0.8190 | 0.8770 | 0.9783 | 0.9941 | 0.9796 | 0.9652 | 0.9722 | 0.8656 | 0.9480 | 0.9562 | 0.4882 | 0.7236 | 0.9888 | 0.9497 | 0.9070 | 0.9127 | 0.8306 | 0.8790 | 0.8870 | 0.3945 | 0.6218 |
| 0.0548 | 0.54 | 2500 | 0.0666 | 0.8187 | 0.8713 | 0.9787 | 0.9951 | 0.9831 | 0.9580 | 0.9606 | 0.8651 | 0.9215 | 0.9453 | 0.4839 | 0.7293 | 0.9893 | 0.9514 | 0.8939 | 0.9006 | 0.8245 | 0.8812 | 0.8964 | 0.4010 | 0.6298 |
| 0.0728 | 0.65 | 3000 | 0.0591 | 0.8271 | 0.8806 | 0.9804 | 0.9945 | 0.9839 | 0.9624 | 0.9659 | 0.8982 | 0.9399 | 0.9430 | 0.4884 | 0.7493 | 0.9900 | 0.9551 | 0.8940 | 0.8966 | 0.8583 | 0.8930 | 0.9011 | 0.4100 | 0.6458 |
| 0.0505 | 0.75 | 3500 | 0.0648 | 0.8218 | 0.8745 | 0.9797 | 0.9947 | 0.9847 | 0.9858 | 0.9905 | 0.8402 | 0.9500 | 0.9587 | 0.4480 | 0.7178 | 0.9900 | 0.9534 | 0.9022 | 0.9037 | 0.8223 | 0.8944 | 0.9017 | 0.3881 | 0.6402 |
| 0.0601 | 0.86 | 4000 | 0.0568 | 0.8415 | 0.8951 | 0.9817 | 0.9952 | 0.9817 | 0.9632 | 0.9640 | 0.9170 | 0.9521 | 0.9541 | 0.5781 | 0.7508 | 0.9903 | 0.9576 | 0.9138 | 0.9199 | 0.8716 | 0.9010 | 0.9106 | 0.4562 | 0.6529 |
| 0.0438 | 0.97 | 4500 | 0.0569 | 0.8431 | 0.8925 | 0.9815 | 0.9947 | 0.9844 | 0.9764 | 0.9838 | 0.8870 | 0.9492 | 0.9595 | 0.5561 | 0.7416 | 0.9903 | 0.9560 | 0.9287 | 0.9370 | 0.8585 | 0.9000 | 0.9089 | 0.4524 | 0.6559 |
| 0.0617 | 1.08 | 5000 | 0.0529 | 0.8417 | 0.8933 | 0.9816 | 0.9952 | 0.9841 | 0.9602 | 0.9631 | 0.8922 | 0.9475 | 0.9533 | 0.5797 | 0.7642 | 0.9907 | 0.9571 | 0.9097 | 0.9126 | 0.8488 | 0.9044 | 0.9158 | 0.4687 | 0.6678 |
| 0.0452 | 1.19 | 5500 | 0.0557 | 0.8351 | 0.8935 | 0.9812 | 0.9949 | 0.9842 | 0.9644 | 0.9667 | 0.8781 | 0.9494 | 0.9604 | 0.5961 | 0.7471 | 0.9906 | 0.9588 | 0.8803 | 0.8885 | 0.8349 | 0.9069 | 0.9169 | 0.4743 | 0.6645 |
| 0.0571 | 1.29 | 6000 | 0.0551 | 0.8351 | 0.8934 | 0.9810 | 0.9957 | 0.9831 | 0.9652 | 0.9693 | 0.8562 | 0.9593 | 0.9569 | 0.5959 | 0.7586 | 0.9910 | 0.9579 | 0.8842 | 0.8879 | 0.8188 | 0.9084 | 0.9155 | 0.4774 | 0.6749 |
| 0.0778 | 1.4 | 6500 | 0.0537 | 0.8430 | 0.8994 | 0.9818 | 0.9948 | 0.9839 | 0.9872 | 0.9921 | 0.8702 | 0.9587 | 0.9635 | 0.5790 | 0.7656 | 0.9911 | 0.9579 | 0.9044 | 0.9093 | 0.8458 | 0.9060 | 0.9157 | 0.4760 | 0.6808 |
| 0.0392 | 1.51 | 7000 | 0.0491 | 0.8503 | 0.9069 | 0.9830 | 0.9954 | 0.9823 | 0.9645 | 0.9666 | 0.9205 | 0.9534 | 0.9599 | 0.6214 | 0.7984 | 0.9916 | 0.9607 | 0.9123 | 0.9139 | 0.8755 | 0.9072 | 0.9180 | 0.4907 | 0.6830 |
| 0.0376 | 1.62 | 7500 | 0.0514 | 0.8442 | 0.9010 | 0.9819 | 0.9954 | 0.9832 | 0.9652 | 0.9660 | 0.8850 | 0.9525 | 0.9598 | 0.6257 | 0.7762 | 0.9914 | 0.9586 | 0.8944 | 0.9053 | 0.8355 | 0.9104 | 0.9215 | 0.4965 | 0.6838 |
| 0.0391 | 1.73 | 8000 | 0.0492 | 0.8422 | 0.8993 | 0.9819 | 0.9958 | 0.9836 | 0.9641 | 0.9671 | 0.8692 | 0.9561 | 0.9661 | 0.6159 | 0.7756 | 0.9916 | 0.9596 | 0.8882 | 0.8930 | 0.8338 | 0.9103 | 0.9189 | 0.4982 | 0.6860 |
| 0.0446 | 1.83 | 8500 | 0.0491 | 0.8515 | 0.9079 | 0.9829 | 0.9960 | 0.9836 | 0.9890 | 0.9913 | 0.8770 | 0.9505 | 0.9631 | 0.6458 | 0.7751 | 0.9916 | 0.9603 | 0.9114 | 0.9161 | 0.8559 | 0.9100 | 0.9217 | 0.5096 | 0.6867 |
| 0.041 | 1.94 | 9000 | 0.0482 | 0.8464 | 0.8978 | 0.9825 | 0.9958 | 0.9848 | 0.9619 | 0.9668 | 0.8822 | 0.9569 | 0.9659 | 0.5961 | 0.7703 | 0.9916 | 0.9602 | 0.8958 | 0.9018 | 0.8438 | 0.9148 | 0.9231 | 0.4966 | 0.6899 |
| 0.0744 | 2.05 | 9500 | 0.0474 | 0.8523 | 0.9018 | 0.9834 | 0.9961 | 0.9840 | 0.9598 | 0.9633 | 0.9195 | 0.9471 | 0.9644 | 0.6055 | 0.7766 | 0.9919 | 0.9619 | 0.9095 | 0.9125 | 0.8697 | 0.9113 | 0.9238 | 0.5010 | 0.6889 |
| 0.0433 | 2.16 | 10000 | 0.0471 | 0.8581 | 0.9103 | 0.9842 | 0.9951 | 0.9843 | 0.9617 | 0.9646 | 0.9416 | 0.9549 | 0.9718 | 0.6305 | 0.7879 | 0.9915 | 0.9644 | 0.9100 | 0.9155 | 0.8976 | 0.9145 | 0.9245 | 0.5127 | 0.6920 |
| 0.0412 | 2.26 | 10500 | 0.0468 | 0.8574 | 0.9042 | 0.9835 | 0.9956 | 0.9848 | 0.9628 | 0.9669 | 0.9023 | 0.9615 | 0.9677 | 0.6115 | 0.7847 | 0.9918 | 0.9601 | 0.9248 | 0.9286 | 0.8656 | 0.9177 | 0.9245 | 0.5073 | 0.6964 |
| 0.0489 | 2.37 | 11000 | 0.0496 | 0.8511 | 0.9029 | 0.9832 | 0.9956 | 0.9858 | 0.9905 | 0.9948 | 0.8694 | 0.9574 | 0.9654 | 0.5748 | 0.7926 | 0.9921 | 0.9604 | 0.9066 | 0.9086 | 0.8615 | 0.9167 | 0.9228 | 0.4913 | 0.7004 |
| 0.0388 | 2.48 | 11500 | 0.0450 | 0.8594 | 0.9036 | 0.9849 | 0.9957 | 0.9857 | 0.9621 | 0.9648 | 0.9620 | 0.9493 | 0.9604 | 0.5733 | 0.7793 | 0.9922 | 0.9649 | 0.9155 | 0.9205 | 0.9076 | 0.9138 | 0.9257 | 0.4941 | 0.7002 |
| 0.0409 | 2.59 | 12000 | 0.0493 | 0.8579 | 0.9124 | 0.9844 | 0.9955 | 0.9853 | 0.9928 | 0.9929 | 0.9083 | 0.9573 | 0.9671 | 0.6288 | 0.7832 | 0.9921 | 0.9651 | 0.9046 | 0.9086 | 0.8842 | 0.9196 | 0.9267 | 0.5175 | 0.7026 |
| 0.0477 | 2.7 | 12500 | 0.0436 | 0.8610 | 0.9051 | 0.9848 | 0.9957 | 0.9868 | 0.9639 | 0.9675 | 0.9478 | 0.9445 | 0.9590 | 0.5972 | 0.7831 | 0.9919 | 0.9654 | 0.9187 | 0.9251 | 0.9029 | 0.9126 | 0.9253 | 0.5035 | 0.7034 |
| 0.0488 | 2.8 | 13000 | 0.0450 | 0.8577 | 0.9076 | 0.9842 | 0.9963 | 0.9848 | 0.9712 | 0.9695 | 0.9132 | 0.9493 | 0.9621 | 0.6188 | 0.8026 | 0.9924 | 0.9635 | 0.9095 | 0.9124 | 0.8742 | 0.9172 | 0.9276 | 0.5157 | 0.7065 |
| 0.0879 | 2.91 | 13500 | 0.0516 | 0.8453 | 0.8949 | 0.9819 | 0.9960 | 0.9867 | 0.9631 | 0.9665 | 0.8325 | 0.9618 | 0.9678 | 0.6033 | 0.7763 | 0.9919 | 0.9574 | 0.8955 | 0.9007 | 0.8088 | 0.9206 | 0.9245 | 0.5069 | 0.7013 |
| 0.0525 | 3.02 | 14000 | 0.0474 | 0.8521 | 0.9053 | 0.9830 | 0.9959 | 0.9849 | 0.9850 | 0.9925 | 0.8703 | 0.9481 | 0.9597 | 0.6076 | 0.8038 | 0.9923 | 0.9600 | 0.9050 | 0.9099 | 0.8420 | 0.9143 | 0.9263 | 0.5148 | 0.7044 |
| 0.0455 | 3.13 | 14500 | 0.0435 | 0.8579 | 0.9111 | 0.9842 | 0.9953 | 0.9852 | 0.9646 | 0.9672 | 0.9255 | 0.9569 | 0.9654 | 0.6514 | 0.7888 | 0.9923 | 0.9642 | 0.8971 | 0.9055 | 0.8780 | 0.9182 | 0.9284 | 0.5327 | 0.7046 |
| 0.0454 | 3.24 | 15000 | 0.0451 | 0.8599 | 0.9161 | 0.9844 | 0.9953 | 0.9858 | 0.9895 | 0.9907 | 0.8944 | 0.9635 | 0.9692 | 0.6643 | 0.7925 | 0.9924 | 0.9645 | 0.9061 | 0.9107 | 0.8803 | 0.9202 | 0.9236 | 0.5356 | 0.7058 |
| 0.0687 | 3.34 | 15500 | 0.0496 | 0.8482 | 0.9017 | 0.9827 | 0.9959 | 0.9869 | 0.9715 | 0.9676 | 0.8483 | 0.9616 | 0.9672 | 0.6235 | 0.7932 | 0.9922 | 0.9614 | 0.8904 | 0.8909 | 0.8269 | 0.9187 | 0.9218 | 0.5249 | 0.7069 |
| 0.0555 | 3.45 | 16000 | 0.0445 | 0.8568 | 0.9081 | 0.9838 | 0.9964 | 0.9858 | 0.9649 | 0.9681 | 0.8880 | 0.9585 | 0.9610 | 0.6510 | 0.7995 | 0.9922 | 0.9635 | 0.8996 | 0.9073 | 0.8582 | 0.9230 | 0.9257 | 0.5328 | 0.7093 |
| 0.0528 | 3.56 | 16500 | 0.0477 | 0.8549 | 0.9053 | 0.9833 | 0.9958 | 0.9875 | 0.9668 | 0.9677 | 0.8740 | 0.9512 | 0.9631 | 0.6512 | 0.7902 | 0.9920 | 0.9618 | 0.9021 | 0.9036 | 0.8486 | 0.9185 | 0.9254 | 0.5348 | 0.7070 |
| 0.043 | 3.67 | 17000 | 0.0439 | 0.8633 | 0.9173 | 0.9849 | 0.9960 | 0.9851 | 0.9860 | 0.9893 | 0.9114 | 0.9555 | 0.9656 | 0.6623 | 0.8046 | 0.9921 | 0.9666 | 0.9083 | 0.9158 | 0.8910 | 0.9197 | 0.9262 | 0.5391 | 0.7111 |
| 0.0372 | 3.77 | 17500 | 0.0474 | 0.8555 | 0.9039 | 0.9836 | 0.9959 | 0.9876 | 0.9626 | 0.9647 | 0.8818 | 0.9556 | 0.9623 | 0.6393 | 0.7858 | 0.9921 | 0.9623 | 0.8999 | 0.9065 | 0.8526 | 0.9218 | 0.9264 | 0.5299 | 0.7082 |
| 0.0614 | 3.88 | 18000 | 0.0463 | 0.8564 | 0.9088 | 0.9839 | 0.9959 | 0.9853 | 0.9644 | 0.9662 | 0.9035 | 0.9569 | 0.9638 | 0.6413 | 0.8025 | 0.9921 | 0.9643 | 0.8967 | 0.9020 | 0.8607 | 0.9202 | 0.9276 | 0.5330 | 0.7111 |
| 0.0413 | 3.99 | 18500 | 0.0453 | 0.8579 | 0.9123 | 0.9841 | 0.9963 | 0.9848 | 0.9794 | 0.9828 | 0.8865 | 0.9613 | 0.9695 | 0.6526 | 0.7977 | 0.9922 | 0.9648 | 0.8991 | 0.9047 | 0.8629 | 0.9221 | 0.9274 | 0.5369 | 0.7112 |
| 0.0386 | 4.1 | 19000 | 0.0438 | 0.8578 | 0.9109 | 0.9842 | 0.9959 | 0.9844 | 0.9649 | 0.9667 | 0.9154 | 0.9580 | 0.9662 | 0.6408 | 0.8062 | 0.9924 | 0.9644 | 0.8973 | 0.9025 | 0.8683 | 0.9196 | 0.9279 | 0.5340 | 0.7134 |
| 0.0541 | 4.21 | 19500 | 0.0443 | 0.8577 | 0.9118 | 0.9840 | 0.9957 | 0.9847 | 0.9829 | 0.9872 | 0.8935 | 0.9594 | 0.9686 | 0.6265 | 0.8077 | 0.9921 | 0.9641 | 0.9017 | 0.9079 | 0.8621 | 0.9203 | 0.9277 | 0.5298 | 0.7133 |
| 0.0409 | 4.31 | 20000 | 0.0433 | 0.8560 | 0.9083 | 0.9840 | 0.9959 | 0.9860 | 0.9670 | 0.9687 | 0.9020 | 0.9578 | 0.9632 | 0.6421 | 0.7918 | 0.9922 | 0.9652 | 0.8921 | 0.8966 | 0.8633 | 0.9206 | 0.9278 | 0.5349 | 0.7117 |
| 0.0398 | 4.42 | 20500 | 0.0451 | 0.8581 | 0.9102 | 0.9840 | 0.9960 | 0.9859 | 0.9687 | 0.9685 | 0.8885 | 0.9597 | 0.9684 | 0.6554 | 0.8004 | 0.9922 | 0.9638 | 0.9000 | 0.9042 | 0.8595 | 0.9232 | 0.9266 | 0.5395 | 0.7144 |
| 0.038 | 4.53 | 21000 | 0.0464 | 0.8608 | 0.9123 | 0.9843 | 0.9959 | 0.9866 | 0.9885 | 0.9907 | 0.8739 | 0.9616 | 0.9678 | 0.6398 | 0.8056 | 0.9921 | 0.9639 | 0.9088 | 0.9160 | 0.8657 | 0.9238 | 0.9273 | 0.5347 | 0.7150 |
| 0.0295 | 4.64 | 21500 | 0.0433 | 0.8596 | 0.9094 | 0.9840 | 0.9960 | 0.9864 | 0.9641 | 0.9664 | 0.8985 | 0.9535 | 0.9582 | 0.6581 | 0.8033 | 0.9922 | 0.9633 | 0.9056 | 0.9102 | 0.8619 | 0.9195 | 0.9276 | 0.5408 | 0.7151 |
| 0.0318 | 4.75 | 22000 | 0.0439 | 0.8600 | 0.9127 | 0.9842 | 0.9964 | 0.9848 | 0.9665 | 0.9676 | 0.8929 | 0.9627 | 0.9689 | 0.6656 | 0.8089 | 0.9923 | 0.9643 | 0.9007 | 0.9080 | 0.8645 | 0.9223 | 0.9283 | 0.5444 | 0.7156 |
| 0.0377 | 4.85 | 22500 | 0.0429 | 0.8619 | 0.9125 | 0.9846 | 0.9963 | 0.9849 | 0.9633 | 0.9666 | 0.9115 | 0.9609 | 0.9689 | 0.6527 | 0.8069 | 0.9923 | 0.9654 | 0.9052 | 0.9104 | 0.8762 | 0.9217 | 0.9288 | 0.5407 | 0.7166 |
| 0.0419 | 4.96 | 23000 | 0.0433 | 0.8611 | 0.9107 | 0.9846 | 0.9964 | 0.9857 | 0.9654 | 0.9664 | 0.9065 | 0.9591 | 0.9662 | 0.6491 | 0.8015 | 0.9923 | 0.9655 | 0.9017 | 0.9085 | 0.8749 | 0.9223 | 0.9289 | 0.5394 | 0.7160 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0 | [
"background",
"upper_torso",
"left_pants",
"right_patns",
"skirts",
"left_sleeve",
"right_sleeve",
"outer_collar",
"inner_collar"
] |
fshala/segformer-finetuned-sidewalk-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-sidewalk-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3528
- Mean Iou: 0.0705
- Mean Accuracy: 0.1115
- Overall Accuracy: 0.5632
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.5861
- Accuracy Flat-sidewalk: 0.8653
- Accuracy Flat-crosswalk: 0.0
- Accuracy Flat-cyclinglane: 0.0136
- Accuracy Flat-parkingdriveway: 0.0078
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.0
- Accuracy Human-person: 0.0
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.0737
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.0
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.9444
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.0012
- Accuracy Construction-fenceguardrail: 0.0000
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.0
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.8841
- Accuracy Nature-terrain: 0.2830
- Accuracy Sky: 0.0216
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.0
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.3993
- Iou Flat-sidewalk: 0.6672
- Iou Flat-crosswalk: 0.0
- Iou Flat-cyclinglane: 0.0135
- Iou Flat-parkingdriveway: 0.0076
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0
- Iou Human-person: 0.0
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.0712
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.0
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.2455
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.0011
- Iou Construction-fenceguardrail: 0.0000
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.0
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.6484
- Iou Nature-terrain: 0.2515
- Iou Sky: 0.0216
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.0
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.8114 | 0.93 | 100 | 2.3528 | 0.0705 | 0.1115 | 0.5632 | nan | 0.5861 | 0.8653 | 0.0 | 0.0136 | 0.0078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0737 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.0 | 0.0012 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8841 | 0.2830 | 0.0216 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3993 | 0.6672 | 0.0 | 0.0135 | 0.0076 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2455 | 0.0 | 0.0011 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6484 | 0.2515 | 0.0216 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.0+cpu
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
vigneshgs7/segformer-b0-finetuned-segments-pageboundet-finaltry |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-pageboundet-finaltry
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the vigneshgs7/Boundary_detection_onelasttry dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2569
- Mean Iou: nan
- Mean Accuracy: nan
- Overall Accuracy: nan
- Accuracy Object: nan
- Accuracy Surface: nan
- Iou Object: nan
- Iou Surface: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Object | Accuracy Surface | Iou Object | Iou Surface |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------:|:----------------:|:----------:|:-----------:|
| 0.4616 | 2.0 | 20 | 0.4828 | nan | nan | nan | nan | nan | nan | nan |
| 0.3359 | 4.0 | 40 | 0.3351 | nan | nan | nan | nan | nan | nan | nan |
| 0.2898 | 6.0 | 60 | 0.2885 | nan | nan | nan | nan | nan | nan | nan |
| 0.3041 | 8.0 | 80 | 0.2671 | nan | nan | nan | nan | nan | nan | nan |
| 0.2429 | 10.0 | 100 | 0.2569 | nan | nan | nan | nan | nan | nan | nan |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"object",
"surface"
] |
eungitoto/segformer-b0-finetuned-segments-sidewalk-2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6351
- Mean Iou: 0.2834
- Mean Accuracy: 0.3374
- Overall Accuracy: 0.8443
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.9045
- Accuracy Flat-sidewalk: 0.9530
- Accuracy Flat-crosswalk: 0.6075
- Accuracy Flat-cyclinglane: 0.7798
- Accuracy Flat-parkingdriveway: 0.3400
- Accuracy Flat-railtrack: 0.0
- Accuracy Flat-curb: 0.5121
- Accuracy Human-person: 0.6170
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9458
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.6956
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.9045
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.4037
- Accuracy Construction-fenceguardrail: 0.3503
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: 0.0
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.3679
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9274
- Accuracy Nature-terrain: 0.8889
- Accuracy Sky: 0.9722
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0119
- Accuracy Void-static: 0.2879
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7249
- Iou Flat-sidewalk: 0.8500
- Iou Flat-crosswalk: 0.5367
- Iou Flat-cyclinglane: 0.7300
- Iou Flat-parkingdriveway: 0.2828
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.4008
- Iou Human-person: 0.4039
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.8291
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.5268
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.7142
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.3242
- Iou Construction-fenceguardrail: 0.2450
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.3031
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8429
- Iou Nature-terrain: 0.7587
- Iou Sky: 0.9308
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0117
- Iou Void-static: 0.2194
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.6363 | 0.4 | 20 | 3.0746 | 0.0958 | 0.1387 | 0.6097 | nan | 0.4923 | 0.9140 | 0.0023 | 0.0115 | 0.0163 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.7446 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9002 | 0.0 | 0.0074 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8330 | 0.0676 | 0.7219 | 0.0 | 0.0 | 0.0033 | 0.0 | nan | 0.3615 | 0.6272 | 0.0023 | 0.0115 | 0.0138 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.4781 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3994 | 0.0 | 0.0072 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6074 | 0.0646 | 0.6789 | 0.0 | 0.0 | 0.0033 | 0.0 |
| 2.1728 | 0.8 | 40 | 2.1331 | 0.1057 | 0.1504 | 0.6493 | nan | 0.7183 | 0.9087 | 0.0 | 0.0011 | 0.0031 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7912 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8617 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9374 | 0.0054 | 0.8823 | 0.0 | 0.0 | 0.0004 | 0.0 | nan | 0.4086 | 0.6905 | 0.0 | 0.0011 | 0.0030 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.5711 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4771 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6142 | 0.0053 | 0.8190 | 0.0 | 0.0 | 0.0004 | 0.0 |
| 1.8992 | 1.2 | 60 | 1.7800 | 0.1102 | 0.1549 | 0.6621 | nan | 0.6924 | 0.9401 | 0.0 | 0.0144 | 0.0013 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8730 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9193 | 0.0615 | 0.9003 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4255 | 0.6860 | 0.0 | 0.0144 | 0.0013 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.5819 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4994 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6468 | 0.0608 | 0.8313 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.8919 | 1.6 | 80 | 1.6335 | 0.1201 | 0.1629 | 0.6809 | nan | 0.7313 | 0.9424 | 0.0 | 0.0501 | 0.0008 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8569 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8876 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9397 | 0.2331 | 0.8972 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4467 | 0.7033 | 0.0 | 0.0501 | 0.0008 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6179 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5237 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6657 | 0.2237 | 0.8501 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.63 | 2.0 | 100 | 1.4813 | 0.1342 | 0.1756 | 0.7089 | nan | 0.8218 | 0.9389 | 0.0 | 0.2047 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8384 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8802 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9479 | 0.4267 | 0.9098 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4844 | 0.7364 | 0.0 | 0.2025 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6453 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5371 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6948 | 0.4056 | 0.8548 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3523 | 2.4 | 120 | 1.3727 | 0.1467 | 0.1884 | 0.7335 | nan | 0.8524 | 0.9382 | 0.0 | 0.4096 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8653 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8659 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9450 | 0.5996 | 0.9273 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5341 | 0.7489 | 0.0 | 0.4011 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6377 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5535 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7173 | 0.5393 | 0.8549 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2951 | 2.8 | 140 | 1.2957 | 0.1511 | 0.1932 | 0.7407 | nan | 0.8465 | 0.9414 | 0.0 | 0.4159 | 0.0029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8951 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8775 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9327 | 0.7282 | 0.9275 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5327 | 0.7570 | 0.0 | 0.4072 | 0.0029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6595 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5523 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7399 | 0.6208 | 0.8658 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3024 | 3.2 | 160 | 1.2389 | 0.1536 | 0.1941 | 0.7464 | nan | 0.8844 | 0.9356 | 0.0 | 0.5074 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8589 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9380 | 0.6688 | 0.9035 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5543 | 0.7672 | 0.0 | 0.4812 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6749 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5517 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7351 | 0.5888 | 0.8655 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3291 | 3.6 | 180 | 1.1719 | 0.1582 | 0.1970 | 0.7516 | nan | 0.7975 | 0.9658 | 0.0001 | 0.5346 | 0.0113 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8905 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9044 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9127 | 0.7531 | 0.9290 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5791 | 0.7373 | 0.0001 | 0.5120 | 0.0111 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6910 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5522 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7708 | 0.6519 | 0.8725 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.171 | 4.0 | 200 | 1.1129 | 0.1583 | 0.1982 | 0.7564 | nan | 0.8861 | 0.9498 | 0.0 | 0.5324 | 0.0266 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8824 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8648 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9478 | 0.7150 | 0.9343 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5772 | 0.7708 | 0.0 | 0.5090 | 0.0259 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6945 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5713 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7383 | 0.6220 | 0.8744 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2553 | 4.4 | 220 | 1.0982 | 0.1597 | 0.2022 | 0.7524 | nan | 0.9524 | 0.8937 | 0.0 | 0.5760 | 0.0539 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8626 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9018 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9364 | 0.7568 | 0.9400 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5187 | 0.7967 | 0.0 | 0.5249 | 0.0509 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6982 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5609 | 0.0 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7580 | 0.6483 | 0.8736 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9428 | 4.8 | 240 | 1.0357 | 0.1662 | 0.2074 | 0.7694 | nan | 0.9300 | 0.9359 | 0.0074 | 0.6225 | 0.0780 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.8966 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9207 | 0.8155 | 0.9398 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5795 | 0.7982 | 0.0074 | 0.5725 | 0.0727 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.7107 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5673 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7794 | 0.6826 | 0.8785 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9843 | 5.2 | 260 | 0.9881 | 0.1689 | 0.2087 | 0.7706 | nan | 0.8682 | 0.9574 | 0.0704 | 0.6251 | 0.0810 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.9139 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8783 | 0.0 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9202 | 0.8331 | 0.9406 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6115 | 0.7686 | 0.0704 | 0.5919 | 0.0731 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.7004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5797 | 0.0 | 0.0050 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7766 | 0.6863 | 0.8784 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9274 | 5.6 | 280 | 0.9701 | 0.1738 | 0.2166 | 0.7794 | nan | 0.9171 | 0.9276 | 0.1062 | 0.7376 | 0.1365 | 0.0 | 0.0097 | 0.0 | 0.0 | 0.9144 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8870 | 0.0 | 0.0102 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9297 | 0.8383 | 0.9493 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6165 | 0.8027 | 0.1059 | 0.6193 | 0.1201 | 0.0 | 0.0096 | 0.0 | 0.0 | 0.6958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5848 | 0.0 | 0.0101 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7777 | 0.6882 | 0.8794 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8762 | 6.0 | 300 | 0.9369 | 0.1850 | 0.2257 | 0.7864 | nan | 0.9056 | 0.9452 | 0.4152 | 0.6530 | 0.1945 | 0.0 | 0.0313 | 0.0 | 0.0 | 0.9224 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8770 | 0.0 | 0.0269 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9266 | 0.8372 | 0.9387 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6408 | 0.8042 | 0.3904 | 0.6126 | 0.1521 | 0.0 | 0.0310 | 0.0 | 0.0 | 0.6888 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5874 | 0.0 | 0.0257 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7821 | 0.6954 | 0.8809 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8044 | 6.4 | 320 | 0.9197 | 0.1903 | 0.2308 | 0.7896 | nan | 0.9174 | 0.9437 | 0.5151 | 0.6212 | 0.2095 | 0.0 | 0.0733 | 0.0 | 0.0 | 0.9091 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8953 | 0.0 | 0.0558 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9174 | 0.8372 | 0.9511 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6400 | 0.8072 | 0.4651 | 0.5881 | 0.1706 | 0.0 | 0.0714 | 0.0 | 0.0 | 0.7168 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5855 | 0.0 | 0.0512 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7905 | 0.7010 | 0.8817 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.7438 | 6.8 | 340 | 0.8776 | 0.1934 | 0.2344 | 0.7940 | nan | 0.9134 | 0.9414 | 0.5616 | 0.6671 | 0.2014 | 0.0 | 0.0966 | 0.0 | 0.0 | 0.9162 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9011 | 0.0 | 0.0716 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9231 | 0.8347 | 0.9422 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6545 | 0.8114 | 0.4818 | 0.6313 | 0.1657 | 0.0 | 0.0933 | 0.0 | 0.0 | 0.7053 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5874 | 0.0 | 0.0639 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7945 | 0.6990 | 0.8886 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9671 | 7.2 | 360 | 0.8704 | 0.1975 | 0.2399 | 0.7955 | nan | 0.8871 | 0.9408 | 0.5863 | 0.6940 | 0.2363 | 0.0 | 0.1439 | 0.0 | 0.0 | 0.9029 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8684 | 0.0 | 0.1670 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9291 | 0.8532 | 0.9471 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6532 | 0.8126 | 0.4632 | 0.6345 | 0.1855 | 0.0 | 0.1361 | 0.0 | 0.0 | 0.7283 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5977 | 0.0 | 0.1406 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7862 | 0.6935 | 0.8840 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8191 | 7.6 | 380 | 0.8422 | 0.2048 | 0.2442 | 0.8033 | nan | 0.9159 | 0.9441 | 0.5265 | 0.7238 | 0.2684 | 0.0 | 0.1784 | 0.0003 | 0.0 | 0.8799 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8603 | 0.0 | 0.2762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9402 | 0.8318 | 0.9551 | 0.0 | 0.0 | 0.0005 | 0.0 | nan | 0.6939 | 0.8112 | 0.4965 | 0.6614 | 0.2087 | 0.0 | 0.1667 | 0.0003 | 0.0 | 0.7490 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6063 | 0.0 | 0.2037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7830 | 0.7000 | 0.8823 | 0.0 | 0.0 | 0.0005 | 0.0 |
| 0.8005 | 8.0 | 400 | 0.8414 | 0.1996 | 0.2372 | 0.7972 | nan | 0.9003 | 0.9492 | 0.5198 | 0.6659 | 0.1888 | 0.0 | 0.2424 | 0.0000 | 0.0 | 0.9048 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9291 | 0.0 | 0.1105 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9216 | 0.7883 | 0.9434 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.6719 | 0.8049 | 0.4991 | 0.6372 | 0.1537 | 0.0 | 0.2152 | 0.0000 | 0.0 | 0.7254 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5841 | 0.0 | 0.0940 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8047 | 0.7032 | 0.8927 | 0.0 | 0.0 | 0.0001 | 0.0 |
| 0.9294 | 8.4 | 420 | 0.8182 | 0.2036 | 0.2430 | 0.8029 | nan | 0.9269 | 0.9482 | 0.5270 | 0.6550 | 0.2482 | 0.0 | 0.2108 | 0.0002 | 0.0 | 0.9167 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8894 | 0.0 | 0.2316 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.9295 | 0.8273 | 0.9512 | 0.0 | 0.0 | 0.0007 | 0.0 | nan | 0.6841 | 0.8133 | 0.4924 | 0.6336 | 0.1979 | 0.0 | 0.1916 | 0.0002 | 0.0 | 0.7197 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6065 | 0.0 | 0.1800 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.8014 | 0.7111 | 0.8901 | 0.0 | 0.0 | 0.0007 | 0.0 |
| 0.7301 | 8.8 | 440 | 0.8036 | 0.2086 | 0.2527 | 0.8061 | nan | 0.9223 | 0.9419 | 0.5814 | 0.6931 | 0.2747 | 0.0 | 0.2847 | 0.0053 | 0.0 | 0.9361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8273 | 0.0 | 0.3837 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9300 | 0.8531 | 0.9561 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.6964 | 0.8218 | 0.5116 | 0.6603 | 0.2195 | 0.0 | 0.2440 | 0.0053 | 0.0 | 0.6847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6037 | 0.0 | 0.2526 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.7979 | 0.7074 | 0.8852 | 0.0 | 0.0 | 0.0008 | 0.0 |
| 0.6754 | 9.2 | 460 | 0.7868 | 0.2083 | 0.2482 | 0.8070 | nan | 0.9098 | 0.9432 | 0.5608 | 0.7545 | 0.2089 | 0.0 | 0.2884 | 0.0073 | 0.0 | 0.9000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8991 | 0.0 | 0.2473 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9193 | 0.8499 | 0.9478 | 0.0 | 0.0 | 0.0023 | 0.0 | nan | 0.6748 | 0.8194 | 0.5305 | 0.6745 | 0.1787 | 0.0 | 0.2438 | 0.0073 | 0.0 | 0.7486 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6100 | 0.0 | 0.1831 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8067 | 0.7069 | 0.8942 | 0.0 | 0.0 | 0.0023 | 0.0 |
| 0.7499 | 9.6 | 480 | 0.7756 | 0.2112 | 0.2511 | 0.8109 | nan | 0.9109 | 0.9429 | 0.5288 | 0.7550 | 0.2927 | 0.0 | 0.2838 | 0.0126 | 0.0 | 0.9117 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9054 | 0.0 | 0.2797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.9263 | 0.8295 | 0.9522 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.7098 | 0.8209 | 0.4936 | 0.7004 | 0.2259 | 0.0 | 0.2461 | 0.0126 | 0.0 | 0.7399 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6058 | 0.0 | 0.1980 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8077 | 0.7226 | 0.8942 | 0.0 | 0.0 | 0.0039 | 0.0 |
| 0.5878 | 10.0 | 500 | 0.7564 | 0.2131 | 0.2568 | 0.8123 | nan | 0.9099 | 0.9388 | 0.5922 | 0.7452 | 0.3135 | 0.0 | 0.2995 | 0.0235 | 0.0 | 0.9165 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8776 | 0.0 | 0.3744 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.9301 | 0.8555 | 0.9495 | 0.0 | 0.0 | 0.0047 | 0.0 | nan | 0.6945 | 0.8339 | 0.4657 | 0.6925 | 0.2436 | 0.0 | 0.2602 | 0.0235 | 0.0 | 0.7350 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6171 | 0.0 | 0.2630 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.7991 | 0.7150 | 0.8956 | 0.0 | 0.0 | 0.0046 | 0.0 |
| 0.874 | 10.4 | 520 | 0.7601 | 0.2169 | 0.2584 | 0.8133 | nan | 0.9144 | 0.9378 | 0.5474 | 0.7449 | 0.3350 | 0.0 | 0.3237 | 0.0738 | 0.0 | 0.9292 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8918 | 0.0 | 0.3508 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.9232 | 0.8450 | 0.9579 | 0.0 | 0.0 | 0.0086 | 0.0 | nan | 0.7030 | 0.8214 | 0.5211 | 0.6962 | 0.2497 | 0.0 | 0.2740 | 0.0735 | 0.0 | 0.7398 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6252 | 0.0 | 0.2396 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.8120 | 0.7134 | 0.8942 | 0.0 | 0.0 | 0.0084 | 0.0 |
| 0.5957 | 10.8 | 540 | 0.7557 | 0.2115 | 0.2534 | 0.8114 | nan | 0.8494 | 0.9518 | 0.6034 | 0.7916 | 0.2467 | 0.0 | 0.3290 | 0.0558 | 0.0 | 0.9140 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9268 | 0.0 | 0.2114 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | 0.0 | 0.9189 | 0.8608 | 0.9472 | 0.0 | 0.0 | 0.0041 | 0.0 | nan | 0.7069 | 0.8234 | 0.4749 | 0.6717 | 0.2108 | 0.0 | 0.2916 | 0.0557 | 0.0 | 0.7444 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6064 | 0.0 | 0.1714 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | 0.0 | 0.8108 | 0.7131 | 0.9005 | 0.0 | 0.0 | 0.0040 | 0.0 |
| 0.5981 | 11.2 | 560 | 0.7396 | 0.2223 | 0.2641 | 0.8176 | nan | 0.8798 | 0.9418 | 0.5376 | 0.8258 | 0.2915 | 0.0 | 0.3517 | 0.1215 | 0.0 | 0.9240 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8754 | 0.0 | 0.4492 | 0.0029 | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0 | 0.0 | 0.9420 | 0.8361 | 0.9583 | 0.0 | 0.0 | 0.0309 | 0.0 | nan | 0.7188 | 0.8224 | 0.5170 | 0.7030 | 0.2402 | 0.0 | 0.2981 | 0.1202 | 0.0 | 0.7507 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6314 | 0.0 | 0.3022 | 0.0028 | 0.0 | 0.0 | 0.0 | 0.0095 | 0.0 | 0.0 | 0.8028 | 0.7141 | 0.8963 | 0.0 | 0.0 | 0.0295 | 0.0 |
| 0.5177 | 11.6 | 580 | 0.7403 | 0.2227 | 0.2665 | 0.8144 | nan | 0.9070 | 0.9314 | 0.6047 | 0.7349 | 0.3815 | 0.0 | 0.3395 | 0.1778 | 0.0 | 0.9082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8715 | 0.0 | 0.4334 | 0.0040 | 0.0 | 0.0 | 0.0 | 0.0100 | 0.0 | 0.0 | 0.9464 | 0.8180 | 0.9571 | 0.0 | 0.0 | 0.0353 | 0.0 | nan | 0.6983 | 0.8321 | 0.4714 | 0.6965 | 0.2653 | 0.0 | 0.2899 | 0.1731 | 0.0 | 0.7622 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6327 | 0.0 | 0.2963 | 0.0038 | 0.0 | 0.0 | 0.0 | 0.0100 | 0.0 | 0.0 | 0.7972 | 0.7113 | 0.8992 | 0.0 | 0.0 | 0.0334 | 0.0 |
| 0.5689 | 12.0 | 600 | 0.7382 | 0.2237 | 0.2642 | 0.8176 | nan | 0.9339 | 0.9440 | 0.5055 | 0.7365 | 0.3006 | 0.0 | 0.3610 | 0.1763 | 0.0 | 0.9328 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.8772 | 0.0 | 0.4224 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.0108 | 0.0 | 0.0 | 0.9320 | 0.8401 | 0.9553 | 0.0 | 0.0 | 0.0391 | 0.0 | nan | 0.7077 | 0.8244 | 0.4863 | 0.7017 | 0.2403 | 0.0 | 0.3038 | 0.1720 | 0.0 | 0.7422 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6333 | 0.0 | 0.2928 | 0.0142 | 0.0 | 0.0 | 0.0 | 0.0108 | 0.0 | 0.0 | 0.8130 | 0.7274 | 0.8999 | 0.0 | 0.0 | 0.0366 | 0.0 |
| 0.6379 | 12.4 | 620 | 0.7284 | 0.2260 | 0.2674 | 0.8171 | nan | 0.8613 | 0.9554 | 0.5848 | 0.7909 | 0.2547 | 0.0 | 0.3498 | 0.2235 | 0.0 | 0.9240 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.8959 | 0.0 | 0.4200 | 0.0197 | 0.0 | 0.0 | 0.0 | 0.0173 | 0.0 | 0.0 | 0.9153 | 0.8660 | 0.9535 | 0.0 | 0.0 | 0.0598 | 0.0 | nan | 0.7209 | 0.8117 | 0.5001 | 0.7144 | 0.2080 | 0.0 | 0.3020 | 0.2141 | 0.0 | 0.7682 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.6390 | 0.0 | 0.2812 | 0.0188 | 0.0 | 0.0 | 0.0 | 0.0172 | 0.0 | 0.0 | 0.8154 | 0.7159 | 0.9029 | 0.0 | 0.0 | 0.0546 | 0.0 |
| 0.5772 | 12.8 | 640 | 0.7187 | 0.2317 | 0.2755 | 0.8213 | nan | 0.9200 | 0.9479 | 0.5902 | 0.7480 | 0.2776 | 0.0 | 0.3621 | 0.3136 | 0.0 | 0.9321 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.8618 | 0.0 | 0.4991 | 0.0422 | 0.0 | 0.0 | 0.0 | 0.0430 | 0.0 | 0.0 | 0.9282 | 0.8676 | 0.9574 | 0.0 | 0.0 | 0.0742 | 0.0 | nan | 0.7049 | 0.8337 | 0.4961 | 0.7056 | 0.2336 | 0.0 | 0.3085 | 0.2828 | 0.0 | 0.7610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0 | 0.0 | 0.6438 | 0.0 | 0.3241 | 0.0375 | 0.0 | 0.0 | 0.0 | 0.0427 | 0.0 | 0.0 | 0.8137 | 0.7203 | 0.9018 | 0.0 | 0.0 | 0.0667 | 0.0 |
| 0.6958 | 13.2 | 660 | 0.6981 | 0.2346 | 0.2795 | 0.8243 | nan | 0.9034 | 0.9373 | 0.6079 | 0.8121 | 0.3564 | 0.0 | 0.3662 | 0.3246 | 0.0 | 0.9333 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0022 | 0.0 | 0.0 | 0.8780 | 0.0 | 0.4743 | 0.0491 | 0.0 | 0.0 | 0.0 | 0.0335 | 0.0 | 0.0 | 0.9305 | 0.8584 | 0.9573 | 0.0 | 0.0 | 0.0779 | 0.0 | nan | 0.7277 | 0.8370 | 0.4877 | 0.7263 | 0.2627 | 0.0 | 0.3095 | 0.2965 | 0.0 | 0.7655 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0022 | 0.0 | 0.0 | 0.6538 | 0.0 | 0.3213 | 0.0434 | 0.0 | 0.0 | 0.0 | 0.0333 | 0.0 | 0.0 | 0.8126 | 0.7263 | 0.9021 | 0.0 | 0.0 | 0.0692 | 0.0 |
| 0.6015 | 13.6 | 680 | 0.7058 | 0.2382 | 0.2808 | 0.8256 | nan | 0.9422 | 0.9404 | 0.5065 | 0.7814 | 0.3153 | 0.0 | 0.3763 | 0.3868 | 0.0 | 0.9294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0052 | 0.0 | 0.0 | 0.9027 | 0.0 | 0.4368 | 0.1332 | 0.0 | 0.0 | 0.0 | 0.0725 | 0.0 | 0.0 | 0.9198 | 0.8596 | 0.9627 | 0.0 | 0.0 | 0.0749 | 0.0 | nan | 0.7195 | 0.8358 | 0.4934 | 0.7243 | 0.2502 | 0.0 | 0.3068 | 0.3232 | 0.0 | 0.7693 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0052 | 0.0 | 0.0 | 0.6496 | 0.0 | 0.3222 | 0.1099 | 0.0 | 0.0 | 0.0 | 0.0713 | 0.0 | 0.0 | 0.8216 | 0.7279 | 0.9005 | 0.0 | 0.0 | 0.0679 | 0.0 |
| 0.5698 | 14.0 | 700 | 0.6973 | 0.2374 | 0.2806 | 0.8240 | nan | 0.9140 | 0.9468 | 0.5788 | 0.7557 | 0.3021 | 0.0 | 0.3873 | 0.3988 | 0.0 | 0.9359 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.9088 | 0.0 | 0.3731 | 0.1032 | 0.0 | 0.0 | 0.0 | 0.0816 | 0.0 | 0.0 | 0.9156 | 0.8763 | 0.9563 | 0.0 | 0.0 | 0.0937 | 0.0 | nan | 0.7136 | 0.8338 | 0.4892 | 0.7176 | 0.2411 | 0.0 | 0.3250 | 0.3327 | 0.0 | 0.7658 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.6525 | 0.0 | 0.3009 | 0.0915 | 0.0 | 0.0 | 0.0 | 0.0804 | 0.0 | 0.0 | 0.8157 | 0.7135 | 0.9056 | 0.0 | 0.0 | 0.0825 | 0.0 |
| 0.6438 | 14.4 | 720 | 0.6984 | 0.2417 | 0.2849 | 0.8258 | nan | 0.9185 | 0.9511 | 0.5585 | 0.7586 | 0.3002 | 0.0 | 0.3864 | 0.4324 | 0.0 | 0.9399 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0168 | 0.0 | 0.0 | 0.8707 | 0.0 | 0.4506 | 0.1372 | 0.0 | 0.0 | 0.0 | 0.0670 | 0.0 | 0.0 | 0.9270 | 0.8638 | 0.9586 | 0.0 | 0.0 | 0.1479 | 0.0 | nan | 0.7374 | 0.8238 | 0.5275 | 0.7116 | 0.2414 | 0.0 | 0.3184 | 0.3475 | 0.0 | 0.7622 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0167 | 0.0 | 0.0 | 0.6636 | 0.0 | 0.3196 | 0.1092 | 0.0 | 0.0 | 0.0 | 0.0661 | 0.0 | 0.0 | 0.8193 | 0.7246 | 0.9037 | 0.0 | 0.0 | 0.1249 | 0.0 |
| 0.4882 | 14.8 | 740 | 0.6937 | 0.2419 | 0.2838 | 0.8280 | nan | 0.9320 | 0.9493 | 0.5035 | 0.7776 | 0.2815 | 0.0 | 0.4022 | 0.4547 | 0.0 | 0.9293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0157 | 0.0 | 0.0 | 0.9167 | 0.0 | 0.3765 | 0.1535 | 0.0 | 0.0 | 0.0 | 0.0903 | 0.0 | 0.0 | 0.9199 | 0.8638 | 0.9618 | 0.0 | 0.0 | 0.1214 | 0.0 | nan | 0.7364 | 0.8293 | 0.4922 | 0.7276 | 0.2350 | 0.0 | 0.3321 | 0.3528 | 0.0 | 0.7749 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0157 | 0.0 | 0.0 | 0.6534 | 0.0 | 0.2906 | 0.1250 | 0.0 | 0.0 | 0.0 | 0.0889 | 0.0 | 0.0 | 0.8270 | 0.7322 | 0.9064 | 0.0 | 0.0 | 0.1054 | 0.0 |
| 0.4693 | 15.2 | 760 | 0.6931 | 0.2437 | 0.2883 | 0.8248 | nan | 0.9276 | 0.9436 | 0.5805 | 0.7401 | 0.3161 | 0.0 | 0.4023 | 0.4731 | 0.0 | 0.9225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0212 | 0.0 | 0.0 | 0.8888 | 0.0 | 0.4353 | 0.1921 | 0.0 | 0.0 | 0.0 | 0.0994 | 0.0 | 0.0 | 0.9260 | 0.8468 | 0.9584 | 0.0 | 0.0 | 0.1281 | 0.0 | nan | 0.7061 | 0.8324 | 0.5132 | 0.7048 | 0.2545 | 0.0 | 0.3326 | 0.3620 | 0.0 | 0.7827 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0212 | 0.0 | 0.0 | 0.6548 | 0.0 | 0.3164 | 0.1357 | 0.0 | 0.0 | 0.0 | 0.0970 | 0.0 | 0.0 | 0.8211 | 0.7338 | 0.9070 | 0.0 | 0.0 | 0.1113 | 0.0 |
| 0.5884 | 15.6 | 780 | 0.6870 | 0.2460 | 0.2919 | 0.8280 | nan | 0.8965 | 0.9478 | 0.5938 | 0.7779 | 0.3113 | 0.0 | 0.4136 | 0.5281 | 0.0 | 0.9223 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0379 | 0.0 | 0.0 | 0.9103 | 0.0 | 0.3960 | 0.1587 | 0.0 | 0.0 | 0.0 | 0.1163 | 0.0 | 0.0 | 0.9203 | 0.8756 | 0.9641 | 0.0 | 0.0 | 0.1551 | 0.0 | nan | 0.7291 | 0.8308 | 0.5095 | 0.7130 | 0.2456 | 0.0 | 0.3393 | 0.3730 | 0.0 | 0.7832 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0378 | 0.0 | 0.0 | 0.6676 | 0.0 | 0.3097 | 0.1280 | 0.0 | 0.0 | 0.0 | 0.1127 | 0.0 | 0.0 | 0.8267 | 0.7249 | 0.9050 | 0.0 | 0.0 | 0.1296 | 0.0 |
| 0.4822 | 16.0 | 800 | 0.6822 | 0.2490 | 0.2929 | 0.8277 | nan | 0.8592 | 0.9535 | 0.5867 | 0.8150 | 0.2845 | 0.0 | 0.4140 | 0.5151 | 0.0 | 0.9363 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0563 | 0.0 | 0.0 | 0.8924 | 0.0 | 0.3955 | 0.2003 | 0.0 | 0.0 | 0.0 | 0.1470 | 0.0 | 0.0 | 0.9358 | 0.8603 | 0.9569 | 0.0 | 0.0 | 0.1481 | 0.0 | nan | 0.7180 | 0.8218 | 0.5548 | 0.7288 | 0.2424 | 0.0 | 0.3294 | 0.3797 | 0.0 | 0.7752 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0562 | 0.0 | 0.0 | 0.6685 | 0.0 | 0.3157 | 0.1505 | 0.0 | 0.0 | 0.0 | 0.1400 | 0.0 | 0.0 | 0.8201 | 0.7296 | 0.9095 | 0.0 | 0.0 | 0.1267 | 0.0 |
| 0.4741 | 16.4 | 820 | 0.6827 | 0.2488 | 0.2926 | 0.8283 | nan | 0.8902 | 0.9524 | 0.5983 | 0.7742 | 0.3112 | 0.0 | 0.4137 | 0.4934 | 0.0 | 0.9314 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0730 | 0.0 | 0.0 | 0.8856 | 0.0 | 0.4433 | 0.1811 | 0.0 | 0.0 | 0.0 | 0.1122 | 0.0 | 0.0 | 0.9397 | 0.8325 | 0.9600 | 0.0 | 0.0 | 0.1564 | 0.0 | nan | 0.7279 | 0.8282 | 0.5455 | 0.7332 | 0.2494 | 0.0 | 0.3343 | 0.3734 | 0.0 | 0.7841 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0729 | 0.0 | 0.0 | 0.6686 | 0.0 | 0.3175 | 0.1309 | 0.0 | 0.0 | 0.0 | 0.1090 | 0.0 | 0.0 | 0.8181 | 0.7275 | 0.9094 | 0.0 | 0.0 | 0.1289 | 0.0 |
| 0.5164 | 16.8 | 840 | 0.6803 | 0.2488 | 0.2928 | 0.8309 | nan | 0.9067 | 0.9498 | 0.5655 | 0.8037 | 0.3081 | 0.0 | 0.4061 | 0.5493 | 0.0 | 0.9276 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0686 | 0.0 | 0.0 | 0.9156 | 0.0 | 0.3162 | 0.1933 | 0.0 | 0.0 | 0.0 | 0.1543 | 0.0 | 0.0 | 0.9273 | 0.8698 | 0.9604 | 0.0 | 0.0 | 0.1324 | 0.0 | nan | 0.7404 | 0.8309 | 0.5307 | 0.7191 | 0.2548 | 0.0 | 0.3371 | 0.3740 | 0.0 | 0.7897 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0685 | 0.0 | 0.0 | 0.6642 | 0.0 | 0.2698 | 0.1508 | 0.0 | 0.0 | 0.0 | 0.1469 | 0.0 | 0.0 | 0.8258 | 0.7322 | 0.9105 | 0.0 | 0.0 | 0.1132 | 0.0 |
| 0.4384 | 17.2 | 860 | 0.6711 | 0.2512 | 0.2978 | 0.8313 | nan | 0.9294 | 0.9412 | 0.5986 | 0.7805 | 0.3288 | 0.0 | 0.4120 | 0.5585 | 0.0 | 0.9350 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0621 | 0.0 | 0.0 | 0.8890 | 0.0 | 0.4228 | 0.1557 | 0.0 | 0.0 | 0.0 | 0.1642 | 0.0 | 0.0 | 0.9272 | 0.8743 | 0.9600 | 0.0 | 0.0 | 0.1852 | 0.0 | nan | 0.7282 | 0.8363 | 0.5214 | 0.7324 | 0.2651 | 0.0 | 0.3417 | 0.3806 | 0.0 | 0.7894 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0620 | 0.0 | 0.0 | 0.6730 | 0.0 | 0.3112 | 0.1257 | 0.0 | 0.0 | 0.0 | 0.1559 | 0.0 | 0.0 | 0.8215 | 0.7310 | 0.9109 | 0.0 | 0.0 | 0.1533 | 0.0 |
| 0.4316 | 17.6 | 880 | 0.6659 | 0.2556 | 0.3047 | 0.8338 | nan | 0.9368 | 0.9390 | 0.5718 | 0.8247 | 0.3282 | 0.0 | 0.4395 | 0.5804 | 0.0 | 0.9423 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0993 | 0.0 | 0.0 | 0.8502 | 0.0 | 0.4347 | 0.2537 | 0.0 | 0.0 | 0.0 | 0.2004 | 0.0 | 0.0 | 0.9375 | 0.8574 | 0.9656 | 0.0 | 0.0 | 0.1969 | 0.0 | nan | 0.7368 | 0.8437 | 0.5323 | 0.7437 | 0.2656 | 0.0 | 0.3588 | 0.3788 | 0.0 | 0.7690 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0989 | 0.0 | 0.0 | 0.6726 | 0.0 | 0.3185 | 0.1661 | 0.0 | 0.0 | 0.0 | 0.1845 | 0.0 | 0.0 | 0.8227 | 0.7293 | 0.9084 | 0.0 | 0.0 | 0.1607 | 0.0 |
| 0.4505 | 18.0 | 900 | 0.6758 | 0.2542 | 0.2989 | 0.8298 | nan | 0.9136 | 0.9505 | 0.5574 | 0.7432 | 0.2982 | 0.0 | 0.4386 | 0.5360 | 0.0 | 0.9437 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1767 | 0.0 | 0.0 | 0.9093 | 0.0 | 0.4136 | 0.2006 | 0.0 | 0.0 | 0.0 | 0.1824 | 0.0 | 0.0 | 0.9305 | 0.8321 | 0.9575 | 0.0 | 0.0 | 0.1794 | 0.0 | nan | 0.7194 | 0.8331 | 0.5212 | 0.7112 | 0.2453 | 0.0 | 0.3458 | 0.3758 | 0.0 | 0.7782 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1753 | 0.0 | 0.0 | 0.6756 | 0.0 | 0.3193 | 0.1549 | 0.0 | 0.0 | 0.0 | 0.1715 | 0.0 | 0.0 | 0.8259 | 0.7307 | 0.9115 | 0.0 | 0.0 | 0.1480 | 0.0 |
| 0.4388 | 18.4 | 920 | 0.6661 | 0.2565 | 0.3072 | 0.8297 | nan | 0.8822 | 0.9428 | 0.6160 | 0.8143 | 0.3081 | 0.0 | 0.4454 | 0.5414 | 0.0 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2064 | 0.0 | 0.0 | 0.8709 | 0.0 | 0.4429 | 0.2824 | 0.0 | 0.0 | 0.0 | 0.1963 | 0.0 | 0.0 | 0.9268 | 0.8822 | 0.9626 | 0.0 | 0.0 | 0.1975 | 0.0 | nan | 0.7157 | 0.8393 | 0.4520 | 0.7274 | 0.2555 | 0.0 | 0.3630 | 0.3766 | 0.0 | 0.8002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2041 | 0.0 | 0.0 | 0.6728 | 0.0 | 0.3199 | 0.1873 | 0.0 | 0.0 | 0.0 | 0.1827 | 0.0 | 0.0 | 0.8220 | 0.7298 | 0.9113 | 0.0 | 0.0 | 0.1622 | 0.0 |
| 0.361 | 18.8 | 940 | 0.6628 | 0.2605 | 0.3096 | 0.8323 | nan | 0.8951 | 0.9452 | 0.5626 | 0.8170 | 0.3278 | 0.0 | 0.4493 | 0.5721 | 0.0 | 0.9407 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2403 | 0.0 | 0.0 | 0.8579 | 0.0 | 0.4486 | 0.2506 | 0.0 | 0.0 | 0.0 | 0.1961 | 0.0 | 0.0 | 0.9287 | 0.8857 | 0.9658 | 0.0 | 0.0 | 0.2412 | 0.0 | nan | 0.7357 | 0.8323 | 0.5378 | 0.7362 | 0.2625 | 0.0 | 0.3491 | 0.3683 | 0.0 | 0.7867 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2364 | 0.0 | 0.0 | 0.6806 | 0.0 | 0.3224 | 0.1758 | 0.0 | 0.0 | 0.0 | 0.1821 | 0.0 | 0.0 | 0.8223 | 0.7321 | 0.9113 | 0.0 | 0.0 | 0.1866 | 0.0 |
| 0.3828 | 19.2 | 960 | 0.6739 | 0.2605 | 0.3097 | 0.8287 | nan | 0.8388 | 0.9556 | 0.5834 | 0.8373 | 0.2736 | 0.0 | 0.4234 | 0.6044 | 0.0 | 0.9343 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2668 | 0.0 | 0.0 | 0.8799 | 0.0 | 0.4288 | 0.2738 | 0.0 | 0.0 | 0.0 | 0.2310 | 0.0 | 0.0 | 0.9154 | 0.8914 | 0.9607 | 0.0 | 0.0 | 0.2327 | 0.0 | nan | 0.7156 | 0.8243 | 0.5543 | 0.6957 | 0.2336 | 0.0 | 0.3482 | 0.3805 | 0.0 | 0.7961 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2613 | 0.0 | 0.0 | 0.6838 | 0.0 | 0.3288 | 0.1820 | 0.0 | 0.0 | 0.0 | 0.2107 | 0.0 | 0.0 | 0.8227 | 0.7190 | 0.9134 | 0.0 | 0.0 | 0.1857 | 0.0 |
| 0.6092 | 19.6 | 980 | 0.6651 | 0.2619 | 0.3102 | 0.8331 | nan | 0.9454 | 0.9455 | 0.5339 | 0.7741 | 0.3170 | 0.0 | 0.4542 | 0.6123 | 0.0 | 0.9329 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2972 | 0.0 | 0.0 | 0.9051 | 0.0 | 0.3950 | 0.2431 | 0.0 | 0.0 | 0.0 | 0.2317 | 0.0 | 0.0 | 0.9022 | 0.8711 | 0.9631 | 0.0 | 0.0 | 0.2214 | 0.0 | nan | 0.7209 | 0.8382 | 0.5155 | 0.7300 | 0.2616 | 0.0 | 0.3551 | 0.3647 | 0.0 | 0.7986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2900 | 0.0 | 0.0 | 0.6842 | 0.0 | 0.3113 | 0.1817 | 0.0 | 0.0 | 0.0 | 0.2123 | 0.0 | 0.0 | 0.8260 | 0.7207 | 0.9135 | 0.0 | 0.0 | 0.1808 | 0.0 |
| 0.4141 | 20.0 | 1000 | 0.6641 | 0.2647 | 0.3139 | 0.8316 | nan | 0.9264 | 0.9481 | 0.5341 | 0.7649 | 0.3226 | 0.0 | 0.4334 | 0.5668 | 0.0 | 0.9405 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3605 | 0.0 | 0.0 | 0.8534 | 0.0 | 0.4698 | 0.2992 | 0.0 | 0.0 | 0.0 | 0.2259 | 0.0 | 0.0 | 0.9166 | 0.8909 | 0.9625 | 0.0 | 0.0 | 0.2556 | 0.0 | nan | 0.7208 | 0.8365 | 0.5058 | 0.7259 | 0.2609 | 0.0 | 0.3563 | 0.3898 | 0.0 | 0.7969 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3435 | 0.0 | 0.0 | 0.6834 | 0.0 | 0.3347 | 0.1917 | 0.0 | 0.0 | 0.0 | 0.2066 | 0.0 | 0.0 | 0.8200 | 0.7153 | 0.9160 | 0.0 | 0.0 | 0.1970 | 0.0 |
| 0.4172 | 20.4 | 1020 | 0.6580 | 0.2638 | 0.3124 | 0.8320 | nan | 0.8716 | 0.9580 | 0.6106 | 0.7824 | 0.2688 | 0.0 | 0.4657 | 0.5675 | 0.0 | 0.9364 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3450 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.4323 | 0.3108 | 0.0 | 0.0 | 0.0 | 0.2097 | 0.0 | 0.0 | 0.9226 | 0.8574 | 0.9667 | 0.0 | 0.0 | 0.2240 | 0.0 | nan | 0.7318 | 0.8241 | 0.5236 | 0.7430 | 0.2310 | 0.0 | 0.3535 | 0.3745 | 0.0 | 0.8019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3327 | 0.0 | 0.0 | 0.6804 | 0.0 | 0.3154 | 0.2001 | 0.0 | 0.0 | 0.0 | 0.1933 | 0.0 | 0.0 | 0.8345 | 0.7404 | 0.9137 | 0.0 | 0.0 | 0.1768 | 0.0 |
| 0.4116 | 20.8 | 1040 | 0.6727 | 0.2634 | 0.3088 | 0.8344 | nan | 0.8931 | 0.9598 | 0.6058 | 0.7902 | 0.2737 | 0.0 | 0.4378 | 0.5670 | 0.0 | 0.9385 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3090 | 0.0 | 0.0 | 0.8957 | 0.0 | 0.3829 | 0.2471 | 0.0 | 0.0 | 0.0 | 0.2405 | 0.0 | 0.0 | 0.9260 | 0.8616 | 0.9612 | 0.0 | 0.0 | 0.2085 | 0.0 | nan | 0.7426 | 0.8232 | 0.5412 | 0.7417 | 0.2388 | 0.0 | 0.3514 | 0.3729 | 0.0 | 0.7984 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2989 | 0.0 | 0.0 | 0.6842 | 0.0 | 0.3072 | 0.1826 | 0.0 | 0.0 | 0.0 | 0.2174 | 0.0 | 0.0 | 0.8303 | 0.7357 | 0.9163 | 0.0 | 0.0 | 0.1736 | 0.0 |
| 0.422 | 21.2 | 1060 | 0.6688 | 0.2681 | 0.3141 | 0.8333 | nan | 0.8560 | 0.9509 | 0.5973 | 0.8216 | 0.3325 | 0.0 | 0.4396 | 0.5635 | 0.0 | 0.9370 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4310 | 0.0 | 0.0 | 0.9214 | 0.0 | 0.3744 | 0.2274 | 0.0 | 0.0 | 0.0 | 0.2551 | 0.0 | 0.0 | 0.9186 | 0.8724 | 0.9636 | 0.0 | 0.0 | 0.2176 | 0.0 | nan | 0.7133 | 0.8257 | 0.5657 | 0.7377 | 0.2744 | 0.0 | 0.3530 | 0.3860 | 0.0 | 0.8069 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4029 | 0.0 | 0.0 | 0.6819 | 0.0 | 0.2941 | 0.1799 | 0.0 | 0.0 | 0.0 | 0.2286 | 0.0 | 0.0 | 0.8336 | 0.7400 | 0.9167 | 0.0 | 0.0 | 0.1740 | 0.0 |
| 0.3686 | 21.6 | 1080 | 0.6515 | 0.2695 | 0.3171 | 0.8381 | nan | 0.9222 | 0.9530 | 0.6073 | 0.7765 | 0.3097 | 0.0 | 0.4667 | 0.6143 | 0.0 | 0.9413 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4369 | 0.0 | 0.0 | 0.9051 | 0.0 | 0.3810 | 0.2432 | 0.0 | 0.0 | 0.0 | 0.2461 | 0.0 | 0.0 | 0.9233 | 0.8697 | 0.9598 | 0.0 | 0.0 | 0.2258 | 0.0 | nan | 0.7351 | 0.8391 | 0.5477 | 0.7423 | 0.2621 | 0.0 | 0.3677 | 0.3792 | 0.0 | 0.7985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4059 | 0.0 | 0.0 | 0.6838 | 0.0 | 0.3067 | 0.1912 | 0.0 | 0.0 | 0.0 | 0.2229 | 0.0 | 0.0 | 0.8352 | 0.7458 | 0.9177 | 0.0 | 0.0 | 0.1822 | 0.0 |
| 0.3979 | 22.0 | 1100 | 0.6568 | 0.2693 | 0.3208 | 0.8330 | nan | 0.8615 | 0.9551 | 0.6160 | 0.7842 | 0.3245 | 0.0 | 0.4468 | 0.5568 | 0.0 | 0.9365 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4700 | 0.0 | 0.0 | 0.8862 | 0.0 | 0.4119 | 0.3784 | 0.0 | 0.0 | 0.0 | 0.2737 | 0.0 | 0.0 | 0.9224 | 0.8753 | 0.9673 | 0.0 | 0.0 | 0.2389 | 0.0 | nan | 0.7164 | 0.8363 | 0.4831 | 0.7147 | 0.2654 | 0.0 | 0.3574 | 0.3850 | 0.0 | 0.8012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4289 | 0.0 | 0.0 | 0.6866 | 0.0 | 0.3288 | 0.2315 | 0.0 | 0.0 | 0.0 | 0.2423 | 0.0 | 0.0 | 0.8331 | 0.7420 | 0.9164 | 0.0 | 0.0 | 0.1857 | 0.0 |
| 0.4441 | 22.4 | 1120 | 0.6608 | 0.2695 | 0.3167 | 0.8365 | nan | 0.9346 | 0.9529 | 0.5573 | 0.7570 | 0.2894 | 0.0 | 0.4630 | 0.5627 | 0.0 | 0.9363 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4252 | 0.0 | 0.0 | 0.8931 | 0.0 | 0.4402 | 0.3039 | 0.0 | 0.0 | 0.0 | 0.2724 | 0.0 | 0.0 | 0.9202 | 0.8783 | 0.9636 | 0.0 | 0.0 | 0.2175 | 0.0 | nan | 0.7278 | 0.8391 | 0.5251 | 0.7202 | 0.2519 | 0.0 | 0.3607 | 0.3867 | 0.0 | 0.8006 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3984 | 0.0 | 0.0 | 0.6891 | 0.0 | 0.3342 | 0.2181 | 0.0 | 0.0 | 0.0 | 0.2424 | 0.0 | 0.0 | 0.8331 | 0.7397 | 0.9175 | 0.0 | 0.0 | 0.1767 | 0.0 |
| 0.4551 | 22.8 | 1140 | 0.6578 | 0.2728 | 0.3240 | 0.8349 | nan | 0.9032 | 0.9512 | 0.5769 | 0.7527 | 0.3419 | 0.0 | 0.4811 | 0.6010 | 0.0 | 0.9427 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5591 | 0.0 | 0.0 | 0.9050 | 0.0 | 0.4264 | 0.3202 | 0.0 | 0.0 | 0.0 | 0.2784 | 0.0 | 0.0 | 0.9086 | 0.8781 | 0.9624 | 0.0 | 0.0 | 0.2286 | 0.0 | nan | 0.7093 | 0.8423 | 0.5256 | 0.7125 | 0.2784 | 0.0 | 0.3686 | 0.3908 | 0.0 | 0.8046 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4909 | 0.0 | 0.0 | 0.6934 | 0.0 | 0.3288 | 0.2186 | 0.0 | 0.0 | 0.0 | 0.2458 | 0.0 | 0.0 | 0.8315 | 0.7326 | 0.9183 | 0.0 | 0.0 | 0.1832 | 0.0 |
| 0.4407 | 23.2 | 1160 | 0.6450 | 0.2690 | 0.3193 | 0.8365 | nan | 0.9042 | 0.9432 | 0.6099 | 0.7794 | 0.3788 | 0.0 | 0.4657 | 0.6034 | 0.0 | 0.9444 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4627 | 0.0 | 0.0 | 0.9219 | 0.0 | 0.3212 | 0.2968 | 0.0 | 0.0 | 0.0 | 0.2736 | 0.0 | 0.0 | 0.9216 | 0.8775 | 0.9650 | 0.0 | 0.0 | 0.1872 | 0.0 | nan | 0.7256 | 0.8449 | 0.5092 | 0.7254 | 0.2939 | 0.0 | 0.3773 | 0.3916 | 0.0 | 0.7977 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4162 | 0.0 | 0.0 | 0.6820 | 0.0 | 0.2634 | 0.2125 | 0.0 | 0.0 | 0.0 | 0.2438 | 0.0 | 0.0 | 0.8376 | 0.7448 | 0.9180 | 0.0 | 0.0 | 0.1607 | 0.0 |
| 0.4254 | 23.6 | 1180 | 0.6625 | 0.2688 | 0.3188 | 0.8334 | nan | 0.9195 | 0.9530 | 0.6182 | 0.6861 | 0.3235 | 0.0 | 0.4638 | 0.5651 | 0.0 | 0.9376 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5024 | 0.0 | 0.0 | 0.8938 | 0.0 | 0.3684 | 0.3308 | 0.0 | 0.0 | 0.0 | 0.2762 | 0.0 | 0.0 | 0.9336 | 0.8559 | 0.9677 | 0.0 | 0.0 | 0.2428 | 0.0 | nan | 0.6894 | 0.8508 | 0.4903 | 0.6638 | 0.2781 | 0.0 | 0.3752 | 0.3880 | 0.0 | 0.8096 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4447 | 0.0 | 0.0 | 0.6880 | 0.0 | 0.3020 | 0.2205 | 0.0 | 0.0 | 0.0 | 0.2448 | 0.0 | 0.0 | 0.8333 | 0.7482 | 0.9180 | 0.0 | 0.0 | 0.1936 | 0.0 |
| 0.3237 | 24.0 | 1200 | 0.6369 | 0.2716 | 0.3205 | 0.8382 | nan | 0.9325 | 0.9453 | 0.5367 | 0.7718 | 0.3618 | 0.0 | 0.4612 | 0.6096 | 0.0 | 0.9404 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4799 | 0.0 | 0.0 | 0.8972 | 0.0 | 0.4341 | 0.2409 | 0.0 | 0.0 | 0.0 | 0.2640 | 0.0 | 0.0 | 0.9304 | 0.8631 | 0.9614 | 0.0 | 0.0 | 0.2649 | 0.0 | nan | 0.7146 | 0.8491 | 0.5225 | 0.7157 | 0.2907 | 0.0 | 0.3681 | 0.3802 | 0.0 | 0.8074 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4313 | 0.0 | 0.0 | 0.6964 | 0.0 | 0.3215 | 0.1884 | 0.0 | 0.0 | 0.0 | 0.2369 | 0.0 | 0.0 | 0.8355 | 0.7482 | 0.9192 | 0.0 | 0.0 | 0.2078 | 0.0 |
| 0.365 | 24.4 | 1220 | 0.6506 | 0.2730 | 0.3214 | 0.8385 | nan | 0.9277 | 0.9542 | 0.5852 | 0.7626 | 0.2932 | 0.0 | 0.4719 | 0.5930 | 0.0 | 0.9376 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5711 | 0.0 | 0.0 | 0.9051 | 0.0 | 0.4031 | 0.2609 | 0.0 | 0.0 | 0.0 | 0.2769 | 0.0 | 0.0 | 0.9232 | 0.8704 | 0.9705 | 0.0 | 0.0 | 0.2199 | 0.0 | nan | 0.7176 | 0.8458 | 0.5448 | 0.7225 | 0.2537 | 0.0 | 0.3714 | 0.3947 | 0.0 | 0.8089 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4881 | 0.0 | 0.0 | 0.6931 | 0.0 | 0.3242 | 0.1968 | 0.0 | 0.0 | 0.0 | 0.2446 | 0.0 | 0.0 | 0.8333 | 0.7446 | 0.9172 | 0.0 | 0.0 | 0.1814 | 0.0 |
| 0.4789 | 24.8 | 1240 | 0.6483 | 0.2759 | 0.3270 | 0.8389 | nan | 0.9107 | 0.9543 | 0.6023 | 0.7839 | 0.2900 | 0.0 | 0.4549 | 0.5867 | 0.0 | 0.9412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6129 | 0.0 | 0.0 | 0.8747 | 0.0 | 0.4464 | 0.3362 | 0.0 | 0.0 | 0.0 | 0.2824 | 0.0 | 0.0 | 0.9350 | 0.8723 | 0.9630 | 0.0 | 0.0 | 0.2702 | 0.0 | nan | 0.7231 | 0.8439 | 0.5571 | 0.7132 | 0.2529 | 0.0 | 0.3650 | 0.3984 | 0.0 | 0.8099 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5013 | 0.0 | 0.0 | 0.7005 | 0.0 | 0.3384 | 0.2177 | 0.0 | 0.0 | 0.0 | 0.2474 | 0.0 | 0.0 | 0.8330 | 0.7510 | 0.9199 | 0.0 | 0.0 | 0.2094 | 0.0 |
| 0.5162 | 25.2 | 1260 | 0.6464 | 0.2760 | 0.3278 | 0.8383 | nan | 0.9063 | 0.9529 | 0.6199 | 0.7501 | 0.3129 | 0.0 | 0.4830 | 0.6013 | 0.0 | 0.9348 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6178 | 0.0 | 0.0 | 0.8908 | 0.0 | 0.4529 | 0.2548 | 0.0 | 0.0 | 0.0 | 0.3034 | 0.0 | 0.0 | 0.9285 | 0.8805 | 0.9658 | 0.0 | 0.0 | 0.2889 | 0.0 | nan | 0.7113 | 0.8456 | 0.5127 | 0.7169 | 0.2679 | 0.0 | 0.3825 | 0.3913 | 0.0 | 0.8162 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5243 | 0.0 | 0.0 | 0.7037 | 0.0 | 0.3354 | 0.1923 | 0.0 | 0.0 | 0.0 | 0.2616 | 0.0 | 0.0 | 0.8367 | 0.7464 | 0.9201 | 0.0 | 0.0 | 0.2177 | 0.0 |
| 0.3914 | 25.6 | 1280 | 0.6455 | 0.2748 | 0.3256 | 0.8379 | nan | 0.9405 | 0.9451 | 0.5647 | 0.7560 | 0.3129 | 0.0 | 0.4521 | 0.5869 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6490 | 0.0 | 0.0 | 0.8990 | 0.0 | 0.3980 | 0.3299 | 0.0 | 0.0 | 0.0 | 0.3075 | 0.0 | 0.0 | 0.9318 | 0.8666 | 0.9697 | 0.0 | 0.0 | 0.2156 | 0.0 | nan | 0.7086 | 0.8472 | 0.5238 | 0.7070 | 0.2627 | 0.0 | 0.3769 | 0.4007 | 0.0 | 0.8069 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5155 | 0.0 | 0.0 | 0.6933 | 0.0 | 0.3223 | 0.2192 | 0.0 | 0.0 | 0.0 | 0.2646 | 0.0 | 0.0 | 0.8382 | 0.7529 | 0.9194 | 0.0 | 0.0 | 0.1835 | 0.0 |
| 0.3738 | 26.0 | 1300 | 0.6373 | 0.2726 | 0.3267 | 0.8361 | nan | 0.8998 | 0.9382 | 0.5957 | 0.7798 | 0.3951 | 0.0 | 0.5195 | 0.5915 | 0.0 | 0.9516 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5415 | 0.0 | 0.0 | 0.8902 | 0.0 | 0.4308 | 0.2702 | 0.0 | 0.0 | 0.0 | 0.2883 | 0.0 | 0.0 | 0.9131 | 0.9061 | 0.9652 | 0.0 | 0.0 | 0.2309 | 0.0 | nan | 0.7155 | 0.8478 | 0.5211 | 0.7238 | 0.2994 | 0.0 | 0.3901 | 0.3975 | 0.0 | 0.7894 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4424 | 0.0 | 0.0 | 0.6989 | 0.0 | 0.3224 | 0.2038 | 0.0 | 0.0 | 0.0 | 0.2529 | 0.0 | 0.0 | 0.8274 | 0.7245 | 0.9210 | 0.0 | 0.0 | 0.1919 | 0.0 |
| 0.3512 | 26.4 | 1320 | 0.6418 | 0.2763 | 0.3321 | 0.8362 | nan | 0.9184 | 0.9437 | 0.6087 | 0.7657 | 0.3338 | 0.0 | 0.4730 | 0.5723 | 0.0 | 0.9370 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6904 | 0.0 | 0.0 | 0.8705 | 0.0 | 0.4566 | 0.3468 | 0.0 | 0.0 | 0.0 | 0.3086 | 0.0 | 0.0 | 0.9188 | 0.8848 | 0.9680 | 0.0 | 0.0 | 0.2939 | 0.0 | nan | 0.7141 | 0.8468 | 0.5263 | 0.6994 | 0.2719 | 0.0 | 0.3787 | 0.4026 | 0.0 | 0.8163 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5194 | 0.0 | 0.0 | 0.6977 | 0.0 | 0.3261 | 0.2179 | 0.0 | 0.0 | 0.0 | 0.2645 | 0.0 | 0.0 | 0.8347 | 0.7424 | 0.9208 | 0.0 | 0.0 | 0.2151 | 0.0 |
| 0.4588 | 26.8 | 1340 | 0.6435 | 0.2748 | 0.3252 | 0.8395 | nan | 0.8778 | 0.9551 | 0.6037 | 0.8296 | 0.2888 | 0.0 | 0.4736 | 0.6074 | 0.0 | 0.9403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5804 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.4158 | 0.2494 | 0.0 | 0.0 | 0.0 | 0.2931 | 0.0 | 0.0 | 0.9314 | 0.8776 | 0.9691 | 0.0 | 0.0 | 0.2711 | 0.0 | nan | 0.7259 | 0.8395 | 0.5360 | 0.7373 | 0.2532 | 0.0 | 0.3753 | 0.3901 | 0.0 | 0.8111 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4937 | 0.0 | 0.0 | 0.7002 | 0.0 | 0.3175 | 0.1880 | 0.0 | 0.0 | 0.0 | 0.2560 | 0.0 | 0.0 | 0.8377 | 0.7488 | 0.9216 | 0.0 | 0.0 | 0.2116 | 0.0 |
| 0.3339 | 27.2 | 1360 | 0.6434 | 0.2732 | 0.3252 | 0.8375 | nan | 0.9120 | 0.9427 | 0.6126 | 0.7717 | 0.3484 | 0.0 | 0.4983 | 0.5931 | 0.0 | 0.9441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6112 | 0.0 | 0.0 | 0.9134 | 0.0 | 0.3259 | 0.2733 | 0.0 | 0.0 | 0.0 | 0.2995 | 0.0 | 0.0 | 0.9217 | 0.8908 | 0.9681 | 0.0 | 0.0 | 0.2298 | 0.0 | nan | 0.7060 | 0.8513 | 0.5062 | 0.7258 | 0.2805 | 0.0 | 0.3963 | 0.3985 | 0.0 | 0.8093 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4980 | 0.0 | 0.0 | 0.6925 | 0.0 | 0.2695 | 0.2074 | 0.0 | 0.0 | 0.0 | 0.2605 | 0.0 | 0.0 | 0.8341 | 0.7418 | 0.9222 | 0.0 | 0.0 | 0.1907 | 0.0 |
| 0.3599 | 27.6 | 1380 | 0.6405 | 0.2755 | 0.3266 | 0.8384 | nan | 0.9207 | 0.9422 | 0.6103 | 0.7769 | 0.3508 | 0.0 | 0.4741 | 0.5936 | 0.0 | 0.9373 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6317 | 0.0 | 0.0 | 0.9056 | 0.0 | 0.3968 | 0.2528 | 0.0 | 0.0 | 0.0 | 0.3090 | 0.0 | 0.0 | 0.9369 | 0.8342 | 0.9656 | 0.0 | 0.0 | 0.2645 | 0.0 | nan | 0.7140 | 0.8470 | 0.5370 | 0.7255 | 0.2798 | 0.0 | 0.3807 | 0.3961 | 0.0 | 0.8127 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4994 | 0.0 | 0.0 | 0.6990 | 0.0 | 0.3122 | 0.1956 | 0.0 | 0.0 | 0.0 | 0.2654 | 0.0 | 0.0 | 0.8335 | 0.7405 | 0.9227 | 0.0 | 0.0 | 0.2059 | 0.0 |
| 0.4722 | 28.0 | 1400 | 0.6423 | 0.2776 | 0.3307 | 0.8391 | nan | 0.8828 | 0.9548 | 0.6152 | 0.7934 | 0.3135 | 0.0 | 0.4904 | 0.5925 | 0.0 | 0.9444 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6486 | 0.0 | 0.0 | 0.8909 | 0.0 | 0.4174 | 0.3296 | 0.0 | 0.0 | 0.0 | 0.3117 | 0.0 | 0.0 | 0.9236 | 0.8846 | 0.9647 | 0.0 | 0.0 | 0.2867 | 0.0 | nan | 0.7319 | 0.8373 | 0.5339 | 0.7168 | 0.2670 | 0.0 | 0.3887 | 0.3930 | 0.0 | 0.8085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5058 | 0.0 | 0.0 | 0.7043 | 0.0 | 0.3277 | 0.2334 | 0.0 | 0.0 | 0.0 | 0.2652 | 0.0 | 0.0 | 0.8358 | 0.7486 | 0.9243 | 0.0 | 0.0 | 0.2164 | 0.0 |
| 0.3999 | 28.4 | 1420 | 0.6573 | 0.2758 | 0.3279 | 0.8344 | nan | 0.9074 | 0.9564 | 0.6044 | 0.6972 | 0.3170 | 0.0 | 0.4638 | 0.5768 | 0.0 | 0.9393 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6698 | 0.0 | 0.0 | 0.8872 | 0.0 | 0.4259 | 0.3229 | 0.0 | 0.0 | 0.0 | 0.3066 | 0.0 | 0.0 | 0.9183 | 0.8809 | 0.9685 | 0.0 | 0.0 | 0.3048 | 0.0 | nan | 0.7038 | 0.8367 | 0.5552 | 0.6687 | 0.2655 | 0.0 | 0.3707 | 0.3920 | 0.0 | 0.8207 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5299 | 0.0 | 0.0 | 0.7058 | 0.0 | 0.3154 | 0.2230 | 0.0 | 0.0 | 0.0 | 0.2644 | 0.0 | 0.0 | 0.8368 | 0.7440 | 0.9234 | 0.0 | 0.0 | 0.2197 | 0.0 |
| 0.3251 | 28.8 | 1440 | 0.6375 | 0.2770 | 0.3291 | 0.8408 | nan | 0.9199 | 0.9489 | 0.6086 | 0.7769 | 0.3191 | 0.0 | 0.4958 | 0.5862 | 0.0 | 0.9461 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6409 | 0.0 | 0.0 | 0.8994 | 0.0 | 0.4118 | 0.2941 | 0.0 | 0.0 | 0.0 | 0.3050 | 0.0 | 0.0 | 0.9265 | 0.8786 | 0.9683 | 0.0 | 0.0 | 0.2619 | 0.0 | nan | 0.7236 | 0.8482 | 0.5358 | 0.7290 | 0.2666 | 0.0 | 0.3854 | 0.3929 | 0.0 | 0.8090 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5036 | 0.0 | 0.0 | 0.7042 | 0.0 | 0.3149 | 0.2207 | 0.0 | 0.0 | 0.0 | 0.2649 | 0.0 | 0.0 | 0.8387 | 0.7519 | 0.9235 | 0.0 | 0.0 | 0.2062 | 0.0 |
| 0.3289 | 29.2 | 1460 | 0.6556 | 0.2768 | 0.3296 | 0.8362 | nan | 0.9273 | 0.9485 | 0.5861 | 0.6879 | 0.3439 | 0.0 | 0.4798 | 0.6059 | 0.0 | 0.9416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6749 | 0.0 | 0.0 | 0.8971 | 0.0 | 0.4096 | 0.3502 | 0.0 | 0.0 | 0.0 | 0.3222 | 0.0 | 0.0 | 0.9308 | 0.8716 | 0.9684 | 0.0 | 0.0 | 0.2596 | 0.0 | nan | 0.6921 | 0.8489 | 0.5571 | 0.6606 | 0.2774 | 0.0 | 0.3801 | 0.3953 | 0.0 | 0.8177 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5192 | 0.0 | 0.0 | 0.7043 | 0.0 | 0.3281 | 0.2382 | 0.0 | 0.0 | 0.0 | 0.2725 | 0.0 | 0.0 | 0.8351 | 0.7541 | 0.9241 | 0.0 | 0.0 | 0.2073 | 0.0 |
| 0.3227 | 29.6 | 1480 | 0.6274 | 0.2803 | 0.3334 | 0.8430 | nan | 0.9079 | 0.9456 | 0.6035 | 0.8309 | 0.3371 | 0.0 | 0.4808 | 0.5824 | 0.0 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6828 | 0.0 | 0.0 | 0.8969 | 0.0 | 0.4624 | 0.3205 | 0.0 | 0.0 | 0.0 | 0.3089 | 0.0 | 0.0 | 0.9276 | 0.8832 | 0.9688 | 0.0 | 0.0 | 0.2577 | 0.0 | nan | 0.7452 | 0.8459 | 0.5544 | 0.7339 | 0.2753 | 0.0 | 0.3877 | 0.3953 | 0.0 | 0.8192 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5186 | 0.0 | 0.0 | 0.7039 | 0.0 | 0.3355 | 0.2291 | 0.0 | 0.0 | 0.0 | 0.2654 | 0.0 | 0.0 | 0.8382 | 0.7490 | 0.9239 | 0.0 | 0.0 | 0.2088 | 0.0 |
| 0.4271 | 30.0 | 1500 | 0.6412 | 0.2769 | 0.3306 | 0.8382 | nan | 0.9016 | 0.9544 | 0.6153 | 0.7497 | 0.3307 | 0.0 | 0.4845 | 0.5851 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6663 | 0.0 | 0.0 | 0.9019 | 0.0 | 0.4165 | 0.3538 | 0.0 | 0.0 | 0.0 | 0.3151 | 0.0 | 0.0 | 0.9151 | 0.8806 | 0.9701 | 0.0 | 0.0 | 0.2557 | 0.0 | nan | 0.7166 | 0.8431 | 0.5148 | 0.7143 | 0.2745 | 0.0 | 0.3858 | 0.3937 | 0.0 | 0.8110 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5152 | 0.0 | 0.0 | 0.7040 | 0.0 | 0.3288 | 0.2387 | 0.0 | 0.0 | 0.0 | 0.2693 | 0.0 | 0.0 | 0.8363 | 0.7431 | 0.9235 | 0.0 | 0.0 | 0.2023 | 0.0 |
| 0.2996 | 30.4 | 1520 | 0.6320 | 0.2803 | 0.3323 | 0.8430 | nan | 0.9176 | 0.9528 | 0.5870 | 0.8010 | 0.3246 | 0.0 | 0.4829 | 0.5975 | 0.0 | 0.9428 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6519 | 0.0 | 0.0 | 0.8888 | 0.0 | 0.4324 | 0.3396 | 0.0 | 0.0 | 0.0 | 0.3139 | 0.0 | 0.0 | 0.9282 | 0.8780 | 0.9651 | 0.0 | 0.0 | 0.2940 | 0.0 | nan | 0.7387 | 0.8443 | 0.5328 | 0.7418 | 0.2720 | 0.0 | 0.3946 | 0.3908 | 0.0 | 0.8167 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5156 | 0.0 | 0.0 | 0.7091 | 0.0 | 0.3351 | 0.2379 | 0.0 | 0.0 | 0.0 | 0.2681 | 0.0 | 0.0 | 0.8362 | 0.7528 | 0.9250 | 0.0 | 0.0 | 0.2202 | 0.0 |
| 0.3392 | 30.8 | 1540 | 0.6255 | 0.2797 | 0.3345 | 0.8414 | nan | 0.8964 | 0.9477 | 0.6256 | 0.7851 | 0.3788 | 0.0 | 0.4961 | 0.5916 | 0.0 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6616 | 0.0 | 0.0 | 0.8897 | 0.0 | 0.4526 | 0.3530 | 0.0 | 0.0 | 0.0 | 0.3145 | 0.0 | 0.0 | 0.9310 | 0.8777 | 0.9663 | 0.0 | 0.0 | 0.2673 | 0.0 | nan | 0.7268 | 0.8503 | 0.4849 | 0.7355 | 0.3015 | 0.0 | 0.3984 | 0.3966 | 0.0 | 0.8222 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5235 | 0.0 | 0.0 | 0.7054 | 0.0 | 0.3339 | 0.2396 | 0.0 | 0.0 | 0.0 | 0.2685 | 0.0 | 0.0 | 0.8372 | 0.7534 | 0.9251 | 0.0 | 0.0 | 0.2059 | 0.0 |
| 0.2965 | 31.2 | 1560 | 0.6367 | 0.2789 | 0.3312 | 0.8415 | nan | 0.9269 | 0.9523 | 0.5961 | 0.7622 | 0.3118 | 0.0 | 0.4969 | 0.6140 | 0.0 | 0.9472 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6352 | 0.0 | 0.0 | 0.8980 | 0.0 | 0.4180 | 0.3364 | 0.0 | 0.0 | 0.0 | 0.3069 | 0.0 | 0.0 | 0.9211 | 0.8850 | 0.9695 | 0.0 | 0.0 | 0.2831 | 0.0 | nan | 0.7329 | 0.8441 | 0.5433 | 0.7287 | 0.2676 | 0.0 | 0.3809 | 0.3910 | 0.0 | 0.8149 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5191 | 0.0 | 0.0 | 0.7090 | 0.0 | 0.3280 | 0.2362 | 0.0 | 0.0 | 0.0 | 0.2642 | 0.0 | 0.0 | 0.8376 | 0.7476 | 0.9244 | 0.0 | 0.0 | 0.2140 | 0.0 |
| 0.3831 | 31.6 | 1580 | 0.6300 | 0.2812 | 0.3332 | 0.8429 | nan | 0.9094 | 0.9529 | 0.5967 | 0.7851 | 0.3383 | 0.0 | 0.4985 | 0.5956 | 0.0 | 0.9411 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6727 | 0.0 | 0.0 | 0.9011 | 0.0 | 0.4275 | 0.3208 | 0.0 | 0.0 | 0.0 | 0.3346 | 0.0 | 0.0 | 0.9285 | 0.8705 | 0.9694 | 0.0 | 0.0 | 0.2851 | 0.0 | nan | 0.7337 | 0.8445 | 0.5445 | 0.7378 | 0.2787 | 0.0 | 0.3846 | 0.3957 | 0.0 | 0.8222 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5248 | 0.0 | 0.0 | 0.7076 | 0.0 | 0.3366 | 0.2305 | 0.0 | 0.0 | 0.0 | 0.2797 | 0.0 | 0.0 | 0.8416 | 0.7545 | 0.9260 | 0.0 | 0.0 | 0.2181 | 0.0 |
| 0.3493 | 32.0 | 1600 | 0.6407 | 0.2785 | 0.3356 | 0.8400 | nan | 0.9012 | 0.9423 | 0.6217 | 0.7873 | 0.3749 | 0.0 | 0.4880 | 0.5983 | 0.0 | 0.9465 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6982 | 0.0 | 0.0 | 0.8913 | 0.0 | 0.4313 | 0.3725 | 0.0 | 0.0 | 0.0 | 0.3320 | 0.0 | 0.0 | 0.9243 | 0.8959 | 0.9695 | 0.0 | 0.0 | 0.2344 | 0.0 | nan | 0.7114 | 0.8536 | 0.5136 | 0.7126 | 0.2994 | 0.0 | 0.3924 | 0.3971 | 0.0 | 0.8130 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5163 | 0.0 | 0.0 | 0.7068 | 0.0 | 0.3303 | 0.2404 | 0.0 | 0.0 | 0.0 | 0.2795 | 0.0 | 0.0 | 0.8369 | 0.7481 | 0.9259 | 0.0 | 0.0 | 0.1920 | 0.0 |
| 0.3436 | 32.4 | 1620 | 0.6411 | 0.2797 | 0.3326 | 0.8412 | nan | 0.9267 | 0.9499 | 0.5514 | 0.7637 | 0.3525 | 0.0 | 0.5014 | 0.6383 | 0.0 | 0.9393 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6488 | 0.0 | 0.0 | 0.8973 | 0.0 | 0.4156 | 0.3836 | 0.0 | 0.0 | 0.0 | 0.3289 | 0.0 | 0.0 | 0.9348 | 0.8434 | 0.9690 | 0.0 | 0.0 | 0.2623 | 0.0 | nan | 0.7220 | 0.8468 | 0.5165 | 0.7270 | 0.2840 | 0.0 | 0.3934 | 0.3914 | 0.0 | 0.8211 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5100 | 0.0 | 0.0 | 0.7055 | 0.0 | 0.3275 | 0.2602 | 0.0 | 0.0 | 0.0 | 0.2775 | 0.0 | 0.0 | 0.8389 | 0.7518 | 0.9259 | 0.0 | 0.0 | 0.2099 | 0.0 |
| 0.3519 | 32.8 | 1640 | 0.6279 | 0.2803 | 0.3326 | 0.8424 | nan | 0.9006 | 0.9528 | 0.5944 | 0.8234 | 0.3076 | 0.0 | 0.4970 | 0.5845 | 0.0 | 0.9431 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6655 | 0.0 | 0.0 | 0.8913 | 0.0 | 0.4559 | 0.3274 | 0.0 | 0.0 | 0.0 | 0.3196 | 0.0 | 0.0 | 0.9211 | 0.8900 | 0.9693 | 0.0 | 0.0 | 0.2651 | 0.0 | nan | 0.7445 | 0.8418 | 0.5386 | 0.7479 | 0.2611 | 0.0 | 0.3900 | 0.4008 | 0.0 | 0.8198 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5284 | 0.0 | 0.0 | 0.7091 | 0.0 | 0.3360 | 0.2321 | 0.0 | 0.0 | 0.0 | 0.2734 | 0.0 | 0.0 | 0.8349 | 0.7426 | 0.9262 | 0.0 | 0.0 | 0.2026 | 0.0 |
| 0.4359 | 33.2 | 1660 | 0.6426 | 0.2794 | 0.3331 | 0.8414 | nan | 0.9304 | 0.9499 | 0.6014 | 0.7611 | 0.3188 | 0.0 | 0.4850 | 0.6366 | 0.0 | 0.9443 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6564 | 0.0 | 0.0 | 0.8743 | 0.0 | 0.4532 | 0.3225 | 0.0 | 0.0 | 0.0 | 0.3332 | 0.0 | 0.0 | 0.9382 | 0.8668 | 0.9680 | 0.0 | 0.0 | 0.2871 | 0.0 | nan | 0.7254 | 0.8473 | 0.5447 | 0.7218 | 0.2699 | 0.0 | 0.3871 | 0.3876 | 0.0 | 0.8191 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5169 | 0.0 | 0.0 | 0.7093 | 0.0 | 0.3314 | 0.2280 | 0.0 | 0.0 | 0.0 | 0.2796 | 0.0 | 0.0 | 0.8370 | 0.7538 | 0.9272 | 0.0 | 0.0 | 0.2141 | 0.0 |
| 0.2864 | 33.6 | 1680 | 0.6615 | 0.2758 | 0.3289 | 0.8372 | nan | 0.9209 | 0.9509 | 0.6063 | 0.6941 | 0.3526 | 0.0 | 0.5022 | 0.6105 | 0.0 | 0.9401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6613 | 0.0 | 0.0 | 0.9223 | 0.0 | 0.3529 | 0.3426 | 0.0 | 0.0 | 0.0 | 0.3352 | 0.0 | 0.0 | 0.9148 | 0.8885 | 0.9698 | 0.0 | 0.0 | 0.2183 | 0.0 | nan | 0.7027 | 0.8478 | 0.5329 | 0.6720 | 0.2889 | 0.0 | 0.3945 | 0.3956 | 0.0 | 0.8200 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5033 | 0.0 | 0.0 | 0.6960 | 0.0 | 0.2995 | 0.2472 | 0.0 | 0.0 | 0.0 | 0.2831 | 0.0 | 0.0 | 0.8392 | 0.7452 | 0.9262 | 0.0 | 0.0 | 0.1834 | 0.0 |
| 0.2795 | 34.0 | 1700 | 0.6369 | 0.2810 | 0.3350 | 0.8426 | nan | 0.9120 | 0.9520 | 0.6168 | 0.7708 | 0.3537 | 0.0 | 0.4978 | 0.5937 | 0.0 | 0.9442 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6760 | 0.0 | 0.0 | 0.8977 | 0.0 | 0.4292 | 0.3539 | 0.0 | 0.0 | 0.0 | 0.3445 | 0.0 | 0.0 | 0.9238 | 0.8757 | 0.9703 | 0.0 | 0.0 | 0.2783 | 0.0 | nan | 0.7260 | 0.8481 | 0.5226 | 0.7362 | 0.2894 | 0.0 | 0.3964 | 0.3960 | 0.0 | 0.8202 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5116 | 0.0 | 0.0 | 0.7095 | 0.0 | 0.3331 | 0.2424 | 0.0 | 0.0 | 0.0 | 0.2883 | 0.0 | 0.0 | 0.8397 | 0.7539 | 0.9264 | 0.0 | 0.0 | 0.2139 | 0.0 |
| 0.2809 | 34.4 | 1720 | 0.6342 | 0.2803 | 0.3341 | 0.8432 | nan | 0.9144 | 0.9513 | 0.5907 | 0.7914 | 0.3386 | 0.0 | 0.5002 | 0.6073 | 0.0 | 0.9444 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6870 | 0.0 | 0.0 | 0.8900 | 0.0 | 0.4229 | 0.3337 | 0.0 | 0.0 | 0.0 | 0.3399 | 0.0 | 0.0 | 0.9301 | 0.8865 | 0.9689 | 0.0 | 0.0 | 0.2613 | 0.0 | nan | 0.7315 | 0.8487 | 0.5274 | 0.7364 | 0.2840 | 0.0 | 0.3930 | 0.3953 | 0.0 | 0.8166 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5111 | 0.0 | 0.0 | 0.7087 | 0.0 | 0.3336 | 0.2379 | 0.0 | 0.0 | 0.0 | 0.2834 | 0.0 | 0.0 | 0.8369 | 0.7519 | 0.9277 | 0.0 | 0.0 | 0.2047 | 0.0 |
| 0.2926 | 34.8 | 1740 | 0.6361 | 0.2805 | 0.3333 | 0.8417 | nan | 0.9156 | 0.9475 | 0.6039 | 0.7719 | 0.3567 | 0.0 | 0.5087 | 0.5719 | 0.0 | 0.9427 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6924 | 0.0 | 0.0 | 0.9058 | 0.0 | 0.3941 | 0.3460 | 0.0 | 0.0 | 0.0 | 0.3368 | 0.0 | 0.0 | 0.9269 | 0.8690 | 0.9715 | 0.0 | 0.0 | 0.2698 | 0.0 | nan | 0.7200 | 0.8492 | 0.5450 | 0.7109 | 0.2920 | 0.0 | 0.3954 | 0.4026 | 0.0 | 0.8197 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5170 | 0.0 | 0.0 | 0.7056 | 0.0 | 0.3175 | 0.2451 | 0.0 | 0.0 | 0.0 | 0.2846 | 0.0 | 0.0 | 0.8415 | 0.7558 | 0.9275 | 0.0 | 0.0 | 0.2081 | 0.0 |
| 0.3475 | 35.2 | 1760 | 0.6425 | 0.2810 | 0.3359 | 0.8420 | nan | 0.9072 | 0.9492 | 0.6142 | 0.7957 | 0.3298 | 0.0 | 0.4928 | 0.5961 | 0.0 | 0.9413 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7089 | 0.0 | 0.0 | 0.8849 | 0.0 | 0.4386 | 0.3497 | 0.0 | 0.0 | 0.0 | 0.3410 | 0.0 | 0.0 | 0.9280 | 0.8849 | 0.9715 | 0.0 | 0.0 | 0.2870 | 0.0 | nan | 0.7278 | 0.8464 | 0.5424 | 0.7240 | 0.2750 | 0.0 | 0.3918 | 0.3997 | 0.0 | 0.8241 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5166 | 0.0 | 0.0 | 0.7098 | 0.0 | 0.3390 | 0.2400 | 0.0 | 0.0 | 0.0 | 0.2865 | 0.0 | 0.0 | 0.8361 | 0.7514 | 0.9274 | 0.0 | 0.0 | 0.2172 | 0.0 |
| 0.3079 | 35.6 | 1780 | 0.6318 | 0.2815 | 0.3353 | 0.8421 | nan | 0.8986 | 0.9491 | 0.6034 | 0.7912 | 0.3674 | 0.0 | 0.5018 | 0.5996 | 0.0 | 0.9460 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6846 | 0.0 | 0.0 | 0.8921 | 0.0 | 0.4470 | 0.3286 | 0.0 | 0.0 | 0.0 | 0.3315 | 0.0 | 0.0 | 0.9285 | 0.8754 | 0.9703 | 0.0 | 0.0 | 0.2843 | 0.0 | nan | 0.7219 | 0.8490 | 0.5500 | 0.7212 | 0.2938 | 0.0 | 0.3942 | 0.3987 | 0.0 | 0.8225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5247 | 0.0 | 0.0 | 0.7107 | 0.0 | 0.3360 | 0.2305 | 0.0 | 0.0 | 0.0 | 0.2817 | 0.0 | 0.0 | 0.8399 | 0.7553 | 0.9282 | 0.0 | 0.0 | 0.2137 | 0.0 |
| 0.3387 | 36.0 | 1800 | 0.6398 | 0.2806 | 0.3351 | 0.8414 | nan | 0.9147 | 0.9487 | 0.6065 | 0.7587 | 0.3486 | 0.0 | 0.5085 | 0.6111 | 0.0 | 0.9467 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6779 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.3925 | 0.3676 | 0.0 | 0.0 | 0.0 | 0.3387 | 0.0 | 0.0 | 0.9234 | 0.8892 | 0.9718 | 0.0 | 0.0 | 0.2900 | 0.0 | nan | 0.7073 | 0.8535 | 0.5247 | 0.7137 | 0.2883 | 0.0 | 0.4003 | 0.4007 | 0.0 | 0.8207 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5182 | 0.0 | 0.0 | 0.7085 | 0.0 | 0.3295 | 0.2525 | 0.0 | 0.0 | 0.0 | 0.2841 | 0.0 | 0.0 | 0.8374 | 0.7504 | 0.9273 | 0.0 | 0.0 | 0.2232 | 0.0 |
| 0.353 | 36.4 | 1820 | 0.6366 | 0.2812 | 0.3340 | 0.8429 | nan | 0.8990 | 0.9528 | 0.5851 | 0.7833 | 0.3531 | 0.0 | 0.5036 | 0.6333 | 0.0 | 0.9468 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6623 | 0.0 | 0.0 | 0.9047 | 0.0 | 0.3893 | 0.3411 | 0.0 | 0.0 | 0.0 | 0.3444 | 0.0 | 0.0 | 0.9330 | 0.8748 | 0.9680 | 0.0 | 0.0 | 0.2812 | 0.0 | nan | 0.7231 | 0.8457 | 0.5366 | 0.7293 | 0.2918 | 0.0 | 0.3941 | 0.3964 | 0.0 | 0.8177 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5151 | 0.0 | 0.0 | 0.7096 | 0.0 | 0.3197 | 0.2451 | 0.0 | 0.0 | 0.0 | 0.2880 | 0.0 | 0.0 | 0.8415 | 0.7584 | 0.9291 | 0.0 | 0.0 | 0.2203 | 0.0 |
| 0.3651 | 36.8 | 1840 | 0.6441 | 0.2809 | 0.3325 | 0.8417 | nan | 0.9112 | 0.9519 | 0.6114 | 0.7513 | 0.3439 | 0.0 | 0.5112 | 0.5639 | 0.0 | 0.9406 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6871 | 0.0 | 0.0 | 0.9136 | 0.0 | 0.4066 | 0.3437 | 0.0 | 0.0 | 0.0 | 0.3372 | 0.0 | 0.0 | 0.9259 | 0.8716 | 0.9707 | 0.0 | 0.0 | 0.2644 | 0.0 | nan | 0.7087 | 0.8503 | 0.5294 | 0.7131 | 0.2885 | 0.0 | 0.4001 | 0.4039 | 0.0 | 0.8261 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5293 | 0.0 | 0.0 | 0.7053 | 0.0 | 0.3313 | 0.2438 | 0.0 | 0.0 | 0.0 | 0.2856 | 0.0 | 0.0 | 0.8430 | 0.7564 | 0.9282 | 0.0 | 0.0 | 0.2072 | 0.0 |
| 0.3073 | 37.2 | 1860 | 0.6468 | 0.2810 | 0.3346 | 0.8406 | nan | 0.9223 | 0.9433 | 0.6039 | 0.7368 | 0.3718 | 0.0 | 0.5138 | 0.6017 | 0.0 | 0.9489 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6509 | 0.0 | 0.0 | 0.8915 | 0.0 | 0.4196 | 0.3052 | 0.0 | 0.0 | 0.0 | 0.3519 | 0.0 | 0.0 | 0.9278 | 0.8895 | 0.9719 | 0.0 | 0.0 | 0.3263 | 0.0 | nan | 0.7052 | 0.8516 | 0.5366 | 0.7012 | 0.2969 | 0.0 | 0.4010 | 0.4007 | 0.0 | 0.8187 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5200 | 0.0 | 0.0 | 0.7125 | 0.0 | 0.3332 | 0.2251 | 0.0 | 0.0 | 0.0 | 0.2916 | 0.0 | 0.0 | 0.8387 | 0.7544 | 0.9276 | 0.0 | 0.0 | 0.2398 | 0.0 |
| 0.4331 | 37.6 | 1880 | 0.6398 | 0.2816 | 0.3362 | 0.8424 | nan | 0.9012 | 0.9534 | 0.6108 | 0.7906 | 0.3207 | 0.0 | 0.5132 | 0.5980 | 0.0 | 0.9424 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7046 | 0.0 | 0.0 | 0.8988 | 0.0 | 0.4445 | 0.3527 | 0.0 | 0.0 | 0.0 | 0.3542 | 0.0 | 0.0 | 0.9206 | 0.8769 | 0.9700 | 0.0 | 0.0 | 0.2780 | 0.0 | nan | 0.7220 | 0.8473 | 0.5391 | 0.7306 | 0.2707 | 0.0 | 0.3963 | 0.4018 | 0.0 | 0.8242 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5264 | 0.0 | 0.0 | 0.7122 | 0.0 | 0.3363 | 0.2354 | 0.0 | 0.0 | 0.0 | 0.2949 | 0.0 | 0.0 | 0.8415 | 0.7557 | 0.9286 | 0.0 | 0.0 | 0.2124 | 0.0 |
| 0.3336 | 38.0 | 1900 | 0.6402 | 0.2813 | 0.3366 | 0.8419 | nan | 0.9057 | 0.9474 | 0.6130 | 0.7764 | 0.3629 | 0.0 | 0.4953 | 0.6091 | 0.0 | 0.9453 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7066 | 0.0 | 0.0 | 0.8942 | 0.0 | 0.4472 | 0.3294 | 0.0 | 0.0 | 0.0 | 0.3447 | 0.0 | 0.0 | 0.9256 | 0.8864 | 0.9735 | 0.0 | 0.0 | 0.2811 | 0.0 | nan | 0.7148 | 0.8503 | 0.5302 | 0.7213 | 0.2942 | 0.0 | 0.3992 | 0.4010 | 0.0 | 0.8215 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5246 | 0.0 | 0.0 | 0.7111 | 0.0 | 0.3400 | 0.2281 | 0.0 | 0.0 | 0.0 | 0.2888 | 0.0 | 0.0 | 0.8405 | 0.7575 | 0.9275 | 0.0 | 0.0 | 0.2128 | 0.0 |
| 0.3628 | 38.4 | 1920 | 0.6451 | 0.2803 | 0.3339 | 0.8419 | nan | 0.9157 | 0.9506 | 0.6013 | 0.7584 | 0.3272 | 0.0 | 0.5187 | 0.6031 | 0.0 | 0.9455 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6922 | 0.0 | 0.0 | 0.9004 | 0.0 | 0.4047 | 0.3112 | 0.0 | 0.0 | 0.0 | 0.3390 | 0.0 | 0.0 | 0.9255 | 0.8911 | 0.9729 | 0.0 | 0.0000 | 0.2961 | 0.0 | nan | 0.7134 | 0.8508 | 0.5294 | 0.7156 | 0.2770 | 0.0 | 0.4017 | 0.4011 | 0.0 | 0.8237 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5241 | 0.0 | 0.0 | 0.7121 | 0.0 | 0.3262 | 0.2266 | 0.0 | 0.0 | 0.0 | 0.2849 | 0.0 | 0.0 | 0.8403 | 0.7520 | 0.9276 | 0.0 | 0.0000 | 0.2235 | 0.0 |
| 0.3378 | 38.8 | 1940 | 0.6329 | 0.2818 | 0.3348 | 0.8434 | nan | 0.9127 | 0.9465 | 0.5858 | 0.7964 | 0.3750 | 0.0 | 0.5024 | 0.6098 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6808 | 0.0 | 0.0 | 0.8976 | 0.0 | 0.4174 | 0.3276 | 0.0 | 0.0 | 0.0 | 0.3451 | 0.0 | 0.0 | 0.9327 | 0.8730 | 0.9706 | 0.0 | 0.0005 | 0.2661 | 0.0 | nan | 0.7267 | 0.8480 | 0.5227 | 0.7435 | 0.2949 | 0.0 | 0.4038 | 0.4030 | 0.0 | 0.8264 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5204 | 0.0 | 0.0 | 0.7092 | 0.0 | 0.3240 | 0.2280 | 0.0 | 0.0 | 0.0 | 0.2899 | 0.0 | 0.0 | 0.8409 | 0.7582 | 0.9292 | 0.0 | 0.0005 | 0.2104 | 0.0 |
| 0.3523 | 39.2 | 1960 | 0.6349 | 0.2824 | 0.3353 | 0.8436 | nan | 0.9112 | 0.9520 | 0.5920 | 0.7852 | 0.3394 | 0.0 | 0.5104 | 0.6062 | 0.0 | 0.9452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6808 | 0.0 | 0.0 | 0.8983 | 0.0 | 0.4215 | 0.3371 | 0.0 | 0.0 | 0.0 | 0.3531 | 0.0 | 0.0 | 0.9274 | 0.8815 | 0.9701 | 0.0 | 0.0000 | 0.2872 | 0.0 | nan | 0.7310 | 0.8457 | 0.5393 | 0.7385 | 0.2799 | 0.0 | 0.3992 | 0.4024 | 0.0 | 0.8248 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5245 | 0.0 | 0.0 | 0.7115 | 0.0 | 0.3345 | 0.2331 | 0.0 | 0.0 | 0.0 | 0.2944 | 0.0 | 0.0 | 0.8416 | 0.7565 | 0.9298 | 0.0 | 0.0000 | 0.2159 | 0.0 |
| 0.3157 | 39.6 | 1980 | 0.6250 | 0.2842 | 0.3374 | 0.8460 | nan | 0.9196 | 0.9467 | 0.5922 | 0.8099 | 0.3500 | 0.0 | 0.5136 | 0.6095 | 0.0 | 0.9401 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6812 | 0.0 | 0.0 | 0.8994 | 0.0 | 0.4322 | 0.3447 | 0.0 | 0.0 | 0.0 | 0.3562 | 0.0 | 0.0 | 0.9348 | 0.8775 | 0.9712 | 0.0 | 0.0002 | 0.2918 | 0.0 | nan | 0.7379 | 0.8502 | 0.5435 | 0.7448 | 0.2894 | 0.0 | 0.4010 | 0.4024 | 0.0 | 0.8284 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5241 | 0.0 | 0.0 | 0.7128 | 0.0 | 0.3439 | 0.2390 | 0.0 | 0.0 | 0.0 | 0.2957 | 0.0 | 0.0 | 0.8413 | 0.7601 | 0.9295 | 0.0 | 0.0001 | 0.2202 | 0.0 |
| 0.3091 | 40.0 | 2000 | 0.6428 | 0.2819 | 0.3352 | 0.8439 | nan | 0.9164 | 0.9545 | 0.5811 | 0.7845 | 0.3218 | 0.0 | 0.5088 | 0.6127 | 0.0 | 0.9482 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6690 | 0.0 | 0.0 | 0.9004 | 0.0 | 0.4326 | 0.3583 | 0.0 | 0.0 | 0.0 | 0.3424 | 0.0 | 0.0 | 0.9202 | 0.8846 | 0.9727 | 0.0 | 0.0004 | 0.2870 | 0.0 | nan | 0.7315 | 0.8476 | 0.5387 | 0.7317 | 0.2720 | 0.0 | 0.3982 | 0.3976 | 0.0 | 0.8193 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5167 | 0.0 | 0.0 | 0.7140 | 0.0 | 0.3426 | 0.2420 | 0.0 | 0.0 | 0.0 | 0.2883 | 0.0 | 0.0 | 0.8415 | 0.7529 | 0.9287 | 0.0 | 0.0004 | 0.2197 | 0.0 |
| 0.3324 | 40.4 | 2020 | 0.6305 | 0.2832 | 0.3382 | 0.8453 | nan | 0.9081 | 0.9501 | 0.6112 | 0.8081 | 0.3387 | 0.0 | 0.5193 | 0.6078 | 0.0 | 0.9427 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6990 | 0.0 | 0.0 | 0.9021 | 0.0 | 0.4415 | 0.3691 | 0.0 | 0.0 | 0.0 | 0.3462 | 0.0 | 0.0 | 0.9252 | 0.8865 | 0.9728 | 0.0 | 0.0017 | 0.2685 | 0.0 | nan | 0.7342 | 0.8523 | 0.5291 | 0.7446 | 0.2823 | 0.0 | 0.4023 | 0.4058 | 0.0 | 0.8258 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5201 | 0.0 | 0.0 | 0.7108 | 0.0 | 0.3504 | 0.2445 | 0.0 | 0.0 | 0.0 | 0.2902 | 0.0 | 0.0 | 0.8413 | 0.7568 | 0.9290 | 0.0 | 0.0017 | 0.2092 | 0.0 |
| 0.446 | 40.8 | 2040 | 0.6335 | 0.2823 | 0.3354 | 0.8436 | nan | 0.9158 | 0.9466 | 0.6004 | 0.7753 | 0.3634 | 0.0 | 0.5087 | 0.6236 | 0.0 | 0.9416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6766 | 0.0 | 0.0 | 0.9036 | 0.0 | 0.3974 | 0.3363 | 0.0 | 0.0 | 0.0 | 0.3486 | 0.0 | 0.0 | 0.9336 | 0.8864 | 0.9729 | 0.0 | 0.0003 | 0.2717 | 0.0 | nan | 0.7228 | 0.8505 | 0.5378 | 0.7275 | 0.2928 | 0.0 | 0.3973 | 0.4040 | 0.0 | 0.8271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5219 | 0.0 | 0.0 | 0.7113 | 0.0 | 0.3299 | 0.2440 | 0.0 | 0.0 | 0.0 | 0.2917 | 0.0 | 0.0 | 0.8392 | 0.7599 | 0.9290 | 0.0 | 0.0003 | 0.2106 | 0.0 |
| 0.2991 | 41.2 | 2060 | 0.6400 | 0.2819 | 0.3346 | 0.8430 | nan | 0.9021 | 0.9569 | 0.6020 | 0.7808 | 0.3141 | 0.0 | 0.5107 | 0.6066 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6738 | 0.0 | 0.0 | 0.8978 | 0.0 | 0.4379 | 0.3122 | 0.0 | 0.0 | 0.0 | 0.3561 | 0.0 | 0.0 | 0.9229 | 0.8815 | 0.9712 | 0.0 | 0.0002 | 0.3062 | 0.0 | nan | 0.7281 | 0.8460 | 0.5370 | 0.7257 | 0.2681 | 0.0 | 0.3941 | 0.4008 | 0.0 | 0.8270 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5334 | 0.0 | 0.0 | 0.7140 | 0.0 | 0.3370 | 0.2272 | 0.0 | 0.0 | 0.0 | 0.2963 | 0.0 | 0.0 | 0.8422 | 0.7558 | 0.9299 | 0.0 | 0.0002 | 0.2222 | 0.0 |
| 0.2577 | 41.6 | 2080 | 0.6273 | 0.2827 | 0.3367 | 0.8433 | nan | 0.9083 | 0.9458 | 0.6065 | 0.7727 | 0.3782 | 0.0 | 0.5244 | 0.5984 | 0.0 | 0.9455 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6865 | 0.0 | 0.0 | 0.9076 | 0.0 | 0.4176 | 0.3493 | 0.0 | 0.0 | 0.0 | 0.3545 | 0.0 | 0.0 | 0.9272 | 0.8876 | 0.9708 | 0.0 | 0.0003 | 0.2670 | 0.0 | nan | 0.7190 | 0.8537 | 0.5356 | 0.7125 | 0.3026 | 0.0 | 0.4038 | 0.4057 | 0.0 | 0.8259 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5295 | 0.0 | 0.0 | 0.7117 | 0.0 | 0.3325 | 0.2436 | 0.0 | 0.0 | 0.0 | 0.2964 | 0.0 | 0.0 | 0.8426 | 0.7589 | 0.9302 | 0.0 | 0.0003 | 0.2075 | 0.0 |
| 0.2437 | 42.0 | 2100 | 0.6321 | 0.2827 | 0.3357 | 0.8439 | nan | 0.9057 | 0.9521 | 0.6023 | 0.7836 | 0.3366 | 0.0 | 0.5205 | 0.6125 | 0.0 | 0.9438 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6864 | 0.0 | 0.0 | 0.9087 | 0.0 | 0.4109 | 0.3239 | 0.0 | 0.0 | 0.0 | 0.3558 | 0.0 | 0.0 | 0.9261 | 0.8823 | 0.9705 | 0.0 | 0.0011 | 0.2920 | 0.0 | nan | 0.7288 | 0.8478 | 0.5416 | 0.7320 | 0.2805 | 0.0 | 0.3960 | 0.4063 | 0.0 | 0.8286 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5299 | 0.0 | 0.0 | 0.7129 | 0.0 | 0.3234 | 0.2309 | 0.0 | 0.0 | 0.0 | 0.2972 | 0.0 | 0.0 | 0.8438 | 0.7595 | 0.9304 | 0.0 | 0.0011 | 0.2199 | 0.0 |
| 0.3548 | 42.4 | 2120 | 0.6317 | 0.2831 | 0.3370 | 0.8445 | nan | 0.9133 | 0.9517 | 0.6028 | 0.7868 | 0.3391 | 0.0 | 0.5153 | 0.5879 | 0.0 | 0.9435 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7178 | 0.0 | 0.0 | 0.9042 | 0.0 | 0.3861 | 0.3665 | 0.0 | 0.0 | 0.0 | 0.3643 | 0.0 | 0.0 | 0.9244 | 0.8901 | 0.9723 | 0.0 | 0.0010 | 0.2925 | 0.0 | nan | 0.7290 | 0.8519 | 0.5360 | 0.7372 | 0.2841 | 0.0 | 0.3997 | 0.4093 | 0.0 | 0.8285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5271 | 0.0 | 0.0 | 0.7117 | 0.0 | 0.3179 | 0.2480 | 0.0 | 0.0 | 0.0 | 0.3012 | 0.0 | 0.0 | 0.8393 | 0.7536 | 0.9296 | 0.0 | 0.0010 | 0.2212 | 0.0 |
| 0.2519 | 42.8 | 2140 | 0.6322 | 0.2827 | 0.3354 | 0.8445 | nan | 0.9146 | 0.9501 | 0.6036 | 0.7848 | 0.3492 | 0.0 | 0.5133 | 0.6009 | 0.0 | 0.9451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6921 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.3731 | 0.3440 | 0.0 | 0.0 | 0.0 | 0.3634 | 0.0 | 0.0 | 0.9296 | 0.8763 | 0.9724 | 0.0 | 0.0010 | 0.2798 | 0.0 | nan | 0.7241 | 0.8515 | 0.5364 | 0.7345 | 0.2894 | 0.0 | 0.4034 | 0.4073 | 0.0 | 0.8253 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5263 | 0.0 | 0.0 | 0.7099 | 0.0 | 0.3078 | 0.2443 | 0.0 | 0.0 | 0.0 | 0.3013 | 0.0 | 0.0 | 0.8437 | 0.7608 | 0.9298 | 0.0 | 0.0010 | 0.2159 | 0.0 |
| 0.275 | 43.2 | 2160 | 0.6368 | 0.2833 | 0.3374 | 0.8434 | nan | 0.9058 | 0.9532 | 0.6054 | 0.7740 | 0.3447 | 0.0 | 0.5067 | 0.5989 | 0.0 | 0.9488 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7074 | 0.0 | 0.0 | 0.9007 | 0.0 | 0.4272 | 0.3609 | 0.0 | 0.0 | 0.0 | 0.3579 | 0.0 | 0.0 | 0.9222 | 0.8823 | 0.9725 | 0.0 | 0.0051 | 0.2991 | 0.0 | nan | 0.7228 | 0.8475 | 0.5442 | 0.7262 | 0.2855 | 0.0 | 0.3968 | 0.4046 | 0.0 | 0.8230 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5262 | 0.0 | 0.0 | 0.7152 | 0.0 | 0.3375 | 0.2463 | 0.0 | 0.0 | 0.0 | 0.2984 | 0.0 | 0.0 | 0.8432 | 0.7559 | 0.9298 | 0.0 | 0.0051 | 0.2229 | 0.0 |
| 0.357 | 43.6 | 2180 | 0.6373 | 0.2837 | 0.3380 | 0.8440 | nan | 0.9100 | 0.9519 | 0.5992 | 0.7804 | 0.3476 | 0.0 | 0.5014 | 0.6046 | 0.0 | 0.9414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7171 | 0.0 | 0.0 | 0.8995 | 0.0 | 0.4276 | 0.3742 | 0.0 | 0.0 | 0.0 | 0.3613 | 0.0 | 0.0 | 0.9259 | 0.8901 | 0.9719 | 0.0 | 0.0077 | 0.2811 | 0.0 | nan | 0.7280 | 0.8485 | 0.5382 | 0.7278 | 0.2877 | 0.0 | 0.3975 | 0.4056 | 0.0 | 0.8300 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5271 | 0.0 | 0.0 | 0.7146 | 0.0 | 0.3410 | 0.2515 | 0.0 | 0.0 | 0.0 | 0.2997 | 0.0 | 0.0 | 0.8392 | 0.7543 | 0.9303 | 0.0 | 0.0076 | 0.2168 | 0.0 |
| 0.2715 | 44.0 | 2200 | 0.6300 | 0.2841 | 0.3390 | 0.8446 | nan | 0.9019 | 0.9507 | 0.6033 | 0.7953 | 0.3516 | 0.0 | 0.5189 | 0.6222 | 0.0 | 0.9445 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7024 | 0.0 | 0.0 | 0.8993 | 0.0 | 0.4278 | 0.3749 | 0.0 | 0.0 | 0.0 | 0.3613 | 0.0 | 0.0 | 0.9300 | 0.8815 | 0.9718 | 0.0 | 0.0074 | 0.2824 | 0.0 | nan | 0.7301 | 0.8489 | 0.5301 | 0.7339 | 0.2892 | 0.0 | 0.4044 | 0.4043 | 0.0 | 0.8268 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5254 | 0.0 | 0.0 | 0.7149 | 0.0 | 0.3419 | 0.2532 | 0.0 | 0.0 | 0.0 | 0.2997 | 0.0 | 0.0 | 0.8414 | 0.7608 | 0.9304 | 0.0 | 0.0073 | 0.2169 | 0.0 |
| 0.296 | 44.4 | 2220 | 0.6370 | 0.2836 | 0.3366 | 0.8448 | nan | 0.9177 | 0.9524 | 0.5981 | 0.7768 | 0.3251 | 0.0 | 0.5173 | 0.6082 | 0.0 | 0.9434 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7014 | 0.0 | 0.0 | 0.9090 | 0.0 | 0.3956 | 0.3633 | 0.0 | 0.0 | 0.0 | 0.3607 | 0.0 | 0.0 | 0.9299 | 0.8809 | 0.9714 | 0.0 | 0.0099 | 0.2825 | 0.0 | nan | 0.7277 | 0.8500 | 0.5310 | 0.7310 | 0.2768 | 0.0 | 0.4025 | 0.4067 | 0.0 | 0.8290 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5305 | 0.0 | 0.0 | 0.7134 | 0.0 | 0.3306 | 0.2546 | 0.0 | 0.0 | 0.0 | 0.2995 | 0.0 | 0.0 | 0.8416 | 0.7599 | 0.9306 | 0.0 | 0.0098 | 0.2172 | 0.0 |
| 0.2938 | 44.8 | 2240 | 0.6356 | 0.2838 | 0.3381 | 0.8450 | nan | 0.9084 | 0.9523 | 0.5857 | 0.7985 | 0.3389 | 0.0 | 0.5128 | 0.6084 | 0.0 | 0.9490 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7049 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.4398 | 0.3642 | 0.0 | 0.0 | 0.0 | 0.3571 | 0.0 | 0.0 | 0.9269 | 0.8862 | 0.9726 | 0.0 | 0.0085 | 0.2834 | 0.0 | nan | 0.7298 | 0.8499 | 0.5354 | 0.7345 | 0.2844 | 0.0 | 0.4013 | 0.4050 | 0.0 | 0.8243 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5253 | 0.0 | 0.0 | 0.7163 | 0.0 | 0.3436 | 0.2459 | 0.0 | 0.0 | 0.0 | 0.2973 | 0.0 | 0.0 | 0.8423 | 0.7578 | 0.9302 | 0.0 | 0.0084 | 0.2171 | 0.0 |
| 0.3444 | 45.2 | 2260 | 0.6378 | 0.2838 | 0.3366 | 0.8450 | nan | 0.9139 | 0.9506 | 0.5811 | 0.7960 | 0.3489 | 0.0 | 0.5043 | 0.6117 | 0.0 | 0.9429 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6932 | 0.0 | 0.0 | 0.9158 | 0.0 | 0.3896 | 0.3592 | 0.0 | 0.0 | 0.0 | 0.3710 | 0.0 | 0.0 | 0.9246 | 0.8836 | 0.9719 | 0.0 | 0.0115 | 0.2739 | 0.0 | nan | 0.7284 | 0.8503 | 0.5353 | 0.7357 | 0.2867 | 0.0 | 0.3994 | 0.4063 | 0.0 | 0.8309 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5304 | 0.0 | 0.0 | 0.7117 | 0.0 | 0.3196 | 0.2487 | 0.0 | 0.0 | 0.0 | 0.3047 | 0.0 | 0.0 | 0.8438 | 0.7605 | 0.9305 | 0.0 | 0.0114 | 0.2156 | 0.0 |
| 0.3901 | 45.6 | 2280 | 0.6350 | 0.2841 | 0.3381 | 0.8447 | nan | 0.9130 | 0.9486 | 0.5974 | 0.7909 | 0.3553 | 0.0 | 0.5118 | 0.6193 | 0.0 | 0.9459 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6916 | 0.0 | 0.0 | 0.8993 | 0.0 | 0.3965 | 0.3624 | 0.0 | 0.0 | 0.0 | 0.3728 | 0.0 | 0.0 | 0.9318 | 0.8800 | 0.9722 | 0.0 | 0.0117 | 0.2949 | 0.0 | nan | 0.7220 | 0.8523 | 0.5333 | 0.7371 | 0.2906 | 0.0 | 0.4042 | 0.4047 | 0.0 | 0.8284 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5288 | 0.0 | 0.0 | 0.7136 | 0.0 | 0.3227 | 0.2481 | 0.0 | 0.0 | 0.0 | 0.3042 | 0.0 | 0.0 | 0.8416 | 0.7623 | 0.9306 | 0.0 | 0.0115 | 0.2240 | 0.0 |
| 0.2613 | 46.0 | 2300 | 0.6456 | 0.2825 | 0.3352 | 0.8438 | nan | 0.9255 | 0.9513 | 0.5876 | 0.7639 | 0.3329 | 0.0 | 0.5091 | 0.6051 | 0.0 | 0.9460 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6952 | 0.0 | 0.0 | 0.9115 | 0.0 | 0.3870 | 0.3567 | 0.0 | 0.0 | 0.0 | 0.3589 | 0.0 | 0.0 | 0.9250 | 0.8831 | 0.9721 | 0.0 | 0.0129 | 0.2745 | 0.0 | nan | 0.7192 | 0.8508 | 0.5345 | 0.7288 | 0.2799 | 0.0 | 0.3986 | 0.4038 | 0.0 | 0.8275 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5291 | 0.0 | 0.0 | 0.7122 | 0.0 | 0.3142 | 0.2470 | 0.0 | 0.0 | 0.0 | 0.2997 | 0.0 | 0.0 | 0.8435 | 0.7592 | 0.9305 | 0.0 | 0.0127 | 0.2152 | 0.0 |
| 0.2849 | 46.4 | 2320 | 0.6370 | 0.2838 | 0.3371 | 0.8447 | nan | 0.9062 | 0.9524 | 0.6058 | 0.7879 | 0.3519 | 0.0 | 0.5141 | 0.6140 | 0.0 | 0.9449 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6878 | 0.0 | 0.0 | 0.9100 | 0.0 | 0.3961 | 0.3550 | 0.0 | 0.0 | 0.0 | 0.3628 | 0.0 | 0.0 | 0.9247 | 0.8827 | 0.9722 | 0.0 | 0.0138 | 0.2791 | 0.0 | nan | 0.7274 | 0.8498 | 0.5370 | 0.7366 | 0.2880 | 0.0 | 0.4025 | 0.4042 | 0.0 | 0.8285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5304 | 0.0 | 0.0 | 0.7132 | 0.0 | 0.3211 | 0.2469 | 0.0 | 0.0 | 0.0 | 0.3011 | 0.0 | 0.0 | 0.8429 | 0.7607 | 0.9306 | 0.0 | 0.0136 | 0.2164 | 0.0 |
| 0.2599 | 46.8 | 2340 | 0.6385 | 0.2839 | 0.3383 | 0.8446 | nan | 0.9125 | 0.9515 | 0.5988 | 0.7867 | 0.3383 | 0.0 | 0.5109 | 0.6167 | 0.0 | 0.9444 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6999 | 0.0 | 0.0 | 0.8998 | 0.0 | 0.4217 | 0.3582 | 0.0 | 0.0 | 0.0 | 0.3618 | 0.0 | 0.0 | 0.9241 | 0.8944 | 0.9728 | 0.0 | 0.0140 | 0.2960 | 0.0 | nan | 0.7253 | 0.8508 | 0.5379 | 0.7364 | 0.2833 | 0.0 | 0.4010 | 0.4031 | 0.0 | 0.8290 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5276 | 0.0 | 0.0 | 0.7151 | 0.0 | 0.3357 | 0.2444 | 0.0 | 0.0 | 0.0 | 0.2996 | 0.0 | 0.0 | 0.8416 | 0.7563 | 0.9304 | 0.0 | 0.0138 | 0.2217 | 0.0 |
| 0.3051 | 47.2 | 2360 | 0.6322 | 0.2843 | 0.3384 | 0.8449 | nan | 0.9056 | 0.9501 | 0.6024 | 0.7992 | 0.3467 | 0.0 | 0.5156 | 0.6115 | 0.0 | 0.9455 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7007 | 0.0 | 0.0 | 0.9005 | 0.0 | 0.4145 | 0.3529 | 0.0 | 0.0 | 0.0 | 0.3639 | 0.0 | 0.0 | 0.9305 | 0.8834 | 0.9705 | 0.0 | 0.0145 | 0.2967 | 0.0 | nan | 0.7256 | 0.8512 | 0.5395 | 0.7363 | 0.2865 | 0.0 | 0.4030 | 0.4059 | 0.0 | 0.8285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5279 | 0.0 | 0.0 | 0.7145 | 0.0 | 0.3315 | 0.2443 | 0.0 | 0.0 | 0.0 | 0.3009 | 0.0 | 0.0 | 0.8422 | 0.7621 | 0.9314 | 0.0 | 0.0143 | 0.2224 | 0.0 |
| 0.3295 | 47.6 | 2380 | 0.6335 | 0.2843 | 0.3385 | 0.8448 | nan | 0.9076 | 0.9511 | 0.5946 | 0.7985 | 0.3416 | 0.0 | 0.5124 | 0.6087 | 0.0 | 0.9466 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7039 | 0.0 | 0.0 | 0.8969 | 0.0 | 0.4223 | 0.3597 | 0.0 | 0.0 | 0.0 | 0.3662 | 0.0 | 0.0 | 0.9273 | 0.8890 | 0.9726 | 0.0 | 0.0139 | 0.2955 | 0.0 | nan | 0.7261 | 0.8504 | 0.5418 | 0.7353 | 0.2840 | 0.0 | 0.3997 | 0.4052 | 0.0 | 0.8276 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5280 | 0.0 | 0.0 | 0.7159 | 0.0 | 0.3352 | 0.2454 | 0.0 | 0.0 | 0.0 | 0.3018 | 0.0 | 0.0 | 0.8429 | 0.7597 | 0.9307 | 0.0 | 0.0137 | 0.2220 | 0.0 |
| 0.3076 | 48.0 | 2400 | 0.6354 | 0.2839 | 0.3371 | 0.8449 | nan | 0.9013 | 0.9540 | 0.5975 | 0.8009 | 0.3376 | 0.0 | 0.5096 | 0.6170 | 0.0 | 0.9443 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6890 | 0.0 | 0.0 | 0.9068 | 0.0 | 0.4008 | 0.3547 | 0.0 | 0.0 | 0.0 | 0.3703 | 0.0 | 0.0 | 0.9272 | 0.8803 | 0.9721 | 0.0 | 0.0159 | 0.2833 | 0.0 | nan | 0.7289 | 0.8493 | 0.5403 | 0.7362 | 0.2811 | 0.0 | 0.3987 | 0.4042 | 0.0 | 0.8300 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5282 | 0.0 | 0.0 | 0.7131 | 0.0 | 0.3234 | 0.2461 | 0.0 | 0.0 | 0.0 | 0.3041 | 0.0 | 0.0 | 0.8440 | 0.7614 | 0.9308 | 0.0 | 0.0155 | 0.2175 | 0.0 |
| 0.306 | 48.4 | 2420 | 0.6358 | 0.2836 | 0.3364 | 0.8446 | nan | 0.9125 | 0.9514 | 0.6005 | 0.7840 | 0.3395 | 0.0 | 0.5120 | 0.6077 | 0.0 | 0.9452 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6902 | 0.0 | 0.0 | 0.9049 | 0.0 | 0.4001 | 0.3406 | 0.0 | 0.0 | 0.0 | 0.3646 | 0.0 | 0.0 | 0.9304 | 0.8802 | 0.9712 | 0.0 | 0.0157 | 0.2882 | 0.0 | nan | 0.7236 | 0.8512 | 0.5370 | 0.7335 | 0.2827 | 0.0 | 0.4008 | 0.4065 | 0.0 | 0.8291 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5290 | 0.0 | 0.0 | 0.7132 | 0.0 | 0.3206 | 0.2414 | 0.0 | 0.0 | 0.0 | 0.3014 | 0.0 | 0.0 | 0.8427 | 0.7619 | 0.9312 | 0.0 | 0.0154 | 0.2195 | 0.0 |
| 0.2623 | 48.8 | 2440 | 0.6342 | 0.2839 | 0.3381 | 0.8444 | nan | 0.9127 | 0.9487 | 0.6027 | 0.7876 | 0.3482 | 0.0 | 0.5157 | 0.6140 | 0.0 | 0.9431 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6961 | 0.0 | 0.0 | 0.9053 | 0.0 | 0.4075 | 0.3583 | 0.0 | 0.0 | 0.0 | 0.3654 | 0.0 | 0.0 | 0.9251 | 0.8914 | 0.9738 | 0.0 | 0.0143 | 0.2854 | 0.0 | nan | 0.7237 | 0.8518 | 0.5387 | 0.7316 | 0.2869 | 0.0 | 0.4022 | 0.4066 | 0.0 | 0.8309 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5283 | 0.0 | 0.0 | 0.7137 | 0.0 | 0.3254 | 0.2469 | 0.0 | 0.0 | 0.0 | 0.3021 | 0.0 | 0.0 | 0.8428 | 0.7587 | 0.9298 | 0.0 | 0.0140 | 0.2182 | 0.0 |
| 0.2494 | 49.2 | 2460 | 0.6372 | 0.2839 | 0.3377 | 0.8441 | nan | 0.9121 | 0.9506 | 0.6043 | 0.7734 | 0.3497 | 0.0 | 0.5153 | 0.6076 | 0.0 | 0.9462 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6948 | 0.0 | 0.0 | 0.9019 | 0.0 | 0.4125 | 0.3576 | 0.0 | 0.0 | 0.0 | 0.3646 | 0.0 | 0.0 | 0.9270 | 0.8869 | 0.9730 | 0.0 | 0.0143 | 0.2903 | 0.0 | nan | 0.7210 | 0.8511 | 0.5373 | 0.7297 | 0.2867 | 0.0 | 0.4017 | 0.4059 | 0.0 | 0.8284 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5309 | 0.0 | 0.0 | 0.7149 | 0.0 | 0.3281 | 0.2462 | 0.0 | 0.0 | 0.0 | 0.3017 | 0.0 | 0.0 | 0.8432 | 0.7605 | 0.9304 | 0.0 | 0.0141 | 0.2201 | 0.0 |
| 0.2411 | 49.6 | 2480 | 0.6353 | 0.2838 | 0.3373 | 0.8443 | nan | 0.9128 | 0.9496 | 0.6019 | 0.7793 | 0.3468 | 0.0 | 0.5182 | 0.6107 | 0.0 | 0.9421 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6947 | 0.0 | 0.0 | 0.9064 | 0.0 | 0.4011 | 0.3651 | 0.0 | 0.0 | 0.0 | 0.3610 | 0.0 | 0.0 | 0.9318 | 0.8792 | 0.9705 | 0.0 | 0.0149 | 0.2827 | 0.0 | nan | 0.7221 | 0.8517 | 0.5390 | 0.7298 | 0.2859 | 0.0 | 0.4017 | 0.4064 | 0.0 | 0.8315 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5277 | 0.0 | 0.0 | 0.7128 | 0.0 | 0.3236 | 0.2505 | 0.0 | 0.0 | 0.0 | 0.3001 | 0.0 | 0.0 | 0.8418 | 0.7627 | 0.9313 | 0.0 | 0.0147 | 0.2176 | 0.0 |
| 0.2768 | 50.0 | 2500 | 0.6351 | 0.2834 | 0.3374 | 0.8443 | nan | 0.9045 | 0.9530 | 0.6075 | 0.7798 | 0.3400 | 0.0 | 0.5121 | 0.6170 | 0.0 | 0.9458 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6956 | 0.0 | 0.0 | 0.9045 | 0.0 | 0.4037 | 0.3503 | 0.0 | 0.0 | 0.0 | 0.3679 | 0.0 | 0.0 | 0.9274 | 0.8889 | 0.9722 | 0.0 | 0.0119 | 0.2879 | 0.0 | nan | 0.7249 | 0.8500 | 0.5367 | 0.7300 | 0.2828 | 0.0 | 0.4008 | 0.4039 | 0.0 | 0.8291 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5268 | 0.0 | 0.0 | 0.7142 | 0.0 | 0.3242 | 0.2450 | 0.0 | 0.0 | 0.0 | 0.3031 | 0.0 | 0.0 | 0.8429 | 0.7587 | 0.9308 | 0.0 | 0.0117 | 0.2194 | 0.0 |
### Framework versions
- Transformers 4.34.1
- Pytorch 1.11.0+cu113
- Datasets 2.15.0
- Tokenizers 0.14.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
yijisuk/segformer-b0-finetuned-segments-ic-chip-sample |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-ic-chip-sample
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the yijisuk/ic-chip-sample dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0772
- Mean Iou: 0.4863
- Mean Accuracy: 0.9725
- Overall Accuracy: 0.9725
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.9725
- Iou Unlabeled: 0.0
- Iou Circuit: 0.9725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|
| 0.0885 | 1.0 | 20 | 0.0858 | 0.4907 | 0.9815 | 0.9815 | nan | 0.9815 | 0.0 | 0.9815 |
| 0.1764 | 2.0 | 40 | 0.0854 | 0.4734 | 0.9469 | 0.9469 | nan | 0.9469 | 0.0 | 0.9469 |
| 0.0569 | 3.0 | 60 | 0.0854 | 0.4702 | 0.9404 | 0.9404 | nan | 0.9404 | 0.0 | 0.9404 |
| 0.0959 | 4.0 | 80 | 0.0851 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
| 0.2969 | 5.0 | 100 | 0.0825 | 0.4863 | 0.9727 | 0.9727 | nan | 0.9727 | 0.0 | 0.9727 |
| 0.1979 | 6.0 | 120 | 0.0824 | 0.4873 | 0.9746 | 0.9746 | nan | 0.9746 | 0.0 | 0.9746 |
| 0.0906 | 7.0 | 140 | 0.0824 | 0.4740 | 0.9480 | 0.9480 | nan | 0.9480 | 0.0 | 0.9480 |
| 0.2879 | 8.0 | 160 | 0.0821 | 0.4882 | 0.9764 | 0.9764 | nan | 0.9764 | 0.0 | 0.9764 |
| 0.1366 | 9.0 | 180 | 0.0807 | 0.4833 | 0.9666 | 0.9666 | nan | 0.9666 | 0.0 | 0.9666 |
| 0.1664 | 10.0 | 200 | 0.0813 | 0.4860 | 0.9720 | 0.9720 | nan | 0.9720 | 0.0 | 0.9720 |
| 0.1521 | 11.0 | 220 | 0.0831 | 0.4830 | 0.9660 | 0.9660 | nan | 0.9660 | 0.0 | 0.9660 |
| 0.2004 | 12.0 | 240 | 0.0795 | 0.4825 | 0.9651 | 0.9651 | nan | 0.9651 | 0.0 | 0.9651 |
| 0.1547 | 13.0 | 260 | 0.0793 | 0.4812 | 0.9625 | 0.9625 | nan | 0.9625 | 0.0 | 0.9625 |
| 0.4191 | 14.0 | 280 | 0.0788 | 0.4830 | 0.9659 | 0.9659 | nan | 0.9659 | 0.0 | 0.9659 |
| 0.0431 | 15.0 | 300 | 0.0782 | 0.4815 | 0.9630 | 0.9630 | nan | 0.9630 | 0.0 | 0.9630 |
| 1.3911 | 16.0 | 320 | 0.0793 | 0.4820 | 0.9640 | 0.9640 | nan | 0.9640 | 0.0 | 0.9640 |
| 0.0217 | 17.0 | 340 | 0.0814 | 0.4836 | 0.9671 | 0.9671 | nan | 0.9671 | 0.0 | 0.9671 |
| 0.1116 | 18.0 | 360 | 0.0789 | 0.4839 | 0.9678 | 0.9678 | nan | 0.9678 | 0.0 | 0.9678 |
| 0.3295 | 19.0 | 380 | 0.0791 | 0.4763 | 0.9526 | 0.9526 | nan | 0.9526 | 0.0 | 0.9526 |
| 0.0327 | 20.0 | 400 | 0.0792 | 0.4829 | 0.9658 | 0.9658 | nan | 0.9658 | 0.0 | 0.9658 |
| 0.2542 | 21.0 | 420 | 0.0787 | 0.4861 | 0.9722 | 0.9722 | nan | 0.9722 | 0.0 | 0.9722 |
| 0.1587 | 22.0 | 440 | 0.0783 | 0.4772 | 0.9543 | 0.9543 | nan | 0.9543 | 0.0 | 0.9543 |
| 0.2721 | 23.0 | 460 | 0.0804 | 0.4913 | 0.9825 | 0.9825 | nan | 0.9825 | 0.0 | 0.9825 |
| 0.0505 | 24.0 | 480 | 0.0781 | 0.4827 | 0.9655 | 0.9655 | nan | 0.9655 | 0.0 | 0.9655 |
| 0.1417 | 25.0 | 500 | 0.0801 | 0.4834 | 0.9669 | 0.9669 | nan | 0.9669 | 0.0 | 0.9669 |
| 0.1371 | 26.0 | 520 | 0.0777 | 0.4838 | 0.9676 | 0.9676 | nan | 0.9676 | 0.0 | 0.9676 |
| 0.1282 | 27.0 | 540 | 0.0773 | 0.4807 | 0.9613 | 0.9613 | nan | 0.9613 | 0.0 | 0.9613 |
| 0.057 | 28.0 | 560 | 0.0772 | 0.4829 | 0.9657 | 0.9657 | nan | 0.9657 | 0.0 | 0.9657 |
| 0.2592 | 29.0 | 580 | 0.0807 | 0.4872 | 0.9744 | 0.9744 | nan | 0.9744 | 0.0 | 0.9744 |
| 0.1687 | 30.0 | 600 | 0.0794 | 0.4825 | 0.9649 | 0.9649 | nan | 0.9649 | 0.0 | 0.9649 |
| 0.499 | 31.0 | 620 | 0.0805 | 0.4853 | 0.9706 | 0.9706 | nan | 0.9706 | 0.0 | 0.9706 |
| 0.1584 | 32.0 | 640 | 0.0790 | 0.4845 | 0.9691 | 0.9691 | nan | 0.9691 | 0.0 | 0.9691 |
| 0.0689 | 33.0 | 660 | 0.0785 | 0.4845 | 0.9690 | 0.9690 | nan | 0.9690 | 0.0 | 0.9690 |
| 1.3764 | 34.0 | 680 | 0.0790 | 0.4848 | 0.9696 | 0.9696 | nan | 0.9696 | 0.0 | 0.9696 |
| 0.2597 | 35.0 | 700 | 0.0808 | 0.4875 | 0.9751 | 0.9751 | nan | 0.9751 | 0.0 | 0.9751 |
| 1.0757 | 36.0 | 720 | 0.0761 | 0.4841 | 0.9681 | 0.9681 | nan | 0.9681 | 0.0 | 0.9681 |
| 0.6112 | 37.0 | 740 | 0.0779 | 0.4825 | 0.9650 | 0.9650 | nan | 0.9650 | 0.0 | 0.9650 |
| 0.2899 | 38.0 | 760 | 0.0787 | 0.4796 | 0.9591 | 0.9591 | nan | 0.9591 | 0.0 | 0.9591 |
| 0.3402 | 39.0 | 780 | 0.0777 | 0.4838 | 0.9676 | 0.9676 | nan | 0.9676 | 0.0 | 0.9676 |
| 0.0183 | 40.0 | 800 | 0.0771 | 0.4829 | 0.9657 | 0.9657 | nan | 0.9657 | 0.0 | 0.9657 |
| 0.1407 | 41.0 | 820 | 0.0774 | 0.4809 | 0.9617 | 0.9617 | nan | 0.9617 | 0.0 | 0.9617 |
| 0.4045 | 42.0 | 840 | 0.0767 | 0.4819 | 0.9638 | 0.9638 | nan | 0.9638 | 0.0 | 0.9638 |
| 0.2159 | 43.0 | 860 | 0.0780 | 0.4850 | 0.9699 | 0.9699 | nan | 0.9699 | 0.0 | 0.9699 |
| 0.0541 | 44.0 | 880 | 0.0768 | 0.4812 | 0.9624 | 0.9624 | nan | 0.9624 | 0.0 | 0.9624 |
| 0.0638 | 45.0 | 900 | 0.0774 | 0.4863 | 0.9726 | 0.9726 | nan | 0.9726 | 0.0 | 0.9726 |
| 0.0409 | 46.0 | 920 | 0.0788 | 0.4875 | 0.9749 | 0.9749 | nan | 0.9749 | 0.0 | 0.9749 |
| 0.1662 | 47.0 | 940 | 0.0774 | 0.4871 | 0.9743 | 0.9743 | nan | 0.9743 | 0.0 | 0.9743 |
| 0.1636 | 48.0 | 960 | 0.0783 | 0.4860 | 0.9720 | 0.9720 | nan | 0.9720 | 0.0 | 0.9720 |
| 0.033 | 49.0 | 980 | 0.0791 | 0.4882 | 0.9764 | 0.9764 | nan | 0.9764 | 0.0 | 0.9764 |
| 0.171 | 50.0 | 1000 | 0.0772 | 0.4863 | 0.9725 | 0.9725 | nan | 0.9725 | 0.0 | 0.9725 |
### Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"circuit"
] |
yijisuk/segformer-b1-finetuned-segments-ic-chip-sample |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-segments-ic-chip-sample
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the yijisuk/ic-chip-sample dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1227
- Mean Iou: 0.4744
- Mean Accuracy: 0.9489
- Overall Accuracy: 0.9489
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.9489
- Iou Unlabeled: 0.0
- Iou Circuit: 0.9489
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|
| 0.4185 | 1.0 | 20 | 0.5878 | 0.3632 | 0.7265 | 0.7265 | nan | 0.7265 | 0.0 | 0.7265 |
| 0.4477 | 2.0 | 40 | 0.4288 | 0.4894 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 | 0.9788 |
| 0.9304 | 3.0 | 60 | 0.2053 | 0.4520 | 0.9041 | 0.9041 | nan | 0.9041 | 0.0 | 0.9041 |
| 0.1409 | 4.0 | 80 | 0.1817 | 0.4738 | 0.9477 | 0.9477 | nan | 0.9477 | 0.0 | 0.9477 |
| 0.392 | 5.0 | 100 | 0.1824 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 |
| 0.1589 | 6.0 | 120 | 0.1594 | 0.4814 | 0.9628 | 0.9628 | nan | 0.9628 | 0.0 | 0.9628 |
| 0.1848 | 7.0 | 140 | 0.1551 | 0.4625 | 0.9251 | 0.9251 | nan | 0.9251 | 0.0 | 0.9251 |
| 0.0874 | 8.0 | 160 | 0.1503 | 0.4829 | 0.9657 | 0.9657 | nan | 0.9657 | 0.0 | 0.9657 |
| 0.2172 | 9.0 | 180 | 0.1558 | 0.4591 | 0.9182 | 0.9182 | nan | 0.9182 | 0.0 | 0.9182 |
| 0.9914 | 10.0 | 200 | 0.1457 | 0.4698 | 0.9396 | 0.9396 | nan | 0.9396 | 0.0 | 0.9396 |
| 0.2387 | 11.0 | 220 | 0.1494 | 0.4709 | 0.9419 | 0.9419 | nan | 0.9419 | 0.0 | 0.9419 |
| 0.1242 | 12.0 | 240 | 0.1463 | 0.4743 | 0.9486 | 0.9486 | nan | 0.9486 | 0.0 | 0.9486 |
| 0.0819 | 13.0 | 260 | 0.1492 | 0.4757 | 0.9515 | 0.9515 | nan | 0.9515 | 0.0 | 0.9515 |
| 0.6077 | 14.0 | 280 | 0.1442 | 0.4793 | 0.9586 | 0.9586 | nan | 0.9586 | 0.0 | 0.9586 |
| 0.3156 | 15.0 | 300 | 0.1430 | 0.4813 | 0.9627 | 0.9627 | nan | 0.9627 | 0.0 | 0.9627 |
| 0.2564 | 16.0 | 320 | 0.1483 | 0.4673 | 0.9347 | 0.9347 | nan | 0.9347 | 0.0 | 0.9347 |
| 0.107 | 17.0 | 340 | 0.1467 | 0.4695 | 0.9390 | 0.9390 | nan | 0.9390 | 0.0 | 0.9390 |
| 1.1592 | 18.0 | 360 | 0.1437 | 0.4814 | 0.9628 | 0.9628 | nan | 0.9628 | 0.0 | 0.9628 |
| 0.0586 | 19.0 | 380 | 0.1396 | 0.4811 | 0.9622 | 0.9622 | nan | 0.9622 | 0.0 | 0.9622 |
| 0.9815 | 20.0 | 400 | 0.1399 | 0.4812 | 0.9624 | 0.9624 | nan | 0.9624 | 0.0 | 0.9624 |
| 0.3101 | 21.0 | 420 | 0.1411 | 0.4836 | 0.9672 | 0.9672 | nan | 0.9672 | 0.0 | 0.9672 |
| 0.2325 | 22.0 | 440 | 0.1395 | 0.4672 | 0.9344 | 0.9344 | nan | 0.9344 | 0.0 | 0.9344 |
| 0.1504 | 23.0 | 460 | 0.1420 | 0.4720 | 0.9441 | 0.9441 | nan | 0.9441 | 0.0 | 0.9441 |
| 0.2831 | 24.0 | 480 | 0.1393 | 0.4697 | 0.9395 | 0.9395 | nan | 0.9395 | 0.0 | 0.9395 |
| 0.0921 | 25.0 | 500 | 0.1418 | 0.4701 | 0.9401 | 0.9401 | nan | 0.9401 | 0.0 | 0.9401 |
| 0.141 | 26.0 | 520 | 0.1318 | 0.4648 | 0.9296 | 0.9296 | nan | 0.9296 | 0.0 | 0.9296 |
| 0.1381 | 27.0 | 540 | 0.1316 | 0.4697 | 0.9395 | 0.9395 | nan | 0.9395 | 0.0 | 0.9395 |
| 1.1864 | 28.0 | 560 | 0.1292 | 0.4774 | 0.9548 | 0.9548 | nan | 0.9548 | 0.0 | 0.9548 |
| 0.9492 | 29.0 | 580 | 0.1290 | 0.4709 | 0.9418 | 0.9418 | nan | 0.9418 | 0.0 | 0.9418 |
| 0.3061 | 30.0 | 600 | 0.1303 | 0.4536 | 0.9071 | 0.9071 | nan | 0.9071 | 0.0 | 0.9071 |
| 0.2511 | 31.0 | 620 | 0.1318 | 0.4725 | 0.9451 | 0.9451 | nan | 0.9451 | 0.0 | 0.9451 |
| 0.2706 | 32.0 | 640 | 0.1284 | 0.4790 | 0.9580 | 0.9580 | nan | 0.9580 | 0.0 | 0.9580 |
| 0.1508 | 33.0 | 660 | 0.1264 | 0.4698 | 0.9396 | 0.9396 | nan | 0.9396 | 0.0 | 0.9396 |
| 0.2802 | 34.0 | 680 | 0.1308 | 0.4733 | 0.9467 | 0.9467 | nan | 0.9467 | 0.0 | 0.9467 |
| 0.1897 | 35.0 | 700 | 0.1315 | 0.4681 | 0.9361 | 0.9361 | nan | 0.9361 | 0.0 | 0.9361 |
| 0.1981 | 36.0 | 720 | 0.1289 | 0.4766 | 0.9531 | 0.9531 | nan | 0.9531 | 0.0 | 0.9531 |
| 0.2742 | 37.0 | 740 | 0.1284 | 0.4818 | 0.9635 | 0.9635 | nan | 0.9635 | 0.0 | 0.9635 |
| 0.0418 | 38.0 | 760 | 0.1240 | 0.4762 | 0.9525 | 0.9525 | nan | 0.9525 | 0.0 | 0.9525 |
| 0.1946 | 39.0 | 780 | 0.1253 | 0.4750 | 0.9500 | 0.9500 | nan | 0.9500 | 0.0 | 0.9500 |
| 0.1692 | 40.0 | 800 | 0.1253 | 0.4836 | 0.9672 | 0.9672 | nan | 0.9672 | 0.0 | 0.9672 |
| 0.3071 | 41.0 | 820 | 0.1227 | 0.4751 | 0.9503 | 0.9503 | nan | 0.9503 | 0.0 | 0.9503 |
| 0.2003 | 42.0 | 840 | 0.1250 | 0.4762 | 0.9524 | 0.9524 | nan | 0.9524 | 0.0 | 0.9524 |
| 0.2099 | 43.0 | 860 | 0.1235 | 0.4740 | 0.9480 | 0.9480 | nan | 0.9480 | 0.0 | 0.9480 |
| 0.1218 | 44.0 | 880 | 0.1222 | 0.4743 | 0.9486 | 0.9486 | nan | 0.9486 | 0.0 | 0.9486 |
| 0.1583 | 45.0 | 900 | 0.1226 | 0.4708 | 0.9415 | 0.9415 | nan | 0.9415 | 0.0 | 0.9415 |
| 0.1506 | 46.0 | 920 | 0.1215 | 0.4686 | 0.9372 | 0.9372 | nan | 0.9372 | 0.0 | 0.9372 |
| 0.0643 | 47.0 | 940 | 0.1234 | 0.4779 | 0.9559 | 0.9559 | nan | 0.9559 | 0.0 | 0.9559 |
| 0.2006 | 48.0 | 960 | 0.1213 | 0.4757 | 0.9515 | 0.9515 | nan | 0.9515 | 0.0 | 0.9515 |
| 0.0783 | 49.0 | 980 | 0.1241 | 0.4726 | 0.9452 | 0.9452 | nan | 0.9452 | 0.0 | 0.9452 |
| 0.0552 | 50.0 | 1000 | 0.1227 | 0.4744 | 0.9489 | 0.9489 | nan | 0.9489 | 0.0 | 0.9489 |
### Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0
| [
"unlabeled",
"circuit"
] |
Gregghe/segformer-finetuned-fingertip-10-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-fingertip-10-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5204
- Mean Iou: 0.0132
- Mean Accuracy: 0.0688
- Overall Accuracy: 0.0956
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.0201
- Accuracy Flat-sidewalk: 0.1177
- Accuracy Flat-crosswalk: 0.0014
- Accuracy Flat-cyclinglane: 0.4426
- Accuracy Flat-parkingdriveway: 0.0021
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0008
- Accuracy Human-person: 0.0010
- Accuracy Human-rider: 0.0077
- Accuracy Vehicle-car: 0.1566
- Accuracy Vehicle-truck: 0.0040
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.5317
- Accuracy Vehicle-bicycle: 0.0892
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: nan
- Accuracy Construction-building: 0.0578
- Accuracy Construction-door: 0.0682
- Accuracy Construction-wall: 0.0002
- Accuracy Construction-fenceguardrail: 0.0000
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0055
- Accuracy Object-pole: 0.0162
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.3811
- Accuracy Nature-vegetation: 0.0756
- Accuracy Nature-terrain: 0.0010
- Accuracy Sky: 0.0038
- Accuracy Void-ground: 0.0400
- Accuracy Void-dynamic: 0.0002
- Accuracy Void-static: 0.0386
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: 0.0
- Iou Flat-road: 0.0193
- Iou Flat-sidewalk: 0.1141
- Iou Flat-crosswalk: 0.0013
- Iou Flat-cyclinglane: 0.0702
- Iou Flat-parkingdriveway: 0.0019
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0007
- Iou Human-person: 0.0005
- Iou Human-rider: 0.0001
- Iou Vehicle-car: 0.1087
- Iou Vehicle-truck: 0.0003
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0004
- Iou Vehicle-bicycle: 0.0085
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.0413
- Iou Construction-door: 0.0067
- Iou Construction-wall: 0.0002
- Iou Construction-fenceguardrail: 0.0000
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0021
- Iou Object-pole: 0.0036
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0001
- Iou Nature-vegetation: 0.0663
- Iou Nature-terrain: 0.0009
- Iou Sky: 0.0038
- Iou Void-ground: 0.0049
- Iou Void-dynamic: 0.0000
- Iou Void-static: 0.0046
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| No log | 0.09 | 10 | 3.5204 | 0.0132 | 0.0688 | 0.0956 | nan | 0.0201 | 0.1177 | 0.0014 | 0.4426 | 0.0021 | nan | 0.0008 | 0.0010 | 0.0077 | 0.1566 | 0.0040 | 0.0 | nan | 0.5317 | 0.0892 | 0.0 | nan | 0.0578 | 0.0682 | 0.0002 | 0.0000 | 0.0 | nan | 0.0055 | 0.0162 | 0.0 | 0.3811 | 0.0756 | 0.0010 | 0.0038 | 0.0400 | 0.0002 | 0.0386 | 0.0 | 0.0 | 0.0193 | 0.1141 | 0.0013 | 0.0702 | 0.0019 | 0.0 | 0.0007 | 0.0005 | 0.0001 | 0.1087 | 0.0003 | 0.0 | 0.0 | 0.0004 | 0.0085 | 0.0 | 0.0 | 0.0413 | 0.0067 | 0.0002 | 0.0000 | 0.0 | 0.0 | 0.0021 | 0.0036 | 0.0 | 0.0001 | 0.0663 | 0.0009 | 0.0038 | 0.0049 | 0.0000 | 0.0046 | 0.0 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu118
- Datasets 2.16.0
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
Gregghe/segformer-finetuned-fingertip-1000-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-fingertip-10-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5204
- Mean Iou: 0.0132
- Mean Accuracy: 0.0688
- Overall Accuracy: 0.0956
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.0201
- Accuracy Flat-sidewalk: 0.1177
- Accuracy Flat-crosswalk: 0.0014
- Accuracy Flat-cyclinglane: 0.4426
- Accuracy Flat-parkingdriveway: 0.0021
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.0008
- Accuracy Human-person: 0.0010
- Accuracy Human-rider: 0.0077
- Accuracy Vehicle-car: 0.1566
- Accuracy Vehicle-truck: 0.0040
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.5317
- Accuracy Vehicle-bicycle: 0.0892
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: nan
- Accuracy Construction-building: 0.0578
- Accuracy Construction-door: 0.0682
- Accuracy Construction-wall: 0.0002
- Accuracy Construction-fenceguardrail: 0.0000
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0055
- Accuracy Object-pole: 0.0162
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.3811
- Accuracy Nature-vegetation: 0.0756
- Accuracy Nature-terrain: 0.0010
- Accuracy Sky: 0.0038
- Accuracy Void-ground: 0.0400
- Accuracy Void-dynamic: 0.0002
- Accuracy Void-static: 0.0386
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: 0.0
- Iou Flat-road: 0.0193
- Iou Flat-sidewalk: 0.1141
- Iou Flat-crosswalk: 0.0013
- Iou Flat-cyclinglane: 0.0702
- Iou Flat-parkingdriveway: 0.0019
- Iou Flat-railtrack: 0.0
- Iou Flat-curb: 0.0007
- Iou Human-person: 0.0005
- Iou Human-rider: 0.0001
- Iou Vehicle-car: 0.1087
- Iou Vehicle-truck: 0.0003
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0004
- Iou Vehicle-bicycle: 0.0085
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.0413
- Iou Construction-door: 0.0067
- Iou Construction-wall: 0.0002
- Iou Construction-fenceguardrail: 0.0000
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: 0.0
- Iou Construction-stairs: 0.0021
- Iou Object-pole: 0.0036
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0001
- Iou Nature-vegetation: 0.0663
- Iou Nature-terrain: 0.0009
- Iou Sky: 0.0038
- Iou Void-ground: 0.0049
- Iou Void-dynamic: 0.0000
- Iou Void-static: 0.0046
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| No log | 0.09 | 10 | 3.5204 | 0.0132 | 0.0688 | 0.0956 | nan | 0.0201 | 0.1177 | 0.0014 | 0.4426 | 0.0021 | nan | 0.0008 | 0.0010 | 0.0077 | 0.1566 | 0.0040 | 0.0 | nan | 0.5317 | 0.0892 | 0.0 | nan | 0.0578 | 0.0682 | 0.0002 | 0.0000 | 0.0 | nan | 0.0055 | 0.0162 | 0.0 | 0.3811 | 0.0756 | 0.0010 | 0.0038 | 0.0400 | 0.0002 | 0.0386 | 0.0 | 0.0 | 0.0193 | 0.1141 | 0.0013 | 0.0702 | 0.0019 | 0.0 | 0.0007 | 0.0005 | 0.0001 | 0.1087 | 0.0003 | 0.0 | 0.0 | 0.0004 | 0.0085 | 0.0 | 0.0 | 0.0413 | 0.0067 | 0.0002 | 0.0000 | 0.0 | 0.0 | 0.0021 | 0.0036 | 0.0 | 0.0001 | 0.0663 | 0.0009 | 0.0038 | 0.0049 | 0.0000 | 0.0046 | 0.0 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu118
- Datasets 2.16.0
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
sawthiha/segformer-b0-finetuned-deprem-satellite |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-deprem-satellite
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the deprem-ml/deprem_satellite_semantic_whu_dataset dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0641
- eval_mean_iou: 0.9849
- eval_mean_accuracy: 0.9933
- eval_overall_accuracy: 0.9933
- eval_runtime: 94.2835
- eval_samples_per_second: 10.988
- eval_steps_per_second: 2.206
- epoch: 4.18
- step: 1980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 10
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.0 | [
"unlabeled",
"building"
] |
johanhag/segformer-b0-winter_2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-winter_2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the johanhag/winter dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0665
- Mean Iou: 0.7168
- Mean Accuracy: 0.7840
- Overall Accuracy: 0.9775
- Accuracy Unlabeled: nan
- Accuracy Road: 0.9559
- Accuracy Side walk: 0.7693
- Accuracy Car: 0.8882
- Accuracy Pedestrian: 0.8345
- Accuracy Sign: 0.2653
- Accuracy Other: 0.9907
- Iou Unlabeled: nan
- Iou Road: 0.9088
- Iou Side walk: 0.6583
- Iou Car: 0.7943
- Iou Pedestrian: 0.7201
- Iou Sign: 0.2393
- Iou Other: 0.9799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Road | Accuracy Side walk | Accuracy Car | Accuracy Pedestrian | Accuracy Sign | Accuracy Other | Iou Unlabeled | Iou Road | Iou Side walk | Iou Car | Iou Pedestrian | Iou Sign | Iou Other |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:------------------:|:------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:--------:|:-------------:|:-------:|:--------------:|:--------:|:---------:|
| 1.2678 | 0.37 | 20 | 1.4585 | 0.2824 | 0.4123 | 0.8374 | nan | 0.9932 | 0.0 | 0.6072 | 0.0205 | 0.0 | 0.8528 | nan | 0.4383 | 0.0 | 0.3876 | 0.0204 | 0.0 | 0.8480 |
| 0.9377 | 0.74 | 40 | 0.9219 | 0.3461 | 0.4345 | 0.9161 | nan | 0.9666 | 0.0013 | 0.6904 | 0.0 | 0.0 | 0.9490 | nan | 0.6449 | 0.0013 | 0.5036 | 0.0 | 0.0 | 0.9265 |
| 0.7819 | 1.11 | 60 | 0.7375 | 0.3622 | 0.4469 | 0.9248 | nan | 0.9687 | 0.0098 | 0.7451 | 0.0 | 0.0 | 0.9576 | nan | 0.6748 | 0.0095 | 0.5520 | 0.0 | 0.0 | 0.9367 |
| 0.687 | 1.48 | 80 | 0.6354 | 0.3674 | 0.4573 | 0.9286 | nan | 0.9687 | 0.0131 | 0.8014 | 0.0 | 0.0 | 0.9608 | nan | 0.6873 | 0.0130 | 0.5626 | 0.0 | 0.0 | 0.9417 |
| 0.552 | 1.85 | 100 | 0.5199 | 0.3753 | 0.4700 | 0.9360 | nan | 0.9564 | 0.0246 | 0.8691 | 0.0 | 0.0 | 0.9697 | nan | 0.7283 | 0.0246 | 0.5492 | 0.0 | 0.0 | 0.9497 |
| 0.521 | 2.22 | 120 | 0.4620 | 0.3897 | 0.4651 | 0.9419 | nan | 0.9413 | 0.0622 | 0.8083 | 0.0 | 0.0 | 0.9791 | nan | 0.7606 | 0.0615 | 0.5631 | 0.0 | 0.0 | 0.9531 |
| 0.3901 | 2.59 | 140 | 0.4255 | 0.4088 | 0.5067 | 0.9398 | nan | 0.9671 | 0.1414 | 0.8939 | 0.0695 | 0.0 | 0.9684 | nan | 0.7369 | 0.1358 | 0.5570 | 0.0694 | 0.0 | 0.9540 |
| 0.4172 | 2.96 | 160 | 0.3836 | 0.4307 | 0.5198 | 0.9436 | nan | 0.9591 | 0.2494 | 0.8904 | 0.0485 | 0.0 | 0.9714 | nan | 0.7552 | 0.2212 | 0.6043 | 0.0485 | 0.0 | 0.9552 |
| 0.2995 | 3.33 | 180 | 0.3209 | 0.4755 | 0.5497 | 0.9483 | nan | 0.9631 | 0.1625 | 0.8542 | 0.3417 | 0.0 | 0.9768 | nan | 0.7656 | 0.1585 | 0.6356 | 0.3340 | 0.0 | 0.9592 |
| 1.6503 | 3.7 | 200 | 0.2891 | 0.4914 | 0.5539 | 0.9529 | nan | 0.9505 | 0.4372 | 0.7938 | 0.1621 | 0.0 | 0.9797 | nan | 0.8021 | 0.3827 | 0.6457 | 0.1592 | 0.0 | 0.9585 |
| 0.2506 | 4.07 | 220 | 0.2502 | 0.4813 | 0.5573 | 0.9537 | nan | 0.9412 | 0.3606 | 0.8825 | 0.1774 | 0.0 | 0.9820 | nan | 0.8068 | 0.3260 | 0.6168 | 0.1758 | 0.0 | 0.9625 |
| 0.2336 | 4.44 | 240 | 0.2367 | 0.5543 | 0.6178 | 0.9610 | nan | 0.9211 | 0.4445 | 0.8401 | 0.5124 | 0.0 | 0.9889 | nan | 0.8354 | 0.4044 | 0.6477 | 0.4713 | 0.0 | 0.9670 |
| 0.1932 | 4.81 | 260 | 0.2088 | 0.5436 | 0.5960 | 0.9613 | nan | 0.9283 | 0.4497 | 0.8144 | 0.3935 | 0.0 | 0.9898 | nan | 0.8360 | 0.4188 | 0.6606 | 0.3794 | 0.0 | 0.9667 |
| 1.8362 | 5.19 | 280 | 0.1866 | 0.5727 | 0.6422 | 0.9628 | nan | 0.9358 | 0.4776 | 0.8185 | 0.6339 | 0.0 | 0.9876 | nan | 0.8474 | 0.4320 | 0.6612 | 0.5279 | 0.0 | 0.9679 |
| 0.2085 | 5.56 | 300 | 0.1677 | 0.5749 | 0.6321 | 0.9646 | nan | 0.9571 | 0.4811 | 0.7743 | 0.5920 | 0.0 | 0.9881 | nan | 0.8488 | 0.4438 | 0.6761 | 0.5099 | 0.0 | 0.9706 |
| 0.1389 | 5.93 | 320 | 0.1566 | 0.5761 | 0.6368 | 0.9641 | nan | 0.9566 | 0.5138 | 0.8141 | 0.5499 | 0.0 | 0.9862 | nan | 0.8483 | 0.4661 | 0.6803 | 0.4929 | 0.0 | 0.9693 |
| 0.1799 | 6.3 | 340 | 0.1620 | 0.5836 | 0.6678 | 0.9625 | nan | 0.9604 | 0.5769 | 0.8649 | 0.6244 | 0.0 | 0.9802 | nan | 0.8437 | 0.4753 | 0.6798 | 0.5350 | 0.0 | 0.9679 |
| 0.1291 | 6.67 | 360 | 0.1400 | 0.5926 | 0.6680 | 0.9649 | nan | 0.9637 | 0.5702 | 0.8362 | 0.6548 | 0.0 | 0.9831 | nan | 0.8505 | 0.4971 | 0.6900 | 0.5478 | 0.0 | 0.9701 |
| 0.1275 | 7.04 | 380 | 0.1505 | 0.5710 | 0.6346 | 0.9625 | nan | 0.9682 | 0.4619 | 0.7713 | 0.6220 | 0.0 | 0.9843 | nan | 0.8387 | 0.4057 | 0.6858 | 0.5268 | 0.0 | 0.9691 |
| 0.0968 | 7.41 | 400 | 0.1368 | 0.5774 | 0.6363 | 0.9644 | nan | 0.9666 | 0.4759 | 0.8145 | 0.5753 | 0.0 | 0.9859 | nan | 0.8407 | 0.4348 | 0.6960 | 0.5216 | 0.0 | 0.9714 |
| 0.1279 | 7.78 | 420 | 0.1317 | 0.5911 | 0.6616 | 0.9665 | nan | 0.9405 | 0.5449 | 0.9055 | 0.5909 | 0.0 | 0.9880 | nan | 0.8677 | 0.4742 | 0.7002 | 0.5328 | 0.0 | 0.9714 |
| 0.0917 | 8.15 | 440 | 0.1217 | 0.6187 | 0.7110 | 0.9684 | nan | 0.9505 | 0.7295 | 0.8745 | 0.7278 | 0.0 | 0.9834 | nan | 0.8802 | 0.5694 | 0.7065 | 0.5843 | 0.0 | 0.9719 |
| 0.0896 | 8.52 | 460 | 0.1164 | 0.6055 | 0.6809 | 0.9678 | nan | 0.9333 | 0.7235 | 0.8257 | 0.6158 | 0.0 | 0.9873 | nan | 0.8787 | 0.5338 | 0.7053 | 0.5428 | 0.0 | 0.9722 |
| 0.0903 | 8.89 | 480 | 0.1186 | 0.6195 | 0.6956 | 0.9683 | nan | 0.9632 | 0.6929 | 0.8345 | 0.6995 | 0.0 | 0.9836 | nan | 0.8645 | 0.5528 | 0.7308 | 0.5960 | 0.0 | 0.9730 |
| 0.0943 | 9.26 | 500 | 0.1183 | 0.6205 | 0.7187 | 0.9672 | nan | 0.9539 | 0.7619 | 0.8675 | 0.7483 | 0.0 | 0.9805 | nan | 0.8773 | 0.5444 | 0.7161 | 0.6142 | 0.0 | 0.9709 |
| 0.0886 | 9.63 | 520 | 0.1080 | 0.6233 | 0.7010 | 0.9687 | nan | 0.9665 | 0.6540 | 0.8584 | 0.7434 | 0.0 | 0.9838 | nan | 0.8689 | 0.5572 | 0.7272 | 0.6140 | 0.0 | 0.9726 |
| 0.1024 | 10.0 | 540 | 0.1047 | 0.6224 | 0.6872 | 0.9706 | nan | 0.9419 | 0.6739 | 0.8470 | 0.6710 | 0.0 | 0.9898 | nan | 0.8803 | 0.5702 | 0.7278 | 0.5818 | 0.0 | 0.9744 |
| 0.0779 | 10.37 | 560 | 0.1116 | 0.6168 | 0.6841 | 0.9683 | nan | 0.9726 | 0.5517 | 0.8334 | 0.7614 | 0.0 | 0.9856 | nan | 0.8627 | 0.5211 | 0.7301 | 0.6145 | 0.0 | 0.9724 |
| 0.1082 | 10.74 | 580 | 0.1044 | 0.6277 | 0.7012 | 0.9695 | nan | 0.9656 | 0.6787 | 0.8693 | 0.7096 | 0.0 | 0.9843 | nan | 0.8712 | 0.5607 | 0.7441 | 0.6166 | 0.0 | 0.9736 |
| 0.0797 | 11.11 | 600 | 0.1004 | 0.6356 | 0.7205 | 0.9703 | nan | 0.9625 | 0.7506 | 0.8580 | 0.7686 | 0.0 | 0.9834 | nan | 0.8826 | 0.5894 | 0.7393 | 0.6292 | 0.0 | 0.9734 |
| 0.0766 | 11.48 | 620 | 0.0957 | 0.6377 | 0.7250 | 0.9714 | nan | 0.9507 | 0.7480 | 0.8487 | 0.8162 | 0.0 | 0.9862 | nan | 0.8869 | 0.6181 | 0.7356 | 0.6112 | 0.0 | 0.9743 |
| 0.1557 | 11.85 | 640 | 0.0951 | 0.6367 | 0.7029 | 0.9719 | nan | 0.9529 | 0.7316 | 0.8288 | 0.7157 | 0.0 | 0.9883 | nan | 0.8896 | 0.6117 | 0.7317 | 0.6125 | 0.0 | 0.9745 |
| 0.0623 | 12.22 | 660 | 0.0939 | 0.6462 | 0.7283 | 0.9726 | nan | 0.9467 | 0.7844 | 0.8493 | 0.8022 | 0.0 | 0.9873 | nan | 0.8923 | 0.6157 | 0.7518 | 0.6416 | 0.0 | 0.9756 |
| 0.0619 | 12.59 | 680 | 0.0976 | 0.6349 | 0.7030 | 0.9710 | nan | 0.9603 | 0.7091 | 0.8715 | 0.6907 | 0.0 | 0.9861 | nan | 0.8802 | 0.5868 | 0.7498 | 0.6182 | 0.0 | 0.9745 |
| 0.0617 | 12.96 | 700 | 0.0919 | 0.6354 | 0.7228 | 0.9719 | nan | 0.9470 | 0.7145 | 0.8873 | 0.8003 | 0.0 | 0.9874 | nan | 0.8887 | 0.5929 | 0.7426 | 0.6128 | 0.0 | 0.9756 |
| 0.0544 | 13.33 | 720 | 0.0870 | 0.6517 | 0.7173 | 0.9741 | nan | 0.9465 | 0.7433 | 0.8302 | 0.7930 | 0.0 | 0.9907 | nan | 0.9005 | 0.6367 | 0.7452 | 0.6518 | 0.0 | 0.9760 |
| 0.1027 | 13.7 | 740 | 0.0894 | 0.6446 | 0.7207 | 0.9728 | nan | 0.9207 | 0.7490 | 0.8655 | 0.7973 | 0.0 | 0.9917 | nan | 0.8926 | 0.6210 | 0.7383 | 0.6398 | 0.0 | 0.9755 |
| 0.0568 | 14.07 | 760 | 0.0897 | 0.6434 | 0.7118 | 0.9729 | nan | 0.9570 | 0.7121 | 0.8779 | 0.7342 | 0.0016 | 0.9882 | nan | 0.8947 | 0.6098 | 0.7497 | 0.6292 | 0.0016 | 0.9753 |
| 0.0612 | 14.44 | 780 | 0.0851 | 0.6517 | 0.7181 | 0.9740 | nan | 0.9599 | 0.7121 | 0.8589 | 0.7874 | 0.0012 | 0.9890 | nan | 0.8967 | 0.6182 | 0.7590 | 0.6582 | 0.0012 | 0.9766 |
| 0.076 | 14.81 | 800 | 0.0859 | 0.6485 | 0.7126 | 0.9735 | nan | 0.9589 | 0.6878 | 0.8535 | 0.7830 | 0.0033 | 0.9894 | nan | 0.8925 | 0.6028 | 0.7595 | 0.6563 | 0.0033 | 0.9765 |
| 0.0489 | 15.19 | 820 | 0.0815 | 0.6528 | 0.7188 | 0.9744 | nan | 0.9484 | 0.7477 | 0.8180 | 0.7988 | 0.0090 | 0.9909 | nan | 0.9011 | 0.6294 | 0.7421 | 0.6584 | 0.0090 | 0.9771 |
| 0.0859 | 15.56 | 840 | 0.0828 | 0.6555 | 0.7296 | 0.9738 | nan | 0.9508 | 0.7726 | 0.8563 | 0.7974 | 0.0118 | 0.9884 | nan | 0.8961 | 0.6231 | 0.7577 | 0.6674 | 0.0118 | 0.9768 |
| 0.0661 | 15.93 | 860 | 0.0840 | 0.6555 | 0.7190 | 0.9741 | nan | 0.9603 | 0.7187 | 0.8370 | 0.7849 | 0.0234 | 0.9894 | nan | 0.8993 | 0.6216 | 0.7473 | 0.6652 | 0.0234 | 0.9766 |
| 0.0654 | 16.3 | 880 | 0.0840 | 0.6584 | 0.7227 | 0.9742 | nan | 0.9564 | 0.7158 | 0.8614 | 0.7876 | 0.0257 | 0.9895 | nan | 0.8970 | 0.6175 | 0.7638 | 0.6699 | 0.0257 | 0.9767 |
| 0.0607 | 16.67 | 900 | 0.0822 | 0.6559 | 0.7390 | 0.9732 | nan | 0.9545 | 0.7766 | 0.8700 | 0.8213 | 0.0253 | 0.9865 | nan | 0.8920 | 0.6220 | 0.7645 | 0.6554 | 0.0253 | 0.9763 |
| 0.0497 | 17.04 | 920 | 0.0817 | 0.6673 | 0.7313 | 0.9748 | nan | 0.9606 | 0.6869 | 0.8915 | 0.7878 | 0.0713 | 0.9897 | nan | 0.8995 | 0.6138 | 0.7722 | 0.6698 | 0.0711 | 0.9773 |
| 0.0497 | 17.41 | 940 | 0.0841 | 0.6523 | 0.7202 | 0.9731 | nan | 0.9672 | 0.6538 | 0.8894 | 0.7861 | 0.0371 | 0.9878 | nan | 0.8868 | 0.5868 | 0.7649 | 0.6617 | 0.0371 | 0.9766 |
| 0.055 | 17.78 | 960 | 0.0832 | 0.6568 | 0.7440 | 0.9730 | nan | 0.9510 | 0.8045 | 0.8484 | 0.8358 | 0.0383 | 0.9863 | nan | 0.8946 | 0.6165 | 0.7569 | 0.6587 | 0.0383 | 0.9762 |
| 0.0967 | 18.15 | 980 | 0.0854 | 0.6650 | 0.7524 | 0.9726 | nan | 0.9647 | 0.7887 | 0.8950 | 0.7981 | 0.0846 | 0.9836 | nan | 0.8918 | 0.6210 | 0.7621 | 0.6561 | 0.0839 | 0.9752 |
| 0.0436 | 18.52 | 1000 | 0.0814 | 0.6623 | 0.7454 | 0.9739 | nan | 0.9593 | 0.7287 | 0.8957 | 0.8436 | 0.0579 | 0.9871 | nan | 0.8986 | 0.6138 | 0.7595 | 0.6672 | 0.0577 | 0.9767 |
| 0.0465 | 18.89 | 1020 | 0.0773 | 0.6646 | 0.7224 | 0.9754 | nan | 0.9473 | 0.7419 | 0.8615 | 0.7462 | 0.0456 | 0.9919 | nan | 0.9050 | 0.6357 | 0.7607 | 0.6632 | 0.0456 | 0.9777 |
| 0.0672 | 19.26 | 1040 | 0.0778 | 0.6713 | 0.7454 | 0.9751 | nan | 0.9464 | 0.7716 | 0.8746 | 0.8165 | 0.0736 | 0.9898 | nan | 0.9037 | 0.6316 | 0.7748 | 0.6671 | 0.0730 | 0.9776 |
| 0.0592 | 19.63 | 1060 | 0.0799 | 0.6616 | 0.7223 | 0.9747 | nan | 0.9596 | 0.6442 | 0.8656 | 0.8116 | 0.0613 | 0.9912 | nan | 0.8997 | 0.5864 | 0.7681 | 0.6765 | 0.0612 | 0.9776 |
| 0.0876 | 20.0 | 1080 | 0.0794 | 0.6712 | 0.7386 | 0.9745 | nan | 0.9608 | 0.7370 | 0.8057 | 0.8434 | 0.0954 | 0.9893 | nan | 0.8993 | 0.6468 | 0.7364 | 0.6735 | 0.0943 | 0.9767 |
| 0.0483 | 20.37 | 1100 | 0.0742 | 0.6783 | 0.7469 | 0.9760 | nan | 0.9576 | 0.7331 | 0.8860 | 0.8272 | 0.0872 | 0.9901 | nan | 0.9066 | 0.6469 | 0.7731 | 0.6784 | 0.0866 | 0.9782 |
| 0.0837 | 20.74 | 1120 | 0.0746 | 0.6756 | 0.7378 | 0.9762 | nan | 0.9491 | 0.7350 | 0.8654 | 0.8146 | 0.0709 | 0.9920 | nan | 0.9067 | 0.6411 | 0.7718 | 0.6849 | 0.0705 | 0.9785 |
| 0.0685 | 21.11 | 1140 | 0.0743 | 0.6787 | 0.7383 | 0.9759 | nan | 0.9475 | 0.7316 | 0.8709 | 0.7859 | 0.1015 | 0.9921 | nan | 0.9070 | 0.6387 | 0.7661 | 0.6817 | 0.1004 | 0.9781 |
| 0.0596 | 21.48 | 1160 | 0.0751 | 0.6762 | 0.7418 | 0.9753 | nan | 0.9499 | 0.7516 | 0.8336 | 0.8182 | 0.1066 | 0.9909 | nan | 0.9056 | 0.6307 | 0.7558 | 0.6827 | 0.1051 | 0.9776 |
| 0.0608 | 21.85 | 1180 | 0.0728 | 0.6833 | 0.7549 | 0.9763 | nan | 0.9428 | 0.7846 | 0.8823 | 0.8219 | 0.1066 | 0.9911 | nan | 0.9070 | 0.6479 | 0.7742 | 0.6862 | 0.1055 | 0.9789 |
| 0.0918 | 22.22 | 1200 | 0.0731 | 0.6846 | 0.7457 | 0.9763 | nan | 0.9597 | 0.7567 | 0.8516 | 0.7984 | 0.1174 | 0.9904 | nan | 0.9049 | 0.6518 | 0.7691 | 0.6875 | 0.1153 | 0.9787 |
| 0.0539 | 22.59 | 1220 | 0.0743 | 0.6785 | 0.7431 | 0.9756 | nan | 0.9563 | 0.7037 | 0.8680 | 0.8308 | 0.1086 | 0.9909 | nan | 0.9011 | 0.6200 | 0.7720 | 0.6918 | 0.1075 | 0.9786 |
| 0.112 | 22.96 | 1240 | 0.0732 | 0.6786 | 0.7429 | 0.9759 | nan | 0.9550 | 0.7656 | 0.8544 | 0.8060 | 0.0862 | 0.9902 | nan | 0.9026 | 0.6444 | 0.7701 | 0.6902 | 0.0856 | 0.9786 |
| 0.0719 | 23.33 | 1260 | 0.0752 | 0.6812 | 0.7419 | 0.9752 | nan | 0.9556 | 0.7059 | 0.8454 | 0.8174 | 0.1363 | 0.9910 | nan | 0.8975 | 0.6136 | 0.7681 | 0.6947 | 0.1347 | 0.9784 |
| 0.0669 | 23.7 | 1280 | 0.0769 | 0.6881 | 0.7787 | 0.9740 | nan | 0.9620 | 0.7954 | 0.9020 | 0.8524 | 0.1760 | 0.9846 | nan | 0.8958 | 0.6387 | 0.7668 | 0.6829 | 0.1678 | 0.9766 |
| 0.0493 | 24.07 | 1300 | 0.0759 | 0.6778 | 0.7518 | 0.9748 | nan | 0.9568 | 0.7398 | 0.8994 | 0.7977 | 0.1284 | 0.9885 | nan | 0.8995 | 0.6076 | 0.7751 | 0.6805 | 0.1260 | 0.9783 |
| 0.11 | 24.44 | 1320 | 0.0752 | 0.6879 | 0.7625 | 0.9751 | nan | 0.9636 | 0.7402 | 0.8775 | 0.8339 | 0.1720 | 0.9879 | nan | 0.9000 | 0.6242 | 0.7765 | 0.6846 | 0.1644 | 0.9779 |
| 0.0631 | 24.81 | 1340 | 0.0720 | 0.6898 | 0.7530 | 0.9763 | nan | 0.9664 | 0.7223 | 0.8807 | 0.8130 | 0.1459 | 0.9896 | nan | 0.9044 | 0.6431 | 0.7812 | 0.6906 | 0.1411 | 0.9786 |
| 0.038 | 25.19 | 1360 | 0.0719 | 0.6909 | 0.7599 | 0.9761 | nan | 0.9491 | 0.7646 | 0.8841 | 0.8190 | 0.1522 | 0.9904 | nan | 0.9034 | 0.6346 | 0.7828 | 0.6976 | 0.1480 | 0.9790 |
| 0.0431 | 25.56 | 1380 | 0.0721 | 0.6925 | 0.7596 | 0.9760 | nan | 0.9651 | 0.7530 | 0.8864 | 0.8031 | 0.1614 | 0.9886 | nan | 0.9033 | 0.6418 | 0.7848 | 0.6910 | 0.1558 | 0.9785 |
| 0.0289 | 25.93 | 1400 | 0.0711 | 0.6914 | 0.7587 | 0.9762 | nan | 0.9381 | 0.7752 | 0.8909 | 0.7947 | 0.1614 | 0.9919 | nan | 0.9045 | 0.6471 | 0.7738 | 0.6893 | 0.1549 | 0.9789 |
| 0.0426 | 26.3 | 1420 | 0.0706 | 0.6950 | 0.7523 | 0.9768 | nan | 0.9640 | 0.7361 | 0.8359 | 0.8120 | 0.1746 | 0.9911 | nan | 0.9078 | 0.6530 | 0.7639 | 0.6987 | 0.1673 | 0.9791 |
| 0.0467 | 26.67 | 1440 | 0.0707 | 0.6961 | 0.7609 | 0.9765 | nan | 0.9479 | 0.7615 | 0.9029 | 0.7805 | 0.1813 | 0.9911 | nan | 0.9072 | 0.6454 | 0.7790 | 0.6928 | 0.1734 | 0.9790 |
| 0.0408 | 27.04 | 1460 | 0.0709 | 0.6920 | 0.7549 | 0.9765 | nan | 0.9492 | 0.7672 | 0.8323 | 0.8389 | 0.1500 | 0.9918 | nan | 0.9080 | 0.6569 | 0.7628 | 0.7006 | 0.1450 | 0.9786 |
| 0.0615 | 27.41 | 1480 | 0.0703 | 0.6963 | 0.7537 | 0.9768 | nan | 0.9581 | 0.7484 | 0.8667 | 0.7992 | 0.1587 | 0.9911 | nan | 0.9084 | 0.6610 | 0.7770 | 0.7002 | 0.1525 | 0.9786 |
| 0.0533 | 27.78 | 1500 | 0.0706 | 0.6946 | 0.7582 | 0.9764 | nan | 0.9456 | 0.7452 | 0.8519 | 0.8340 | 0.1799 | 0.9924 | nan | 0.9061 | 0.6408 | 0.7720 | 0.6988 | 0.1708 | 0.9789 |
| 0.0711 | 28.15 | 1520 | 0.0706 | 0.6920 | 0.7510 | 0.9763 | nan | 0.9534 | 0.7701 | 0.8629 | 0.7678 | 0.1608 | 0.9909 | nan | 0.9047 | 0.6450 | 0.7784 | 0.6898 | 0.1554 | 0.9789 |
| 0.0393 | 28.52 | 1540 | 0.0682 | 0.6969 | 0.7657 | 0.9768 | nan | 0.9478 | 0.7615 | 0.8731 | 0.8445 | 0.1756 | 0.9915 | nan | 0.9068 | 0.6512 | 0.7821 | 0.6940 | 0.1677 | 0.9795 |
| 0.0554 | 28.89 | 1560 | 0.0692 | 0.6964 | 0.7709 | 0.9760 | nan | 0.9589 | 0.7844 | 0.8853 | 0.8399 | 0.1685 | 0.9882 | nan | 0.9025 | 0.6465 | 0.7864 | 0.7042 | 0.1603 | 0.9786 |
| 0.0434 | 29.26 | 1580 | 0.0701 | 0.7004 | 0.7726 | 0.9764 | nan | 0.9626 | 0.7718 | 0.9017 | 0.8279 | 0.1836 | 0.9883 | nan | 0.9042 | 0.6550 | 0.7841 | 0.7068 | 0.1736 | 0.9789 |
| 0.0291 | 29.63 | 1600 | 0.0697 | 0.6993 | 0.7828 | 0.9764 | nan | 0.9514 | 0.7878 | 0.9098 | 0.8654 | 0.1934 | 0.9889 | nan | 0.9074 | 0.6529 | 0.7792 | 0.6950 | 0.1820 | 0.9791 |
| 2.6544 | 30.0 | 1620 | 0.0684 | 0.6924 | 0.7548 | 0.9766 | nan | 0.9521 | 0.7645 | 0.8669 | 0.8127 | 0.1414 | 0.9912 | nan | 0.9047 | 0.6439 | 0.7817 | 0.7072 | 0.1378 | 0.9794 |
| 0.0575 | 30.37 | 1640 | 0.0695 | 0.7022 | 0.7716 | 0.9766 | nan | 0.9572 | 0.7694 | 0.8932 | 0.8291 | 0.1913 | 0.9895 | nan | 0.9055 | 0.6478 | 0.7868 | 0.7134 | 0.1807 | 0.9792 |
| 0.0445 | 30.74 | 1660 | 0.0695 | 0.6967 | 0.7644 | 0.9766 | nan | 0.9469 | 0.7587 | 0.8831 | 0.8402 | 0.1661 | 0.9914 | nan | 0.9087 | 0.6416 | 0.7843 | 0.7072 | 0.1596 | 0.9789 |
| 0.0487 | 31.11 | 1680 | 0.0700 | 0.7022 | 0.7674 | 0.9768 | nan | 0.9598 | 0.7276 | 0.8745 | 0.8351 | 0.2170 | 0.9907 | nan | 0.9066 | 0.6404 | 0.7870 | 0.7006 | 0.1996 | 0.9792 |
| 0.0539 | 31.48 | 1700 | 0.0700 | 0.6978 | 0.7634 | 0.9764 | nan | 0.9489 | 0.7680 | 0.8586 | 0.8232 | 0.1903 | 0.9912 | nan | 0.9054 | 0.6365 | 0.7813 | 0.7053 | 0.1791 | 0.9792 |
| 0.0617 | 31.85 | 1720 | 0.0717 | 0.7077 | 0.7777 | 0.9765 | nan | 0.9562 | 0.7683 | 0.8947 | 0.8146 | 0.2433 | 0.9895 | nan | 0.9038 | 0.6415 | 0.7921 | 0.7096 | 0.2201 | 0.9791 |
| 0.0391 | 32.22 | 1740 | 0.0690 | 0.7007 | 0.7676 | 0.9766 | nan | 0.9557 | 0.7667 | 0.8654 | 0.8402 | 0.1874 | 0.9902 | nan | 0.9044 | 0.6447 | 0.7851 | 0.7129 | 0.1775 | 0.9793 |
| 0.0834 | 32.59 | 1760 | 0.0688 | 0.7015 | 0.7699 | 0.9768 | nan | 0.9519 | 0.7571 | 0.8926 | 0.8319 | 0.1954 | 0.9907 | nan | 0.9048 | 0.6459 | 0.7860 | 0.7089 | 0.1840 | 0.9795 |
| 0.0412 | 32.96 | 1780 | 0.0694 | 0.7080 | 0.7786 | 0.9768 | nan | 0.9560 | 0.7600 | 0.8859 | 0.8386 | 0.2410 | 0.9901 | nan | 0.9077 | 0.6464 | 0.7894 | 0.7049 | 0.2203 | 0.9791 |
| 0.0476 | 33.33 | 1800 | 0.0698 | 0.7045 | 0.7689 | 0.9766 | nan | 0.9582 | 0.7688 | 0.8677 | 0.8225 | 0.2062 | 0.9900 | nan | 0.9055 | 0.6537 | 0.7854 | 0.7090 | 0.1948 | 0.9788 |
| 0.0407 | 33.7 | 1820 | 0.0684 | 0.7103 | 0.7824 | 0.9770 | nan | 0.9535 | 0.7700 | 0.8809 | 0.8575 | 0.2423 | 0.9904 | nan | 0.9077 | 0.6555 | 0.7885 | 0.7073 | 0.2233 | 0.9794 |
| 0.0307 | 34.07 | 1840 | 0.0717 | 0.7072 | 0.7902 | 0.9755 | nan | 0.9608 | 0.7869 | 0.8959 | 0.8623 | 0.2484 | 0.9867 | nan | 0.9000 | 0.6421 | 0.7882 | 0.7089 | 0.2258 | 0.9781 |
| 0.0236 | 34.44 | 1860 | 0.0700 | 0.7104 | 0.7889 | 0.9765 | nan | 0.9502 | 0.7737 | 0.8754 | 0.8807 | 0.2639 | 0.9900 | nan | 0.9041 | 0.6532 | 0.7850 | 0.7041 | 0.2370 | 0.9791 |
| 0.0752 | 34.81 | 1880 | 0.0689 | 0.7068 | 0.7716 | 0.9766 | nan | 0.9564 | 0.7689 | 0.8845 | 0.8157 | 0.2139 | 0.9899 | nan | 0.9032 | 0.6542 | 0.7915 | 0.7115 | 0.2012 | 0.9790 |
| 0.0301 | 35.19 | 1900 | 0.0701 | 0.7021 | 0.7862 | 0.9761 | nan | 0.9427 | 0.8005 | 0.8935 | 0.8702 | 0.2209 | 0.9896 | nan | 0.9046 | 0.6342 | 0.7870 | 0.7013 | 0.2064 | 0.9793 |
| 0.0457 | 35.56 | 1920 | 0.0694 | 0.7053 | 0.7683 | 0.9769 | nan | 0.9525 | 0.7313 | 0.8720 | 0.8319 | 0.2302 | 0.9918 | nan | 0.9053 | 0.6363 | 0.7872 | 0.7100 | 0.2136 | 0.9796 |
| 0.033 | 35.93 | 1940 | 0.0695 | 0.7078 | 0.7745 | 0.9766 | nan | 0.9618 | 0.7552 | 0.8873 | 0.8138 | 0.2392 | 0.9894 | nan | 0.9037 | 0.6423 | 0.7926 | 0.7104 | 0.2183 | 0.9793 |
| 0.0231 | 36.3 | 1960 | 0.0687 | 0.7060 | 0.7741 | 0.9769 | nan | 0.9493 | 0.7574 | 0.8883 | 0.8302 | 0.2284 | 0.9912 | nan | 0.9052 | 0.6403 | 0.7898 | 0.7092 | 0.2118 | 0.9798 |
| 0.038 | 36.67 | 1980 | 0.0685 | 0.7082 | 0.7775 | 0.9767 | nan | 0.9640 | 0.7617 | 0.8762 | 0.8311 | 0.2431 | 0.9891 | nan | 0.9042 | 0.6457 | 0.7927 | 0.7064 | 0.2206 | 0.9795 |
| 0.0421 | 37.04 | 2000 | 0.0684 | 0.7083 | 0.7806 | 0.9767 | nan | 0.9523 | 0.7679 | 0.8937 | 0.8367 | 0.2427 | 0.9902 | nan | 0.9048 | 0.6430 | 0.7934 | 0.7069 | 0.2222 | 0.9796 |
| 0.0431 | 37.41 | 2020 | 0.0700 | 0.7097 | 0.7792 | 0.9763 | nan | 0.9580 | 0.7520 | 0.8796 | 0.8316 | 0.2641 | 0.9896 | nan | 0.9019 | 0.6332 | 0.7909 | 0.7144 | 0.2385 | 0.9793 |
| 0.0384 | 37.78 | 2040 | 0.0671 | 0.7123 | 0.7770 | 0.9774 | nan | 0.9580 | 0.7566 | 0.8859 | 0.8268 | 0.2441 | 0.9908 | nan | 0.9085 | 0.6542 | 0.7907 | 0.7163 | 0.2242 | 0.9799 |
| 0.0405 | 38.15 | 2060 | 0.0672 | 0.7141 | 0.7884 | 0.9772 | nan | 0.9559 | 0.7886 | 0.8953 | 0.8413 | 0.2596 | 0.9895 | nan | 0.9092 | 0.6515 | 0.7949 | 0.7149 | 0.2345 | 0.9797 |
| 0.0474 | 38.52 | 2080 | 0.0677 | 0.7122 | 0.7779 | 0.9773 | nan | 0.9611 | 0.7538 | 0.8965 | 0.8228 | 0.2431 | 0.9901 | nan | 0.9072 | 0.6535 | 0.7946 | 0.7159 | 0.2224 | 0.9798 |
| 0.0862 | 38.89 | 2100 | 0.0682 | 0.7115 | 0.7787 | 0.9772 | nan | 0.9539 | 0.7524 | 0.8878 | 0.8352 | 0.2516 | 0.9910 | nan | 0.9073 | 0.6464 | 0.7929 | 0.7136 | 0.2290 | 0.9798 |
| 0.0354 | 39.26 | 2120 | 0.0677 | 0.7085 | 0.7713 | 0.9772 | nan | 0.9562 | 0.7498 | 0.8778 | 0.8236 | 0.2290 | 0.9912 | nan | 0.9084 | 0.6464 | 0.7894 | 0.7146 | 0.2127 | 0.9796 |
| 0.0549 | 39.63 | 2140 | 0.0686 | 0.7079 | 0.7702 | 0.9768 | nan | 0.9573 | 0.7483 | 0.8772 | 0.8090 | 0.2386 | 0.9907 | nan | 0.9060 | 0.6389 | 0.7896 | 0.7132 | 0.2204 | 0.9794 |
| 0.0355 | 40.0 | 2160 | 0.0688 | 0.7131 | 0.7845 | 0.9768 | nan | 0.9595 | 0.7532 | 0.8882 | 0.8417 | 0.2747 | 0.9896 | nan | 0.9049 | 0.6461 | 0.7936 | 0.7110 | 0.2441 | 0.9793 |
| 2.1231 | 40.37 | 2180 | 0.0676 | 0.7069 | 0.7721 | 0.9769 | nan | 0.9521 | 0.7665 | 0.8752 | 0.8309 | 0.2170 | 0.9910 | nan | 0.9060 | 0.6463 | 0.7894 | 0.7156 | 0.2044 | 0.9796 |
| 0.0577 | 40.74 | 2200 | 0.0669 | 0.7129 | 0.7797 | 0.9774 | nan | 0.9582 | 0.7679 | 0.8834 | 0.8338 | 0.2445 | 0.9904 | nan | 0.9097 | 0.6600 | 0.7920 | 0.7108 | 0.2256 | 0.9796 |
| 0.0318 | 41.11 | 2220 | 0.0676 | 0.7131 | 0.7817 | 0.9771 | nan | 0.9615 | 0.7636 | 0.8916 | 0.8335 | 0.2504 | 0.9895 | nan | 0.9067 | 0.6543 | 0.7943 | 0.7147 | 0.2292 | 0.9795 |
| 0.0356 | 41.48 | 2240 | 0.0674 | 0.7167 | 0.7861 | 0.9773 | nan | 0.9582 | 0.7643 | 0.8956 | 0.8287 | 0.2800 | 0.9900 | nan | 0.9076 | 0.6530 | 0.7965 | 0.7154 | 0.2479 | 0.9797 |
| 0.0816 | 41.85 | 2260 | 0.0676 | 0.7126 | 0.7728 | 0.9774 | nan | 0.9568 | 0.7636 | 0.8714 | 0.8100 | 0.2439 | 0.9912 | nan | 0.9090 | 0.6544 | 0.7924 | 0.7146 | 0.2254 | 0.9797 |
| 0.0561 | 42.22 | 2280 | 0.0666 | 0.7130 | 0.7759 | 0.9775 | nan | 0.9537 | 0.7694 | 0.8763 | 0.8244 | 0.2400 | 0.9914 | nan | 0.9092 | 0.6624 | 0.7912 | 0.7133 | 0.2222 | 0.9797 |
| 0.0336 | 42.59 | 2300 | 0.0669 | 0.7173 | 0.7858 | 0.9776 | nan | 0.9553 | 0.7755 | 0.8866 | 0.8381 | 0.2685 | 0.9907 | nan | 0.9095 | 0.6654 | 0.7936 | 0.7138 | 0.2419 | 0.9798 |
| 0.0313 | 42.96 | 2320 | 0.0669 | 0.7119 | 0.7773 | 0.9775 | nan | 0.9560 | 0.7609 | 0.8968 | 0.8289 | 0.2304 | 0.9907 | nan | 0.9084 | 0.6581 | 0.7945 | 0.7150 | 0.2154 | 0.9798 |
| 0.0611 | 43.33 | 2340 | 0.0670 | 0.7090 | 0.7756 | 0.9772 | nan | 0.9547 | 0.7711 | 0.8810 | 0.8347 | 0.2215 | 0.9907 | nan | 0.9071 | 0.6520 | 0.7914 | 0.7153 | 0.2082 | 0.9798 |
| 0.0329 | 43.7 | 2360 | 0.0669 | 0.7146 | 0.7803 | 0.9775 | nan | 0.9577 | 0.7647 | 0.8782 | 0.8346 | 0.2555 | 0.9908 | nan | 0.9091 | 0.6560 | 0.7926 | 0.7162 | 0.2337 | 0.9800 |
| 0.0528 | 44.07 | 2380 | 0.0668 | 0.7131 | 0.7721 | 0.9776 | nan | 0.9594 | 0.7513 | 0.8762 | 0.8097 | 0.2449 | 0.9913 | nan | 0.9087 | 0.6565 | 0.7923 | 0.7147 | 0.2262 | 0.9799 |
| 0.0729 | 44.44 | 2400 | 0.0671 | 0.7131 | 0.7748 | 0.9775 | nan | 0.9578 | 0.7573 | 0.8777 | 0.8187 | 0.2461 | 0.9911 | nan | 0.9085 | 0.6566 | 0.7912 | 0.7152 | 0.2272 | 0.9798 |
| 0.0383 | 44.81 | 2420 | 0.0675 | 0.7108 | 0.7809 | 0.9771 | nan | 0.9506 | 0.7742 | 0.8796 | 0.8459 | 0.2443 | 0.9909 | nan | 0.9072 | 0.6499 | 0.7903 | 0.7116 | 0.2262 | 0.9798 |
| 0.0565 | 45.19 | 2440 | 0.0674 | 0.7154 | 0.7821 | 0.9774 | nan | 0.9590 | 0.7609 | 0.8808 | 0.8296 | 0.2720 | 0.9905 | nan | 0.9086 | 0.6546 | 0.7931 | 0.7129 | 0.2436 | 0.9797 |
| 0.0417 | 45.56 | 2460 | 0.0671 | 0.7149 | 0.7809 | 0.9776 | nan | 0.9563 | 0.7631 | 0.8843 | 0.8383 | 0.2524 | 0.9909 | nan | 0.9095 | 0.6570 | 0.7939 | 0.7174 | 0.2314 | 0.9799 |
| 0.024 | 45.93 | 2480 | 0.0678 | 0.7159 | 0.7872 | 0.9772 | nan | 0.9564 | 0.7709 | 0.8828 | 0.8458 | 0.2769 | 0.9902 | nan | 0.9074 | 0.6549 | 0.7927 | 0.7148 | 0.2458 | 0.9797 |
| 0.0496 | 46.3 | 2500 | 0.0668 | 0.7148 | 0.7836 | 0.9775 | nan | 0.9554 | 0.7648 | 0.8905 | 0.8390 | 0.2614 | 0.9907 | nan | 0.9092 | 0.6567 | 0.7931 | 0.7131 | 0.2368 | 0.9799 |
| 0.0428 | 46.67 | 2520 | 0.0668 | 0.7150 | 0.7857 | 0.9773 | nan | 0.9571 | 0.7641 | 0.8969 | 0.8438 | 0.2624 | 0.9902 | nan | 0.9083 | 0.6559 | 0.7941 | 0.7144 | 0.2372 | 0.9798 |
| 0.0458 | 47.04 | 2540 | 0.0665 | 0.7141 | 0.7811 | 0.9775 | nan | 0.9540 | 0.7665 | 0.8957 | 0.8351 | 0.2443 | 0.9908 | nan | 0.9088 | 0.6565 | 0.7946 | 0.7192 | 0.2257 | 0.9799 |
| 0.0429 | 47.41 | 2560 | 0.0673 | 0.7131 | 0.7791 | 0.9773 | nan | 0.9604 | 0.7621 | 0.8836 | 0.8325 | 0.2457 | 0.9901 | nan | 0.9073 | 0.6536 | 0.7936 | 0.7180 | 0.2266 | 0.9797 |
| 0.0449 | 47.78 | 2580 | 0.0666 | 0.7144 | 0.7786 | 0.9775 | nan | 0.9571 | 0.7630 | 0.8873 | 0.8248 | 0.2484 | 0.9908 | nan | 0.9089 | 0.6565 | 0.7944 | 0.7188 | 0.2281 | 0.9799 |
| 0.0302 | 48.15 | 2600 | 0.0665 | 0.7155 | 0.7800 | 0.9776 | nan | 0.9552 | 0.7637 | 0.8904 | 0.8251 | 0.2545 | 0.9911 | nan | 0.9094 | 0.6580 | 0.7936 | 0.7196 | 0.2326 | 0.9799 |
| 0.029 | 48.52 | 2620 | 0.0675 | 0.7176 | 0.7877 | 0.9774 | nan | 0.9588 | 0.7640 | 0.8947 | 0.8445 | 0.2744 | 0.9901 | nan | 0.9081 | 0.6575 | 0.7948 | 0.7204 | 0.2447 | 0.9798 |
| 1.9447 | 48.89 | 2640 | 0.0662 | 0.7130 | 0.7803 | 0.9774 | nan | 0.9529 | 0.7688 | 0.8720 | 0.8497 | 0.2471 | 0.9912 | nan | 0.9085 | 0.6550 | 0.7904 | 0.7170 | 0.2272 | 0.9799 |
| 0.0247 | 49.26 | 2660 | 0.0674 | 0.7163 | 0.7870 | 0.9773 | nan | 0.9593 | 0.7720 | 0.8815 | 0.8486 | 0.2704 | 0.9899 | nan | 0.9077 | 0.6575 | 0.7928 | 0.7181 | 0.2422 | 0.9797 |
| 0.0369 | 49.63 | 2680 | 0.0662 | 0.7154 | 0.7839 | 0.9775 | nan | 0.9547 | 0.7711 | 0.8850 | 0.8430 | 0.2588 | 0.9907 | nan | 0.9087 | 0.6571 | 0.7934 | 0.7181 | 0.2354 | 0.9799 |
| 0.0317 | 50.0 | 2700 | 0.0665 | 0.7168 | 0.7840 | 0.9775 | nan | 0.9559 | 0.7693 | 0.8882 | 0.8345 | 0.2653 | 0.9907 | nan | 0.9088 | 0.6583 | 0.7943 | 0.7201 | 0.2393 | 0.9799 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"road",
"side walk",
"car",
"pedestrian",
"sign",
"other"
] |
DrWasabiii/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5644
- Mean Iou: 0.3202
- Mean Accuracy: 0.3861
- Overall Accuracy: 0.8525
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8598
- Accuracy Flat-sidewalk: 0.9440
- Accuracy Flat-crosswalk: 0.6837
- Accuracy Flat-cyclinglane: 0.8295
- Accuracy Flat-parkingdriveway: 0.5586
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.6015
- Accuracy Human-person: 0.6019
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9395
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.6060
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8961
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.5249
- Accuracy Construction-fenceguardrail: 0.4892
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.3733
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9376
- Accuracy Nature-terrain: 0.9033
- Accuracy Sky: 0.9668
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.2540
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7395
- Iou Flat-sidewalk: 0.8717
- Iou Flat-crosswalk: 0.5750
- Iou Flat-cyclinglane: 0.6481
- Iou Flat-parkingdriveway: 0.4281
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.4534
- Iou Human-person: 0.4648
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.8127
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.3687
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.7090
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.3987
- Iou Construction-fenceguardrail: 0.4429
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.2772
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8463
- Iou Nature-terrain: 0.7719
- Iou Sky: 0.9189
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.2004
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 1.462 | 0.1 | 20 | 1.2595 | 0.1419 | 0.1947 | 0.7120 | nan | 0.7582 | 0.9092 | 0.0 | 0.0660 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.9133 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8346 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9263 | 0.7278 | 0.9005 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4874 | 0.7290 | 0.0 | 0.0657 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5744 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5093 | 0.0 | 0.0004 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7362 | 0.5259 | 0.7708 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3298 | 0.2 | 40 | 1.1696 | 0.1552 | 0.2048 | 0.7307 | nan | 0.8291 | 0.9109 | 0.0 | 0.2907 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8254 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9266 | 0.7259 | 0.9291 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5114 | 0.7458 | 0.0 | 0.2725 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6361 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5295 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7486 | 0.5861 | 0.7800 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8454 | 0.3 | 60 | 1.1409 | 0.1623 | 0.2113 | 0.7445 | nan | 0.8024 | 0.9346 | 0.0 | 0.4023 | 0.0079 | nan | 0.0 | 0.0 | 0.0 | 0.8823 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8139 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9372 | 0.8410 | 0.9269 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5516 | 0.7597 | 0.0 | 0.3598 | 0.0078 | nan | 0.0 | 0.0 | 0.0 | 0.6808 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5406 | 0.0 | 0.0016 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7382 | 0.5945 | 0.7969 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9115 | 0.4 | 80 | 1.0588 | 0.1639 | 0.2118 | 0.7400 | nan | 0.8770 | 0.8928 | 0.0 | 0.4710 | 0.0030 | nan | 0.0 | 0.0 | 0.0 | 0.9011 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8552 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9351 | 0.6907 | 0.9398 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5108 | 0.7636 | 0.0 | 0.4068 | 0.0030 | nan | 0.0 | 0.0 | 0.0 | 0.6580 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5332 | 0.0 | 0.0003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7594 | 0.6421 | 0.8024 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.011 | 0.5 | 100 | 1.0279 | 0.1646 | 0.2179 | 0.7466 | nan | 0.8087 | 0.9090 | 0.0 | 0.5313 | 0.0041 | nan | 0.0166 | 0.0 | 0.0 | 0.9286 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8570 | 0.0 | 0.0019 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9349 | 0.8582 | 0.9038 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5617 | 0.7613 | 0.0 | 0.4246 | 0.0041 | nan | 0.0163 | 0.0 | 0.0 | 0.6325 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5354 | 0.0 | 0.0019 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7643 | 0.5952 | 0.8043 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.3211 | 0.6 | 120 | 1.0123 | 0.1692 | 0.2180 | 0.7496 | nan | 0.7381 | 0.9409 | 0.0 | 0.5419 | 0.0436 | nan | 0.1004 | 0.0 | 0.0 | 0.9234 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8649 | 0.0 | 0.0082 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9434 | 0.7166 | 0.9375 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5590 | 0.7596 | 0.0 | 0.3963 | 0.0422 | nan | 0.0943 | 0.0 | 0.0 | 0.6632 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5399 | 0.0 | 0.0081 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7656 | 0.5951 | 0.8222 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0065 | 0.7 | 140 | 0.9791 | 0.1689 | 0.2176 | 0.7502 | nan | 0.8268 | 0.9187 | 0.0 | 0.5011 | 0.0677 | nan | 0.0773 | 0.0 | 0.0 | 0.9338 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9045 | 0.0 | 0.0077 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9298 | 0.6508 | 0.9265 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5600 | 0.7809 | 0.0 | 0.4371 | 0.0637 | nan | 0.0721 | 0.0 | 0.0 | 0.6222 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5215 | 0.0 | 0.0075 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7620 | 0.5671 | 0.8406 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8046 | 0.8 | 160 | 0.9695 | 0.1703 | 0.2147 | 0.7442 | nan | 0.6653 | 0.9719 | 0.0 | 0.4870 | 0.0490 | nan | 0.0337 | 0.0 | 0.0 | 0.8754 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7818 | 0.0 | 0.0510 | 0.0 | 0.0 | nan | 0.0 | 0.0006 | 0.0 | 0.0 | 0.9269 | 0.8824 | 0.9306 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5548 | 0.7164 | 0.0 | 0.3614 | 0.0463 | nan | 0.0332 | 0.0 | 0.0 | 0.7196 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5634 | 0.0 | 0.0487 | 0.0 | 0.0 | nan | 0.0 | 0.0006 | 0.0 | 0.0 | 0.7624 | 0.6451 | 0.8265 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8299 | 0.9 | 180 | 0.9008 | 0.1791 | 0.2264 | 0.7632 | nan | 0.7556 | 0.9611 | 0.0 | 0.5157 | 0.0804 | nan | 0.0962 | 0.0 | 0.0 | 0.9573 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8870 | 0.0 | 0.0491 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9050 | 0.8751 | 0.9354 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6112 | 0.7531 | 0.0 | 0.4358 | 0.0736 | nan | 0.0907 | 0.0 | 0.0 | 0.6175 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5662 | 0.0 | 0.0461 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.7988 | 0.7005 | 0.8590 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.7382 | 1.0 | 200 | 0.9204 | 0.1770 | 0.2246 | 0.7550 | nan | 0.7011 | 0.9563 | 0.0 | 0.5585 | 0.0606 | nan | 0.0821 | 0.0 | 0.0 | 0.9182 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8852 | 0.0 | 0.0592 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.9046 | 0.9074 | 0.9303 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5664 | 0.7432 | 0.0 | 0.4047 | 0.0573 | nan | 0.0758 | 0.0 | 0.0 | 0.7003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5667 | 0.0 | 0.0544 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.7864 | 0.6709 | 0.8622 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9823 | 1.1 | 220 | 0.8596 | 0.1868 | 0.2319 | 0.7714 | nan | 0.8631 | 0.9325 | 0.0 | 0.4702 | 0.0986 | nan | 0.1854 | 0.0 | 0.0 | 0.9024 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8971 | 0.0 | 0.0805 | 0.0 | 0.0 | nan | 0.0 | 0.0076 | 0.0 | 0.0 | 0.9362 | 0.8675 | 0.9474 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5915 | 0.7841 | 0.0 | 0.4126 | 0.0936 | nan | 0.1616 | 0.0 | 0.0 | 0.7255 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5662 | 0.0 | 0.0702 | 0.0 | 0.0 | nan | 0.0 | 0.0076 | 0.0 | 0.0 | 0.7982 | 0.7233 | 0.8577 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 0.7915 | 1.2 | 240 | 0.8611 | 0.1979 | 0.2482 | 0.7736 | nan | 0.8241 | 0.9115 | 0.0 | 0.6181 | 0.2810 | nan | 0.2094 | 0.0 | 0.0 | 0.9181 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8534 | 0.0 | 0.3040 | 0.0 | 0.0 | nan | 0.0 | 0.0363 | 0.0 | 0.0 | 0.9445 | 0.8380 | 0.9548 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5898 | 0.7872 | 0.0 | 0.4598 | 0.2158 | nan | 0.1784 | 0.0 | 0.0 | 0.7214 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5774 | 0.0 | 0.2155 | 0.0 | 0.0 | nan | 0.0 | 0.0358 | 0.0 | 0.0 | 0.7978 | 0.7230 | 0.8327 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9356 | 1.3 | 260 | 0.8942 | 0.1878 | 0.2379 | 0.7599 | nan | 0.6265 | 0.9610 | 0.0 | 0.4888 | 0.2483 | nan | 0.3971 | 0.0 | 0.0 | 0.9394 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.0591 | 0.0 | 0.0 | nan | 0.0 | 0.0127 | 0.0 | 0.0 | 0.9038 | 0.8992 | 0.9293 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5615 | 0.7544 | 0.0 | 0.3832 | 0.1988 | nan | 0.2752 | 0.0 | 0.0 | 0.6594 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5589 | 0.0 | 0.0521 | 0.0 | 0.0 | nan | 0.0 | 0.0126 | 0.0 | 0.0 | 0.8008 | 0.6830 | 0.8813 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8097 | 1.4 | 280 | 0.8333 | 0.1992 | 0.2498 | 0.7752 | nan | 0.8669 | 0.9017 | 0.0 | 0.5555 | 0.3048 | nan | 0.3696 | 0.0 | 0.0 | 0.9208 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8507 | 0.0 | 0.1704 | 0.0 | 0.0 | nan | 0.0 | 0.0472 | 0.0 | 0.0 | 0.9403 | 0.8713 | 0.9429 | 0.0 | 0.0 | 0.0010 | 0.0 | nan | 0.5646 | 0.8035 | 0.0 | 0.4533 | 0.2374 | nan | 0.2820 | 0.0 | 0.0 | 0.6974 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5820 | 0.0 | 0.1490 | 0.0 | 0.0 | nan | 0.0 | 0.0466 | 0.0 | 0.0 | 0.8006 | 0.7220 | 0.8348 | 0.0 | 0.0 | 0.0010 | 0.0 |
| 0.9072 | 1.5 | 300 | 0.7929 | 0.2056 | 0.2588 | 0.7819 | nan | 0.8537 | 0.9209 | 0.0 | 0.5869 | 0.3037 | nan | 0.2640 | 0.0 | 0.0 | 0.9100 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8098 | 0.0 | 0.5714 | 0.0 | 0.0 | nan | 0.0 | 0.0396 | 0.0 | 0.0 | 0.9337 | 0.8841 | 0.9436 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.6061 | 0.8024 | 0.0 | 0.4735 | 0.2292 | nan | 0.2244 | 0.0 | 0.0 | 0.7509 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5947 | 0.0 | 0.2729 | 0.0 | 0.0 | nan | 0.0 | 0.0390 | 0.0 | 0.0 | 0.8104 | 0.7065 | 0.8620 | 0.0 | 0.0 | 0.0002 | 0.0 |
| 1.0461 | 1.6 | 320 | 0.7737 | 0.2131 | 0.2593 | 0.7938 | nan | 0.8158 | 0.9467 | 0.0 | 0.6523 | 0.3113 | nan | 0.3152 | 0.0048 | 0.0 | 0.9263 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8790 | 0.0 | 0.3751 | 0.0 | 0.0 | nan | 0.0 | 0.0794 | 0.0 | 0.0 | 0.9515 | 0.8307 | 0.9473 | 0.0 | 0.0 | 0.0014 | 0.0 | nan | 0.6374 | 0.7992 | 0.0 | 0.5435 | 0.2390 | nan | 0.2686 | 0.0048 | 0.0 | 0.7307 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6365 | 0.0 | 0.2649 | 0.0 | 0.0 | nan | 0.0 | 0.0758 | 0.0 | 0.0 | 0.7983 | 0.7205 | 0.8855 | 0.0 | 0.0 | 0.0014 | 0.0 |
| 0.9489 | 1.7 | 340 | 0.8072 | 0.2036 | 0.2463 | 0.7800 | nan | 0.7780 | 0.9572 | 0.0 | 0.4694 | 0.1562 | nan | 0.3721 | 0.0209 | 0.0 | 0.8907 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9140 | 0.0 | 0.2420 | 0.0000 | 0.0 | nan | 0.0 | 0.0765 | 0.0 | 0.0 | 0.9421 | 0.8619 | 0.9524 | 0.0 | 0.0 | 0.0008 | 0.0 | nan | 0.6090 | 0.7697 | 0.0 | 0.4229 | 0.1445 | nan | 0.2903 | 0.0208 | 0.0 | 0.7654 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5966 | 0.0 | 0.1859 | 0.0000 | 0.0 | nan | 0.0 | 0.0727 | 0.0 | 0.0 | 0.8061 | 0.7399 | 0.8871 | 0.0 | 0.0 | 0.0008 | 0.0 |
| 0.9753 | 1.8 | 360 | 0.7746 | 0.2153 | 0.2641 | 0.7867 | nan | 0.8023 | 0.9353 | 0.0 | 0.6272 | 0.2777 | nan | 0.4336 | 0.1660 | 0.0 | 0.9215 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8746 | 0.0 | 0.3293 | 0.0026 | 0.0 | nan | 0.0 | 0.1379 | 0.0 | 0.0 | 0.9597 | 0.7740 | 0.9401 | 0.0 | 0.0 | 0.0042 | 0.0 | nan | 0.6029 | 0.8027 | 0.0 | 0.4873 | 0.2297 | nan | 0.3194 | 0.1551 | 0.0 | 0.7449 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6383 | 0.0 | 0.2494 | 0.0026 | 0.0 | nan | 0.0 | 0.1280 | 0.0 | 0.0 | 0.7825 | 0.6509 | 0.8777 | 0.0 | 0.0 | 0.0042 | 0.0 |
| 0.4749 | 1.9 | 380 | 0.7667 | 0.2100 | 0.2617 | 0.7877 | nan | 0.8307 | 0.9286 | 0.0 | 0.6598 | 0.2633 | nan | 0.4358 | 0.0341 | 0.0 | 0.9003 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9166 | 0.0 | 0.3043 | 0.0007 | 0.0 | nan | 0.0 | 0.0742 | 0.0 | 0.0 | 0.9062 | 0.9248 | 0.9341 | 0.0 | 0.0 | 0.0004 | 0.0 | nan | 0.6254 | 0.8110 | 0.0 | 0.5224 | 0.2188 | nan | 0.3221 | 0.0340 | 0.0 | 0.7415 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5945 | 0.0 | 0.2276 | 0.0007 | 0.0 | nan | 0.0 | 0.0714 | 0.0 | 0.0 | 0.7916 | 0.6625 | 0.8869 | 0.0 | 0.0 | 0.0004 | 0.0 |
| 0.8488 | 2.0 | 400 | 0.7579 | 0.2130 | 0.2610 | 0.7868 | nan | 0.7601 | 0.9616 | 0.0 | 0.6160 | 0.1515 | nan | 0.4506 | 0.0924 | 0.0 | 0.9517 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8802 | 0.0 | 0.2621 | 0.0050 | 0.0 | nan | 0.0 | 0.1955 | 0.0 | 0.0 | 0.9306 | 0.8694 | 0.9588 | 0.0 | 0.0 | 0.0059 | 0.0 | nan | 0.6188 | 0.7790 | 0.0 | 0.4692 | 0.1373 | nan | 0.3326 | 0.0905 | 0.0 | 0.6748 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6297 | 0.0 | 0.1994 | 0.0050 | 0.0 | nan | 0.0 | 0.1755 | 0.0 | 0.0 | 0.8279 | 0.7703 | 0.8878 | 0.0 | 0.0 | 0.0058 | 0.0 |
| 0.7258 | 2.1 | 420 | 0.7628 | 0.2109 | 0.2612 | 0.7874 | nan | 0.7680 | 0.9575 | 0.0 | 0.6261 | 0.1983 | nan | 0.4499 | 0.0235 | 0.0 | 0.9443 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9318 | 0.0 | 0.2420 | 0.0014 | 0.0 | nan | 0.0 | 0.1949 | 0.0 | 0.0 | 0.8929 | 0.9162 | 0.9480 | 0.0 | 0.0 | 0.0033 | 0.0 | nan | 0.6260 | 0.7908 | 0.0 | 0.4894 | 0.1734 | nan | 0.3339 | 0.0234 | 0.0 | 0.7108 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6110 | 0.0 | 0.1859 | 0.0014 | 0.0 | nan | 0.0 | 0.1688 | 0.0 | 0.0 | 0.8185 | 0.7066 | 0.8943 | 0.0 | 0.0 | 0.0032 | 0.0 |
| 0.6387 | 2.2 | 440 | 0.7467 | 0.2259 | 0.2790 | 0.7961 | nan | 0.8881 | 0.9214 | 0.0 | 0.6555 | 0.3252 | nan | 0.4215 | 0.2331 | 0.0 | 0.9267 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8443 | 0.0 | 0.3404 | 0.0093 | 0.0 | nan | 0.0 | 0.2579 | 0.0 | 0.0 | 0.9271 | 0.9100 | 0.9659 | 0.0 | 0.0 | 0.0232 | 0.0 | nan | 0.6131 | 0.8291 | 0.0 | 0.5515 | 0.2656 | nan | 0.3047 | 0.2144 | 0.0 | 0.7371 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6369 | 0.0 | 0.2684 | 0.0093 | 0.0 | nan | 0.0 | 0.2159 | 0.0 | 0.0 | 0.7852 | 0.6973 | 0.8499 | 0.0 | 0.0 | 0.0230 | 0.0 |
| 0.8595 | 2.3 | 460 | 0.7549 | 0.2211 | 0.2763 | 0.7854 | nan | 0.6418 | 0.9541 | 0.0000 | 0.7728 | 0.3492 | nan | 0.3529 | 0.1397 | 0.0 | 0.9007 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9039 | 0.0 | 0.4719 | 0.0047 | 0.0 | nan | 0.0 | 0.2823 | 0.0 | 0.0 | 0.9262 | 0.9046 | 0.9483 | 0.0 | 0.0 | 0.0109 | 0.0 | nan | 0.5582 | 0.7974 | 0.0000 | 0.4679 | 0.2678 | nan | 0.2545 | 0.1292 | 0.0 | 0.7601 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6389 | 0.0 | 0.3016 | 0.0047 | 0.0 | nan | 0.0 | 0.2292 | 0.0 | 0.0 | 0.8247 | 0.7112 | 0.8969 | 0.0 | 0.0 | 0.0106 | 0.0 |
| 0.6146 | 2.4 | 480 | 0.7211 | 0.2221 | 0.2704 | 0.7963 | nan | 0.8419 | 0.9430 | 0.0000 | 0.6053 | 0.2553 | nan | 0.3931 | 0.1885 | 0.0 | 0.9484 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9034 | 0.0 | 0.3059 | 0.0073 | 0.0 | nan | 0.0 | 0.2091 | 0.0 | 0.0 | 0.9321 | 0.8916 | 0.9507 | 0.0 | 0.0 | 0.0068 | 0.0 | nan | 0.6385 | 0.7998 | 0.0000 | 0.5424 | 0.2125 | nan | 0.3006 | 0.1679 | 0.0 | 0.7083 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6353 | 0.0 | 0.2292 | 0.0073 | 0.0 | nan | 0.0 | 0.1913 | 0.0 | 0.0 | 0.8244 | 0.7278 | 0.8938 | 0.0 | 0.0 | 0.0067 | 0.0 |
| 0.787 | 2.5 | 500 | 0.7471 | 0.2210 | 0.2765 | 0.7875 | nan | 0.8141 | 0.9058 | 0.0017 | 0.7987 | 0.3047 | nan | 0.4503 | 0.2588 | 0.0 | 0.9095 | 0.0 | 0.0 | nan | 0.0 | 0.0004 | 0.0 | 0.0 | 0.9374 | 0.0 | 0.2298 | 0.0048 | 0.0 | nan | 0.0 | 0.2382 | 0.0 | 0.0 | 0.9250 | 0.8154 | 0.9670 | 0.0 | 0.0 | 0.0106 | 0.0 | nan | 0.6225 | 0.8069 | 0.0017 | 0.4804 | 0.2544 | nan | 0.3447 | 0.1973 | 0.0 | 0.7497 | 0.0 | 0.0 | nan | 0.0 | 0.0004 | 0.0 | 0.0 | 0.5931 | 0.0 | 0.1708 | 0.0048 | 0.0 | nan | 0.0 | 0.2098 | 0.0 | 0.0 | 0.8123 | 0.7113 | 0.8818 | 0.0 | 0.0 | 0.0104 | 0.0 |
| 0.6147 | 2.6 | 520 | 0.7091 | 0.2294 | 0.2750 | 0.8011 | nan | 0.8416 | 0.9589 | 0.0020 | 0.5932 | 0.2965 | nan | 0.3216 | 0.2599 | 0.0 | 0.9252 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.4304 | 0.0045 | 0.0 | nan | 0.0 | 0.2349 | 0.0 | 0.0 | 0.9295 | 0.8463 | 0.9644 | 0.0 | 0.0 | 0.0146 | 0.0 | nan | 0.6358 | 0.8040 | 0.0020 | 0.5333 | 0.2447 | nan | 0.2753 | 0.2214 | 0.0 | 0.7491 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6417 | 0.0 | 0.2980 | 0.0045 | 0.0 | nan | 0.0 | 0.2090 | 0.0 | 0.0 | 0.8240 | 0.7611 | 0.8937 | 0.0 | 0.0 | 0.0144 | 0.0 |
| 0.777 | 2.7 | 540 | 0.7115 | 0.2351 | 0.2943 | 0.7979 | nan | 0.8442 | 0.9297 | 0.0043 | 0.7113 | 0.3582 | nan | 0.4900 | 0.3847 | 0.0 | 0.9173 | 0.0 | 0.0 | nan | 0.0 | 0.0011 | 0.0 | 0.0 | 0.8410 | 0.0 | 0.4747 | 0.0086 | 0.0 | nan | 0.0 | 0.3288 | 0.0 | 0.0 | 0.9013 | 0.9356 | 0.9526 | 0.0 | 0.0 | 0.0385 | 0.0 | nan | 0.6368 | 0.8246 | 0.0043 | 0.5395 | 0.2822 | nan | 0.3695 | 0.3024 | 0.0 | 0.7647 | 0.0 | 0.0 | nan | 0.0 | 0.0011 | 0.0 | 0.0 | 0.6615 | 0.0 | 0.3152 | 0.0086 | 0.0 | nan | 0.0 | 0.2424 | 0.0 | 0.0 | 0.7731 | 0.6266 | 0.8999 | 0.0 | 0.0 | 0.0370 | 0.0 |
| 1.2945 | 2.8 | 560 | 0.6830 | 0.2393 | 0.2901 | 0.8066 | nan | 0.8630 | 0.9487 | 0.0763 | 0.6376 | 0.3071 | nan | 0.4487 | 0.4212 | 0.0 | 0.9518 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8668 | 0.0 | 0.3683 | 0.0116 | 0.0 | nan | 0.0 | 0.2616 | 0.0 | 0.0 | 0.9417 | 0.8390 | 0.9567 | 0.0 | 0.0 | 0.0921 | 0.0 | nan | 0.6674 | 0.8206 | 0.0762 | 0.5492 | 0.2547 | nan | 0.3654 | 0.3311 | 0.0 | 0.6964 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.6301 | 0.0 | 0.2466 | 0.0115 | 0.0 | nan | 0.0 | 0.2259 | 0.0 | 0.0 | 0.8271 | 0.7508 | 0.8847 | 0.0 | 0.0 | 0.0794 | 0.0 |
| 0.4699 | 2.9 | 580 | 0.6701 | 0.2548 | 0.3078 | 0.8155 | nan | 0.8274 | 0.9381 | 0.3424 | 0.6896 | 0.4323 | nan | 0.5397 | 0.3759 | 0.0 | 0.9079 | 0.0 | 0.0 | nan | 0.0 | 0.0148 | 0.0 | 0.0 | 0.8963 | 0.0 | 0.4932 | 0.0072 | 0.0 | nan | 0.0 | 0.2208 | 0.0 | 0.0 | 0.9471 | 0.8648 | 0.9568 | 0.0 | 0.0 | 0.0882 | 0.0 | nan | 0.6735 | 0.8311 | 0.3185 | 0.5595 | 0.3178 | nan | 0.3849 | 0.2986 | 0.0 | 0.7825 | 0.0 | 0.0 | nan | 0.0 | 0.0148 | 0.0 | 0.0 | 0.6547 | 0.0 | 0.3087 | 0.0072 | 0.0 | nan | 0.0 | 0.1933 | 0.0 | 0.0 | 0.8256 | 0.7570 | 0.8980 | 0.0 | 0.0 | 0.0727 | 0.0 |
| 0.7277 | 3.0 | 600 | 0.6626 | 0.2524 | 0.3047 | 0.8166 | nan | 0.8627 | 0.9347 | 0.2669 | 0.7073 | 0.3747 | nan | 0.4831 | 0.3256 | 0.0 | 0.9118 | 0.0 | 0.0 | nan | 0.0 | 0.0202 | 0.0 | 0.0 | 0.9073 | 0.0 | 0.5294 | 0.0219 | 0.0 | nan | 0.0 | 0.2649 | 0.0 | 0.0 | 0.9429 | 0.8806 | 0.9577 | 0.0 | 0.0 | 0.0553 | 0.0 | nan | 0.6675 | 0.8352 | 0.2593 | 0.5624 | 0.2937 | nan | 0.3757 | 0.2698 | 0.0 | 0.7718 | 0.0 | 0.0 | nan | 0.0 | 0.0202 | 0.0 | 0.0 | 0.6614 | 0.0 | 0.3459 | 0.0218 | 0.0 | nan | 0.0 | 0.2213 | 0.0 | 0.0 | 0.8292 | 0.7484 | 0.8921 | 0.0 | 0.0 | 0.0489 | 0.0 |
| 0.4261 | 3.1 | 620 | 0.7159 | 0.2492 | 0.3077 | 0.8015 | nan | 0.7873 | 0.9264 | 0.3010 | 0.7709 | 0.3242 | nan | 0.4667 | 0.4816 | 0.0 | 0.9464 | 0.0 | 0.0 | nan | 0.0 | 0.0399 | 0.0 | 0.0 | 0.8882 | 0.0 | 0.2940 | 0.0648 | 0.0 | nan | 0.0 | 0.3657 | 0.0 | 0.0 | 0.9219 | 0.9102 | 0.9562 | 0.0 | 0.0 | 0.0926 | 0.0 | nan | 0.6298 | 0.8116 | 0.2880 | 0.4593 | 0.2671 | nan | 0.3647 | 0.3560 | 0.0 | 0.7478 | 0.0 | 0.0 | nan | 0.0 | 0.0398 | 0.0 | 0.0 | 0.6769 | 0.0 | 0.2291 | 0.0643 | 0.0 | nan | 0.0 | 0.2635 | 0.0 | 0.0 | 0.8168 | 0.7229 | 0.9058 | 0.0 | 0.0 | 0.0829 | 0.0 |
| 0.5901 | 3.2 | 640 | 0.6688 | 0.2576 | 0.3153 | 0.8124 | nan | 0.7619 | 0.9540 | 0.3024 | 0.7631 | 0.3767 | nan | 0.4635 | 0.5193 | 0.0 | 0.9231 | 0.0 | 0.0 | nan | 0.0 | 0.0490 | 0.0 | 0.0 | 0.9038 | 0.0 | 0.4962 | 0.0420 | 0.0 | nan | 0.0 | 0.3598 | 0.0 | 0.0 | 0.9221 | 0.8992 | 0.9603 | 0.0 | 0.0 | 0.0767 | 0.0 | nan | 0.6467 | 0.8201 | 0.2905 | 0.5484 | 0.2993 | nan | 0.3538 | 0.3554 | 0.0 | 0.7821 | 0.0 | 0.0 | nan | 0.0 | 0.0488 | 0.0 | 0.0 | 0.6677 | 0.0 | 0.3089 | 0.0415 | 0.0 | nan | 0.0 | 0.2737 | 0.0 | 0.0 | 0.8281 | 0.7554 | 0.8959 | 0.0 | 0.0 | 0.0708 | 0.0 |
| 0.7962 | 3.3 | 660 | 0.6800 | 0.2658 | 0.3266 | 0.8155 | nan | 0.9044 | 0.9098 | 0.5540 | 0.6474 | 0.3950 | nan | 0.4505 | 0.5812 | 0.0 | 0.9203 | 0.0 | 0.0 | nan | 0.0 | 0.0649 | 0.0 | 0.0 | 0.8530 | 0.0 | 0.5437 | 0.1232 | 0.0 | nan | 0.0 | 0.3232 | 0.0 | 0.0 | 0.9429 | 0.8957 | 0.9629 | 0.0 | 0.0 | 0.0535 | 0.0 | nan | 0.6358 | 0.8382 | 0.4186 | 0.5670 | 0.3137 | nan | 0.3522 | 0.3830 | 0.0 | 0.7748 | 0.0 | 0.0 | nan | 0.0 | 0.0648 | 0.0 | 0.0 | 0.6735 | 0.0 | 0.3304 | 0.1199 | 0.0 | nan | 0.0 | 0.2608 | 0.0 | 0.0 | 0.8224 | 0.7588 | 0.8746 | 0.0 | 0.0 | 0.0509 | 0.0 |
| 0.5779 | 3.4 | 680 | 0.6590 | 0.2691 | 0.3225 | 0.8177 | nan | 0.8129 | 0.9519 | 0.4768 | 0.6884 | 0.3156 | nan | 0.5264 | 0.4963 | 0.0 | 0.9386 | 0.0 | 0.0 | nan | 0.0 | 0.1614 | 0.0 | 0.0 | 0.9464 | 0.0 | 0.3499 | 0.2275 | 0.0 | nan | 0.0 | 0.3370 | 0.0 | 0.0 | 0.9184 | 0.8585 | 0.9358 | 0.0 | 0.0 | 0.0560 | 0.0 | nan | 0.6773 | 0.8279 | 0.4439 | 0.5408 | 0.2690 | nan | 0.3863 | 0.3310 | 0.0 | 0.7642 | 0.0 | 0.0 | nan | 0.0 | 0.1581 | 0.0 | 0.0 | 0.6273 | 0.0 | 0.2573 | 0.2204 | 0.0 | nan | 0.0 | 0.2727 | 0.0 | 0.0 | 0.8365 | 0.7771 | 0.8987 | 0.0 | 0.0 | 0.0521 | 0.0 |
| 0.627 | 3.5 | 700 | 0.6482 | 0.2730 | 0.3293 | 0.8217 | nan | 0.8289 | 0.9337 | 0.4760 | 0.7499 | 0.4370 | nan | 0.4828 | 0.5444 | 0.0 | 0.9094 | 0.0 | 0.0 | nan | 0.0 | 0.1504 | 0.0 | 0.0 | 0.9126 | 0.0 | 0.3427 | 0.2291 | 0.0 | nan | 0.0 | 0.3545 | 0.0 | 0.0 | 0.9396 | 0.9033 | 0.9684 | 0.0 | 0.0 | 0.0455 | 0.0 | nan | 0.6682 | 0.8365 | 0.4425 | 0.5625 | 0.3519 | nan | 0.3731 | 0.3747 | 0.0 | 0.7945 | 0.0 | 0.0 | nan | 0.0 | 0.1475 | 0.0 | 0.0 | 0.6545 | 0.0 | 0.2565 | 0.2234 | 0.0 | nan | 0.0 | 0.2659 | 0.0 | 0.0 | 0.8243 | 0.7500 | 0.8927 | 0.0 | 0.0 | 0.0442 | 0.0 |
| 1.043 | 3.6 | 720 | 0.6670 | 0.2690 | 0.3303 | 0.8121 | nan | 0.7414 | 0.9510 | 0.4527 | 0.7293 | 0.4232 | nan | 0.4919 | 0.5529 | 0.0 | 0.9499 | 0.0 | 0.0 | nan | 0.0 | 0.2058 | 0.0 | 0.0 | 0.7978 | 0.0 | 0.5494 | 0.1643 | 0.0 | nan | 0.0 | 0.3267 | 0.0 | 0.0 | 0.9457 | 0.9190 | 0.9663 | 0.0 | 0.0 | 0.0709 | 0.0 | nan | 0.6380 | 0.8182 | 0.4270 | 0.5396 | 0.3443 | nan | 0.3577 | 0.3869 | 0.0 | 0.7453 | 0.0 | 0.0 | nan | 0.0 | 0.1965 | 0.0 | 0.0 | 0.6520 | 0.0 | 0.3273 | 0.1621 | 0.0 | nan | 0.0 | 0.2547 | 0.0 | 0.0 | 0.8264 | 0.7138 | 0.8809 | 0.0 | 0.0 | 0.0670 | 0.0 |
| 0.4814 | 3.7 | 740 | 0.6550 | 0.2747 | 0.3324 | 0.8234 | nan | 0.9006 | 0.9283 | 0.5611 | 0.7474 | 0.2894 | nan | 0.4573 | 0.5845 | 0.0 | 0.9186 | 0.0 | 0.0 | nan | 0.0 | 0.1849 | 0.0 | 0.0 | 0.8607 | 0.0 | 0.4995 | 0.1799 | 0.0 | nan | 0.0 | 0.3080 | 0.0 | 0.0 | 0.9508 | 0.8698 | 0.9653 | 0.0 | 0.0 | 0.0970 | 0.0 | nan | 0.6682 | 0.8446 | 0.4544 | 0.6005 | 0.2601 | nan | 0.3483 | 0.3947 | 0.0 | 0.7874 | 0.0 | 0.0 | nan | 0.0 | 0.1805 | 0.0 | 0.0 | 0.6645 | 0.0 | 0.3344 | 0.1762 | 0.0 | nan | 0.0 | 0.2477 | 0.0 | 0.0 | 0.8274 | 0.7503 | 0.8873 | 0.0 | 0.0 | 0.0878 | 0.0 |
| 0.8735 | 3.8 | 760 | 0.6511 | 0.2686 | 0.3329 | 0.8143 | nan | 0.7260 | 0.9541 | 0.6209 | 0.6746 | 0.4355 | nan | 0.5429 | 0.4623 | 0.0 | 0.9414 | 0.0 | 0.0 | nan | 0.0 | 0.2207 | 0.0 | 0.0 | 0.8851 | 0.0 | 0.6008 | 0.0698 | 0.0 | nan | 0.0 | 0.2883 | 0.0 | 0.0 | 0.9114 | 0.9274 | 0.9592 | 0.0 | 0.0 | 0.0980 | 0.0 | nan | 0.6484 | 0.8316 | 0.4111 | 0.5496 | 0.3179 | nan | 0.3790 | 0.3583 | 0.0 | 0.7645 | 0.0 | 0.0 | nan | 0.0 | 0.2136 | 0.0 | 0.0 | 0.6712 | 0.0 | 0.3522 | 0.0691 | 0.0 | nan | 0.0 | 0.2393 | 0.0 | 0.0 | 0.8276 | 0.7120 | 0.8955 | 0.0 | 0.0 | 0.0865 | 0.0 |
| 0.5682 | 3.9 | 780 | 0.6575 | 0.2699 | 0.3248 | 0.8181 | nan | 0.9116 | 0.9023 | 0.5169 | 0.7581 | 0.3574 | nan | 0.4132 | 0.4557 | 0.0 | 0.9207 | 0.0 | 0.0 | nan | 0.0 | 0.2064 | 0.0 | 0.0 | 0.8894 | 0.0 | 0.3918 | 0.1926 | 0.0 | nan | 0.0 | 0.2659 | 0.0 | 0.0 | 0.9597 | 0.8699 | 0.9541 | 0.0 | 0.0 | 0.1026 | 0.0 | nan | 0.6547 | 0.8448 | 0.4310 | 0.5466 | 0.2962 | nan | 0.3280 | 0.3493 | 0.0 | 0.7781 | 0.0 | 0.0 | nan | 0.0 | 0.2014 | 0.0 | 0.0 | 0.6549 | 0.0 | 0.3050 | 0.1889 | 0.0 | nan | 0.0 | 0.2235 | 0.0 | 0.0 | 0.8224 | 0.7640 | 0.8867 | 0.0 | 0.0 | 0.0899 | 0.0 |
| 0.4817 | 4.0 | 800 | 0.6374 | 0.2842 | 0.3351 | 0.8286 | nan | 0.8555 | 0.9524 | 0.4450 | 0.6285 | 0.4133 | nan | 0.5067 | 0.4467 | 0.0 | 0.9324 | 0.0 | 0.0 | nan | 0.0 | 0.3081 | 0.0 | 0.0 | 0.9170 | 0.0 | 0.4322 | 0.3224 | 0.0 | nan | 0.0 | 0.2858 | 0.0 | 0.0 | 0.9309 | 0.8960 | 0.9586 | 0.0 | 0.0 | 0.1573 | 0.0 | nan | 0.7043 | 0.8377 | 0.4324 | 0.5554 | 0.3270 | nan | 0.3894 | 0.3513 | 0.0 | 0.7776 | 0.0 | 0.0 | nan | 0.0 | 0.2928 | 0.0 | 0.0 | 0.6627 | 0.0 | 0.3241 | 0.3021 | 0.0 | nan | 0.0 | 0.2310 | 0.0 | 0.0 | 0.8454 | 0.7534 | 0.9049 | 0.0 | 0.0 | 0.1188 | 0.0 |
| 0.4642 | 4.1 | 820 | 0.6287 | 0.2868 | 0.3408 | 0.8310 | nan | 0.9123 | 0.9252 | 0.5041 | 0.7334 | 0.4165 | nan | 0.5144 | 0.5003 | 0.0 | 0.9309 | 0.0 | 0.0 | nan | 0.0 | 0.3421 | 0.0 | 0.0 | 0.9123 | 0.0 | 0.4394 | 0.2869 | 0.0 | nan | 0.0 | 0.2655 | 0.0 | 0.0 | 0.9400 | 0.8675 | 0.9662 | 0.0 | 0.0 | 0.1094 | 0.0 | nan | 0.6799 | 0.8581 | 0.4673 | 0.5899 | 0.3244 | nan | 0.3995 | 0.3747 | 0.0 | 0.7891 | 0.0 | 0.0 | nan | 0.0 | 0.3087 | 0.0 | 0.0 | 0.6594 | 0.0 | 0.3274 | 0.2753 | 0.0 | nan | 0.0 | 0.2254 | 0.0 | 0.0 | 0.8433 | 0.7769 | 0.8969 | 0.0 | 0.0 | 0.0958 | 0.0 |
| 0.6249 | 4.2 | 840 | 0.6191 | 0.2936 | 0.3534 | 0.8297 | nan | 0.7971 | 0.9443 | 0.5810 | 0.7279 | 0.4803 | nan | 0.5396 | 0.6216 | 0.0 | 0.9299 | 0.0 | 0.0 | nan | 0.0 | 0.3012 | 0.0 | 0.0 | 0.8692 | 0.0 | 0.5200 | 0.3452 | 0.0 | nan | 0.0 | 0.3316 | 0.0 | 0.0 | 0.9482 | 0.9134 | 0.9529 | 0.0 | 0.0 | 0.1506 | 0.0 | nan | 0.6902 | 0.8375 | 0.5165 | 0.5620 | 0.3584 | nan | 0.4021 | 0.4267 | 0.0 | 0.7910 | 0.0 | 0.0 | nan | 0.0 | 0.2716 | 0.0 | 0.0 | 0.6951 | 0.0 | 0.3857 | 0.3238 | 0.0 | nan | 0.0 | 0.2516 | 0.0 | 0.0 | 0.8273 | 0.7315 | 0.9101 | 0.0 | 0.0 | 0.1215 | 0.0 |
| 0.3472 | 4.3 | 860 | 0.6095 | 0.2955 | 0.3495 | 0.8351 | nan | 0.8528 | 0.9530 | 0.6076 | 0.6775 | 0.4019 | nan | 0.5564 | 0.5145 | 0.0 | 0.9282 | 0.0 | 0.0 | nan | 0.0 | 0.3640 | 0.0 | 0.0 | 0.9051 | 0.0 | 0.4762 | 0.3858 | 0.0 | nan | 0.0 | 0.3110 | 0.0 | 0.0 | 0.9446 | 0.8605 | 0.9565 | 0.0 | 0.0 | 0.1394 | 0.0 | nan | 0.7095 | 0.8454 | 0.4904 | 0.5882 | 0.3297 | nan | 0.4103 | 0.3965 | 0.0 | 0.7975 | 0.0 | 0.0 | nan | 0.0 | 0.3230 | 0.0 | 0.0 | 0.6836 | 0.0 | 0.3551 | 0.3631 | 0.0 | nan | 0.0 | 0.2458 | 0.0 | 0.0 | 0.8385 | 0.7605 | 0.9108 | 0.0 | 0.0 | 0.1139 | 0.0 |
| 1.1638 | 4.4 | 880 | 0.7640 | 0.2662 | 0.3295 | 0.7799 | nan | 0.8622 | 0.8015 | 0.3356 | 0.8659 | 0.4153 | nan | 0.2301 | 0.5091 | 0.0 | 0.9329 | 0.0 | 0.0 | nan | 0.0 | 0.3879 | 0.0 | 0.0 | 0.9063 | 0.0 | 0.4288 | 0.3297 | 0.0 | nan | 0.0 | 0.2614 | 0.0 | 0.0 | 0.9372 | 0.9031 | 0.9668 | 0.0 | 0.0 | 0.1393 | 0.0 | nan | 0.6116 | 0.7663 | 0.3321 | 0.3163 | 0.3278 | nan | 0.2076 | 0.3955 | 0.0 | 0.7845 | 0.0 | 0.0 | nan | 0.0 | 0.3343 | 0.0 | 0.0 | 0.6859 | 0.0 | 0.3368 | 0.3190 | 0.0 | nan | 0.0 | 0.2220 | 0.0 | 0.0 | 0.8371 | 0.7586 | 0.9031 | 0.0 | 0.0 | 0.1150 | 0.0 |
| 0.5639 | 4.5 | 900 | 0.6138 | 0.2912 | 0.3495 | 0.8329 | nan | 0.8329 | 0.9475 | 0.6199 | 0.7317 | 0.5188 | nan | 0.5028 | 0.4681 | 0.0 | 0.9315 | 0.0 | 0.0 | nan | 0.0 | 0.3889 | 0.0 | 0.0 | 0.9242 | 0.0 | 0.3445 | 0.3785 | 0.0 | nan | 0.0 | 0.2967 | 0.0 | 0.0 | 0.9146 | 0.8915 | 0.9640 | 0.0 | 0.0 | 0.1801 | 0.0 | nan | 0.6981 | 0.8617 | 0.4190 | 0.5752 | 0.3841 | nan | 0.3943 | 0.3792 | 0.0 | 0.7822 | 0.0 | 0.0 | nan | 0.0 | 0.3336 | 0.0 | 0.0 | 0.6600 | 0.0 | 0.2849 | 0.3522 | 0.0 | nan | 0.0 | 0.2394 | 0.0 | 0.0 | 0.8441 | 0.7760 | 0.9091 | 0.0 | 0.0 | 0.1331 | 0.0 |
| 1.1424 | 4.6 | 920 | 0.6094 | 0.2951 | 0.3564 | 0.8335 | nan | 0.8276 | 0.9425 | 0.6345 | 0.7938 | 0.3963 | nan | 0.5233 | 0.5383 | 0.0 | 0.9430 | 0.0 | 0.0 | nan | 0.0 | 0.3499 | 0.0 | 0.0 | 0.8573 | 0.0 | 0.5273 | 0.3810 | 0.0 | nan | 0.0 | 0.3033 | 0.0 | 0.0 | 0.9501 | 0.8880 | 0.9582 | 0.0 | 0.0 | 0.2327 | 0.0 | nan | 0.6973 | 0.8551 | 0.4481 | 0.5758 | 0.3347 | nan | 0.4040 | 0.4162 | 0.0 | 0.7766 | 0.0 | 0.0 | nan | 0.0 | 0.3041 | 0.0 | 0.0 | 0.6977 | 0.0 | 0.3915 | 0.3541 | 0.0 | nan | 0.0 | 0.2395 | 0.0 | 0.0 | 0.8314 | 0.7473 | 0.9128 | 0.0 | 0.0 | 0.1612 | 0.0 |
| 1.063 | 4.7 | 940 | 0.6149 | 0.2913 | 0.3458 | 0.8329 | nan | 0.8402 | 0.9494 | 0.5703 | 0.7595 | 0.4040 | nan | 0.4466 | 0.4354 | 0.0 | 0.9334 | 0.0 | 0.0 | nan | 0.0 | 0.3930 | 0.0 | 0.0 | 0.9198 | 0.0 | 0.4596 | 0.3577 | 0.0 | nan | 0.0 | 0.3191 | 0.0 | 0.0 | 0.9258 | 0.9082 | 0.9708 | 0.0 | 0.0 | 0.1261 | 0.0 | nan | 0.6985 | 0.8471 | 0.5053 | 0.5807 | 0.3370 | nan | 0.3472 | 0.3580 | 0.0 | 0.7914 | 0.0 | 0.0 | nan | 0.0 | 0.3419 | 0.0 | 0.0 | 0.6788 | 0.0 | 0.3541 | 0.3363 | 0.0 | nan | 0.0 | 0.2502 | 0.0 | 0.0 | 0.8367 | 0.7601 | 0.8995 | 0.0 | 0.0 | 0.1069 | 0.0 |
| 0.4322 | 4.8 | 960 | 0.6046 | 0.2973 | 0.3546 | 0.8371 | nan | 0.8606 | 0.9394 | 0.6192 | 0.7778 | 0.3978 | nan | 0.5424 | 0.5753 | 0.0 | 0.9320 | 0.0 | 0.0 | nan | 0.0 | 0.3721 | 0.0 | 0.0 | 0.9029 | 0.0 | 0.4837 | 0.3128 | 0.0 | nan | 0.0 | 0.3398 | 0.0 | 0.0 | 0.9514 | 0.8918 | 0.9551 | 0.0 | 0.0 | 0.1386 | 0.0 | nan | 0.7099 | 0.8546 | 0.4951 | 0.5780 | 0.3377 | nan | 0.4132 | 0.4390 | 0.0 | 0.7976 | 0.0 | 0.0 | nan | 0.0 | 0.3289 | 0.0 | 0.0 | 0.6960 | 0.0 | 0.3689 | 0.3023 | 0.0 | nan | 0.0 | 0.2638 | 0.0 | 0.0 | 0.8282 | 0.7678 | 0.9131 | 0.0 | 0.0 | 0.1212 | 0.0 |
| 0.8249 | 4.9 | 980 | 0.5971 | 0.3067 | 0.3699 | 0.8397 | nan | 0.8568 | 0.9392 | 0.5578 | 0.7432 | 0.5491 | nan | 0.5904 | 0.6089 | 0.0 | 0.9391 | 0.0 | 0.0 | nan | 0.0 | 0.4445 | 0.0 | 0.0 | 0.8718 | 0.0 | 0.5895 | 0.4400 | 0.0 | nan | 0.0 | 0.3854 | 0.0 | 0.0 | 0.9269 | 0.9088 | 0.9634 | 0.0 | 0.0 | 0.1515 | 0.0 | nan | 0.7231 | 0.8558 | 0.5109 | 0.6045 | 0.3935 | nan | 0.4213 | 0.4557 | 0.0 | 0.7863 | 0.0 | 0.0 | nan | 0.0 | 0.3644 | 0.0 | 0.0 | 0.6801 | 0.0 | 0.3959 | 0.3773 | 0.0 | nan | 0.0 | 0.2890 | 0.0 | 0.0 | 0.8416 | 0.7634 | 0.9103 | 0.0 | 0.0 | 0.1337 | 0.0 |
| 0.4197 | 5.0 | 1000 | 0.5949 | 0.3031 | 0.3663 | 0.8403 | nan | 0.8410 | 0.9410 | 0.6234 | 0.8261 | 0.4882 | nan | 0.4796 | 0.6131 | 0.0 | 0.9508 | 0.0 | 0.0 | nan | 0.0 | 0.4801 | 0.0 | 0.0 | 0.9049 | 0.0 | 0.4725 | 0.4507 | 0.0 | nan | 0.0 | 0.3670 | 0.0 | 0.0 | 0.9397 | 0.8838 | 0.9650 | 0.0 | 0.0 | 0.1289 | 0.0 | nan | 0.7092 | 0.8644 | 0.5033 | 0.5772 | 0.3852 | nan | 0.3963 | 0.4297 | 0.0 | 0.7706 | 0.0 | 0.0 | nan | 0.0 | 0.3633 | 0.0 | 0.0 | 0.6818 | 0.0 | 0.3832 | 0.4105 | 0.0 | nan | 0.0 | 0.2829 | 0.0 | 0.0 | 0.8449 | 0.7682 | 0.9103 | 0.0 | 0.0 | 0.1147 | 0.0 |
| 0.455 | 5.1 | 1020 | 0.5954 | 0.3023 | 0.3596 | 0.8400 | nan | 0.8863 | 0.9341 | 0.6041 | 0.7294 | 0.5180 | nan | 0.5288 | 0.5182 | 0.0 | 0.9290 | 0.0 | 0.0 | nan | 0.0 | 0.5215 | 0.0 | 0.0 | 0.9194 | 0.0 | 0.4468 | 0.3474 | 0.0 | nan | 0.0 | 0.3495 | 0.0 | 0.0 | 0.9427 | 0.8947 | 0.9523 | 0.0 | 0.0 | 0.1259 | 0.0 | nan | 0.7157 | 0.8610 | 0.5337 | 0.5857 | 0.3762 | nan | 0.4079 | 0.4252 | 0.0 | 0.8000 | 0.0 | 0.0 | nan | 0.0 | 0.3841 | 0.0 | 0.0 | 0.6899 | 0.0 | 0.3486 | 0.3326 | 0.0 | nan | 0.0 | 0.2761 | 0.0 | 0.0 | 0.8391 | 0.7696 | 0.9137 | 0.0 | 0.0 | 0.1110 | 0.0 |
| 0.573 | 5.2 | 1040 | 0.6142 | 0.3010 | 0.3602 | 0.8352 | nan | 0.9199 | 0.9149 | 0.5815 | 0.7589 | 0.4252 | nan | 0.4792 | 0.5478 | 0.0 | 0.9296 | 0.0 | 0.0 | nan | 0.0 | 0.5160 | 0.0 | 0.0 | 0.9104 | 0.0 | 0.5451 | 0.3589 | 0.0 | nan | 0.0 | 0.3316 | 0.0 | 0.0 | 0.9391 | 0.8918 | 0.9667 | 0.0 | 0.0 | 0.1497 | 0.0 | nan | 0.6839 | 0.8525 | 0.5056 | 0.5907 | 0.3327 | nan | 0.3869 | 0.4349 | 0.0 | 0.8018 | 0.0 | 0.0 | nan | 0.0 | 0.3767 | 0.0 | 0.0 | 0.6990 | 0.0 | 0.4174 | 0.3425 | 0.0 | nan | 0.0 | 0.2627 | 0.0 | 0.0 | 0.8403 | 0.7694 | 0.9045 | 0.0 | 0.0 | 0.1296 | 0.0 |
| 0.461 | 5.3 | 1060 | 0.6007 | 0.2976 | 0.3587 | 0.8365 | nan | 0.8484 | 0.9428 | 0.6427 | 0.8153 | 0.3290 | nan | 0.5091 | 0.4475 | 0.0 | 0.9296 | 0.0 | 0.0 | nan | 0.0 | 0.5200 | 0.0 | 0.0 | 0.8912 | 0.0 | 0.5687 | 0.3954 | 0.0 | nan | 0.0 | 0.3056 | 0.0 | 0.0 | 0.9431 | 0.8985 | 0.9695 | 0.0 | 0.0 | 0.1626 | 0.0 | nan | 0.7065 | 0.8570 | 0.5135 | 0.5742 | 0.2842 | nan | 0.4056 | 0.3774 | 0.0 | 0.7905 | 0.0 | 0.0 | nan | 0.0 | 0.3762 | 0.0 | 0.0 | 0.6970 | 0.0 | 0.4058 | 0.3684 | 0.0 | nan | 0.0 | 0.2481 | 0.0 | 0.0 | 0.8385 | 0.7417 | 0.9074 | 0.0 | 0.0 | 0.1347 | 0.0 |
| 0.4084 | 5.4 | 1080 | 0.5992 | 0.2994 | 0.3620 | 0.8364 | nan | 0.8610 | 0.9321 | 0.5964 | 0.8214 | 0.4050 | nan | 0.5314 | 0.5094 | 0.0 | 0.9453 | 0.0 | 0.0 | nan | 0.0 | 0.5343 | 0.0 | 0.0 | 0.9199 | 0.0 | 0.5534 | 0.3635 | 0.0 | nan | 0.0 | 0.2904 | 0.0 | 0.0 | 0.9271 | 0.8947 | 0.9565 | 0.0 | 0.0 | 0.1793 | 0.0 | nan | 0.7074 | 0.8568 | 0.4895 | 0.5576 | 0.3418 | nan | 0.4125 | 0.4074 | 0.0 | 0.7771 | 0.0 | 0.0 | nan | 0.0 | 0.3876 | 0.0 | 0.0 | 0.6874 | 0.0 | 0.4108 | 0.3432 | 0.0 | nan | 0.0 | 0.2438 | 0.0 | 0.0 | 0.8474 | 0.7488 | 0.9139 | 0.0 | 0.0 | 0.1477 | 0.0 |
| 0.3638 | 5.5 | 1100 | 0.5961 | 0.3008 | 0.3578 | 0.8397 | nan | 0.8651 | 0.9565 | 0.5715 | 0.7040 | 0.3987 | nan | 0.5602 | 0.5043 | 0.0 | 0.9363 | 0.0 | 0.0 | nan | 0.0 | 0.4938 | 0.0 | 0.0 | 0.9127 | 0.0 | 0.4815 | 0.3983 | 0.0 | nan | 0.0 | 0.3482 | 0.0 | 0.0 | 0.9282 | 0.8948 | 0.9682 | 0.0 | 0.0 | 0.1683 | 0.0 | nan | 0.7202 | 0.8518 | 0.5089 | 0.5910 | 0.3353 | nan | 0.4178 | 0.3949 | 0.0 | 0.7993 | 0.0 | 0.0 | nan | 0.0 | 0.3728 | 0.0 | 0.0 | 0.6855 | 0.0 | 0.3587 | 0.3661 | 0.0 | nan | 0.0 | 0.2640 | 0.0 | 0.0 | 0.8506 | 0.7644 | 0.9066 | 0.0 | 0.0 | 0.1368 | 0.0 |
| 0.3183 | 5.6 | 1120 | 0.5982 | 0.2983 | 0.3672 | 0.8344 | nan | 0.8373 | 0.9374 | 0.6989 | 0.7369 | 0.4777 | nan | 0.5391 | 0.6504 | 0.0 | 0.9233 | 0.0 | 0.0 | nan | 0.0 | 0.4965 | 0.0 | 0.0 | 0.8986 | 0.0 | 0.4019 | 0.4308 | 0.0 | nan | 0.0 | 0.3717 | 0.0 | 0.0 | 0.9269 | 0.9174 | 0.9701 | 0.0 | 0.0 | 0.1700 | 0.0 | nan | 0.6888 | 0.8680 | 0.3857 | 0.6007 | 0.3648 | nan | 0.4233 | 0.4603 | 0.0 | 0.8015 | 0.0 | 0.0 | nan | 0.0 | 0.3714 | 0.0 | 0.0 | 0.6845 | 0.0 | 0.3295 | 0.3990 | 0.0 | nan | 0.0 | 0.2687 | 0.0 | 0.0 | 0.8401 | 0.7341 | 0.8831 | 0.0 | 0.0 | 0.1432 | 0.0 |
| 0.3373 | 5.7 | 1140 | 0.5926 | 0.3036 | 0.3668 | 0.8390 | nan | 0.8819 | 0.9257 | 0.6487 | 0.7322 | 0.5088 | nan | 0.5627 | 0.5298 | 0.0 | 0.9481 | 0.0 | 0.0 | nan | 0.0 | 0.5145 | 0.0 | 0.0 | 0.8940 | 0.0 | 0.5565 | 0.4014 | 0.0 | nan | 0.0 | 0.3247 | 0.0 | 0.0 | 0.9419 | 0.8932 | 0.9479 | 0.0 | 0.0 | 0.1594 | 0.0 | nan | 0.6977 | 0.8672 | 0.4568 | 0.6011 | 0.3805 | nan | 0.4309 | 0.4341 | 0.0 | 0.7790 | 0.0 | 0.0 | nan | 0.0 | 0.3900 | 0.0 | 0.0 | 0.6910 | 0.0 | 0.4052 | 0.3770 | 0.0 | nan | 0.0 | 0.2609 | 0.0 | 0.0 | 0.8433 | 0.7580 | 0.9030 | 0.0 | 0.0 | 0.1354 | 0.0 |
| 0.5786 | 5.8 | 1160 | 0.5888 | 0.3057 | 0.3725 | 0.8407 | nan | 0.8291 | 0.9356 | 0.6557 | 0.8378 | 0.5211 | nan | 0.5686 | 0.6574 | 0.0 | 0.9386 | 0.0 | 0.0 | nan | 0.0 | 0.5123 | 0.0 | 0.0 | 0.8987 | 0.0 | 0.5060 | 0.3604 | 0.0 | nan | 0.0 | 0.3712 | 0.0 | 0.0 | 0.9496 | 0.8555 | 0.9649 | 0.0 | 0.0 | 0.1836 | 0.0 | nan | 0.6966 | 0.8668 | 0.5092 | 0.5926 | 0.4044 | nan | 0.4317 | 0.4607 | 0.0 | 0.7984 | 0.0 | 0.0 | nan | 0.0 | 0.3596 | 0.0 | 0.0 | 0.6941 | 0.0 | 0.3737 | 0.3438 | 0.0 | nan | 0.0 | 0.2733 | 0.0 | 0.0 | 0.8431 | 0.7703 | 0.9097 | 0.0 | 0.0 | 0.1501 | 0.0 |
| 0.4665 | 5.9 | 1180 | 0.5788 | 0.3083 | 0.3673 | 0.8455 | nan | 0.8570 | 0.9491 | 0.6249 | 0.7949 | 0.5169 | nan | 0.5641 | 0.5620 | 0.0 | 0.9319 | 0.0 | 0.0 | nan | 0.0 | 0.5126 | 0.0 | 0.0 | 0.9148 | 0.0 | 0.5272 | 0.3540 | 0.0 | nan | 0.0 | 0.3429 | 0.0 | 0.0 | 0.9331 | 0.8915 | 0.9621 | 0.0 | 0.0 | 0.1459 | 0.0 | nan | 0.7315 | 0.8616 | 0.5393 | 0.6123 | 0.4003 | nan | 0.4398 | 0.4429 | 0.0 | 0.8090 | 0.0 | 0.0 | nan | 0.0 | 0.3793 | 0.0 | 0.0 | 0.6951 | 0.0 | 0.3920 | 0.3379 | 0.0 | nan | 0.0 | 0.2643 | 0.0 | 0.0 | 0.8445 | 0.7700 | 0.9136 | 0.0 | 0.0 | 0.1232 | 0.0 |
| 0.4062 | 6.0 | 1200 | 0.5990 | 0.3034 | 0.3661 | 0.8390 | nan | 0.8692 | 0.9362 | 0.5182 | 0.8309 | 0.4266 | nan | 0.5545 | 0.5376 | 0.0 | 0.9458 | 0.0 | 0.0 | nan | 0.0 | 0.6000 | 0.0 | 0.0 | 0.9145 | 0.0 | 0.4208 | 0.4792 | 0.0 | nan | 0.0 | 0.3516 | 0.0 | 0.0 | 0.9300 | 0.8846 | 0.9620 | 0.0 | 0.0 | 0.1879 | 0.0 | nan | 0.7062 | 0.8574 | 0.4890 | 0.5916 | 0.3444 | nan | 0.4258 | 0.4307 | 0.0 | 0.7885 | 0.0 | 0.0 | nan | 0.0 | 0.3544 | 0.0 | 0.0 | 0.6851 | 0.0 | 0.3325 | 0.4280 | 0.0 | nan | 0.0 | 0.2681 | 0.0 | 0.0 | 0.8506 | 0.7829 | 0.9171 | 0.0 | 0.0 | 0.1526 | 0.0 |
| 0.3422 | 6.1 | 1220 | 0.6136 | 0.2994 | 0.3547 | 0.8386 | nan | 0.8994 | 0.9470 | 0.5071 | 0.7181 | 0.3467 | nan | 0.5558 | 0.5191 | 0.0 | 0.9338 | 0.0 | 0.0 | nan | 0.0 | 0.5650 | 0.0 | 0.0 | 0.9167 | 0.0 | 0.3571 | 0.4699 | 0.0 | nan | 0.0 | 0.3153 | 0.0 | 0.0 | 0.9401 | 0.8957 | 0.9657 | 0.0 | 0.0 | 0.1437 | 0.0 | nan | 0.7120 | 0.8521 | 0.4770 | 0.6135 | 0.2925 | nan | 0.4314 | 0.4286 | 0.0 | 0.8057 | 0.0 | 0.0 | nan | 0.0 | 0.3728 | 0.0 | 0.0 | 0.6836 | 0.0 | 0.2839 | 0.4187 | 0.0 | nan | 0.0 | 0.2556 | 0.0 | 0.0 | 0.8447 | 0.7720 | 0.9130 | 0.0 | 0.0 | 0.1240 | 0.0 |
| 0.3667 | 6.2 | 1240 | 0.5865 | 0.3074 | 0.3673 | 0.8438 | nan | 0.8719 | 0.9503 | 0.6165 | 0.7441 | 0.4360 | nan | 0.5970 | 0.5278 | 0.0 | 0.9347 | 0.0 | 0.0 | nan | 0.0 | 0.5660 | 0.0 | 0.0 | 0.8997 | 0.0 | 0.4856 | 0.4265 | 0.0 | nan | 0.0 | 0.3539 | 0.0 | 0.0 | 0.9352 | 0.9020 | 0.9647 | 0.0 | 0.0 | 0.1752 | 0.0 | nan | 0.7281 | 0.8557 | 0.5315 | 0.6217 | 0.3452 | nan | 0.4397 | 0.4263 | 0.0 | 0.8010 | 0.0 | 0.0 | nan | 0.0 | 0.3623 | 0.0 | 0.0 | 0.6997 | 0.0 | 0.3732 | 0.3967 | 0.0 | nan | 0.0 | 0.2729 | 0.0 | 0.0 | 0.8474 | 0.7669 | 0.9133 | 0.0 | 0.0 | 0.1475 | 0.0 |
| 0.3964 | 6.3 | 1260 | 0.5919 | 0.3052 | 0.3715 | 0.8415 | nan | 0.8636 | 0.9456 | 0.5274 | 0.7548 | 0.5466 | nan | 0.5639 | 0.6438 | 0.0 | 0.9241 | 0.0 | 0.0 | nan | 0.0 | 0.6155 | 0.0 | 0.0 | 0.9048 | 0.0 | 0.5285 | 0.4056 | 0.0 | nan | 0.0 | 0.3135 | 0.0 | 0.0 | 0.9171 | 0.9077 | 0.9684 | 0.0 | 0.0 | 0.1849 | 0.0 | nan | 0.7294 | 0.8517 | 0.4793 | 0.6185 | 0.4047 | nan | 0.4379 | 0.4247 | 0.0 | 0.8134 | 0.0 | 0.0 | nan | 0.0 | 0.3556 | 0.0 | 0.0 | 0.6892 | 0.0 | 0.3648 | 0.3728 | 0.0 | nan | 0.0 | 0.2539 | 0.0 | 0.0 | 0.8452 | 0.7688 | 0.8997 | 0.0 | 0.0 | 0.1528 | 0.0 |
| 0.3974 | 6.4 | 1280 | 0.6011 | 0.3013 | 0.3642 | 0.8380 | nan | 0.8523 | 0.9361 | 0.6131 | 0.8445 | 0.4463 | nan | 0.5026 | 0.5776 | 0.0 | 0.9477 | 0.0 | 0.0 | nan | 0.0 | 0.5712 | 0.0 | 0.0 | 0.8948 | 0.0 | 0.4493 | 0.3396 | 0.0 | nan | 0.0 | 0.3616 | 0.0 | 0.0 | 0.9456 | 0.8771 | 0.9659 | 0.0 | 0.0 | 0.1656 | 0.0 | nan | 0.7006 | 0.8617 | 0.5345 | 0.5834 | 0.3578 | nan | 0.4094 | 0.4542 | 0.0 | 0.7889 | 0.0 | 0.0 | nan | 0.0 | 0.3706 | 0.0 | 0.0 | 0.6830 | 0.0 | 0.3222 | 0.3219 | 0.0 | nan | 0.0 | 0.2803 | 0.0 | 0.0 | 0.8424 | 0.7820 | 0.9040 | 0.0 | 0.0 | 0.1447 | 0.0 |
| 0.3549 | 6.5 | 1300 | 0.5949 | 0.3054 | 0.3741 | 0.8391 | nan | 0.8498 | 0.9302 | 0.6762 | 0.8403 | 0.4753 | nan | 0.4975 | 0.5990 | 0.0 | 0.9416 | 0.0 | 0.0 | nan | 0.0 | 0.5850 | 0.0 | 0.0 | 0.8735 | 0.0 | 0.5281 | 0.3714 | 0.0 | nan | 0.0 | 0.3628 | 0.0 | 0.0 | 0.9433 | 0.8961 | 0.9669 | 0.0 | 0.0 | 0.2600 | 0.0 | nan | 0.6920 | 0.8684 | 0.4967 | 0.5858 | 0.3694 | nan | 0.4055 | 0.4655 | 0.0 | 0.7965 | 0.0 | 0.0 | nan | 0.0 | 0.3631 | 0.0 | 0.0 | 0.7006 | 0.0 | 0.3859 | 0.3490 | 0.0 | nan | 0.0 | 0.2691 | 0.0 | 0.0 | 0.8409 | 0.7679 | 0.9098 | 0.0 | 0.0 | 0.2010 | 0.0 |
| 0.2758 | 6.6 | 1320 | 0.5834 | 0.3085 | 0.3673 | 0.8435 | nan | 0.8289 | 0.9513 | 0.6518 | 0.7364 | 0.5566 | nan | 0.5425 | 0.4657 | 0.0 | 0.9327 | 0.0 | 0.0 | nan | 0.0 | 0.5677 | 0.0 | 0.0 | 0.8959 | 0.0 | 0.5306 | 0.4128 | 0.0 | nan | 0.0 | 0.3408 | 0.0 | 0.0 | 0.9520 | 0.8735 | 0.9548 | 0.0 | 0.0 | 0.1924 | 0.0 | nan | 0.7241 | 0.8578 | 0.5561 | 0.5779 | 0.4191 | nan | 0.4193 | 0.4042 | 0.0 | 0.8086 | 0.0 | 0.0 | nan | 0.0 | 0.3795 | 0.0 | 0.0 | 0.7027 | 0.0 | 0.3963 | 0.3815 | 0.0 | nan | 0.0 | 0.2673 | 0.0 | 0.0 | 0.8369 | 0.7604 | 0.9187 | 0.0 | 0.0 | 0.1534 | 0.0 |
| 0.4533 | 6.7 | 1340 | 0.5830 | 0.3052 | 0.3725 | 0.8390 | nan | 0.8076 | 0.9474 | 0.6777 | 0.7975 | 0.5173 | nan | 0.5476 | 0.4662 | 0.0 | 0.9397 | 0.0 | 0.0 | nan | 0.0 | 0.5851 | 0.0 | 0.0 | 0.8903 | 0.0 | 0.5785 | 0.4557 | 0.0 | nan | 0.0 | 0.3384 | 0.0 | 0.0 | 0.9171 | 0.9185 | 0.9545 | 0.0 | 0.0 | 0.2086 | 0.0 | nan | 0.6955 | 0.8641 | 0.4621 | 0.5747 | 0.4068 | nan | 0.4199 | 0.4060 | 0.0 | 0.8046 | 0.0 | 0.0 | nan | 0.0 | 0.3753 | 0.0 | 0.0 | 0.6958 | 0.0 | 0.4234 | 0.4041 | 0.0 | nan | 0.0 | 0.2615 | 0.0 | 0.0 | 0.8418 | 0.7440 | 0.9185 | 0.0 | 0.0 | 0.1628 | 0.0 |
| 0.4431 | 6.8 | 1360 | 0.5965 | 0.3079 | 0.3716 | 0.8396 | nan | 0.9063 | 0.9083 | 0.6162 | 0.8022 | 0.4839 | nan | 0.5679 | 0.4944 | 0.0 | 0.9397 | 0.0 | 0.0 | nan | 0.0 | 0.5788 | 0.0 | 0.0 | 0.9175 | 0.0 | 0.5235 | 0.4825 | 0.0 | nan | 0.0 | 0.3448 | 0.0 | 0.0 | 0.9400 | 0.8798 | 0.9675 | 0.0 | 0.0 | 0.1664 | 0.0 | nan | 0.7017 | 0.8573 | 0.5427 | 0.5755 | 0.3769 | nan | 0.4289 | 0.4170 | 0.0 | 0.8026 | 0.0 | 0.0 | nan | 0.0 | 0.3763 | 0.0 | 0.0 | 0.6975 | 0.0 | 0.4024 | 0.4249 | 0.0 | nan | 0.0 | 0.2638 | 0.0 | 0.0 | 0.8461 | 0.7712 | 0.9157 | 0.0 | 0.0 | 0.1431 | 0.0 |
| 0.4814 | 6.9 | 1380 | 0.5858 | 0.3091 | 0.3683 | 0.8447 | nan | 0.8749 | 0.9559 | 0.6054 | 0.6724 | 0.4716 | nan | 0.5793 | 0.5114 | 0.0 | 0.9466 | 0.0 | 0.0 | nan | 0.0 | 0.5914 | 0.0 | 0.0 | 0.9019 | 0.0 | 0.4914 | 0.4580 | 0.0 | nan | 0.0 | 0.3607 | 0.0 | 0.0 | 0.9281 | 0.9113 | 0.9668 | 0.0 | 0.0 | 0.1902 | 0.0 | nan | 0.7352 | 0.8534 | 0.5436 | 0.5826 | 0.3838 | nan | 0.4293 | 0.4296 | 0.0 | 0.7971 | 0.0 | 0.0 | nan | 0.0 | 0.3719 | 0.0 | 0.0 | 0.7038 | 0.0 | 0.3838 | 0.4147 | 0.0 | nan | 0.0 | 0.2636 | 0.0 | 0.0 | 0.8452 | 0.7693 | 0.9185 | 0.0 | 0.0 | 0.1574 | 0.0 |
| 0.4765 | 7.0 | 1400 | 0.5937 | 0.3077 | 0.3727 | 0.8409 | nan | 0.8946 | 0.9235 | 0.6725 | 0.7406 | 0.4691 | nan | 0.6064 | 0.5834 | 0.0 | 0.9342 | 0.0 | 0.0 | nan | 0.0 | 0.5602 | 0.0 | 0.0 | 0.9083 | 0.0 | 0.5148 | 0.3851 | 0.0 | nan | 0.0 | 0.3517 | 0.0 | 0.0 | 0.9388 | 0.8882 | 0.9676 | 0.0 | 0.0 | 0.2146 | 0.0 | nan | 0.6928 | 0.8682 | 0.4465 | 0.6082 | 0.3684 | nan | 0.4403 | 0.4549 | 0.0 | 0.8080 | 0.0 | 0.0 | nan | 0.0 | 0.3872 | 0.0 | 0.0 | 0.6920 | 0.0 | 0.4152 | 0.3672 | 0.0 | nan | 0.0 | 0.2658 | 0.0 | 0.0 | 0.8474 | 0.7841 | 0.9152 | 0.0 | 0.0 | 0.1761 | 0.0 |
| 0.3616 | 7.1 | 1420 | 0.5733 | 0.3132 | 0.3776 | 0.8461 | nan | 0.8448 | 0.9405 | 0.6132 | 0.8331 | 0.5368 | nan | 0.5895 | 0.5248 | 0.0 | 0.9373 | 0.0 | 0.0 | nan | 0.0 | 0.5603 | 0.0 | 0.0 | 0.8932 | 0.0 | 0.5813 | 0.4069 | 0.0 | nan | 0.0 | 0.3559 | 0.0 | 0.0 | 0.9324 | 0.9075 | 0.9655 | 0.0 | 0.0 | 0.2818 | 0.0 | nan | 0.7223 | 0.8676 | 0.5453 | 0.5946 | 0.4112 | nan | 0.4264 | 0.4193 | 0.0 | 0.8046 | 0.0 | 0.0 | nan | 0.0 | 0.3849 | 0.0 | 0.0 | 0.7001 | 0.0 | 0.4327 | 0.3820 | 0.0 | nan | 0.0 | 0.2659 | 0.0 | 0.0 | 0.8487 | 0.7737 | 0.9185 | 0.0 | 0.0 | 0.2120 | 0.0 |
| 0.4933 | 7.2 | 1440 | 0.5813 | 0.3109 | 0.3753 | 0.8451 | nan | 0.8538 | 0.9437 | 0.5760 | 0.8191 | 0.5058 | nan | 0.5736 | 0.6060 | 0.0 | 0.9314 | 0.0 | 0.0 | nan | 0.0 | 0.5896 | 0.0 | 0.0 | 0.9101 | 0.0 | 0.4950 | 0.4585 | 0.0 | nan | 0.0 | 0.3675 | 0.0 | 0.0 | 0.9298 | 0.9159 | 0.9637 | 0.0 | 0.0 | 0.1930 | 0.0 | nan | 0.7222 | 0.8639 | 0.5238 | 0.6014 | 0.3986 | nan | 0.4346 | 0.4511 | 0.0 | 0.8135 | 0.0 | 0.0 | nan | 0.0 | 0.3784 | 0.0 | 0.0 | 0.6960 | 0.0 | 0.3766 | 0.4129 | 0.0 | nan | 0.0 | 0.2718 | 0.0 | 0.0 | 0.8480 | 0.7611 | 0.9201 | 0.0 | 0.0 | 0.1638 | 0.0 |
| 0.4028 | 7.3 | 1460 | 0.5729 | 0.3121 | 0.3725 | 0.8482 | nan | 0.8882 | 0.9510 | 0.5887 | 0.7435 | 0.5139 | nan | 0.5499 | 0.5656 | 0.0 | 0.9375 | 0.0 | 0.0 | nan | 0.0 | 0.6045 | 0.0 | 0.0 | 0.9055 | 0.0 | 0.4169 | 0.5068 | 0.0 | nan | 0.0 | 0.3830 | 0.0 | 0.0 | 0.9357 | 0.8909 | 0.9639 | 0.0 | 0.0 | 0.2030 | 0.0 | nan | 0.7279 | 0.8672 | 0.5187 | 0.6300 | 0.4068 | nan | 0.4401 | 0.4476 | 0.0 | 0.8015 | 0.0 | 0.0 | nan | 0.0 | 0.3645 | 0.0 | 0.0 | 0.6940 | 0.0 | 0.3380 | 0.4487 | 0.0 | nan | 0.0 | 0.2823 | 0.0 | 0.0 | 0.8485 | 0.7751 | 0.9158 | 0.0 | 0.0 | 0.1674 | 0.0 |
| 0.7888 | 7.4 | 1480 | 0.5864 | 0.3107 | 0.3756 | 0.8444 | nan | 0.8955 | 0.9296 | 0.6318 | 0.7855 | 0.5471 | nan | 0.5243 | 0.5552 | 0.0 | 0.9379 | 0.0 | 0.0 | nan | 0.0 | 0.6029 | 0.0 | 0.0 | 0.9031 | 0.0 | 0.4917 | 0.4499 | 0.0 | nan | 0.0 | 0.3496 | 0.0 | 0.0 | 0.9258 | 0.9006 | 0.9672 | 0.0 | 0.0 | 0.2454 | 0.0 | nan | 0.7057 | 0.8712 | 0.5006 | 0.6259 | 0.4010 | nan | 0.4206 | 0.4426 | 0.0 | 0.7998 | 0.0 | 0.0 | nan | 0.0 | 0.3727 | 0.0 | 0.0 | 0.6992 | 0.0 | 0.3834 | 0.4140 | 0.0 | nan | 0.0 | 0.2712 | 0.0 | 0.0 | 0.8454 | 0.7705 | 0.9131 | 0.0 | 0.0 | 0.1953 | 0.0 |
| 0.4472 | 7.5 | 1500 | 0.5824 | 0.3101 | 0.3722 | 0.8445 | nan | 0.8338 | 0.9448 | 0.5706 | 0.8580 | 0.5130 | nan | 0.5545 | 0.4821 | 0.0 | 0.9256 | 0.0 | 0.0 | nan | 0.0 | 0.5927 | 0.0 | 0.0 | 0.9045 | 0.0 | 0.5369 | 0.4377 | 0.0 | nan | 0.0 | 0.3506 | 0.0 | 0.0 | 0.9366 | 0.8973 | 0.9610 | 0.0 | 0.0 | 0.2392 | 0.0 | nan | 0.7096 | 0.8653 | 0.5068 | 0.5979 | 0.4057 | nan | 0.4239 | 0.4143 | 0.0 | 0.8112 | 0.0 | 0.0 | nan | 0.0 | 0.3738 | 0.0 | 0.0 | 0.7033 | 0.0 | 0.4068 | 0.4079 | 0.0 | nan | 0.0 | 0.2711 | 0.0 | 0.0 | 0.8453 | 0.7657 | 0.9190 | 0.0 | 0.0 | 0.1862 | 0.0 |
| 0.2959 | 7.6 | 1520 | 0.5668 | 0.3165 | 0.3833 | 0.8484 | nan | 0.8573 | 0.9417 | 0.6345 | 0.8128 | 0.5696 | nan | 0.5761 | 0.5790 | 0.0 | 0.9427 | 0.0 | 0.0 | nan | 0.0 | 0.6075 | 0.0 | 0.0 | 0.8679 | 0.0 | 0.5660 | 0.4868 | 0.0 | nan | 0.0 | 0.3390 | 0.0 | 0.0 | 0.9379 | 0.9009 | 0.9638 | 0.0 | 0.0 | 0.2990 | 0.0 | nan | 0.7247 | 0.8693 | 0.5410 | 0.6352 | 0.4291 | nan | 0.4455 | 0.4492 | 0.0 | 0.8027 | 0.0 | 0.0 | nan | 0.0 | 0.3639 | 0.0 | 0.0 | 0.7058 | 0.0 | 0.4061 | 0.4309 | 0.0 | nan | 0.0 | 0.2674 | 0.0 | 0.0 | 0.8437 | 0.7651 | 0.9195 | 0.0 | 0.0 | 0.2130 | 0.0 |
| 0.6112 | 7.7 | 1540 | 0.5789 | 0.3128 | 0.3782 | 0.8459 | nan | 0.8626 | 0.9375 | 0.6726 | 0.8403 | 0.5117 | nan | 0.5372 | 0.5917 | 0.0 | 0.9368 | 0.0 | 0.0 | nan | 0.0 | 0.5974 | 0.0 | 0.0 | 0.9098 | 0.0 | 0.5040 | 0.4817 | 0.0 | nan | 0.0 | 0.3231 | 0.0 | 0.0 | 0.9241 | 0.9213 | 0.9645 | 0.0 | 0.0 | 0.2064 | 0.0 | nan | 0.7126 | 0.8682 | 0.5547 | 0.6269 | 0.4078 | nan | 0.4295 | 0.4562 | 0.0 | 0.8116 | 0.0 | 0.0 | nan | 0.0 | 0.3813 | 0.0 | 0.0 | 0.7024 | 0.0 | 0.3765 | 0.4300 | 0.0 | nan | 0.0 | 0.2614 | 0.0 | 0.0 | 0.8421 | 0.7503 | 0.9187 | 0.0 | 0.0 | 0.1678 | 0.0 |
| 0.385 | 7.8 | 1560 | 0.5831 | 0.3131 | 0.3791 | 0.8448 | nan | 0.8485 | 0.9346 | 0.6713 | 0.8758 | 0.4915 | nan | 0.5322 | 0.6046 | 0.0 | 0.9425 | 0.0 | 0.0 | nan | 0.0 | 0.5874 | 0.0 | 0.0 | 0.8924 | 0.0 | 0.5252 | 0.4491 | 0.0 | nan | 0.0 | 0.3385 | 0.0 | 0.0 | 0.9377 | 0.9091 | 0.9658 | 0.0 | 0.0 | 0.2456 | 0.0 | nan | 0.7112 | 0.8643 | 0.5588 | 0.5947 | 0.4014 | nan | 0.4258 | 0.4594 | 0.0 | 0.8089 | 0.0 | 0.0 | nan | 0.0 | 0.3855 | 0.0 | 0.0 | 0.7088 | 0.0 | 0.3989 | 0.4132 | 0.0 | nan | 0.0 | 0.2616 | 0.0 | 0.0 | 0.8429 | 0.7604 | 0.9170 | 0.0 | 0.0 | 0.1948 | 0.0 |
| 0.3023 | 7.9 | 1580 | 0.5723 | 0.3149 | 0.3819 | 0.8466 | nan | 0.8500 | 0.9378 | 0.7040 | 0.8430 | 0.5060 | nan | 0.5910 | 0.5657 | 0.0 | 0.9353 | 0.0 | 0.0 | nan | 0.0 | 0.5876 | 0.0 | 0.0 | 0.9079 | 0.0 | 0.5166 | 0.5220 | 0.0 | nan | 0.0 | 0.3322 | 0.0 | 0.0 | 0.9274 | 0.8971 | 0.9669 | 0.0 | 0.0 | 0.2493 | 0.0 | nan | 0.7181 | 0.8674 | 0.5304 | 0.6254 | 0.4013 | nan | 0.4403 | 0.4496 | 0.0 | 0.8136 | 0.0 | 0.0 | nan | 0.0 | 0.3828 | 0.0 | 0.0 | 0.6964 | 0.0 | 0.3900 | 0.4504 | 0.0 | nan | 0.0 | 0.2613 | 0.0 | 0.0 | 0.8497 | 0.7753 | 0.9145 | 0.0 | 0.0 | 0.1965 | 0.0 |
| 0.2996 | 8.0 | 1600 | 0.5833 | 0.3115 | 0.3742 | 0.8446 | nan | 0.8598 | 0.9405 | 0.5576 | 0.8611 | 0.4879 | nan | 0.5030 | 0.6505 | 0.0 | 0.9331 | 0.0 | 0.0 | nan | 0.0 | 0.5664 | 0.0 | 0.0 | 0.8904 | 0.0 | 0.5266 | 0.4377 | 0.0 | nan | 0.0 | 0.3461 | 0.0 | 0.0 | 0.9471 | 0.8733 | 0.9674 | 0.0 | 0.0 | 0.2518 | 0.0 | nan | 0.7107 | 0.8647 | 0.5110 | 0.5997 | 0.3949 | nan | 0.4173 | 0.4636 | 0.0 | 0.8112 | 0.0 | 0.0 | nan | 0.0 | 0.3853 | 0.0 | 0.0 | 0.7031 | 0.0 | 0.4045 | 0.4033 | 0.0 | nan | 0.0 | 0.2658 | 0.0 | 0.0 | 0.8403 | 0.7659 | 0.9125 | 0.0 | 0.0 | 0.2029 | 0.0 |
| 0.6193 | 8.1 | 1620 | 0.5776 | 0.3150 | 0.3768 | 0.8475 | nan | 0.8553 | 0.9466 | 0.5537 | 0.8181 | 0.5218 | nan | 0.5600 | 0.6284 | 0.0 | 0.9381 | 0.0 | 0.0 | nan | 0.0 | 0.5590 | 0.0 | 0.0 | 0.8879 | 0.0 | 0.5564 | 0.4580 | 0.0 | nan | 0.0 | 0.3610 | 0.0 | 0.0 | 0.9447 | 0.8941 | 0.9605 | 0.0 | 0.0 | 0.2361 | 0.0 | nan | 0.7149 | 0.8665 | 0.5031 | 0.6349 | 0.4079 | nan | 0.4338 | 0.4728 | 0.0 | 0.8083 | 0.0 | 0.0 | nan | 0.0 | 0.3884 | 0.0 | 0.0 | 0.7066 | 0.0 | 0.4185 | 0.4150 | 0.0 | nan | 0.0 | 0.2718 | 0.0 | 0.0 | 0.8427 | 0.7671 | 0.9200 | 0.0 | 0.0 | 0.1932 | 0.0 |
| 0.3867 | 8.2 | 1640 | 0.5783 | 0.3154 | 0.3788 | 0.8485 | nan | 0.8492 | 0.9482 | 0.6227 | 0.8445 | 0.5045 | nan | 0.5666 | 0.5861 | 0.0 | 0.9364 | 0.0 | 0.0 | nan | 0.0 | 0.5957 | 0.0 | 0.0 | 0.8933 | 0.0 | 0.5372 | 0.4904 | 0.0 | nan | 0.0 | 0.3774 | 0.0 | 0.0 | 0.9419 | 0.8839 | 0.9666 | 0.0 | 0.0 | 0.1988 | 0.0 | nan | 0.7210 | 0.8676 | 0.5481 | 0.6260 | 0.4021 | nan | 0.4385 | 0.4505 | 0.0 | 0.8097 | 0.0 | 0.0 | nan | 0.0 | 0.3775 | 0.0 | 0.0 | 0.7023 | 0.0 | 0.4096 | 0.4369 | 0.0 | nan | 0.0 | 0.2813 | 0.0 | 0.0 | 0.8467 | 0.7758 | 0.9186 | 0.0 | 0.0 | 0.1659 | 0.0 |
| 0.317 | 8.3 | 1660 | 0.5688 | 0.3161 | 0.3812 | 0.8494 | nan | 0.8745 | 0.9402 | 0.6804 | 0.8045 | 0.5513 | nan | 0.5835 | 0.5725 | 0.0 | 0.9466 | 0.0 | 0.0 | nan | 0.0 | 0.5978 | 0.0 | 0.0 | 0.8948 | 0.0 | 0.5215 | 0.4635 | 0.0 | nan | 0.0 | 0.3691 | 0.0 | 0.0 | 0.9312 | 0.8965 | 0.9691 | 0.0 | 0.0 | 0.2206 | 0.0 | nan | 0.7271 | 0.8711 | 0.5578 | 0.6459 | 0.4147 | nan | 0.4456 | 0.4482 | 0.0 | 0.7997 | 0.0 | 0.0 | nan | 0.0 | 0.3772 | 0.0 | 0.0 | 0.7015 | 0.0 | 0.4000 | 0.4200 | 0.0 | nan | 0.0 | 0.2752 | 0.0 | 0.0 | 0.8472 | 0.7738 | 0.9171 | 0.0 | 0.0 | 0.1764 | 0.0 |
| 1.3707 | 8.4 | 1680 | 0.5730 | 0.3154 | 0.3780 | 0.8490 | nan | 0.8738 | 0.9492 | 0.6781 | 0.7945 | 0.4691 | nan | 0.5674 | 0.6020 | 0.0 | 0.9409 | 0.0 | 0.0 | nan | 0.0 | 0.5897 | 0.0 | 0.0 | 0.8936 | 0.0 | 0.5349 | 0.4505 | 0.0 | nan | 0.0 | 0.3486 | 0.0 | 0.0 | 0.9357 | 0.8928 | 0.9704 | 0.0 | 0.0 | 0.2273 | 0.0 | nan | 0.7278 | 0.8678 | 0.5609 | 0.6440 | 0.3773 | nan | 0.4447 | 0.4656 | 0.0 | 0.8115 | 0.0 | 0.0 | nan | 0.0 | 0.3821 | 0.0 | 0.0 | 0.7028 | 0.0 | 0.3953 | 0.4097 | 0.0 | nan | 0.0 | 0.2698 | 0.0 | 0.0 | 0.8456 | 0.7769 | 0.9117 | 0.0 | 0.0 | 0.1825 | 0.0 |
| 0.3326 | 8.5 | 1700 | 0.5753 | 0.3159 | 0.3826 | 0.8462 | nan | 0.8597 | 0.9398 | 0.6403 | 0.8407 | 0.4915 | nan | 0.5517 | 0.5957 | 0.0 | 0.9403 | 0.0 | 0.0 | nan | 0.0 | 0.5921 | 0.0 | 0.0 | 0.8785 | 0.0 | 0.5797 | 0.5061 | 0.0 | nan | 0.0 | 0.3642 | 0.0 | 0.0 | 0.9300 | 0.9048 | 0.9683 | 0.0 | 0.0 | 0.2772 | 0.0 | nan | 0.7204 | 0.8666 | 0.5546 | 0.6021 | 0.3889 | nan | 0.4336 | 0.4644 | 0.0 | 0.8123 | 0.0 | 0.0 | nan | 0.0 | 0.3759 | 0.0 | 0.0 | 0.7026 | 0.0 | 0.4171 | 0.4383 | 0.0 | nan | 0.0 | 0.2735 | 0.0 | 0.0 | 0.8466 | 0.7702 | 0.9170 | 0.0 | 0.0 | 0.2075 | 0.0 |
| 0.343 | 8.6 | 1720 | 0.5699 | 0.3183 | 0.3813 | 0.8500 | nan | 0.8720 | 0.9460 | 0.6340 | 0.8164 | 0.5137 | nan | 0.5698 | 0.5619 | 0.0 | 0.9335 | 0.0 | 0.0 | nan | 0.0 | 0.5860 | 0.0 | 0.0 | 0.8936 | 0.0 | 0.5409 | 0.5306 | 0.0 | nan | 0.0 | 0.3632 | 0.0 | 0.0 | 0.9313 | 0.8939 | 0.9638 | 0.0 | 0.0 | 0.2693 | 0.0 | nan | 0.7295 | 0.8693 | 0.5551 | 0.6398 | 0.4015 | nan | 0.4431 | 0.4498 | 0.0 | 0.8168 | 0.0 | 0.0 | nan | 0.0 | 0.3764 | 0.0 | 0.0 | 0.6999 | 0.0 | 0.4146 | 0.4559 | 0.0 | nan | 0.0 | 0.2766 | 0.0 | 0.0 | 0.8478 | 0.7674 | 0.9199 | 0.0 | 0.0 | 0.2053 | 0.0 |
| 0.4636 | 8.7 | 1740 | 0.5700 | 0.3170 | 0.3791 | 0.8494 | nan | 0.8801 | 0.9435 | 0.6036 | 0.8067 | 0.5080 | nan | 0.5780 | 0.5943 | 0.0 | 0.9338 | 0.0 | 0.0 | nan | 0.0 | 0.5831 | 0.0 | 0.0 | 0.9054 | 0.0 | 0.5190 | 0.4826 | 0.0 | nan | 0.0 | 0.3532 | 0.0 | 0.0 | 0.9301 | 0.9133 | 0.9593 | 0.0 | 0.0 | 0.2595 | 0.0 | nan | 0.7261 | 0.8706 | 0.5399 | 0.6449 | 0.4018 | nan | 0.4455 | 0.4644 | 0.0 | 0.8180 | 0.0 | 0.0 | nan | 0.0 | 0.3798 | 0.0 | 0.0 | 0.7039 | 0.0 | 0.4047 | 0.4369 | 0.0 | nan | 0.0 | 0.2706 | 0.0 | 0.0 | 0.8422 | 0.7544 | 0.9215 | 0.0 | 0.0 | 0.2013 | 0.0 |
| 0.4121 | 8.8 | 1760 | 0.5690 | 0.3166 | 0.3770 | 0.8504 | nan | 0.8629 | 0.9514 | 0.6429 | 0.8294 | 0.4950 | nan | 0.5736 | 0.6034 | 0.0 | 0.9316 | 0.0 | 0.0 | nan | 0.0 | 0.5776 | 0.0 | 0.0 | 0.9107 | 0.0 | 0.5116 | 0.4527 | 0.0 | nan | 0.0 | 0.3313 | 0.0 | 0.0 | 0.9344 | 0.9031 | 0.9622 | 0.0 | 0.0 | 0.2129 | 0.0 | nan | 0.7339 | 0.8671 | 0.5670 | 0.6443 | 0.4004 | nan | 0.4438 | 0.4655 | 0.0 | 0.8183 | 0.0 | 0.0 | nan | 0.0 | 0.3821 | 0.0 | 0.0 | 0.7003 | 0.0 | 0.3945 | 0.4177 | 0.0 | nan | 0.0 | 0.2684 | 0.0 | 0.0 | 0.8459 | 0.7742 | 0.9209 | 0.0 | 0.0 | 0.1710 | 0.0 |
| 0.3737 | 8.9 | 1780 | 0.5611 | 0.3183 | 0.3813 | 0.8513 | nan | 0.8763 | 0.9429 | 0.6298 | 0.8213 | 0.5577 | nan | 0.5642 | 0.6243 | 0.0 | 0.9447 | 0.0 | 0.0 | nan | 0.0 | 0.5873 | 0.0 | 0.0 | 0.9152 | 0.0 | 0.5375 | 0.4555 | 0.0 | nan | 0.0 | 0.3414 | 0.0 | 0.0 | 0.9293 | 0.8930 | 0.9650 | 0.0 | 0.0 | 0.2335 | 0.0 | nan | 0.7321 | 0.8707 | 0.5613 | 0.6495 | 0.4244 | nan | 0.4409 | 0.4685 | 0.0 | 0.8063 | 0.0 | 0.0 | nan | 0.0 | 0.3790 | 0.0 | 0.0 | 0.7031 | 0.0 | 0.4053 | 0.4191 | 0.0 | nan | 0.0 | 0.2713 | 0.0 | 0.0 | 0.8502 | 0.7808 | 0.9205 | 0.0 | 0.0 | 0.1839 | 0.0 |
| 0.4408 | 9.0 | 1800 | 0.5686 | 0.3186 | 0.3868 | 0.8498 | nan | 0.8582 | 0.9370 | 0.6738 | 0.8667 | 0.5464 | nan | 0.5771 | 0.6496 | 0.0 | 0.9442 | 0.0 | 0.0 | nan | 0.0 | 0.5956 | 0.0 | 0.0 | 0.8915 | 0.0 | 0.5419 | 0.4507 | 0.0 | nan | 0.0 | 0.3632 | 0.0 | 0.0 | 0.9340 | 0.9020 | 0.9687 | 0.0 | 0.0 | 0.2900 | 0.0 | nan | 0.7299 | 0.8694 | 0.5746 | 0.6252 | 0.4206 | nan | 0.4388 | 0.4654 | 0.0 | 0.8066 | 0.0 | 0.0 | nan | 0.0 | 0.3746 | 0.0 | 0.0 | 0.7127 | 0.0 | 0.4090 | 0.4180 | 0.0 | nan | 0.0 | 0.2755 | 0.0 | 0.0 | 0.8474 | 0.7750 | 0.9177 | 0.0 | 0.0 | 0.2170 | 0.0 |
| 0.402 | 9.1 | 1820 | 0.5630 | 0.3196 | 0.3841 | 0.8521 | nan | 0.8595 | 0.9464 | 0.6812 | 0.8413 | 0.5551 | nan | 0.5696 | 0.6260 | 0.0 | 0.9382 | 0.0 | 0.0 | nan | 0.0 | 0.5894 | 0.0 | 0.0 | 0.8971 | 0.0 | 0.5589 | 0.4594 | 0.0 | nan | 0.0 | 0.3541 | 0.0 | 0.0 | 0.9363 | 0.8953 | 0.9632 | 0.0 | 0.0 | 0.2347 | 0.0 | nan | 0.7346 | 0.8703 | 0.5700 | 0.6527 | 0.4236 | nan | 0.4401 | 0.4699 | 0.0 | 0.8127 | 0.0 | 0.0 | nan | 0.0 | 0.3778 | 0.0 | 0.0 | 0.7121 | 0.0 | 0.4124 | 0.4193 | 0.0 | nan | 0.0 | 0.2748 | 0.0 | 0.0 | 0.8471 | 0.7811 | 0.9195 | 0.0 | 0.0 | 0.1880 | 0.0 |
| 0.3377 | 9.2 | 1840 | 0.5694 | 0.3185 | 0.3830 | 0.8509 | nan | 0.8655 | 0.9424 | 0.6606 | 0.8551 | 0.5115 | nan | 0.5671 | 0.6184 | 0.0 | 0.9379 | 0.0 | 0.0 | nan | 0.0 | 0.5804 | 0.0 | 0.0 | 0.9100 | 0.0 | 0.5601 | 0.4767 | 0.0 | nan | 0.0 | 0.3502 | 0.0 | 0.0 | 0.9300 | 0.9088 | 0.9670 | 0.0 | 0.0 | 0.2307 | 0.0 | nan | 0.7342 | 0.8710 | 0.5740 | 0.6386 | 0.4059 | nan | 0.4415 | 0.4724 | 0.0 | 0.8146 | 0.0 | 0.0 | nan | 0.0 | 0.3815 | 0.0 | 0.0 | 0.7064 | 0.0 | 0.4131 | 0.4315 | 0.0 | nan | 0.0 | 0.2729 | 0.0 | 0.0 | 0.8475 | 0.7661 | 0.9172 | 0.0 | 0.0 | 0.1850 | 0.0 |
| 0.4663 | 9.3 | 1860 | 0.5681 | 0.3192 | 0.3833 | 0.8511 | nan | 0.8702 | 0.9435 | 0.6699 | 0.8311 | 0.5039 | nan | 0.5762 | 0.5998 | 0.0 | 0.9349 | 0.0 | 0.0 | nan | 0.0 | 0.5908 | 0.0 | 0.0 | 0.8964 | 0.0 | 0.5619 | 0.5139 | 0.0 | nan | 0.0 | 0.3556 | 0.0 | 0.0 | 0.9378 | 0.8993 | 0.9672 | 0.0 | 0.0 | 0.2300 | 0.0 | nan | 0.7313 | 0.8702 | 0.5734 | 0.6435 | 0.3982 | nan | 0.4442 | 0.4682 | 0.0 | 0.8179 | 0.0 | 0.0 | nan | 0.0 | 0.3761 | 0.0 | 0.0 | 0.7091 | 0.0 | 0.4147 | 0.4523 | 0.0 | nan | 0.0 | 0.2746 | 0.0 | 0.0 | 0.8468 | 0.7747 | 0.9172 | 0.0 | 0.0 | 0.1845 | 0.0 |
| 0.419 | 9.4 | 1880 | 0.5703 | 0.3185 | 0.3821 | 0.8510 | nan | 0.8632 | 0.9463 | 0.6844 | 0.8301 | 0.5153 | nan | 0.5890 | 0.6125 | 0.0 | 0.9357 | 0.0 | 0.0 | nan | 0.0 | 0.5848 | 0.0 | 0.0 | 0.9128 | 0.0 | 0.4967 | 0.5189 | 0.0 | nan | 0.0 | 0.3516 | 0.0 | 0.0 | 0.9318 | 0.8924 | 0.9689 | 0.0 | 0.0 | 0.2100 | 0.0 | nan | 0.7324 | 0.8705 | 0.5729 | 0.6473 | 0.4037 | nan | 0.4476 | 0.4693 | 0.0 | 0.8170 | 0.0 | 0.0 | nan | 0.0 | 0.3798 | 0.0 | 0.0 | 0.6988 | 0.0 | 0.3785 | 0.4589 | 0.0 | nan | 0.0 | 0.2752 | 0.0 | 0.0 | 0.8501 | 0.7819 | 0.9173 | 0.0 | 0.0 | 0.1715 | 0.0 |
| 0.2796 | 9.5 | 1900 | 0.5678 | 0.3168 | 0.3808 | 0.8499 | nan | 0.8652 | 0.9410 | 0.6789 | 0.8372 | 0.5167 | nan | 0.5874 | 0.5978 | 0.0 | 0.9425 | 0.0 | 0.0 | nan | 0.0 | 0.5874 | 0.0 | 0.0 | 0.9008 | 0.0 | 0.4731 | 0.5021 | 0.0 | nan | 0.0 | 0.3488 | 0.0 | 0.0 | 0.9399 | 0.9032 | 0.9677 | 0.0 | 0.0 | 0.2138 | 0.0 | nan | 0.7294 | 0.8708 | 0.5725 | 0.6440 | 0.4041 | nan | 0.4481 | 0.4663 | 0.0 | 0.8105 | 0.0 | 0.0 | nan | 0.0 | 0.3794 | 0.0 | 0.0 | 0.7025 | 0.0 | 0.3640 | 0.4497 | 0.0 | nan | 0.0 | 0.2714 | 0.0 | 0.0 | 0.8454 | 0.7704 | 0.9170 | 0.0 | 0.0 | 0.1765 | 0.0 |
| 0.3892 | 9.6 | 1920 | 0.5666 | 0.3184 | 0.3817 | 0.8511 | nan | 0.8720 | 0.9433 | 0.6665 | 0.8238 | 0.5257 | nan | 0.5873 | 0.5904 | 0.0 | 0.9392 | 0.0 | 0.0 | nan | 0.0 | 0.5954 | 0.0 | 0.0 | 0.9039 | 0.0 | 0.5012 | 0.4987 | 0.0 | nan | 0.0 | 0.3520 | 0.0 | 0.0 | 0.9354 | 0.9017 | 0.9666 | 0.0 | 0.0 | 0.2303 | 0.0 | nan | 0.7313 | 0.8705 | 0.5718 | 0.6482 | 0.4098 | nan | 0.4498 | 0.4632 | 0.0 | 0.8137 | 0.0 | 0.0 | nan | 0.0 | 0.3740 | 0.0 | 0.0 | 0.7050 | 0.0 | 0.3821 | 0.4487 | 0.0 | nan | 0.0 | 0.2734 | 0.0 | 0.0 | 0.8476 | 0.7743 | 0.9187 | 0.0 | 0.0 | 0.1872 | 0.0 |
| 0.4762 | 9.7 | 1940 | 0.5650 | 0.3186 | 0.3821 | 0.8515 | nan | 0.8680 | 0.9457 | 0.6698 | 0.8232 | 0.5305 | nan | 0.5911 | 0.5940 | 0.0 | 0.9374 | 0.0 | 0.0 | nan | 0.0 | 0.5999 | 0.0 | 0.0 | 0.8884 | 0.0 | 0.4855 | 0.4855 | 0.0 | nan | 0.0 | 0.3632 | 0.0 | 0.0 | 0.9414 | 0.9042 | 0.9673 | 0.0 | 0.0 | 0.2512 | 0.0 | nan | 0.7347 | 0.8701 | 0.5730 | 0.6501 | 0.4141 | nan | 0.4509 | 0.4629 | 0.0 | 0.8150 | 0.0 | 0.0 | nan | 0.0 | 0.3703 | 0.0 | 0.0 | 0.7088 | 0.0 | 0.3807 | 0.4421 | 0.0 | nan | 0.0 | 0.2731 | 0.0 | 0.0 | 0.8434 | 0.7698 | 0.9171 | 0.0 | 0.0 | 0.1997 | 0.0 |
| 0.2866 | 9.8 | 1960 | 0.5644 | 0.3189 | 0.3818 | 0.8522 | nan | 0.8639 | 0.9487 | 0.6788 | 0.8166 | 0.5314 | nan | 0.5863 | 0.5961 | 0.0 | 0.9381 | 0.0 | 0.0 | nan | 0.0 | 0.6016 | 0.0 | 0.0 | 0.9010 | 0.0 | 0.5091 | 0.4735 | 0.0 | nan | 0.0 | 0.3538 | 0.0 | 0.0 | 0.9399 | 0.8958 | 0.9638 | 0.0 | 0.0 | 0.2383 | 0.0 | nan | 0.7381 | 0.8699 | 0.5739 | 0.6515 | 0.4167 | nan | 0.4503 | 0.4642 | 0.0 | 0.8143 | 0.0 | 0.0 | nan | 0.0 | 0.3707 | 0.0 | 0.0 | 0.7074 | 0.0 | 0.3888 | 0.4333 | 0.0 | nan | 0.0 | 0.2740 | 0.0 | 0.0 | 0.8448 | 0.7760 | 0.9199 | 0.0 | 0.0 | 0.1921 | 0.0 |
| 0.1857 | 9.9 | 1980 | 0.5650 | 0.3193 | 0.3828 | 0.8521 | nan | 0.8701 | 0.9477 | 0.6701 | 0.8152 | 0.5338 | nan | 0.5782 | 0.5986 | 0.0 | 0.9404 | 0.0 | 0.0 | nan | 0.0 | 0.6036 | 0.0 | 0.0 | 0.9080 | 0.0 | 0.5119 | 0.4885 | 0.0 | nan | 0.0 | 0.3618 | 0.0 | 0.0 | 0.9304 | 0.9003 | 0.9645 | 0.0 | 0.0 | 0.2422 | 0.0 | nan | 0.7346 | 0.8706 | 0.5727 | 0.6517 | 0.4164 | nan | 0.4489 | 0.4635 | 0.0 | 0.8113 | 0.0 | 0.0 | nan | 0.0 | 0.3693 | 0.0 | 0.0 | 0.7051 | 0.0 | 0.3929 | 0.4436 | 0.0 | nan | 0.0 | 0.2765 | 0.0 | 0.0 | 0.8485 | 0.7771 | 0.9204 | 0.0 | 0.0 | 0.1940 | 0.0 |
| 0.3021 | 10.0 | 2000 | 0.5644 | 0.3202 | 0.3861 | 0.8525 | nan | 0.8598 | 0.9440 | 0.6837 | 0.8295 | 0.5586 | nan | 0.6015 | 0.6019 | 0.0 | 0.9395 | 0.0 | 0.0 | nan | 0.0 | 0.6060 | 0.0 | 0.0 | 0.8961 | 0.0 | 0.5249 | 0.4892 | 0.0 | nan | 0.0 | 0.3733 | 0.0 | 0.0 | 0.9376 | 0.9033 | 0.9668 | 0.0 | 0.0 | 0.2540 | 0.0 | nan | 0.7395 | 0.8717 | 0.5750 | 0.6481 | 0.4281 | nan | 0.4534 | 0.4648 | 0.0 | 0.8127 | 0.0 | 0.0 | nan | 0.0 | 0.3687 | 0.0 | 0.0 | 0.7090 | 0.0 | 0.3987 | 0.4429 | 0.0 | nan | 0.0 | 0.2772 | 0.0 | 0.0 | 0.8463 | 0.7719 | 0.9189 | 0.0 | 0.0 | 0.2004 | 0.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
ItDoBe/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5881
- Mean Iou: 0.2988
- Mean Accuracy: 0.3613
- Overall Accuracy: 0.8463
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8649
- Accuracy Flat-sidewalk: 0.9502
- Accuracy Flat-crosswalk: 0.5791
- Accuracy Flat-cyclinglane: 0.7393
- Accuracy Flat-parkingdriveway: 0.4485
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.4859
- Accuracy Human-person: 0.7767
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9341
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: 0.0
- Accuracy Vehicle-tramtrain: 0.0
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.5642
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.8944
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.4959
- Accuracy Construction-fenceguardrail: 0.4208
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.3432
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9466
- Accuracy Nature-terrain: 0.8884
- Accuracy Sky: 0.9698
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.2614
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7372
- Iou Flat-sidewalk: 0.8540
- Iou Flat-crosswalk: 0.4322
- Iou Flat-cyclinglane: 0.6499
- Iou Flat-parkingdriveway: 0.3421
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.3932
- Iou Human-person: 0.5795
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.8033
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: 0.0
- Iou Vehicle-tramtrain: 0.0
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.3104
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.7075
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.3911
- Iou Construction-fenceguardrail: 0.3791
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.2524
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8559
- Iou Nature-terrain: 0.7644
- Iou Sky: 0.9219
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.1876
- Iou Void-unclear: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
| 2.6446 | 0.1 | 20 | 2.9036 | 0.0732 | 0.1243 | 0.5841 | nan | 0.1650 | 0.9388 | 0.0 | 0.0110 | 0.0046 | nan | 0.0 | 0.0 | 0.0 | 0.8412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8181 | 0.0 | 0.0068 | 0.0002 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9482 | 0.0503 | 0.1924 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.1551 | 0.5858 | 0.0 | 0.0109 | 0.0045 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4684 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4527 | 0.0 | 0.0065 | 0.0002 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5709 | 0.0419 | 0.1923 | 0.0 | 0.0 | 0.0001 | 0.0 |
| 2.2236 | 0.2 | 40 | 1.9829 | 0.1087 | 0.1536 | 0.6546 | nan | 0.7316 | 0.8821 | 0.0 | 0.0000 | 0.0012 | nan | 0.0000 | 0.0 | 0.0 | 0.7926 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8106 | 0.0 | 0.0032 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9636 | 0.1494 | 0.5799 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4221 | 0.6904 | 0.0 | 0.0000 | 0.0012 | nan | 0.0000 | 0.0 | 0.0 | 0.5490 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4808 | 0.0 | 0.0032 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6243 | 0.1322 | 0.5746 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.6689 | 0.3 | 60 | 1.6583 | 0.1325 | 0.1763 | 0.6901 | nan | 0.6909 | 0.9280 | 0.0 | 0.0 | 0.0008 | nan | 0.0000 | 0.0 | 0.0 | 0.8070 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8276 | 0.0 | 0.0110 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9101 | 0.6704 | 0.7960 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4339 | 0.6869 | 0.0 | 0.0 | 0.0008 | nan | 0.0000 | 0.0 | 0.0 | 0.6051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5031 | 0.0 | 0.0108 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7312 | 0.5005 | 0.7680 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5794 | 0.4 | 80 | 1.4876 | 0.1366 | 0.1825 | 0.7038 | nan | 0.7097 | 0.9350 | 0.0 | 0.0 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8456 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8642 | 0.0 | 0.0015 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9109 | 0.7571 | 0.8142 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4701 | 0.7084 | 0.0 | 0.0 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6189 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5059 | 0.0 | 0.0015 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7397 | 0.5460 | 0.7797 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.5229 | 0.5 | 100 | 1.4013 | 0.1359 | 0.1803 | 0.7076 | nan | 0.6886 | 0.9534 | 0.0 | 0.0347 | 0.0016 | nan | 0.0 | 0.0 | 0.0 | 0.8892 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8217 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9568 | 0.5926 | 0.8294 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5080 | 0.7029 | 0.0 | 0.0346 | 0.0016 | nan | 0.0 | 0.0 | 0.0 | 0.5598 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5472 | 0.0 | 0.0006 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6971 | 0.5004 | 0.7969 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2003 | 0.6 | 120 | 1.2425 | 0.1474 | 0.1965 | 0.7285 | nan | 0.7966 | 0.9182 | 0.0 | 0.1579 | 0.0008 | nan | 0.0 | 0.0 | 0.0 | 0.8939 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8634 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9261 | 0.8480 | 0.8819 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5148 | 0.7446 | 0.0 | 0.1559 | 0.0008 | nan | 0.0 | 0.0 | 0.0 | 0.5954 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5441 | 0.0 | 0.0000 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7506 | 0.5912 | 0.8198 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2507 | 0.7 | 140 | 1.2214 | 0.1562 | 0.2002 | 0.7378 | nan | 0.8805 | 0.8858 | 0.0 | 0.4127 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.8466 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8672 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9579 | 0.6735 | 0.8808 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5213 | 0.7597 | 0.0 | 0.3764 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.6704 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5638 | 0.0 | 0.0005 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7209 | 0.5572 | 0.8258 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.2322 | 0.8 | 160 | 1.1794 | 0.1537 | 0.1993 | 0.7361 | nan | 0.7339 | 0.9511 | 0.0 | 0.3368 | 0.0055 | nan | 0.0 | 0.0 | 0.0 | 0.9218 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7810 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9360 | 0.7657 | 0.9447 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5275 | 0.7280 | 0.0 | 0.3161 | 0.0055 | nan | 0.0 | 0.0 | 0.0 | 0.6021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5550 | 0.0 | 0.0017 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7441 | 0.6084 | 0.8287 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.4998 | 0.9 | 180 | 1.0915 | 0.1633 | 0.2070 | 0.7543 | nan | 0.8040 | 0.9417 | 0.0 | 0.4433 | 0.0024 | nan | 0.0 | 0.0 | 0.0 | 0.8499 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9059 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9153 | 0.8368 | 0.9238 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5594 | 0.7627 | 0.0 | 0.3896 | 0.0024 | nan | 0.0 | 0.0 | 0.0 | 0.6526 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5509 | 0.0 | 0.0009 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7779 | 0.6755 | 0.8528 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9777 | 1.0 | 200 | 1.0430 | 0.1674 | 0.2097 | 0.7623 | nan | 0.8292 | 0.9417 | 0.0 | 0.5123 | 0.0048 | nan | 0.0009 | 0.0 | 0.0 | 0.8854 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8897 | 0.0 | 0.0131 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9389 | 0.7870 | 0.9084 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5751 | 0.7711 | 0.0 | 0.4464 | 0.0048 | nan | 0.0009 | 0.0 | 0.0 | 0.6782 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5701 | 0.0 | 0.0131 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7720 | 0.6698 | 0.8562 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.9326 | 1.1 | 220 | 1.0643 | 0.1551 | 0.2051 | 0.7343 | nan | 0.7976 | 0.9512 | 0.0 | 0.4709 | 0.0063 | nan | 0.0001 | 0.0 | 0.0 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0038 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7454 | 0.8821 | 0.9252 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5785 | 0.7469 | 0.0 | 0.4200 | 0.0063 | nan | 0.0001 | 0.0 | 0.0 | 0.6615 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5728 | 0.0 | 0.0038 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6639 | 0.4500 | 0.8600 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1853 | 1.2 | 240 | 1.0255 | 0.1645 | 0.2065 | 0.7501 | nan | 0.6850 | 0.9636 | 0.0 | 0.4379 | 0.0078 | nan | 0.0006 | 0.0 | 0.0 | 0.8839 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8852 | 0.0 | 0.0239 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9317 | 0.8506 | 0.9366 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5494 | 0.7233 | 0.0 | 0.3777 | 0.0077 | nan | 0.0006 | 0.0 | 0.0 | 0.6827 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5818 | 0.0 | 0.0235 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7729 | 0.6805 | 0.8655 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.1844 | 1.3 | 260 | 0.9715 | 0.1677 | 0.2091 | 0.7599 | nan | 0.8100 | 0.9497 | 0.0 | 0.4492 | 0.0216 | nan | 0.0013 | 0.0 | 0.0 | 0.8900 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8913 | 0.0 | 0.0401 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9334 | 0.7794 | 0.9254 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5640 | 0.7634 | 0.0 | 0.4075 | 0.0211 | nan | 0.0013 | 0.0 | 0.0 | 0.6789 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5737 | 0.0 | 0.0388 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7761 | 0.6731 | 0.8696 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 0.8037 | 1.4 | 280 | 0.9345 | 0.1694 | 0.2120 | 0.7620 | nan | 0.8153 | 0.9338 | 0.0 | 0.5336 | 0.0190 | nan | 0.0096 | 0.0 | 0.0 | 0.8687 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8660 | 0.0 | 0.0239 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9518 | 0.8266 | 0.9353 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5748 | 0.7621 | 0.0 | 0.4545 | 0.0187 | nan | 0.0095 | 0.0 | 0.0 | 0.7099 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5969 | 0.0 | 0.0234 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7515 | 0.6518 | 0.8682 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.046 | 1.5 | 300 | 0.9362 | 0.1665 | 0.2063 | 0.7602 | nan | 0.8074 | 0.9552 | 0.0 | 0.4627 | 0.0251 | nan | 0.0132 | 0.0 | 0.0 | 0.8712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9206 | 0.0 | 0.0295 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9472 | 0.6334 | 0.9373 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5877 | 0.7633 | 0.0 | 0.4225 | 0.0245 | nan | 0.0131 | 0.0 | 0.0 | 0.6925 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5721 | 0.0 | 0.0285 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7648 | 0.5827 | 0.8754 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.8823 | 1.6 | 320 | 0.9555 | 0.1726 | 0.2141 | 0.7562 | nan | 0.6423 | 0.9676 | 0.0 | 0.5346 | 0.0428 | nan | 0.0608 | 0.0 | 0.0 | 0.8740 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9115 | 0.0 | 0.1039 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9256 | 0.8544 | 0.9354 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5514 | 0.7267 | 0.0 | 0.4372 | 0.0407 | nan | 0.0585 | 0.0 | 0.0 | 0.6901 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5904 | 0.0 | 0.0878 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7883 | 0.6758 | 0.8769 | 0.0 | 0.0 | 0.0000 | 0.0 |
| 0.7509 | 1.7 | 340 | 0.9001 | 0.1779 | 0.2237 | 0.7709 | nan | 0.9064 | 0.9093 | 0.0 | 0.5323 | 0.1030 | nan | 0.0284 | 0.0 | 0.0 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9072 | 0.0 | 0.1315 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.9072 | 0.8914 | 0.9371 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.5784 | 0.7877 | 0.0 | 0.4640 | 0.0934 | nan | 0.0277 | 0.0 | 0.0 | 0.6997 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6068 | 0.0 | 0.1094 | 0.0 | 0.0 | nan | 0.0 | 0.0002 | 0.0 | 0.0 | 0.7947 | 0.6547 | 0.8762 | 0.0 | 0.0 | 0.0002 | 0.0 |
| 1.4454 | 1.8 | 360 | 0.8672 | 0.1819 | 0.2232 | 0.7747 | nan | 0.8583 | 0.9287 | 0.0018 | 0.5609 | 0.1483 | nan | 0.0427 | 0.0 | 0.0 | 0.8350 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9246 | 0.0 | 0.1830 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9426 | 0.7789 | 0.9388 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.6006 | 0.7921 | 0.0018 | 0.4665 | 0.1287 | nan | 0.0418 | 0.0 | 0.0 | 0.7032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5769 | 0.0 | 0.1453 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0 | 0.7918 | 0.6899 | 0.8831 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1.0715 | 1.9 | 380 | 0.8731 | 0.1822 | 0.2251 | 0.7731 | nan | 0.7780 | 0.9396 | 0.0 | 0.6530 | 0.1692 | nan | 0.0842 | 0.0 | 0.0 | 0.8696 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8489 | 0.0 | 0.1946 | 0.0 | 0.0 | nan | 0.0 | 0.0007 | 0.0 | 0.0 | 0.9709 | 0.7592 | 0.9323 | 0.0 | 0.0 | 0.0022 | 0.0 | nan | 0.6210 | 0.7887 | 0.0 | 0.5005 | 0.1439 | nan | 0.0808 | 0.0 | 0.0 | 0.7147 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6286 | 0.0 | 0.1591 | 0.0 | 0.0 | nan | 0.0 | 0.0007 | 0.0 | 0.0 | 0.7136 | 0.5999 | 0.8767 | 0.0 | 0.0 | 0.0022 | 0.0 |
| 0.9872 | 2.0 | 400 | 0.8644 | 0.1814 | 0.2287 | 0.7679 | nan | 0.9228 | 0.8901 | 0.0 | 0.5135 | 0.1829 | nan | 0.0730 | 0.0 | 0.0 | 0.9320 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8858 | 0.0 | 0.1816 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.8969 | 0.8870 | 0.9520 | 0.0 | 0.0 | 0.0006 | 0.0 | nan | 0.5509 | 0.7875 | 0.0 | 0.4591 | 0.1650 | nan | 0.0689 | 0.0 | 0.0 | 0.6744 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6095 | 0.0 | 0.1509 | 0.0 | 0.0 | nan | 0.0 | 0.0001 | 0.0 | 0.0 | 0.7905 | 0.6681 | 0.8782 | 0.0 | 0.0 | 0.0006 | 0.0 |
| 0.9402 | 2.1 | 420 | 0.8389 | 0.1881 | 0.2315 | 0.7818 | nan | 0.8322 | 0.9390 | 0.0 | 0.5695 | 0.2419 | nan | 0.2642 | 0.0 | 0.0 | 0.9113 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8622 | 0.0 | 0.1379 | 0.0 | 0.0 | nan | 0.0 | 0.0076 | 0.0 | 0.0 | 0.9714 | 0.7160 | 0.9485 | 0.0 | 0.0 | 0.0075 | 0.0 | nan | 0.6471 | 0.7996 | 0.0 | 0.4905 | 0.1948 | nan | 0.2126 | 0.0 | 0.0 | 0.6854 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6175 | 0.0 | 0.1159 | 0.0 | 0.0 | nan | 0.0 | 0.0076 | 0.0 | 0.0 | 0.7514 | 0.6111 | 0.8784 | 0.0 | 0.0 | 0.0075 | 0.0 |
| 0.8086 | 2.2 | 440 | 0.8111 | 0.1975 | 0.2430 | 0.7900 | nan | 0.8340 | 0.9349 | 0.0 | 0.6432 | 0.2336 | nan | 0.3225 | 0.0 | 0.0 | 0.8310 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9304 | 0.0 | 0.3000 | 0.0 | 0.0 | nan | 0.0 | 0.0017 | 0.0 | 0.0 | 0.9186 | 0.8714 | 0.9526 | 0.0 | 0.0 | 0.0019 | 0.0 | nan | 0.6502 | 0.8090 | 0.0 | 0.5334 | 0.1844 | nan | 0.2397 | 0.0 | 0.0 | 0.7169 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5935 | 0.0 | 0.2089 | 0.0 | 0.0 | nan | 0.0 | 0.0017 | 0.0 | 0.0 | 0.8048 | 0.6888 | 0.8868 | 0.0 | 0.0 | 0.0019 | 0.0 |
| 0.8764 | 2.3 | 460 | 0.7955 | 0.1956 | 0.2410 | 0.7898 | nan | 0.8731 | 0.9284 | 0.0 | 0.5585 | 0.2978 | nan | 0.2489 | 0.0 | 0.0 | 0.9034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8977 | 0.0 | 0.2272 | 0.0 | 0.0 | nan | 0.0 | 0.0092 | 0.0 | 0.0 | 0.9343 | 0.8924 | 0.9346 | 0.0 | 0.0 | 0.0051 | 0.0 | nan | 0.6369 | 0.8102 | 0.0 | 0.4941 | 0.2258 | nan | 0.2154 | 0.0 | 0.0 | 0.7013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6180 | 0.0 | 0.1729 | 0.0 | 0.0 | nan | 0.0 | 0.0091 | 0.0 | 0.0 | 0.7948 | 0.6877 | 0.8877 | 0.0 | 0.0 | 0.0050 | 0.0 |
| 0.5838 | 2.4 | 480 | 0.7779 | 0.1984 | 0.2443 | 0.7934 | nan | 0.8579 | 0.9338 | 0.0219 | 0.6356 | 0.3655 | nan | 0.1993 | 0.0000 | 0.0 | 0.9151 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9047 | 0.0 | 0.2618 | 0.0 | 0.0 | nan | 0.0 | 0.0106 | 0.0 | 0.0 | 0.9247 | 0.8154 | 0.9695 | 0.0 | 0.0 | 0.0029 | 0.0 | nan | 0.6396 | 0.8160 | 0.0219 | 0.5207 | 0.2520 | nan | 0.1786 | 0.0000 | 0.0 | 0.7051 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6203 | 0.0 | 0.1896 | 0.0 | 0.0 | nan | 0.0 | 0.0105 | 0.0 | 0.0 | 0.8129 | 0.7016 | 0.8771 | 0.0 | 0.0 | 0.0029 | 0.0 |
| 1.2875 | 2.5 | 500 | 0.7613 | 0.1991 | 0.2422 | 0.7947 | nan | 0.8127 | 0.9518 | 0.0246 | 0.7146 | 0.2126 | nan | 0.1842 | 0.0028 | 0.0 | 0.8969 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8676 | 0.0 | 0.3247 | 0.0 | 0.0 | nan | 0.0 | 0.0138 | 0.0 | 0.0 | 0.9529 | 0.8308 | 0.9494 | 0.0 | 0.0 | 0.0126 | 0.0 | nan | 0.6576 | 0.8048 | 0.0246 | 0.5380 | 0.1803 | nan | 0.1649 | 0.0028 | 0.0 | 0.7277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6375 | 0.0 | 0.2192 | 0.0 | 0.0 | nan | 0.0 | 0.0135 | 0.0 | 0.0 | 0.7849 | 0.7109 | 0.8922 | 0.0 | 0.0 | 0.0121 | 0.0 |
| 0.6721 | 2.6 | 520 | 0.7535 | 0.2130 | 0.2636 | 0.8017 | nan | 0.8805 | 0.9166 | 0.2113 | 0.6640 | 0.3623 | nan | 0.3572 | 0.0017 | 0.0 | 0.9307 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8472 | 0.0 | 0.4867 | 0.0 | 0.0 | nan | 0.0 | 0.0110 | 0.0 | 0.0 | 0.9472 | 0.8436 | 0.9570 | 0.0 | 0.0 | 0.0187 | 0.0 | nan | 0.6645 | 0.8283 | 0.2069 | 0.5498 | 0.2632 | nan | 0.2810 | 0.0017 | 0.0 | 0.7005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6432 | 0.0 | 0.2494 | 0.0 | 0.0 | nan | 0.0 | 0.0108 | 0.0 | 0.0 | 0.8056 | 0.7092 | 0.8851 | 0.0 | 0.0 | 0.0173 | 0.0 |
| 0.6638 | 2.7 | 540 | 0.7462 | 0.2072 | 0.2495 | 0.8018 | nan | 0.8340 | 0.9531 | 0.2099 | 0.6785 | 0.1671 | nan | 0.2453 | 0.0013 | 0.0 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9109 | 0.0 | 0.2672 | 0.0 | 0.0 | nan | 0.0 | 0.0214 | 0.0 | 0.0 | 0.9429 | 0.8541 | 0.9533 | 0.0 | 0.0 | 0.0238 | 0.0 | nan | 0.6690 | 0.8096 | 0.2068 | 0.5655 | 0.1509 | nan | 0.2195 | 0.0013 | 0.0 | 0.7109 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6292 | 0.0 | 0.1887 | 0.0 | 0.0 | nan | 0.0 | 0.0209 | 0.0 | 0.0 | 0.8074 | 0.7301 | 0.8983 | 0.0 | 0.0 | 0.0220 | 0.0 |
| 0.978 | 2.8 | 560 | 0.7408 | 0.2084 | 0.2538 | 0.7986 | nan | 0.8039 | 0.9309 | 0.2190 | 0.8212 | 0.2427 | nan | 0.2441 | 0.0110 | 0.0 | 0.9215 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9296 | 0.0 | 0.2020 | 0.0 | 0.0 | nan | 0.0 | 0.0350 | 0.0 | 0.0 | 0.9274 | 0.8378 | 0.9518 | 0.0 | 0.0 | 0.0437 | 0.0 | nan | 0.6568 | 0.8125 | 0.2120 | 0.5344 | 0.1964 | nan | 0.2175 | 0.0110 | 0.0 | 0.7195 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6137 | 0.0 | 0.1500 | 0.0 | 0.0 | nan | 0.0 | 0.0338 | 0.0 | 0.0 | 0.8339 | 0.7423 | 0.8955 | 0.0 | 0.0 | 0.0410 | 0.0 |
| 0.654 | 2.9 | 580 | 0.7562 | 0.2148 | 0.2672 | 0.7950 | nan | 0.7972 | 0.9253 | 0.3007 | 0.6560 | 0.4779 | nan | 0.2650 | 0.0224 | 0.0 | 0.9136 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8899 | 0.0 | 0.4572 | 0.0 | 0.0 | nan | 0.0 | 0.0478 | 0.0 | 0.0 | 0.8980 | 0.9169 | 0.9524 | 0.0 | 0.0 | 0.0296 | 0.0 | nan | 0.6365 | 0.8171 | 0.2613 | 0.5745 | 0.2708 | nan | 0.2223 | 0.0224 | 0.0 | 0.7265 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6664 | 0.0 | 0.2762 | 0.0 | 0.0 | nan | 0.0 | 0.0453 | 0.0 | 0.0 | 0.7805 | 0.6445 | 0.9008 | 0.0 | 0.0 | 0.0281 | 0.0 |
| 0.427 | 3.0 | 600 | 0.7294 | 0.2180 | 0.2615 | 0.8057 | nan | 0.9073 | 0.9191 | 0.3864 | 0.6607 | 0.3389 | nan | 0.2097 | 0.0261 | 0.0 | 0.8805 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9396 | 0.0 | 0.2776 | 0.0 | 0.0 | nan | 0.0 | 0.0553 | 0.0 | 0.0 | 0.9380 | 0.8637 | 0.9350 | 0.0 | 0.0 | 0.0303 | 0.0 | nan | 0.6418 | 0.8283 | 0.3227 | 0.5986 | 0.2736 | nan | 0.1886 | 0.0260 | 0.0 | 0.7477 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6196 | 0.0 | 0.2092 | 0.0 | 0.0 | nan | 0.0 | 0.0527 | 0.0 | 0.0 | 0.8182 | 0.7251 | 0.8956 | 0.0 | 0.0 | 0.0285 | 0.0 |
| 0.4829 | 3.1 | 620 | 0.7174 | 0.2226 | 0.2714 | 0.8035 | nan | 0.7341 | 0.9489 | 0.2510 | 0.7072 | 0.4433 | nan | 0.3186 | 0.0785 | 0.0 | 0.9233 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8824 | 0.0 | 0.4427 | 0.0 | 0.0 | nan | 0.0 | 0.0811 | 0.0 | 0.0 | 0.9422 | 0.8826 | 0.9675 | 0.0 | 0.0 | 0.0825 | 0.0 | nan | 0.6433 | 0.8177 | 0.2251 | 0.5822 | 0.2480 | nan | 0.2623 | 0.0779 | 0.0 | 0.7399 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6700 | 0.0 | 0.2810 | 0.0 | 0.0 | nan | 0.0 | 0.0738 | 0.0 | 0.0 | 0.8124 | 0.7220 | 0.8935 | 0.0 | 0.0 | 0.0739 | 0.0 |
| 0.8156 | 3.2 | 640 | 0.7023 | 0.2292 | 0.2758 | 0.8133 | nan | 0.9020 | 0.9250 | 0.2563 | 0.6719 | 0.3992 | nan | 0.2941 | 0.1677 | 0.0 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.9105 | 0.0 | 0.5084 | 0.0 | 0.0 | nan | 0.0 | 0.0722 | 0.0 | 0.0 | 0.9385 | 0.8559 | 0.9473 | 0.0 | 0.0 | 0.0624 | 0.0 | nan | 0.6589 | 0.8354 | 0.2415 | 0.5910 | 0.3009 | nan | 0.2484 | 0.1649 | 0.0 | 0.7474 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.6694 | 0.0 | 0.2805 | 0.0 | 0.0 | nan | 0.0 | 0.0673 | 0.0 | 0.0 | 0.8256 | 0.7435 | 0.9028 | 0.0 | 0.0 | 0.0555 | 0.0 |
| 0.7138 | 3.3 | 660 | 0.7069 | 0.2279 | 0.2749 | 0.8092 | nan | 0.8287 | 0.9482 | 0.3510 | 0.6702 | 0.3620 | nan | 0.3297 | 0.2351 | 0.0 | 0.9397 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.9130 | 0.0 | 0.2962 | 0.0000 | 0.0 | nan | 0.0 | 0.0865 | 0.0 | 0.0 | 0.9161 | 0.8831 | 0.9583 | 0.0 | 0.0 | 0.0772 | 0.0 | nan | 0.6930 | 0.8247 | 0.2957 | 0.5459 | 0.2651 | nan | 0.2782 | 0.2294 | 0.0 | 0.7291 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0025 | 0.0 | 0.0 | 0.6440 | 0.0 | 0.2120 | 0.0000 | 0.0 | nan | 0.0 | 0.0793 | 0.0 | 0.0 | 0.8128 | 0.7087 | 0.9045 | 0.0 | 0.0 | 0.0688 | 0.0 |
| 0.6917 | 3.4 | 680 | 0.7028 | 0.2269 | 0.2739 | 0.8077 | nan | 0.8149 | 0.9433 | 0.3073 | 0.5962 | 0.4292 | nan | 0.3537 | 0.1186 | 0.0 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.9047 | 0.0 | 0.4330 | 0.0 | 0.0 | nan | 0.0 | 0.0956 | 0.0 | 0.0 | 0.9498 | 0.8324 | 0.9623 | 0.0 | 0.0 | 0.0971 | 0.0 | nan | 0.6718 | 0.8234 | 0.2649 | 0.5345 | 0.2617 | nan | 0.2900 | 0.1173 | 0.0 | 0.7382 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.6571 | 0.0 | 0.2746 | 0.0 | 0.0 | nan | 0.0 | 0.0864 | 0.0 | 0.0 | 0.8218 | 0.7334 | 0.8996 | 0.0 | 0.0 | 0.0849 | 0.0 |
| 0.9325 | 3.5 | 700 | 0.6855 | 0.2374 | 0.2848 | 0.8158 | nan | 0.8325 | 0.9446 | 0.4574 | 0.7255 | 0.3362 | nan | 0.3317 | 0.2539 | 0.0 | 0.9209 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0 | 0.0 | 0.8843 | 0.0 | 0.4345 | 0.0 | 0.0 | nan | 0.0 | 0.0910 | 0.0 | 0.0 | 0.9536 | 0.8368 | 0.9573 | 0.0 | 0.0 | 0.1510 | 0.0 | nan | 0.6861 | 0.8344 | 0.3742 | 0.5966 | 0.2529 | nan | 0.2720 | 0.2421 | 0.0 | 0.7385 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0 | 0.0 | 0.6538 | 0.0 | 0.2749 | 0.0 | 0.0 | nan | 0.0 | 0.0835 | 0.0 | 0.0 | 0.8168 | 0.7370 | 0.9000 | 0.0 | 0.0 | 0.1323 | 0.0 |
| 0.5989 | 3.6 | 720 | 0.6805 | 0.2479 | 0.2980 | 0.8191 | nan | 0.8635 | 0.9373 | 0.4433 | 0.7377 | 0.3153 | nan | 0.3770 | 0.4409 | 0.0 | 0.8934 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0660 | 0.0 | 0.0 | 0.8861 | 0.0 | 0.4853 | 0.0 | 0.0 | nan | 0.0 | 0.1566 | 0.0 | 0.0 | 0.9363 | 0.9031 | 0.9487 | 0.0 | 0.0 | 0.1443 | 0.0 | nan | 0.6924 | 0.8392 | 0.3558 | 0.6152 | 0.2621 | nan | 0.3052 | 0.4010 | 0.0 | 0.7701 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0637 | 0.0 | 0.0 | 0.6449 | 0.0 | 0.2661 | 0.0 | 0.0 | nan | 0.0 | 0.1368 | 0.0 | 0.0 | 0.8341 | 0.7158 | 0.9041 | 0.0 | 0.0 | 0.1256 | 0.0 |
| 0.6463 | 3.7 | 740 | 0.6961 | 0.2427 | 0.2911 | 0.8170 | nan | 0.8652 | 0.9428 | 0.4865 | 0.5954 | 0.4087 | nan | 0.3786 | 0.4660 | 0.0 | 0.9244 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0138 | 0.0 | 0.0 | 0.9135 | 0.0 | 0.3219 | 0.0001 | 0.0 | nan | 0.0 | 0.1248 | 0.0 | 0.0 | 0.9401 | 0.8902 | 0.9563 | 0.0 | 0.0 | 0.0872 | 0.0 | nan | 0.6906 | 0.8322 | 0.3576 | 0.5430 | 0.3092 | nan | 0.2937 | 0.4203 | 0.0 | 0.7447 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0131 | 0.0 | 0.0 | 0.6471 | 0.0 | 0.2497 | 0.0001 | 0.0 | nan | 0.0 | 0.1142 | 0.0 | 0.0 | 0.8326 | 0.7372 | 0.9031 | 0.0 | 0.0 | 0.0789 | 0.0 |
| 0.7591 | 3.8 | 760 | 0.6612 | 0.2580 | 0.3138 | 0.8244 | nan | 0.8508 | 0.9313 | 0.5719 | 0.7780 | 0.4338 | nan | 0.3375 | 0.6091 | 0.0 | 0.9092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1580 | 0.0 | 0.0 | 0.9023 | 0.0 | 0.4899 | 0.0 | 0.0 | nan | 0.0 | 0.1601 | 0.0 | 0.0 | 0.9426 | 0.8625 | 0.9558 | 0.0 | 0.0 | 0.1474 | 0.0 | nan | 0.7094 | 0.8419 | 0.3247 | 0.6473 | 0.3145 | nan | 0.2901 | 0.5056 | 0.0 | 0.7800 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1394 | 0.0 | 0.0 | 0.6658 | 0.0 | 0.2838 | 0.0 | 0.0 | nan | 0.0 | 0.1420 | 0.0 | 0.0 | 0.8403 | 0.7416 | 0.9069 | 0.0 | 0.0 | 0.1233 | 0.0 |
| 0.5534 | 3.9 | 780 | 0.6732 | 0.2532 | 0.3063 | 0.8181 | nan | 0.8214 | 0.9461 | 0.5042 | 0.6612 | 0.3922 | nan | 0.4129 | 0.5771 | 0.0 | 0.9359 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0469 | 0.0 | 0.0 | 0.8828 | 0.0 | 0.4341 | 0.0002 | 0.0 | nan | 0.0 | 0.1264 | 0.0 | 0.0 | 0.9313 | 0.9053 | 0.9573 | 0.0 | 0.0 | 0.2661 | 0.0 | nan | 0.6922 | 0.8335 | 0.4137 | 0.5804 | 0.2705 | nan | 0.3330 | 0.4903 | 0.0 | 0.7471 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0450 | 0.0 | 0.0 | 0.6712 | 0.0 | 0.2813 | 0.0002 | 0.0 | nan | 0.0 | 0.1168 | 0.0 | 0.0 | 0.8218 | 0.7088 | 0.9092 | 0.0 | 0.0 | 0.1879 | 0.0 |
| 0.5253 | 4.0 | 800 | 0.6851 | 0.2526 | 0.3064 | 0.8152 | nan | 0.7825 | 0.9559 | 0.5397 | 0.7223 | 0.4111 | nan | 0.3937 | 0.5704 | 0.0 | 0.9213 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0866 | 0.0 | 0.0 | 0.9097 | 0.0 | 0.3959 | 0.0000 | 0.0 | nan | 0.0 | 0.1174 | 0.0 | 0.0 | 0.8933 | 0.8890 | 0.9628 | 0.0 | 0.0 | 0.2529 | 0.0 | nan | 0.6829 | 0.8305 | 0.4174 | 0.5845 | 0.2797 | nan | 0.3243 | 0.4921 | 0.0 | 0.7609 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0810 | 0.0 | 0.0 | 0.6700 | 0.0 | 0.2668 | 0.0000 | 0.0 | nan | 0.0 | 0.1099 | 0.0 | 0.0 | 0.8165 | 0.6845 | 0.9037 | 0.0 | 0.0 | 0.1780 | 0.0 |
| 0.7711 | 4.1 | 820 | 0.6676 | 0.2542 | 0.3083 | 0.8201 | nan | 0.8437 | 0.9316 | 0.5681 | 0.7326 | 0.4147 | nan | 0.3457 | 0.6161 | 0.0 | 0.9313 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1167 | 0.0 | 0.0 | 0.8849 | 0.0 | 0.3741 | 0.0008 | 0.0 | nan | 0.0 | 0.1325 | 0.0 | 0.0 | 0.9571 | 0.8486 | 0.9574 | 0.0 | 0.0 | 0.2110 | 0.0 | nan | 0.6873 | 0.8377 | 0.3471 | 0.5874 | 0.3225 | nan | 0.2941 | 0.5096 | 0.0 | 0.7620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1004 | 0.0 | 0.0 | 0.6810 | 0.0 | 0.2695 | 0.0008 | 0.0 | nan | 0.0 | 0.1181 | 0.0 | 0.0 | 0.8163 | 0.7409 | 0.9069 | 0.0 | 0.0 | 0.1537 | 0.0 |
| 0.707 | 4.2 | 840 | 0.6544 | 0.2666 | 0.3247 | 0.8257 | nan | 0.8754 | 0.9295 | 0.4642 | 0.7581 | 0.4803 | nan | 0.3356 | 0.6712 | 0.0 | 0.9103 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3022 | 0.0 | 0.0 | 0.8921 | 0.0 | 0.5800 | 0.0 | 0.0 | nan | 0.0 | 0.2018 | 0.0 | 0.0 | 0.9160 | 0.9045 | 0.9600 | 0.0 | 0.0 | 0.2085 | 0.0 | nan | 0.7049 | 0.8479 | 0.4035 | 0.6244 | 0.3176 | nan | 0.2962 | 0.5501 | 0.0 | 0.7839 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2270 | 0.0 | 0.0 | 0.6912 | 0.0 | 0.2901 | 0.0 | 0.0 | nan | 0.0 | 0.1745 | 0.0 | 0.0 | 0.8381 | 0.7161 | 0.9089 | 0.0 | 0.0 | 0.1575 | 0.0 |
| 0.3871 | 4.3 | 860 | 0.6769 | 0.2557 | 0.3102 | 0.8184 | nan | 0.7837 | 0.9498 | 0.4837 | 0.6756 | 0.4045 | nan | 0.4306 | 0.6623 | 0.0 | 0.9270 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0860 | 0.0 | 0.0 | 0.8875 | 0.0 | 0.5056 | 0.0000 | 0.0 | nan | 0.0 | 0.1384 | 0.0 | 0.0 | 0.9505 | 0.8714 | 0.9552 | 0.0 | 0.0 | 0.2160 | 0.0 | nan | 0.6800 | 0.8332 | 0.3980 | 0.5833 | 0.2693 | nan | 0.3201 | 0.5166 | 0.0 | 0.7572 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0793 | 0.0 | 0.0 | 0.6881 | 0.0 | 0.2960 | 0.0000 | 0.0 | nan | 0.0 | 0.1238 | 0.0 | 0.0 | 0.8248 | 0.7405 | 0.9098 | 0.0 | 0.0 | 0.1637 | 0.0 |
| 0.3875 | 4.4 | 880 | 0.6636 | 0.2572 | 0.3122 | 0.8214 | nan | 0.8858 | 0.9330 | 0.5198 | 0.6597 | 0.3446 | nan | 0.3893 | 0.6406 | 0.0 | 0.9311 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0998 | 0.0 | 0.0 | 0.9076 | 0.0 | 0.4959 | 0.0013 | 0.0 | nan | 0.0 | 0.1958 | 0.0 | 0.0 | 0.9191 | 0.8930 | 0.9695 | 0.0 | 0.0 | 0.2060 | 0.0 | nan | 0.6752 | 0.8406 | 0.3812 | 0.5797 | 0.2876 | nan | 0.3076 | 0.5213 | 0.0 | 0.7672 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0920 | 0.0 | 0.0 | 0.6889 | 0.0 | 0.3101 | 0.0013 | 0.0 | nan | 0.0 | 0.1681 | 0.0 | 0.0 | 0.8338 | 0.7172 | 0.9046 | 0.0 | 0.0 | 0.1554 | 0.0 |
| 0.3193 | 4.5 | 900 | 0.6542 | 0.2597 | 0.3132 | 0.8219 | nan | 0.8326 | 0.9582 | 0.4788 | 0.7010 | 0.3630 | nan | 0.3619 | 0.6338 | 0.0 | 0.9361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1771 | 0.0 | 0.0 | 0.9081 | 0.0 | 0.4641 | 0.0076 | 0.0 | nan | 0.0 | 0.2136 | 0.0 | 0.0 | 0.8987 | 0.9015 | 0.9614 | 0.0 | 0.0 | 0.2243 | 0.0 | nan | 0.7043 | 0.8323 | 0.4032 | 0.5934 | 0.2855 | nan | 0.3055 | 0.5127 | 0.0 | 0.7645 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1567 | 0.0 | 0.0 | 0.6876 | 0.0 | 0.2943 | 0.0075 | 0.0 | nan | 0.0 | 0.1783 | 0.0 | 0.0 | 0.8255 | 0.6886 | 0.9085 | 0.0 | 0.0 | 0.1632 | 0.0 |
| 0.4406 | 4.6 | 920 | 0.6569 | 0.2614 | 0.3241 | 0.8187 | nan | 0.8827 | 0.8931 | 0.5627 | 0.7492 | 0.4866 | nan | 0.3742 | 0.6700 | 0.0 | 0.9376 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1651 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.4994 | 0.0318 | 0.0 | nan | 0.0 | 0.2074 | 0.0 | 0.0 | 0.9504 | 0.8615 | 0.9666 | 0.0 | 0.0 | 0.2622 | 0.0 | nan | 0.6811 | 0.8343 | 0.3170 | 0.6401 | 0.3189 | nan | 0.2997 | 0.5251 | 0.0 | 0.7588 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1441 | 0.0 | 0.0 | 0.6967 | 0.0 | 0.3081 | 0.0312 | 0.0 | nan | 0.0 | 0.1656 | 0.0 | 0.0 | 0.8313 | 0.7308 | 0.9035 | 0.0 | 0.0 | 0.1784 | 0.0 |
| 0.5358 | 4.7 | 940 | 0.6500 | 0.2597 | 0.3110 | 0.8236 | nan | 0.8691 | 0.9456 | 0.5509 | 0.6797 | 0.4115 | nan | 0.3701 | 0.6042 | 0.0 | 0.8879 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1980 | 0.0 | 0.0 | 0.9315 | 0.0 | 0.4259 | 0.0054 | 0.0 | nan | 0.0 | 0.1871 | 0.0 | 0.0 | 0.9234 | 0.8543 | 0.9585 | 0.0 | 0.0 | 0.1503 | 0.0 | nan | 0.6986 | 0.8374 | 0.3752 | 0.6046 | 0.3042 | nan | 0.3063 | 0.4954 | 0.0 | 0.7844 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1822 | 0.0 | 0.0 | 0.6668 | 0.0 | 0.2805 | 0.0053 | 0.0 | nan | 0.0 | 0.1594 | 0.0 | 0.0 | 0.8424 | 0.7319 | 0.9097 | 0.0 | 0.0 | 0.1245 | 0.0 |
| 0.6313 | 4.8 | 960 | 0.6320 | 0.2673 | 0.3266 | 0.8278 | nan | 0.8247 | 0.9394 | 0.5275 | 0.8027 | 0.4413 | nan | 0.3894 | 0.6899 | 0.0 | 0.9403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2349 | 0.0 | 0.0 | 0.8570 | 0.0 | 0.5248 | 0.0266 | 0.0 | nan | 0.0 | 0.2259 | 0.0 | 0.0 | 0.9468 | 0.8795 | 0.9636 | 0.0 | 0.0 | 0.2359 | 0.0 | nan | 0.7012 | 0.8478 | 0.4074 | 0.6506 | 0.3106 | nan | 0.3286 | 0.5297 | 0.0 | 0.7582 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1792 | 0.0 | 0.0 | 0.6927 | 0.0 | 0.2988 | 0.0263 | 0.0 | nan | 0.0 | 0.1773 | 0.0 | 0.0 | 0.8298 | 0.7318 | 0.9079 | 0.0 | 0.0 | 0.1767 | 0.0 |
| 0.3536 | 4.9 | 980 | 0.6347 | 0.2695 | 0.3225 | 0.8290 | nan | 0.8067 | 0.9585 | 0.5452 | 0.7794 | 0.4020 | nan | 0.3660 | 0.7025 | 0.0 | 0.9025 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2276 | 0.0 | 0.0 | 0.9014 | 0.0 | 0.4827 | 0.0392 | 0.0 | nan | 0.0 | 0.2068 | 0.0 | 0.0 | 0.9458 | 0.8488 | 0.9537 | 0.0 | 0.0 | 0.2515 | 0.0 | nan | 0.7024 | 0.8392 | 0.4190 | 0.6574 | 0.3068 | nan | 0.3154 | 0.5403 | 0.0 | 0.7839 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2015 | 0.0 | 0.0 | 0.6764 | 0.0 | 0.2990 | 0.0388 | 0.0 | nan | 0.0 | 0.1732 | 0.0 | 0.0 | 0.8356 | 0.7403 | 0.9103 | 0.0 | 0.0 | 0.1850 | 0.0 |
| 0.4556 | 5.0 | 1000 | 0.6622 | 0.2569 | 0.3150 | 0.8227 | nan | 0.8442 | 0.9340 | 0.6047 | 0.7161 | 0.4726 | nan | 0.4128 | 0.7259 | 0.0 | 0.9344 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0922 | 0.0 | 0.0 | 0.9187 | 0.0 | 0.3290 | 0.0050 | 0.0 | nan | 0.0 | 0.1817 | 0.0 | 0.0 | 0.9212 | 0.8851 | 0.9671 | 0.0 | 0.0 | 0.1343 | 0.0 | nan | 0.6994 | 0.8458 | 0.3676 | 0.6354 | 0.3216 | nan | 0.3289 | 0.5432 | 0.0 | 0.7672 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0816 | 0.0 | 0.0 | 0.6547 | 0.0 | 0.2310 | 0.0050 | 0.0 | nan | 0.0 | 0.1578 | 0.0 | 0.0 | 0.8300 | 0.7204 | 0.9092 | 0.0 | 0.0 | 0.1206 | 0.0 |
| 0.4591 | 5.1 | 1020 | 0.6507 | 0.2648 | 0.3244 | 0.8256 | nan | 0.8822 | 0.9379 | 0.5695 | 0.6632 | 0.4411 | nan | 0.3617 | 0.7320 | 0.0 | 0.9309 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1561 | 0.0 | 0.0 | 0.8420 | 0.0 | 0.5086 | 0.0280 | 0.0 | nan | 0.0 | 0.2619 | 0.0 | 0.0 | 0.9492 | 0.8699 | 0.9623 | 0.0 | 0.0 | 0.2847 | 0.0 | nan | 0.6970 | 0.8414 | 0.3791 | 0.6022 | 0.3283 | nan | 0.2991 | 0.5071 | 0.0 | 0.7714 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1242 | 0.0 | 0.0 | 0.6887 | 0.0 | 0.2880 | 0.0277 | 0.0 | nan | 0.0 | 0.2067 | 0.0 | 0.0 | 0.8351 | 0.7556 | 0.9135 | 0.0 | 0.0 | 0.2093 | 0.0 |
| 0.5285 | 5.2 | 1040 | 0.6560 | 0.2682 | 0.3265 | 0.8218 | nan | 0.7659 | 0.9305 | 0.5688 | 0.7382 | 0.5242 | nan | 0.4848 | 0.6590 | 0.0 | 0.9092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1483 | 0.0 | 0.0 | 0.9157 | 0.0 | 0.4034 | 0.0615 | 0.0 | nan | 0.0 | 0.2794 | 0.0 | 0.0 | 0.9405 | 0.9060 | 0.9620 | 0.0 | 0.0 | 0.2511 | 0.0 | nan | 0.6776 | 0.8350 | 0.4324 | 0.6042 | 0.3074 | nan | 0.3654 | 0.5356 | 0.0 | 0.7741 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1338 | 0.0 | 0.0 | 0.6821 | 0.0 | 0.2853 | 0.0607 | 0.0 | nan | 0.0 | 0.2136 | 0.0 | 0.0 | 0.8388 | 0.7444 | 0.9136 | 0.0 | 0.0 | 0.1794 | 0.0 |
| 0.4361 | 5.3 | 1060 | 0.6255 | 0.2711 | 0.3246 | 0.8323 | nan | 0.8628 | 0.9391 | 0.5433 | 0.8105 | 0.3499 | nan | 0.4237 | 0.6427 | 0.0 | 0.9101 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1850 | 0.0 | 0.0 | 0.9182 | 0.0 | 0.4471 | 0.0439 | 0.0 | nan | 0.0 | 0.2448 | 0.0 | 0.0 | 0.9329 | 0.8739 | 0.9652 | 0.0 | 0.0 | 0.2933 | 0.0 | nan | 0.7083 | 0.8463 | 0.4068 | 0.6505 | 0.2900 | nan | 0.3443 | 0.5433 | 0.0 | 0.7810 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1652 | 0.0 | 0.0 | 0.6823 | 0.0 | 0.3011 | 0.0435 | 0.0 | nan | 0.0 | 0.1998 | 0.0 | 0.0 | 0.8500 | 0.7546 | 0.9110 | 0.0 | 0.0 | 0.1970 | 0.0 |
| 0.4952 | 5.4 | 1080 | 0.6550 | 0.2708 | 0.3276 | 0.8243 | nan | 0.7442 | 0.9626 | 0.5128 | 0.7462 | 0.4368 | nan | 0.4072 | 0.7272 | 0.0 | 0.9251 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2467 | 0.0 | 0.0 | 0.9016 | 0.0 | 0.5444 | 0.0087 | 0.0 | nan | 0.0 | 0.2676 | 0.0 | 0.0 | 0.9317 | 0.8792 | 0.9622 | 0.0 | 0.0 | 0.2788 | 0.0 | nan | 0.6666 | 0.8202 | 0.4120 | 0.6328 | 0.3133 | nan | 0.3450 | 0.5479 | 0.0 | 0.7769 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1962 | 0.0 | 0.0 | 0.6943 | 0.0 | 0.3191 | 0.0087 | 0.0 | nan | 0.0 | 0.2106 | 0.0 | 0.0 | 0.8527 | 0.7557 | 0.9140 | 0.0 | 0.0 | 0.1996 | 0.0 |
| 0.3561 | 5.5 | 1100 | 0.6307 | 0.2710 | 0.3310 | 0.8307 | nan | 0.8767 | 0.9299 | 0.5615 | 0.7294 | 0.4652 | nan | 0.4155 | 0.7589 | 0.0 | 0.9234 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2777 | 0.0 | 0.0 | 0.8979 | 0.0 | 0.4442 | 0.0240 | 0.0 | nan | 0.0 | 0.2477 | 0.0 | 0.0 | 0.9423 | 0.8935 | 0.9645 | 0.0 | 0.0 | 0.2384 | 0.0 | nan | 0.7054 | 0.8493 | 0.4020 | 0.6369 | 0.3361 | nan | 0.3419 | 0.5484 | 0.0 | 0.7772 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2010 | 0.0 | 0.0 | 0.6856 | 0.0 | 0.3081 | 0.0238 | 0.0 | nan | 0.0 | 0.1943 | 0.0 | 0.0 | 0.8398 | 0.7333 | 0.9128 | 0.0 | 0.0 | 0.1760 | 0.0 |
| 0.5354 | 5.6 | 1120 | 0.6387 | 0.2721 | 0.3312 | 0.8275 | nan | 0.7875 | 0.9516 | 0.5832 | 0.7279 | 0.4278 | nan | 0.4853 | 0.7450 | 0.0 | 0.9340 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3487 | 0.0 | 0.0 | 0.9019 | 0.0 | 0.5119 | 0.0186 | 0.0 | nan | 0.0 | 0.2194 | 0.0 | 0.0 | 0.9566 | 0.8174 | 0.9629 | 0.0 | 0.0 | 0.2197 | 0.0 | nan | 0.6898 | 0.8340 | 0.4223 | 0.6318 | 0.3037 | nan | 0.3741 | 0.5537 | 0.0 | 0.7810 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2291 | 0.0 | 0.0 | 0.6908 | 0.0 | 0.3200 | 0.0184 | 0.0 | nan | 0.0 | 0.1828 | 0.0 | 0.0 | 0.8404 | 0.7435 | 0.9153 | 0.0 | 0.0 | 0.1769 | 0.0 |
| 0.3437 | 5.7 | 1140 | 0.6174 | 0.2792 | 0.3423 | 0.8346 | nan | 0.8410 | 0.9443 | 0.5442 | 0.7439 | 0.4972 | nan | 0.4534 | 0.7617 | 0.0 | 0.9308 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4301 | 0.0 | 0.0 | 0.8915 | 0.0 | 0.5431 | 0.0521 | 0.0 | nan | 0.0 | 0.2596 | 0.0 | 0.0 | 0.9355 | 0.8947 | 0.9595 | 0.0 | 0.0 | 0.2720 | 0.0 | nan | 0.7226 | 0.8471 | 0.4400 | 0.6482 | 0.3168 | nan | 0.3740 | 0.5410 | 0.0 | 0.7879 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2574 | 0.0 | 0.0 | 0.7063 | 0.0 | 0.3265 | 0.0508 | 0.0 | nan | 0.0 | 0.2106 | 0.0 | 0.0 | 0.8479 | 0.7455 | 0.9171 | 0.0 | 0.0 | 0.1962 | 0.0 |
| 0.4298 | 5.8 | 1160 | 0.6134 | 0.2781 | 0.3353 | 0.8353 | nan | 0.8577 | 0.9386 | 0.5211 | 0.7719 | 0.4591 | nan | 0.4418 | 0.7563 | 0.0 | 0.9277 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3321 | 0.0 | 0.0 | 0.9252 | 0.0 | 0.4237 | 0.0904 | 0.0 | nan | 0.0 | 0.2481 | 0.0 | 0.0 | 0.9335 | 0.8962 | 0.9621 | 0.0 | 0.0 | 0.2454 | 0.0 | nan | 0.7176 | 0.8498 | 0.4310 | 0.6682 | 0.3271 | nan | 0.3581 | 0.5549 | 0.0 | 0.7808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2378 | 0.0 | 0.0 | 0.6713 | 0.0 | 0.3008 | 0.0883 | 0.0 | nan | 0.0 | 0.2080 | 0.0 | 0.0 | 0.8506 | 0.7543 | 0.9174 | 0.0 | 0.0 | 0.1841 | 0.0 |
| 0.6889 | 5.9 | 1180 | 0.6136 | 0.2788 | 0.3369 | 0.8355 | nan | 0.8318 | 0.9517 | 0.5924 | 0.7928 | 0.3679 | nan | 0.4446 | 0.7324 | 0.0 | 0.9197 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3977 | 0.0 | 0.0 | 0.9050 | 0.0 | 0.4513 | 0.1394 | 0.0 | nan | 0.0 | 0.2672 | 0.0 | 0.0 | 0.9468 | 0.8603 | 0.9680 | 0.0 | 0.0 | 0.2134 | 0.0 | nan | 0.7105 | 0.8455 | 0.4164 | 0.6613 | 0.3017 | nan | 0.3604 | 0.5448 | 0.0 | 0.7887 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2619 | 0.0 | 0.0 | 0.6877 | 0.0 | 0.3169 | 0.1338 | 0.0 | nan | 0.0 | 0.2144 | 0.0 | 0.0 | 0.8462 | 0.7462 | 0.9155 | 0.0 | 0.0 | 0.1707 | 0.0 |
| 0.4294 | 6.0 | 1200 | 0.6237 | 0.2787 | 0.3372 | 0.8343 | nan | 0.8774 | 0.9479 | 0.5795 | 0.7154 | 0.3698 | nan | 0.3976 | 0.7525 | 0.0 | 0.9183 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4412 | 0.0 | 0.0 | 0.9200 | 0.0 | 0.4551 | 0.1293 | 0.0 | nan | 0.0 | 0.3076 | 0.0 | 0.0 | 0.9386 | 0.8491 | 0.9612 | 0.0 | 0.0 | 0.2297 | 0.0 | nan | 0.7117 | 0.8500 | 0.4300 | 0.6318 | 0.3026 | nan | 0.3341 | 0.5519 | 0.0 | 0.7848 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2811 | 0.0 | 0.0 | 0.6789 | 0.0 | 0.3069 | 0.1241 | 0.0 | nan | 0.0 | 0.2370 | 0.0 | 0.0 | 0.8482 | 0.7534 | 0.9164 | 0.0 | 0.0 | 0.1750 | 0.0 |
| 0.3842 | 6.1 | 1220 | 0.6013 | 0.2861 | 0.3502 | 0.8391 | nan | 0.8607 | 0.9402 | 0.5867 | 0.7663 | 0.4641 | nan | 0.4457 | 0.7530 | 0.0 | 0.9345 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4567 | 0.0 | 0.0 | 0.8909 | 0.0 | 0.4718 | 0.2415 | 0.0 | nan | 0.0 | 0.3472 | 0.0 | 0.0 | 0.9365 | 0.9007 | 0.9691 | 0.0 | 0.0 | 0.2402 | 0.0 | nan | 0.7264 | 0.8525 | 0.4257 | 0.6615 | 0.3263 | nan | 0.3696 | 0.5470 | 0.0 | 0.7799 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2428 | 0.0 | 0.0 | 0.7000 | 0.0 | 0.3559 | 0.2309 | 0.0 | nan | 0.0 | 0.2498 | 0.0 | 0.0 | 0.8444 | 0.7538 | 0.9154 | 0.0 | 0.0 | 0.1744 | 0.0 |
| 0.3414 | 6.2 | 1240 | 0.6057 | 0.2841 | 0.3458 | 0.8372 | nan | 0.8653 | 0.9294 | 0.5736 | 0.8022 | 0.4314 | nan | 0.4221 | 0.7446 | 0.0 | 0.9128 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4779 | 0.0 | 0.0 | 0.9221 | 0.0 | 0.4615 | 0.2442 | 0.0 | nan | 0.0 | 0.3033 | 0.0 | 0.0 | 0.9383 | 0.8996 | 0.9713 | 0.0 | 0.0 | 0.1656 | 0.0 | nan | 0.7125 | 0.8481 | 0.4153 | 0.6647 | 0.3241 | nan | 0.3588 | 0.5569 | 0.0 | 0.7896 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2746 | 0.0 | 0.0 | 0.6852 | 0.0 | 0.3387 | 0.2334 | 0.0 | nan | 0.0 | 0.2254 | 0.0 | 0.0 | 0.8512 | 0.7521 | 0.9160 | 0.0 | 0.0 | 0.1452 | 0.0 |
| 0.2668 | 6.3 | 1260 | 0.6107 | 0.2826 | 0.3450 | 0.8359 | nan | 0.8583 | 0.9382 | 0.5687 | 0.7657 | 0.4032 | nan | 0.4406 | 0.7619 | 0.0 | 0.9462 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4559 | 0.0 | 0.0 | 0.9111 | 0.0 | 0.4298 | 0.2429 | 0.0 | nan | 0.0 | 0.3298 | 0.0 | 0.0 | 0.9344 | 0.8866 | 0.9681 | 0.0 | 0.0 | 0.1990 | 0.0 | nan | 0.7169 | 0.8450 | 0.4128 | 0.6378 | 0.3066 | nan | 0.3632 | 0.5477 | 0.0 | 0.7759 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2558 | 0.0 | 0.0 | 0.6840 | 0.0 | 0.3300 | 0.2327 | 0.0 | nan | 0.0 | 0.2419 | 0.0 | 0.0 | 0.8551 | 0.7577 | 0.9192 | 0.0 | 0.0 | 0.1616 | 0.0 |
| 0.345 | 6.4 | 1280 | 0.6021 | 0.2856 | 0.3476 | 0.8376 | nan | 0.8565 | 0.9475 | 0.5464 | 0.7295 | 0.4149 | nan | 0.4622 | 0.7741 | 0.0 | 0.9269 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4755 | 0.0 | 0.0 | 0.8993 | 0.0 | 0.5527 | 0.1694 | 0.0 | nan | 0.0 | 0.3497 | 0.0 | 0.0 | 0.9417 | 0.8722 | 0.9643 | 0.0 | 0.0 | 0.2404 | 0.0 | nan | 0.7249 | 0.8440 | 0.4423 | 0.6305 | 0.3065 | nan | 0.3753 | 0.5470 | 0.0 | 0.7960 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2836 | 0.0 | 0.0 | 0.7073 | 0.0 | 0.3537 | 0.1610 | 0.0 | nan | 0.0 | 0.2510 | 0.0 | 0.0 | 0.8510 | 0.7626 | 0.9202 | 0.0 | 0.0 | 0.1828 | 0.0 |
| 0.5035 | 6.5 | 1300 | 0.6096 | 0.2843 | 0.3532 | 0.8321 | nan | 0.8155 | 0.9197 | 0.6216 | 0.8217 | 0.4931 | nan | 0.4721 | 0.7753 | 0.0 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5045 | 0.0 | 0.0 | 0.9012 | 0.0 | 0.5240 | 0.1959 | 0.0 | nan | 0.0 | 0.3288 | 0.0 | 0.0 | 0.9487 | 0.8548 | 0.9681 | 0.0 | 0.0 | 0.2306 | 0.0 | nan | 0.7139 | 0.8361 | 0.3180 | 0.6709 | 0.3177 | nan | 0.3877 | 0.5664 | 0.0 | 0.7972 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2867 | 0.0 | 0.0 | 0.7039 | 0.0 | 0.3595 | 0.1869 | 0.0 | nan | 0.0 | 0.2409 | 0.0 | 0.0 | 0.8500 | 0.7600 | 0.9195 | 0.0 | 0.0 | 0.1806 | 0.0 |
| 0.4929 | 6.6 | 1320 | 0.5924 | 0.2927 | 0.3533 | 0.8429 | nan | 0.8576 | 0.9476 | 0.5682 | 0.7956 | 0.4425 | nan | 0.4412 | 0.7597 | 0.0 | 0.8999 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4884 | 0.0 | 0.0 | 0.9014 | 0.0 | 0.5541 | 0.2743 | 0.0 | nan | 0.0 | 0.3219 | 0.0 | 0.0 | 0.9345 | 0.9021 | 0.9714 | 0.0 | 0.0 | 0.2466 | 0.0 | nan | 0.7308 | 0.8552 | 0.4243 | 0.6894 | 0.3305 | nan | 0.3699 | 0.5736 | 0.0 | 0.8015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3291 | 0.0 | 0.0 | 0.7071 | 0.0 | 0.3793 | 0.2500 | 0.0 | nan | 0.0 | 0.2393 | 0.0 | 0.0 | 0.8447 | 0.7398 | 0.9170 | 0.0 | 0.0 | 0.1852 | 0.0 |
| 0.3436 | 6.7 | 1340 | 0.5995 | 0.2838 | 0.3429 | 0.8384 | nan | 0.8742 | 0.9381 | 0.5760 | 0.7711 | 0.4374 | nan | 0.4228 | 0.7859 | 0.0 | 0.9308 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4498 | 0.0 | 0.0 | 0.9159 | 0.0 | 0.4172 | 0.1522 | 0.0 | nan | 0.0 | 0.2774 | 0.0 | 0.0 | 0.9524 | 0.8462 | 0.9683 | 0.0 | 0.0 | 0.2565 | 0.0 | nan | 0.7204 | 0.8513 | 0.4114 | 0.6822 | 0.3266 | nan | 0.3601 | 0.5441 | 0.0 | 0.7848 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3261 | 0.0 | 0.0 | 0.6896 | 0.0 | 0.3091 | 0.1470 | 0.0 | nan | 0.0 | 0.2188 | 0.0 | 0.0 | 0.8459 | 0.7607 | 0.9183 | 0.0 | 0.0 | 0.1861 | 0.0 |
| 0.7377 | 6.8 | 1360 | 0.6134 | 0.2833 | 0.3463 | 0.8354 | nan | 0.8362 | 0.9553 | 0.5929 | 0.7248 | 0.4510 | nan | 0.4497 | 0.7811 | 0.0 | 0.9095 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5309 | 0.0 | 0.0 | 0.9113 | 0.0 | 0.4732 | 0.1200 | 0.0 | nan | 0.0 | 0.3126 | 0.0 | 0.0 | 0.9227 | 0.9004 | 0.9666 | 0.0 | 0.0 | 0.2439 | 0.0 | nan | 0.7292 | 0.8460 | 0.4295 | 0.6422 | 0.3253 | nan | 0.3596 | 0.5413 | 0.0 | 0.7990 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3584 | 0.0 | 0.0 | 0.6972 | 0.0 | 0.3199 | 0.1156 | 0.0 | nan | 0.0 | 0.2365 | 0.0 | 0.0 | 0.8455 | 0.7276 | 0.9192 | 0.0 | 0.0 | 0.1726 | 0.0 |
| 0.4128 | 6.9 | 1380 | 0.6006 | 0.2878 | 0.3553 | 0.8391 | nan | 0.8415 | 0.9462 | 0.6214 | 0.7366 | 0.4697 | nan | 0.4957 | 0.7677 | 0.0 | 0.9305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6027 | 0.0 | 0.0 | 0.8901 | 0.0 | 0.5046 | 0.2026 | 0.0 | nan | 0.0 | 0.2951 | 0.0 | 0.0 | 0.9465 | 0.8840 | 0.9614 | 0.0 | 0.0 | 0.2743 | 0.0 | nan | 0.7322 | 0.8519 | 0.4002 | 0.6451 | 0.3300 | nan | 0.3886 | 0.5512 | 0.0 | 0.7940 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3177 | 0.0 | 0.0 | 0.7060 | 0.0 | 0.3487 | 0.1921 | 0.0 | nan | 0.0 | 0.2287 | 0.0 | 0.0 | 0.8469 | 0.7604 | 0.9208 | 0.0 | 0.0 | 0.1936 | 0.0 |
| 0.4907 | 7.0 | 1400 | 0.6117 | 0.2858 | 0.3455 | 0.8376 | nan | 0.8634 | 0.9474 | 0.5965 | 0.7312 | 0.4186 | nan | 0.4155 | 0.7470 | 0.0 | 0.9203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5297 | 0.0 | 0.0 | 0.9243 | 0.0 | 0.4433 | 0.2116 | 0.0 | nan | 0.0 | 0.2940 | 0.0 | 0.0 | 0.9311 | 0.8932 | 0.9692 | 0.0 | 0.0 | 0.2194 | 0.0 | nan | 0.7268 | 0.8486 | 0.4166 | 0.6316 | 0.3267 | nan | 0.3552 | 0.5937 | 0.0 | 0.8002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3162 | 0.0 | 0.0 | 0.6794 | 0.0 | 0.3256 | 0.1987 | 0.0 | nan | 0.0 | 0.2328 | 0.0 | 0.0 | 0.8514 | 0.7513 | 0.9192 | 0.0 | 0.0 | 0.1712 | 0.0 |
| 0.4294 | 7.1 | 1420 | 0.6113 | 0.2919 | 0.3560 | 0.8385 | nan | 0.8568 | 0.9325 | 0.6310 | 0.7411 | 0.4957 | nan | 0.4646 | 0.7486 | 0.0 | 0.9336 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5143 | 0.0 | 0.0 | 0.8965 | 0.0 | 0.4609 | 0.3225 | 0.0 | nan | 0.0 | 0.3558 | 0.0 | 0.0 | 0.9469 | 0.8690 | 0.9707 | 0.0 | 0.0 | 0.2502 | 0.0 | nan | 0.7284 | 0.8455 | 0.3658 | 0.6479 | 0.3335 | nan | 0.3784 | 0.5995 | 0.0 | 0.7964 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3039 | 0.0 | 0.0 | 0.6996 | 0.0 | 0.3631 | 0.3026 | 0.0 | nan | 0.0 | 0.2534 | 0.0 | 0.0 | 0.8554 | 0.7669 | 0.9180 | 0.0 | 0.0 | 0.1809 | 0.0 |
| 0.3443 | 7.2 | 1440 | 0.5995 | 0.2913 | 0.3533 | 0.8400 | nan | 0.8612 | 0.9478 | 0.5732 | 0.7560 | 0.4347 | nan | 0.4262 | 0.7650 | 0.0 | 0.9334 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5207 | 0.0 | 0.0 | 0.9054 | 0.0 | 0.4590 | 0.3551 | 0.0 | nan | 0.0 | 0.3457 | 0.0 | 0.0 | 0.9247 | 0.8845 | 0.9716 | 0.0 | 0.0 | 0.2411 | 0.0 | nan | 0.7276 | 0.8468 | 0.4115 | 0.6580 | 0.3226 | nan | 0.3623 | 0.5876 | 0.0 | 0.7949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2886 | 0.0 | 0.0 | 0.6991 | 0.0 | 0.3612 | 0.3291 | 0.0 | nan | 0.0 | 0.2508 | 0.0 | 0.0 | 0.8487 | 0.7406 | 0.9172 | 0.0 | 0.0 | 0.1762 | 0.0 |
| 0.3951 | 7.3 | 1460 | 0.5993 | 0.2881 | 0.3512 | 0.8389 | nan | 0.8361 | 0.9493 | 0.5587 | 0.7858 | 0.4044 | nan | 0.4564 | 0.7742 | 0.0 | 0.9285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5710 | 0.0 | 0.0 | 0.9064 | 0.0 | 0.4519 | 0.2775 | 0.0 | nan | 0.0 | 0.3373 | 0.0 | 0.0 | 0.9471 | 0.8486 | 0.9723 | 0.0 | 0.0 | 0.2314 | 0.0 | nan | 0.7132 | 0.8495 | 0.4238 | 0.6330 | 0.3179 | nan | 0.3756 | 0.5680 | 0.0 | 0.7991 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2852 | 0.0 | 0.0 | 0.6937 | 0.0 | 0.3453 | 0.2636 | 0.0 | nan | 0.0 | 0.2459 | 0.0 | 0.0 | 0.8534 | 0.7632 | 0.9170 | 0.0 | 0.0 | 0.1723 | 0.0 |
| 0.2938 | 7.4 | 1480 | 0.5979 | 0.2917 | 0.3518 | 0.8414 | nan | 0.8454 | 0.9501 | 0.5647 | 0.7701 | 0.4146 | nan | 0.4512 | 0.7719 | 0.0 | 0.9103 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5378 | 0.0 | 0.0 | 0.9112 | 0.0 | 0.4758 | 0.3094 | 0.0 | nan | 0.0 | 0.3269 | 0.0 | 0.0 | 0.9511 | 0.8692 | 0.9649 | 0.0 | 0.0 | 0.2323 | 0.0 | nan | 0.7207 | 0.8505 | 0.4227 | 0.6485 | 0.3229 | nan | 0.3762 | 0.5570 | 0.0 | 0.8052 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3362 | 0.0 | 0.0 | 0.6955 | 0.0 | 0.3548 | 0.2909 | 0.0 | nan | 0.0 | 0.2420 | 0.0 | 0.0 | 0.8549 | 0.7673 | 0.9201 | 0.0 | 0.0 | 0.1700 | 0.0 |
| 0.3063 | 7.5 | 1500 | 0.6103 | 0.2915 | 0.3522 | 0.8394 | nan | 0.8513 | 0.9569 | 0.5581 | 0.7077 | 0.4143 | nan | 0.3906 | 0.7775 | 0.0 | 0.9367 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4860 | 0.0 | 0.0 | 0.8950 | 0.0 | 0.5014 | 0.3608 | 0.0 | nan | 0.0 | 0.3768 | 0.0 | 0.0 | 0.9326 | 0.8919 | 0.9663 | 0.0 | 0.0 | 0.2673 | 0.0 | nan | 0.7188 | 0.8446 | 0.4269 | 0.6124 | 0.3294 | nan | 0.3401 | 0.5628 | 0.0 | 0.7936 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3101 | 0.0 | 0.0 | 0.7025 | 0.0 | 0.3740 | 0.3336 | 0.0 | nan | 0.0 | 0.2626 | 0.0 | 0.0 | 0.8565 | 0.7535 | 0.9210 | 0.0 | 0.0 | 0.1848 | 0.0 |
| 0.4145 | 7.6 | 1520 | 0.6139 | 0.2870 | 0.3462 | 0.8375 | nan | 0.8695 | 0.9446 | 0.5545 | 0.6713 | 0.4503 | nan | 0.4578 | 0.7690 | 0.0 | 0.9225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4519 | 0.0 | 0.0 | 0.9195 | 0.0 | 0.4797 | 0.2639 | 0.0 | nan | 0.0 | 0.3073 | 0.0 | 0.0 | 0.9363 | 0.8959 | 0.9690 | 0.0 | 0.0 | 0.2163 | 0.0 | nan | 0.7244 | 0.8468 | 0.4270 | 0.5928 | 0.3406 | nan | 0.3668 | 0.5579 | 0.0 | 0.8011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3160 | 0.0 | 0.0 | 0.6902 | 0.0 | 0.3466 | 0.2489 | 0.0 | nan | 0.0 | 0.2337 | 0.0 | 0.0 | 0.8549 | 0.7506 | 0.9195 | 0.0 | 0.0 | 0.1673 | 0.0 |
| 0.9153 | 7.7 | 1540 | 0.6055 | 0.2901 | 0.3539 | 0.8373 | nan | 0.8256 | 0.9482 | 0.5821 | 0.7362 | 0.4750 | nan | 0.4594 | 0.7786 | 0.0 | 0.9368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4499 | 0.0 | 0.0 | 0.8786 | 0.0 | 0.5140 | 0.2710 | 0.0 | nan | 0.0 | 0.3504 | 0.0 | 0.0 | 0.9374 | 0.8967 | 0.9696 | 0.0 | 0.0 | 0.3158 | 0.0 | nan | 0.7159 | 0.8463 | 0.4322 | 0.6072 | 0.3435 | nan | 0.3800 | 0.5541 | 0.0 | 0.7938 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3016 | 0.0 | 0.0 | 0.7086 | 0.0 | 0.3710 | 0.2589 | 0.0 | nan | 0.0 | 0.2577 | 0.0 | 0.0 | 0.8505 | 0.7452 | 0.9191 | 0.0 | 0.0 | 0.1964 | 0.0 |
| 0.3268 | 7.8 | 1560 | 0.6009 | 0.2911 | 0.3532 | 0.8407 | nan | 0.8675 | 0.9404 | 0.5684 | 0.7250 | 0.4900 | nan | 0.4666 | 0.7657 | 0.0 | 0.9205 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5209 | 0.0 | 0.0 | 0.9170 | 0.0 | 0.5335 | 0.2576 | 0.0 | nan | 0.0 | 0.3168 | 0.0 | 0.0 | 0.9390 | 0.8789 | 0.9671 | 0.0 | 0.0 | 0.2280 | 0.0 | nan | 0.7273 | 0.8501 | 0.4168 | 0.6399 | 0.3439 | nan | 0.3778 | 0.5709 | 0.0 | 0.8027 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3164 | 0.0 | 0.0 | 0.6985 | 0.0 | 0.3665 | 0.2401 | 0.0 | nan | 0.0 | 0.2423 | 0.0 | 0.0 | 0.8595 | 0.7642 | 0.9212 | 0.0 | 0.0 | 0.1759 | 0.0 |
| 0.4042 | 7.9 | 1580 | 0.5907 | 0.2940 | 0.3564 | 0.8436 | nan | 0.8629 | 0.9405 | 0.5990 | 0.7337 | 0.4989 | nan | 0.4793 | 0.7556 | 0.0 | 0.9333 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4932 | 0.0 | 0.0 | 0.9074 | 0.0 | 0.5340 | 0.3461 | 0.0 | nan | 0.0 | 0.3155 | 0.0 | 0.0 | 0.9464 | 0.8863 | 0.9658 | 0.0 | 0.0 | 0.2071 | 0.0 | nan | 0.7331 | 0.8538 | 0.4141 | 0.6457 | 0.3494 | nan | 0.3874 | 0.5881 | 0.0 | 0.7962 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2864 | 0.0 | 0.0 | 0.7063 | 0.0 | 0.3829 | 0.3137 | 0.0 | nan | 0.0 | 0.2380 | 0.0 | 0.0 | 0.8578 | 0.7657 | 0.9210 | 0.0 | 0.0 | 0.1687 | 0.0 |
| 0.4915 | 8.0 | 1600 | 0.5805 | 0.2976 | 0.3593 | 0.8458 | nan | 0.8618 | 0.9395 | 0.5801 | 0.7933 | 0.4558 | nan | 0.4925 | 0.7563 | 0.0 | 0.9391 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4860 | 0.0 | 0.0 | 0.8979 | 0.0 | 0.5390 | 0.4165 | 0.0 | nan | 0.0 | 0.3220 | 0.0 | 0.0 | 0.9466 | 0.8853 | 0.9648 | 0.0 | 0.0 | 0.2215 | 0.0 | nan | 0.7311 | 0.8544 | 0.4294 | 0.6731 | 0.3421 | nan | 0.3934 | 0.6052 | 0.0 | 0.7928 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2803 | 0.0 | 0.0 | 0.7124 | 0.0 | 0.3900 | 0.3612 | 0.0 | nan | 0.0 | 0.2420 | 0.0 | 0.0 | 0.8564 | 0.7633 | 0.9208 | 0.0 | 0.0 | 0.1752 | 0.0 |
| 0.4564 | 8.1 | 1620 | 0.5909 | 0.2975 | 0.3610 | 0.8440 | nan | 0.8619 | 0.9410 | 0.5701 | 0.7384 | 0.4921 | nan | 0.4827 | 0.7838 | 0.0 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5328 | 0.0 | 0.0 | 0.9000 | 0.0 | 0.4814 | 0.4299 | 0.0 | nan | 0.0 | 0.3525 | 0.0 | 0.0 | 0.9441 | 0.9024 | 0.9651 | 0.0 | 0.0 | 0.2475 | 0.0 | nan | 0.7357 | 0.8515 | 0.4326 | 0.6508 | 0.3435 | nan | 0.3904 | 0.5702 | 0.0 | 0.8007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2983 | 0.0 | 0.0 | 0.7060 | 0.0 | 0.3913 | 0.3839 | 0.0 | nan | 0.0 | 0.2573 | 0.0 | 0.0 | 0.8514 | 0.7541 | 0.9211 | 0.0 | 0.0 | 0.1825 | 0.0 |
| 0.4293 | 8.2 | 1640 | 0.6016 | 0.2936 | 0.3568 | 0.8418 | nan | 0.8488 | 0.9535 | 0.5645 | 0.7347 | 0.4343 | nan | 0.4671 | 0.7780 | 0.0 | 0.9347 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5543 | 0.0 | 0.0 | 0.9067 | 0.0 | 0.4645 | 0.3615 | 0.0 | nan | 0.0 | 0.3499 | 0.0 | 0.0 | 0.9274 | 0.9089 | 0.9687 | 0.0 | 0.0 | 0.2600 | 0.0 | nan | 0.7298 | 0.8479 | 0.4386 | 0.6442 | 0.3341 | nan | 0.3834 | 0.5715 | 0.0 | 0.7976 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2911 | 0.0 | 0.0 | 0.6990 | 0.0 | 0.3703 | 0.3328 | 0.0 | nan | 0.0 | 0.2537 | 0.0 | 0.0 | 0.8524 | 0.7378 | 0.9213 | 0.0 | 0.0 | 0.1892 | 0.0 |
| 0.2416 | 8.3 | 1660 | 0.5930 | 0.2960 | 0.3567 | 0.8451 | nan | 0.8627 | 0.9523 | 0.5585 | 0.7374 | 0.4508 | nan | 0.4778 | 0.7690 | 0.0 | 0.9195 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5584 | 0.0 | 0.0 | 0.8988 | 0.0 | 0.4868 | 0.3511 | 0.0 | nan | 0.0 | 0.3384 | 0.0 | 0.0 | 0.9519 | 0.8790 | 0.9689 | 0.0 | 0.0 | 0.2518 | 0.0 | nan | 0.7371 | 0.8516 | 0.4397 | 0.6510 | 0.3411 | nan | 0.3888 | 0.5760 | 0.0 | 0.8089 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3068 | 0.0 | 0.0 | 0.7035 | 0.0 | 0.3740 | 0.3219 | 0.0 | nan | 0.0 | 0.2455 | 0.0 | 0.0 | 0.8547 | 0.7661 | 0.9207 | 0.0 | 0.0 | 0.1857 | 0.0 |
| 0.474 | 8.4 | 1680 | 0.5887 | 0.2968 | 0.3623 | 0.8446 | nan | 0.8520 | 0.9483 | 0.5958 | 0.7393 | 0.4958 | nan | 0.4858 | 0.7934 | 0.0 | 0.9286 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5722 | 0.0 | 0.0 | 0.8975 | 0.0 | 0.5263 | 0.3477 | 0.0 | nan | 0.0 | 0.3560 | 0.0 | 0.0 | 0.9466 | 0.8638 | 0.9745 | 0.0 | 0.0 | 0.2685 | 0.0 | nan | 0.7394 | 0.8504 | 0.4320 | 0.6534 | 0.3434 | nan | 0.3952 | 0.5589 | 0.0 | 0.8037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3123 | 0.0 | 0.0 | 0.7126 | 0.0 | 0.3813 | 0.3195 | 0.0 | nan | 0.0 | 0.2577 | 0.0 | 0.0 | 0.8598 | 0.7705 | 0.9179 | 0.0 | 0.0 | 0.1891 | 0.0 |
| 0.7499 | 8.5 | 1700 | 0.5912 | 0.2969 | 0.3622 | 0.8429 | nan | 0.8376 | 0.9494 | 0.5958 | 0.7615 | 0.4718 | nan | 0.4667 | 0.7842 | 0.0 | 0.9141 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5775 | 0.0 | 0.0 | 0.9007 | 0.0 | 0.5435 | 0.3685 | 0.0 | nan | 0.0 | 0.3537 | 0.0 | 0.0 | 0.9321 | 0.9052 | 0.9709 | 0.0 | 0.0 | 0.2569 | 0.0 | nan | 0.7311 | 0.8501 | 0.4380 | 0.6496 | 0.3393 | nan | 0.3869 | 0.5726 | 0.0 | 0.8112 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3299 | 0.0 | 0.0 | 0.7124 | 0.0 | 0.3851 | 0.3354 | 0.0 | nan | 0.0 | 0.2580 | 0.0 | 0.0 | 0.8530 | 0.7413 | 0.9208 | 0.0 | 0.0 | 0.1863 | 0.0 |
| 0.3122 | 8.6 | 1720 | 0.5893 | 0.2950 | 0.3559 | 0.8435 | nan | 0.8625 | 0.9424 | 0.5925 | 0.7487 | 0.4691 | nan | 0.4895 | 0.7853 | 0.0 | 0.9243 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5009 | 0.0 | 0.0 | 0.9190 | 0.0 | 0.4775 | 0.3233 | 0.0 | nan | 0.0 | 0.3342 | 0.0 | 0.0 | 0.9466 | 0.8685 | 0.9681 | 0.0 | 0.0 | 0.2382 | 0.0 | nan | 0.7296 | 0.8538 | 0.4289 | 0.6504 | 0.3395 | nan | 0.3980 | 0.5691 | 0.0 | 0.8038 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3235 | 0.0 | 0.0 | 0.6949 | 0.0 | 0.3672 | 0.3033 | 0.0 | nan | 0.0 | 0.2485 | 0.0 | 0.0 | 0.8586 | 0.7664 | 0.9228 | 0.0 | 0.0 | 0.1826 | 0.0 |
| 0.4643 | 8.7 | 1740 | 0.5790 | 0.2978 | 0.3629 | 0.8454 | nan | 0.8425 | 0.9357 | 0.5978 | 0.8333 | 0.4818 | nan | 0.5086 | 0.7809 | 0.0 | 0.9420 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5146 | 0.0 | 0.0 | 0.8946 | 0.0 | 0.5240 | 0.3464 | 0.0 | nan | 0.0 | 0.3436 | 0.0 | 0.0 | 0.9468 | 0.8926 | 0.9658 | 0.0 | 0.0 | 0.2632 | 0.0 | nan | 0.7326 | 0.8559 | 0.4279 | 0.6736 | 0.3453 | nan | 0.4089 | 0.5846 | 0.0 | 0.7928 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3042 | 0.0 | 0.0 | 0.7079 | 0.0 | 0.3830 | 0.3168 | 0.0 | nan | 0.0 | 0.2545 | 0.0 | 0.0 | 0.8582 | 0.7638 | 0.9225 | 0.0 | 0.0 | 0.1969 | 0.0 |
| 0.4116 | 8.8 | 1760 | 0.5820 | 0.2977 | 0.3611 | 0.8465 | nan | 0.8533 | 0.9489 | 0.5951 | 0.7959 | 0.4441 | nan | 0.4867 | 0.7812 | 0.0 | 0.9328 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5563 | 0.0 | 0.0 | 0.9081 | 0.0 | 0.4951 | 0.3623 | 0.0 | nan | 0.0 | 0.3574 | 0.0 | 0.0 | 0.9371 | 0.8924 | 0.9654 | 0.0 | 0.0 | 0.2426 | 0.0 | nan | 0.7344 | 0.8561 | 0.4307 | 0.6806 | 0.3428 | nan | 0.3969 | 0.5798 | 0.0 | 0.8034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3147 | 0.0 | 0.0 | 0.7025 | 0.0 | 0.3742 | 0.3268 | 0.0 | nan | 0.0 | 0.2597 | 0.0 | 0.0 | 0.8580 | 0.7590 | 0.9230 | 0.0 | 0.0 | 0.1833 | 0.0 |
| 0.3642 | 8.9 | 1780 | 0.5825 | 0.2992 | 0.3612 | 0.8464 | nan | 0.8459 | 0.9514 | 0.5853 | 0.7834 | 0.4573 | nan | 0.4848 | 0.7784 | 0.0 | 0.9270 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5579 | 0.0 | 0.0 | 0.9058 | 0.0 | 0.4744 | 0.3935 | 0.0 | nan | 0.0 | 0.3623 | 0.0 | 0.0 | 0.9419 | 0.8927 | 0.9659 | 0.0 | 0.0 | 0.2505 | 0.0 | nan | 0.7352 | 0.8545 | 0.4346 | 0.6736 | 0.3430 | nan | 0.3968 | 0.5806 | 0.0 | 0.8086 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3254 | 0.0 | 0.0 | 0.7030 | 0.0 | 0.3787 | 0.3601 | 0.0 | nan | 0.0 | 0.2615 | 0.0 | 0.0 | 0.8548 | 0.7584 | 0.9230 | 0.0 | 0.0 | 0.1835 | 0.0 |
| 0.3355 | 9.0 | 1800 | 0.5826 | 0.2994 | 0.3636 | 0.8459 | nan | 0.8603 | 0.9413 | 0.5917 | 0.7590 | 0.4987 | nan | 0.5007 | 0.7845 | 0.0 | 0.9374 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5508 | 0.0 | 0.0 | 0.8996 | 0.0 | 0.4774 | 0.4227 | 0.0 | nan | 0.0 | 0.3510 | 0.0 | 0.0 | 0.9467 | 0.8837 | 0.9653 | 0.0 | 0.0 | 0.2642 | 0.0 | nan | 0.7357 | 0.8555 | 0.4223 | 0.6648 | 0.3500 | nan | 0.4009 | 0.5832 | 0.0 | 0.8002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3057 | 0.0 | 0.0 | 0.7050 | 0.0 | 0.3839 | 0.3773 | 0.0 | nan | 0.0 | 0.2590 | 0.0 | 0.0 | 0.8559 | 0.7678 | 0.9229 | 0.0 | 0.0 | 0.1900 | 0.0 |
| 0.3793 | 9.1 | 1820 | 0.5882 | 0.2978 | 0.3613 | 0.8447 | nan | 0.8496 | 0.9467 | 0.5920 | 0.7591 | 0.4889 | nan | 0.5053 | 0.7759 | 0.0 | 0.9374 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5241 | 0.0 | 0.0 | 0.9129 | 0.0 | 0.4975 | 0.3962 | 0.0 | nan | 0.0 | 0.3467 | 0.0 | 0.0 | 0.9294 | 0.8948 | 0.9636 | 0.0 | 0.0 | 0.2414 | 0.0 | nan | 0.7405 | 0.8545 | 0.4316 | 0.6590 | 0.3488 | nan | 0.4008 | 0.5891 | 0.0 | 0.7990 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3005 | 0.0 | 0.0 | 0.7028 | 0.0 | 0.3844 | 0.3574 | 0.0 | nan | 0.0 | 0.2570 | 0.0 | 0.0 | 0.8520 | 0.7453 | 0.9236 | 0.0 | 0.0 | 0.1823 | 0.0 |
| 0.2793 | 9.2 | 1840 | 0.5878 | 0.2974 | 0.3616 | 0.8446 | nan | 0.8513 | 0.9463 | 0.5973 | 0.7588 | 0.5000 | nan | 0.4986 | 0.7865 | 0.0 | 0.9334 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5269 | 0.0 | 0.0 | 0.9034 | 0.0 | 0.4835 | 0.3733 | 0.0 | nan | 0.0 | 0.3521 | 0.0 | 0.0 | 0.9342 | 0.8937 | 0.9654 | 0.0 | 0.0 | 0.2658 | 0.0 | nan | 0.7408 | 0.8537 | 0.4275 | 0.6630 | 0.3483 | nan | 0.4014 | 0.5750 | 0.0 | 0.8024 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3071 | 0.0 | 0.0 | 0.7035 | 0.0 | 0.3766 | 0.3445 | 0.0 | nan | 0.0 | 0.2565 | 0.0 | 0.0 | 0.8533 | 0.7524 | 0.9224 | 0.0 | 0.0 | 0.1887 | 0.0 |
| 0.3716 | 9.3 | 1860 | 0.5903 | 0.2961 | 0.3573 | 0.8455 | nan | 0.8684 | 0.9481 | 0.5853 | 0.7523 | 0.4617 | nan | 0.4910 | 0.7798 | 0.0 | 0.9249 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5365 | 0.0 | 0.0 | 0.9166 | 0.0 | 0.4795 | 0.3358 | 0.0 | nan | 0.0 | 0.3293 | 0.0 | 0.0 | 0.9398 | 0.8781 | 0.9679 | 0.0 | 0.0 | 0.2395 | 0.0 | nan | 0.7364 | 0.8548 | 0.4289 | 0.6600 | 0.3465 | nan | 0.3954 | 0.5684 | 0.0 | 0.8093 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3222 | 0.0 | 0.0 | 0.6978 | 0.0 | 0.3660 | 0.3115 | 0.0 | nan | 0.0 | 0.2477 | 0.0 | 0.0 | 0.8597 | 0.7694 | 0.9220 | 0.0 | 0.0 | 0.1779 | 0.0 |
| 0.3073 | 9.4 | 1880 | 0.5829 | 0.2971 | 0.3572 | 0.8471 | nan | 0.8683 | 0.9506 | 0.5674 | 0.7611 | 0.4517 | nan | 0.5018 | 0.7762 | 0.0 | 0.9282 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5395 | 0.0 | 0.0 | 0.9162 | 0.0 | 0.4836 | 0.3563 | 0.0 | nan | 0.0 | 0.3141 | 0.0 | 0.0 | 0.9427 | 0.8766 | 0.9691 | 0.0 | 0.0 | 0.2265 | 0.0 | nan | 0.7407 | 0.8562 | 0.4418 | 0.6648 | 0.3464 | nan | 0.3993 | 0.5748 | 0.0 | 0.8072 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3174 | 0.0 | 0.0 | 0.6974 | 0.0 | 0.3692 | 0.3253 | 0.0 | nan | 0.0 | 0.2385 | 0.0 | 0.0 | 0.8599 | 0.7719 | 0.9217 | 0.0 | 0.0 | 0.1733 | 0.0 |
| 0.2746 | 9.5 | 1900 | 0.5797 | 0.2978 | 0.3595 | 0.8471 | nan | 0.8629 | 0.9477 | 0.5770 | 0.7784 | 0.4531 | nan | 0.4984 | 0.7777 | 0.0 | 0.9258 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5575 | 0.0 | 0.0 | 0.9103 | 0.0 | 0.4861 | 0.3582 | 0.0 | nan | 0.0 | 0.3287 | 0.0 | 0.0 | 0.9462 | 0.8830 | 0.9698 | 0.0 | 0.0 | 0.2437 | 0.0 | nan | 0.7410 | 0.8565 | 0.4411 | 0.6698 | 0.3466 | nan | 0.3982 | 0.5803 | 0.0 | 0.8092 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3144 | 0.0 | 0.0 | 0.7000 | 0.0 | 0.3715 | 0.3289 | 0.0 | nan | 0.0 | 0.2446 | 0.0 | 0.0 | 0.8575 | 0.7704 | 0.9218 | 0.0 | 0.0 | 0.1790 | 0.0 |
| 0.3607 | 9.6 | 1920 | 0.5941 | 0.2970 | 0.3575 | 0.8456 | nan | 0.8571 | 0.9580 | 0.5710 | 0.7238 | 0.4492 | nan | 0.4884 | 0.7706 | 0.0 | 0.9305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5505 | 0.0 | 0.0 | 0.9117 | 0.0 | 0.4975 | 0.3714 | 0.0 | nan | 0.0 | 0.3271 | 0.0 | 0.0 | 0.9358 | 0.8878 | 0.9665 | 0.0 | 0.0 | 0.2429 | 0.0 | nan | 0.7387 | 0.8515 | 0.4434 | 0.6432 | 0.3427 | nan | 0.3884 | 0.5768 | 0.0 | 0.8068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3156 | 0.0 | 0.0 | 0.7027 | 0.0 | 0.3808 | 0.3404 | 0.0 | nan | 0.0 | 0.2459 | 0.0 | 0.0 | 0.8600 | 0.7649 | 0.9235 | 0.0 | 0.0 | 0.1797 | 0.0 |
| 0.551 | 9.7 | 1940 | 0.5854 | 0.2979 | 0.3612 | 0.8452 | nan | 0.8724 | 0.9397 | 0.5686 | 0.7450 | 0.4752 | nan | 0.5028 | 0.7750 | 0.0 | 0.9353 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5518 | 0.0 | 0.0 | 0.9036 | 0.0 | 0.5075 | 0.3871 | 0.0 | nan | 0.0 | 0.3322 | 0.0 | 0.0 | 0.9442 | 0.8904 | 0.9713 | 0.0 | 0.0 | 0.2548 | 0.0 | nan | 0.7333 | 0.8548 | 0.4334 | 0.6499 | 0.3496 | nan | 0.3970 | 0.5874 | 0.0 | 0.8014 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3017 | 0.0 | 0.0 | 0.7046 | 0.0 | 0.3878 | 0.3525 | 0.0 | nan | 0.0 | 0.2472 | 0.0 | 0.0 | 0.8574 | 0.7654 | 0.9218 | 0.0 | 0.0 | 0.1864 | 0.0 |
| 0.417 | 9.8 | 1960 | 0.5867 | 0.2993 | 0.3616 | 0.8462 | nan | 0.8696 | 0.9473 | 0.5746 | 0.7423 | 0.4598 | nan | 0.4883 | 0.7754 | 0.0 | 0.9295 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5606 | 0.0 | 0.0 | 0.9018 | 0.0 | 0.4964 | 0.4181 | 0.0 | nan | 0.0 | 0.3385 | 0.0 | 0.0 | 0.9421 | 0.8914 | 0.9685 | 0.0 | 0.0 | 0.2674 | 0.0 | nan | 0.7348 | 0.8543 | 0.4322 | 0.6508 | 0.3474 | nan | 0.3945 | 0.5816 | 0.0 | 0.8074 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3141 | 0.0 | 0.0 | 0.7062 | 0.0 | 0.3905 | 0.3765 | 0.0 | nan | 0.0 | 0.2517 | 0.0 | 0.0 | 0.8584 | 0.7636 | 0.9229 | 0.0 | 0.0 | 0.1896 | 0.0 |
| 0.3938 | 9.9 | 1980 | 0.5864 | 0.2984 | 0.3604 | 0.8458 | nan | 0.8685 | 0.9452 | 0.5814 | 0.7414 | 0.4627 | nan | 0.4926 | 0.7724 | 0.0 | 0.9271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5601 | 0.0 | 0.0 | 0.9028 | 0.0 | 0.4875 | 0.4032 | 0.0 | nan | 0.0 | 0.3355 | 0.0 | 0.0 | 0.9493 | 0.8861 | 0.9661 | 0.0 | 0.0 | 0.2511 | 0.0 | nan | 0.7348 | 0.8543 | 0.4299 | 0.6507 | 0.3471 | nan | 0.3960 | 0.5810 | 0.0 | 0.8082 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3151 | 0.0 | 0.0 | 0.7047 | 0.0 | 0.3855 | 0.3669 | 0.0 | nan | 0.0 | 0.2480 | 0.0 | 0.0 | 0.8549 | 0.7663 | 0.9226 | 0.0 | 0.0 | 0.1842 | 0.0 |
| 0.3931 | 10.0 | 2000 | 0.5881 | 0.2988 | 0.3613 | 0.8463 | nan | 0.8649 | 0.9502 | 0.5791 | 0.7393 | 0.4485 | nan | 0.4859 | 0.7767 | 0.0 | 0.9341 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5642 | 0.0 | 0.0 | 0.8944 | 0.0 | 0.4959 | 0.4208 | 0.0 | nan | 0.0 | 0.3432 | 0.0 | 0.0 | 0.9466 | 0.8884 | 0.9698 | 0.0 | 0.0 | 0.2614 | 0.0 | nan | 0.7372 | 0.8540 | 0.4322 | 0.6499 | 0.3421 | nan | 0.3932 | 0.5795 | 0.0 | 0.8033 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3104 | 0.0 | 0.0 | 0.7075 | 0.0 | 0.3911 | 0.3791 | 0.0 | nan | 0.0 | 0.2524 | 0.0 | 0.0 | 0.8559 | 0.7644 | 0.9219 | 0.0 | 0.0 | 0.1876 | 0.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
samitizerxu/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5925
- eval_mean_iou: 0.2753
- eval_mean_accuracy: 0.3327
- eval_overall_accuracy: 0.8401
- eval_accuracy_unlabeled: nan
- eval_accuracy_flat-road: 0.8405
- eval_accuracy_flat-sidewalk: 0.9533
- eval_accuracy_flat-crosswalk: 0.6601
- eval_accuracy_flat-cyclinglane: 0.7992
- eval_accuracy_flat-parkingdriveway: 0.5578
- eval_accuracy_flat-railtrack: nan
- eval_accuracy_flat-curb: 0.4836
- eval_accuracy_human-person: 0.6161
- eval_accuracy_human-rider: 0.0
- eval_accuracy_vehicle-car: 0.9299
- eval_accuracy_vehicle-truck: 0.0
- eval_accuracy_vehicle-bus: 0.0
- eval_accuracy_vehicle-tramtrain: nan
- eval_accuracy_vehicle-motorcycle: 0.0
- eval_accuracy_vehicle-bicycle: 0.0003
- eval_accuracy_vehicle-caravan: 0.0
- eval_accuracy_vehicle-cartrailer: 0.0
- eval_accuracy_construction-building: 0.8840
- eval_accuracy_construction-door: 0.0
- eval_accuracy_construction-wall: 0.3660
- eval_accuracy_construction-fenceguardrail: 0.3076
- eval_accuracy_construction-bridge: 0.0
- eval_accuracy_construction-tunnel: 0.0
- eval_accuracy_construction-stairs: 0.0
- eval_accuracy_object-pole: 0.2707
- eval_accuracy_object-trafficsign: 0.0
- eval_accuracy_object-trafficlight: 0.0
- eval_accuracy_nature-vegetation: 0.9456
- eval_accuracy_nature-terrain: 0.8426
- eval_accuracy_sky: 0.9610
- eval_accuracy_void-ground: 0.0
- eval_accuracy_void-dynamic: 0.0
- eval_accuracy_void-static: 0.2296
- eval_accuracy_void-unclear: 0.0
- eval_iou_unlabeled: nan
- eval_iou_flat-road: 0.7077
- eval_iou_flat-sidewalk: 0.8656
- eval_iou_flat-crosswalk: 0.5379
- eval_iou_flat-cyclinglane: 0.7062
- eval_iou_flat-parkingdriveway: 0.4285
- eval_iou_flat-railtrack: nan
- eval_iou_flat-curb: 0.3675
- eval_iou_human-person: 0.3194
- eval_iou_human-rider: 0.0
- eval_iou_vehicle-car: 0.7878
- eval_iou_vehicle-truck: 0.0
- eval_iou_vehicle-bus: 0.0
- eval_iou_vehicle-tramtrain: nan
- eval_iou_vehicle-motorcycle: 0.0
- eval_iou_vehicle-bicycle: 0.0003
- eval_iou_vehicle-caravan: 0.0
- eval_iou_vehicle-cartrailer: 0.0
- eval_iou_construction-building: 0.6784
- eval_iou_construction-door: 0.0
- eval_iou_construction-wall: 0.2711
- eval_iou_construction-fenceguardrail: 0.2716
- eval_iou_construction-bridge: 0.0
- eval_iou_construction-tunnel: 0.0
- eval_iou_construction-stairs: 0.0
- eval_iou_object-pole: 0.2059
- eval_iou_object-trafficsign: 0.0
- eval_iou_object-trafficlight: 0.0
- eval_iou_nature-vegetation: 0.8358
- eval_iou_nature-terrain: 0.7375
- eval_iou_sky: 0.9064
- eval_iou_void-ground: 0.0
- eval_iou_void-dynamic: 0.0
- eval_iou_void-static: 0.1826
- eval_iou_void-unclear: 0.0
- eval_runtime: 11.1228
- eval_samples_per_second: 17.981
- eval_steps_per_second: 2.248
- epoch: 17.4
- step: 1740
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
blzncz/segformer-finetuned-4ss1st3r_s3gs3m_24Jan-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-4ss1st3r_s3gs3m_24Jan-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the blzncz/4ss1st3r_s3gs3m_24Jan dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1305
- Mean Iou: 0.6564
- Mean Accuracy: 0.8562
- Overall Accuracy: 0.9780
- Accuracy Bg: nan
- Accuracy Fallo cohesivo: 0.9896
- Accuracy Fallo malla: 0.9270
- Accuracy Fallo adhesivo: 0.9478
- Accuracy Fallo burbuja: 0.5603
- Iou Bg: 0.0
- Iou Fallo cohesivo: 0.9749
- Iou Fallo malla: 0.8458
- Iou Fallo adhesivo: 0.9324
- Iou Fallo burbuja: 0.5290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Fallo cohesivo | Accuracy Fallo malla | Accuracy Fallo adhesivo | Accuracy Fallo burbuja | Iou Bg | Iou Fallo cohesivo | Iou Fallo malla | Iou Fallo adhesivo | Iou Fallo burbuja |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-----------------------:|:--------------------:|:-----------------------:|:----------------------:|:------:|:------------------:|:---------------:|:------------------:|:-----------------:|
| 0.3639 | 1.0 | 193 | 0.1583 | 0.6076 | 0.8441 | 0.9607 | nan | 0.9660 | 0.9617 | 0.9644 | 0.4844 | 0.0 | 0.9553 | 0.7294 | 0.9301 | 0.4231 |
| 0.1148 | 2.0 | 386 | 0.0991 | 0.6189 | 0.8025 | 0.9754 | nan | 0.9912 | 0.9045 | 0.9417 | 0.3725 | 0.0 | 0.9723 | 0.8404 | 0.9283 | 0.3534 |
| 0.0937 | 3.0 | 579 | 0.1414 | 0.5848 | 0.8155 | 0.9554 | nan | 0.9606 | 0.9630 | 0.9707 | 0.3675 | 0.0 | 0.9487 | 0.6791 | 0.9442 | 0.3519 |
| 0.0827 | 4.0 | 772 | 0.1028 | 0.6390 | 0.8484 | 0.9747 | nan | 0.9831 | 0.9530 | 0.9640 | 0.4936 | 0.0 | 0.9714 | 0.8231 | 0.9388 | 0.4617 |
| 0.0735 | 5.0 | 965 | 0.0948 | 0.6425 | 0.8423 | 0.9777 | nan | 0.9875 | 0.9487 | 0.9594 | 0.4737 | 0.0 | 0.9745 | 0.8484 | 0.9415 | 0.4479 |
| 0.0716 | 6.0 | 1158 | 0.0968 | 0.6638 | 0.8622 | 0.9804 | nan | 0.9936 | 0.8987 | 0.9579 | 0.5985 | 0.0 | 0.9777 | 0.8654 | 0.9403 | 0.5355 |
| 0.0692 | 7.0 | 1351 | 0.1123 | 0.6389 | 0.8535 | 0.9718 | nan | 0.9804 | 0.9425 | 0.9604 | 0.5307 | 0.0 | 0.9678 | 0.7878 | 0.9403 | 0.4984 |
| 0.0718 | 8.0 | 1544 | 0.1097 | 0.6424 | 0.8668 | 0.9703 | nan | 0.9770 | 0.9520 | 0.9642 | 0.5738 | 0.0 | 0.9663 | 0.7792 | 0.9423 | 0.5243 |
| 0.0613 | 9.0 | 1737 | 0.1212 | 0.6341 | 0.8625 | 0.9669 | nan | 0.9735 | 0.9412 | 0.9721 | 0.5634 | 0.0 | 0.9621 | 0.7447 | 0.9430 | 0.5208 |
| 0.06 | 10.0 | 1930 | 0.0983 | 0.6724 | 0.8945 | 0.9793 | nan | 0.9875 | 0.9335 | 0.9682 | 0.6889 | 0.0 | 0.9765 | 0.8490 | 0.9461 | 0.5905 |
| 0.0593 | 11.0 | 2123 | 0.1104 | 0.6577 | 0.8803 | 0.9743 | nan | 0.9830 | 0.9249 | 0.9670 | 0.6462 | 0.0 | 0.9709 | 0.8028 | 0.9419 | 0.5729 |
| 0.056 | 12.0 | 2316 | 0.1029 | 0.6589 | 0.8829 | 0.9755 | nan | 0.9833 | 0.9349 | 0.9712 | 0.6420 | 0.0 | 0.9721 | 0.8170 | 0.9399 | 0.5655 |
| 0.0547 | 13.0 | 2509 | 0.1037 | 0.6613 | 0.8944 | 0.9746 | nan | 0.9815 | 0.9406 | 0.9680 | 0.6877 | 0.0 | 0.9712 | 0.8089 | 0.9434 | 0.5832 |
| 0.0538 | 14.0 | 2702 | 0.1342 | 0.6338 | 0.8750 | 0.9625 | nan | 0.9677 | 0.9470 | 0.9647 | 0.6204 | 0.0 | 0.9570 | 0.7080 | 0.9412 | 0.5627 |
| 0.052 | 15.0 | 2895 | 0.0961 | 0.6525 | 0.8507 | 0.9787 | nan | 0.9894 | 0.9292 | 0.9656 | 0.5187 | 0.0 | 0.9758 | 0.8514 | 0.9439 | 0.4915 |
| 0.0489 | 16.0 | 3088 | 0.1093 | 0.6464 | 0.8626 | 0.9725 | nan | 0.9812 | 0.9345 | 0.9639 | 0.5708 | 0.0 | 0.9688 | 0.7900 | 0.9440 | 0.5290 |
| 0.0478 | 17.0 | 3281 | 0.1053 | 0.6503 | 0.8574 | 0.9760 | nan | 0.9858 | 0.9300 | 0.9673 | 0.5465 | 0.0 | 0.9726 | 0.8239 | 0.9411 | 0.5138 |
| 0.048 | 18.0 | 3474 | 0.1314 | 0.6416 | 0.8884 | 0.9644 | nan | 0.9691 | 0.9517 | 0.9642 | 0.6688 | 0.0 | 0.9591 | 0.7232 | 0.9415 | 0.5842 |
| 0.0474 | 19.0 | 3667 | 0.1197 | 0.6473 | 0.8559 | 0.9743 | nan | 0.9842 | 0.9344 | 0.9557 | 0.5493 | 0.0 | 0.9707 | 0.8067 | 0.9394 | 0.5196 |
| 0.0456 | 20.0 | 3860 | 0.1149 | 0.6587 | 0.8578 | 0.9788 | nan | 0.9905 | 0.9241 | 0.9503 | 0.5665 | 0.0 | 0.9759 | 0.8513 | 0.9344 | 0.5321 |
| 0.044 | 21.0 | 4053 | 0.1183 | 0.6574 | 0.8612 | 0.9774 | nan | 0.9885 | 0.9280 | 0.9487 | 0.5794 | 0.0 | 0.9743 | 0.8367 | 0.9345 | 0.5413 |
| 0.0431 | 22.0 | 4246 | 0.1326 | 0.6425 | 0.8599 | 0.9711 | nan | 0.9795 | 0.9405 | 0.9595 | 0.5601 | 0.0 | 0.9670 | 0.7783 | 0.9384 | 0.5291 |
| 0.0446 | 23.0 | 4439 | 0.1253 | 0.6535 | 0.8678 | 0.9743 | nan | 0.9833 | 0.9309 | 0.9635 | 0.5933 | 0.0 | 0.9706 | 0.8007 | 0.9427 | 0.5535 |
| 0.0427 | 24.0 | 4632 | 0.1075 | 0.6568 | 0.8602 | 0.9771 | nan | 0.9882 | 0.9229 | 0.9543 | 0.5755 | 0.0 | 0.9739 | 0.8342 | 0.9379 | 0.5379 |
| 0.0417 | 25.0 | 4825 | 0.1250 | 0.6443 | 0.8559 | 0.9723 | nan | 0.9820 | 0.9337 | 0.9542 | 0.5539 | 0.0 | 0.9684 | 0.7904 | 0.9375 | 0.5250 |
| 0.0402 | 26.0 | 5018 | 0.1206 | 0.6518 | 0.8497 | 0.9775 | nan | 0.9892 | 0.9236 | 0.9536 | 0.5324 | 0.0 | 0.9744 | 0.8373 | 0.9383 | 0.5089 |
| 0.0403 | 27.0 | 5211 | 0.1164 | 0.6565 | 0.8688 | 0.9755 | nan | 0.9848 | 0.9382 | 0.9531 | 0.5991 | 0.0 | 0.9723 | 0.8183 | 0.9378 | 0.5540 |
| 0.0405 | 28.0 | 5404 | 0.1091 | 0.6586 | 0.8505 | 0.9799 | nan | 0.9926 | 0.9177 | 0.9530 | 0.5389 | 0.0 | 0.9773 | 0.8650 | 0.9381 | 0.5128 |
| 0.0384 | 29.0 | 5597 | 0.1304 | 0.6504 | 0.8470 | 0.9781 | nan | 0.9893 | 0.9365 | 0.9508 | 0.5112 | 0.0 | 0.9751 | 0.8477 | 0.9365 | 0.4926 |
| 0.0374 | 30.0 | 5790 | 0.1095 | 0.6585 | 0.8605 | 0.9783 | nan | 0.9891 | 0.9323 | 0.9507 | 0.5698 | 0.0 | 0.9754 | 0.8469 | 0.9358 | 0.5345 |
| 0.0378 | 31.0 | 5983 | 0.1245 | 0.6558 | 0.8553 | 0.9780 | nan | 0.9896 | 0.9237 | 0.9539 | 0.5540 | 0.0 | 0.9750 | 0.8435 | 0.9353 | 0.5254 |
| 0.0367 | 32.0 | 6176 | 0.1288 | 0.6504 | 0.8637 | 0.9737 | nan | 0.9828 | 0.9386 | 0.9555 | 0.5778 | 0.0 | 0.9700 | 0.8016 | 0.9362 | 0.5443 |
| 0.037 | 33.0 | 6369 | 0.1293 | 0.6565 | 0.8656 | 0.9760 | nan | 0.9862 | 0.9381 | 0.9443 | 0.5938 | 0.0 | 0.9726 | 0.8273 | 0.9314 | 0.5512 |
| 0.0363 | 34.0 | 6562 | 0.1242 | 0.6594 | 0.8528 | 0.9800 | nan | 0.9926 | 0.9171 | 0.9529 | 0.5485 | 0.0 | 0.9773 | 0.8632 | 0.9378 | 0.5188 |
| 0.0361 | 35.0 | 6755 | 0.1239 | 0.6653 | 0.8739 | 0.9781 | nan | 0.9886 | 0.9247 | 0.9557 | 0.6264 | 0.0 | 0.9752 | 0.8420 | 0.9374 | 0.5718 |
| 0.0371 | 36.0 | 6948 | 0.1220 | 0.6626 | 0.8691 | 0.9782 | nan | 0.9887 | 0.9297 | 0.9530 | 0.6049 | 0.0 | 0.9751 | 0.8418 | 0.9375 | 0.5585 |
| 0.034 | 37.0 | 7141 | 0.1694 | 0.6300 | 0.8685 | 0.9609 | nan | 0.9666 | 0.9453 | 0.9602 | 0.6020 | 0.0 | 0.9551 | 0.6981 | 0.9399 | 0.5567 |
| 0.0358 | 38.0 | 7334 | 0.1251 | 0.6513 | 0.8534 | 0.9764 | nan | 0.9878 | 0.9270 | 0.9492 | 0.5497 | 0.0 | 0.9731 | 0.8290 | 0.9345 | 0.5198 |
| 0.033 | 39.0 | 7527 | 0.1330 | 0.6542 | 0.8604 | 0.9764 | nan | 0.9868 | 0.9343 | 0.9503 | 0.5700 | 0.0 | 0.9731 | 0.8292 | 0.9351 | 0.5336 |
| 0.0327 | 40.0 | 7720 | 0.1359 | 0.6490 | 0.8537 | 0.9750 | nan | 0.9862 | 0.9269 | 0.9483 | 0.5535 | 0.0 | 0.9716 | 0.8183 | 0.9330 | 0.5221 |
| 0.0336 | 41.0 | 7913 | 0.1277 | 0.6588 | 0.8667 | 0.9766 | nan | 0.9874 | 0.9267 | 0.9489 | 0.6037 | 0.0 | 0.9734 | 0.8288 | 0.9341 | 0.5577 |
| 0.0312 | 42.0 | 8106 | 0.1321 | 0.6568 | 0.8716 | 0.9749 | nan | 0.9844 | 0.9358 | 0.9500 | 0.6163 | 0.0 | 0.9714 | 0.8132 | 0.9344 | 0.5650 |
| 0.0321 | 43.0 | 8299 | 0.1269 | 0.6533 | 0.8574 | 0.9763 | nan | 0.9874 | 0.9283 | 0.9490 | 0.5649 | 0.0 | 0.9730 | 0.8285 | 0.9335 | 0.5316 |
| 0.0306 | 44.0 | 8492 | 0.1269 | 0.6583 | 0.8528 | 0.9792 | nan | 0.9918 | 0.9207 | 0.9467 | 0.5520 | 0.0 | 0.9764 | 0.8593 | 0.9324 | 0.5236 |
| 0.0306 | 45.0 | 8685 | 0.1335 | 0.6503 | 0.8503 | 0.9765 | nan | 0.9883 | 0.9283 | 0.9439 | 0.5407 | 0.0 | 0.9733 | 0.8345 | 0.9295 | 0.5144 |
| 0.0324 | 46.0 | 8878 | 0.1294 | 0.6538 | 0.8490 | 0.9784 | nan | 0.9908 | 0.9254 | 0.9441 | 0.5358 | 0.0 | 0.9754 | 0.8525 | 0.9303 | 0.5107 |
| 0.0318 | 47.0 | 9071 | 0.1230 | 0.6564 | 0.8549 | 0.9782 | nan | 0.9900 | 0.9252 | 0.9486 | 0.5559 | 0.0 | 0.9752 | 0.8477 | 0.9335 | 0.5255 |
| 0.0319 | 48.0 | 9264 | 0.1267 | 0.6524 | 0.8501 | 0.9776 | nan | 0.9895 | 0.9278 | 0.9464 | 0.5368 | 0.0 | 0.9745 | 0.8438 | 0.9322 | 0.5117 |
| 0.0312 | 49.0 | 9457 | 0.1258 | 0.6568 | 0.8602 | 0.9774 | nan | 0.9884 | 0.9321 | 0.9482 | 0.5720 | 0.0 | 0.9743 | 0.8399 | 0.9327 | 0.5373 |
| 0.0311 | 50.0 | 9650 | 0.1203 | 0.6589 | 0.8610 | 0.9779 | nan | 0.9894 | 0.9262 | 0.9471 | 0.5814 | 0.0 | 0.9749 | 0.8444 | 0.9319 | 0.5435 |
| 0.0327 | 51.0 | 9843 | 0.1219 | 0.6575 | 0.8577 | 0.9780 | nan | 0.9897 | 0.9265 | 0.9457 | 0.5688 | 0.0 | 0.9750 | 0.8462 | 0.9314 | 0.5348 |
| 0.031 | 51.81 | 10000 | 0.1305 | 0.6564 | 0.8562 | 0.9780 | nan | 0.9896 | 0.9270 | 0.9478 | 0.5603 | 0.0 | 0.9749 | 0.8458 | 0.9324 | 0.5290 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"bg",
"fallo cohesivo",
"fallo malla",
"fallo adhesivo",
"fallo burbuja"
] |
krnl/segformer-b5-finetuned-human-parsing |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-human-parsing
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2292
- Mean Iou: 0.6258
- Mean Accuracy: 0.7547
- Overall Accuracy: 0.8256
- Accuracy Background: nan
- Accuracy Hat: 0.8561
- Accuracy Hair: 0.8974
- Accuracy Sunglasses: 0.7540
- Accuracy Upper-clothes: 0.8553
- Accuracy Skirt: 0.7026
- Accuracy Pants: 0.8913
- Accuracy Dress: 0.7525
- Accuracy Belt: 0.4251
- Accuracy Left-shoe: 0.6014
- Accuracy Right-shoe: 0.6374
- Accuracy Face: 0.9094
- Accuracy Left-leg: 0.8452
- Accuracy Right-leg: 0.8343
- Accuracy Left-arm: 0.8506
- Accuracy Right-arm: 0.8287
- Accuracy Bag: 0.8232
- Accuracy Scarf: 0.3662
- Iou Background: 0.0
- Iou Hat: 0.7625
- Iou Hair: 0.8171
- Iou Sunglasses: 0.6400
- Iou Upper-clothes: 0.7700
- Iou Skirt: 0.6211
- Iou Pants: 0.7788
- Iou Dress: 0.5512
- Iou Belt: 0.3564
- Iou Left-shoe: 0.5032
- Iou Right-shoe: 0.5381
- Iou Face: 0.8294
- Iou Left-leg: 0.7412
- Iou Right-leg: 0.7591
- Iou Left-arm: 0.7579
- Iou Right-arm: 0.7705
- Iou Bag: 0.7729
- Iou Scarf: 0.2956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
| 1.1597 | 0.04 | 20 | 1.5815 | 0.1179 | 0.1991 | 0.4296 | nan | 0.0060 | 0.6905 | 0.0 | 0.7657 | 0.0108 | 0.6431 | 0.2946 | 0.0 | 0.0288 | 0.0366 | 0.1480 | 0.0025 | 0.5692 | 0.0096 | 0.0259 | 0.1537 | 0.0 | 0.0 | 0.0051 | 0.4253 | 0.0 | 0.5199 | 0.0103 | 0.3388 | 0.1700 | 0.0 | 0.0258 | 0.0338 | 0.0895 | 0.0025 | 0.3162 | 0.0094 | 0.0253 | 0.1495 | 0.0 |
| 0.6963 | 0.08 | 40 | 0.8073 | 0.1759 | 0.2719 | 0.4628 | nan | 0.0015 | 0.8699 | 0.0 | 0.4736 | 0.4932 | 0.5141 | 0.6775 | 0.0 | 0.0062 | 0.1038 | 0.5301 | 0.0916 | 0.5071 | 0.0092 | 0.0549 | 0.2889 | 0.0 | 0.0 | 0.0015 | 0.6169 | 0.0 | 0.4242 | 0.2202 | 0.3522 | 0.2251 | 0.0 | 0.0062 | 0.0904 | 0.4914 | 0.0852 | 0.3160 | 0.0092 | 0.0541 | 0.2731 | 0.0 |
| 0.5786 | 0.12 | 60 | 0.6136 | 0.2538 | 0.3642 | 0.4679 | nan | 0.0180 | 0.8122 | 0.0 | 0.1998 | 0.0000 | 0.6621 | 0.8592 | 0.0 | 0.1440 | 0.2772 | 0.8381 | 0.4032 | 0.6068 | 0.4182 | 0.3097 | 0.6434 | 0.0 | 0.0 | 0.0179 | 0.6760 | 0.0 | 0.1951 | 0.0000 | 0.5471 | 0.2218 | 0.0 | 0.1147 | 0.2032 | 0.6403 | 0.3189 | 0.4204 | 0.3505 | 0.2947 | 0.5676 | 0.0 |
| 0.324 | 0.16 | 80 | 0.4282 | 0.2893 | 0.4044 | 0.6041 | nan | 0.0147 | 0.7890 | 0.0 | 0.8222 | 0.7984 | 0.6646 | 0.1038 | 0.0 | 0.0896 | 0.3308 | 0.8277 | 0.4099 | 0.6839 | 0.2401 | 0.5474 | 0.5521 | 0.0 | 0.0 | 0.0147 | 0.6800 | 0.0 | 0.6159 | 0.3049 | 0.5913 | 0.0938 | 0.0 | 0.0802 | 0.2394 | 0.6598 | 0.3178 | 0.4504 | 0.2288 | 0.4189 | 0.5113 | 0.0 |
| 0.297 | 0.2 | 100 | 0.4020 | 0.3034 | 0.4230 | 0.6332 | nan | 0.0048 | 0.8076 | 0.0080 | 0.9042 | 0.6567 | 0.8036 | 0.0317 | 0.0 | 0.0481 | 0.5298 | 0.7728 | 0.2589 | 0.7232 | 0.5941 | 0.3839 | 0.6643 | 0.0 | 0.0 | 0.0048 | 0.6708 | 0.0080 | 0.6300 | 0.3836 | 0.5929 | 0.0314 | 0.0 | 0.0441 | 0.3152 | 0.6726 | 0.2420 | 0.4745 | 0.4532 | 0.3631 | 0.5759 | 0.0 |
| 0.2608 | 0.24 | 120 | 0.3538 | 0.3444 | 0.4554 | 0.6504 | nan | 0.2922 | 0.8078 | 0.0753 | 0.8472 | 0.0425 | 0.6961 | 0.6197 | 0.0 | 0.2550 | 0.3074 | 0.8020 | 0.5636 | 0.6895 | 0.3779 | 0.6930 | 0.6734 | 0.0 | 0.0 | 0.2757 | 0.6940 | 0.0747 | 0.6457 | 0.0419 | 0.6098 | 0.3611 | 0.0 | 0.1849 | 0.2412 | 0.7038 | 0.4513 | 0.5038 | 0.3439 | 0.4760 | 0.5915 | 0.0 |
| 0.3306 | 0.28 | 140 | 0.3281 | 0.3562 | 0.4736 | 0.6560 | nan | 0.4111 | 0.8576 | 0.1953 | 0.8081 | 0.6916 | 0.7888 | 0.3489 | 0.0 | 0.0809 | 0.3612 | 0.8132 | 0.0622 | 0.7078 | 0.6328 | 0.5437 | 0.7482 | 0.0 | 0.0 | 0.3895 | 0.7227 | 0.1857 | 0.6777 | 0.3750 | 0.6015 | 0.2749 | 0.0 | 0.0740 | 0.2602 | 0.7070 | 0.0612 | 0.4348 | 0.5114 | 0.4966 | 0.6385 | 0.0 |
| 0.364 | 0.32 | 160 | 0.3368 | 0.3689 | 0.4836 | 0.6531 | nan | 0.3898 | 0.8453 | 0.1743 | 0.9269 | 0.2493 | 0.7922 | 0.0842 | 0.0 | 0.4874 | 0.2384 | 0.8116 | 0.6226 | 0.5731 | 0.6049 | 0.6620 | 0.7597 | 0.0 | 0.0 | 0.3746 | 0.7246 | 0.1690 | 0.6015 | 0.1998 | 0.5942 | 0.0786 | 0.0 | 0.2682 | 0.1904 | 0.7015 | 0.4781 | 0.4781 | 0.5452 | 0.5804 | 0.6562 | 0.0 |
| 0.635 | 0.36 | 180 | 0.3092 | 0.3699 | 0.4903 | 0.6319 | nan | 0.4996 | 0.8387 | 0.2136 | 0.6184 | 0.0129 | 0.7920 | 0.8199 | 0.0 | 0.1895 | 0.3028 | 0.8307 | 0.7258 | 0.3386 | 0.7480 | 0.6543 | 0.7511 | 0.0 | 0.0 | 0.4613 | 0.7126 | 0.2042 | 0.5589 | 0.0128 | 0.6658 | 0.3529 | 0.0 | 0.1622 | 0.2426 | 0.7363 | 0.4646 | 0.3144 | 0.5794 | 0.5575 | 0.6321 | 0.0 |
| 0.1464 | 0.4 | 200 | 0.3306 | 0.3809 | 0.5041 | 0.6544 | nan | 0.6110 | 0.8337 | 0.2420 | 0.8913 | 0.8862 | 0.6492 | 0.0004 | 0.0 | 0.2888 | 0.2949 | 0.8514 | 0.4630 | 0.7751 | 0.7020 | 0.5429 | 0.5386 | 0.0 | 0.0 | 0.5329 | 0.7348 | 0.2331 | 0.6567 | 0.3661 | 0.5769 | 0.0004 | 0.0 | 0.2221 | 0.2333 | 0.7431 | 0.4133 | 0.5478 | 0.5718 | 0.5125 | 0.5107 | 0.0 |
| 0.2257 | 0.44 | 220 | 0.2751 | 0.4089 | 0.5400 | 0.6752 | nan | 0.6851 | 0.8458 | 0.4204 | 0.7241 | 0.1085 | 0.7997 | 0.7657 | 0.0 | 0.2458 | 0.4039 | 0.8858 | 0.7863 | 0.3199 | 0.7405 | 0.6974 | 0.7508 | 0.0 | 0.0 | 0.5815 | 0.7437 | 0.3776 | 0.6458 | 0.1033 | 0.6526 | 0.3966 | 0.0 | 0.2027 | 0.3078 | 0.7438 | 0.4680 | 0.2966 | 0.6204 | 0.5942 | 0.6260 | 0.0 |
| 0.3069 | 0.48 | 240 | 0.2614 | 0.4163 | 0.5499 | 0.6868 | nan | 0.6246 | 0.8571 | 0.3130 | 0.7765 | 0.8266 | 0.7786 | 0.3212 | 0.0 | 0.3560 | 0.3736 | 0.8579 | 0.1780 | 0.8761 | 0.7423 | 0.7693 | 0.6970 | 0.0 | 0.0 | 0.5597 | 0.7370 | 0.2931 | 0.6733 | 0.4032 | 0.6889 | 0.2487 | 0.0 | 0.2662 | 0.2901 | 0.7425 | 0.1724 | 0.4957 | 0.6373 | 0.6376 | 0.6470 | 0.0 |
| 0.1454 | 0.52 | 260 | 0.2563 | 0.4316 | 0.5610 | 0.6965 | nan | 0.6707 | 0.8388 | 0.5572 | 0.7616 | 0.3854 | 0.7280 | 0.7114 | 0.0 | 0.1934 | 0.3621 | 0.8718 | 0.7860 | 0.6140 | 0.7403 | 0.5340 | 0.7820 | 0.0 | 0.0 | 0.5710 | 0.7446 | 0.4497 | 0.6637 | 0.3125 | 0.6624 | 0.4219 | 0.0 | 0.1731 | 0.2862 | 0.7295 | 0.5339 | 0.5054 | 0.5742 | 0.4967 | 0.6449 | 0.0 |
| 0.1522 | 0.56 | 280 | 0.2521 | 0.4327 | 0.5567 | 0.7138 | nan | 0.5098 | 0.9135 | 0.3399 | 0.8898 | 0.5537 | 0.7508 | 0.2922 | 0.0 | 0.3367 | 0.2484 | 0.8388 | 0.7460 | 0.7191 | 0.7496 | 0.7996 | 0.7753 | 0.0 | 0.0 | 0.4902 | 0.7541 | 0.3196 | 0.6924 | 0.3853 | 0.6261 | 0.2512 | 0.0 | 0.2575 | 0.2171 | 0.7393 | 0.5563 | 0.5633 | 0.6403 | 0.6335 | 0.6621 | 0.0 |
| 0.1872 | 0.6 | 300 | 0.2359 | 0.4557 | 0.5797 | 0.7247 | nan | 0.6901 | 0.8832 | 0.5498 | 0.8857 | 0.6636 | 0.7843 | 0.3983 | 0.0 | 0.4549 | 0.2292 | 0.8147 | 0.7126 | 0.6223 | 0.7467 | 0.7014 | 0.7185 | 0.0 | 0.0 | 0.5881 | 0.7556 | 0.4621 | 0.7131 | 0.4264 | 0.6506 | 0.3311 | 0.0 | 0.3025 | 0.1975 | 0.7350 | 0.5635 | 0.5513 | 0.6505 | 0.6318 | 0.6439 | 0.0 |
| 0.2512 | 0.64 | 320 | 0.2601 | 0.4363 | 0.5599 | 0.6801 | nan | 0.6470 | 0.8482 | 0.3819 | 0.6317 | 0.2525 | 0.7437 | 0.8755 | 0.0 | 0.1737 | 0.5412 | 0.8907 | 0.5915 | 0.7943 | 0.7177 | 0.7437 | 0.6852 | 0.0 | 0.0 | 0.5580 | 0.7612 | 0.3645 | 0.5718 | 0.2362 | 0.6671 | 0.3836 | 0.0 | 0.1621 | 0.3641 | 0.7486 | 0.5132 | 0.5865 | 0.6472 | 0.6479 | 0.6409 | 0.0 |
| 0.6521 | 0.68 | 340 | 0.2286 | 0.4716 | 0.6024 | 0.7351 | nan | 0.6559 | 0.8492 | 0.3976 | 0.7517 | 0.5818 | 0.7622 | 0.7422 | 0.0 | 0.5277 | 0.2673 | 0.9098 | 0.7514 | 0.6903 | 0.7853 | 0.7795 | 0.7896 | 0.0 | 0.0 | 0.5839 | 0.7531 | 0.3761 | 0.6829 | 0.4643 | 0.6722 | 0.4762 | 0.0 | 0.3375 | 0.2261 | 0.7551 | 0.5838 | 0.5730 | 0.6548 | 0.6501 | 0.6987 | 0.0 |
| 0.1734 | 0.72 | 360 | 0.2511 | 0.4464 | 0.5731 | 0.7074 | nan | 0.6326 | 0.8339 | 0.5953 | 0.8987 | 0.8731 | 0.7575 | 0.1617 | 0.0 | 0.2314 | 0.5741 | 0.8497 | 0.6140 | 0.6973 | 0.5250 | 0.7576 | 0.7406 | 0.0 | 0.0 | 0.5777 | 0.7535 | 0.4840 | 0.6597 | 0.5208 | 0.6261 | 0.1507 | 0.0 | 0.2110 | 0.3920 | 0.7579 | 0.5436 | 0.5825 | 0.4959 | 0.6090 | 0.6702 | 0.0 |
| 0.1596 | 0.76 | 380 | 0.2303 | 0.4702 | 0.5922 | 0.7351 | nan | 0.6336 | 0.8772 | 0.4196 | 0.8004 | 0.4307 | 0.7034 | 0.7554 | 0.0 | 0.2914 | 0.4563 | 0.8930 | 0.7517 | 0.7146 | 0.7649 | 0.7420 | 0.8336 | 0.0 | 0.0 | 0.5854 | 0.7635 | 0.3937 | 0.6838 | 0.3957 | 0.6295 | 0.4857 | 0.0 | 0.2497 | 0.3439 | 0.7526 | 0.6021 | 0.6055 | 0.6591 | 0.6473 | 0.6657 | 0.0 |
| 0.1359 | 0.8 | 400 | 0.2332 | 0.4592 | 0.5773 | 0.7182 | nan | 0.6759 | 0.8564 | 0.5305 | 0.8221 | 0.4710 | 0.8463 | 0.5733 | 0.0 | 0.2630 | 0.5031 | 0.8314 | 0.7079 | 0.7295 | 0.7449 | 0.7233 | 0.5357 | 0.0 | 0.0 | 0.6046 | 0.7593 | 0.4670 | 0.7005 | 0.3678 | 0.5672 | 0.4327 | 0.0 | 0.2265 | 0.3566 | 0.7593 | 0.5975 | 0.6161 | 0.6456 | 0.6470 | 0.5178 | 0.0 |
| 0.2014 | 0.84 | 420 | 0.2298 | 0.4709 | 0.5957 | 0.7268 | nan | 0.6207 | 0.8571 | 0.5146 | 0.7670 | 0.6367 | 0.6238 | 0.7682 | 0.0 | 0.2470 | 0.4863 | 0.8939 | 0.5487 | 0.8665 | 0.7735 | 0.7827 | 0.7405 | 0.0 | 0.0 | 0.5729 | 0.7737 | 0.4637 | 0.6774 | 0.4588 | 0.5840 | 0.4656 | 0.0 | 0.2219 | 0.3668 | 0.7764 | 0.5020 | 0.5959 | 0.6641 | 0.6698 | 0.6833 | 0.0 |
| 0.137 | 0.88 | 440 | 0.2260 | 0.4824 | 0.6147 | 0.7401 | nan | 0.7197 | 0.8823 | 0.6023 | 0.8544 | 0.9048 | 0.7837 | 0.3094 | 0.0245 | 0.2877 | 0.4592 | 0.8905 | 0.6846 | 0.8472 | 0.7109 | 0.7647 | 0.7230 | 0.0 | 0.0 | 0.6089 | 0.7638 | 0.5071 | 0.7154 | 0.5084 | 0.6749 | 0.2801 | 0.0227 | 0.2486 | 0.3499 | 0.7679 | 0.6127 | 0.6436 | 0.6445 | 0.6729 | 0.6626 | 0.0 |
| 0.2494 | 0.92 | 460 | 0.2275 | 0.4721 | 0.5997 | 0.7321 | nan | 0.6265 | 0.8452 | 0.6870 | 0.8116 | 0.4266 | 0.8250 | 0.7026 | 0.0498 | 0.5651 | 0.1855 | 0.8745 | 0.7293 | 0.6387 | 0.6783 | 0.8080 | 0.7416 | 0.0 | 0.0 | 0.5764 | 0.7653 | 0.5312 | 0.7021 | 0.3635 | 0.6488 | 0.4468 | 0.0475 | 0.3420 | 0.1695 | 0.7764 | 0.5981 | 0.5821 | 0.6149 | 0.6599 | 0.6740 | 0.0 |
| 0.2788 | 0.96 | 480 | 0.2315 | 0.4670 | 0.5977 | 0.7292 | nan | 0.7105 | 0.8142 | 0.4169 | 0.8597 | 0.8573 | 0.7707 | 0.3171 | 0.0476 | 0.2514 | 0.4432 | 0.9214 | 0.7332 | 0.6989 | 0.8245 | 0.6729 | 0.7954 | 0.0255 | 0.0 | 0.6051 | 0.7556 | 0.3986 | 0.7114 | 0.4588 | 0.6423 | 0.2727 | 0.0438 | 0.2215 | 0.3468 | 0.7650 | 0.6030 | 0.6007 | 0.6432 | 0.6180 | 0.6945 | 0.0253 |
| 0.1254 | 1.0 | 500 | 0.2176 | 0.4955 | 0.6287 | 0.7450 | nan | 0.7081 | 0.9094 | 0.4628 | 0.7437 | 0.5938 | 0.7126 | 0.7410 | 0.0560 | 0.3971 | 0.5239 | 0.8992 | 0.7446 | 0.8258 | 0.8028 | 0.7613 | 0.8041 | 0.0014 | 0.0 | 0.6242 | 0.7741 | 0.4367 | 0.6877 | 0.4856 | 0.6276 | 0.4823 | 0.0535 | 0.3136 | 0.3836 | 0.7687 | 0.6347 | 0.6510 | 0.6615 | 0.6529 | 0.6795 | 0.0014 |
| 0.2625 | 1.04 | 520 | 0.2270 | 0.5000 | 0.6339 | 0.7411 | nan | 0.7844 | 0.8633 | 0.6442 | 0.8202 | 0.3913 | 0.6661 | 0.7393 | 0.0533 | 0.4684 | 0.5305 | 0.8686 | 0.6858 | 0.8024 | 0.7433 | 0.7895 | 0.8522 | 0.0729 | 0.0 | 0.6637 | 0.7685 | 0.5378 | 0.7150 | 0.3328 | 0.6169 | 0.4502 | 0.0468 | 0.3310 | 0.3732 | 0.7769 | 0.6214 | 0.6602 | 0.6614 | 0.6823 | 0.6913 | 0.0714 |
| 0.2871 | 1.08 | 540 | 0.2072 | 0.5091 | 0.6337 | 0.7630 | nan | 0.7427 | 0.8718 | 0.5674 | 0.8080 | 0.6131 | 0.7855 | 0.7672 | 0.0584 | 0.3031 | 0.4535 | 0.8750 | 0.6763 | 0.8457 | 0.8027 | 0.7491 | 0.7710 | 0.0820 | 0.0 | 0.6471 | 0.7706 | 0.5092 | 0.7250 | 0.4737 | 0.6887 | 0.5152 | 0.0507 | 0.2643 | 0.3623 | 0.7788 | 0.6085 | 0.6565 | 0.6659 | 0.6633 | 0.7025 | 0.0816 |
| 0.1481 | 1.12 | 560 | 0.2250 | 0.4824 | 0.5946 | 0.7494 | nan | 0.6480 | 0.8561 | 0.5148 | 0.8637 | 0.5174 | 0.7904 | 0.6671 | 0.0029 | 0.3782 | 0.2824 | 0.8794 | 0.6807 | 0.7755 | 0.6985 | 0.7431 | 0.8058 | 0.0039 | 0.0 | 0.6099 | 0.7755 | 0.4755 | 0.7081 | 0.4454 | 0.6483 | 0.4567 | 0.0029 | 0.2864 | 0.2456 | 0.7798 | 0.6012 | 0.6408 | 0.6339 | 0.6715 | 0.6978 | 0.0039 |
| 0.0995 | 1.16 | 580 | 0.2084 | 0.5218 | 0.6570 | 0.7698 | nan | 0.7706 | 0.8532 | 0.4978 | 0.7874 | 0.7761 | 0.8102 | 0.6761 | 0.0 | 0.4886 | 0.4884 | 0.9113 | 0.7646 | 0.8476 | 0.8129 | 0.7507 | 0.7485 | 0.1856 | 0.0 | 0.6194 | 0.7661 | 0.4641 | 0.7200 | 0.5843 | 0.6730 | 0.5042 | 0.0 | 0.3497 | 0.3711 | 0.7790 | 0.6542 | 0.6835 | 0.6823 | 0.6749 | 0.6959 | 0.1715 |
| 0.2912 | 1.2 | 600 | 0.2166 | 0.5136 | 0.6304 | 0.7632 | nan | 0.6870 | 0.8862 | 0.4891 | 0.7752 | 0.6264 | 0.8143 | 0.8202 | 0.0227 | 0.2578 | 0.4830 | 0.8932 | 0.7564 | 0.7366 | 0.7746 | 0.7678 | 0.7558 | 0.1712 | 0.0 | 0.6243 | 0.7791 | 0.4579 | 0.6983 | 0.5530 | 0.6676 | 0.5248 | 0.0222 | 0.2333 | 0.3786 | 0.7820 | 0.6438 | 0.6651 | 0.6773 | 0.6749 | 0.7018 | 0.1610 |
| 0.1874 | 1.24 | 620 | 0.2280 | 0.5053 | 0.6296 | 0.7525 | nan | 0.7070 | 0.8689 | 0.5348 | 0.8275 | 0.3452 | 0.8441 | 0.7748 | 0.0643 | 0.4207 | 0.4251 | 0.8840 | 0.7698 | 0.6921 | 0.7271 | 0.7322 | 0.7544 | 0.3318 | 0.0 | 0.6387 | 0.7766 | 0.4873 | 0.7210 | 0.3283 | 0.6163 | 0.5014 | 0.0600 | 0.3252 | 0.3434 | 0.7750 | 0.6349 | 0.6336 | 0.6531 | 0.6560 | 0.6995 | 0.2448 |
| 0.1634 | 1.28 | 640 | 0.2052 | 0.5100 | 0.6350 | 0.7638 | nan | 0.7069 | 0.8648 | 0.6021 | 0.8461 | 0.6408 | 0.8499 | 0.6889 | 0.0 | 0.3772 | 0.5718 | 0.8730 | 0.7073 | 0.5765 | 0.7283 | 0.7600 | 0.7655 | 0.2362 | 0.0 | 0.6105 | 0.7777 | 0.5233 | 0.7372 | 0.5287 | 0.6565 | 0.5185 | 0.0 | 0.3063 | 0.4062 | 0.7743 | 0.5688 | 0.5413 | 0.6500 | 0.6721 | 0.6956 | 0.2133 |
| 0.1894 | 1.32 | 660 | 0.2169 | 0.5104 | 0.6553 | 0.7601 | nan | 0.7721 | 0.8902 | 0.7412 | 0.8309 | 0.9266 | 0.6974 | 0.5353 | 0.0008 | 0.4742 | 0.4474 | 0.8442 | 0.8150 | 0.7319 | 0.7803 | 0.7767 | 0.7605 | 0.1160 | 0.0 | 0.6506 | 0.7883 | 0.5373 | 0.7116 | 0.5472 | 0.6493 | 0.4321 | 0.0008 | 0.3256 | 0.3422 | 0.7644 | 0.6199 | 0.6389 | 0.6849 | 0.6873 | 0.6919 | 0.1141 |
| 0.0769 | 1.36 | 680 | 0.1993 | 0.5250 | 0.6596 | 0.7756 | nan | 0.8044 | 0.8515 | 0.6711 | 0.8456 | 0.6474 | 0.7909 | 0.7083 | 0.0630 | 0.3173 | 0.6517 | 0.9003 | 0.6833 | 0.8527 | 0.8065 | 0.8162 | 0.7165 | 0.0872 | 0.0 | 0.6318 | 0.7755 | 0.5553 | 0.7207 | 0.5836 | 0.6787 | 0.5292 | 0.0625 | 0.2650 | 0.4130 | 0.7788 | 0.6131 | 0.6713 | 0.7043 | 0.7024 | 0.6790 | 0.0866 |
| 0.2145 | 1.4 | 700 | 0.2052 | 0.5114 | 0.6438 | 0.7630 | nan | 0.7518 | 0.8628 | 0.5961 | 0.8763 | 0.9097 | 0.7924 | 0.4449 | 0.0273 | 0.4497 | 0.3682 | 0.8965 | 0.8234 | 0.6068 | 0.8065 | 0.6396 | 0.8432 | 0.2497 | 0.0 | 0.6262 | 0.7776 | 0.5260 | 0.7240 | 0.6034 | 0.6991 | 0.4150 | 0.0270 | 0.3297 | 0.3073 | 0.7805 | 0.6198 | 0.5743 | 0.6511 | 0.6071 | 0.7187 | 0.2189 |
| 0.2162 | 1.44 | 720 | 0.2290 | 0.5246 | 0.6727 | 0.7519 | nan | 0.8003 | 0.8895 | 0.7155 | 0.7305 | 0.4570 | 0.8400 | 0.8071 | 0.0599 | 0.2933 | 0.5509 | 0.8700 | 0.7052 | 0.8386 | 0.7501 | 0.8070 | 0.8038 | 0.5178 | 0.0 | 0.7009 | 0.7910 | 0.5717 | 0.6618 | 0.4195 | 0.6924 | 0.4677 | 0.0587 | 0.2536 | 0.4050 | 0.7823 | 0.6246 | 0.6658 | 0.6718 | 0.6930 | 0.7369 | 0.2463 |
| 0.1751 | 1.48 | 740 | 0.2073 | 0.5376 | 0.6734 | 0.7847 | nan | 0.8054 | 0.8711 | 0.6506 | 0.8714 | 0.7615 | 0.7720 | 0.6263 | 0.1874 | 0.4293 | 0.4568 | 0.9023 | 0.8568 | 0.7712 | 0.7206 | 0.8132 | 0.8180 | 0.1342 | 0.0 | 0.7205 | 0.7976 | 0.5541 | 0.7385 | 0.5644 | 0.6886 | 0.4901 | 0.1510 | 0.3297 | 0.3632 | 0.7814 | 0.6510 | 0.6618 | 0.6457 | 0.6798 | 0.7289 | 0.1310 |
| 0.1175 | 1.52 | 760 | 0.2123 | 0.5114 | 0.6336 | 0.7694 | nan | 0.6736 | 0.8370 | 0.6304 | 0.8724 | 0.7794 | 0.7886 | 0.6708 | 0.0890 | 0.2305 | 0.6798 | 0.9045 | 0.5193 | 0.7556 | 0.7443 | 0.7395 | 0.7734 | 0.0836 | 0.0 | 0.6314 | 0.7744 | 0.5497 | 0.7306 | 0.5991 | 0.6411 | 0.5151 | 0.0705 | 0.2169 | 0.4380 | 0.7806 | 0.4983 | 0.6112 | 0.6768 | 0.6739 | 0.7150 | 0.0824 |
| 0.1317 | 1.56 | 780 | 0.2097 | 0.5035 | 0.6318 | 0.7713 | nan | 0.3686 | 0.9006 | 0.6208 | 0.8267 | 0.8135 | 0.7586 | 0.6929 | 0.0769 | 0.5944 | 0.2629 | 0.9171 | 0.8806 | 0.6178 | 0.7197 | 0.8212 | 0.7743 | 0.0936 | 0.0 | 0.3669 | 0.7756 | 0.5497 | 0.7150 | 0.6423 | 0.6759 | 0.5331 | 0.0657 | 0.3886 | 0.2448 | 0.7772 | 0.6177 | 0.5813 | 0.6439 | 0.6832 | 0.7088 | 0.0931 |
| 0.5482 | 1.6 | 800 | 0.2511 | 0.5037 | 0.6255 | 0.7414 | nan | 0.7498 | 0.8591 | 0.6984 | 0.7940 | 0.4886 | 0.7867 | 0.8255 | 0.0677 | 0.3048 | 0.4688 | 0.8573 | 0.6227 | 0.7895 | 0.7323 | 0.7148 | 0.6241 | 0.2496 | 0.0 | 0.6732 | 0.7722 | 0.5691 | 0.6858 | 0.4315 | 0.6297 | 0.4643 | 0.0620 | 0.2595 | 0.3642 | 0.7790 | 0.5765 | 0.6519 | 0.6686 | 0.6574 | 0.6024 | 0.2200 |
| 0.0895 | 1.64 | 820 | 0.1973 | 0.5191 | 0.6552 | 0.7673 | nan | 0.6921 | 0.8844 | 0.4919 | 0.8472 | 0.6608 | 0.7842 | 0.6546 | 0.2664 | 0.4594 | 0.4925 | 0.9224 | 0.8699 | 0.6010 | 0.8740 | 0.5805 | 0.8105 | 0.2468 | 0.0 | 0.6533 | 0.7801 | 0.4672 | 0.7328 | 0.5569 | 0.6945 | 0.5016 | 0.2105 | 0.3565 | 0.3858 | 0.7737 | 0.6031 | 0.5611 | 0.5950 | 0.5277 | 0.7232 | 0.2217 |
| 0.1804 | 1.68 | 840 | 0.2026 | 0.5308 | 0.6584 | 0.7736 | nan | 0.7891 | 0.8563 | 0.6565 | 0.8528 | 0.6089 | 0.7999 | 0.7005 | 0.0741 | 0.2858 | 0.6423 | 0.9035 | 0.7926 | 0.7474 | 0.7500 | 0.7516 | 0.7824 | 0.1997 | 0.0 | 0.6848 | 0.7815 | 0.5627 | 0.7391 | 0.5112 | 0.6788 | 0.4969 | 0.0673 | 0.2622 | 0.4456 | 0.7909 | 0.6476 | 0.6569 | 0.6618 | 0.6640 | 0.7139 | 0.1888 |
| 0.1271 | 1.72 | 860 | 0.2134 | 0.5227 | 0.6505 | 0.7693 | nan | 0.7656 | 0.8645 | 0.6724 | 0.9055 | 0.6357 | 0.7807 | 0.5336 | 0.0838 | 0.5199 | 0.4139 | 0.9021 | 0.8526 | 0.7135 | 0.7894 | 0.7737 | 0.7407 | 0.1103 | 0.0 | 0.6177 | 0.7821 | 0.5747 | 0.7212 | 0.5627 | 0.6421 | 0.4449 | 0.0762 | 0.3731 | 0.3486 | 0.7872 | 0.6535 | 0.6449 | 0.6892 | 0.6914 | 0.6913 | 0.1075 |
| 0.1344 | 1.76 | 880 | 0.2099 | 0.5269 | 0.6527 | 0.7711 | nan | 0.7985 | 0.8741 | 0.6237 | 0.8356 | 0.5284 | 0.8054 | 0.7358 | 0.0469 | 0.3616 | 0.5220 | 0.9019 | 0.6880 | 0.8126 | 0.8358 | 0.7745 | 0.7948 | 0.1563 | 0.0 | 0.6922 | 0.7886 | 0.5563 | 0.7230 | 0.4772 | 0.6475 | 0.5068 | 0.0436 | 0.3041 | 0.3968 | 0.7794 | 0.6338 | 0.6822 | 0.6952 | 0.6896 | 0.7182 | 0.1498 |
| 0.2751 | 1.8 | 900 | 0.2006 | 0.5334 | 0.6488 | 0.7806 | nan | 0.7400 | 0.8550 | 0.5263 | 0.8847 | 0.6187 | 0.8032 | 0.6862 | 0.0858 | 0.4811 | 0.4224 | 0.9162 | 0.7803 | 0.7360 | 0.7854 | 0.7527 | 0.7963 | 0.1590 | 0.0 | 0.6939 | 0.7836 | 0.4954 | 0.7498 | 0.5176 | 0.6805 | 0.5075 | 0.0725 | 0.3595 | 0.3539 | 0.7824 | 0.6646 | 0.6782 | 0.6886 | 0.6885 | 0.7303 | 0.1537 |
| 0.2685 | 1.84 | 920 | 0.2153 | 0.5265 | 0.6600 | 0.7598 | nan | 0.7896 | 0.8871 | 0.4589 | 0.8001 | 0.3307 | 0.8338 | 0.7796 | 0.2192 | 0.4367 | 0.4581 | 0.9048 | 0.8316 | 0.7681 | 0.8377 | 0.7482 | 0.7620 | 0.3733 | 0.0 | 0.6760 | 0.7832 | 0.4428 | 0.7128 | 0.3263 | 0.6632 | 0.5039 | 0.1754 | 0.3545 | 0.3853 | 0.7758 | 0.6553 | 0.6665 | 0.6908 | 0.6811 | 0.6933 | 0.2913 |
| 0.5729 | 1.88 | 940 | 0.2057 | 0.5343 | 0.6737 | 0.7641 | nan | 0.8351 | 0.8681 | 0.5588 | 0.7823 | 0.5378 | 0.8769 | 0.6844 | 0.2025 | 0.4204 | 0.5736 | 0.9000 | 0.6586 | 0.8633 | 0.7572 | 0.8501 | 0.8008 | 0.2837 | 0.0 | 0.6697 | 0.7834 | 0.5193 | 0.7093 | 0.4643 | 0.6734 | 0.4657 | 0.1703 | 0.3568 | 0.4435 | 0.7947 | 0.5896 | 0.6450 | 0.6871 | 0.7106 | 0.6983 | 0.2363 |
| 0.0862 | 1.92 | 960 | 0.2208 | 0.5155 | 0.6363 | 0.7593 | nan | 0.6683 | 0.8670 | 0.6014 | 0.8336 | 0.9151 | 0.7537 | 0.6623 | 0.0948 | 0.5015 | 0.4279 | 0.8643 | 0.5706 | 0.5450 | 0.7743 | 0.7484 | 0.7914 | 0.1971 | 0.0 | 0.6179 | 0.7799 | 0.5443 | 0.7211 | 0.5925 | 0.5910 | 0.5189 | 0.0850 | 0.3944 | 0.3678 | 0.7979 | 0.5061 | 0.4893 | 0.6992 | 0.6875 | 0.7094 | 0.1772 |
| 0.0793 | 1.96 | 980 | 0.2003 | 0.5467 | 0.6820 | 0.7890 | nan | 0.8868 | 0.8560 | 0.6296 | 0.8753 | 0.5087 | 0.8319 | 0.7202 | 0.2101 | 0.3960 | 0.5827 | 0.9140 | 0.6879 | 0.8781 | 0.7924 | 0.8308 | 0.8216 | 0.1713 | 0.0 | 0.7187 | 0.7865 | 0.5556 | 0.7705 | 0.4573 | 0.6863 | 0.5364 | 0.1786 | 0.3456 | 0.4445 | 0.7817 | 0.6192 | 0.6617 | 0.7112 | 0.7034 | 0.7258 | 0.1571 |
| 0.0881 | 2.0 | 1000 | 0.2026 | 0.5430 | 0.6696 | 0.7758 | nan | 0.8055 | 0.9034 | 0.6463 | 0.8711 | 0.5281 | 0.7951 | 0.6777 | 0.2288 | 0.4737 | 0.5184 | 0.8716 | 0.7001 | 0.7681 | 0.7600 | 0.7842 | 0.8391 | 0.2115 | 0.0 | 0.7040 | 0.7865 | 0.5595 | 0.7562 | 0.4646 | 0.6923 | 0.4893 | 0.1846 | 0.3773 | 0.4039 | 0.7844 | 0.6285 | 0.6595 | 0.6914 | 0.6785 | 0.7171 | 0.1954 |
| 0.164 | 2.04 | 1020 | 0.1894 | 0.5566 | 0.6935 | 0.7948 | nan | 0.8577 | 0.8451 | 0.6489 | 0.8534 | 0.6880 | 0.8749 | 0.7212 | 0.2222 | 0.3785 | 0.5106 | 0.8963 | 0.6640 | 0.8652 | 0.8502 | 0.7722 | 0.8177 | 0.3231 | 0.0 | 0.6855 | 0.7756 | 0.5673 | 0.7557 | 0.5883 | 0.7037 | 0.5489 | 0.1773 | 0.3318 | 0.4129 | 0.7889 | 0.6126 | 0.6769 | 0.7042 | 0.6960 | 0.7334 | 0.2598 |
| 0.158 | 2.08 | 1040 | 0.2104 | 0.5418 | 0.6749 | 0.7757 | nan | 0.8476 | 0.8642 | 0.6307 | 0.8318 | 0.4601 | 0.8279 | 0.7790 | 0.1855 | 0.4350 | 0.4771 | 0.9067 | 0.7989 | 0.7718 | 0.7935 | 0.8241 | 0.7621 | 0.2772 | 0.0 | 0.6748 | 0.7851 | 0.5636 | 0.7291 | 0.4187 | 0.6812 | 0.5001 | 0.1576 | 0.3579 | 0.3982 | 0.7805 | 0.6649 | 0.6787 | 0.7120 | 0.7232 | 0.7037 | 0.2224 |
| 0.0724 | 2.12 | 1060 | 0.1818 | 0.5813 | 0.7159 | 0.8143 | nan | 0.7836 | 0.8837 | 0.6726 | 0.8872 | 0.8685 | 0.7996 | 0.6764 | 0.3285 | 0.5280 | 0.5486 | 0.9054 | 0.7857 | 0.7742 | 0.8468 | 0.7965 | 0.8587 | 0.2266 | 0.0 | 0.7030 | 0.8008 | 0.5746 | 0.7651 | 0.7179 | 0.6962 | 0.5985 | 0.2603 | 0.3984 | 0.4226 | 0.7850 | 0.6685 | 0.6898 | 0.7073 | 0.7058 | 0.7649 | 0.2040 |
| 0.0906 | 2.16 | 1080 | 0.2052 | 0.5553 | 0.6875 | 0.7897 | nan | 0.8313 | 0.8956 | 0.6559 | 0.8275 | 0.7173 | 0.8116 | 0.7495 | 0.0605 | 0.4663 | 0.5563 | 0.8829 | 0.7184 | 0.8017 | 0.8431 | 0.7774 | 0.7582 | 0.3341 | 0.0 | 0.7110 | 0.7958 | 0.5638 | 0.7280 | 0.6074 | 0.6818 | 0.5526 | 0.0575 | 0.3893 | 0.4334 | 0.7886 | 0.6394 | 0.6823 | 0.6993 | 0.6912 | 0.7073 | 0.2664 |
| 0.119 | 2.2 | 1100 | 0.1916 | 0.5489 | 0.6809 | 0.7793 | nan | 0.8171 | 0.8442 | 0.7128 | 0.8296 | 0.7356 | 0.8236 | 0.6640 | 0.1341 | 0.5456 | 0.3609 | 0.8916 | 0.8015 | 0.8096 | 0.7653 | 0.7951 | 0.8119 | 0.2322 | 0.0 | 0.6733 | 0.7745 | 0.5803 | 0.7182 | 0.5975 | 0.6999 | 0.4996 | 0.1222 | 0.4036 | 0.3207 | 0.7971 | 0.6684 | 0.6861 | 0.6890 | 0.7078 | 0.7365 | 0.2050 |
| 0.1114 | 2.24 | 1120 | 0.1905 | 0.5526 | 0.6769 | 0.7941 | nan | 0.7955 | 0.8759 | 0.6366 | 0.8947 | 0.7813 | 0.7845 | 0.6508 | 0.0994 | 0.3162 | 0.6568 | 0.9211 | 0.7643 | 0.7050 | 0.7629 | 0.8151 | 0.7977 | 0.2493 | 0.0 | 0.7142 | 0.7945 | 0.5553 | 0.7484 | 0.6236 | 0.6722 | 0.5467 | 0.0970 | 0.2894 | 0.4530 | 0.7868 | 0.6591 | 0.6571 | 0.6901 | 0.7167 | 0.7352 | 0.2069 |
| 0.0757 | 2.28 | 1140 | 0.2216 | 0.5458 | 0.6760 | 0.7809 | nan | 0.7006 | 0.8731 | 0.6414 | 0.7872 | 0.6130 | 0.8828 | 0.8184 | 0.1886 | 0.5750 | 0.4180 | 0.9033 | 0.8910 | 0.6235 | 0.7955 | 0.7737 | 0.7658 | 0.2404 | 0.0 | 0.6697 | 0.7931 | 0.5672 | 0.7090 | 0.5666 | 0.7073 | 0.5092 | 0.1636 | 0.4196 | 0.3611 | 0.7910 | 0.6391 | 0.5870 | 0.7086 | 0.7117 | 0.7096 | 0.2109 |
| 0.0551 | 2.32 | 1160 | 0.2090 | 0.5627 | 0.7010 | 0.7837 | nan | 0.8745 | 0.9012 | 0.6052 | 0.7677 | 0.6776 | 0.8074 | 0.8089 | 0.2178 | 0.4269 | 0.6106 | 0.8998 | 0.7038 | 0.8525 | 0.8516 | 0.7745 | 0.8010 | 0.3363 | 0.0 | 0.7143 | 0.7934 | 0.5484 | 0.6976 | 0.5691 | 0.7044 | 0.5204 | 0.1995 | 0.3665 | 0.4422 | 0.7764 | 0.6567 | 0.7059 | 0.7163 | 0.7137 | 0.7323 | 0.2721 |
| 0.0936 | 2.36 | 1180 | 0.2165 | 0.5574 | 0.6867 | 0.7878 | nan | 0.7461 | 0.8914 | 0.5665 | 0.8649 | 0.6354 | 0.7483 | 0.7363 | 0.1586 | 0.5903 | 0.3687 | 0.9141 | 0.8447 | 0.7667 | 0.8507 | 0.7891 | 0.7414 | 0.4599 | 0.0 | 0.7022 | 0.7991 | 0.5241 | 0.7179 | 0.5839 | 0.6630 | 0.5364 | 0.1484 | 0.4303 | 0.3375 | 0.7782 | 0.6839 | 0.6968 | 0.7225 | 0.7219 | 0.7012 | 0.2853 |
| 0.2249 | 2.4 | 1200 | 0.1985 | 0.5576 | 0.6820 | 0.7858 | nan | 0.7479 | 0.8644 | 0.6423 | 0.8948 | 0.5762 | 0.7743 | 0.6383 | 0.2730 | 0.4054 | 0.5883 | 0.9116 | 0.8846 | 0.7431 | 0.8103 | 0.7955 | 0.8559 | 0.1886 | 0.0 | 0.6950 | 0.7889 | 0.5656 | 0.7334 | 0.5212 | 0.6682 | 0.4872 | 0.2366 | 0.3478 | 0.4438 | 0.7828 | 0.6917 | 0.6892 | 0.7223 | 0.7322 | 0.7515 | 0.1796 |
| 0.1143 | 2.44 | 1220 | 0.2132 | 0.5542 | 0.6838 | 0.7695 | nan | 0.7928 | 0.8792 | 0.6912 | 0.7460 | 0.6283 | 0.8408 | 0.7820 | 0.2448 | 0.4905 | 0.4794 | 0.8976 | 0.7917 | 0.8155 | 0.8065 | 0.8147 | 0.7629 | 0.1613 | 0.0 | 0.7049 | 0.7851 | 0.5858 | 0.6884 | 0.5133 | 0.7170 | 0.4776 | 0.2212 | 0.3929 | 0.3954 | 0.7848 | 0.6841 | 0.7051 | 0.7079 | 0.7274 | 0.7252 | 0.1587 |
| 0.2771 | 2.48 | 1240 | 0.2258 | 0.5580 | 0.6880 | 0.7782 | nan | 0.8725 | 0.8834 | 0.7124 | 0.8679 | 0.4498 | 0.7580 | 0.7352 | 0.2542 | 0.4660 | 0.5536 | 0.8802 | 0.8435 | 0.7798 | 0.8040 | 0.7906 | 0.7847 | 0.2596 | 0.0 | 0.7281 | 0.7984 | 0.5992 | 0.7209 | 0.4263 | 0.6651 | 0.4859 | 0.2339 | 0.3893 | 0.4403 | 0.7874 | 0.6971 | 0.7040 | 0.7042 | 0.7258 | 0.7388 | 0.1998 |
| 0.1988 | 2.52 | 1260 | 0.2129 | 0.5508 | 0.6813 | 0.7733 | nan | 0.8449 | 0.8465 | 0.6716 | 0.7666 | 0.7912 | 0.7598 | 0.7918 | 0.1262 | 0.4035 | 0.5711 | 0.9015 | 0.7580 | 0.8154 | 0.7535 | 0.8030 | 0.7797 | 0.1979 | 0.0 | 0.6909 | 0.7793 | 0.5838 | 0.6927 | 0.5898 | 0.6771 | 0.5041 | 0.1199 | 0.3521 | 0.4372 | 0.7785 | 0.6728 | 0.6947 | 0.6964 | 0.7248 | 0.7309 | 0.1903 |
| 0.0679 | 2.56 | 1280 | 0.1937 | 0.5683 | 0.6963 | 0.7955 | nan | 0.7422 | 0.9044 | 0.6691 | 0.8294 | 0.6163 | 0.8310 | 0.7917 | 0.3324 | 0.6376 | 0.3930 | 0.9014 | 0.8285 | 0.7713 | 0.8048 | 0.8271 | 0.7844 | 0.1731 | 0.0 | 0.6872 | 0.7986 | 0.5810 | 0.7385 | 0.5481 | 0.7185 | 0.5452 | 0.2847 | 0.4488 | 0.3568 | 0.7849 | 0.6938 | 0.6977 | 0.7127 | 0.7261 | 0.7367 | 0.1710 |
| 0.0815 | 2.6 | 1300 | 0.1993 | 0.5763 | 0.7156 | 0.7826 | nan | 0.7970 | 0.8772 | 0.7409 | 0.7964 | 0.5757 | 0.8128 | 0.8230 | 0.3708 | 0.4442 | 0.6099 | 0.8871 | 0.7767 | 0.7949 | 0.8140 | 0.8029 | 0.7646 | 0.4768 | 0.0 | 0.7016 | 0.7953 | 0.5979 | 0.7150 | 0.5049 | 0.7142 | 0.5156 | 0.3068 | 0.3891 | 0.4637 | 0.7945 | 0.6853 | 0.7042 | 0.7075 | 0.7254 | 0.7177 | 0.3345 |
| 0.0705 | 2.64 | 1320 | 0.1949 | 0.5713 | 0.7021 | 0.7976 | nan | 0.7553 | 0.8927 | 0.5885 | 0.8530 | 0.6004 | 0.8552 | 0.7297 | 0.4790 | 0.6650 | 0.3765 | 0.9130 | 0.8525 | 0.7707 | 0.8690 | 0.7700 | 0.7959 | 0.1701 | 0.0 | 0.7081 | 0.8047 | 0.5361 | 0.7416 | 0.5569 | 0.7221 | 0.5327 | 0.3904 | 0.4541 | 0.3455 | 0.7975 | 0.6906 | 0.6955 | 0.6991 | 0.7043 | 0.7369 | 0.1673 |
| 0.0785 | 2.68 | 1340 | 0.2041 | 0.5795 | 0.7097 | 0.7964 | nan | 0.8035 | 0.9029 | 0.6566 | 0.8325 | 0.5972 | 0.8503 | 0.7806 | 0.4603 | 0.4654 | 0.6184 | 0.8752 | 0.8377 | 0.6987 | 0.7804 | 0.8239 | 0.8514 | 0.2307 | 0.0 | 0.7323 | 0.8038 | 0.5765 | 0.7379 | 0.5414 | 0.7289 | 0.5339 | 0.3700 | 0.3978 | 0.4754 | 0.8028 | 0.6705 | 0.6539 | 0.7093 | 0.7269 | 0.7478 | 0.2222 |
| 0.1076 | 2.72 | 1360 | 0.1929 | 0.5838 | 0.7190 | 0.8072 | nan | 0.6902 | 0.8919 | 0.6362 | 0.8790 | 0.7117 | 0.8261 | 0.6784 | 0.4480 | 0.6431 | 0.4944 | 0.9088 | 0.8265 | 0.7479 | 0.8457 | 0.8242 | 0.8532 | 0.3170 | 0.0 | 0.6566 | 0.7966 | 0.5662 | 0.7594 | 0.6488 | 0.6928 | 0.5625 | 0.3419 | 0.4482 | 0.4200 | 0.7937 | 0.6759 | 0.6761 | 0.7319 | 0.7342 | 0.7486 | 0.2551 |
| 0.1436 | 2.76 | 1380 | 0.2300 | 0.5385 | 0.6686 | 0.7745 | nan | 0.7836 | 0.9007 | 0.6214 | 0.7997 | 0.6169 | 0.8014 | 0.8452 | 0.1419 | 0.3989 | 0.6709 | 0.8971 | 0.4475 | 0.9195 | 0.7890 | 0.8211 | 0.6318 | 0.2804 | 0.0 | 0.7015 | 0.8036 | 0.5603 | 0.7213 | 0.5128 | 0.7149 | 0.5244 | 0.1311 | 0.3619 | 0.4863 | 0.7927 | 0.4435 | 0.6090 | 0.7179 | 0.7295 | 0.6180 | 0.2642 |
| 0.1067 | 2.8 | 1400 | 0.1957 | 0.5652 | 0.7049 | 0.7881 | nan | 0.8524 | 0.8639 | 0.7524 | 0.8659 | 0.6098 | 0.8053 | 0.6721 | 0.2178 | 0.4882 | 0.5218 | 0.8987 | 0.8355 | 0.7302 | 0.8198 | 0.8127 | 0.8579 | 0.3791 | 0.0 | 0.6970 | 0.7926 | 0.6030 | 0.7407 | 0.5254 | 0.7052 | 0.4947 | 0.1865 | 0.4082 | 0.4450 | 0.7945 | 0.6695 | 0.6767 | 0.7171 | 0.7172 | 0.7042 | 0.2960 |
| 0.0719 | 2.84 | 1420 | 0.2357 | 0.5517 | 0.6760 | 0.7766 | nan | 0.8245 | 0.9166 | 0.6213 | 0.8075 | 0.5353 | 0.7805 | 0.8185 | 0.1425 | 0.4855 | 0.5586 | 0.8749 | 0.7612 | 0.7448 | 0.8053 | 0.8224 | 0.7441 | 0.2490 | 0.0 | 0.7198 | 0.8016 | 0.5629 | 0.7240 | 0.4794 | 0.6637 | 0.4917 | 0.1346 | 0.4047 | 0.4592 | 0.7837 | 0.6594 | 0.6719 | 0.7211 | 0.7227 | 0.6954 | 0.2352 |
| 0.1557 | 2.88 | 1440 | 0.2600 | 0.5491 | 0.6861 | 0.7593 | nan | 0.8334 | 0.8869 | 0.6552 | 0.7548 | 0.4025 | 0.7557 | 0.8423 | 0.1417 | 0.5662 | 0.5345 | 0.9121 | 0.8045 | 0.7816 | 0.8586 | 0.7752 | 0.7765 | 0.3824 | 0.0 | 0.7396 | 0.7964 | 0.5758 | 0.6832 | 0.3855 | 0.6560 | 0.4511 | 0.1362 | 0.4422 | 0.4574 | 0.7852 | 0.6753 | 0.6876 | 0.7167 | 0.7123 | 0.7135 | 0.2702 |
| 0.0667 | 2.92 | 1460 | 0.2077 | 0.5685 | 0.7011 | 0.7889 | nan | 0.8600 | 0.9046 | 0.7236 | 0.8549 | 0.4918 | 0.7826 | 0.7566 | 0.2867 | 0.5245 | 0.5654 | 0.8922 | 0.7801 | 0.8728 | 0.7829 | 0.8062 | 0.7907 | 0.2428 | 0.0 | 0.7300 | 0.7920 | 0.5978 | 0.7410 | 0.4591 | 0.6792 | 0.5235 | 0.2351 | 0.4322 | 0.4714 | 0.7826 | 0.6802 | 0.7142 | 0.7103 | 0.7247 | 0.7266 | 0.2322 |
| 0.0599 | 2.96 | 1480 | 0.1890 | 0.5706 | 0.7078 | 0.7904 | nan | 0.8265 | 0.8570 | 0.7718 | 0.8348 | 0.7044 | 0.8015 | 0.7367 | 0.2153 | 0.3547 | 0.6748 | 0.8968 | 0.8277 | 0.7836 | 0.8193 | 0.7976 | 0.7714 | 0.3590 | 0.0 | 0.7146 | 0.7867 | 0.6005 | 0.7420 | 0.5740 | 0.7028 | 0.5212 | 0.1847 | 0.3318 | 0.4857 | 0.7959 | 0.6741 | 0.6980 | 0.7252 | 0.7153 | 0.7289 | 0.2884 |
| 0.1253 | 3.0 | 1500 | 0.2008 | 0.5730 | 0.7009 | 0.7958 | nan | 0.7983 | 0.9092 | 0.6277 | 0.8403 | 0.5076 | 0.8389 | 0.8069 | 0.2118 | 0.5775 | 0.5092 | 0.8948 | 0.8165 | 0.7955 | 0.8217 | 0.7863 | 0.7737 | 0.3995 | 0.0 | 0.7192 | 0.8033 | 0.5639 | 0.7514 | 0.4760 | 0.7203 | 0.5251 | 0.2002 | 0.4440 | 0.4414 | 0.8016 | 0.6836 | 0.7215 | 0.7145 | 0.7223 | 0.7263 | 0.3001 |
| 0.0902 | 3.04 | 1520 | 0.2002 | 0.5771 | 0.7138 | 0.7951 | nan | 0.8105 | 0.8611 | 0.6681 | 0.8355 | 0.6470 | 0.8293 | 0.7263 | 0.2985 | 0.5198 | 0.6254 | 0.9141 | 0.8738 | 0.7614 | 0.8100 | 0.8081 | 0.8212 | 0.3252 | 0.0 | 0.6917 | 0.7907 | 0.5827 | 0.7466 | 0.5515 | 0.7143 | 0.5243 | 0.2417 | 0.4221 | 0.4795 | 0.7980 | 0.6762 | 0.6961 | 0.7176 | 0.7377 | 0.7402 | 0.2770 |
| 0.0793 | 3.08 | 1540 | 0.2097 | 0.5740 | 0.6960 | 0.7942 | nan | 0.7866 | 0.8973 | 0.5933 | 0.8581 | 0.5793 | 0.8686 | 0.7112 | 0.2830 | 0.5339 | 0.5274 | 0.9094 | 0.7455 | 0.8031 | 0.8050 | 0.7807 | 0.7956 | 0.3542 | 0.0 | 0.7338 | 0.8013 | 0.5453 | 0.7551 | 0.5228 | 0.7043 | 0.5216 | 0.2388 | 0.4344 | 0.4474 | 0.8099 | 0.6517 | 0.7028 | 0.7118 | 0.7277 | 0.7302 | 0.2923 |
| 0.1151 | 3.12 | 1560 | 0.2098 | 0.5839 | 0.7069 | 0.8009 | nan | 0.7985 | 0.8944 | 0.6654 | 0.8527 | 0.5810 | 0.8246 | 0.7654 | 0.2375 | 0.5160 | 0.5706 | 0.9016 | 0.7949 | 0.8408 | 0.8249 | 0.8197 | 0.8106 | 0.3179 | 0.0 | 0.7424 | 0.8056 | 0.5829 | 0.7540 | 0.5176 | 0.7170 | 0.5205 | 0.2154 | 0.4395 | 0.4741 | 0.8142 | 0.6893 | 0.7262 | 0.7221 | 0.7486 | 0.7490 | 0.2920 |
| 0.0521 | 3.16 | 1580 | 0.2137 | 0.5824 | 0.7149 | 0.7968 | nan | 0.8334 | 0.8909 | 0.7298 | 0.8236 | 0.5910 | 0.8047 | 0.7947 | 0.2071 | 0.6304 | 0.5506 | 0.8957 | 0.7867 | 0.8203 | 0.8369 | 0.8054 | 0.8381 | 0.3143 | 0.0 | 0.7455 | 0.8052 | 0.6026 | 0.7391 | 0.5304 | 0.7111 | 0.5198 | 0.1846 | 0.4810 | 0.4572 | 0.8158 | 0.6975 | 0.7236 | 0.7188 | 0.7349 | 0.7416 | 0.2748 |
| 0.0974 | 3.2 | 1600 | 0.2145 | 0.5750 | 0.7010 | 0.7944 | nan | 0.8038 | 0.8812 | 0.5595 | 0.8303 | 0.5730 | 0.8460 | 0.7588 | 0.2021 | 0.5587 | 0.5178 | 0.9135 | 0.8271 | 0.8278 | 0.8214 | 0.8236 | 0.7844 | 0.3874 | 0.0 | 0.7228 | 0.7942 | 0.5250 | 0.7341 | 0.5138 | 0.7236 | 0.5115 | 0.1847 | 0.4478 | 0.4420 | 0.8113 | 0.6973 | 0.7192 | 0.7389 | 0.7447 | 0.7376 | 0.3004 |
| 0.0535 | 3.24 | 1620 | 0.1986 | 0.5803 | 0.7191 | 0.8025 | nan | 0.8644 | 0.8970 | 0.7361 | 0.8454 | 0.7897 | 0.7807 | 0.7109 | 0.1309 | 0.5688 | 0.5623 | 0.8898 | 0.8323 | 0.7588 | 0.8089 | 0.8493 | 0.8091 | 0.3906 | 0.0 | 0.7053 | 0.7997 | 0.6082 | 0.7580 | 0.5811 | 0.6955 | 0.5477 | 0.1201 | 0.4516 | 0.4580 | 0.8204 | 0.6752 | 0.6925 | 0.7320 | 0.7468 | 0.7445 | 0.3084 |
| 0.072 | 3.28 | 1640 | 0.1961 | 0.5782 | 0.7140 | 0.8020 | nan | 0.8503 | 0.8473 | 0.7632 | 0.8730 | 0.6862 | 0.8199 | 0.7197 | 0.1571 | 0.5890 | 0.5258 | 0.8817 | 0.8225 | 0.7920 | 0.8056 | 0.8447 | 0.7937 | 0.3655 | 0.0 | 0.7110 | 0.7839 | 0.6097 | 0.7675 | 0.5405 | 0.7156 | 0.5373 | 0.1418 | 0.4611 | 0.4439 | 0.8183 | 0.6797 | 0.7040 | 0.7167 | 0.7379 | 0.7420 | 0.2963 |
| 0.0929 | 3.32 | 1660 | 0.2014 | 0.5753 | 0.7005 | 0.8059 | nan | 0.8069 | 0.9063 | 0.6184 | 0.8649 | 0.7200 | 0.8257 | 0.7258 | 0.1376 | 0.4722 | 0.6033 | 0.9044 | 0.8147 | 0.7698 | 0.8141 | 0.8313 | 0.7646 | 0.3288 | 0.0 | 0.7399 | 0.8079 | 0.5636 | 0.7677 | 0.5656 | 0.7075 | 0.5457 | 0.1288 | 0.4001 | 0.4691 | 0.8136 | 0.6855 | 0.6978 | 0.7241 | 0.7291 | 0.7303 | 0.2799 |
| 0.0883 | 3.36 | 1680 | 0.2020 | 0.5681 | 0.6953 | 0.8032 | nan | 0.6691 | 0.8898 | 0.7268 | 0.8802 | 0.6571 | 0.8365 | 0.7110 | 0.2121 | 0.4769 | 0.6395 | 0.9106 | 0.7869 | 0.8422 | 0.8619 | 0.7270 | 0.7651 | 0.2267 | 0.0 | 0.6504 | 0.7967 | 0.6055 | 0.7711 | 0.5475 | 0.7188 | 0.5390 | 0.1922 | 0.4080 | 0.4835 | 0.8028 | 0.6882 | 0.7258 | 0.6887 | 0.6628 | 0.7315 | 0.2127 |
| 0.0795 | 3.4 | 1700 | 0.2029 | 0.5795 | 0.7073 | 0.8019 | nan | 0.7438 | 0.8881 | 0.7527 | 0.8645 | 0.6712 | 0.8071 | 0.7493 | 0.2007 | 0.5927 | 0.5268 | 0.8968 | 0.8016 | 0.8051 | 0.8163 | 0.7442 | 0.8168 | 0.3461 | 0.0 | 0.7033 | 0.8013 | 0.6111 | 0.7618 | 0.5426 | 0.7030 | 0.5380 | 0.1790 | 0.4673 | 0.4503 | 0.8021 | 0.7002 | 0.7318 | 0.6986 | 0.6781 | 0.7602 | 0.3015 |
| 0.0773 | 3.44 | 1720 | 0.1989 | 0.5812 | 0.7117 | 0.8050 | nan | 0.8647 | 0.8811 | 0.6571 | 0.8473 | 0.7655 | 0.8081 | 0.7508 | 0.2 | 0.5806 | 0.5543 | 0.8992 | 0.8711 | 0.7839 | 0.8109 | 0.7591 | 0.7706 | 0.2941 | 0.0 | 0.7410 | 0.8039 | 0.5819 | 0.7591 | 0.5928 | 0.7198 | 0.5427 | 0.1720 | 0.4644 | 0.4652 | 0.8028 | 0.7036 | 0.7189 | 0.7045 | 0.6864 | 0.7301 | 0.2720 |
| 0.0627 | 3.48 | 1740 | 0.1922 | 0.5946 | 0.7326 | 0.8082 | nan | 0.8001 | 0.9026 | 0.7357 | 0.8662 | 0.7616 | 0.7701 | 0.7071 | 0.3307 | 0.5833 | 0.5425 | 0.8858 | 0.8232 | 0.8421 | 0.8466 | 0.7911 | 0.8314 | 0.4343 | 0.0 | 0.6934 | 0.8002 | 0.6045 | 0.7542 | 0.6357 | 0.6823 | 0.5510 | 0.2671 | 0.4622 | 0.4621 | 0.8064 | 0.7109 | 0.7429 | 0.7272 | 0.7122 | 0.7564 | 0.3336 |
| 0.0901 | 3.52 | 1760 | 0.1963 | 0.5834 | 0.7287 | 0.8048 | nan | 0.7844 | 0.8874 | 0.7435 | 0.8876 | 0.7874 | 0.7760 | 0.6757 | 0.5528 | 0.4646 | 0.6739 | 0.9074 | 0.8113 | 0.7329 | 0.8419 | 0.7806 | 0.8012 | 0.2792 | 0.0 | 0.7058 | 0.8024 | 0.6052 | 0.7672 | 0.6304 | 0.6697 | 0.5552 | 0.2771 | 0.4063 | 0.4888 | 0.8120 | 0.6742 | 0.6810 | 0.7174 | 0.7099 | 0.7422 | 0.2573 |
| 0.0945 | 3.56 | 1780 | 0.2033 | 0.5814 | 0.7128 | 0.8026 | nan | 0.7737 | 0.8804 | 0.7259 | 0.8444 | 0.7017 | 0.7875 | 0.7936 | 0.2431 | 0.5968 | 0.5278 | 0.8723 | 0.8753 | 0.7400 | 0.8484 | 0.7847 | 0.8230 | 0.2984 | 0.0 | 0.6802 | 0.7959 | 0.6064 | 0.7510 | 0.6027 | 0.6942 | 0.5622 | 0.2123 | 0.4806 | 0.4601 | 0.8139 | 0.6697 | 0.6731 | 0.7165 | 0.7166 | 0.7550 | 0.2749 |
| 0.0621 | 3.6 | 1800 | 0.2150 | 0.5739 | 0.7002 | 0.7936 | nan | 0.7455 | 0.8958 | 0.6267 | 0.8290 | 0.4667 | 0.8545 | 0.7940 | 0.2158 | 0.5564 | 0.5418 | 0.9127 | 0.7723 | 0.8698 | 0.8493 | 0.8622 | 0.7568 | 0.3538 | 0.0 | 0.6987 | 0.8035 | 0.5693 | 0.7468 | 0.4405 | 0.7120 | 0.5078 | 0.1976 | 0.4466 | 0.4550 | 0.8211 | 0.6854 | 0.7335 | 0.7358 | 0.7513 | 0.7141 | 0.3113 |
| 0.2598 | 3.64 | 1820 | 0.2038 | 0.5845 | 0.7150 | 0.7998 | nan | 0.7778 | 0.8901 | 0.7231 | 0.8247 | 0.6904 | 0.7825 | 0.8005 | 0.2124 | 0.6003 | 0.5248 | 0.8983 | 0.8224 | 0.8289 | 0.8407 | 0.8113 | 0.7780 | 0.3483 | 0.0 | 0.6945 | 0.8005 | 0.6083 | 0.7402 | 0.5578 | 0.7011 | 0.5394 | 0.1800 | 0.4688 | 0.4444 | 0.8234 | 0.7047 | 0.7372 | 0.7436 | 0.7471 | 0.7255 | 0.3038 |
| 0.0579 | 3.68 | 1840 | 0.2159 | 0.5795 | 0.7123 | 0.7900 | nan | 0.8404 | 0.8889 | 0.6393 | 0.8015 | 0.7077 | 0.7805 | 0.7668 | 0.2314 | 0.5816 | 0.5545 | 0.9067 | 0.7842 | 0.8706 | 0.8527 | 0.7892 | 0.7389 | 0.3750 | 0.0 | 0.7195 | 0.8002 | 0.5789 | 0.7270 | 0.5200 | 0.6983 | 0.5056 | 0.1995 | 0.4739 | 0.4656 | 0.8146 | 0.6987 | 0.7419 | 0.7428 | 0.7333 | 0.7015 | 0.3093 |
| 0.178 | 3.72 | 1860 | 0.2051 | 0.5807 | 0.7160 | 0.7960 | nan | 0.8871 | 0.8580 | 0.7123 | 0.8313 | 0.6923 | 0.8340 | 0.7196 | 0.2726 | 0.5479 | 0.5092 | 0.9005 | 0.7924 | 0.8467 | 0.8338 | 0.8060 | 0.8261 | 0.3020 | 0.0 | 0.7153 | 0.7931 | 0.6083 | 0.7428 | 0.5218 | 0.6966 | 0.5077 | 0.2297 | 0.4433 | 0.4389 | 0.8253 | 0.7020 | 0.7463 | 0.7383 | 0.7449 | 0.7425 | 0.2560 |
| 0.0652 | 3.76 | 1880 | 0.1907 | 0.5881 | 0.7163 | 0.8079 | nan | 0.7918 | 0.9170 | 0.6292 | 0.8550 | 0.7548 | 0.8023 | 0.7000 | 0.3581 | 0.4405 | 0.6354 | 0.9116 | 0.7540 | 0.8829 | 0.8521 | 0.8078 | 0.8326 | 0.2512 | 0.0 | 0.7321 | 0.8032 | 0.5730 | 0.7583 | 0.6172 | 0.6924 | 0.5500 | 0.2969 | 0.3963 | 0.4849 | 0.8110 | 0.6878 | 0.7372 | 0.7356 | 0.7367 | 0.7462 | 0.2273 |
| 0.0909 | 3.8 | 1900 | 0.2130 | 0.5773 | 0.7080 | 0.7958 | nan | 0.8645 | 0.8670 | 0.6606 | 0.8539 | 0.6938 | 0.7894 | 0.7331 | 0.3307 | 0.5893 | 0.5149 | 0.9035 | 0.7804 | 0.8136 | 0.8174 | 0.8344 | 0.7693 | 0.2204 | 0.0 | 0.7076 | 0.7923 | 0.5894 | 0.7520 | 0.5299 | 0.6777 | 0.5221 | 0.2841 | 0.4775 | 0.4505 | 0.8169 | 0.6857 | 0.7220 | 0.7303 | 0.7335 | 0.7171 | 0.2021 |
| 0.0961 | 3.84 | 1920 | 0.2318 | 0.5699 | 0.7032 | 0.7850 | nan | 0.8585 | 0.8814 | 0.7262 | 0.8201 | 0.4649 | 0.7840 | 0.8384 | 0.2209 | 0.5943 | 0.5827 | 0.9001 | 0.8247 | 0.8078 | 0.8476 | 0.7852 | 0.7388 | 0.2795 | 0.0 | 0.7093 | 0.8043 | 0.6152 | 0.7333 | 0.4218 | 0.6994 | 0.5020 | 0.2123 | 0.4828 | 0.4840 | 0.8139 | 0.6860 | 0.7119 | 0.7325 | 0.7223 | 0.6961 | 0.2304 |
| 0.0786 | 3.88 | 1940 | 0.2128 | 0.5738 | 0.7009 | 0.7950 | nan | 0.8275 | 0.8709 | 0.7395 | 0.8610 | 0.4952 | 0.8088 | 0.7840 | 0.1940 | 0.5403 | 0.5177 | 0.9014 | 0.8490 | 0.8128 | 0.8428 | 0.7945 | 0.8037 | 0.2714 | 0.0 | 0.7236 | 0.8014 | 0.6126 | 0.7543 | 0.4507 | 0.7059 | 0.5309 | 0.1864 | 0.4458 | 0.4492 | 0.8150 | 0.6890 | 0.7151 | 0.7352 | 0.7267 | 0.7343 | 0.2527 |
| 0.0636 | 3.92 | 1960 | 0.2003 | 0.5833 | 0.7262 | 0.7998 | nan | 0.8600 | 0.9029 | 0.7461 | 0.8230 | 0.7772 | 0.7915 | 0.7836 | 0.2790 | 0.6805 | 0.5158 | 0.8845 | 0.9083 | 0.5324 | 0.8158 | 0.8110 | 0.8367 | 0.3969 | 0.0 | 0.7663 | 0.8098 | 0.6200 | 0.7428 | 0.6096 | 0.7033 | 0.5636 | 0.2286 | 0.5014 | 0.4624 | 0.8116 | 0.6112 | 0.5186 | 0.7507 | 0.7531 | 0.7431 | 0.3027 |
| 0.0589 | 3.96 | 1980 | 0.1973 | 0.5911 | 0.7251 | 0.8140 | nan | 0.8461 | 0.8977 | 0.7605 | 0.8543 | 0.7629 | 0.8871 | 0.7317 | 0.2834 | 0.4014 | 0.6770 | 0.8954 | 0.6367 | 0.8749 | 0.8640 | 0.8419 | 0.7840 | 0.3271 | 0.0 | 0.7618 | 0.8090 | 0.6166 | 0.7608 | 0.6512 | 0.7371 | 0.5648 | 0.2335 | 0.3683 | 0.4960 | 0.8055 | 0.6120 | 0.6862 | 0.7559 | 0.7535 | 0.7329 | 0.2949 |
| 0.0517 | 4.0 | 2000 | 0.1941 | 0.5891 | 0.7204 | 0.8118 | nan | 0.8225 | 0.8958 | 0.7789 | 0.8578 | 0.7435 | 0.8709 | 0.7380 | 0.2309 | 0.4791 | 0.6296 | 0.9095 | 0.6344 | 0.8537 | 0.8293 | 0.8547 | 0.7902 | 0.3280 | 0.0 | 0.7503 | 0.8103 | 0.6221 | 0.7556 | 0.6648 | 0.7287 | 0.5669 | 0.1981 | 0.4191 | 0.4888 | 0.8081 | 0.6006 | 0.6729 | 0.7420 | 0.7530 | 0.7366 | 0.2853 |
| 0.0422 | 4.04 | 2020 | 0.2032 | 0.5913 | 0.7192 | 0.8093 | nan | 0.8231 | 0.9095 | 0.7218 | 0.8538 | 0.6817 | 0.8363 | 0.7633 | 0.2917 | 0.6304 | 0.5313 | 0.8938 | 0.8721 | 0.7443 | 0.8296 | 0.8005 | 0.7821 | 0.2613 | 0.0 | 0.7468 | 0.8084 | 0.6122 | 0.7520 | 0.6243 | 0.7129 | 0.5594 | 0.2464 | 0.4930 | 0.4699 | 0.8102 | 0.6812 | 0.6865 | 0.7350 | 0.7349 | 0.7280 | 0.2428 |
| 0.0861 | 4.08 | 2040 | 0.1949 | 0.6051 | 0.7314 | 0.8172 | nan | 0.8581 | 0.8851 | 0.6496 | 0.8789 | 0.7340 | 0.8261 | 0.7216 | 0.3758 | 0.5946 | 0.6085 | 0.9150 | 0.7740 | 0.8651 | 0.8405 | 0.8456 | 0.7810 | 0.2805 | 0.0 | 0.7568 | 0.8076 | 0.5824 | 0.7632 | 0.6593 | 0.7058 | 0.5758 | 0.3100 | 0.4879 | 0.5035 | 0.8131 | 0.6936 | 0.7382 | 0.7537 | 0.7513 | 0.7339 | 0.2559 |
| 0.1004 | 4.12 | 2060 | 0.1849 | 0.6016 | 0.7348 | 0.8130 | nan | 0.8772 | 0.8872 | 0.7109 | 0.8664 | 0.7335 | 0.8124 | 0.7212 | 0.3150 | 0.5658 | 0.5974 | 0.8978 | 0.8494 | 0.8242 | 0.8454 | 0.7727 | 0.8369 | 0.3779 | 0.0 | 0.7377 | 0.8023 | 0.6101 | 0.7663 | 0.6085 | 0.7008 | 0.5652 | 0.2773 | 0.4760 | 0.5018 | 0.8146 | 0.7021 | 0.7407 | 0.7424 | 0.7256 | 0.7571 | 0.2995 |
| 0.0719 | 4.16 | 2080 | 0.1912 | 0.6032 | 0.7298 | 0.8135 | nan | 0.8346 | 0.8875 | 0.7111 | 0.8822 | 0.6972 | 0.8197 | 0.7397 | 0.3803 | 0.4940 | 0.6159 | 0.8967 | 0.7861 | 0.8263 | 0.8352 | 0.8367 | 0.7981 | 0.3657 | 0.0 | 0.7349 | 0.8040 | 0.6079 | 0.7695 | 0.6152 | 0.7048 | 0.5781 | 0.3232 | 0.4266 | 0.4933 | 0.8114 | 0.7068 | 0.7369 | 0.7475 | 0.7395 | 0.7458 | 0.3123 |
| 0.224 | 4.2 | 2100 | 0.1948 | 0.6021 | 0.7505 | 0.8035 | nan | 0.8737 | 0.8728 | 0.7274 | 0.8104 | 0.6621 | 0.8323 | 0.7839 | 0.3911 | 0.5970 | 0.5556 | 0.9130 | 0.8385 | 0.8260 | 0.8199 | 0.8032 | 0.8605 | 0.5910 | 0.0 | 0.7477 | 0.7968 | 0.6154 | 0.7411 | 0.5771 | 0.7240 | 0.5406 | 0.3181 | 0.4838 | 0.4865 | 0.8125 | 0.7163 | 0.7370 | 0.7422 | 0.7408 | 0.7673 | 0.2905 |
| 0.0466 | 4.24 | 2120 | 0.2434 | 0.5946 | 0.7268 | 0.7963 | nan | 0.8764 | 0.9095 | 0.6823 | 0.8218 | 0.4696 | 0.7933 | 0.8337 | 0.3116 | 0.5430 | 0.6394 | 0.8914 | 0.8331 | 0.8339 | 0.8381 | 0.8504 | 0.7937 | 0.4342 | 0.0 | 0.7687 | 0.8141 | 0.6015 | 0.7469 | 0.4352 | 0.7082 | 0.4933 | 0.2877 | 0.4605 | 0.5188 | 0.8125 | 0.7242 | 0.7473 | 0.7572 | 0.7617 | 0.7461 | 0.3184 |
| 0.0539 | 4.28 | 2140 | 0.1896 | 0.6050 | 0.7340 | 0.8169 | nan | 0.8388 | 0.9077 | 0.6648 | 0.8533 | 0.6652 | 0.8309 | 0.7608 | 0.3731 | 0.5600 | 0.6177 | 0.9098 | 0.8182 | 0.8691 | 0.8359 | 0.8473 | 0.8432 | 0.2830 | 0.0 | 0.7588 | 0.8153 | 0.5957 | 0.7674 | 0.5456 | 0.7155 | 0.5559 | 0.2860 | 0.4728 | 0.5089 | 0.8094 | 0.7313 | 0.7640 | 0.7594 | 0.7571 | 0.7767 | 0.2705 |
| 0.059 | 4.32 | 2160 | 0.1847 | 0.6109 | 0.7484 | 0.8196 | nan | 0.8403 | 0.8857 | 0.7280 | 0.8728 | 0.8208 | 0.8416 | 0.6962 | 0.5104 | 0.5866 | 0.5678 | 0.9112 | 0.8835 | 0.7349 | 0.8507 | 0.8213 | 0.8171 | 0.3544 | 0.0 | 0.7478 | 0.8066 | 0.6136 | 0.7724 | 0.6560 | 0.7165 | 0.5754 | 0.3698 | 0.4771 | 0.4890 | 0.8076 | 0.6971 | 0.6900 | 0.7560 | 0.7475 | 0.7570 | 0.3171 |
| 0.1197 | 4.36 | 2180 | 0.1876 | 0.6047 | 0.7393 | 0.8149 | nan | 0.8044 | 0.8933 | 0.7389 | 0.8448 | 0.6778 | 0.8412 | 0.7902 | 0.3160 | 0.5677 | 0.6155 | 0.9092 | 0.8380 | 0.8052 | 0.8398 | 0.8433 | 0.8004 | 0.4429 | 0.0 | 0.7342 | 0.8048 | 0.6188 | 0.7600 | 0.6143 | 0.7251 | 0.5925 | 0.2804 | 0.4754 | 0.5111 | 0.7982 | 0.7126 | 0.7249 | 0.7478 | 0.7272 | 0.7579 | 0.2998 |
| 0.0465 | 4.4 | 2200 | 0.1911 | 0.6054 | 0.7314 | 0.8183 | nan | 0.8259 | 0.8737 | 0.7163 | 0.8957 | 0.6328 | 0.8381 | 0.7482 | 0.3173 | 0.6658 | 0.5310 | 0.9127 | 0.8460 | 0.8064 | 0.8194 | 0.8513 | 0.7996 | 0.3532 | 0.0 | 0.7469 | 0.8076 | 0.6081 | 0.7664 | 0.5869 | 0.7234 | 0.5681 | 0.2813 | 0.5096 | 0.4736 | 0.8098 | 0.7253 | 0.7382 | 0.7474 | 0.7536 | 0.7591 | 0.2918 |
| 0.0487 | 4.44 | 2220 | 0.1965 | 0.6013 | 0.7315 | 0.8136 | nan | 0.7788 | 0.8986 | 0.7435 | 0.8289 | 0.6291 | 0.8804 | 0.8127 | 0.2571 | 0.6768 | 0.5054 | 0.9008 | 0.8404 | 0.7823 | 0.8593 | 0.8272 | 0.8242 | 0.3893 | 0.0 | 0.7376 | 0.8085 | 0.6166 | 0.7574 | 0.5702 | 0.7369 | 0.5632 | 0.2343 | 0.5060 | 0.4531 | 0.8089 | 0.7150 | 0.7207 | 0.7511 | 0.7581 | 0.7700 | 0.3161 |
| 0.1179 | 4.48 | 2240 | 0.1887 | 0.5990 | 0.7318 | 0.8132 | nan | 0.8549 | 0.8896 | 0.7258 | 0.8461 | 0.7417 | 0.8238 | 0.7644 | 0.2442 | 0.5182 | 0.6746 | 0.8932 | 0.7816 | 0.8325 | 0.8215 | 0.8220 | 0.8357 | 0.3714 | 0.0 | 0.7284 | 0.8028 | 0.6163 | 0.7562 | 0.6044 | 0.7211 | 0.5610 | 0.2192 | 0.4385 | 0.5071 | 0.8120 | 0.7167 | 0.7340 | 0.7441 | 0.7553 | 0.7684 | 0.2975 |
| 0.0534 | 4.52 | 2260 | 0.2019 | 0.5961 | 0.7289 | 0.7971 | nan | 0.7750 | 0.8870 | 0.6503 | 0.8138 | 0.6035 | 0.7839 | 0.8024 | 0.3672 | 0.6275 | 0.5181 | 0.9029 | 0.8397 | 0.8378 | 0.8522 | 0.8529 | 0.8193 | 0.4577 | 0.0 | 0.7304 | 0.8049 | 0.5836 | 0.7364 | 0.4990 | 0.6986 | 0.5223 | 0.3085 | 0.4876 | 0.4604 | 0.8131 | 0.7311 | 0.7468 | 0.7495 | 0.7642 | 0.7595 | 0.3334 |
| 0.0893 | 4.56 | 2280 | 0.2143 | 0.5987 | 0.7251 | 0.7975 | nan | 0.7382 | 0.8807 | 0.7100 | 0.8223 | 0.5582 | 0.8206 | 0.8070 | 0.4127 | 0.5589 | 0.5561 | 0.9109 | 0.8181 | 0.8803 | 0.8305 | 0.8518 | 0.7708 | 0.4003 | 0.0 | 0.6998 | 0.7978 | 0.6118 | 0.7331 | 0.5165 | 0.7194 | 0.5223 | 0.3504 | 0.4649 | 0.4763 | 0.8118 | 0.7273 | 0.7508 | 0.7484 | 0.7669 | 0.7286 | 0.3511 |
| 0.0443 | 4.6 | 2300 | 0.2107 | 0.6088 | 0.7451 | 0.8079 | nan | 0.8517 | 0.9117 | 0.7681 | 0.7944 | 0.6344 | 0.8661 | 0.8579 | 0.4570 | 0.6486 | 0.5666 | 0.8783 | 0.7970 | 0.7842 | 0.8453 | 0.8396 | 0.8066 | 0.3593 | 0.0 | 0.7495 | 0.8123 | 0.6290 | 0.7319 | 0.5771 | 0.7430 | 0.5452 | 0.3799 | 0.5021 | 0.4816 | 0.8129 | 0.6993 | 0.7201 | 0.7506 | 0.7543 | 0.7490 | 0.3210 |
| 0.0433 | 4.64 | 2320 | 0.1912 | 0.6129 | 0.7392 | 0.8284 | nan | 0.7361 | 0.8932 | 0.6950 | 0.8864 | 0.7410 | 0.8718 | 0.7345 | 0.3977 | 0.5824 | 0.6076 | 0.9056 | 0.8344 | 0.8280 | 0.8070 | 0.8582 | 0.8404 | 0.3467 | 0.0 | 0.6949 | 0.8102 | 0.6119 | 0.7813 | 0.6735 | 0.7293 | 0.6042 | 0.3380 | 0.4804 | 0.4994 | 0.8156 | 0.7139 | 0.7324 | 0.7331 | 0.7432 | 0.7583 | 0.3130 |
| 0.0651 | 4.68 | 2340 | 0.1955 | 0.5984 | 0.7331 | 0.8145 | nan | 0.7781 | 0.8997 | 0.6854 | 0.8605 | 0.7560 | 0.8705 | 0.7164 | 0.3448 | 0.4754 | 0.6191 | 0.9088 | 0.8595 | 0.7697 | 0.8969 | 0.7732 | 0.7595 | 0.4887 | 0.0 | 0.7105 | 0.8075 | 0.6069 | 0.7669 | 0.6593 | 0.7214 | 0.5752 | 0.3071 | 0.4179 | 0.4920 | 0.8140 | 0.6969 | 0.6987 | 0.7080 | 0.7072 | 0.7070 | 0.3752 |
| 0.047 | 4.72 | 2360 | 0.1974 | 0.6030 | 0.7384 | 0.8122 | nan | 0.8279 | 0.8898 | 0.7517 | 0.8304 | 0.7763 | 0.8685 | 0.7752 | 0.3255 | 0.6484 | 0.5347 | 0.9093 | 0.8206 | 0.7810 | 0.7968 | 0.7843 | 0.7683 | 0.4647 | 0.0 | 0.7301 | 0.8074 | 0.6251 | 0.7479 | 0.6533 | 0.7407 | 0.5601 | 0.2951 | 0.4976 | 0.4673 | 0.8199 | 0.6923 | 0.7070 | 0.6976 | 0.7268 | 0.7155 | 0.3707 |
| 0.0631 | 4.76 | 2380 | 0.1954 | 0.5960 | 0.7307 | 0.8121 | nan | 0.8168 | 0.8874 | 0.7811 | 0.8587 | 0.6200 | 0.8873 | 0.7910 | 0.3364 | 0.5003 | 0.5346 | 0.8992 | 0.7987 | 0.8182 | 0.8688 | 0.7974 | 0.7612 | 0.4653 | 0.0 | 0.7194 | 0.8007 | 0.6240 | 0.7744 | 0.5822 | 0.7310 | 0.5696 | 0.3095 | 0.4293 | 0.4671 | 0.8212 | 0.6866 | 0.7134 | 0.7140 | 0.7220 | 0.7142 | 0.3493 |
| 0.1457 | 4.8 | 2400 | 0.1905 | 0.6017 | 0.7349 | 0.8122 | nan | 0.8354 | 0.8926 | 0.6969 | 0.8269 | 0.7461 | 0.8505 | 0.8060 | 0.2994 | 0.5935 | 0.6066 | 0.9038 | 0.7462 | 0.7689 | 0.8211 | 0.8379 | 0.8154 | 0.4459 | 0.0 | 0.7296 | 0.8007 | 0.6096 | 0.7530 | 0.6517 | 0.7186 | 0.5810 | 0.2758 | 0.4734 | 0.4956 | 0.8201 | 0.6783 | 0.6944 | 0.7232 | 0.7516 | 0.7421 | 0.3313 |
| 0.096 | 4.84 | 2420 | 0.1839 | 0.6017 | 0.7401 | 0.8149 | nan | 0.7803 | 0.9063 | 0.6768 | 0.8360 | 0.7918 | 0.8266 | 0.7649 | 0.3966 | 0.4742 | 0.5942 | 0.9145 | 0.8588 | 0.7922 | 0.8473 | 0.8116 | 0.8137 | 0.4953 | 0.0 | 0.7268 | 0.8094 | 0.6010 | 0.7528 | 0.6775 | 0.7149 | 0.5818 | 0.3183 | 0.4211 | 0.4933 | 0.8070 | 0.7010 | 0.7037 | 0.7242 | 0.7304 | 0.7427 | 0.3250 |
| 0.1249 | 4.88 | 2440 | 0.1843 | 0.6077 | 0.7428 | 0.8183 | nan | 0.7991 | 0.8892 | 0.7353 | 0.8558 | 0.7765 | 0.8298 | 0.7553 | 0.3874 | 0.6074 | 0.5186 | 0.8991 | 0.8337 | 0.8211 | 0.8479 | 0.8120 | 0.8344 | 0.4250 | 0.0 | 0.7245 | 0.8070 | 0.6209 | 0.7615 | 0.6935 | 0.7093 | 0.5903 | 0.3295 | 0.4814 | 0.4554 | 0.8175 | 0.7059 | 0.7231 | 0.7149 | 0.7316 | 0.7606 | 0.3115 |
| 0.0401 | 4.92 | 2460 | 0.1957 | 0.5969 | 0.7328 | 0.8131 | nan | 0.8428 | 0.8672 | 0.7114 | 0.8465 | 0.7447 | 0.8701 | 0.7830 | 0.3845 | 0.4677 | 0.5891 | 0.9165 | 0.8389 | 0.7478 | 0.8294 | 0.8362 | 0.7763 | 0.4048 | 0.0 | 0.7000 | 0.7963 | 0.6113 | 0.7632 | 0.6725 | 0.7203 | 0.5890 | 0.3243 | 0.4029 | 0.4698 | 0.8106 | 0.6811 | 0.6832 | 0.7295 | 0.7424 | 0.7313 | 0.3166 |
| 0.0957 | 4.96 | 2480 | 0.1954 | 0.5970 | 0.7327 | 0.8071 | nan | 0.7625 | 0.9070 | 0.7343 | 0.8071 | 0.7656 | 0.8036 | 0.8320 | 0.3442 | 0.6363 | 0.5262 | 0.8882 | 0.8642 | 0.7561 | 0.8266 | 0.8168 | 0.7836 | 0.4017 | 0.0 | 0.7029 | 0.8052 | 0.6222 | 0.7440 | 0.6464 | 0.7212 | 0.5705 | 0.2782 | 0.4840 | 0.4610 | 0.8116 | 0.6883 | 0.6958 | 0.7341 | 0.7438 | 0.7305 | 0.3055 |
| 0.0839 | 5.0 | 2500 | 0.1927 | 0.5988 | 0.7278 | 0.8200 | nan | 0.8173 | 0.8802 | 0.6631 | 0.8705 | 0.7154 | 0.8477 | 0.7848 | 0.3481 | 0.5379 | 0.5904 | 0.9287 | 0.8472 | 0.7912 | 0.8622 | 0.7959 | 0.7803 | 0.3110 | 0.0 | 0.7022 | 0.7997 | 0.5917 | 0.7852 | 0.6572 | 0.7213 | 0.6105 | 0.3032 | 0.4454 | 0.4850 | 0.8044 | 0.6982 | 0.7167 | 0.7343 | 0.7337 | 0.7242 | 0.2656 |
| 0.0441 | 5.04 | 2520 | 0.1921 | 0.6079 | 0.7363 | 0.8239 | nan | 0.7877 | 0.9069 | 0.6990 | 0.8730 | 0.6964 | 0.8387 | 0.7980 | 0.3814 | 0.5382 | 0.6421 | 0.8931 | 0.7990 | 0.8441 | 0.8362 | 0.7911 | 0.8295 | 0.3623 | 0.0 | 0.7204 | 0.8072 | 0.6099 | 0.7831 | 0.6568 | 0.7206 | 0.6074 | 0.3140 | 0.4512 | 0.5082 | 0.8085 | 0.7050 | 0.7430 | 0.7261 | 0.7320 | 0.7559 | 0.2924 |
| 0.0679 | 5.08 | 2540 | 0.1925 | 0.6096 | 0.7439 | 0.8232 | nan | 0.8173 | 0.8865 | 0.7275 | 0.8745 | 0.7319 | 0.8373 | 0.7785 | 0.4078 | 0.6311 | 0.5003 | 0.9109 | 0.8146 | 0.8512 | 0.8179 | 0.8481 | 0.7909 | 0.4206 | 0.0 | 0.7017 | 0.7981 | 0.6187 | 0.7817 | 0.6650 | 0.7292 | 0.6078 | 0.3298 | 0.4797 | 0.4434 | 0.8036 | 0.7140 | 0.7518 | 0.7390 | 0.7513 | 0.7401 | 0.3181 |
| 0.0762 | 5.12 | 2560 | 0.1966 | 0.5916 | 0.7179 | 0.8151 | nan | 0.8240 | 0.8840 | 0.7232 | 0.8917 | 0.7024 | 0.8440 | 0.7422 | 0.2452 | 0.5112 | 0.5410 | 0.8962 | 0.8666 | 0.7568 | 0.8129 | 0.7840 | 0.8040 | 0.3755 | 0.0 | 0.7137 | 0.8025 | 0.6176 | 0.7807 | 0.6263 | 0.7113 | 0.5895 | 0.2326 | 0.4191 | 0.4490 | 0.8085 | 0.6947 | 0.6996 | 0.7263 | 0.7315 | 0.7389 | 0.3072 |
| 0.0812 | 5.16 | 2580 | 0.2026 | 0.6001 | 0.7320 | 0.8174 | nan | 0.8212 | 0.8860 | 0.7650 | 0.8756 | 0.6950 | 0.8321 | 0.7693 | 0.2653 | 0.5681 | 0.6025 | 0.8839 | 0.7922 | 0.8607 | 0.8671 | 0.8006 | 0.7756 | 0.3841 | 0.0 | 0.7167 | 0.8025 | 0.6292 | 0.7705 | 0.6289 | 0.7126 | 0.5880 | 0.2479 | 0.4657 | 0.4925 | 0.8058 | 0.7027 | 0.7396 | 0.7394 | 0.7389 | 0.7249 | 0.2954 |
| 0.0444 | 5.2 | 2600 | 0.1922 | 0.6073 | 0.7353 | 0.8240 | nan | 0.8309 | 0.8819 | 0.7276 | 0.8846 | 0.7038 | 0.8672 | 0.7492 | 0.3170 | 0.5291 | 0.6013 | 0.9216 | 0.7891 | 0.8462 | 0.8551 | 0.8235 | 0.8115 | 0.3607 | 0.0 | 0.7482 | 0.8089 | 0.6214 | 0.7816 | 0.6365 | 0.7228 | 0.5935 | 0.2867 | 0.4451 | 0.4850 | 0.8089 | 0.7069 | 0.7373 | 0.7486 | 0.7520 | 0.7531 | 0.2952 |
| 0.0723 | 5.24 | 2620 | 0.1927 | 0.6121 | 0.7415 | 0.8252 | nan | 0.8155 | 0.9101 | 0.7610 | 0.8830 | 0.7283 | 0.8631 | 0.7346 | 0.3833 | 0.5606 | 0.6069 | 0.8925 | 0.8546 | 0.7885 | 0.8422 | 0.8172 | 0.8209 | 0.3426 | 0.0 | 0.7512 | 0.8134 | 0.6279 | 0.7795 | 0.6473 | 0.7385 | 0.5807 | 0.3154 | 0.4708 | 0.5069 | 0.8119 | 0.7036 | 0.7149 | 0.7469 | 0.7491 | 0.7647 | 0.2952 |
| 0.038 | 5.28 | 2640 | 0.2019 | 0.6074 | 0.7386 | 0.8191 | nan | 0.8442 | 0.8776 | 0.6959 | 0.8620 | 0.6979 | 0.8641 | 0.7660 | 0.3409 | 0.5926 | 0.5682 | 0.9181 | 0.8056 | 0.8347 | 0.8304 | 0.8502 | 0.7998 | 0.4073 | 0.0 | 0.7348 | 0.8067 | 0.6034 | 0.7649 | 0.6384 | 0.7362 | 0.5644 | 0.2843 | 0.4902 | 0.4999 | 0.8107 | 0.7004 | 0.7260 | 0.7447 | 0.7476 | 0.7535 | 0.3277 |
| 0.0545 | 5.32 | 2660 | 0.2016 | 0.6004 | 0.7302 | 0.8180 | nan | 0.8631 | 0.8974 | 0.7166 | 0.8660 | 0.7245 | 0.8718 | 0.7548 | 0.2667 | 0.5677 | 0.6003 | 0.8980 | 0.8759 | 0.6811 | 0.8429 | 0.8213 | 0.8017 | 0.3629 | 0.0 | 0.7388 | 0.8079 | 0.6163 | 0.7700 | 0.6512 | 0.7397 | 0.5754 | 0.2448 | 0.4684 | 0.5051 | 0.8088 | 0.6704 | 0.6398 | 0.7464 | 0.7525 | 0.7572 | 0.3150 |
| 0.0644 | 5.36 | 2680 | 0.1983 | 0.6148 | 0.7467 | 0.8243 | nan | 0.8191 | 0.9042 | 0.7854 | 0.8634 | 0.7273 | 0.8680 | 0.7522 | 0.3414 | 0.5216 | 0.6624 | 0.9161 | 0.8504 | 0.7786 | 0.8585 | 0.8159 | 0.8329 | 0.3973 | 0.0 | 0.7561 | 0.8158 | 0.6249 | 0.7688 | 0.6561 | 0.7506 | 0.5695 | 0.3067 | 0.4492 | 0.5257 | 0.8140 | 0.7002 | 0.7042 | 0.7520 | 0.7539 | 0.7789 | 0.3397 |
| 0.0814 | 5.4 | 2700 | 0.2007 | 0.6073 | 0.7347 | 0.8188 | nan | 0.8194 | 0.8470 | 0.7055 | 0.8634 | 0.7134 | 0.8847 | 0.7546 | 0.3835 | 0.5528 | 0.6093 | 0.9166 | 0.8344 | 0.8307 | 0.8395 | 0.8268 | 0.8139 | 0.2941 | 0.0 | 0.7186 | 0.7897 | 0.6077 | 0.7645 | 0.6524 | 0.7458 | 0.5671 | 0.3165 | 0.4585 | 0.4999 | 0.8149 | 0.7195 | 0.7399 | 0.7455 | 0.7569 | 0.7621 | 0.2722 |
| 0.0437 | 5.44 | 2720 | 0.1966 | 0.5950 | 0.7244 | 0.8125 | nan | 0.8239 | 0.9001 | 0.7067 | 0.8549 | 0.6844 | 0.8617 | 0.7482 | 0.3604 | 0.3834 | 0.7186 | 0.8956 | 0.7357 | 0.8750 | 0.8170 | 0.8544 | 0.8115 | 0.2840 | 0.0 | 0.7154 | 0.8097 | 0.6147 | 0.7641 | 0.6176 | 0.7480 | 0.5478 | 0.3101 | 0.3551 | 0.5117 | 0.8145 | 0.6718 | 0.7199 | 0.7336 | 0.7494 | 0.7618 | 0.2643 |
| 0.0536 | 5.48 | 2740 | 0.2150 | 0.5843 | 0.7165 | 0.7959 | nan | 0.7963 | 0.8867 | 0.7123 | 0.8105 | 0.5821 | 0.8255 | 0.8201 | 0.1755 | 0.6811 | 0.4980 | 0.9111 | 0.8575 | 0.7585 | 0.8623 | 0.7805 | 0.7913 | 0.4308 | 0.0 | 0.7054 | 0.8026 | 0.6155 | 0.7356 | 0.5335 | 0.7356 | 0.5247 | 0.1583 | 0.5013 | 0.4513 | 0.8245 | 0.6981 | 0.7006 | 0.7356 | 0.7260 | 0.7410 | 0.3277 |
| 0.0715 | 5.52 | 2760 | 0.2088 | 0.6012 | 0.7312 | 0.8127 | nan | 0.8138 | 0.9035 | 0.7080 | 0.8064 | 0.6314 | 0.8808 | 0.8267 | 0.2183 | 0.5328 | 0.6335 | 0.9009 | 0.8449 | 0.8147 | 0.8598 | 0.8543 | 0.8246 | 0.3757 | 0.0 | 0.7301 | 0.8171 | 0.6143 | 0.7385 | 0.6004 | 0.7536 | 0.5403 | 0.2052 | 0.4497 | 0.5130 | 0.8184 | 0.7211 | 0.7285 | 0.7539 | 0.7559 | 0.7625 | 0.3198 |
| 0.091 | 5.56 | 2780 | 0.2041 | 0.6034 | 0.7423 | 0.8110 | nan | 0.8689 | 0.8771 | 0.7109 | 0.8244 | 0.6929 | 0.8958 | 0.7644 | 0.3538 | 0.5529 | 0.6557 | 0.9130 | 0.7627 | 0.8228 | 0.8463 | 0.8492 | 0.7885 | 0.4405 | 0.0 | 0.7032 | 0.8010 | 0.6166 | 0.7454 | 0.6173 | 0.7461 | 0.5405 | 0.2925 | 0.4647 | 0.5157 | 0.8187 | 0.6948 | 0.7173 | 0.7534 | 0.7638 | 0.7432 | 0.3271 |
| 0.0393 | 5.6 | 2800 | 0.2226 | 0.6045 | 0.7396 | 0.8036 | nan | 0.8102 | 0.8913 | 0.7321 | 0.7656 | 0.6763 | 0.8691 | 0.8480 | 0.2555 | 0.6074 | 0.6081 | 0.9126 | 0.8450 | 0.8172 | 0.8242 | 0.8333 | 0.7906 | 0.4864 | 0.0 | 0.7332 | 0.8077 | 0.6235 | 0.7098 | 0.6315 | 0.7585 | 0.5299 | 0.2295 | 0.4953 | 0.5149 | 0.8173 | 0.7228 | 0.7343 | 0.7428 | 0.7567 | 0.7462 | 0.3268 |
| 0.0414 | 5.64 | 2820 | 0.2097 | 0.6077 | 0.7418 | 0.8162 | nan | 0.8296 | 0.8941 | 0.7577 | 0.8453 | 0.6405 | 0.8695 | 0.7839 | 0.2478 | 0.5981 | 0.6425 | 0.9007 | 0.8282 | 0.8185 | 0.8512 | 0.8185 | 0.8026 | 0.4819 | 0.0 | 0.7503 | 0.8152 | 0.6313 | 0.7578 | 0.6115 | 0.7246 | 0.5618 | 0.2221 | 0.4853 | 0.5175 | 0.8186 | 0.7245 | 0.7450 | 0.7400 | 0.7506 | 0.7550 | 0.3278 |
| 0.1061 | 5.68 | 2840 | 0.2079 | 0.6085 | 0.7396 | 0.8139 | nan | 0.8036 | 0.8906 | 0.7229 | 0.8454 | 0.6381 | 0.8610 | 0.7658 | 0.3532 | 0.5529 | 0.6432 | 0.9175 | 0.8227 | 0.8296 | 0.8678 | 0.8142 | 0.8296 | 0.4152 | 0.0 | 0.7403 | 0.8125 | 0.6203 | 0.7558 | 0.6054 | 0.7119 | 0.5590 | 0.2992 | 0.4675 | 0.5195 | 0.8170 | 0.7175 | 0.7413 | 0.7384 | 0.7399 | 0.7671 | 0.3402 |
| 0.044 | 5.72 | 2860 | 0.2129 | 0.5955 | 0.7281 | 0.8073 | nan | 0.8760 | 0.8817 | 0.7239 | 0.8369 | 0.6680 | 0.8184 | 0.7773 | 0.1578 | 0.5715 | 0.6299 | 0.8995 | 0.8182 | 0.8421 | 0.8418 | 0.8206 | 0.7976 | 0.4171 | 0.0 | 0.7150 | 0.8070 | 0.6213 | 0.7422 | 0.5868 | 0.7250 | 0.5270 | 0.1529 | 0.4774 | 0.5211 | 0.8188 | 0.7080 | 0.7371 | 0.7410 | 0.7502 | 0.7567 | 0.3316 |
| 0.0832 | 5.76 | 2880 | 0.2060 | 0.6030 | 0.7359 | 0.8107 | nan | 0.8445 | 0.8972 | 0.7264 | 0.8434 | 0.6797 | 0.8604 | 0.7604 | 0.3486 | 0.6110 | 0.5234 | 0.9062 | 0.8506 | 0.7577 | 0.8396 | 0.7971 | 0.8256 | 0.4393 | 0.0 | 0.7388 | 0.8133 | 0.6226 | 0.7478 | 0.6102 | 0.7332 | 0.5351 | 0.2822 | 0.4757 | 0.4633 | 0.8212 | 0.7096 | 0.7075 | 0.7428 | 0.7475 | 0.7665 | 0.3362 |
| 0.0458 | 5.8 | 2900 | 0.2080 | 0.6049 | 0.7418 | 0.8100 | nan | 0.8212 | 0.8851 | 0.7796 | 0.8234 | 0.6697 | 0.8497 | 0.7741 | 0.3276 | 0.5372 | 0.6118 | 0.9123 | 0.8514 | 0.8086 | 0.8501 | 0.8600 | 0.8373 | 0.4115 | 0.0 | 0.7295 | 0.8059 | 0.6272 | 0.7408 | 0.6093 | 0.7425 | 0.5317 | 0.2670 | 0.4552 | 0.5113 | 0.8183 | 0.7212 | 0.7323 | 0.7519 | 0.7597 | 0.7728 | 0.3115 |
| 0.0429 | 5.84 | 2920 | 0.2081 | 0.6025 | 0.7436 | 0.8059 | nan | 0.8457 | 0.8600 | 0.7882 | 0.8348 | 0.7078 | 0.8311 | 0.7521 | 0.3579 | 0.6167 | 0.6247 | 0.9036 | 0.8151 | 0.8271 | 0.8229 | 0.8037 | 0.8150 | 0.4357 | 0.0 | 0.6773 | 0.7914 | 0.6201 | 0.7399 | 0.6141 | 0.7345 | 0.5253 | 0.2743 | 0.4960 | 0.5209 | 0.8174 | 0.7162 | 0.7385 | 0.7401 | 0.7466 | 0.7628 | 0.3298 |
| 0.054 | 5.88 | 2940 | 0.2204 | 0.5966 | 0.7370 | 0.8051 | nan | 0.7878 | 0.8990 | 0.6791 | 0.8110 | 0.6541 | 0.8227 | 0.7956 | 0.3752 | 0.5920 | 0.5842 | 0.9142 | 0.8651 | 0.7815 | 0.8965 | 0.8251 | 0.8181 | 0.4275 | 0.0 | 0.7110 | 0.8108 | 0.5928 | 0.7351 | 0.5910 | 0.7252 | 0.5343 | 0.2705 | 0.4730 | 0.4895 | 0.8139 | 0.7148 | 0.7219 | 0.7288 | 0.7308 | 0.7629 | 0.3323 |
| 0.0526 | 5.92 | 2960 | 0.2271 | 0.5921 | 0.7137 | 0.8074 | nan | 0.7305 | 0.8986 | 0.6791 | 0.8207 | 0.6357 | 0.8230 | 0.8263 | 0.1921 | 0.5933 | 0.5993 | 0.9000 | 0.7991 | 0.8748 | 0.8311 | 0.8310 | 0.8173 | 0.2809 | 0.0 | 0.7011 | 0.8120 | 0.5975 | 0.7376 | 0.5800 | 0.7360 | 0.5299 | 0.1707 | 0.4862 | 0.5073 | 0.8141 | 0.7211 | 0.7529 | 0.7340 | 0.7601 | 0.7582 | 0.2582 |
| 0.0787 | 5.96 | 2980 | 0.1975 | 0.6112 | 0.7550 | 0.8154 | nan | 0.8712 | 0.8549 | 0.7621 | 0.8253 | 0.7788 | 0.8781 | 0.7424 | 0.3999 | 0.5312 | 0.6642 | 0.8947 | 0.8300 | 0.8439 | 0.8626 | 0.8529 | 0.8194 | 0.4234 | 0.0 | 0.7091 | 0.7942 | 0.6226 | 0.7461 | 0.6634 | 0.7555 | 0.5392 | 0.2870 | 0.4502 | 0.5253 | 0.8142 | 0.7330 | 0.7496 | 0.7555 | 0.7663 | 0.7618 | 0.3277 |
| 0.077 | 6.0 | 3000 | 0.1916 | 0.6131 | 0.7349 | 0.8314 | nan | 0.7940 | 0.9065 | 0.6260 | 0.9004 | 0.8101 | 0.8706 | 0.6719 | 0.3622 | 0.5013 | 0.6468 | 0.9126 | 0.8364 | 0.8394 | 0.8486 | 0.8284 | 0.8337 | 0.3050 | 0.0 | 0.7254 | 0.8176 | 0.5706 | 0.7962 | 0.6645 | 0.7580 | 0.5719 | 0.3001 | 0.4435 | 0.5239 | 0.8170 | 0.7344 | 0.7520 | 0.7461 | 0.7545 | 0.7748 | 0.2853 |
| 0.0346 | 6.04 | 3020 | 0.2012 | 0.6083 | 0.7380 | 0.8188 | nan | 0.7745 | 0.9022 | 0.7231 | 0.8575 | 0.8261 | 0.8445 | 0.6999 | 0.3096 | 0.6325 | 0.5564 | 0.9167 | 0.8575 | 0.7878 | 0.8419 | 0.8112 | 0.8105 | 0.3936 | 0.0 | 0.7344 | 0.8100 | 0.6167 | 0.7698 | 0.6416 | 0.7527 | 0.5464 | 0.2616 | 0.5020 | 0.4926 | 0.8105 | 0.7176 | 0.7237 | 0.7446 | 0.7461 | 0.7632 | 0.3165 |
| 0.1209 | 6.08 | 3040 | 0.1980 | 0.6079 | 0.7360 | 0.8205 | nan | 0.7869 | 0.9241 | 0.7542 | 0.8579 | 0.8112 | 0.8485 | 0.7041 | 0.2721 | 0.5967 | 0.5987 | 0.8841 | 0.8261 | 0.8375 | 0.7873 | 0.8708 | 0.8015 | 0.3504 | 0.0 | 0.7410 | 0.8122 | 0.6182 | 0.7677 | 0.6410 | 0.7500 | 0.5438 | 0.2397 | 0.4894 | 0.5063 | 0.8078 | 0.7253 | 0.7425 | 0.7332 | 0.7581 | 0.7582 | 0.3084 |
| 0.0416 | 6.12 | 3060 | 0.1973 | 0.6151 | 0.7489 | 0.8206 | nan | 0.8262 | 0.8939 | 0.7506 | 0.8571 | 0.8057 | 0.8401 | 0.7037 | 0.3972 | 0.5672 | 0.6363 | 0.9234 | 0.8370 | 0.8145 | 0.8586 | 0.8284 | 0.8339 | 0.3578 | 0.0 | 0.7489 | 0.8125 | 0.6259 | 0.7666 | 0.6410 | 0.7477 | 0.5412 | 0.3161 | 0.4825 | 0.5207 | 0.8096 | 0.7224 | 0.7329 | 0.7565 | 0.7594 | 0.7769 | 0.3103 |
| 0.0439 | 6.16 | 3080 | 0.1961 | 0.6118 | 0.7440 | 0.8172 | nan | 0.7941 | 0.9156 | 0.7294 | 0.8416 | 0.8139 | 0.8435 | 0.7159 | 0.4061 | 0.5151 | 0.6792 | 0.8770 | 0.8128 | 0.8503 | 0.8483 | 0.8207 | 0.8163 | 0.3677 | 0.0 | 0.7441 | 0.8094 | 0.6217 | 0.7562 | 0.6516 | 0.7470 | 0.5382 | 0.3008 | 0.4542 | 0.5300 | 0.8056 | 0.7234 | 0.7458 | 0.7501 | 0.7595 | 0.7641 | 0.3111 |
| 0.0467 | 6.2 | 3100 | 0.1993 | 0.6138 | 0.7460 | 0.8209 | nan | 0.8212 | 0.8919 | 0.6869 | 0.8580 | 0.8067 | 0.8439 | 0.7093 | 0.4469 | 0.6316 | 0.5251 | 0.9193 | 0.8579 | 0.8226 | 0.8563 | 0.8425 | 0.8178 | 0.3439 | 0.0 | 0.7509 | 0.8102 | 0.6060 | 0.7639 | 0.6560 | 0.7453 | 0.5469 | 0.3408 | 0.4853 | 0.4688 | 0.8130 | 0.7281 | 0.7425 | 0.7528 | 0.7666 | 0.7698 | 0.3011 |
| 0.0639 | 6.24 | 3120 | 0.1939 | 0.6192 | 0.7579 | 0.8265 | nan | 0.8742 | 0.8965 | 0.7917 | 0.8737 | 0.8232 | 0.8609 | 0.6932 | 0.4729 | 0.6036 | 0.5774 | 0.8927 | 0.8442 | 0.8251 | 0.8449 | 0.8313 | 0.8289 | 0.3502 | 0.0 | 0.7351 | 0.8098 | 0.6319 | 0.7757 | 0.6619 | 0.7524 | 0.5602 | 0.3486 | 0.4854 | 0.4994 | 0.8139 | 0.7307 | 0.7493 | 0.7511 | 0.7647 | 0.7767 | 0.2985 |
| 0.051 | 6.28 | 3140 | 0.1950 | 0.6220 | 0.7483 | 0.8331 | nan | 0.7659 | 0.9159 | 0.7107 | 0.8991 | 0.8370 | 0.8677 | 0.6572 | 0.4390 | 0.5374 | 0.6454 | 0.9061 | 0.8271 | 0.8608 | 0.8353 | 0.8573 | 0.8176 | 0.3415 | 0.0 | 0.7207 | 0.8189 | 0.6197 | 0.7846 | 0.6857 | 0.7521 | 0.5636 | 0.3327 | 0.4680 | 0.5305 | 0.8165 | 0.7409 | 0.7586 | 0.7565 | 0.7750 | 0.7733 | 0.2979 |
| 0.0594 | 6.32 | 3160 | 0.1999 | 0.6118 | 0.7459 | 0.8225 | nan | 0.8510 | 0.9022 | 0.7170 | 0.8657 | 0.8162 | 0.8436 | 0.7059 | 0.3287 | 0.6434 | 0.5611 | 0.9120 | 0.8567 | 0.7685 | 0.8446 | 0.8253 | 0.8281 | 0.4108 | 0.0 | 0.7467 | 0.8156 | 0.6191 | 0.7684 | 0.6833 | 0.7346 | 0.5523 | 0.2637 | 0.4770 | 0.4749 | 0.8154 | 0.7191 | 0.7192 | 0.7495 | 0.7587 | 0.7786 | 0.3354 |
| 0.0409 | 6.36 | 3180 | 0.1963 | 0.6192 | 0.7575 | 0.8254 | nan | 0.8534 | 0.8970 | 0.7831 | 0.8714 | 0.8042 | 0.8622 | 0.6865 | 0.3991 | 0.5463 | 0.6052 | 0.8979 | 0.8318 | 0.8446 | 0.8594 | 0.8434 | 0.8354 | 0.4559 | 0.0 | 0.7419 | 0.8124 | 0.6315 | 0.7739 | 0.6809 | 0.7405 | 0.5644 | 0.3053 | 0.4624 | 0.5117 | 0.8150 | 0.7316 | 0.7465 | 0.7526 | 0.7583 | 0.7718 | 0.3453 |
| 0.0484 | 6.4 | 3200 | 0.1987 | 0.6111 | 0.7424 | 0.8209 | nan | 0.8281 | 0.9024 | 0.6257 | 0.8620 | 0.7811 | 0.8600 | 0.7204 | 0.3944 | 0.6037 | 0.5542 | 0.9109 | 0.8334 | 0.7980 | 0.8483 | 0.8021 | 0.8282 | 0.4678 | 0.0 | 0.7514 | 0.8125 | 0.5716 | 0.7692 | 0.6594 | 0.7495 | 0.5607 | 0.3106 | 0.4874 | 0.4876 | 0.8123 | 0.7212 | 0.7319 | 0.7363 | 0.7409 | 0.7658 | 0.3315 |
| 0.0487 | 6.44 | 3220 | 0.2036 | 0.6149 | 0.7462 | 0.8220 | nan | 0.8514 | 0.8878 | 0.6876 | 0.8779 | 0.7743 | 0.8645 | 0.7127 | 0.4503 | 0.6008 | 0.6170 | 0.8930 | 0.8475 | 0.7827 | 0.8425 | 0.7648 | 0.8298 | 0.4014 | 0.0 | 0.7369 | 0.8084 | 0.6070 | 0.7732 | 0.6437 | 0.7516 | 0.5569 | 0.3440 | 0.4941 | 0.5205 | 0.8114 | 0.7216 | 0.7223 | 0.7360 | 0.7266 | 0.7781 | 0.3354 |
| 0.0718 | 6.48 | 3240 | 0.2046 | 0.6133 | 0.7454 | 0.8194 | nan | 0.8476 | 0.8742 | 0.7364 | 0.8526 | 0.7709 | 0.8615 | 0.7423 | 0.3505 | 0.5951 | 0.6241 | 0.9139 | 0.8710 | 0.7696 | 0.8505 | 0.8137 | 0.8146 | 0.3840 | 0.0 | 0.7315 | 0.8026 | 0.6207 | 0.7617 | 0.6362 | 0.7511 | 0.5496 | 0.2920 | 0.4927 | 0.5264 | 0.8121 | 0.7279 | 0.7215 | 0.7561 | 0.7537 | 0.7749 | 0.3295 |
| 0.0666 | 6.52 | 3260 | 0.2018 | 0.6103 | 0.7363 | 0.8237 | nan | 0.8582 | 0.8781 | 0.6627 | 0.8734 | 0.7564 | 0.8542 | 0.7235 | 0.2790 | 0.5671 | 0.6371 | 0.9218 | 0.8576 | 0.8130 | 0.8377 | 0.8483 | 0.8246 | 0.3251 | 0.0 | 0.7225 | 0.8045 | 0.5912 | 0.7707 | 0.6436 | 0.7516 | 0.5589 | 0.2490 | 0.4777 | 0.5257 | 0.8117 | 0.7423 | 0.7456 | 0.7587 | 0.7612 | 0.7767 | 0.2931 |
| 0.055 | 6.56 | 3280 | 0.1966 | 0.6189 | 0.7470 | 0.8300 | nan | 0.8568 | 0.8922 | 0.7653 | 0.8824 | 0.7941 | 0.8632 | 0.7250 | 0.2978 | 0.5364 | 0.6410 | 0.9050 | 0.8366 | 0.8240 | 0.8570 | 0.8350 | 0.8158 | 0.3706 | 0.0 | 0.7414 | 0.8117 | 0.6337 | 0.7806 | 0.6754 | 0.7565 | 0.5760 | 0.2545 | 0.4678 | 0.5268 | 0.8145 | 0.7382 | 0.7441 | 0.7636 | 0.7652 | 0.7718 | 0.3177 |
| 0.0586 | 6.6 | 3300 | 0.1984 | 0.6196 | 0.7496 | 0.8243 | nan | 0.8386 | 0.8967 | 0.7340 | 0.8547 | 0.7187 | 0.8721 | 0.7726 | 0.3753 | 0.5738 | 0.6503 | 0.8946 | 0.8357 | 0.8508 | 0.8480 | 0.8219 | 0.8012 | 0.4052 | 0.0 | 0.7402 | 0.8120 | 0.6273 | 0.7598 | 0.6449 | 0.7617 | 0.5580 | 0.3214 | 0.4871 | 0.5336 | 0.8142 | 0.7362 | 0.7574 | 0.7550 | 0.7624 | 0.7641 | 0.3178 |
| 0.054 | 6.64 | 3320 | 0.1945 | 0.6176 | 0.7460 | 0.8294 | nan | 0.8253 | 0.8945 | 0.7383 | 0.8571 | 0.7803 | 0.8766 | 0.7617 | 0.3174 | 0.5509 | 0.6698 | 0.9057 | 0.8345 | 0.8537 | 0.8654 | 0.8013 | 0.8261 | 0.3228 | 0.0 | 0.7363 | 0.8137 | 0.6226 | 0.7705 | 0.6833 | 0.7702 | 0.5751 | 0.2722 | 0.4787 | 0.5382 | 0.8145 | 0.7380 | 0.7596 | 0.7456 | 0.7416 | 0.7759 | 0.2810 |
| 0.0918 | 6.68 | 3340 | 0.1977 | 0.6178 | 0.7486 | 0.8289 | nan | 0.8353 | 0.8952 | 0.7535 | 0.8468 | 0.7779 | 0.8714 | 0.7888 | 0.2920 | 0.6281 | 0.6273 | 0.9077 | 0.8633 | 0.8127 | 0.8589 | 0.7952 | 0.8256 | 0.3471 | 0.0 | 0.7390 | 0.8108 | 0.6278 | 0.7660 | 0.6963 | 0.7715 | 0.5818 | 0.2559 | 0.5158 | 0.5280 | 0.8138 | 0.7307 | 0.7471 | 0.7388 | 0.7326 | 0.7751 | 0.2890 |
| 0.0485 | 6.72 | 3360 | 0.1935 | 0.6151 | 0.7438 | 0.8303 | nan | 0.8458 | 0.8932 | 0.7397 | 0.8770 | 0.8135 | 0.8903 | 0.7165 | 0.3140 | 0.5889 | 0.5917 | 0.9073 | 0.8082 | 0.8552 | 0.8702 | 0.8096 | 0.7906 | 0.3327 | 0.0 | 0.7394 | 0.8087 | 0.6186 | 0.7824 | 0.6935 | 0.7730 | 0.5854 | 0.2679 | 0.4889 | 0.5122 | 0.8123 | 0.7277 | 0.7524 | 0.7443 | 0.7412 | 0.7485 | 0.2754 |
| 0.0707 | 6.76 | 3380 | 0.1956 | 0.6135 | 0.7441 | 0.8298 | nan | 0.8640 | 0.8860 | 0.7093 | 0.8739 | 0.7835 | 0.8753 | 0.7555 | 0.2561 | 0.5847 | 0.6261 | 0.9060 | 0.8611 | 0.7900 | 0.8629 | 0.7686 | 0.8284 | 0.4190 | 0.0 | 0.7419 | 0.8129 | 0.6096 | 0.7736 | 0.6967 | 0.7596 | 0.5906 | 0.2294 | 0.4890 | 0.5329 | 0.8141 | 0.7393 | 0.7399 | 0.7283 | 0.7234 | 0.7732 | 0.2894 |
| 0.0479 | 6.8 | 3400 | 0.2023 | 0.6173 | 0.7511 | 0.8284 | nan | 0.8060 | 0.8994 | 0.7386 | 0.8636 | 0.7464 | 0.8888 | 0.7598 | 0.4561 | 0.4873 | 0.6764 | 0.9131 | 0.8034 | 0.8738 | 0.8118 | 0.8396 | 0.8131 | 0.3915 | 0.0 | 0.7375 | 0.8162 | 0.6257 | 0.7735 | 0.6701 | 0.7588 | 0.5810 | 0.3186 | 0.4419 | 0.5425 | 0.8176 | 0.7365 | 0.7567 | 0.7342 | 0.7566 | 0.7620 | 0.2826 |
| 0.0681 | 6.84 | 3420 | 0.1910 | 0.6193 | 0.7555 | 0.8259 | nan | 0.8415 | 0.9146 | 0.7535 | 0.8504 | 0.8153 | 0.8551 | 0.7497 | 0.4178 | 0.6103 | 0.6438 | 0.8894 | 0.8482 | 0.8158 | 0.8471 | 0.7817 | 0.8164 | 0.3937 | 0.0 | 0.7503 | 0.8117 | 0.6351 | 0.7665 | 0.6840 | 0.7704 | 0.5730 | 0.3150 | 0.4980 | 0.5348 | 0.8161 | 0.7367 | 0.7468 | 0.7341 | 0.7374 | 0.7620 | 0.2755 |
| 0.0527 | 6.88 | 3440 | 0.2485 | 0.5992 | 0.7385 | 0.7956 | nan | 0.8583 | 0.9012 | 0.6970 | 0.8161 | 0.4887 | 0.7942 | 0.8130 | 0.4627 | 0.5456 | 0.6360 | 0.9041 | 0.8325 | 0.8547 | 0.8560 | 0.8318 | 0.8158 | 0.4471 | 0.0 | 0.7482 | 0.8062 | 0.6126 | 0.7252 | 0.4562 | 0.7181 | 0.5111 | 0.3480 | 0.4828 | 0.5308 | 0.8197 | 0.7248 | 0.7482 | 0.7423 | 0.7568 | 0.7627 | 0.2918 |
| 0.0552 | 6.92 | 3460 | 0.2340 | 0.6095 | 0.7488 | 0.8068 | nan | 0.8834 | 0.8760 | 0.7525 | 0.8465 | 0.5447 | 0.8179 | 0.7830 | 0.4823 | 0.6262 | 0.6107 | 0.9227 | 0.8547 | 0.8231 | 0.8487 | 0.8352 | 0.8306 | 0.3909 | 0.0 | 0.7352 | 0.8068 | 0.6311 | 0.7391 | 0.5054 | 0.7189 | 0.5285 | 0.3720 | 0.5219 | 0.5261 | 0.8197 | 0.7314 | 0.7472 | 0.7522 | 0.7705 | 0.7766 | 0.2888 |
| 0.0467 | 6.96 | 3480 | 0.2203 | 0.6069 | 0.7367 | 0.8145 | nan | 0.8406 | 0.8867 | 0.7886 | 0.8672 | 0.6168 | 0.8327 | 0.7707 | 0.4004 | 0.5789 | 0.6595 | 0.8940 | 0.8545 | 0.8098 | 0.8402 | 0.8144 | 0.8331 | 0.2364 | 0.0 | 0.7277 | 0.8133 | 0.6357 | 0.7570 | 0.5657 | 0.7190 | 0.5524 | 0.3152 | 0.5036 | 0.5464 | 0.8177 | 0.7252 | 0.7368 | 0.7496 | 0.7611 | 0.7712 | 0.2260 |
| 0.0439 | 7.0 | 3500 | 0.2275 | 0.6051 | 0.7303 | 0.8110 | nan | 0.8470 | 0.8943 | 0.6942 | 0.8549 | 0.6545 | 0.8176 | 0.7530 | 0.3131 | 0.6298 | 0.6255 | 0.9062 | 0.8398 | 0.8313 | 0.8247 | 0.8425 | 0.7976 | 0.2892 | 0.0 | 0.7388 | 0.8097 | 0.6109 | 0.7479 | 0.5758 | 0.7290 | 0.5326 | 0.2652 | 0.5192 | 0.5317 | 0.8174 | 0.7297 | 0.7445 | 0.7506 | 0.7710 | 0.7548 | 0.2632 |
| 0.0521 | 7.04 | 3520 | 0.2251 | 0.6088 | 0.7420 | 0.8137 | nan | 0.8732 | 0.8794 | 0.7645 | 0.8523 | 0.7060 | 0.8313 | 0.7457 | 0.3072 | 0.5490 | 0.6194 | 0.9096 | 0.7940 | 0.8878 | 0.8470 | 0.8630 | 0.7804 | 0.4046 | 0.0 | 0.7474 | 0.8070 | 0.6354 | 0.7500 | 0.6009 | 0.7335 | 0.5409 | 0.2459 | 0.4823 | 0.5253 | 0.8200 | 0.7260 | 0.7482 | 0.7637 | 0.7731 | 0.7381 | 0.3209 |
| 0.0309 | 7.08 | 3540 | 0.2404 | 0.6004 | 0.7310 | 0.8055 | nan | 0.8285 | 0.8969 | 0.7766 | 0.8295 | 0.6323 | 0.8245 | 0.7835 | 0.2006 | 0.6407 | 0.5665 | 0.9032 | 0.8318 | 0.8426 | 0.8452 | 0.8229 | 0.7760 | 0.4249 | 0.0 | 0.7453 | 0.8156 | 0.6395 | 0.7323 | 0.5505 | 0.7299 | 0.5171 | 0.1760 | 0.5113 | 0.4996 | 0.8199 | 0.7356 | 0.7584 | 0.7586 | 0.7658 | 0.7337 | 0.3173 |
| 0.041 | 7.12 | 3560 | 0.2270 | 0.6036 | 0.7300 | 0.8090 | nan | 0.8632 | 0.8931 | 0.6576 | 0.8435 | 0.6410 | 0.8345 | 0.7614 | 0.2645 | 0.5828 | 0.6233 | 0.9111 | 0.8093 | 0.8429 | 0.8509 | 0.8402 | 0.7893 | 0.4015 | 0.0 | 0.7552 | 0.8082 | 0.5947 | 0.7412 | 0.5704 | 0.7325 | 0.5289 | 0.2354 | 0.4928 | 0.5234 | 0.8194 | 0.7224 | 0.7475 | 0.7582 | 0.7656 | 0.7445 | 0.3243 |
| 0.0516 | 7.16 | 3580 | 0.2235 | 0.6068 | 0.7352 | 0.8144 | nan | 0.8617 | 0.8936 | 0.6386 | 0.8380 | 0.7164 | 0.8518 | 0.7569 | 0.3071 | 0.5462 | 0.6456 | 0.9117 | 0.8011 | 0.8581 | 0.8647 | 0.8250 | 0.7942 | 0.3875 | 0.0 | 0.7505 | 0.8082 | 0.5835 | 0.7456 | 0.6204 | 0.7463 | 0.5376 | 0.2546 | 0.4747 | 0.5257 | 0.8182 | 0.7202 | 0.7438 | 0.7604 | 0.7633 | 0.7480 | 0.3215 |
| 0.0444 | 7.2 | 3600 | 0.2259 | 0.6113 | 0.7438 | 0.8127 | nan | 0.8235 | 0.8932 | 0.7367 | 0.8187 | 0.6444 | 0.8665 | 0.8099 | 0.3617 | 0.6273 | 0.6339 | 0.9160 | 0.8431 | 0.8102 | 0.8794 | 0.7815 | 0.8072 | 0.3914 | 0.0 | 0.7410 | 0.8093 | 0.6299 | 0.7389 | 0.5965 | 0.7561 | 0.5393 | 0.2970 | 0.5100 | 0.5292 | 0.8202 | 0.7342 | 0.7461 | 0.7426 | 0.7365 | 0.7587 | 0.3185 |
| 0.0443 | 7.24 | 3620 | 0.2187 | 0.6184 | 0.7525 | 0.8190 | nan | 0.8530 | 0.8955 | 0.7771 | 0.8274 | 0.6900 | 0.8704 | 0.8047 | 0.4150 | 0.5997 | 0.6314 | 0.9052 | 0.8460 | 0.8180 | 0.8637 | 0.8151 | 0.8124 | 0.3677 | 0.0 | 0.7525 | 0.8098 | 0.6386 | 0.7475 | 0.6305 | 0.7658 | 0.5575 | 0.3230 | 0.4993 | 0.5302 | 0.8209 | 0.7393 | 0.7484 | 0.7495 | 0.7537 | 0.7600 | 0.3047 |
| 0.0773 | 7.28 | 3640 | 0.2119 | 0.6199 | 0.7516 | 0.8210 | nan | 0.8772 | 0.9028 | 0.7443 | 0.8270 | 0.7095 | 0.8537 | 0.8093 | 0.3872 | 0.6059 | 0.6146 | 0.9135 | 0.8322 | 0.8508 | 0.8241 | 0.8498 | 0.8167 | 0.3585 | 0.0 | 0.7556 | 0.8096 | 0.6315 | 0.7483 | 0.6378 | 0.7640 | 0.5590 | 0.3153 | 0.5032 | 0.5233 | 0.8201 | 0.7369 | 0.7544 | 0.7562 | 0.7717 | 0.7639 | 0.3068 |
| 0.0381 | 7.32 | 3660 | 0.2086 | 0.6088 | 0.7409 | 0.8124 | nan | 0.8592 | 0.8914 | 0.7294 | 0.8354 | 0.7693 | 0.8301 | 0.7288 | 0.3523 | 0.5901 | 0.6420 | 0.9119 | 0.8092 | 0.8492 | 0.8283 | 0.8480 | 0.8010 | 0.3202 | 0.0 | 0.7428 | 0.8083 | 0.6265 | 0.7509 | 0.6160 | 0.7504 | 0.5294 | 0.2703 | 0.4945 | 0.5303 | 0.8220 | 0.7244 | 0.7482 | 0.7515 | 0.7664 | 0.7466 | 0.2808 |
| 0.0464 | 7.36 | 3680 | 0.2155 | 0.6097 | 0.7379 | 0.8135 | nan | 0.8474 | 0.8975 | 0.7075 | 0.8456 | 0.7282 | 0.8638 | 0.7149 | 0.3864 | 0.5974 | 0.5819 | 0.9084 | 0.8256 | 0.8455 | 0.8365 | 0.8537 | 0.7817 | 0.3218 | 0.0 | 0.7408 | 0.8088 | 0.6178 | 0.7546 | 0.5922 | 0.7590 | 0.5152 | 0.3069 | 0.4931 | 0.5063 | 0.8208 | 0.7335 | 0.7535 | 0.7598 | 0.7728 | 0.7445 | 0.2955 |
| 0.0614 | 7.4 | 3700 | 0.2195 | 0.6135 | 0.7500 | 0.8110 | nan | 0.8656 | 0.8814 | 0.7297 | 0.8356 | 0.7074 | 0.8448 | 0.7365 | 0.4880 | 0.5984 | 0.5838 | 0.9176 | 0.8240 | 0.8345 | 0.8315 | 0.8677 | 0.8213 | 0.3814 | 0.0 | 0.7419 | 0.8070 | 0.6230 | 0.7469 | 0.6014 | 0.7525 | 0.5221 | 0.3509 | 0.4926 | 0.5007 | 0.8195 | 0.7314 | 0.7503 | 0.7538 | 0.7739 | 0.7641 | 0.3112 |
| 0.0387 | 7.44 | 3720 | 0.2203 | 0.6204 | 0.7548 | 0.8177 | nan | 0.8613 | 0.8878 | 0.7302 | 0.8424 | 0.7072 | 0.8624 | 0.7557 | 0.4943 | 0.6047 | 0.6229 | 0.8990 | 0.8379 | 0.8324 | 0.8634 | 0.8426 | 0.8073 | 0.3807 | 0.0 | 0.7446 | 0.8094 | 0.6272 | 0.7534 | 0.6154 | 0.7665 | 0.5337 | 0.3675 | 0.5036 | 0.5203 | 0.8211 | 0.7351 | 0.7515 | 0.7663 | 0.7764 | 0.7584 | 0.3162 |
| 0.0756 | 7.48 | 3740 | 0.2238 | 0.6159 | 0.7463 | 0.8187 | nan | 0.8548 | 0.8948 | 0.7299 | 0.8325 | 0.7072 | 0.8686 | 0.7847 | 0.3186 | 0.5954 | 0.6298 | 0.9106 | 0.8341 | 0.8262 | 0.8541 | 0.8236 | 0.8073 | 0.4144 | 0.0 | 0.7526 | 0.8121 | 0.6257 | 0.7509 | 0.6249 | 0.7643 | 0.5441 | 0.2633 | 0.5015 | 0.5210 | 0.8226 | 0.7318 | 0.7506 | 0.7612 | 0.7694 | 0.7608 | 0.3291 |
| 0.0442 | 7.52 | 3760 | 0.2139 | 0.6150 | 0.7454 | 0.8186 | nan | 0.8580 | 0.9114 | 0.7052 | 0.8456 | 0.6986 | 0.8814 | 0.7237 | 0.3424 | 0.6381 | 0.5776 | 0.9101 | 0.8323 | 0.8491 | 0.8561 | 0.8353 | 0.8024 | 0.4048 | 0.0 | 0.7541 | 0.8137 | 0.6187 | 0.7590 | 0.5916 | 0.7691 | 0.5252 | 0.2908 | 0.5133 | 0.4968 | 0.8226 | 0.7350 | 0.7548 | 0.7660 | 0.7775 | 0.7583 | 0.3228 |
| 0.0539 | 7.56 | 3780 | 0.2026 | 0.6198 | 0.7487 | 0.8260 | nan | 0.8731 | 0.8995 | 0.7449 | 0.8710 | 0.7200 | 0.8849 | 0.7157 | 0.3682 | 0.6338 | 0.6196 | 0.9113 | 0.7938 | 0.8676 | 0.8560 | 0.8503 | 0.8035 | 0.3142 | 0.0 | 0.7541 | 0.8119 | 0.6326 | 0.7762 | 0.6140 | 0.7747 | 0.5466 | 0.3147 | 0.5172 | 0.5266 | 0.8235 | 0.7179 | 0.7479 | 0.7624 | 0.7809 | 0.7632 | 0.2924 |
| 0.047 | 7.6 | 3800 | 0.2024 | 0.6212 | 0.7475 | 0.8296 | nan | 0.8603 | 0.8992 | 0.7020 | 0.8756 | 0.7303 | 0.8862 | 0.7304 | 0.3776 | 0.6126 | 0.5955 | 0.9141 | 0.8511 | 0.8107 | 0.8579 | 0.8407 | 0.8378 | 0.3254 | 0.0 | 0.7505 | 0.8158 | 0.6163 | 0.7818 | 0.6228 | 0.7744 | 0.5596 | 0.3137 | 0.5023 | 0.5141 | 0.8244 | 0.7330 | 0.7436 | 0.7663 | 0.7774 | 0.7821 | 0.3034 |
| 0.0467 | 7.64 | 3820 | 0.2028 | 0.6129 | 0.7373 | 0.8199 | nan | 0.8027 | 0.8986 | 0.6825 | 0.8596 | 0.7446 | 0.8921 | 0.7136 | 0.3488 | 0.5648 | 0.6284 | 0.8980 | 0.8360 | 0.7928 | 0.8416 | 0.8354 | 0.8113 | 0.3827 | 0.0 | 0.7326 | 0.8131 | 0.6084 | 0.7703 | 0.6213 | 0.7694 | 0.5378 | 0.2919 | 0.4774 | 0.5175 | 0.8227 | 0.7184 | 0.7291 | 0.7620 | 0.7710 | 0.7670 | 0.3217 |
| 0.0385 | 7.68 | 3840 | 0.2022 | 0.6145 | 0.7447 | 0.8220 | nan | 0.8519 | 0.8908 | 0.7347 | 0.8602 | 0.7322 | 0.8846 | 0.7235 | 0.3646 | 0.5684 | 0.5708 | 0.9190 | 0.8485 | 0.8332 | 0.8654 | 0.8127 | 0.8194 | 0.3794 | 0.0 | 0.7498 | 0.8106 | 0.6242 | 0.7719 | 0.6280 | 0.7682 | 0.5460 | 0.3105 | 0.4718 | 0.4958 | 0.8232 | 0.7229 | 0.7411 | 0.7460 | 0.7484 | 0.7711 | 0.3320 |
| 0.082 | 7.72 | 3860 | 0.2047 | 0.6180 | 0.7498 | 0.8261 | nan | 0.8602 | 0.9006 | 0.7283 | 0.8621 | 0.7385 | 0.9008 | 0.7200 | 0.3629 | 0.6560 | 0.5607 | 0.9057 | 0.8369 | 0.8220 | 0.8445 | 0.8385 | 0.8283 | 0.3802 | 0.0 | 0.7502 | 0.8141 | 0.6240 | 0.7764 | 0.6321 | 0.7699 | 0.5491 | 0.3007 | 0.5019 | 0.4872 | 0.8222 | 0.7280 | 0.7474 | 0.7510 | 0.7594 | 0.7764 | 0.3344 |
| 0.0452 | 7.76 | 3880 | 0.2026 | 0.6187 | 0.7544 | 0.8228 | nan | 0.8522 | 0.8847 | 0.7730 | 0.8698 | 0.7117 | 0.8773 | 0.7253 | 0.4656 | 0.5983 | 0.6178 | 0.9034 | 0.8591 | 0.8158 | 0.8700 | 0.7850 | 0.8353 | 0.3805 | 0.0 | 0.7390 | 0.8077 | 0.6320 | 0.7788 | 0.6067 | 0.7798 | 0.5474 | 0.3492 | 0.4907 | 0.5241 | 0.8225 | 0.7265 | 0.7491 | 0.7399 | 0.7383 | 0.7763 | 0.3284 |
| 0.0709 | 7.8 | 3900 | 0.2129 | 0.6168 | 0.7514 | 0.8228 | nan | 0.8691 | 0.8992 | 0.7177 | 0.8494 | 0.7060 | 0.8733 | 0.7717 | 0.3807 | 0.6129 | 0.5954 | 0.8941 | 0.8474 | 0.8247 | 0.8548 | 0.8000 | 0.8376 | 0.4392 | 0.0 | 0.7570 | 0.8118 | 0.6217 | 0.7666 | 0.6198 | 0.7782 | 0.5532 | 0.3023 | 0.4885 | 0.5096 | 0.8215 | 0.7249 | 0.7523 | 0.7414 | 0.7392 | 0.7806 | 0.3340 |
| 0.0445 | 7.84 | 3920 | 0.2112 | 0.6152 | 0.7479 | 0.8208 | nan | 0.8354 | 0.8968 | 0.7225 | 0.8596 | 0.7025 | 0.8762 | 0.7309 | 0.4132 | 0.5801 | 0.6012 | 0.9090 | 0.8403 | 0.8277 | 0.8304 | 0.8310 | 0.8418 | 0.4157 | 0.0 | 0.7408 | 0.8104 | 0.6227 | 0.7721 | 0.5956 | 0.7748 | 0.5390 | 0.3149 | 0.4730 | 0.5026 | 0.8231 | 0.7298 | 0.7588 | 0.7489 | 0.7601 | 0.7798 | 0.3279 |
| 0.0684 | 7.88 | 3940 | 0.2073 | 0.6162 | 0.7520 | 0.8212 | nan | 0.8597 | 0.8945 | 0.7100 | 0.8620 | 0.7031 | 0.8764 | 0.7234 | 0.4659 | 0.6066 | 0.6061 | 0.9092 | 0.8544 | 0.8132 | 0.8451 | 0.8228 | 0.8359 | 0.3964 | 0.0 | 0.7482 | 0.8133 | 0.6172 | 0.7733 | 0.5902 | 0.7734 | 0.5329 | 0.3347 | 0.4877 | 0.5064 | 0.8232 | 0.7360 | 0.7534 | 0.7511 | 0.7568 | 0.7794 | 0.3151 |
| 0.0461 | 7.92 | 3960 | 0.2076 | 0.6157 | 0.7469 | 0.8250 | nan | 0.8594 | 0.8986 | 0.6659 | 0.8770 | 0.7159 | 0.8692 | 0.7100 | 0.4604 | 0.5639 | 0.5988 | 0.9099 | 0.8512 | 0.8546 | 0.8655 | 0.8396 | 0.8200 | 0.3381 | 0.0 | 0.7589 | 0.8132 | 0.5961 | 0.7836 | 0.5913 | 0.7689 | 0.5409 | 0.3507 | 0.4729 | 0.5124 | 0.8228 | 0.7347 | 0.7600 | 0.7532 | 0.7589 | 0.7715 | 0.2926 |
| 0.053 | 7.96 | 3980 | 0.2174 | 0.6106 | 0.7430 | 0.8218 | nan | 0.8738 | 0.8890 | 0.7214 | 0.8702 | 0.7303 | 0.8785 | 0.7177 | 0.3748 | 0.5630 | 0.5626 | 0.9187 | 0.8729 | 0.7903 | 0.8706 | 0.8151 | 0.8118 | 0.3701 | 0.0 | 0.7605 | 0.8134 | 0.6223 | 0.7789 | 0.6070 | 0.7638 | 0.5417 | 0.3003 | 0.4682 | 0.4870 | 0.8225 | 0.7172 | 0.7317 | 0.7506 | 0.7546 | 0.7626 | 0.3087 |
| 0.063 | 8.0 | 4000 | 0.2192 | 0.6122 | 0.7454 | 0.8158 | nan | 0.8402 | 0.9083 | 0.7397 | 0.8477 | 0.6991 | 0.8612 | 0.7566 | 0.4382 | 0.5439 | 0.5893 | 0.8825 | 0.8527 | 0.8119 | 0.8538 | 0.8192 | 0.8023 | 0.4255 | 0.0 | 0.7532 | 0.8109 | 0.6301 | 0.7640 | 0.6155 | 0.7572 | 0.5442 | 0.3352 | 0.4609 | 0.5009 | 0.8170 | 0.7196 | 0.7373 | 0.7428 | 0.7510 | 0.7598 | 0.3202 |
| 0.0696 | 8.04 | 4020 | 0.2176 | 0.6092 | 0.7437 | 0.8174 | nan | 0.8501 | 0.8994 | 0.7617 | 0.8430 | 0.7154 | 0.8691 | 0.7603 | 0.3024 | 0.5760 | 0.6084 | 0.9050 | 0.7923 | 0.8546 | 0.8203 | 0.8350 | 0.8042 | 0.4453 | 0.0 | 0.7502 | 0.8153 | 0.6318 | 0.7643 | 0.6147 | 0.7635 | 0.5416 | 0.2431 | 0.4767 | 0.5068 | 0.8239 | 0.7155 | 0.7448 | 0.7377 | 0.7574 | 0.7632 | 0.3147 |
| 0.0716 | 8.08 | 4040 | 0.2081 | 0.6164 | 0.7460 | 0.8256 | nan | 0.8457 | 0.8875 | 0.7553 | 0.8637 | 0.7370 | 0.8820 | 0.7645 | 0.3343 | 0.6189 | 0.5919 | 0.9100 | 0.8438 | 0.8032 | 0.8669 | 0.7875 | 0.8119 | 0.3787 | 0.0 | 0.7475 | 0.8098 | 0.6328 | 0.7769 | 0.6563 | 0.7717 | 0.5780 | 0.2759 | 0.4884 | 0.5018 | 0.8258 | 0.7273 | 0.7430 | 0.7411 | 0.7404 | 0.7682 | 0.3097 |
| 0.0476 | 8.12 | 4060 | 0.2121 | 0.6152 | 0.7445 | 0.8213 | nan | 0.8776 | 0.8912 | 0.7376 | 0.8673 | 0.7077 | 0.8765 | 0.7191 | 0.3780 | 0.5497 | 0.6293 | 0.9055 | 0.8189 | 0.8572 | 0.8369 | 0.8284 | 0.8291 | 0.3461 | 0.0 | 0.7476 | 0.8102 | 0.6290 | 0.7731 | 0.6066 | 0.7692 | 0.5422 | 0.3104 | 0.4700 | 0.5254 | 0.8235 | 0.7342 | 0.7590 | 0.7401 | 0.7570 | 0.7771 | 0.2989 |
| 0.0282 | 8.16 | 4080 | 0.2227 | 0.6179 | 0.7503 | 0.8233 | nan | 0.8493 | 0.8953 | 0.7243 | 0.8609 | 0.7054 | 0.8850 | 0.7402 | 0.4689 | 0.5992 | 0.6032 | 0.9098 | 0.8674 | 0.8176 | 0.8304 | 0.8224 | 0.8261 | 0.3496 | 0.0 | 0.7464 | 0.8135 | 0.6221 | 0.7722 | 0.6173 | 0.7711 | 0.5455 | 0.3437 | 0.4873 | 0.5114 | 0.8242 | 0.7384 | 0.7545 | 0.7427 | 0.7597 | 0.7755 | 0.2974 |
| 0.066 | 8.2 | 4100 | 0.2196 | 0.6178 | 0.7515 | 0.8234 | nan | 0.8605 | 0.8867 | 0.7520 | 0.8588 | 0.6987 | 0.8821 | 0.7467 | 0.3982 | 0.5296 | 0.7016 | 0.9118 | 0.8113 | 0.8563 | 0.8405 | 0.8277 | 0.8350 | 0.3778 | 0.0 | 0.7526 | 0.8116 | 0.6271 | 0.7691 | 0.6182 | 0.7677 | 0.5441 | 0.3201 | 0.4636 | 0.5442 | 0.8241 | 0.7320 | 0.7581 | 0.7477 | 0.7625 | 0.7792 | 0.2986 |
| 0.0778 | 8.24 | 4120 | 0.2207 | 0.6158 | 0.7519 | 0.8196 | nan | 0.8662 | 0.8984 | 0.7375 | 0.8417 | 0.7046 | 0.8827 | 0.7453 | 0.4193 | 0.5823 | 0.6251 | 0.9098 | 0.8391 | 0.8376 | 0.8596 | 0.8218 | 0.8180 | 0.3927 | 0.0 | 0.7475 | 0.8082 | 0.6272 | 0.7637 | 0.6183 | 0.7644 | 0.5440 | 0.3164 | 0.4880 | 0.5196 | 0.8225 | 0.7363 | 0.7576 | 0.7433 | 0.7527 | 0.7708 | 0.3040 |
| 0.0467 | 8.28 | 4140 | 0.2348 | 0.6066 | 0.7388 | 0.8137 | nan | 0.8778 | 0.8864 | 0.7390 | 0.8421 | 0.6967 | 0.8328 | 0.7716 | 0.2713 | 0.5635 | 0.6553 | 0.9114 | 0.8487 | 0.8293 | 0.8234 | 0.8276 | 0.8004 | 0.3817 | 0.0 | 0.7537 | 0.8105 | 0.6265 | 0.7509 | 0.5995 | 0.7384 | 0.5331 | 0.2300 | 0.4803 | 0.5344 | 0.8265 | 0.7321 | 0.7541 | 0.7356 | 0.7555 | 0.7611 | 0.2958 |
| 0.0729 | 8.32 | 4160 | 0.2377 | 0.6016 | 0.7342 | 0.8092 | nan | 0.8659 | 0.9055 | 0.7306 | 0.8257 | 0.6606 | 0.8228 | 0.7871 | 0.2538 | 0.5477 | 0.6017 | 0.9047 | 0.8374 | 0.8502 | 0.8598 | 0.8237 | 0.8064 | 0.3972 | 0.0 | 0.7492 | 0.8113 | 0.6273 | 0.7462 | 0.5713 | 0.7264 | 0.5335 | 0.2263 | 0.4677 | 0.5076 | 0.8252 | 0.7278 | 0.7542 | 0.7386 | 0.7492 | 0.7609 | 0.3055 |
| 0.0314 | 8.36 | 4180 | 0.2331 | 0.6053 | 0.7385 | 0.8127 | nan | 0.8451 | 0.9049 | 0.7290 | 0.8338 | 0.6926 | 0.8417 | 0.7630 | 0.2421 | 0.5876 | 0.6142 | 0.8928 | 0.8661 | 0.8179 | 0.8467 | 0.7945 | 0.8287 | 0.4544 | 0.0 | 0.7498 | 0.8132 | 0.6277 | 0.7472 | 0.6012 | 0.7386 | 0.5316 | 0.2206 | 0.4866 | 0.5158 | 0.8222 | 0.7240 | 0.7455 | 0.7416 | 0.7438 | 0.7740 | 0.3121 |
| 0.0417 | 8.4 | 4200 | 0.2297 | 0.6117 | 0.7444 | 0.8154 | nan | 0.8657 | 0.8996 | 0.7438 | 0.8327 | 0.6827 | 0.8573 | 0.7638 | 0.3149 | 0.5832 | 0.6047 | 0.9116 | 0.8488 | 0.8428 | 0.8714 | 0.8068 | 0.8253 | 0.3989 | 0.0 | 0.7633 | 0.8123 | 0.6302 | 0.7487 | 0.6098 | 0.7502 | 0.5344 | 0.2728 | 0.4839 | 0.5104 | 0.8265 | 0.7317 | 0.7573 | 0.7467 | 0.7452 | 0.7725 | 0.3153 |
| 0.05 | 8.44 | 4220 | 0.2271 | 0.6161 | 0.7455 | 0.8215 | nan | 0.8631 | 0.9026 | 0.7511 | 0.8575 | 0.6986 | 0.8655 | 0.7491 | 0.3346 | 0.5949 | 0.6104 | 0.8962 | 0.8472 | 0.8347 | 0.8632 | 0.8054 | 0.8265 | 0.3734 | 0.0 | 0.7625 | 0.8138 | 0.6335 | 0.7622 | 0.6207 | 0.7495 | 0.5443 | 0.2922 | 0.4888 | 0.5166 | 0.8246 | 0.7395 | 0.7607 | 0.7435 | 0.7497 | 0.7785 | 0.3096 |
| 0.0541 | 8.48 | 4240 | 0.2227 | 0.6164 | 0.7388 | 0.8272 | nan | 0.8478 | 0.9055 | 0.7101 | 0.8879 | 0.6953 | 0.8455 | 0.7449 | 0.2957 | 0.6119 | 0.6019 | 0.9073 | 0.8250 | 0.8470 | 0.8558 | 0.8319 | 0.8216 | 0.3246 | 0.0 | 0.7695 | 0.8174 | 0.6182 | 0.7706 | 0.6331 | 0.7388 | 0.5698 | 0.2683 | 0.4955 | 0.5107 | 0.8253 | 0.7389 | 0.7609 | 0.7467 | 0.7556 | 0.7774 | 0.2987 |
| 0.0361 | 8.52 | 4260 | 0.2275 | 0.6168 | 0.7421 | 0.8272 | nan | 0.8536 | 0.8995 | 0.7183 | 0.8799 | 0.7048 | 0.8417 | 0.7611 | 0.3506 | 0.5552 | 0.6506 | 0.9142 | 0.8481 | 0.8468 | 0.8534 | 0.8210 | 0.8173 | 0.2988 | 0.0 | 0.7541 | 0.8131 | 0.6184 | 0.7697 | 0.6383 | 0.7402 | 0.5791 | 0.2963 | 0.4795 | 0.5348 | 0.8234 | 0.7439 | 0.7606 | 0.7444 | 0.7527 | 0.7714 | 0.2818 |
| 0.0389 | 8.56 | 4280 | 0.2229 | 0.6198 | 0.7505 | 0.8290 | nan | 0.8848 | 0.8979 | 0.7303 | 0.8820 | 0.6991 | 0.8480 | 0.7562 | 0.4229 | 0.6257 | 0.6414 | 0.9137 | 0.8404 | 0.8390 | 0.8373 | 0.8252 | 0.8380 | 0.2764 | 0.0 | 0.7545 | 0.8152 | 0.6212 | 0.7709 | 0.6410 | 0.7464 | 0.5771 | 0.3138 | 0.5133 | 0.5295 | 0.8244 | 0.7366 | 0.7597 | 0.7498 | 0.7575 | 0.7848 | 0.2609 |
| 0.0558 | 8.6 | 4300 | 0.2195 | 0.6148 | 0.7425 | 0.8239 | nan | 0.8746 | 0.8951 | 0.7349 | 0.8719 | 0.7043 | 0.8426 | 0.7614 | 0.3675 | 0.5751 | 0.6383 | 0.9055 | 0.8457 | 0.8271 | 0.8390 | 0.8284 | 0.8273 | 0.2837 | 0.0 | 0.7525 | 0.8152 | 0.6213 | 0.7658 | 0.6393 | 0.7416 | 0.5705 | 0.2937 | 0.4901 | 0.5255 | 0.8239 | 0.7295 | 0.7502 | 0.7522 | 0.7592 | 0.7772 | 0.2592 |
| 0.0518 | 8.64 | 4320 | 0.2243 | 0.6100 | 0.7395 | 0.8187 | nan | 0.8573 | 0.8882 | 0.6744 | 0.8370 | 0.7125 | 0.8549 | 0.7943 | 0.3636 | 0.5806 | 0.6465 | 0.9170 | 0.8424 | 0.8206 | 0.8424 | 0.8282 | 0.8064 | 0.3046 | 0.0 | 0.7494 | 0.8109 | 0.5947 | 0.7505 | 0.6412 | 0.7541 | 0.5576 | 0.2835 | 0.4915 | 0.5322 | 0.8231 | 0.7243 | 0.7405 | 0.7508 | 0.7564 | 0.7662 | 0.2525 |
| 0.0494 | 8.68 | 4340 | 0.2253 | 0.6195 | 0.7551 | 0.8216 | nan | 0.8610 | 0.8936 | 0.7012 | 0.8349 | 0.7050 | 0.8833 | 0.7699 | 0.4646 | 0.6088 | 0.6337 | 0.9047 | 0.8290 | 0.8393 | 0.8325 | 0.8498 | 0.8475 | 0.3772 | 0.0 | 0.7665 | 0.8150 | 0.6144 | 0.7542 | 0.6231 | 0.7692 | 0.5457 | 0.3459 | 0.5041 | 0.5377 | 0.8237 | 0.7256 | 0.7486 | 0.7537 | 0.7631 | 0.7836 | 0.2767 |
| 0.0383 | 8.72 | 4360 | 0.2340 | 0.6198 | 0.7559 | 0.8203 | nan | 0.8520 | 0.9032 | 0.6900 | 0.8180 | 0.7041 | 0.8829 | 0.7936 | 0.4585 | 0.5947 | 0.6318 | 0.9162 | 0.8363 | 0.8426 | 0.8445 | 0.8350 | 0.8253 | 0.4223 | 0.0 | 0.7709 | 0.8145 | 0.6086 | 0.7455 | 0.6360 | 0.7683 | 0.5511 | 0.3486 | 0.4953 | 0.5325 | 0.8247 | 0.7336 | 0.7517 | 0.7556 | 0.7600 | 0.7761 | 0.2841 |
| 0.0375 | 8.76 | 4380 | 0.2217 | 0.6190 | 0.7508 | 0.8206 | nan | 0.8522 | 0.8948 | 0.7449 | 0.8423 | 0.7028 | 0.8788 | 0.7530 | 0.3981 | 0.5796 | 0.6369 | 0.9089 | 0.8378 | 0.8432 | 0.8509 | 0.8432 | 0.8251 | 0.3711 | 0.0 | 0.7654 | 0.8135 | 0.6285 | 0.7568 | 0.6153 | 0.7698 | 0.5412 | 0.3309 | 0.4905 | 0.5324 | 0.8261 | 0.7353 | 0.7564 | 0.7579 | 0.7658 | 0.7739 | 0.2821 |
| 0.0367 | 8.8 | 4400 | 0.2246 | 0.6145 | 0.7416 | 0.8197 | nan | 0.8334 | 0.9068 | 0.7256 | 0.8322 | 0.7058 | 0.8781 | 0.7749 | 0.3536 | 0.6074 | 0.5935 | 0.9129 | 0.8687 | 0.8181 | 0.8378 | 0.8418 | 0.8087 | 0.3076 | 0.0 | 0.7557 | 0.8191 | 0.6192 | 0.7533 | 0.6236 | 0.7658 | 0.5453 | 0.3045 | 0.4992 | 0.5132 | 0.8244 | 0.7292 | 0.7469 | 0.7588 | 0.7727 | 0.7672 | 0.2636 |
| 0.074 | 8.84 | 4420 | 0.2326 | 0.6138 | 0.7419 | 0.8193 | nan | 0.8483 | 0.8924 | 0.7183 | 0.8400 | 0.7080 | 0.8732 | 0.7632 | 0.3716 | 0.5848 | 0.6264 | 0.9149 | 0.8326 | 0.8520 | 0.8216 | 0.8525 | 0.8141 | 0.2978 | 0.0 | 0.7572 | 0.8164 | 0.6165 | 0.7537 | 0.6143 | 0.7643 | 0.5398 | 0.2985 | 0.4928 | 0.5247 | 0.8242 | 0.7314 | 0.7556 | 0.7516 | 0.7737 | 0.7704 | 0.2632 |
| 0.038 | 8.88 | 4440 | 0.2314 | 0.6220 | 0.7566 | 0.8234 | nan | 0.8469 | 0.9163 | 0.7150 | 0.8502 | 0.6724 | 0.8791 | 0.7627 | 0.5999 | 0.6023 | 0.6458 | 0.9025 | 0.8408 | 0.8365 | 0.8592 | 0.8411 | 0.8110 | 0.2815 | 0.0 | 0.7603 | 0.8159 | 0.6218 | 0.7619 | 0.6140 | 0.7485 | 0.5529 | 0.4128 | 0.5023 | 0.5385 | 0.8229 | 0.7336 | 0.7566 | 0.7688 | 0.7776 | 0.7600 | 0.2481 |
| 0.0486 | 8.92 | 4460 | 0.2265 | 0.6176 | 0.7471 | 0.8218 | nan | 0.8489 | 0.8824 | 0.7234 | 0.8589 | 0.6716 | 0.8823 | 0.7616 | 0.4996 | 0.5337 | 0.6612 | 0.9079 | 0.8436 | 0.8342 | 0.8490 | 0.8480 | 0.8212 | 0.2740 | 0.0 | 0.7505 | 0.8106 | 0.6248 | 0.7667 | 0.6140 | 0.7534 | 0.5585 | 0.3704 | 0.4673 | 0.5368 | 0.8259 | 0.7315 | 0.7565 | 0.7639 | 0.7729 | 0.7609 | 0.2529 |
| 0.0589 | 8.96 | 4480 | 0.2335 | 0.6140 | 0.7404 | 0.8184 | nan | 0.8318 | 0.9004 | 0.7298 | 0.8342 | 0.6780 | 0.8726 | 0.7916 | 0.3401 | 0.5608 | 0.6654 | 0.9077 | 0.8507 | 0.8166 | 0.8645 | 0.8000 | 0.8166 | 0.3265 | 0.0 | 0.7470 | 0.8131 | 0.6265 | 0.7503 | 0.6308 | 0.7604 | 0.5579 | 0.2867 | 0.4791 | 0.5382 | 0.8258 | 0.7323 | 0.7529 | 0.7567 | 0.7570 | 0.7584 | 0.2784 |
| 0.0928 | 9.0 | 4500 | 0.2234 | 0.6170 | 0.7451 | 0.8261 | nan | 0.8674 | 0.8965 | 0.7326 | 0.8676 | 0.6852 | 0.8826 | 0.7584 | 0.2819 | 0.6002 | 0.6321 | 0.9084 | 0.8186 | 0.8459 | 0.8650 | 0.8278 | 0.8071 | 0.3889 | 0.0 | 0.7652 | 0.8184 | 0.6286 | 0.7709 | 0.6255 | 0.7565 | 0.5666 | 0.2459 | 0.4963 | 0.5297 | 0.8279 | 0.7332 | 0.7606 | 0.7590 | 0.7643 | 0.7585 | 0.2994 |
| 0.0573 | 9.04 | 4520 | 0.2235 | 0.6203 | 0.7464 | 0.8278 | nan | 0.8441 | 0.9048 | 0.7557 | 0.8764 | 0.6927 | 0.8730 | 0.7553 | 0.3351 | 0.5800 | 0.6431 | 0.8976 | 0.8401 | 0.8388 | 0.8349 | 0.8396 | 0.8132 | 0.3647 | 0.0 | 0.7572 | 0.8168 | 0.6361 | 0.7754 | 0.6289 | 0.7582 | 0.5684 | 0.2740 | 0.4915 | 0.5384 | 0.8271 | 0.7325 | 0.7539 | 0.7550 | 0.7734 | 0.7672 | 0.3111 |
| 0.0523 | 9.08 | 4540 | 0.2217 | 0.6225 | 0.7516 | 0.8277 | nan | 0.8399 | 0.8935 | 0.7553 | 0.8741 | 0.6888 | 0.8867 | 0.7466 | 0.4573 | 0.5676 | 0.6488 | 0.9148 | 0.8437 | 0.8369 | 0.8397 | 0.8095 | 0.8470 | 0.3272 | 0.0 | 0.7538 | 0.8140 | 0.6335 | 0.7796 | 0.6226 | 0.7658 | 0.5625 | 0.3275 | 0.4876 | 0.5414 | 0.8296 | 0.7301 | 0.7501 | 0.7519 | 0.7637 | 0.7855 | 0.3064 |
| 0.0372 | 9.12 | 4560 | 0.2219 | 0.6164 | 0.7455 | 0.8271 | nan | 0.8473 | 0.9010 | 0.7986 | 0.8733 | 0.7194 | 0.8896 | 0.7262 | 0.2736 | 0.6386 | 0.5583 | 0.9006 | 0.8329 | 0.8349 | 0.8477 | 0.8408 | 0.8291 | 0.3614 | 0.0 | 0.7641 | 0.8176 | 0.6378 | 0.7793 | 0.6240 | 0.7654 | 0.5526 | 0.2364 | 0.5000 | 0.4922 | 0.8266 | 0.7301 | 0.7500 | 0.7622 | 0.7750 | 0.7774 | 0.3053 |
| 0.0338 | 9.16 | 4580 | 0.2194 | 0.6151 | 0.7444 | 0.8235 | nan | 0.8565 | 0.9045 | 0.7748 | 0.8561 | 0.6996 | 0.8831 | 0.7412 | 0.2413 | 0.5597 | 0.6618 | 0.9050 | 0.8354 | 0.8398 | 0.8621 | 0.8231 | 0.8231 | 0.3871 | 0.0 | 0.7564 | 0.8160 | 0.6372 | 0.7708 | 0.6168 | 0.7642 | 0.5501 | 0.2192 | 0.4849 | 0.5388 | 0.8262 | 0.7314 | 0.7486 | 0.7605 | 0.7652 | 0.7703 | 0.3151 |
| 0.0257 | 9.2 | 4600 | 0.2310 | 0.6161 | 0.7447 | 0.8228 | nan | 0.8637 | 0.9010 | 0.7017 | 0.8463 | 0.6798 | 0.8983 | 0.7594 | 0.3465 | 0.5853 | 0.6059 | 0.9181 | 0.8553 | 0.8271 | 0.8657 | 0.8445 | 0.8027 | 0.3584 | 0.0 | 0.7591 | 0.8155 | 0.6141 | 0.7665 | 0.6172 | 0.7607 | 0.5539 | 0.2841 | 0.4879 | 0.5133 | 0.8245 | 0.7351 | 0.7456 | 0.7654 | 0.7720 | 0.7611 | 0.3139 |
| 0.0361 | 9.24 | 4620 | 0.2252 | 0.6177 | 0.7411 | 0.8252 | nan | 0.8602 | 0.8865 | 0.7017 | 0.8594 | 0.6979 | 0.8903 | 0.7653 | 0.2889 | 0.5940 | 0.6255 | 0.9065 | 0.8491 | 0.8159 | 0.8514 | 0.8225 | 0.8356 | 0.3481 | 0.0 | 0.7640 | 0.8156 | 0.6161 | 0.7685 | 0.6218 | 0.7700 | 0.5514 | 0.2470 | 0.4947 | 0.5280 | 0.8262 | 0.7354 | 0.7478 | 0.7640 | 0.7766 | 0.7753 | 0.3158 |
| 0.0347 | 9.28 | 4640 | 0.2147 | 0.6200 | 0.7443 | 0.8232 | nan | 0.8352 | 0.9015 | 0.6848 | 0.8728 | 0.6870 | 0.8730 | 0.7260 | 0.4264 | 0.5880 | 0.6143 | 0.9147 | 0.8463 | 0.8288 | 0.8560 | 0.8371 | 0.8136 | 0.3471 | 0.0 | 0.7601 | 0.8139 | 0.6094 | 0.7736 | 0.6179 | 0.7552 | 0.5541 | 0.3273 | 0.4945 | 0.5242 | 0.8248 | 0.7396 | 0.7573 | 0.7674 | 0.7783 | 0.7595 | 0.3036 |
| 0.0448 | 9.32 | 4660 | 0.2202 | 0.6206 | 0.7493 | 0.8224 | nan | 0.8721 | 0.8928 | 0.7461 | 0.8527 | 0.6907 | 0.8672 | 0.7654 | 0.3517 | 0.5951 | 0.6236 | 0.9228 | 0.8334 | 0.8348 | 0.8474 | 0.8318 | 0.8255 | 0.3839 | 0.0 | 0.7636 | 0.8125 | 0.6291 | 0.7633 | 0.6285 | 0.7545 | 0.5555 | 0.2887 | 0.4987 | 0.5293 | 0.8243 | 0.7380 | 0.7602 | 0.7629 | 0.7738 | 0.7699 | 0.3173 |
| 0.0461 | 9.36 | 4680 | 0.2219 | 0.6224 | 0.7525 | 0.8226 | nan | 0.8586 | 0.8968 | 0.7592 | 0.8534 | 0.6851 | 0.8649 | 0.7606 | 0.4322 | 0.5740 | 0.6244 | 0.9118 | 0.8247 | 0.8462 | 0.8574 | 0.8488 | 0.8434 | 0.3512 | 0.0 | 0.7621 | 0.8184 | 0.6386 | 0.7572 | 0.6231 | 0.7441 | 0.5521 | 0.3460 | 0.4897 | 0.5255 | 0.8259 | 0.7370 | 0.7613 | 0.7627 | 0.7814 | 0.7692 | 0.3093 |
| 0.0426 | 9.4 | 4700 | 0.2204 | 0.6179 | 0.7414 | 0.8235 | nan | 0.8537 | 0.8979 | 0.7061 | 0.8604 | 0.7016 | 0.8757 | 0.7515 | 0.3451 | 0.5808 | 0.6057 | 0.9052 | 0.8406 | 0.8397 | 0.8718 | 0.8247 | 0.8201 | 0.3240 | 0.0 | 0.7597 | 0.8162 | 0.6196 | 0.7614 | 0.6139 | 0.7480 | 0.5505 | 0.2937 | 0.4912 | 0.5175 | 0.8257 | 0.7415 | 0.7624 | 0.7689 | 0.7782 | 0.7715 | 0.3032 |
| 0.0298 | 9.44 | 4720 | 0.2229 | 0.6186 | 0.7430 | 0.8269 | nan | 0.8791 | 0.8981 | 0.6689 | 0.8638 | 0.6958 | 0.8800 | 0.7490 | 0.3231 | 0.5789 | 0.6243 | 0.9209 | 0.8405 | 0.8507 | 0.8610 | 0.8479 | 0.8245 | 0.3249 | 0.0 | 0.7687 | 0.8212 | 0.5974 | 0.7684 | 0.6145 | 0.7596 | 0.5552 | 0.2785 | 0.4865 | 0.5197 | 0.8278 | 0.7435 | 0.7616 | 0.7728 | 0.7830 | 0.7728 | 0.3035 |
| 0.0396 | 9.48 | 4740 | 0.2194 | 0.6178 | 0.7451 | 0.8249 | nan | 0.8558 | 0.8985 | 0.7329 | 0.8603 | 0.6917 | 0.8656 | 0.7544 | 0.2961 | 0.5915 | 0.6101 | 0.9182 | 0.8229 | 0.8528 | 0.8644 | 0.8321 | 0.8544 | 0.3656 | 0.0 | 0.7584 | 0.8118 | 0.6254 | 0.7689 | 0.6216 | 0.7592 | 0.5630 | 0.2490 | 0.4927 | 0.5189 | 0.8270 | 0.7312 | 0.7581 | 0.7654 | 0.7742 | 0.7813 | 0.3152 |
| 0.0376 | 9.52 | 4760 | 0.2246 | 0.6190 | 0.7453 | 0.8293 | nan | 0.8531 | 0.9008 | 0.7675 | 0.8879 | 0.6756 | 0.8653 | 0.7463 | 0.3321 | 0.5628 | 0.6402 | 0.9072 | 0.8465 | 0.8313 | 0.8571 | 0.8365 | 0.8420 | 0.3171 | 0.0 | 0.7661 | 0.8215 | 0.6346 | 0.7783 | 0.6147 | 0.7502 | 0.5700 | 0.2799 | 0.4806 | 0.5286 | 0.8280 | 0.7331 | 0.7529 | 0.7601 | 0.7741 | 0.7820 | 0.2880 |
| 0.0352 | 9.56 | 4780 | 0.2257 | 0.6170 | 0.7451 | 0.8236 | nan | 0.8482 | 0.8993 | 0.7699 | 0.8593 | 0.6632 | 0.8646 | 0.7753 | 0.3683 | 0.5849 | 0.6340 | 0.9119 | 0.8564 | 0.8098 | 0.8549 | 0.8404 | 0.8405 | 0.2851 | 0.0 | 0.7635 | 0.8183 | 0.6363 | 0.7651 | 0.6148 | 0.7525 | 0.5637 | 0.3001 | 0.4872 | 0.5264 | 0.8264 | 0.7286 | 0.7449 | 0.7577 | 0.7713 | 0.7812 | 0.2675 |
| 0.0542 | 9.6 | 4800 | 0.2272 | 0.6175 | 0.7445 | 0.8233 | nan | 0.8529 | 0.9084 | 0.7263 | 0.8714 | 0.6360 | 0.8556 | 0.7600 | 0.4009 | 0.5835 | 0.6507 | 0.9122 | 0.8492 | 0.8174 | 0.8589 | 0.8306 | 0.8385 | 0.3039 | 0.0 | 0.7682 | 0.8175 | 0.6278 | 0.7656 | 0.5900 | 0.7477 | 0.5562 | 0.3268 | 0.4917 | 0.5386 | 0.8276 | 0.7303 | 0.7475 | 0.7591 | 0.7672 | 0.7832 | 0.2697 |
| 0.0597 | 9.64 | 4820 | 0.2243 | 0.6173 | 0.7459 | 0.8209 | nan | 0.8581 | 0.8975 | 0.7392 | 0.8623 | 0.6479 | 0.8756 | 0.7467 | 0.4048 | 0.5571 | 0.6483 | 0.9147 | 0.8412 | 0.8386 | 0.8492 | 0.8357 | 0.8250 | 0.3387 | 0.0 | 0.7632 | 0.8103 | 0.6294 | 0.7655 | 0.5914 | 0.7578 | 0.5482 | 0.3298 | 0.4798 | 0.5331 | 0.8269 | 0.7378 | 0.7562 | 0.7535 | 0.7642 | 0.7758 | 0.2888 |
| 0.0855 | 9.68 | 4840 | 0.2361 | 0.6083 | 0.7346 | 0.8123 | nan | 0.8613 | 0.8959 | 0.7404 | 0.8304 | 0.6354 | 0.8824 | 0.7803 | 0.2968 | 0.5771 | 0.6293 | 0.9045 | 0.8358 | 0.8301 | 0.8307 | 0.8167 | 0.8049 | 0.3358 | 0.0 | 0.7646 | 0.8139 | 0.6307 | 0.7473 | 0.5705 | 0.7638 | 0.5246 | 0.2614 | 0.4867 | 0.5266 | 0.8259 | 0.7308 | 0.7483 | 0.7451 | 0.7598 | 0.7597 | 0.2898 |
| 0.0563 | 9.72 | 4860 | 0.2289 | 0.6154 | 0.7473 | 0.8178 | nan | 0.8695 | 0.9057 | 0.7158 | 0.8294 | 0.6774 | 0.8696 | 0.7678 | 0.3771 | 0.6135 | 0.5997 | 0.9082 | 0.8485 | 0.8368 | 0.8476 | 0.8450 | 0.8416 | 0.3509 | 0.0 | 0.7647 | 0.8150 | 0.6206 | 0.7501 | 0.6023 | 0.7646 | 0.5346 | 0.3071 | 0.4981 | 0.5153 | 0.8249 | 0.7351 | 0.7524 | 0.7541 | 0.7661 | 0.7764 | 0.2950 |
| 0.0694 | 9.76 | 4880 | 0.2276 | 0.6139 | 0.7427 | 0.8186 | nan | 0.8687 | 0.9006 | 0.7177 | 0.8340 | 0.7027 | 0.8921 | 0.7562 | 0.3572 | 0.6075 | 0.5876 | 0.9079 | 0.8441 | 0.8309 | 0.8355 | 0.8477 | 0.8100 | 0.3259 | 0.0 | 0.7621 | 0.8153 | 0.6212 | 0.7563 | 0.6080 | 0.7695 | 0.5397 | 0.2979 | 0.4909 | 0.5043 | 0.8247 | 0.7374 | 0.7541 | 0.7512 | 0.7699 | 0.7609 | 0.2868 |
| 0.0377 | 9.8 | 4900 | 0.2148 | 0.6199 | 0.7466 | 0.8302 | nan | 0.8704 | 0.8920 | 0.7402 | 0.8967 | 0.7284 | 0.8958 | 0.6951 | 0.3935 | 0.5583 | 0.6585 | 0.9177 | 0.8135 | 0.8469 | 0.8450 | 0.8428 | 0.8031 | 0.2944 | 0.0 | 0.7683 | 0.8178 | 0.6249 | 0.7924 | 0.6244 | 0.7652 | 0.5623 | 0.3204 | 0.4778 | 0.5333 | 0.8260 | 0.7276 | 0.7532 | 0.7546 | 0.7684 | 0.7598 | 0.2823 |
| 0.0534 | 9.84 | 4920 | 0.2119 | 0.6209 | 0.7478 | 0.8312 | nan | 0.8586 | 0.9098 | 0.7091 | 0.8895 | 0.7283 | 0.8786 | 0.7104 | 0.4140 | 0.6087 | 0.6257 | 0.9178 | 0.8457 | 0.8222 | 0.8478 | 0.8429 | 0.8212 | 0.2815 | 0.0 | 0.7662 | 0.8146 | 0.6182 | 0.7906 | 0.6364 | 0.7656 | 0.5698 | 0.3339 | 0.4983 | 0.5214 | 0.8250 | 0.7333 | 0.7485 | 0.7513 | 0.7668 | 0.7670 | 0.2699 |
| 0.0596 | 9.88 | 4940 | 0.2095 | 0.6206 | 0.7466 | 0.8317 | nan | 0.8512 | 0.9009 | 0.7502 | 0.8952 | 0.7235 | 0.8842 | 0.7147 | 0.3887 | 0.5872 | 0.6461 | 0.8986 | 0.8318 | 0.8380 | 0.8639 | 0.8334 | 0.8172 | 0.2676 | 0.0 | 0.7584 | 0.8165 | 0.6355 | 0.7917 | 0.6305 | 0.7697 | 0.5682 | 0.3181 | 0.4964 | 0.5364 | 0.8242 | 0.7291 | 0.7487 | 0.7529 | 0.7690 | 0.7622 | 0.2628 |
| 0.0443 | 9.92 | 4960 | 0.2174 | 0.6185 | 0.7482 | 0.8271 | nan | 0.8366 | 0.8982 | 0.7238 | 0.8692 | 0.6983 | 0.8825 | 0.7496 | 0.4489 | 0.5994 | 0.6071 | 0.9190 | 0.8424 | 0.8391 | 0.8726 | 0.8129 | 0.8225 | 0.2967 | 0.0 | 0.7460 | 0.8164 | 0.6239 | 0.7827 | 0.6206 | 0.7661 | 0.5694 | 0.3445 | 0.4996 | 0.5204 | 0.8233 | 0.7275 | 0.7472 | 0.7485 | 0.7583 | 0.7631 | 0.2748 |
| 0.0366 | 9.96 | 4980 | 0.2141 | 0.6158 | 0.7455 | 0.8229 | nan | 0.8576 | 0.8926 | 0.7784 | 0.8813 | 0.7318 | 0.8717 | 0.7171 | 0.3805 | 0.5959 | 0.6243 | 0.8987 | 0.8323 | 0.8288 | 0.8452 | 0.7942 | 0.7856 | 0.3574 | 0.0 | 0.7498 | 0.8127 | 0.6371 | 0.7817 | 0.6057 | 0.7667 | 0.5537 | 0.3075 | 0.4946 | 0.5219 | 0.8239 | 0.7303 | 0.7494 | 0.7416 | 0.7523 | 0.7455 | 0.3103 |
| 0.0378 | 10.0 | 5000 | 0.2255 | 0.6146 | 0.7467 | 0.8205 | nan | 0.8623 | 0.8960 | 0.7348 | 0.8527 | 0.7228 | 0.8557 | 0.7479 | 0.3292 | 0.6004 | 0.6126 | 0.9190 | 0.8466 | 0.8337 | 0.8469 | 0.8429 | 0.7933 | 0.3966 | 0.0 | 0.7603 | 0.8111 | 0.6260 | 0.7673 | 0.6062 | 0.7592 | 0.5469 | 0.2756 | 0.4944 | 0.5214 | 0.8248 | 0.7310 | 0.7492 | 0.7548 | 0.7687 | 0.7511 | 0.3148 |
| 0.0412 | 10.04 | 5020 | 0.2159 | 0.6145 | 0.7431 | 0.8224 | nan | 0.8334 | 0.9106 | 0.7136 | 0.8595 | 0.7208 | 0.8631 | 0.7485 | 0.3142 | 0.5852 | 0.6161 | 0.9079 | 0.8300 | 0.8400 | 0.8357 | 0.8431 | 0.7875 | 0.4234 | 0.0 | 0.7569 | 0.8186 | 0.6197 | 0.7697 | 0.6115 | 0.7634 | 0.5506 | 0.2716 | 0.4897 | 0.5235 | 0.8262 | 0.7264 | 0.7453 | 0.7509 | 0.7665 | 0.7481 | 0.3230 |
| 0.1179 | 10.08 | 5040 | 0.2071 | 0.6180 | 0.7496 | 0.8239 | nan | 0.8613 | 0.9001 | 0.7407 | 0.8686 | 0.7187 | 0.8611 | 0.7420 | 0.3679 | 0.5785 | 0.6314 | 0.9041 | 0.8371 | 0.8376 | 0.8479 | 0.8274 | 0.8013 | 0.4174 | 0.0 | 0.7594 | 0.8119 | 0.6309 | 0.7763 | 0.6182 | 0.7628 | 0.5625 | 0.2990 | 0.4925 | 0.5347 | 0.8260 | 0.7251 | 0.7413 | 0.7540 | 0.7641 | 0.7537 | 0.3123 |
| 0.0377 | 10.12 | 5060 | 0.2216 | 0.6169 | 0.7470 | 0.8237 | nan | 0.8673 | 0.8996 | 0.6967 | 0.8612 | 0.7010 | 0.8703 | 0.7586 | 0.3511 | 0.6051 | 0.6281 | 0.9198 | 0.8355 | 0.8233 | 0.8483 | 0.8428 | 0.7845 | 0.4051 | 0.0 | 0.7629 | 0.8188 | 0.6104 | 0.7721 | 0.6135 | 0.7628 | 0.5605 | 0.2929 | 0.5016 | 0.5304 | 0.8264 | 0.7279 | 0.7409 | 0.7580 | 0.7689 | 0.7454 | 0.3103 |
| 0.0445 | 10.16 | 5080 | 0.2239 | 0.6179 | 0.7467 | 0.8240 | nan | 0.8545 | 0.8958 | 0.7701 | 0.8630 | 0.7007 | 0.8702 | 0.7605 | 0.3334 | 0.6025 | 0.6255 | 0.9208 | 0.8364 | 0.8213 | 0.8593 | 0.8240 | 0.7971 | 0.3595 | 0.0 | 0.7640 | 0.8170 | 0.6357 | 0.7734 | 0.6157 | 0.7643 | 0.5647 | 0.2889 | 0.4980 | 0.5305 | 0.8266 | 0.7283 | 0.7441 | 0.7552 | 0.7653 | 0.7550 | 0.2959 |
| 0.0397 | 10.2 | 5100 | 0.2256 | 0.6182 | 0.7471 | 0.8257 | nan | 0.8602 | 0.8983 | 0.7746 | 0.8704 | 0.7085 | 0.8777 | 0.7589 | 0.3473 | 0.6178 | 0.5808 | 0.9051 | 0.8427 | 0.8164 | 0.8588 | 0.8123 | 0.7980 | 0.3731 | 0.0 | 0.7645 | 0.8199 | 0.6395 | 0.7753 | 0.6197 | 0.7651 | 0.5659 | 0.2990 | 0.4985 | 0.5049 | 0.8273 | 0.7302 | 0.7465 | 0.7551 | 0.7643 | 0.7549 | 0.2975 |
| 0.0335 | 10.24 | 5120 | 0.2156 | 0.6217 | 0.7500 | 0.8290 | nan | 0.8619 | 0.8925 | 0.7266 | 0.8851 | 0.7115 | 0.8604 | 0.7429 | 0.4009 | 0.6091 | 0.6095 | 0.9262 | 0.8338 | 0.8409 | 0.8507 | 0.8471 | 0.8052 | 0.3459 | 0.0 | 0.7638 | 0.8206 | 0.6234 | 0.7827 | 0.6255 | 0.7603 | 0.5746 | 0.3377 | 0.5021 | 0.5211 | 0.8260 | 0.7300 | 0.7501 | 0.7550 | 0.7683 | 0.7577 | 0.2923 |
| 0.048 | 10.28 | 5140 | 0.2195 | 0.6206 | 0.7457 | 0.8280 | nan | 0.8531 | 0.9014 | 0.6939 | 0.8842 | 0.7175 | 0.8655 | 0.7404 | 0.4071 | 0.6059 | 0.6196 | 0.9035 | 0.8571 | 0.8085 | 0.8516 | 0.8397 | 0.7988 | 0.3285 | 0.0 | 0.7606 | 0.8163 | 0.6127 | 0.7841 | 0.6295 | 0.7633 | 0.5770 | 0.3358 | 0.5014 | 0.5297 | 0.8262 | 0.7284 | 0.7393 | 0.7531 | 0.7629 | 0.7543 | 0.2961 |
| 0.0518 | 10.32 | 5160 | 0.2107 | 0.6254 | 0.7515 | 0.8318 | nan | 0.8493 | 0.8991 | 0.7409 | 0.8845 | 0.7223 | 0.8681 | 0.7451 | 0.3741 | 0.5943 | 0.6483 | 0.9188 | 0.8404 | 0.8384 | 0.8459 | 0.8475 | 0.8103 | 0.3483 | 0.0 | 0.7630 | 0.8202 | 0.6315 | 0.7845 | 0.6292 | 0.7674 | 0.5743 | 0.3200 | 0.5017 | 0.5441 | 0.8304 | 0.7308 | 0.7501 | 0.7621 | 0.7759 | 0.7625 | 0.3086 |
| 0.0362 | 10.36 | 5180 | 0.2180 | 0.6204 | 0.7522 | 0.8271 | nan | 0.8772 | 0.8998 | 0.7279 | 0.8720 | 0.7247 | 0.8705 | 0.7520 | 0.3289 | 0.5850 | 0.6485 | 0.9086 | 0.8084 | 0.8411 | 0.8353 | 0.8401 | 0.7921 | 0.4761 | 0.0 | 0.7615 | 0.8145 | 0.6294 | 0.7781 | 0.6348 | 0.7684 | 0.5729 | 0.2863 | 0.4947 | 0.5348 | 0.8298 | 0.7204 | 0.7510 | 0.7587 | 0.7739 | 0.7521 | 0.3060 |
| 0.053 | 10.4 | 5200 | 0.2110 | 0.6238 | 0.7492 | 0.8305 | nan | 0.8493 | 0.9017 | 0.7544 | 0.8845 | 0.7309 | 0.8746 | 0.7392 | 0.3401 | 0.5799 | 0.6198 | 0.9038 | 0.8354 | 0.8265 | 0.8521 | 0.8394 | 0.8169 | 0.3874 | 0.0 | 0.7631 | 0.8175 | 0.6393 | 0.7849 | 0.6409 | 0.7671 | 0.5779 | 0.2954 | 0.4893 | 0.5222 | 0.8297 | 0.7329 | 0.7528 | 0.7644 | 0.7747 | 0.7652 | 0.3116 |
| 0.0626 | 10.44 | 5220 | 0.2206 | 0.6222 | 0.7489 | 0.8291 | nan | 0.8490 | 0.9027 | 0.7750 | 0.8726 | 0.7048 | 0.8677 | 0.7555 | 0.2887 | 0.5839 | 0.6412 | 0.9092 | 0.8312 | 0.8575 | 0.8582 | 0.8417 | 0.8173 | 0.3746 | 0.0 | 0.7695 | 0.8209 | 0.6442 | 0.7780 | 0.6199 | 0.7659 | 0.5642 | 0.2613 | 0.4979 | 0.5377 | 0.8304 | 0.7308 | 0.7592 | 0.7671 | 0.7764 | 0.7675 | 0.3092 |
| 0.0327 | 10.48 | 5240 | 0.2259 | 0.6213 | 0.7494 | 0.8227 | nan | 0.8680 | 0.8990 | 0.7714 | 0.8542 | 0.6356 | 0.8630 | 0.8026 | 0.3758 | 0.5874 | 0.6414 | 0.9155 | 0.8420 | 0.8452 | 0.8468 | 0.8367 | 0.7930 | 0.3618 | 0.0 | 0.7686 | 0.8182 | 0.6428 | 0.7656 | 0.6033 | 0.7590 | 0.5645 | 0.3215 | 0.5024 | 0.5408 | 0.8284 | 0.7342 | 0.7579 | 0.7564 | 0.7711 | 0.7505 | 0.2988 |
| 0.0502 | 10.52 | 5260 | 0.2303 | 0.6205 | 0.7532 | 0.8192 | nan | 0.8599 | 0.9073 | 0.7546 | 0.8278 | 0.6260 | 0.8672 | 0.8299 | 0.4034 | 0.6101 | 0.6381 | 0.9083 | 0.8542 | 0.8286 | 0.8677 | 0.8222 | 0.7866 | 0.4117 | 0.0 | 0.7654 | 0.8201 | 0.6399 | 0.7542 | 0.5932 | 0.7602 | 0.5554 | 0.3344 | 0.5066 | 0.5406 | 0.8287 | 0.7359 | 0.7540 | 0.7616 | 0.7674 | 0.7443 | 0.3081 |
| 0.0261 | 10.56 | 5280 | 0.2100 | 0.6276 | 0.7585 | 0.8288 | nan | 0.8454 | 0.8949 | 0.7216 | 0.8499 | 0.7262 | 0.8815 | 0.7873 | 0.4518 | 0.5732 | 0.6507 | 0.9106 | 0.8435 | 0.8412 | 0.8713 | 0.8251 | 0.8197 | 0.4006 | 0.0 | 0.7584 | 0.8135 | 0.6246 | 0.7698 | 0.6606 | 0.7626 | 0.5794 | 0.3609 | 0.4907 | 0.5444 | 0.8275 | 0.7360 | 0.7576 | 0.7629 | 0.7689 | 0.7684 | 0.3100 |
| 0.0367 | 10.6 | 5300 | 0.2105 | 0.6286 | 0.7600 | 0.8295 | nan | 0.8311 | 0.9008 | 0.7109 | 0.8554 | 0.7369 | 0.8848 | 0.7620 | 0.4867 | 0.6178 | 0.6341 | 0.9151 | 0.8242 | 0.8420 | 0.8563 | 0.8457 | 0.8271 | 0.3897 | 0.0 | 0.7560 | 0.8176 | 0.6200 | 0.7720 | 0.6602 | 0.7608 | 0.5730 | 0.3741 | 0.5059 | 0.5350 | 0.8270 | 0.7342 | 0.7568 | 0.7657 | 0.7747 | 0.7741 | 0.3087 |
| 0.0494 | 10.64 | 5320 | 0.2101 | 0.6297 | 0.7626 | 0.8293 | nan | 0.8543 | 0.8998 | 0.7747 | 0.8539 | 0.7431 | 0.8798 | 0.7701 | 0.4706 | 0.5727 | 0.6555 | 0.9018 | 0.8355 | 0.8481 | 0.8455 | 0.8512 | 0.8174 | 0.3906 | 0.0 | 0.7598 | 0.8179 | 0.6454 | 0.7712 | 0.6626 | 0.7614 | 0.5729 | 0.3685 | 0.4892 | 0.5435 | 0.8264 | 0.7346 | 0.7580 | 0.7642 | 0.7773 | 0.7698 | 0.3125 |
| 0.032 | 10.68 | 5340 | 0.2092 | 0.6256 | 0.7525 | 0.8288 | nan | 0.8394 | 0.9041 | 0.7387 | 0.8624 | 0.7439 | 0.8801 | 0.7531 | 0.4074 | 0.5851 | 0.6353 | 0.9099 | 0.8306 | 0.8395 | 0.8385 | 0.8394 | 0.8221 | 0.3637 | 0.0 | 0.7606 | 0.8164 | 0.6359 | 0.7755 | 0.6571 | 0.7609 | 0.5714 | 0.3418 | 0.4900 | 0.5332 | 0.8272 | 0.7302 | 0.7549 | 0.7582 | 0.7714 | 0.7749 | 0.3020 |
| 0.0815 | 10.72 | 5360 | 0.2096 | 0.6262 | 0.7539 | 0.8322 | nan | 0.8455 | 0.8997 | 0.7519 | 0.8693 | 0.7435 | 0.8937 | 0.7511 | 0.3924 | 0.6073 | 0.5934 | 0.9148 | 0.8577 | 0.8196 | 0.8589 | 0.8448 | 0.8204 | 0.3518 | 0.0 | 0.7650 | 0.8207 | 0.6388 | 0.7816 | 0.6572 | 0.7617 | 0.5773 | 0.3307 | 0.4985 | 0.5189 | 0.8281 | 0.7326 | 0.7490 | 0.7657 | 0.7760 | 0.7720 | 0.2975 |
| 0.0529 | 10.76 | 5380 | 0.2130 | 0.6261 | 0.7532 | 0.8287 | nan | 0.8682 | 0.8954 | 0.7341 | 0.8578 | 0.7345 | 0.8630 | 0.7909 | 0.4212 | 0.5998 | 0.6059 | 0.9135 | 0.8545 | 0.8225 | 0.8491 | 0.8459 | 0.8118 | 0.3364 | 0.0 | 0.7678 | 0.8209 | 0.6332 | 0.7739 | 0.6654 | 0.7521 | 0.5824 | 0.3451 | 0.4929 | 0.5194 | 0.8284 | 0.7403 | 0.7554 | 0.7608 | 0.7780 | 0.7618 | 0.2918 |
| 0.0348 | 10.8 | 5400 | 0.2174 | 0.6254 | 0.7535 | 0.8270 | nan | 0.8603 | 0.8988 | 0.6850 | 0.8541 | 0.7227 | 0.8434 | 0.7972 | 0.4412 | 0.5788 | 0.6221 | 0.9185 | 0.8593 | 0.8188 | 0.8499 | 0.8463 | 0.8332 | 0.3798 | 0.0 | 0.7677 | 0.8190 | 0.6110 | 0.7707 | 0.6526 | 0.7469 | 0.5817 | 0.3509 | 0.4876 | 0.5275 | 0.8273 | 0.7360 | 0.7504 | 0.7609 | 0.7770 | 0.7691 | 0.3200 |
| 0.0424 | 10.84 | 5420 | 0.2128 | 0.6286 | 0.7594 | 0.8323 | nan | 0.8541 | 0.8904 | 0.7261 | 0.8671 | 0.7348 | 0.8700 | 0.7783 | 0.3729 | 0.5723 | 0.6372 | 0.9230 | 0.8561 | 0.8202 | 0.8570 | 0.8394 | 0.8370 | 0.4743 | 0.0 | 0.7685 | 0.8167 | 0.6291 | 0.7790 | 0.6736 | 0.7597 | 0.5928 | 0.3156 | 0.4897 | 0.5383 | 0.8277 | 0.7348 | 0.7485 | 0.7624 | 0.7729 | 0.7761 | 0.3302 |
| 0.0443 | 10.88 | 5440 | 0.2127 | 0.6280 | 0.7551 | 0.8318 | nan | 0.8285 | 0.9077 | 0.7122 | 0.8713 | 0.7365 | 0.8675 | 0.7681 | 0.3680 | 0.6071 | 0.6288 | 0.9094 | 0.8384 | 0.8312 | 0.8476 | 0.8344 | 0.8200 | 0.4596 | 0.0 | 0.7680 | 0.8184 | 0.6258 | 0.7799 | 0.6731 | 0.7608 | 0.5919 | 0.3159 | 0.5004 | 0.5312 | 0.8275 | 0.7353 | 0.7551 | 0.7588 | 0.7722 | 0.7686 | 0.3203 |
| 0.0725 | 10.92 | 5460 | 0.2146 | 0.6300 | 0.7579 | 0.8328 | nan | 0.8521 | 0.8993 | 0.7243 | 0.8694 | 0.7051 | 0.8731 | 0.7830 | 0.3837 | 0.6255 | 0.6155 | 0.9131 | 0.8557 | 0.8331 | 0.8509 | 0.8339 | 0.8381 | 0.4290 | 0.0 | 0.7717 | 0.8195 | 0.6304 | 0.7799 | 0.6599 | 0.7633 | 0.5904 | 0.3339 | 0.5067 | 0.5259 | 0.8285 | 0.7402 | 0.7604 | 0.7598 | 0.7730 | 0.7798 | 0.3168 |
| 0.0516 | 10.96 | 5480 | 0.2144 | 0.6324 | 0.7604 | 0.8355 | nan | 0.8486 | 0.9148 | 0.7692 | 0.8722 | 0.7175 | 0.8743 | 0.7817 | 0.3988 | 0.5847 | 0.6573 | 0.9090 | 0.8564 | 0.8315 | 0.8598 | 0.8257 | 0.8307 | 0.3950 | 0.0 | 0.7761 | 0.8266 | 0.6443 | 0.7816 | 0.6665 | 0.7638 | 0.5937 | 0.3506 | 0.4985 | 0.5469 | 0.8267 | 0.7378 | 0.7569 | 0.7599 | 0.7671 | 0.7812 | 0.3043 |
| 0.0542 | 11.0 | 5500 | 0.2133 | 0.6298 | 0.7572 | 0.8331 | nan | 0.8333 | 0.9010 | 0.7820 | 0.8751 | 0.7279 | 0.8879 | 0.7564 | 0.4034 | 0.5703 | 0.6596 | 0.9128 | 0.8320 | 0.8518 | 0.8707 | 0.8125 | 0.8182 | 0.3773 | 0.0 | 0.7640 | 0.8179 | 0.6455 | 0.7836 | 0.6643 | 0.7653 | 0.5916 | 0.3499 | 0.4914 | 0.5451 | 0.8265 | 0.7416 | 0.7649 | 0.7560 | 0.7595 | 0.7752 | 0.2944 |
| 0.0404 | 11.04 | 5520 | 0.2140 | 0.6325 | 0.7596 | 0.8365 | nan | 0.8663 | 0.8999 | 0.7718 | 0.8849 | 0.7341 | 0.8879 | 0.7504 | 0.4153 | 0.5794 | 0.6610 | 0.9106 | 0.8534 | 0.8390 | 0.8535 | 0.8246 | 0.8299 | 0.3507 | 0.0 | 0.7760 | 0.8215 | 0.6441 | 0.7857 | 0.6680 | 0.7666 | 0.5918 | 0.3588 | 0.4958 | 0.5472 | 0.8283 | 0.7478 | 0.7633 | 0.7584 | 0.7669 | 0.7815 | 0.2824 |
| 0.0451 | 11.08 | 5540 | 0.2135 | 0.6290 | 0.7568 | 0.8327 | nan | 0.8767 | 0.9029 | 0.7418 | 0.8730 | 0.7319 | 0.8768 | 0.7688 | 0.4331 | 0.5868 | 0.6178 | 0.9193 | 0.8594 | 0.8246 | 0.8577 | 0.8235 | 0.8097 | 0.3623 | 0.0 | 0.7778 | 0.8237 | 0.6354 | 0.7786 | 0.6702 | 0.7645 | 0.5908 | 0.3712 | 0.4864 | 0.5227 | 0.8254 | 0.7392 | 0.7573 | 0.7583 | 0.7652 | 0.7654 | 0.2896 |
| 0.0477 | 11.12 | 5560 | 0.2149 | 0.6277 | 0.7547 | 0.8314 | nan | 0.8641 | 0.8961 | 0.7527 | 0.8823 | 0.7351 | 0.8723 | 0.7534 | 0.4310 | 0.5857 | 0.6364 | 0.9045 | 0.8509 | 0.8218 | 0.8473 | 0.8141 | 0.8222 | 0.3595 | 0.0 | 0.7712 | 0.8169 | 0.6389 | 0.7823 | 0.6654 | 0.7653 | 0.5867 | 0.3619 | 0.4893 | 0.5323 | 0.8250 | 0.7381 | 0.7556 | 0.7541 | 0.7625 | 0.7697 | 0.2840 |
| 0.0373 | 11.16 | 5580 | 0.2104 | 0.6275 | 0.7564 | 0.8315 | nan | 0.8625 | 0.8935 | 0.7551 | 0.8727 | 0.7091 | 0.8845 | 0.7628 | 0.4085 | 0.5838 | 0.6345 | 0.9158 | 0.8496 | 0.8422 | 0.8586 | 0.8232 | 0.8257 | 0.3760 | 0.0 | 0.7754 | 0.8146 | 0.6345 | 0.7790 | 0.6502 | 0.7704 | 0.5822 | 0.3509 | 0.4897 | 0.5328 | 0.8257 | 0.7402 | 0.7627 | 0.7564 | 0.7639 | 0.7744 | 0.2914 |
| 0.0359 | 11.2 | 5600 | 0.2093 | 0.6279 | 0.7592 | 0.8310 | nan | 0.8657 | 0.8938 | 0.7299 | 0.8674 | 0.7094 | 0.8825 | 0.7700 | 0.4404 | 0.5819 | 0.6408 | 0.9095 | 0.8462 | 0.8487 | 0.8587 | 0.8144 | 0.8360 | 0.4117 | 0.0 | 0.7685 | 0.8183 | 0.6283 | 0.7763 | 0.6471 | 0.7696 | 0.5786 | 0.3624 | 0.4902 | 0.5349 | 0.8256 | 0.7377 | 0.7633 | 0.7569 | 0.7626 | 0.7809 | 0.3001 |
| 0.0549 | 11.24 | 5620 | 0.2080 | 0.6231 | 0.7515 | 0.8279 | nan | 0.8614 | 0.9001 | 0.7025 | 0.8620 | 0.7041 | 0.8777 | 0.7664 | 0.3873 | 0.5975 | 0.6150 | 0.9117 | 0.8499 | 0.8352 | 0.8384 | 0.8368 | 0.8320 | 0.3974 | 0.0 | 0.7629 | 0.8166 | 0.6182 | 0.7750 | 0.6366 | 0.7677 | 0.5736 | 0.3337 | 0.4940 | 0.5205 | 0.8246 | 0.7360 | 0.7591 | 0.7550 | 0.7669 | 0.7764 | 0.2982 |
| 0.0512 | 11.28 | 5640 | 0.2108 | 0.6251 | 0.7541 | 0.8314 | nan | 0.8632 | 0.9005 | 0.7296 | 0.8754 | 0.6961 | 0.8890 | 0.7573 | 0.3910 | 0.6054 | 0.6270 | 0.9131 | 0.8557 | 0.8332 | 0.8487 | 0.8269 | 0.8212 | 0.3856 | 0.0 | 0.7650 | 0.8158 | 0.6289 | 0.7828 | 0.6318 | 0.7657 | 0.5804 | 0.3362 | 0.4984 | 0.5274 | 0.8258 | 0.7400 | 0.7589 | 0.7562 | 0.7671 | 0.7733 | 0.2974 |
| 0.0329 | 11.32 | 5660 | 0.2129 | 0.6243 | 0.7561 | 0.8279 | nan | 0.8647 | 0.8870 | 0.7665 | 0.8815 | 0.6828 | 0.8908 | 0.7336 | 0.4715 | 0.5886 | 0.6307 | 0.9125 | 0.8491 | 0.8272 | 0.8533 | 0.8241 | 0.8292 | 0.3601 | 0.0 | 0.7595 | 0.8118 | 0.6378 | 0.7854 | 0.6189 | 0.7576 | 0.5749 | 0.3751 | 0.4922 | 0.5265 | 0.8249 | 0.7381 | 0.7567 | 0.7558 | 0.7647 | 0.7755 | 0.2824 |
| 0.0624 | 11.36 | 5680 | 0.2176 | 0.6276 | 0.7592 | 0.8322 | nan | 0.8666 | 0.9038 | 0.7484 | 0.8798 | 0.6784 | 0.8929 | 0.7404 | 0.4572 | 0.5800 | 0.6500 | 0.9101 | 0.8476 | 0.8426 | 0.8579 | 0.8419 | 0.8432 | 0.3653 | 0.0 | 0.7675 | 0.8213 | 0.6343 | 0.7865 | 0.6190 | 0.7568 | 0.5758 | 0.3717 | 0.4907 | 0.5365 | 0.8250 | 0.7409 | 0.7612 | 0.7636 | 0.7735 | 0.7825 | 0.2902 |
| 0.0438 | 11.4 | 5700 | 0.2145 | 0.6197 | 0.7470 | 0.8276 | nan | 0.8583 | 0.8946 | 0.7420 | 0.8716 | 0.7013 | 0.8881 | 0.7458 | 0.3413 | 0.5784 | 0.6286 | 0.9070 | 0.8443 | 0.8230 | 0.8482 | 0.8484 | 0.8255 | 0.3524 | 0.0 | 0.7606 | 0.8171 | 0.6299 | 0.7809 | 0.6282 | 0.7606 | 0.5730 | 0.2992 | 0.4899 | 0.5293 | 0.8233 | 0.7329 | 0.7486 | 0.7557 | 0.7704 | 0.7716 | 0.2840 |
| 0.0357 | 11.44 | 5720 | 0.2165 | 0.6224 | 0.7510 | 0.8290 | nan | 0.8549 | 0.9050 | 0.7354 | 0.8677 | 0.7007 | 0.8893 | 0.7488 | 0.3664 | 0.6073 | 0.6288 | 0.9029 | 0.8525 | 0.8212 | 0.8488 | 0.8396 | 0.8376 | 0.3607 | 0.0 | 0.7648 | 0.8193 | 0.6297 | 0.7792 | 0.6292 | 0.7660 | 0.5687 | 0.3147 | 0.5002 | 0.5310 | 0.8234 | 0.7338 | 0.7487 | 0.7549 | 0.7688 | 0.7767 | 0.2935 |
| 0.0476 | 11.48 | 5740 | 0.2198 | 0.6246 | 0.7552 | 0.8284 | nan | 0.8697 | 0.9019 | 0.7674 | 0.8673 | 0.6945 | 0.8877 | 0.7538 | 0.4138 | 0.5647 | 0.6587 | 0.9082 | 0.8418 | 0.8337 | 0.8504 | 0.8338 | 0.8250 | 0.3658 | 0.0 | 0.7700 | 0.8182 | 0.6393 | 0.7769 | 0.6309 | 0.7648 | 0.5706 | 0.3502 | 0.4808 | 0.5358 | 0.8261 | 0.7391 | 0.7571 | 0.7529 | 0.7638 | 0.7699 | 0.2964 |
| 0.0467 | 11.52 | 5760 | 0.2185 | 0.6216 | 0.7517 | 0.8282 | nan | 0.8730 | 0.8975 | 0.7627 | 0.8608 | 0.7052 | 0.8941 | 0.7595 | 0.3479 | 0.5988 | 0.6071 | 0.9060 | 0.8564 | 0.8250 | 0.8546 | 0.8256 | 0.8349 | 0.3691 | 0.0 | 0.7690 | 0.8174 | 0.6378 | 0.7752 | 0.6320 | 0.7646 | 0.5660 | 0.3006 | 0.4899 | 0.5149 | 0.8273 | 0.7414 | 0.7564 | 0.7554 | 0.7662 | 0.7761 | 0.2982 |
| 0.0433 | 11.56 | 5780 | 0.2111 | 0.6208 | 0.7480 | 0.8278 | nan | 0.8661 | 0.8986 | 0.7574 | 0.8706 | 0.7196 | 0.8946 | 0.7398 | 0.3789 | 0.5838 | 0.5903 | 0.9081 | 0.8516 | 0.8256 | 0.8466 | 0.8307 | 0.8173 | 0.3367 | 0.0 | 0.7611 | 0.8168 | 0.6375 | 0.7805 | 0.6338 | 0.7664 | 0.5661 | 0.3274 | 0.4832 | 0.5056 | 0.8262 | 0.7368 | 0.7542 | 0.7568 | 0.7669 | 0.7684 | 0.2871 |
| 0.0304 | 11.6 | 5800 | 0.2154 | 0.6191 | 0.7436 | 0.8277 | nan | 0.8618 | 0.8979 | 0.7209 | 0.8716 | 0.7157 | 0.8946 | 0.7407 | 0.3319 | 0.5662 | 0.6205 | 0.9098 | 0.8442 | 0.8295 | 0.8469 | 0.8375 | 0.8093 | 0.3416 | 0.0 | 0.7636 | 0.8199 | 0.6260 | 0.7789 | 0.6300 | 0.7689 | 0.5623 | 0.2928 | 0.4787 | 0.5193 | 0.8260 | 0.7348 | 0.7550 | 0.7615 | 0.7725 | 0.7631 | 0.2904 |
| 0.0456 | 11.64 | 5820 | 0.2215 | 0.6230 | 0.7521 | 0.8266 | nan | 0.8554 | 0.9081 | 0.7498 | 0.8582 | 0.7027 | 0.8900 | 0.7501 | 0.3789 | 0.5846 | 0.6315 | 0.9070 | 0.8620 | 0.8103 | 0.8540 | 0.8338 | 0.8297 | 0.3791 | 0.0 | 0.7671 | 0.8182 | 0.6374 | 0.7732 | 0.6303 | 0.7704 | 0.5589 | 0.3259 | 0.4920 | 0.5315 | 0.8259 | 0.7282 | 0.7434 | 0.7636 | 0.7698 | 0.7745 | 0.3035 |
| 0.0395 | 11.68 | 5840 | 0.2156 | 0.6267 | 0.7571 | 0.8288 | nan | 0.8395 | 0.9011 | 0.7391 | 0.8638 | 0.7053 | 0.8887 | 0.7445 | 0.4443 | 0.6131 | 0.6206 | 0.9123 | 0.8457 | 0.8456 | 0.8584 | 0.8299 | 0.8410 | 0.3778 | 0.0 | 0.7617 | 0.8185 | 0.6350 | 0.7767 | 0.6294 | 0.7724 | 0.5599 | 0.3643 | 0.5046 | 0.5287 | 0.8268 | 0.7346 | 0.7577 | 0.7628 | 0.7672 | 0.7783 | 0.3018 |
| 0.0391 | 11.72 | 5860 | 0.2238 | 0.6280 | 0.7600 | 0.8292 | nan | 0.8536 | 0.9013 | 0.7666 | 0.8641 | 0.7047 | 0.8927 | 0.7430 | 0.4564 | 0.6096 | 0.6249 | 0.9133 | 0.8358 | 0.8507 | 0.8643 | 0.8406 | 0.8269 | 0.3712 | 0.0 | 0.7668 | 0.8178 | 0.6427 | 0.7769 | 0.6300 | 0.7726 | 0.5607 | 0.3792 | 0.5012 | 0.5286 | 0.8268 | 0.7357 | 0.7595 | 0.7659 | 0.7694 | 0.7724 | 0.2980 |
| 0.0346 | 11.76 | 5880 | 0.2191 | 0.6239 | 0.7533 | 0.8262 | nan | 0.8605 | 0.9009 | 0.7339 | 0.8621 | 0.7032 | 0.8922 | 0.7436 | 0.4405 | 0.6021 | 0.6003 | 0.9150 | 0.8546 | 0.8185 | 0.8389 | 0.8408 | 0.8256 | 0.3724 | 0.0 | 0.7648 | 0.8168 | 0.6315 | 0.7751 | 0.6285 | 0.7713 | 0.5581 | 0.3704 | 0.4912 | 0.5119 | 0.8274 | 0.7354 | 0.7498 | 0.7582 | 0.7679 | 0.7729 | 0.2998 |
| 0.0428 | 11.8 | 5900 | 0.2230 | 0.6226 | 0.7544 | 0.8254 | nan | 0.8661 | 0.9018 | 0.7239 | 0.8575 | 0.7139 | 0.8850 | 0.7410 | 0.4345 | 0.5995 | 0.6129 | 0.9190 | 0.8587 | 0.8062 | 0.8652 | 0.8263 | 0.8313 | 0.3829 | 0.0 | 0.7703 | 0.8180 | 0.6275 | 0.7721 | 0.6201 | 0.7767 | 0.5547 | 0.3585 | 0.4955 | 0.5214 | 0.8283 | 0.7276 | 0.7427 | 0.7600 | 0.7599 | 0.7759 | 0.2983 |
| 0.0376 | 11.84 | 5920 | 0.2248 | 0.6199 | 0.7497 | 0.8238 | nan | 0.8727 | 0.8903 | 0.7110 | 0.8552 | 0.7067 | 0.8816 | 0.7558 | 0.4013 | 0.6114 | 0.6214 | 0.9192 | 0.8479 | 0.8203 | 0.8553 | 0.8205 | 0.8192 | 0.3547 | 0.0 | 0.7625 | 0.8181 | 0.6212 | 0.7665 | 0.6213 | 0.7749 | 0.5510 | 0.3346 | 0.5040 | 0.5291 | 0.8278 | 0.7265 | 0.7457 | 0.7574 | 0.7599 | 0.7695 | 0.2881 |
| 0.0359 | 11.88 | 5940 | 0.2267 | 0.6204 | 0.7485 | 0.8251 | nan | 0.8528 | 0.9020 | 0.7108 | 0.8586 | 0.6962 | 0.8801 | 0.7549 | 0.3779 | 0.5934 | 0.6442 | 0.9122 | 0.8469 | 0.8411 | 0.8614 | 0.8156 | 0.8121 | 0.3645 | 0.0 | 0.7618 | 0.8199 | 0.6232 | 0.7681 | 0.6200 | 0.7714 | 0.5553 | 0.3211 | 0.4962 | 0.5359 | 0.8260 | 0.7373 | 0.7558 | 0.7539 | 0.7591 | 0.7666 | 0.2956 |
| 0.0345 | 11.92 | 5960 | 0.2250 | 0.6230 | 0.7505 | 0.8262 | nan | 0.8300 | 0.9085 | 0.7175 | 0.8635 | 0.7003 | 0.8771 | 0.7477 | 0.4255 | 0.5867 | 0.6400 | 0.9049 | 0.8476 | 0.8444 | 0.8481 | 0.8222 | 0.8292 | 0.3651 | 0.0 | 0.7581 | 0.8192 | 0.6272 | 0.7707 | 0.6217 | 0.7718 | 0.5576 | 0.3485 | 0.4925 | 0.5330 | 0.8258 | 0.7390 | 0.7586 | 0.7542 | 0.7623 | 0.7761 | 0.2974 |
| 0.0374 | 11.96 | 5980 | 0.2186 | 0.6238 | 0.7521 | 0.8256 | nan | 0.8399 | 0.9082 | 0.7109 | 0.8621 | 0.7026 | 0.8810 | 0.7414 | 0.4934 | 0.6159 | 0.5969 | 0.9150 | 0.8529 | 0.8370 | 0.8347 | 0.8388 | 0.8225 | 0.3330 | 0.0 | 0.7612 | 0.8185 | 0.6248 | 0.7701 | 0.6254 | 0.7705 | 0.5559 | 0.3824 | 0.5027 | 0.5153 | 0.8279 | 0.7365 | 0.7563 | 0.7553 | 0.7685 | 0.7736 | 0.2826 |
| 0.055 | 12.0 | 6000 | 0.2175 | 0.6251 | 0.7562 | 0.8254 | nan | 0.8404 | 0.9083 | 0.6946 | 0.8566 | 0.7138 | 0.8827 | 0.7373 | 0.4973 | 0.5873 | 0.6403 | 0.9124 | 0.8417 | 0.8445 | 0.8313 | 0.8508 | 0.8241 | 0.3917 | 0.0 | 0.7637 | 0.8192 | 0.6178 | 0.7687 | 0.6261 | 0.7699 | 0.5516 | 0.3656 | 0.4957 | 0.5332 | 0.8288 | 0.7396 | 0.7604 | 0.7583 | 0.7731 | 0.7739 | 0.3052 |
| 0.0336 | 12.04 | 6020 | 0.2203 | 0.6265 | 0.7593 | 0.8256 | nan | 0.8568 | 0.8967 | 0.7212 | 0.8569 | 0.7082 | 0.8832 | 0.7463 | 0.4661 | 0.6005 | 0.6372 | 0.9132 | 0.8482 | 0.8314 | 0.8517 | 0.8351 | 0.8277 | 0.4268 | 0.0 | 0.7665 | 0.8147 | 0.6297 | 0.7679 | 0.6285 | 0.7707 | 0.5547 | 0.3604 | 0.5009 | 0.5349 | 0.8294 | 0.7401 | 0.7577 | 0.7606 | 0.7723 | 0.7758 | 0.3115 |
| 0.0286 | 12.08 | 6040 | 0.2250 | 0.6271 | 0.7585 | 0.8279 | nan | 0.8574 | 0.8988 | 0.7423 | 0.8675 | 0.7068 | 0.8874 | 0.7407 | 0.4549 | 0.6028 | 0.6397 | 0.9084 | 0.8455 | 0.8280 | 0.8531 | 0.8258 | 0.8309 | 0.4054 | 0.0 | 0.7684 | 0.8179 | 0.6376 | 0.7737 | 0.6257 | 0.7723 | 0.5564 | 0.3632 | 0.5019 | 0.5374 | 0.8298 | 0.7358 | 0.7559 | 0.7609 | 0.7717 | 0.7777 | 0.3018 |
| 0.0309 | 12.12 | 6060 | 0.2299 | 0.6233 | 0.7504 | 0.8261 | nan | 0.8402 | 0.9057 | 0.6992 | 0.8646 | 0.6978 | 0.8817 | 0.7436 | 0.4204 | 0.5674 | 0.6546 | 0.9063 | 0.8399 | 0.8438 | 0.8562 | 0.8334 | 0.8201 | 0.3814 | 0.0 | 0.7621 | 0.8182 | 0.6200 | 0.7726 | 0.6221 | 0.7671 | 0.5575 | 0.3449 | 0.4860 | 0.5407 | 0.8272 | 0.7355 | 0.7586 | 0.7605 | 0.7725 | 0.7678 | 0.3055 |
| 0.0335 | 12.16 | 6080 | 0.2293 | 0.6213 | 0.7477 | 0.8218 | nan | 0.8327 | 0.8919 | 0.7078 | 0.8492 | 0.6968 | 0.8750 | 0.7630 | 0.4157 | 0.5924 | 0.6157 | 0.9195 | 0.8414 | 0.8426 | 0.8437 | 0.8327 | 0.8217 | 0.3698 | 0.0 | 0.7595 | 0.8158 | 0.6204 | 0.7626 | 0.6262 | 0.7656 | 0.5507 | 0.3408 | 0.5001 | 0.5262 | 0.8277 | 0.7348 | 0.7566 | 0.7532 | 0.7695 | 0.7708 | 0.3035 |
| 0.0334 | 12.2 | 6100 | 0.2293 | 0.6235 | 0.7534 | 0.8234 | nan | 0.8485 | 0.9054 | 0.7384 | 0.8482 | 0.7003 | 0.8764 | 0.7602 | 0.4250 | 0.6150 | 0.6245 | 0.9104 | 0.8574 | 0.8285 | 0.8454 | 0.8390 | 0.8127 | 0.3723 | 0.0 | 0.7650 | 0.8190 | 0.6351 | 0.7630 | 0.6232 | 0.7688 | 0.5482 | 0.3464 | 0.5120 | 0.5339 | 0.8277 | 0.7326 | 0.7495 | 0.7546 | 0.7702 | 0.7689 | 0.3058 |
| 0.0413 | 12.24 | 6120 | 0.2224 | 0.6251 | 0.7572 | 0.8247 | nan | 0.8724 | 0.9004 | 0.7315 | 0.8544 | 0.7000 | 0.8835 | 0.7461 | 0.4563 | 0.5877 | 0.6541 | 0.9096 | 0.8544 | 0.8243 | 0.8548 | 0.8427 | 0.8206 | 0.3802 | 0.0 | 0.7680 | 0.8162 | 0.6332 | 0.7667 | 0.6181 | 0.7706 | 0.5492 | 0.3710 | 0.4992 | 0.5461 | 0.8275 | 0.7315 | 0.7495 | 0.7578 | 0.7706 | 0.7733 | 0.3027 |
| 0.0317 | 12.28 | 6140 | 0.2260 | 0.6248 | 0.7557 | 0.8251 | nan | 0.8752 | 0.8976 | 0.7346 | 0.8549 | 0.7024 | 0.8815 | 0.7496 | 0.4264 | 0.6123 | 0.6348 | 0.9121 | 0.8522 | 0.8280 | 0.8460 | 0.8366 | 0.8302 | 0.3733 | 0.0 | 0.7699 | 0.8190 | 0.6336 | 0.7651 | 0.6137 | 0.7748 | 0.5445 | 0.3573 | 0.5082 | 0.5388 | 0.8289 | 0.7329 | 0.7518 | 0.7561 | 0.7711 | 0.7785 | 0.3026 |
| 0.0357 | 12.32 | 6160 | 0.2295 | 0.6233 | 0.7542 | 0.8227 | nan | 0.8614 | 0.9038 | 0.7491 | 0.8420 | 0.7010 | 0.8852 | 0.7599 | 0.4142 | 0.5897 | 0.6365 | 0.9102 | 0.8520 | 0.8247 | 0.8376 | 0.8361 | 0.8309 | 0.3872 | 0.0 | 0.7686 | 0.8170 | 0.6399 | 0.7610 | 0.6167 | 0.7771 | 0.5468 | 0.3442 | 0.4971 | 0.5352 | 0.8287 | 0.7332 | 0.7538 | 0.7543 | 0.7677 | 0.7790 | 0.2991 |
| 0.0362 | 12.36 | 6180 | 0.2290 | 0.6259 | 0.7574 | 0.8260 | nan | 0.8600 | 0.9036 | 0.7575 | 0.8503 | 0.6978 | 0.8862 | 0.7541 | 0.3948 | 0.6014 | 0.6476 | 0.9111 | 0.8516 | 0.8385 | 0.8550 | 0.8375 | 0.8296 | 0.3996 | 0.0 | 0.7734 | 0.8207 | 0.6423 | 0.7641 | 0.6160 | 0.7747 | 0.5464 | 0.3382 | 0.5043 | 0.5414 | 0.8295 | 0.7401 | 0.7631 | 0.7609 | 0.7712 | 0.7805 | 0.2992 |
| 0.0484 | 12.4 | 6200 | 0.2278 | 0.6258 | 0.7550 | 0.8253 | nan | 0.8532 | 0.9050 | 0.7494 | 0.8537 | 0.6986 | 0.8866 | 0.7488 | 0.4345 | 0.5954 | 0.6401 | 0.9056 | 0.8454 | 0.8465 | 0.8529 | 0.8325 | 0.8251 | 0.3620 | 0.0 | 0.7676 | 0.8179 | 0.6411 | 0.7666 | 0.6182 | 0.7709 | 0.5495 | 0.3644 | 0.5026 | 0.5401 | 0.8280 | 0.7389 | 0.7637 | 0.7584 | 0.7688 | 0.7777 | 0.2906 |
| 0.0353 | 12.44 | 6220 | 0.2256 | 0.6294 | 0.7594 | 0.8279 | nan | 0.8645 | 0.9064 | 0.7356 | 0.8636 | 0.7006 | 0.8859 | 0.7354 | 0.4782 | 0.6007 | 0.6601 | 0.9118 | 0.8441 | 0.8395 | 0.8566 | 0.8366 | 0.8307 | 0.3597 | 0.0 | 0.7718 | 0.8221 | 0.6358 | 0.7727 | 0.6177 | 0.7719 | 0.5516 | 0.3942 | 0.5053 | 0.5472 | 0.8294 | 0.7407 | 0.7645 | 0.7622 | 0.7718 | 0.7794 | 0.2904 |
| 0.0361 | 12.48 | 6240 | 0.2236 | 0.6265 | 0.7557 | 0.8261 | nan | 0.8510 | 0.9002 | 0.7453 | 0.8569 | 0.6987 | 0.8855 | 0.7481 | 0.4498 | 0.5990 | 0.6371 | 0.9145 | 0.8531 | 0.8317 | 0.8567 | 0.8332 | 0.8344 | 0.3515 | 0.0 | 0.7644 | 0.8185 | 0.6377 | 0.7703 | 0.6220 | 0.7704 | 0.5536 | 0.3703 | 0.5037 | 0.5392 | 0.8296 | 0.7372 | 0.7584 | 0.7628 | 0.7706 | 0.7792 | 0.2882 |
| 0.0511 | 12.52 | 6260 | 0.2277 | 0.6253 | 0.7548 | 0.8242 | nan | 0.8476 | 0.8931 | 0.7597 | 0.8480 | 0.7010 | 0.8868 | 0.7604 | 0.4331 | 0.6105 | 0.6158 | 0.9159 | 0.8539 | 0.8393 | 0.8495 | 0.8376 | 0.8202 | 0.3593 | 0.0 | 0.7640 | 0.8184 | 0.6402 | 0.7621 | 0.6255 | 0.7707 | 0.5468 | 0.3641 | 0.5030 | 0.5265 | 0.8306 | 0.7393 | 0.7614 | 0.7625 | 0.7736 | 0.7731 | 0.2929 |
| 0.0586 | 12.56 | 6280 | 0.2299 | 0.6242 | 0.7543 | 0.8224 | nan | 0.8597 | 0.8940 | 0.7576 | 0.8428 | 0.7032 | 0.8725 | 0.7691 | 0.4026 | 0.6018 | 0.6374 | 0.9108 | 0.8519 | 0.8347 | 0.8484 | 0.8349 | 0.8241 | 0.3781 | 0.0 | 0.7651 | 0.8190 | 0.6397 | 0.7572 | 0.6239 | 0.7710 | 0.5454 | 0.3396 | 0.5044 | 0.5380 | 0.8308 | 0.7388 | 0.7568 | 0.7571 | 0.7711 | 0.7736 | 0.3037 |
| 0.0261 | 12.6 | 6300 | 0.2290 | 0.6244 | 0.7553 | 0.8225 | nan | 0.8704 | 0.8966 | 0.7397 | 0.8438 | 0.7034 | 0.8785 | 0.7639 | 0.4307 | 0.5786 | 0.6540 | 0.9126 | 0.8562 | 0.8144 | 0.8458 | 0.8396 | 0.8254 | 0.3871 | 0.0 | 0.7687 | 0.8189 | 0.6341 | 0.7586 | 0.6231 | 0.7710 | 0.5491 | 0.3626 | 0.4951 | 0.5432 | 0.8300 | 0.7328 | 0.7460 | 0.7561 | 0.7715 | 0.7739 | 0.3039 |
| 0.04 | 12.64 | 6320 | 0.2329 | 0.6277 | 0.7594 | 0.8252 | nan | 0.8835 | 0.8976 | 0.7452 | 0.8447 | 0.6999 | 0.8810 | 0.7746 | 0.4545 | 0.5671 | 0.6589 | 0.9143 | 0.8449 | 0.8405 | 0.8459 | 0.8404 | 0.8280 | 0.3883 | 0.0 | 0.7703 | 0.8184 | 0.6348 | 0.7600 | 0.6321 | 0.7721 | 0.5557 | 0.3785 | 0.4905 | 0.5449 | 0.8301 | 0.7400 | 0.7592 | 0.7572 | 0.7744 | 0.7767 | 0.3029 |
| 0.0781 | 12.68 | 6340 | 0.2256 | 0.6255 | 0.7551 | 0.8252 | nan | 0.8670 | 0.8966 | 0.7042 | 0.8548 | 0.7049 | 0.8694 | 0.7625 | 0.4641 | 0.5711 | 0.6488 | 0.9170 | 0.8511 | 0.8333 | 0.8529 | 0.8267 | 0.8376 | 0.3752 | 0.0 | 0.7684 | 0.8176 | 0.6185 | 0.7655 | 0.6280 | 0.7709 | 0.5596 | 0.3800 | 0.4920 | 0.5416 | 0.8285 | 0.7369 | 0.7551 | 0.7539 | 0.7680 | 0.7801 | 0.2950 |
| 0.0363 | 12.72 | 6360 | 0.2250 | 0.6249 | 0.7525 | 0.8253 | nan | 0.8345 | 0.9020 | 0.7121 | 0.8564 | 0.7004 | 0.8744 | 0.7617 | 0.4431 | 0.5829 | 0.6374 | 0.9145 | 0.8497 | 0.8377 | 0.8500 | 0.8310 | 0.8220 | 0.3834 | 0.0 | 0.7609 | 0.8184 | 0.6233 | 0.7670 | 0.6281 | 0.7684 | 0.5605 | 0.3693 | 0.4970 | 0.5384 | 0.8282 | 0.7373 | 0.7557 | 0.7550 | 0.7704 | 0.7748 | 0.2953 |
| 0.0593 | 12.76 | 6380 | 0.2211 | 0.6265 | 0.7593 | 0.8254 | nan | 0.8452 | 0.9015 | 0.7707 | 0.8558 | 0.7028 | 0.8872 | 0.7524 | 0.4794 | 0.5794 | 0.6445 | 0.9071 | 0.8471 | 0.8278 | 0.8500 | 0.8447 | 0.8158 | 0.3967 | 0.0 | 0.7626 | 0.8188 | 0.6433 | 0.7688 | 0.6237 | 0.7701 | 0.5560 | 0.3839 | 0.4912 | 0.5370 | 0.8281 | 0.7371 | 0.7547 | 0.7579 | 0.7748 | 0.7698 | 0.2995 |
| 0.0413 | 12.8 | 6400 | 0.2294 | 0.6243 | 0.7537 | 0.8258 | nan | 0.8638 | 0.9019 | 0.7530 | 0.8542 | 0.7002 | 0.8839 | 0.7623 | 0.4083 | 0.5835 | 0.6451 | 0.9085 | 0.8509 | 0.8287 | 0.8441 | 0.8519 | 0.8128 | 0.3597 | 0.0 | 0.7640 | 0.8197 | 0.6395 | 0.7671 | 0.6266 | 0.7705 | 0.5563 | 0.3461 | 0.4931 | 0.5383 | 0.8275 | 0.7364 | 0.7548 | 0.7586 | 0.7787 | 0.7688 | 0.2912 |
| 0.0643 | 12.84 | 6420 | 0.2268 | 0.6205 | 0.7460 | 0.8258 | nan | 0.8655 | 0.8930 | 0.7164 | 0.8635 | 0.7005 | 0.8766 | 0.7589 | 0.3734 | 0.5981 | 0.6227 | 0.9131 | 0.8497 | 0.8373 | 0.8601 | 0.8369 | 0.8054 | 0.3110 | 0.0 | 0.7610 | 0.8162 | 0.6249 | 0.7705 | 0.6263 | 0.7691 | 0.5590 | 0.3202 | 0.4985 | 0.5288 | 0.8268 | 0.7389 | 0.7588 | 0.7603 | 0.7768 | 0.7641 | 0.2695 |
| 0.0395 | 12.88 | 6440 | 0.2283 | 0.6245 | 0.7517 | 0.8281 | nan | 0.8563 | 0.9066 | 0.7141 | 0.8563 | 0.6995 | 0.8924 | 0.7603 | 0.4074 | 0.5881 | 0.6474 | 0.9126 | 0.8516 | 0.8405 | 0.8606 | 0.8364 | 0.8136 | 0.3343 | 0.0 | 0.7669 | 0.8196 | 0.6246 | 0.7732 | 0.6249 | 0.7803 | 0.5577 | 0.3405 | 0.4975 | 0.5420 | 0.8271 | 0.7388 | 0.7590 | 0.7615 | 0.7773 | 0.7684 | 0.2824 |
| 0.0405 | 12.92 | 6460 | 0.2262 | 0.6250 | 0.7532 | 0.8276 | nan | 0.8608 | 0.8982 | 0.7534 | 0.8616 | 0.6956 | 0.8992 | 0.7566 | 0.4366 | 0.5871 | 0.6325 | 0.9096 | 0.8538 | 0.8318 | 0.8533 | 0.8305 | 0.8112 | 0.3330 | 0.0 | 0.7663 | 0.8200 | 0.6393 | 0.7754 | 0.6220 | 0.7795 | 0.5576 | 0.3592 | 0.4954 | 0.5359 | 0.8281 | 0.7382 | 0.7560 | 0.7588 | 0.7745 | 0.7656 | 0.2786 |
| 0.0499 | 12.96 | 6480 | 0.2250 | 0.6244 | 0.7539 | 0.8266 | nan | 0.8606 | 0.8939 | 0.7448 | 0.8603 | 0.6943 | 0.8968 | 0.7500 | 0.4342 | 0.5886 | 0.6393 | 0.9134 | 0.8534 | 0.8320 | 0.8542 | 0.8384 | 0.8159 | 0.3458 | 0.0 | 0.7622 | 0.8176 | 0.6369 | 0.7764 | 0.6152 | 0.7770 | 0.5559 | 0.3563 | 0.4988 | 0.5392 | 0.8275 | 0.7375 | 0.7557 | 0.7568 | 0.7745 | 0.7651 | 0.2865 |
| 0.0759 | 13.0 | 6500 | 0.2264 | 0.6232 | 0.7504 | 0.8292 | nan | 0.8655 | 0.8962 | 0.7145 | 0.8670 | 0.6965 | 0.8953 | 0.7496 | 0.3597 | 0.6238 | 0.6121 | 0.9137 | 0.8443 | 0.8349 | 0.8655 | 0.8427 | 0.8243 | 0.3505 | 0.0 | 0.7682 | 0.8209 | 0.6255 | 0.7787 | 0.6182 | 0.7777 | 0.5565 | 0.3142 | 0.5113 | 0.5263 | 0.8282 | 0.7378 | 0.7571 | 0.7596 | 0.7752 | 0.7701 | 0.2922 |
| 0.0346 | 13.04 | 6520 | 0.2275 | 0.6243 | 0.7520 | 0.8272 | nan | 0.8592 | 0.8995 | 0.7354 | 0.8599 | 0.6961 | 0.8982 | 0.7528 | 0.4045 | 0.6214 | 0.6191 | 0.9039 | 0.8312 | 0.8476 | 0.8599 | 0.8302 | 0.8213 | 0.3431 | 0.0 | 0.7646 | 0.8169 | 0.6353 | 0.7762 | 0.6238 | 0.7778 | 0.5570 | 0.3432 | 0.5123 | 0.5295 | 0.8263 | 0.7357 | 0.7576 | 0.7561 | 0.7707 | 0.7691 | 0.2859 |
| 0.0732 | 13.08 | 6540 | 0.2215 | 0.6250 | 0.7543 | 0.8273 | nan | 0.8583 | 0.8961 | 0.7646 | 0.8582 | 0.6937 | 0.9009 | 0.7533 | 0.3897 | 0.6029 | 0.6417 | 0.9080 | 0.8392 | 0.8441 | 0.8565 | 0.8248 | 0.8273 | 0.3642 | 0.0 | 0.7647 | 0.8161 | 0.6412 | 0.7749 | 0.6255 | 0.7769 | 0.5579 | 0.3359 | 0.5064 | 0.5398 | 0.8271 | 0.7387 | 0.7568 | 0.7575 | 0.7706 | 0.7712 | 0.2897 |
| 0.0573 | 13.12 | 6560 | 0.2277 | 0.6239 | 0.7521 | 0.8278 | nan | 0.8549 | 0.9003 | 0.7490 | 0.8600 | 0.6969 | 0.8982 | 0.7494 | 0.3698 | 0.6079 | 0.6389 | 0.9136 | 0.8442 | 0.8399 | 0.8518 | 0.8394 | 0.8175 | 0.3537 | 0.0 | 0.7653 | 0.8189 | 0.6380 | 0.7747 | 0.6242 | 0.7777 | 0.5570 | 0.3218 | 0.5059 | 0.5375 | 0.8273 | 0.7397 | 0.7563 | 0.7568 | 0.7733 | 0.7680 | 0.2879 |
| 0.0778 | 13.16 | 6580 | 0.2248 | 0.6238 | 0.7522 | 0.8273 | nan | 0.8608 | 0.8912 | 0.7534 | 0.8637 | 0.7025 | 0.8966 | 0.7488 | 0.3889 | 0.5965 | 0.6424 | 0.9154 | 0.8425 | 0.8367 | 0.8508 | 0.8299 | 0.8165 | 0.3509 | 0.0 | 0.7646 | 0.8171 | 0.6389 | 0.7757 | 0.6225 | 0.7797 | 0.5567 | 0.3331 | 0.4992 | 0.5377 | 0.8284 | 0.7414 | 0.7567 | 0.7548 | 0.7699 | 0.7658 | 0.2859 |
| 0.0471 | 13.2 | 6600 | 0.2250 | 0.6262 | 0.7549 | 0.8281 | nan | 0.8596 | 0.8987 | 0.7459 | 0.8625 | 0.7008 | 0.8925 | 0.7580 | 0.4383 | 0.5730 | 0.6607 | 0.9067 | 0.8400 | 0.8446 | 0.8613 | 0.8206 | 0.8170 | 0.3530 | 0.0 | 0.7647 | 0.8188 | 0.6374 | 0.7751 | 0.6291 | 0.7785 | 0.5614 | 0.3660 | 0.4895 | 0.5442 | 0.8279 | 0.7419 | 0.7590 | 0.7556 | 0.7670 | 0.7670 | 0.2879 |
| 0.0286 | 13.24 | 6620 | 0.2275 | 0.6251 | 0.7541 | 0.8264 | nan | 0.8571 | 0.9003 | 0.7318 | 0.8554 | 0.6998 | 0.8911 | 0.7582 | 0.4283 | 0.6010 | 0.6385 | 0.9097 | 0.8407 | 0.8339 | 0.8515 | 0.8390 | 0.8200 | 0.3629 | 0.0 | 0.7634 | 0.8170 | 0.6323 | 0.7720 | 0.6288 | 0.7760 | 0.5574 | 0.3604 | 0.4999 | 0.5328 | 0.8276 | 0.7388 | 0.7557 | 0.7560 | 0.7715 | 0.7704 | 0.2911 |
| 0.0349 | 13.28 | 6640 | 0.2300 | 0.6261 | 0.7560 | 0.8281 | nan | 0.8669 | 0.8957 | 0.7340 | 0.8597 | 0.7003 | 0.8930 | 0.7522 | 0.4288 | 0.6015 | 0.6413 | 0.9139 | 0.8436 | 0.8380 | 0.8504 | 0.8430 | 0.8348 | 0.3542 | 0.0 | 0.7660 | 0.8175 | 0.6332 | 0.7744 | 0.6267 | 0.7768 | 0.5568 | 0.3611 | 0.5022 | 0.5371 | 0.8287 | 0.7393 | 0.7569 | 0.7566 | 0.7738 | 0.7787 | 0.2840 |
| 0.0306 | 13.32 | 6660 | 0.2307 | 0.6266 | 0.7564 | 0.8283 | nan | 0.8701 | 0.8999 | 0.7348 | 0.8608 | 0.6980 | 0.8911 | 0.7512 | 0.4234 | 0.6036 | 0.6437 | 0.9131 | 0.8350 | 0.8476 | 0.8492 | 0.8432 | 0.8303 | 0.3638 | 0.0 | 0.7672 | 0.8194 | 0.6338 | 0.7726 | 0.6252 | 0.7740 | 0.5581 | 0.3583 | 0.5038 | 0.5401 | 0.8289 | 0.7399 | 0.7602 | 0.7588 | 0.7746 | 0.7781 | 0.2860 |
| 0.0311 | 13.36 | 6680 | 0.2294 | 0.6266 | 0.7570 | 0.8274 | nan | 0.8626 | 0.9014 | 0.7207 | 0.8600 | 0.6993 | 0.8897 | 0.7452 | 0.4604 | 0.5968 | 0.6393 | 0.9114 | 0.8394 | 0.8461 | 0.8619 | 0.8449 | 0.8236 | 0.3669 | 0.0 | 0.7658 | 0.8194 | 0.6288 | 0.7721 | 0.6222 | 0.7735 | 0.5564 | 0.3823 | 0.4997 | 0.5362 | 0.8276 | 0.7403 | 0.7596 | 0.7609 | 0.7734 | 0.7732 | 0.2875 |
| 0.0306 | 13.4 | 6700 | 0.2276 | 0.6260 | 0.7567 | 0.8260 | nan | 0.8548 | 0.8992 | 0.7393 | 0.8555 | 0.7020 | 0.8857 | 0.7528 | 0.4614 | 0.6084 | 0.6323 | 0.9099 | 0.8456 | 0.8381 | 0.8640 | 0.8356 | 0.8217 | 0.3570 | 0.0 | 0.7620 | 0.8181 | 0.6351 | 0.7704 | 0.6199 | 0.7759 | 0.5546 | 0.3800 | 0.5050 | 0.5352 | 0.8275 | 0.7395 | 0.7570 | 0.7588 | 0.7712 | 0.7712 | 0.2867 |
| 0.039 | 13.44 | 6720 | 0.2236 | 0.6247 | 0.7550 | 0.8256 | nan | 0.8596 | 0.8948 | 0.7488 | 0.8575 | 0.7069 | 0.8837 | 0.7453 | 0.4302 | 0.6010 | 0.6397 | 0.9133 | 0.8442 | 0.8393 | 0.8567 | 0.8473 | 0.8183 | 0.3490 | 0.0 | 0.7612 | 0.8165 | 0.6382 | 0.7708 | 0.6181 | 0.7748 | 0.5527 | 0.3618 | 0.5029 | 0.5384 | 0.8277 | 0.7398 | 0.7570 | 0.7584 | 0.7745 | 0.7701 | 0.2819 |
| 0.0432 | 13.48 | 6740 | 0.2253 | 0.6248 | 0.7534 | 0.8265 | nan | 0.8610 | 0.8984 | 0.7402 | 0.8586 | 0.7057 | 0.8851 | 0.7493 | 0.4230 | 0.5866 | 0.6460 | 0.9102 | 0.8378 | 0.8436 | 0.8502 | 0.8424 | 0.8311 | 0.3393 | 0.0 | 0.7616 | 0.8183 | 0.6364 | 0.7708 | 0.6213 | 0.7751 | 0.5551 | 0.3581 | 0.4975 | 0.5416 | 0.8284 | 0.7396 | 0.7572 | 0.7562 | 0.7728 | 0.7769 | 0.2802 |
| 0.0561 | 13.52 | 6760 | 0.2249 | 0.6252 | 0.7538 | 0.8258 | nan | 0.8634 | 0.8931 | 0.7255 | 0.8613 | 0.7117 | 0.8817 | 0.7439 | 0.4569 | 0.5847 | 0.6417 | 0.9144 | 0.8428 | 0.8335 | 0.8479 | 0.8433 | 0.8290 | 0.3400 | 0.0 | 0.7629 | 0.8170 | 0.6301 | 0.7711 | 0.6232 | 0.7737 | 0.5549 | 0.3799 | 0.4953 | 0.5382 | 0.8287 | 0.7379 | 0.7536 | 0.7570 | 0.7743 | 0.7745 | 0.2810 |
| 0.0274 | 13.56 | 6780 | 0.2255 | 0.6257 | 0.7535 | 0.8276 | nan | 0.8548 | 0.9047 | 0.7118 | 0.8624 | 0.7132 | 0.8827 | 0.7408 | 0.4344 | 0.5899 | 0.6469 | 0.9102 | 0.8451 | 0.8372 | 0.8485 | 0.8431 | 0.8342 | 0.3497 | 0.0 | 0.7653 | 0.8200 | 0.6253 | 0.7725 | 0.6241 | 0.7734 | 0.5553 | 0.3660 | 0.4977 | 0.5403 | 0.8283 | 0.7404 | 0.7565 | 0.7594 | 0.7761 | 0.7769 | 0.2846 |
| 0.0351 | 13.6 | 6800 | 0.2265 | 0.6253 | 0.7529 | 0.8267 | nan | 0.8525 | 0.8998 | 0.7031 | 0.8561 | 0.7110 | 0.8882 | 0.7468 | 0.4319 | 0.6002 | 0.6402 | 0.9130 | 0.8394 | 0.8354 | 0.8608 | 0.8389 | 0.8351 | 0.3463 | 0.0 | 0.7637 | 0.8186 | 0.6208 | 0.7706 | 0.6258 | 0.7751 | 0.5545 | 0.3662 | 0.5019 | 0.5370 | 0.8282 | 0.7395 | 0.7572 | 0.7591 | 0.7740 | 0.7785 | 0.2853 |
| 0.03 | 13.64 | 6820 | 0.2249 | 0.6277 | 0.7571 | 0.8275 | nan | 0.8542 | 0.9011 | 0.7257 | 0.8581 | 0.7129 | 0.8850 | 0.7441 | 0.4520 | 0.6132 | 0.6366 | 0.9075 | 0.8438 | 0.8373 | 0.8605 | 0.8409 | 0.8409 | 0.3568 | 0.0 | 0.7643 | 0.8179 | 0.6311 | 0.7724 | 0.6256 | 0.7747 | 0.5538 | 0.3791 | 0.5082 | 0.5368 | 0.8279 | 0.7398 | 0.7573 | 0.7594 | 0.7743 | 0.7809 | 0.2953 |
| 0.054 | 13.68 | 6840 | 0.2284 | 0.6284 | 0.7573 | 0.8271 | nan | 0.8525 | 0.9009 | 0.7383 | 0.8598 | 0.7058 | 0.8868 | 0.7452 | 0.4685 | 0.6112 | 0.6215 | 0.9114 | 0.8494 | 0.8378 | 0.8523 | 0.8422 | 0.8296 | 0.3611 | 0.0 | 0.7645 | 0.8183 | 0.6366 | 0.7723 | 0.6244 | 0.7750 | 0.5526 | 0.3927 | 0.5061 | 0.5297 | 0.8286 | 0.7404 | 0.7574 | 0.7601 | 0.7754 | 0.7771 | 0.2994 |
| 0.0289 | 13.72 | 6860 | 0.2274 | 0.6297 | 0.7595 | 0.8282 | nan | 0.8596 | 0.9078 | 0.7485 | 0.8556 | 0.6974 | 0.8891 | 0.7552 | 0.4650 | 0.6101 | 0.6309 | 0.9094 | 0.8471 | 0.8419 | 0.8515 | 0.8426 | 0.8371 | 0.3631 | 0.0 | 0.7676 | 0.8199 | 0.6401 | 0.7709 | 0.6265 | 0.7744 | 0.5559 | 0.3916 | 0.5079 | 0.5359 | 0.8284 | 0.7406 | 0.7582 | 0.7617 | 0.7749 | 0.7807 | 0.2995 |
| 0.0428 | 13.76 | 6880 | 0.2275 | 0.6282 | 0.7584 | 0.8271 | nan | 0.8697 | 0.8965 | 0.7569 | 0.8585 | 0.7026 | 0.8861 | 0.7531 | 0.4632 | 0.5979 | 0.6336 | 0.9129 | 0.8470 | 0.8393 | 0.8537 | 0.8435 | 0.8265 | 0.3511 | 0.0 | 0.7661 | 0.8186 | 0.6414 | 0.7708 | 0.6242 | 0.7755 | 0.5540 | 0.3873 | 0.5025 | 0.5358 | 0.8288 | 0.7410 | 0.7598 | 0.7606 | 0.7745 | 0.7759 | 0.2906 |
| 0.0262 | 13.8 | 6900 | 0.2307 | 0.6296 | 0.7619 | 0.8271 | nan | 0.8737 | 0.9034 | 0.7519 | 0.8523 | 0.7033 | 0.8888 | 0.7561 | 0.4930 | 0.5972 | 0.6564 | 0.9107 | 0.8473 | 0.8322 | 0.8615 | 0.8355 | 0.8268 | 0.3629 | 0.0 | 0.7664 | 0.8191 | 0.6413 | 0.7697 | 0.6252 | 0.7771 | 0.5545 | 0.4006 | 0.5030 | 0.5446 | 0.8283 | 0.7406 | 0.7594 | 0.7598 | 0.7721 | 0.7765 | 0.2948 |
| 0.034 | 13.84 | 6920 | 0.2306 | 0.6306 | 0.7642 | 0.8280 | nan | 0.8723 | 0.9016 | 0.7533 | 0.8544 | 0.7030 | 0.8925 | 0.7515 | 0.5148 | 0.6102 | 0.6373 | 0.9143 | 0.8519 | 0.8318 | 0.8573 | 0.8446 | 0.8296 | 0.3707 | 0.0 | 0.7661 | 0.8199 | 0.6412 | 0.7711 | 0.6243 | 0.7772 | 0.5539 | 0.4123 | 0.5073 | 0.5376 | 0.8288 | 0.7408 | 0.7590 | 0.7619 | 0.7752 | 0.7782 | 0.2967 |
| 0.0364 | 13.88 | 6940 | 0.2279 | 0.6298 | 0.7626 | 0.8268 | nan | 0.8683 | 0.8940 | 0.7468 | 0.8531 | 0.7034 | 0.8918 | 0.7561 | 0.5135 | 0.6046 | 0.6460 | 0.9170 | 0.8475 | 0.8329 | 0.8522 | 0.8421 | 0.8244 | 0.3708 | 0.0 | 0.7630 | 0.8169 | 0.6386 | 0.7703 | 0.6253 | 0.7771 | 0.5546 | 0.4098 | 0.5054 | 0.5407 | 0.8283 | 0.7404 | 0.7592 | 0.7606 | 0.7749 | 0.7758 | 0.2953 |
| 0.0521 | 13.92 | 6960 | 0.2275 | 0.6300 | 0.7623 | 0.8271 | nan | 0.8659 | 0.8991 | 0.7397 | 0.8542 | 0.7023 | 0.8863 | 0.7566 | 0.5049 | 0.6100 | 0.6424 | 0.9156 | 0.8527 | 0.8341 | 0.8587 | 0.8405 | 0.8202 | 0.3765 | 0.0 | 0.7651 | 0.8186 | 0.6366 | 0.7705 | 0.6265 | 0.7761 | 0.5561 | 0.4079 | 0.5090 | 0.5414 | 0.8282 | 0.7402 | 0.7585 | 0.7608 | 0.7742 | 0.7734 | 0.2968 |
| 0.0303 | 13.96 | 6980 | 0.2276 | 0.6298 | 0.7618 | 0.8277 | nan | 0.8509 | 0.9057 | 0.7412 | 0.8548 | 0.7029 | 0.8858 | 0.7557 | 0.5095 | 0.6060 | 0.6347 | 0.9150 | 0.8610 | 0.8288 | 0.8581 | 0.8385 | 0.8270 | 0.3748 | 0.0 | 0.7652 | 0.8209 | 0.6376 | 0.7709 | 0.6247 | 0.7765 | 0.5552 | 0.4065 | 0.5066 | 0.5384 | 0.8286 | 0.7394 | 0.7566 | 0.7611 | 0.7738 | 0.7768 | 0.2978 |
| 0.0313 | 14.0 | 7000 | 0.2287 | 0.6287 | 0.7593 | 0.8268 | nan | 0.8446 | 0.9004 | 0.7461 | 0.8603 | 0.7037 | 0.8831 | 0.7461 | 0.5012 | 0.5885 | 0.6483 | 0.9121 | 0.8581 | 0.8307 | 0.8587 | 0.8352 | 0.8259 | 0.3648 | 0.0 | 0.7627 | 0.8190 | 0.6387 | 0.7721 | 0.6214 | 0.7759 | 0.5527 | 0.4051 | 0.5000 | 0.5437 | 0.8286 | 0.7395 | 0.7566 | 0.7596 | 0.7726 | 0.7751 | 0.2937 |
| 0.0295 | 14.04 | 7020 | 0.2245 | 0.6275 | 0.7567 | 0.8264 | nan | 0.8466 | 0.8983 | 0.7551 | 0.8597 | 0.7003 | 0.8906 | 0.7474 | 0.4686 | 0.5751 | 0.6514 | 0.9114 | 0.8521 | 0.8331 | 0.8520 | 0.8400 | 0.8209 | 0.3621 | 0.0 | 0.7624 | 0.8184 | 0.6410 | 0.7722 | 0.6226 | 0.7765 | 0.5533 | 0.3895 | 0.4938 | 0.5430 | 0.8288 | 0.7398 | 0.7575 | 0.7587 | 0.7736 | 0.7730 | 0.2917 |
| 0.0335 | 14.08 | 7040 | 0.2252 | 0.6275 | 0.7575 | 0.8272 | nan | 0.8498 | 0.9024 | 0.7555 | 0.8566 | 0.7038 | 0.8934 | 0.7482 | 0.4464 | 0.5949 | 0.6440 | 0.9122 | 0.8530 | 0.8304 | 0.8594 | 0.8340 | 0.8248 | 0.3678 | 0.0 | 0.7637 | 0.8202 | 0.6406 | 0.7716 | 0.6209 | 0.7784 | 0.5514 | 0.3733 | 0.5023 | 0.5410 | 0.8293 | 0.7405 | 0.7581 | 0.7611 | 0.7730 | 0.7750 | 0.2953 |
| 0.0308 | 14.12 | 7060 | 0.2311 | 0.6268 | 0.7569 | 0.8266 | nan | 0.8595 | 0.9011 | 0.7570 | 0.8525 | 0.7014 | 0.8929 | 0.7559 | 0.4232 | 0.6013 | 0.6404 | 0.9101 | 0.8513 | 0.8356 | 0.8590 | 0.8357 | 0.8193 | 0.3719 | 0.0 | 0.7655 | 0.8191 | 0.6411 | 0.7699 | 0.6228 | 0.7777 | 0.5522 | 0.3576 | 0.5049 | 0.5401 | 0.8288 | 0.7413 | 0.7598 | 0.7607 | 0.7727 | 0.7719 | 0.2964 |
| 0.0901 | 14.16 | 7080 | 0.2238 | 0.6248 | 0.7521 | 0.8257 | nan | 0.8481 | 0.9002 | 0.7428 | 0.8561 | 0.7035 | 0.8920 | 0.7512 | 0.4234 | 0.5920 | 0.6396 | 0.9113 | 0.8482 | 0.8325 | 0.8501 | 0.8319 | 0.8177 | 0.3453 | 0.0 | 0.7600 | 0.8177 | 0.6368 | 0.7711 | 0.6212 | 0.7770 | 0.5519 | 0.3595 | 0.5001 | 0.5397 | 0.8287 | 0.7398 | 0.7578 | 0.7585 | 0.7701 | 0.7704 | 0.2867 |
| 0.0342 | 14.2 | 7100 | 0.2280 | 0.6261 | 0.7537 | 0.8276 | nan | 0.8545 | 0.8969 | 0.7266 | 0.8636 | 0.7020 | 0.8895 | 0.7496 | 0.4283 | 0.5876 | 0.6378 | 0.9157 | 0.8480 | 0.8372 | 0.8573 | 0.8374 | 0.8164 | 0.3642 | 0.0 | 0.7629 | 0.8182 | 0.6309 | 0.7742 | 0.6218 | 0.7774 | 0.5560 | 0.3651 | 0.4989 | 0.5398 | 0.8291 | 0.7396 | 0.7580 | 0.7601 | 0.7711 | 0.7713 | 0.2960 |
| 0.0464 | 14.24 | 7120 | 0.2264 | 0.6276 | 0.7568 | 0.8275 | nan | 0.8558 | 0.9002 | 0.7335 | 0.8599 | 0.7014 | 0.8886 | 0.7512 | 0.4561 | 0.5957 | 0.6327 | 0.9154 | 0.8503 | 0.8383 | 0.8605 | 0.8382 | 0.8179 | 0.3697 | 0.0 | 0.7631 | 0.8190 | 0.6342 | 0.7730 | 0.6218 | 0.7780 | 0.5556 | 0.3813 | 0.5025 | 0.5375 | 0.8291 | 0.7401 | 0.7586 | 0.7606 | 0.7711 | 0.7717 | 0.2997 |
| 0.035 | 14.28 | 7140 | 0.2272 | 0.6279 | 0.7576 | 0.8268 | nan | 0.8576 | 0.8974 | 0.7363 | 0.8581 | 0.7020 | 0.8893 | 0.7512 | 0.4621 | 0.5983 | 0.6404 | 0.9140 | 0.8468 | 0.8391 | 0.8556 | 0.8375 | 0.8194 | 0.3736 | 0.0 | 0.7628 | 0.8179 | 0.6349 | 0.7721 | 0.6215 | 0.7788 | 0.5543 | 0.3825 | 0.5040 | 0.5402 | 0.8294 | 0.7404 | 0.7596 | 0.7597 | 0.7714 | 0.7721 | 0.3005 |
| 0.0607 | 14.32 | 7160 | 0.2220 | 0.6271 | 0.7564 | 0.8263 | nan | 0.8558 | 0.9017 | 0.7173 | 0.8597 | 0.7047 | 0.8888 | 0.7371 | 0.4717 | 0.6011 | 0.6354 | 0.9143 | 0.8470 | 0.8350 | 0.8580 | 0.8417 | 0.8224 | 0.3679 | 0.0 | 0.7621 | 0.8178 | 0.6282 | 0.7734 | 0.6183 | 0.7781 | 0.5518 | 0.3886 | 0.5048 | 0.5376 | 0.8283 | 0.7403 | 0.7586 | 0.7595 | 0.7711 | 0.7723 | 0.2973 |
| 0.0385 | 14.36 | 7180 | 0.2286 | 0.6258 | 0.7531 | 0.8268 | nan | 0.8600 | 0.9010 | 0.7351 | 0.8591 | 0.7037 | 0.8914 | 0.7511 | 0.4106 | 0.5936 | 0.6409 | 0.9094 | 0.8412 | 0.8394 | 0.8497 | 0.8356 | 0.8172 | 0.3641 | 0.0 | 0.7641 | 0.8184 | 0.6351 | 0.7720 | 0.6222 | 0.7784 | 0.5543 | 0.3494 | 0.5018 | 0.5404 | 0.8295 | 0.7407 | 0.7608 | 0.7580 | 0.7723 | 0.7711 | 0.2966 |
| 0.0249 | 14.4 | 7200 | 0.2265 | 0.6277 | 0.7564 | 0.8279 | nan | 0.8588 | 0.9019 | 0.7445 | 0.8581 | 0.7004 | 0.8924 | 0.7549 | 0.4295 | 0.5960 | 0.6456 | 0.9119 | 0.8410 | 0.8413 | 0.8534 | 0.8380 | 0.8246 | 0.3664 | 0.0 | 0.7653 | 0.8200 | 0.6387 | 0.7719 | 0.6239 | 0.7791 | 0.5555 | 0.3618 | 0.5031 | 0.5431 | 0.8301 | 0.7412 | 0.7613 | 0.7592 | 0.7726 | 0.7750 | 0.2969 |
| 0.0696 | 14.44 | 7220 | 0.2261 | 0.6251 | 0.7524 | 0.8273 | nan | 0.8546 | 0.9017 | 0.7450 | 0.8596 | 0.7046 | 0.8882 | 0.7522 | 0.3870 | 0.5925 | 0.6459 | 0.9097 | 0.8463 | 0.8409 | 0.8488 | 0.8384 | 0.8196 | 0.3559 | 0.0 | 0.7635 | 0.8198 | 0.6386 | 0.7722 | 0.6209 | 0.7789 | 0.5533 | 0.3322 | 0.5011 | 0.5428 | 0.8294 | 0.7415 | 0.7607 | 0.7582 | 0.7736 | 0.7719 | 0.2937 |
| 0.0275 | 14.48 | 7240 | 0.2313 | 0.6257 | 0.7528 | 0.8277 | nan | 0.8543 | 0.9035 | 0.7401 | 0.8612 | 0.7019 | 0.8917 | 0.7480 | 0.3991 | 0.5864 | 0.6421 | 0.9076 | 0.8444 | 0.8442 | 0.8526 | 0.8423 | 0.8194 | 0.3585 | 0.0 | 0.7642 | 0.8200 | 0.6380 | 0.7729 | 0.6208 | 0.7786 | 0.5533 | 0.3423 | 0.4979 | 0.5409 | 0.8290 | 0.7413 | 0.7612 | 0.7601 | 0.7746 | 0.7720 | 0.2953 |
| 0.0275 | 14.52 | 7260 | 0.2287 | 0.6262 | 0.7541 | 0.8272 | nan | 0.8583 | 0.8979 | 0.7486 | 0.8614 | 0.7002 | 0.8887 | 0.7501 | 0.4107 | 0.6033 | 0.6407 | 0.9106 | 0.8440 | 0.8423 | 0.8479 | 0.8377 | 0.8219 | 0.3554 | 0.0 | 0.7642 | 0.8185 | 0.6394 | 0.7725 | 0.6219 | 0.7782 | 0.5540 | 0.3498 | 0.5049 | 0.5400 | 0.8294 | 0.7409 | 0.7605 | 0.7583 | 0.7735 | 0.7729 | 0.2929 |
| 0.0289 | 14.56 | 7280 | 0.2300 | 0.6261 | 0.7551 | 0.8266 | nan | 0.8598 | 0.9003 | 0.7461 | 0.8573 | 0.7020 | 0.8874 | 0.7491 | 0.4181 | 0.5875 | 0.6462 | 0.9131 | 0.8410 | 0.8484 | 0.8535 | 0.8421 | 0.8187 | 0.3665 | 0.0 | 0.7650 | 0.8185 | 0.6386 | 0.7712 | 0.6206 | 0.7776 | 0.5530 | 0.3536 | 0.4989 | 0.5423 | 0.8287 | 0.7406 | 0.7610 | 0.7598 | 0.7737 | 0.7712 | 0.2960 |
| 0.0344 | 14.6 | 7300 | 0.2288 | 0.6249 | 0.7539 | 0.8251 | nan | 0.8592 | 0.8959 | 0.7598 | 0.8538 | 0.7016 | 0.8922 | 0.7515 | 0.4125 | 0.5852 | 0.6357 | 0.9101 | 0.8403 | 0.8440 | 0.8519 | 0.8393 | 0.8194 | 0.3634 | 0.0 | 0.7626 | 0.8163 | 0.6421 | 0.7700 | 0.6202 | 0.7781 | 0.5519 | 0.3484 | 0.4966 | 0.5370 | 0.8285 | 0.7408 | 0.7605 | 0.7584 | 0.7721 | 0.7707 | 0.2945 |
| 0.0346 | 14.64 | 7320 | 0.2338 | 0.6268 | 0.7566 | 0.8269 | nan | 0.8557 | 0.9050 | 0.7529 | 0.8560 | 0.7025 | 0.8915 | 0.7463 | 0.4320 | 0.5965 | 0.6417 | 0.9079 | 0.8469 | 0.8410 | 0.8546 | 0.8412 | 0.8252 | 0.3643 | 0.0 | 0.7642 | 0.8193 | 0.6412 | 0.7712 | 0.6191 | 0.7787 | 0.5509 | 0.3614 | 0.5017 | 0.5405 | 0.8284 | 0.7421 | 0.7605 | 0.7596 | 0.7733 | 0.7743 | 0.2955 |
| 0.0307 | 14.68 | 7340 | 0.2271 | 0.6265 | 0.7557 | 0.8265 | nan | 0.8564 | 0.9005 | 0.7511 | 0.8552 | 0.7005 | 0.8950 | 0.7497 | 0.4260 | 0.5976 | 0.6397 | 0.9100 | 0.8436 | 0.8409 | 0.8508 | 0.8406 | 0.8237 | 0.3651 | 0.0 | 0.7637 | 0.8184 | 0.6400 | 0.7708 | 0.6203 | 0.7788 | 0.5515 | 0.3581 | 0.5018 | 0.5393 | 0.8290 | 0.7419 | 0.7607 | 0.7594 | 0.7733 | 0.7741 | 0.2952 |
| 0.0336 | 14.72 | 7360 | 0.2285 | 0.6264 | 0.7548 | 0.8272 | nan | 0.8554 | 0.9010 | 0.7462 | 0.8625 | 0.7020 | 0.8938 | 0.7406 | 0.4302 | 0.5991 | 0.6354 | 0.9109 | 0.8508 | 0.8367 | 0.8526 | 0.8378 | 0.8187 | 0.3578 | 0.0 | 0.7643 | 0.8186 | 0.6385 | 0.7732 | 0.6186 | 0.7790 | 0.5506 | 0.3647 | 0.5021 | 0.5378 | 0.8292 | 0.7416 | 0.7589 | 0.7596 | 0.7736 | 0.7720 | 0.2933 |
| 0.0341 | 14.76 | 7380 | 0.2335 | 0.6266 | 0.7552 | 0.8276 | nan | 0.8532 | 0.9024 | 0.7469 | 0.8566 | 0.6991 | 0.8969 | 0.7516 | 0.4132 | 0.5960 | 0.6437 | 0.9093 | 0.8471 | 0.8419 | 0.8524 | 0.8377 | 0.8259 | 0.3640 | 0.0 | 0.7633 | 0.8190 | 0.6388 | 0.7714 | 0.6215 | 0.7792 | 0.5524 | 0.3511 | 0.5017 | 0.5419 | 0.8290 | 0.7430 | 0.7612 | 0.7601 | 0.7740 | 0.7756 | 0.2950 |
| 0.0321 | 14.8 | 7400 | 0.2308 | 0.6264 | 0.7547 | 0.8276 | nan | 0.8541 | 0.9008 | 0.7331 | 0.8581 | 0.7018 | 0.8939 | 0.7496 | 0.4216 | 0.5962 | 0.6428 | 0.9152 | 0.8488 | 0.8427 | 0.8529 | 0.8394 | 0.8179 | 0.3604 | 0.0 | 0.7644 | 0.8196 | 0.6338 | 0.7715 | 0.6202 | 0.7798 | 0.5516 | 0.3569 | 0.5020 | 0.5416 | 0.8294 | 0.7426 | 0.7612 | 0.7601 | 0.7747 | 0.7718 | 0.2938 |
| 0.0783 | 14.84 | 7420 | 0.2278 | 0.6258 | 0.7540 | 0.8272 | nan | 0.8556 | 0.9037 | 0.7446 | 0.8563 | 0.7031 | 0.8952 | 0.7497 | 0.3995 | 0.6044 | 0.6390 | 0.9105 | 0.8453 | 0.8387 | 0.8480 | 0.8397 | 0.8223 | 0.3630 | 0.0 | 0.7644 | 0.8195 | 0.6383 | 0.7710 | 0.6198 | 0.7802 | 0.5510 | 0.3419 | 0.5047 | 0.5393 | 0.8294 | 0.7428 | 0.7609 | 0.7590 | 0.7742 | 0.7735 | 0.2945 |
| 0.0259 | 14.88 | 7440 | 0.2288 | 0.6263 | 0.7549 | 0.8268 | nan | 0.8559 | 0.8999 | 0.7459 | 0.8566 | 0.7012 | 0.8953 | 0.7488 | 0.4195 | 0.6040 | 0.6386 | 0.9119 | 0.8451 | 0.8358 | 0.8513 | 0.8396 | 0.8231 | 0.3611 | 0.0 | 0.7638 | 0.8185 | 0.6384 | 0.7710 | 0.6206 | 0.7792 | 0.5513 | 0.3552 | 0.5042 | 0.5389 | 0.8296 | 0.7422 | 0.7600 | 0.7592 | 0.7734 | 0.7737 | 0.2937 |
| 0.0353 | 14.92 | 7460 | 0.2265 | 0.6264 | 0.7550 | 0.8269 | nan | 0.8508 | 0.9005 | 0.7393 | 0.8568 | 0.7007 | 0.8919 | 0.7503 | 0.4240 | 0.6047 | 0.6397 | 0.9123 | 0.8487 | 0.8358 | 0.8533 | 0.8386 | 0.8246 | 0.3624 | 0.0 | 0.7618 | 0.8188 | 0.6362 | 0.7709 | 0.6215 | 0.7790 | 0.5519 | 0.3581 | 0.5051 | 0.5396 | 0.8293 | 0.7418 | 0.7596 | 0.7598 | 0.7734 | 0.7745 | 0.2943 |
| 0.0386 | 14.96 | 7480 | 0.2278 | 0.6261 | 0.7548 | 0.8261 | nan | 0.8536 | 0.8987 | 0.7446 | 0.8552 | 0.7021 | 0.8904 | 0.7532 | 0.4292 | 0.6033 | 0.6383 | 0.9109 | 0.8457 | 0.8402 | 0.8466 | 0.8366 | 0.8216 | 0.3618 | 0.0 | 0.7620 | 0.8177 | 0.6378 | 0.7700 | 0.6215 | 0.7788 | 0.5515 | 0.3583 | 0.5046 | 0.5391 | 0.8293 | 0.7418 | 0.7605 | 0.7575 | 0.7728 | 0.7725 | 0.2940 |
| 0.0279 | 15.0 | 7500 | 0.2292 | 0.6258 | 0.7547 | 0.8256 | nan | 0.8561 | 0.8974 | 0.7540 | 0.8553 | 0.7026 | 0.8913 | 0.7525 | 0.4251 | 0.6014 | 0.6374 | 0.9094 | 0.8452 | 0.8343 | 0.8506 | 0.8287 | 0.8232 | 0.3662 | 0.0 | 0.7625 | 0.8171 | 0.6400 | 0.7700 | 0.6211 | 0.7788 | 0.5512 | 0.3564 | 0.5032 | 0.5381 | 0.8294 | 0.7412 | 0.7591 | 0.7579 | 0.7705 | 0.7729 | 0.2956 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
| [
"background",
"hat",
"hair",
"sunglasses",
"upper-clothes",
"skirt",
"pants",
"dress",
"belt",
"left-shoe",
"right-shoe",
"face",
"left-leg",
"right-leg",
"left-arm",
"right-arm",
"bag",
"scarf"
] |
samitizerxu/segformer-b0-finetuned-kelp-segments-jan-18-10am |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-kelp-segments-jan-18-10am
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the samitizerxu/kelp_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0197
- Mean Iou: 0.1778
- Mean Accuracy: 0.3556
- Overall Accuracy: 0.3556
- Accuracy Not Kelp: nan
- Accuracy Kelp: 0.3556
- Iou Not Kelp: 0.0
- Iou Kelp: 0.3556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Not Kelp | Accuracy Kelp | Iou Not Kelp | Iou Kelp |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------:|:-------------:|:------------:|:--------:|
| 0.3836 | 0.05 | 30 | 0.3933 | 0.0106 | 0.0212 | 0.0212 | nan | 0.0212 | 0.0 | 0.0212 |
| 0.2552 | 0.1 | 60 | 0.2404 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 |
| 0.2144 | 0.14 | 90 | 0.1817 | 0.0001 | 0.0002 | 0.0002 | nan | 0.0002 | 0.0 | 0.0002 |
| 0.1172 | 0.19 | 120 | 0.1304 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.1404 | 0.24 | 150 | 0.0930 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0919 | 0.29 | 180 | 0.0742 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0715 | 0.34 | 210 | 0.0656 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0676 | 0.38 | 240 | 0.0538 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.05 | 0.43 | 270 | 0.0552 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.046 | 0.48 | 300 | 0.0514 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0584 | 0.53 | 330 | 0.0481 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0653 | 0.58 | 360 | 0.0470 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0285 | 0.62 | 390 | 0.0421 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0739 | 0.67 | 420 | 0.0418 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0493 | 0.72 | 450 | 0.0397 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0267 | 0.77 | 480 | 0.0396 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0483 | 0.82 | 510 | 0.0377 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0332 | 0.86 | 540 | 0.0382 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0322 | 0.91 | 570 | 0.0344 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0428 | 0.96 | 600 | 0.0338 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0343 | 1.01 | 630 | 0.0319 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.031 | 1.06 | 660 | 0.0327 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.0194 | 1.1 | 690 | 0.0328 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
| 0.0451 | 1.15 | 720 | 0.0347 | 0.0012 | 0.0025 | 0.0025 | nan | 0.0025 | 0.0 | 0.0025 |
| 0.0571 | 1.2 | 750 | 0.0299 | 0.0006 | 0.0013 | 0.0013 | nan | 0.0013 | 0.0 | 0.0013 |
| 0.0572 | 1.25 | 780 | 0.0301 | 0.0086 | 0.0172 | 0.0172 | nan | 0.0172 | 0.0 | 0.0172 |
| 0.0563 | 1.3 | 810 | 0.0292 | 0.0072 | 0.0143 | 0.0143 | nan | 0.0143 | 0.0 | 0.0143 |
| 0.0183 | 1.34 | 840 | 0.0294 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 |
| 0.0145 | 1.39 | 870 | 0.0336 | 0.0140 | 0.0281 | 0.0281 | nan | 0.0281 | 0.0 | 0.0281 |
| 0.0275 | 1.44 | 900 | 0.0276 | 0.0015 | 0.0029 | 0.0029 | nan | 0.0029 | 0.0 | 0.0029 |
| 0.0445 | 1.49 | 930 | 0.0259 | 0.0083 | 0.0166 | 0.0166 | nan | 0.0166 | 0.0 | 0.0166 |
| 0.0101 | 1.54 | 960 | 0.0255 | 0.0462 | 0.0923 | 0.0923 | nan | 0.0923 | 0.0 | 0.0923 |
| 0.0245 | 1.58 | 990 | 0.0253 | 0.0062 | 0.0124 | 0.0124 | nan | 0.0124 | 0.0 | 0.0124 |
| 0.0146 | 1.63 | 1020 | 0.0270 | 0.0003 | 0.0006 | 0.0006 | nan | 0.0006 | 0.0 | 0.0006 |
| 0.0244 | 1.68 | 1050 | 0.0268 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
| 0.0338 | 1.73 | 1080 | 0.0254 | 0.0022 | 0.0045 | 0.0045 | nan | 0.0045 | 0.0 | 0.0045 |
| 0.0232 | 1.78 | 1110 | 0.0255 | 0.0001 | 0.0002 | 0.0002 | nan | 0.0002 | 0.0 | 0.0002 |
| 0.0176 | 1.82 | 1140 | 0.0268 | 0.0009 | 0.0017 | 0.0017 | nan | 0.0017 | 0.0 | 0.0017 |
| 0.0127 | 1.87 | 1170 | 0.0249 | 0.0095 | 0.0191 | 0.0191 | nan | 0.0191 | 0.0 | 0.0191 |
| 0.0327 | 1.92 | 1200 | 0.0238 | 0.0437 | 0.0874 | 0.0874 | nan | 0.0874 | 0.0 | 0.0874 |
| 0.0375 | 1.97 | 1230 | 0.0246 | 0.0066 | 0.0133 | 0.0133 | nan | 0.0133 | 0.0 | 0.0133 |
| 0.017 | 2.02 | 1260 | 0.0245 | 0.0085 | 0.0169 | 0.0169 | nan | 0.0169 | 0.0 | 0.0169 |
| 0.0224 | 2.06 | 1290 | 0.0251 | 0.0028 | 0.0057 | 0.0057 | nan | 0.0057 | 0.0 | 0.0057 |
| 0.0174 | 2.11 | 1320 | 0.0240 | 0.0687 | 0.1374 | 0.1374 | nan | 0.1374 | 0.0 | 0.1374 |
| 0.0194 | 2.16 | 1350 | 0.0239 | 0.0193 | 0.0386 | 0.0386 | nan | 0.0386 | 0.0 | 0.0386 |
| 0.1479 | 2.21 | 1380 | 0.0244 | 0.0073 | 0.0147 | 0.0147 | nan | 0.0147 | 0.0 | 0.0147 |
| 0.0161 | 2.26 | 1410 | 0.0229 | 0.0586 | 0.1173 | 0.1173 | nan | 0.1173 | 0.0 | 0.1173 |
| 0.0385 | 2.3 | 1440 | 0.0231 | 0.0295 | 0.0590 | 0.0590 | nan | 0.0590 | 0.0 | 0.0590 |
| 0.0611 | 2.35 | 1470 | 0.0235 | 0.0199 | 0.0399 | 0.0399 | nan | 0.0399 | 0.0 | 0.0399 |
| 0.0204 | 2.4 | 1500 | 0.0225 | 0.0497 | 0.0994 | 0.0994 | nan | 0.0994 | 0.0 | 0.0994 |
| 0.0329 | 2.45 | 1530 | 0.0230 | 0.0164 | 0.0327 | 0.0327 | nan | 0.0327 | 0.0 | 0.0327 |
| 0.025 | 2.5 | 1560 | 0.0224 | 0.0518 | 0.1036 | 0.1036 | nan | 0.1036 | 0.0 | 0.1036 |
| 0.0104 | 2.54 | 1590 | 0.0228 | 0.0244 | 0.0488 | 0.0488 | nan | 0.0488 | 0.0 | 0.0488 |
| 0.0096 | 2.59 | 1620 | 0.0233 | 0.1242 | 0.2483 | 0.2483 | nan | 0.2483 | 0.0 | 0.2483 |
| 0.005 | 2.64 | 1650 | 0.0221 | 0.0206 | 0.0411 | 0.0411 | nan | 0.0411 | 0.0 | 0.0411 |
| 0.0264 | 2.69 | 1680 | 0.0236 | 0.1290 | 0.2581 | 0.2581 | nan | 0.2581 | 0.0 | 0.2581 |
| 0.0117 | 2.74 | 1710 | 0.0215 | 0.0665 | 0.1330 | 0.1330 | nan | 0.1330 | 0.0 | 0.1330 |
| 0.0096 | 2.78 | 1740 | 0.0229 | 0.0154 | 0.0307 | 0.0307 | nan | 0.0307 | 0.0 | 0.0307 |
| 0.0176 | 2.83 | 1770 | 0.0222 | 0.0348 | 0.0696 | 0.0696 | nan | 0.0696 | 0.0 | 0.0696 |
| 0.0108 | 2.88 | 1800 | 0.0219 | 0.0528 | 0.1056 | 0.1056 | nan | 0.1056 | 0.0 | 0.1056 |
| 0.0189 | 2.93 | 1830 | 0.0217 | 0.0405 | 0.0811 | 0.0811 | nan | 0.0811 | 0.0 | 0.0811 |
| 0.0288 | 2.98 | 1860 | 0.0218 | 0.0392 | 0.0784 | 0.0784 | nan | 0.0784 | 0.0 | 0.0784 |
| 0.0067 | 3.02 | 1890 | 0.0213 | 0.0399 | 0.0799 | 0.0799 | nan | 0.0799 | 0.0 | 0.0799 |
| 0.0104 | 3.07 | 1920 | 0.0225 | 0.0948 | 0.1896 | 0.1896 | nan | 0.1896 | 0.0 | 0.1896 |
| 0.0115 | 3.12 | 1950 | 0.0214 | 0.0755 | 0.1510 | 0.1510 | nan | 0.1510 | 0.0 | 0.1510 |
| 0.0076 | 3.17 | 1980 | 0.0222 | 0.0823 | 0.1646 | 0.1646 | nan | 0.1646 | 0.0 | 0.1646 |
| 0.0444 | 3.22 | 2010 | 0.0213 | 0.0394 | 0.0788 | 0.0788 | nan | 0.0788 | 0.0 | 0.0788 |
| 0.021 | 3.26 | 2040 | 0.0220 | 0.0392 | 0.0784 | 0.0784 | nan | 0.0784 | 0.0 | 0.0784 |
| 0.0188 | 3.31 | 2070 | 0.0217 | 0.1194 | 0.2388 | 0.2388 | nan | 0.2388 | 0.0 | 0.2388 |
| 0.0235 | 3.36 | 2100 | 0.0208 | 0.0560 | 0.1119 | 0.1119 | nan | 0.1119 | 0.0 | 0.1119 |
| 0.0112 | 3.41 | 2130 | 0.0214 | 0.0459 | 0.0918 | 0.0918 | nan | 0.0918 | 0.0 | 0.0918 |
| 0.0109 | 3.46 | 2160 | 0.0211 | 0.0464 | 0.0928 | 0.0928 | nan | 0.0928 | 0.0 | 0.0928 |
| 0.0136 | 3.5 | 2190 | 0.0230 | 0.0174 | 0.0348 | 0.0348 | nan | 0.0348 | 0.0 | 0.0348 |
| 0.0194 | 3.55 | 2220 | 0.0217 | 0.0851 | 0.1702 | 0.1702 | nan | 0.1702 | 0.0 | 0.1702 |
| 0.0117 | 3.6 | 2250 | 0.0216 | 0.0295 | 0.0589 | 0.0589 | nan | 0.0589 | 0.0 | 0.0589 |
| 0.0079 | 3.65 | 2280 | 0.0211 | 0.0368 | 0.0735 | 0.0735 | nan | 0.0735 | 0.0 | 0.0735 |
| 0.0074 | 3.7 | 2310 | 0.0212 | 0.0861 | 0.1722 | 0.1722 | nan | 0.1722 | 0.0 | 0.1722 |
| 0.0467 | 3.74 | 2340 | 0.0209 | 0.0643 | 0.1286 | 0.1286 | nan | 0.1286 | 0.0 | 0.1286 |
| 0.0526 | 3.79 | 2370 | 0.0212 | 0.1275 | 0.2551 | 0.2551 | nan | 0.2551 | 0.0 | 0.2551 |
| 0.01 | 3.84 | 2400 | 0.0213 | 0.0363 | 0.0725 | 0.0725 | nan | 0.0725 | 0.0 | 0.0725 |
| 0.0426 | 3.89 | 2430 | 0.0212 | 0.1367 | 0.2733 | 0.2733 | nan | 0.2733 | 0.0 | 0.2733 |
| 0.0335 | 3.94 | 2460 | 0.0220 | 0.0235 | 0.0470 | 0.0470 | nan | 0.0470 | 0.0 | 0.0470 |
| 0.014 | 3.98 | 2490 | 0.0219 | 0.0870 | 0.1740 | 0.1740 | nan | 0.1740 | 0.0 | 0.1740 |
| 0.022 | 4.03 | 2520 | 0.0212 | 0.0388 | 0.0775 | 0.0775 | nan | 0.0775 | 0.0 | 0.0775 |
| 0.0038 | 4.08 | 2550 | 0.0211 | 0.0691 | 0.1382 | 0.1382 | nan | 0.1382 | 0.0 | 0.1382 |
| 0.0164 | 4.13 | 2580 | 0.0210 | 0.0848 | 0.1697 | 0.1697 | nan | 0.1697 | 0.0 | 0.1697 |
| 0.0121 | 4.18 | 2610 | 0.0215 | 0.0824 | 0.1648 | 0.1648 | nan | 0.1648 | 0.0 | 0.1648 |
| 0.0271 | 4.22 | 2640 | 0.0211 | 0.0877 | 0.1754 | 0.1754 | nan | 0.1754 | 0.0 | 0.1754 |
| 0.0046 | 4.27 | 2670 | 0.0200 | 0.0812 | 0.1625 | 0.1625 | nan | 0.1625 | 0.0 | 0.1625 |
| 0.02 | 4.32 | 2700 | 0.0214 | 0.0500 | 0.1000 | 0.1000 | nan | 0.1000 | 0.0 | 0.1000 |
| 0.0148 | 4.37 | 2730 | 0.0204 | 0.0550 | 0.1100 | 0.1100 | nan | 0.1100 | 0.0 | 0.1100 |
| 0.0103 | 4.42 | 2760 | 0.0211 | 0.1222 | 0.2444 | 0.2444 | nan | 0.2444 | 0.0 | 0.2444 |
| 0.0687 | 4.46 | 2790 | 0.0212 | 0.1351 | 0.2703 | 0.2703 | nan | 0.2703 | 0.0 | 0.2703 |
| 0.0186 | 4.51 | 2820 | 0.0244 | 0.1186 | 0.2373 | 0.2373 | nan | 0.2373 | 0.0 | 0.2373 |
| 0.0174 | 4.56 | 2850 | 0.0205 | 0.0487 | 0.0974 | 0.0974 | nan | 0.0974 | 0.0 | 0.0974 |
| 0.018 | 4.61 | 2880 | 0.0204 | 0.1213 | 0.2426 | 0.2426 | nan | 0.2426 | 0.0 | 0.2426 |
| 0.0224 | 4.66 | 2910 | 0.0201 | 0.1220 | 0.2439 | 0.2439 | nan | 0.2439 | 0.0 | 0.2439 |
| 0.0262 | 4.7 | 2940 | 0.0202 | 0.0943 | 0.1885 | 0.1885 | nan | 0.1885 | 0.0 | 0.1885 |
| 0.0215 | 4.75 | 2970 | 0.0197 | 0.1166 | 0.2333 | 0.2333 | nan | 0.2333 | 0.0 | 0.2333 |
| 0.0159 | 4.8 | 3000 | 0.0203 | 0.1080 | 0.2159 | 0.2159 | nan | 0.2159 | 0.0 | 0.2159 |
| 0.018 | 4.85 | 3030 | 0.0200 | 0.1138 | 0.2276 | 0.2276 | nan | 0.2276 | 0.0 | 0.2276 |
| 0.0112 | 4.9 | 3060 | 0.0198 | 0.0830 | 0.1661 | 0.1661 | nan | 0.1661 | 0.0 | 0.1661 |
| 0.0038 | 4.94 | 3090 | 0.0198 | 0.0605 | 0.1211 | 0.1211 | nan | 0.1211 | 0.0 | 0.1211 |
| 0.0076 | 4.99 | 3120 | 0.0193 | 0.1283 | 0.2566 | 0.2566 | nan | 0.2566 | 0.0 | 0.2566 |
| 0.0076 | 5.04 | 3150 | 0.0196 | 0.1245 | 0.2491 | 0.2491 | nan | 0.2491 | 0.0 | 0.2491 |
| 0.0145 | 5.09 | 3180 | 0.0205 | 0.1699 | 0.3398 | 0.3398 | nan | 0.3398 | 0.0 | 0.3398 |
| 0.0079 | 5.14 | 3210 | 0.0199 | 0.1323 | 0.2646 | 0.2646 | nan | 0.2646 | 0.0 | 0.2646 |
| 0.0144 | 5.18 | 3240 | 0.0207 | 0.1465 | 0.2931 | 0.2931 | nan | 0.2931 | 0.0 | 0.2931 |
| 0.0114 | 5.23 | 3270 | 0.0194 | 0.1094 | 0.2188 | 0.2188 | nan | 0.2188 | 0.0 | 0.2188 |
| 0.0255 | 5.28 | 3300 | 0.0209 | 0.1864 | 0.3728 | 0.3728 | nan | 0.3728 | 0.0 | 0.3728 |
| 0.0214 | 5.33 | 3330 | 0.0197 | 0.0679 | 0.1357 | 0.1357 | nan | 0.1357 | 0.0 | 0.1357 |
| 0.0124 | 5.38 | 3360 | 0.0191 | 0.0968 | 0.1936 | 0.1936 | nan | 0.1936 | 0.0 | 0.1936 |
| 0.0301 | 5.42 | 3390 | 0.0199 | 0.0622 | 0.1244 | 0.1244 | nan | 0.1244 | 0.0 | 0.1244 |
| 0.0042 | 5.47 | 3420 | 0.0197 | 0.1157 | 0.2313 | 0.2313 | nan | 0.2313 | 0.0 | 0.2313 |
| 0.0254 | 5.52 | 3450 | 0.0201 | 0.1449 | 0.2899 | 0.2899 | nan | 0.2899 | 0.0 | 0.2899 |
| 0.0112 | 5.57 | 3480 | 0.0230 | 0.2090 | 0.4179 | 0.4179 | nan | 0.4179 | 0.0 | 0.4179 |
| 0.0064 | 5.62 | 3510 | 0.0195 | 0.1100 | 0.2199 | 0.2199 | nan | 0.2199 | 0.0 | 0.2199 |
| 0.0177 | 5.66 | 3540 | 0.0200 | 0.1095 | 0.2190 | 0.2190 | nan | 0.2190 | 0.0 | 0.2190 |
| 0.0204 | 5.71 | 3570 | 0.0193 | 0.1370 | 0.2741 | 0.2741 | nan | 0.2741 | 0.0 | 0.2741 |
| 0.0101 | 5.76 | 3600 | 0.0200 | 0.1715 | 0.3430 | 0.3430 | nan | 0.3430 | 0.0 | 0.3430 |
| 0.0179 | 5.81 | 3630 | 0.0198 | 0.1837 | 0.3674 | 0.3674 | nan | 0.3674 | 0.0 | 0.3674 |
| 0.0398 | 5.86 | 3660 | 0.0219 | 0.1870 | 0.3741 | 0.3741 | nan | 0.3741 | 0.0 | 0.3741 |
| 0.006 | 5.9 | 3690 | 0.0206 | 0.0590 | 0.1179 | 0.1179 | nan | 0.1179 | 0.0 | 0.1179 |
| 0.0328 | 5.95 | 3720 | 0.0193 | 0.1281 | 0.2562 | 0.2562 | nan | 0.2562 | 0.0 | 0.2562 |
| 0.0184 | 6.0 | 3750 | 0.0192 | 0.0955 | 0.1910 | 0.1910 | nan | 0.1910 | 0.0 | 0.1910 |
| 0.018 | 6.05 | 3780 | 0.0192 | 0.1283 | 0.2566 | 0.2566 | nan | 0.2566 | 0.0 | 0.2566 |
| 0.0074 | 6.1 | 3810 | 0.0214 | 0.0403 | 0.0805 | 0.0805 | nan | 0.0805 | 0.0 | 0.0805 |
| 0.0098 | 6.14 | 3840 | 0.0200 | 0.0928 | 0.1855 | 0.1855 | nan | 0.1855 | 0.0 | 0.1855 |
| 0.0154 | 6.19 | 3870 | 0.0190 | 0.1304 | 0.2609 | 0.2609 | nan | 0.2609 | 0.0 | 0.2609 |
| 0.0197 | 6.24 | 3900 | 0.0189 | 0.1300 | 0.2601 | 0.2601 | nan | 0.2601 | 0.0 | 0.2601 |
| 0.0063 | 6.29 | 3930 | 0.0191 | 0.1352 | 0.2704 | 0.2704 | nan | 0.2704 | 0.0 | 0.2704 |
| 0.0215 | 6.34 | 3960 | 0.0195 | 0.1572 | 0.3144 | 0.3144 | nan | 0.3144 | 0.0 | 0.3144 |
| 0.021 | 6.38 | 3990 | 0.0188 | 0.1590 | 0.3179 | 0.3179 | nan | 0.3179 | 0.0 | 0.3179 |
| 0.0193 | 6.43 | 4020 | 0.0195 | 0.1676 | 0.3352 | 0.3352 | nan | 0.3352 | 0.0 | 0.3352 |
| 0.0174 | 6.48 | 4050 | 0.0202 | 0.1943 | 0.3886 | 0.3886 | nan | 0.3886 | 0.0 | 0.3886 |
| 0.0097 | 6.53 | 4080 | 0.0196 | 0.0611 | 0.1223 | 0.1223 | nan | 0.1223 | 0.0 | 0.1223 |
| 0.0043 | 6.58 | 4110 | 0.0196 | 0.0700 | 0.1399 | 0.1399 | nan | 0.1399 | 0.0 | 0.1399 |
| 0.0121 | 6.62 | 4140 | 0.0190 | 0.1047 | 0.2093 | 0.2093 | nan | 0.2093 | 0.0 | 0.2093 |
| 0.0053 | 6.67 | 4170 | 0.0190 | 0.1374 | 0.2748 | 0.2748 | nan | 0.2748 | 0.0 | 0.2748 |
| 0.0234 | 6.72 | 4200 | 0.0197 | 0.1250 | 0.2500 | 0.2500 | nan | 0.2500 | 0.0 | 0.2500 |
| 0.0164 | 6.77 | 4230 | 0.0187 | 0.0911 | 0.1822 | 0.1822 | nan | 0.1822 | 0.0 | 0.1822 |
| 0.0139 | 6.82 | 4260 | 0.0190 | 0.1242 | 0.2485 | 0.2485 | nan | 0.2485 | 0.0 | 0.2485 |
| 0.0431 | 6.86 | 4290 | 0.0194 | 0.1405 | 0.2809 | 0.2809 | nan | 0.2809 | 0.0 | 0.2809 |
| 0.0082 | 6.91 | 4320 | 0.0189 | 0.1354 | 0.2707 | 0.2707 | nan | 0.2707 | 0.0 | 0.2707 |
| 0.0095 | 6.96 | 4350 | 0.0193 | 0.1231 | 0.2462 | 0.2462 | nan | 0.2462 | 0.0 | 0.2462 |
| 0.0062 | 7.01 | 4380 | 0.0195 | 0.1617 | 0.3233 | 0.3233 | nan | 0.3233 | 0.0 | 0.3233 |
| 0.0067 | 7.06 | 4410 | 0.0206 | 0.1945 | 0.3890 | 0.3890 | nan | 0.3890 | 0.0 | 0.3890 |
| 0.0193 | 7.1 | 4440 | 0.0193 | 0.1563 | 0.3126 | 0.3126 | nan | 0.3126 | 0.0 | 0.3126 |
| 0.0482 | 7.15 | 4470 | 0.0197 | 0.1142 | 0.2284 | 0.2284 | nan | 0.2284 | 0.0 | 0.2284 |
| 0.6577 | 7.2 | 4500 | 0.0188 | 0.1033 | 0.2066 | 0.2066 | nan | 0.2066 | 0.0 | 0.2066 |
| 0.0251 | 7.25 | 4530 | 0.0201 | 0.0845 | 0.1689 | 0.1689 | nan | 0.1689 | 0.0 | 0.1689 |
| 0.0059 | 7.3 | 4560 | 0.0191 | 0.1534 | 0.3068 | 0.3068 | nan | 0.3068 | 0.0 | 0.3068 |
| 0.0103 | 7.34 | 4590 | 0.0192 | 0.1793 | 0.3586 | 0.3586 | nan | 0.3586 | 0.0 | 0.3586 |
| 0.0115 | 7.39 | 4620 | 0.0191 | 0.1000 | 0.2001 | 0.2001 | nan | 0.2001 | 0.0 | 0.2001 |
| 0.0096 | 7.44 | 4650 | 0.0194 | 0.0976 | 0.1952 | 0.1952 | nan | 0.1952 | 0.0 | 0.1952 |
| 0.0223 | 7.49 | 4680 | 0.0185 | 0.1023 | 0.2046 | 0.2046 | nan | 0.2046 | 0.0 | 0.2046 |
| 0.0228 | 7.54 | 4710 | 0.0190 | 0.1669 | 0.3339 | 0.3339 | nan | 0.3339 | 0.0 | 0.3339 |
| 0.0449 | 7.58 | 4740 | 0.0183 | 0.1302 | 0.2603 | 0.2603 | nan | 0.2603 | 0.0 | 0.2603 |
| 0.0224 | 7.63 | 4770 | 0.0193 | 0.1061 | 0.2122 | 0.2122 | nan | 0.2122 | 0.0 | 0.2122 |
| 0.0161 | 7.68 | 4800 | 0.0188 | 0.1251 | 0.2502 | 0.2502 | nan | 0.2502 | 0.0 | 0.2502 |
| 0.0106 | 7.73 | 4830 | 0.0194 | 0.1002 | 0.2005 | 0.2005 | nan | 0.2005 | 0.0 | 0.2005 |
| 0.0163 | 7.78 | 4860 | 0.0186 | 0.1264 | 0.2528 | 0.2528 | nan | 0.2528 | 0.0 | 0.2528 |
| 0.0087 | 7.82 | 4890 | 0.0184 | 0.1355 | 0.2709 | 0.2709 | nan | 0.2709 | 0.0 | 0.2709 |
| 0.0247 | 7.87 | 4920 | 0.0195 | 0.2030 | 0.4060 | 0.4060 | nan | 0.4060 | 0.0 | 0.4060 |
| 0.0239 | 7.92 | 4950 | 0.0188 | 0.1153 | 0.2306 | 0.2306 | nan | 0.2306 | 0.0 | 0.2306 |
| 0.0149 | 7.97 | 4980 | 0.0192 | 0.1265 | 0.2531 | 0.2531 | nan | 0.2531 | 0.0 | 0.2531 |
| 0.0121 | 8.02 | 5010 | 0.0191 | 0.1640 | 0.3280 | 0.3280 | nan | 0.3280 | 0.0 | 0.3280 |
| 0.0157 | 8.06 | 5040 | 0.0192 | 0.1459 | 0.2917 | 0.2917 | nan | 0.2917 | 0.0 | 0.2917 |
| 0.0321 | 8.11 | 5070 | 0.0194 | 0.1636 | 0.3273 | 0.3273 | nan | 0.3273 | 0.0 | 0.3273 |
| 0.0228 | 8.16 | 5100 | 0.0185 | 0.1471 | 0.2943 | 0.2943 | nan | 0.2943 | 0.0 | 0.2943 |
| 0.0027 | 8.21 | 5130 | 0.0185 | 0.1940 | 0.3881 | 0.3881 | nan | 0.3881 | 0.0 | 0.3881 |
| 0.0332 | 8.26 | 5160 | 0.0183 | 0.1219 | 0.2439 | 0.2439 | nan | 0.2439 | 0.0 | 0.2439 |
| 0.0099 | 8.3 | 5190 | 0.0183 | 0.1310 | 0.2621 | 0.2621 | nan | 0.2621 | 0.0 | 0.2621 |
| 0.0202 | 8.35 | 5220 | 0.0186 | 0.1128 | 0.2257 | 0.2257 | nan | 0.2257 | 0.0 | 0.2257 |
| 0.0121 | 8.4 | 5250 | 0.0192 | 0.1444 | 0.2888 | 0.2888 | nan | 0.2888 | 0.0 | 0.2888 |
| 0.0058 | 8.45 | 5280 | 0.0201 | 0.0798 | 0.1597 | 0.1597 | nan | 0.1597 | 0.0 | 0.1597 |
| 0.014 | 8.5 | 5310 | 0.0186 | 0.1456 | 0.2912 | 0.2912 | nan | 0.2912 | 0.0 | 0.2912 |
| 0.0325 | 8.54 | 5340 | 0.0201 | 0.2215 | 0.4430 | 0.4430 | nan | 0.4430 | 0.0 | 0.4430 |
| 0.0084 | 8.59 | 5370 | 0.0192 | 0.1044 | 0.2087 | 0.2087 | nan | 0.2087 | 0.0 | 0.2087 |
| 0.0125 | 8.64 | 5400 | 0.0185 | 0.1414 | 0.2828 | 0.2828 | nan | 0.2828 | 0.0 | 0.2828 |
| 0.0246 | 8.69 | 5430 | 0.0188 | 0.1482 | 0.2965 | 0.2965 | nan | 0.2965 | 0.0 | 0.2965 |
| 0.0306 | 8.74 | 5460 | 0.0193 | 0.1833 | 0.3667 | 0.3667 | nan | 0.3667 | 0.0 | 0.3667 |
| 0.0145 | 8.78 | 5490 | 0.0186 | 0.1594 | 0.3189 | 0.3189 | nan | 0.3189 | 0.0 | 0.3189 |
| 0.0149 | 8.83 | 5520 | 0.0204 | 0.2578 | 0.5157 | 0.5157 | nan | 0.5157 | 0.0 | 0.5157 |
| 0.0095 | 8.88 | 5550 | 0.0185 | 0.1725 | 0.3450 | 0.3450 | nan | 0.3450 | 0.0 | 0.3450 |
| 0.0157 | 8.93 | 5580 | 0.0189 | 0.1450 | 0.2901 | 0.2901 | nan | 0.2901 | 0.0 | 0.2901 |
| 0.0135 | 8.98 | 5610 | 0.0190 | 0.1688 | 0.3376 | 0.3376 | nan | 0.3376 | 0.0 | 0.3376 |
| 0.0099 | 9.02 | 5640 | 0.0212 | 0.2304 | 0.4608 | 0.4608 | nan | 0.4608 | 0.0 | 0.4608 |
| 0.0232 | 9.07 | 5670 | 0.0191 | 0.2030 | 0.4059 | 0.4059 | nan | 0.4059 | 0.0 | 0.4059 |
| 0.0163 | 9.12 | 5700 | 0.0187 | 0.1628 | 0.3255 | 0.3255 | nan | 0.3255 | 0.0 | 0.3255 |
| 0.8412 | 9.17 | 5730 | 0.0186 | 0.1743 | 0.3486 | 0.3486 | nan | 0.3486 | 0.0 | 0.3486 |
| 0.0189 | 9.22 | 5760 | 0.0192 | 0.1287 | 0.2573 | 0.2573 | nan | 0.2573 | 0.0 | 0.2573 |
| 0.0148 | 9.26 | 5790 | 0.0182 | 0.1526 | 0.3051 | 0.3051 | nan | 0.3051 | 0.0 | 0.3051 |
| 0.0211 | 9.31 | 5820 | 0.0198 | 0.2222 | 0.4444 | 0.4444 | nan | 0.4444 | 0.0 | 0.4444 |
| 0.0185 | 9.36 | 5850 | 0.0197 | 0.2170 | 0.4341 | 0.4341 | nan | 0.4341 | 0.0 | 0.4341 |
| 0.0098 | 9.41 | 5880 | 0.0182 | 0.1784 | 0.3568 | 0.3568 | nan | 0.3568 | 0.0 | 0.3568 |
| 0.0135 | 9.46 | 5910 | 0.0183 | 0.1618 | 0.3236 | 0.3236 | nan | 0.3236 | 0.0 | 0.3236 |
| 0.0123 | 9.5 | 5940 | 0.0186 | 0.1752 | 0.3505 | 0.3505 | nan | 0.3505 | 0.0 | 0.3505 |
| 0.0105 | 9.55 | 5970 | 0.0188 | 0.1955 | 0.3910 | 0.3910 | nan | 0.3910 | 0.0 | 0.3910 |
| 0.0147 | 9.6 | 6000 | 0.0182 | 0.1437 | 0.2874 | 0.2874 | nan | 0.2874 | 0.0 | 0.2874 |
| 0.0181 | 9.65 | 6030 | 0.0181 | 0.1288 | 0.2577 | 0.2577 | nan | 0.2577 | 0.0 | 0.2577 |
| 0.0153 | 9.7 | 6060 | 0.0185 | 0.1794 | 0.3588 | 0.3588 | nan | 0.3588 | 0.0 | 0.3588 |
| 0.0331 | 9.74 | 6090 | 0.0191 | 0.1037 | 0.2074 | 0.2074 | nan | 0.2074 | 0.0 | 0.2074 |
| 0.0105 | 9.79 | 6120 | 0.0187 | 0.1807 | 0.3613 | 0.3613 | nan | 0.3613 | 0.0 | 0.3613 |
| 0.0212 | 9.84 | 6150 | 0.0186 | 0.1652 | 0.3304 | 0.3304 | nan | 0.3304 | 0.0 | 0.3304 |
| 0.0191 | 9.89 | 6180 | 0.0191 | 0.1921 | 0.3842 | 0.3842 | nan | 0.3842 | 0.0 | 0.3842 |
| 0.0163 | 9.94 | 6210 | 0.0191 | 0.1893 | 0.3787 | 0.3787 | nan | 0.3787 | 0.0 | 0.3787 |
| 0.054 | 9.98 | 6240 | 0.0190 | 0.1888 | 0.3777 | 0.3777 | nan | 0.3777 | 0.0 | 0.3777 |
| 0.0095 | 10.03 | 6270 | 0.0193 | 0.1441 | 0.2881 | 0.2881 | nan | 0.2881 | 0.0 | 0.2881 |
| 0.0146 | 10.08 | 6300 | 0.0194 | 0.1614 | 0.3228 | 0.3228 | nan | 0.3228 | 0.0 | 0.3228 |
| 0.0189 | 10.13 | 6330 | 0.0189 | 0.1799 | 0.3598 | 0.3598 | nan | 0.3598 | 0.0 | 0.3598 |
| 0.01 | 10.18 | 6360 | 0.0184 | 0.2016 | 0.4032 | 0.4032 | nan | 0.4032 | 0.0 | 0.4032 |
| 0.0165 | 10.22 | 6390 | 0.0183 | 0.1727 | 0.3453 | 0.3453 | nan | 0.3453 | 0.0 | 0.3453 |
| 0.0114 | 10.27 | 6420 | 0.0189 | 0.1329 | 0.2657 | 0.2657 | nan | 0.2657 | 0.0 | 0.2657 |
| 0.017 | 10.32 | 6450 | 0.0186 | 0.1636 | 0.3272 | 0.3272 | nan | 0.3272 | 0.0 | 0.3272 |
| 0.0109 | 10.37 | 6480 | 0.0184 | 0.1718 | 0.3436 | 0.3436 | nan | 0.3436 | 0.0 | 0.3436 |
| 0.0044 | 10.42 | 6510 | 0.0188 | 0.1326 | 0.2652 | 0.2652 | nan | 0.2652 | 0.0 | 0.2652 |
| 0.0126 | 10.46 | 6540 | 0.0188 | 0.1786 | 0.3573 | 0.3573 | nan | 0.3573 | 0.0 | 0.3573 |
| 0.0044 | 10.51 | 6570 | 0.0191 | 0.1379 | 0.2758 | 0.2758 | nan | 0.2758 | 0.0 | 0.2758 |
| 0.0218 | 10.56 | 6600 | 0.0188 | 0.2023 | 0.4046 | 0.4046 | nan | 0.4046 | 0.0 | 0.4046 |
| 0.0124 | 10.61 | 6630 | 0.0189 | 0.1895 | 0.3791 | 0.3791 | nan | 0.3791 | 0.0 | 0.3791 |
| 0.0056 | 10.66 | 6660 | 0.0189 | 0.1573 | 0.3145 | 0.3145 | nan | 0.3145 | 0.0 | 0.3145 |
| 0.0055 | 10.7 | 6690 | 0.0187 | 0.1269 | 0.2538 | 0.2538 | nan | 0.2538 | 0.0 | 0.2538 |
| 0.0023 | 10.75 | 6720 | 0.0185 | 0.1908 | 0.3815 | 0.3815 | nan | 0.3815 | 0.0 | 0.3815 |
| 0.0517 | 10.8 | 6750 | 0.0181 | 0.1342 | 0.2684 | 0.2684 | nan | 0.2684 | 0.0 | 0.2684 |
| 0.032 | 10.85 | 6780 | 0.0188 | 0.1179 | 0.2359 | 0.2359 | nan | 0.2359 | 0.0 | 0.2359 |
| 0.0111 | 10.9 | 6810 | 0.0185 | 0.1195 | 0.2391 | 0.2391 | nan | 0.2391 | 0.0 | 0.2391 |
| 0.0354 | 10.94 | 6840 | 0.0184 | 0.1911 | 0.3822 | 0.3822 | nan | 0.3822 | 0.0 | 0.3822 |
| 0.0051 | 10.99 | 6870 | 0.0190 | 0.1151 | 0.2302 | 0.2302 | nan | 0.2302 | 0.0 | 0.2302 |
| 0.0104 | 11.04 | 6900 | 0.0181 | 0.1562 | 0.3123 | 0.3123 | nan | 0.3123 | 0.0 | 0.3123 |
| 0.0145 | 11.09 | 6930 | 0.0184 | 0.1641 | 0.3282 | 0.3282 | nan | 0.3282 | 0.0 | 0.3282 |
| 0.022 | 11.14 | 6960 | 0.0192 | 0.1011 | 0.2023 | 0.2023 | nan | 0.2023 | 0.0 | 0.2023 |
| 0.014 | 11.18 | 6990 | 0.0190 | 0.0986 | 0.1972 | 0.1972 | nan | 0.1972 | 0.0 | 0.1972 |
| 0.0195 | 11.23 | 7020 | 0.0193 | 0.1969 | 0.3937 | 0.3937 | nan | 0.3937 | 0.0 | 0.3937 |
| 0.0084 | 11.28 | 7050 | 0.0182 | 0.1592 | 0.3184 | 0.3184 | nan | 0.3184 | 0.0 | 0.3184 |
| 0.0099 | 11.33 | 7080 | 0.0191 | 0.1812 | 0.3624 | 0.3624 | nan | 0.3624 | 0.0 | 0.3624 |
| 0.0165 | 11.38 | 7110 | 0.0198 | 0.1032 | 0.2063 | 0.2063 | nan | 0.2063 | 0.0 | 0.2063 |
| 0.0175 | 11.42 | 7140 | 0.0195 | 0.1435 | 0.2870 | 0.2870 | nan | 0.2870 | 0.0 | 0.2870 |
| 0.0146 | 11.47 | 7170 | 0.0187 | 0.1509 | 0.3018 | 0.3018 | nan | 0.3018 | 0.0 | 0.3018 |
| 0.0106 | 11.52 | 7200 | 0.0186 | 0.1504 | 0.3007 | 0.3007 | nan | 0.3007 | 0.0 | 0.3007 |
| 0.0195 | 11.57 | 7230 | 0.0188 | 0.1333 | 0.2667 | 0.2667 | nan | 0.2667 | 0.0 | 0.2667 |
| 0.0162 | 11.62 | 7260 | 0.0188 | 0.1397 | 0.2794 | 0.2794 | nan | 0.2794 | 0.0 | 0.2794 |
| 0.0198 | 11.66 | 7290 | 0.0184 | 0.1546 | 0.3093 | 0.3093 | nan | 0.3093 | 0.0 | 0.3093 |
| 0.0161 | 11.71 | 7320 | 0.0199 | 0.2356 | 0.4712 | 0.4712 | nan | 0.4712 | 0.0 | 0.4712 |
| 0.0252 | 11.76 | 7350 | 0.0198 | 0.1594 | 0.3187 | 0.3187 | nan | 0.3187 | 0.0 | 0.3187 |
| 0.0122 | 11.81 | 7380 | 0.0195 | 0.1640 | 0.3279 | 0.3279 | nan | 0.3279 | 0.0 | 0.3279 |
| 0.0045 | 11.86 | 7410 | 0.0196 | 0.1362 | 0.2724 | 0.2724 | nan | 0.2724 | 0.0 | 0.2724 |
| 0.0154 | 11.9 | 7440 | 0.0192 | 0.1514 | 0.3028 | 0.3028 | nan | 0.3028 | 0.0 | 0.3028 |
| 0.0153 | 11.95 | 7470 | 0.0189 | 0.1134 | 0.2269 | 0.2269 | nan | 0.2269 | 0.0 | 0.2269 |
| 0.015 | 12.0 | 7500 | 0.0189 | 0.1524 | 0.3049 | 0.3049 | nan | 0.3049 | 0.0 | 0.3049 |
| 0.011 | 12.05 | 7530 | 0.0190 | 0.1358 | 0.2716 | 0.2716 | nan | 0.2716 | 0.0 | 0.2716 |
| 0.0105 | 12.1 | 7560 | 0.0192 | 0.1099 | 0.2198 | 0.2198 | nan | 0.2198 | 0.0 | 0.2198 |
| 0.0028 | 12.14 | 7590 | 0.0186 | 0.1551 | 0.3102 | 0.3102 | nan | 0.3102 | 0.0 | 0.3102 |
| 0.0088 | 12.19 | 7620 | 0.0182 | 0.1527 | 0.3054 | 0.3054 | nan | 0.3054 | 0.0 | 0.3054 |
| 0.0122 | 12.24 | 7650 | 0.0191 | 0.2037 | 0.4074 | 0.4074 | nan | 0.4074 | 0.0 | 0.4074 |
| 0.0188 | 12.29 | 7680 | 0.0191 | 0.1690 | 0.3380 | 0.3380 | nan | 0.3380 | 0.0 | 0.3380 |
| 0.0108 | 12.34 | 7710 | 0.0197 | 0.1367 | 0.2735 | 0.2735 | nan | 0.2735 | 0.0 | 0.2735 |
| 0.0054 | 12.38 | 7740 | 0.0190 | 0.1659 | 0.3319 | 0.3319 | nan | 0.3319 | 0.0 | 0.3319 |
| 0.0105 | 12.43 | 7770 | 0.0190 | 0.1749 | 0.3499 | 0.3499 | nan | 0.3499 | 0.0 | 0.3499 |
| 0.0131 | 12.48 | 7800 | 0.0194 | 0.1994 | 0.3987 | 0.3987 | nan | 0.3987 | 0.0 | 0.3987 |
| 0.0127 | 12.53 | 7830 | 0.0192 | 0.2064 | 0.4128 | 0.4128 | nan | 0.4128 | 0.0 | 0.4128 |
| 0.014 | 12.58 | 7860 | 0.0187 | 0.1686 | 0.3372 | 0.3372 | nan | 0.3372 | 0.0 | 0.3372 |
| 0.0086 | 12.62 | 7890 | 0.0192 | 0.1871 | 0.3742 | 0.3742 | nan | 0.3742 | 0.0 | 0.3742 |
| 0.0089 | 12.67 | 7920 | 0.0187 | 0.1386 | 0.2772 | 0.2772 | nan | 0.2772 | 0.0 | 0.2772 |
| 0.0055 | 12.72 | 7950 | 0.0187 | 0.1513 | 0.3026 | 0.3026 | nan | 0.3026 | 0.0 | 0.3026 |
| 0.0118 | 12.77 | 7980 | 0.0186 | 0.1484 | 0.2968 | 0.2968 | nan | 0.2968 | 0.0 | 0.2968 |
| 0.0059 | 12.82 | 8010 | 0.0185 | 0.1568 | 0.3137 | 0.3137 | nan | 0.3137 | 0.0 | 0.3137 |
| 0.0103 | 12.86 | 8040 | 0.0182 | 0.1728 | 0.3456 | 0.3456 | nan | 0.3456 | 0.0 | 0.3456 |
| 0.0085 | 12.91 | 8070 | 0.0187 | 0.1903 | 0.3806 | 0.3806 | nan | 0.3806 | 0.0 | 0.3806 |
| 0.0145 | 12.96 | 8100 | 0.0185 | 0.1887 | 0.3773 | 0.3773 | nan | 0.3773 | 0.0 | 0.3773 |
| 0.0064 | 13.01 | 8130 | 0.0191 | 0.1963 | 0.3925 | 0.3925 | nan | 0.3925 | 0.0 | 0.3925 |
| 0.0066 | 13.06 | 8160 | 0.0186 | 0.1888 | 0.3777 | 0.3777 | nan | 0.3777 | 0.0 | 0.3777 |
| 0.0139 | 13.1 | 8190 | 0.0183 | 0.1427 | 0.2854 | 0.2854 | nan | 0.2854 | 0.0 | 0.2854 |
| 0.0179 | 13.15 | 8220 | 0.0185 | 0.1460 | 0.2921 | 0.2921 | nan | 0.2921 | 0.0 | 0.2921 |
| 0.0108 | 13.2 | 8250 | 0.0190 | 0.1738 | 0.3476 | 0.3476 | nan | 0.3476 | 0.0 | 0.3476 |
| 0.0112 | 13.25 | 8280 | 0.0196 | 0.2183 | 0.4365 | 0.4365 | nan | 0.4365 | 0.0 | 0.4365 |
| 0.0409 | 13.3 | 8310 | 0.0191 | 0.1923 | 0.3846 | 0.3846 | nan | 0.3846 | 0.0 | 0.3846 |
| 0.0145 | 13.34 | 8340 | 0.0194 | 0.1946 | 0.3892 | 0.3892 | nan | 0.3892 | 0.0 | 0.3892 |
| 0.0077 | 13.39 | 8370 | 0.0195 | 0.2010 | 0.4020 | 0.4020 | nan | 0.4020 | 0.0 | 0.4020 |
| 0.0108 | 13.44 | 8400 | 0.0194 | 0.1367 | 0.2734 | 0.2734 | nan | 0.2734 | 0.0 | 0.2734 |
| 0.0161 | 13.49 | 8430 | 0.0187 | 0.1856 | 0.3711 | 0.3711 | nan | 0.3711 | 0.0 | 0.3711 |
| 0.0101 | 13.54 | 8460 | 0.0185 | 0.1812 | 0.3623 | 0.3623 | nan | 0.3623 | 0.0 | 0.3623 |
| 0.0181 | 13.58 | 8490 | 0.0192 | 0.1788 | 0.3576 | 0.3576 | nan | 0.3576 | 0.0 | 0.3576 |
| 0.0092 | 13.63 | 8520 | 0.0188 | 0.1516 | 0.3032 | 0.3032 | nan | 0.3032 | 0.0 | 0.3032 |
| 0.028 | 13.68 | 8550 | 0.0187 | 0.1690 | 0.3379 | 0.3379 | nan | 0.3379 | 0.0 | 0.3379 |
| 0.0176 | 13.73 | 8580 | 0.0185 | 0.1724 | 0.3447 | 0.3447 | nan | 0.3447 | 0.0 | 0.3447 |
| 0.0075 | 13.78 | 8610 | 0.0184 | 0.1768 | 0.3537 | 0.3537 | nan | 0.3537 | 0.0 | 0.3537 |
| 0.0108 | 13.82 | 8640 | 0.0194 | 0.1717 | 0.3433 | 0.3433 | nan | 0.3433 | 0.0 | 0.3433 |
| 0.0209 | 13.87 | 8670 | 0.0192 | 0.1636 | 0.3271 | 0.3271 | nan | 0.3271 | 0.0 | 0.3271 |
| 0.0088 | 13.92 | 8700 | 0.0193 | 0.2096 | 0.4192 | 0.4192 | nan | 0.4192 | 0.0 | 0.4192 |
| 0.0099 | 13.97 | 8730 | 0.0189 | 0.1995 | 0.3990 | 0.3990 | nan | 0.3990 | 0.0 | 0.3990 |
| 0.015 | 14.02 | 8760 | 0.0186 | 0.1647 | 0.3295 | 0.3295 | nan | 0.3295 | 0.0 | 0.3295 |
| 0.011 | 14.06 | 8790 | 0.0189 | 0.1676 | 0.3353 | 0.3353 | nan | 0.3353 | 0.0 | 0.3353 |
| 0.0081 | 14.11 | 8820 | 0.0194 | 0.1419 | 0.2839 | 0.2839 | nan | 0.2839 | 0.0 | 0.2839 |
| 0.0164 | 14.16 | 8850 | 0.0187 | 0.1627 | 0.3254 | 0.3254 | nan | 0.3254 | 0.0 | 0.3254 |
| 0.009 | 14.21 | 8880 | 0.0183 | 0.1909 | 0.3817 | 0.3817 | nan | 0.3817 | 0.0 | 0.3817 |
| 0.0135 | 14.26 | 8910 | 0.0186 | 0.1640 | 0.3280 | 0.3280 | nan | 0.3280 | 0.0 | 0.3280 |
| 0.0286 | 14.3 | 8940 | 0.0188 | 0.1691 | 0.3383 | 0.3383 | nan | 0.3383 | 0.0 | 0.3383 |
| 0.0036 | 14.35 | 8970 | 0.0189 | 0.1616 | 0.3231 | 0.3231 | nan | 0.3231 | 0.0 | 0.3231 |
| 0.0115 | 14.4 | 9000 | 0.0193 | 0.1359 | 0.2718 | 0.2718 | nan | 0.2718 | 0.0 | 0.2718 |
| 0.0107 | 14.45 | 9030 | 0.0189 | 0.1498 | 0.2996 | 0.2996 | nan | 0.2996 | 0.0 | 0.2996 |
| 0.0217 | 14.5 | 9060 | 0.0194 | 0.1486 | 0.2972 | 0.2972 | nan | 0.2972 | 0.0 | 0.2972 |
| 0.0109 | 14.54 | 9090 | 0.0194 | 0.1554 | 0.3109 | 0.3109 | nan | 0.3109 | 0.0 | 0.3109 |
| 0.0104 | 14.59 | 9120 | 0.0195 | 0.1661 | 0.3321 | 0.3321 | nan | 0.3321 | 0.0 | 0.3321 |
| 0.0096 | 14.64 | 9150 | 0.0187 | 0.1850 | 0.3700 | 0.3700 | nan | 0.3700 | 0.0 | 0.3700 |
| 0.018 | 14.69 | 9180 | 0.0188 | 0.1923 | 0.3847 | 0.3847 | nan | 0.3847 | 0.0 | 0.3847 |
| 0.0072 | 14.74 | 9210 | 0.0185 | 0.1775 | 0.3551 | 0.3551 | nan | 0.3551 | 0.0 | 0.3551 |
| 0.0106 | 14.78 | 9240 | 0.0186 | 0.1570 | 0.3140 | 0.3140 | nan | 0.3140 | 0.0 | 0.3140 |
| 0.0209 | 14.83 | 9270 | 0.0190 | 0.1936 | 0.3872 | 0.3872 | nan | 0.3872 | 0.0 | 0.3872 |
| 0.0174 | 14.88 | 9300 | 0.0186 | 0.1920 | 0.3840 | 0.3840 | nan | 0.3840 | 0.0 | 0.3840 |
| 0.0109 | 14.93 | 9330 | 0.0184 | 0.1680 | 0.3361 | 0.3361 | nan | 0.3361 | 0.0 | 0.3361 |
| 0.019 | 14.98 | 9360 | 0.0189 | 0.1962 | 0.3924 | 0.3924 | nan | 0.3924 | 0.0 | 0.3924 |
| 0.0162 | 15.02 | 9390 | 0.0195 | 0.1523 | 0.3045 | 0.3045 | nan | 0.3045 | 0.0 | 0.3045 |
| 0.013 | 15.07 | 9420 | 0.0191 | 0.1530 | 0.3059 | 0.3059 | nan | 0.3059 | 0.0 | 0.3059 |
| 0.0091 | 15.12 | 9450 | 0.0189 | 0.1871 | 0.3743 | 0.3743 | nan | 0.3743 | 0.0 | 0.3743 |
| 0.0022 | 15.17 | 9480 | 0.0195 | 0.1568 | 0.3136 | 0.3136 | nan | 0.3136 | 0.0 | 0.3136 |
| 0.0092 | 15.22 | 9510 | 0.0189 | 0.2056 | 0.4112 | 0.4112 | nan | 0.4112 | 0.0 | 0.4112 |
| 0.0269 | 15.26 | 9540 | 0.0189 | 0.1692 | 0.3383 | 0.3383 | nan | 0.3383 | 0.0 | 0.3383 |
| 0.0194 | 15.31 | 9570 | 0.0191 | 0.1744 | 0.3489 | 0.3489 | nan | 0.3489 | 0.0 | 0.3489 |
| 0.0063 | 15.36 | 9600 | 0.0186 | 0.1757 | 0.3513 | 0.3513 | nan | 0.3513 | 0.0 | 0.3513 |
| 0.0283 | 15.41 | 9630 | 0.0191 | 0.1858 | 0.3715 | 0.3715 | nan | 0.3715 | 0.0 | 0.3715 |
| 0.0051 | 15.46 | 9660 | 0.0196 | 0.1602 | 0.3203 | 0.3203 | nan | 0.3203 | 0.0 | 0.3203 |
| 0.003 | 15.5 | 9690 | 0.0195 | 0.1377 | 0.2753 | 0.2753 | nan | 0.2753 | 0.0 | 0.2753 |
| 0.0149 | 15.55 | 9720 | 0.0189 | 0.1799 | 0.3597 | 0.3597 | nan | 0.3597 | 0.0 | 0.3597 |
| 0.0169 | 15.6 | 9750 | 0.0189 | 0.1772 | 0.3544 | 0.3544 | nan | 0.3544 | 0.0 | 0.3544 |
| 0.0125 | 15.65 | 9780 | 0.0193 | 0.1436 | 0.2872 | 0.2872 | nan | 0.2872 | 0.0 | 0.2872 |
| 0.0115 | 15.7 | 9810 | 0.0192 | 0.1560 | 0.3121 | 0.3121 | nan | 0.3121 | 0.0 | 0.3121 |
| 0.0081 | 15.74 | 9840 | 0.0186 | 0.1693 | 0.3386 | 0.3386 | nan | 0.3386 | 0.0 | 0.3386 |
| 0.0183 | 15.79 | 9870 | 0.0192 | 0.1414 | 0.2828 | 0.2828 | nan | 0.2828 | 0.0 | 0.2828 |
| 0.0128 | 15.84 | 9900 | 0.0189 | 0.1484 | 0.2967 | 0.2967 | nan | 0.2967 | 0.0 | 0.2967 |
| 0.0071 | 15.89 | 9930 | 0.0192 | 0.1309 | 0.2618 | 0.2618 | nan | 0.2618 | 0.0 | 0.2618 |
| 0.0112 | 15.94 | 9960 | 0.0194 | 0.1479 | 0.2957 | 0.2957 | nan | 0.2957 | 0.0 | 0.2957 |
| 0.002 | 15.98 | 9990 | 0.0191 | 0.1575 | 0.3150 | 0.3150 | nan | 0.3150 | 0.0 | 0.3150 |
| 0.0201 | 16.03 | 10020 | 0.0194 | 0.1302 | 0.2604 | 0.2604 | nan | 0.2604 | 0.0 | 0.2604 |
| 0.0078 | 16.08 | 10050 | 0.0193 | 0.1424 | 0.2848 | 0.2848 | nan | 0.2848 | 0.0 | 0.2848 |
| 0.0288 | 16.13 | 10080 | 0.0195 | 0.1624 | 0.3247 | 0.3247 | nan | 0.3247 | 0.0 | 0.3247 |
| 0.0229 | 16.18 | 10110 | 0.0188 | 0.1687 | 0.3373 | 0.3373 | nan | 0.3373 | 0.0 | 0.3373 |
| 0.0124 | 16.22 | 10140 | 0.0185 | 0.1783 | 0.3565 | 0.3565 | nan | 0.3565 | 0.0 | 0.3565 |
| 0.0098 | 16.27 | 10170 | 0.0190 | 0.1657 | 0.3314 | 0.3314 | nan | 0.3314 | 0.0 | 0.3314 |
| 0.0117 | 16.32 | 10200 | 0.0190 | 0.1537 | 0.3073 | 0.3073 | nan | 0.3073 | 0.0 | 0.3073 |
| 0.0104 | 16.37 | 10230 | 0.0185 | 0.1686 | 0.3371 | 0.3371 | nan | 0.3371 | 0.0 | 0.3371 |
| 0.0131 | 16.42 | 10260 | 0.0191 | 0.1377 | 0.2754 | 0.2754 | nan | 0.2754 | 0.0 | 0.2754 |
| 0.0087 | 16.46 | 10290 | 0.0191 | 0.1500 | 0.3000 | 0.3000 | nan | 0.3000 | 0.0 | 0.3000 |
| 0.0023 | 16.51 | 10320 | 0.0190 | 0.1774 | 0.3548 | 0.3548 | nan | 0.3548 | 0.0 | 0.3548 |
| 0.0132 | 16.56 | 10350 | 0.0189 | 0.1788 | 0.3576 | 0.3576 | nan | 0.3576 | 0.0 | 0.3576 |
| 0.0061 | 16.61 | 10380 | 0.0193 | 0.1672 | 0.3344 | 0.3344 | nan | 0.3344 | 0.0 | 0.3344 |
| 0.0054 | 16.66 | 10410 | 0.0188 | 0.1780 | 0.3561 | 0.3561 | nan | 0.3561 | 0.0 | 0.3561 |
| 0.0228 | 16.7 | 10440 | 0.0188 | 0.1652 | 0.3303 | 0.3303 | nan | 0.3303 | 0.0 | 0.3303 |
| 0.0195 | 16.75 | 10470 | 0.0191 | 0.1583 | 0.3166 | 0.3166 | nan | 0.3166 | 0.0 | 0.3166 |
| 0.019 | 16.8 | 10500 | 0.0193 | 0.1583 | 0.3166 | 0.3166 | nan | 0.3166 | 0.0 | 0.3166 |
| 0.0219 | 16.85 | 10530 | 0.0187 | 0.1671 | 0.3342 | 0.3342 | nan | 0.3342 | 0.0 | 0.3342 |
| 0.0146 | 16.9 | 10560 | 0.0189 | 0.2074 | 0.4148 | 0.4148 | nan | 0.4148 | 0.0 | 0.4148 |
| 0.0124 | 16.94 | 10590 | 0.0192 | 0.1798 | 0.3597 | 0.3597 | nan | 0.3597 | 0.0 | 0.3597 |
| 0.0266 | 16.99 | 10620 | 0.0187 | 0.1631 | 0.3262 | 0.3262 | nan | 0.3262 | 0.0 | 0.3262 |
| 0.0066 | 17.04 | 10650 | 0.0194 | 0.1399 | 0.2799 | 0.2799 | nan | 0.2799 | 0.0 | 0.2799 |
| 0.0044 | 17.09 | 10680 | 0.0188 | 0.1624 | 0.3248 | 0.3248 | nan | 0.3248 | 0.0 | 0.3248 |
| 0.0031 | 17.14 | 10710 | 0.0193 | 0.1989 | 0.3979 | 0.3979 | nan | 0.3979 | 0.0 | 0.3979 |
| 0.0056 | 17.18 | 10740 | 0.0188 | 0.1898 | 0.3795 | 0.3795 | nan | 0.3795 | 0.0 | 0.3795 |
| 0.0037 | 17.23 | 10770 | 0.0189 | 0.1557 | 0.3114 | 0.3114 | nan | 0.3114 | 0.0 | 0.3114 |
| 0.0052 | 17.28 | 10800 | 0.0194 | 0.1391 | 0.2781 | 0.2781 | nan | 0.2781 | 0.0 | 0.2781 |
| 0.0151 | 17.33 | 10830 | 0.0191 | 0.1553 | 0.3106 | 0.3106 | nan | 0.3106 | 0.0 | 0.3106 |
| 0.0096 | 17.38 | 10860 | 0.0190 | 0.1524 | 0.3047 | 0.3047 | nan | 0.3047 | 0.0 | 0.3047 |
| 0.008 | 17.42 | 10890 | 0.0186 | 0.1667 | 0.3335 | 0.3335 | nan | 0.3335 | 0.0 | 0.3335 |
| 0.013 | 17.47 | 10920 | 0.0186 | 0.1708 | 0.3416 | 0.3416 | nan | 0.3416 | 0.0 | 0.3416 |
| 0.0067 | 17.52 | 10950 | 0.0184 | 0.1808 | 0.3616 | 0.3616 | nan | 0.3616 | 0.0 | 0.3616 |
| 0.0101 | 17.57 | 10980 | 0.0187 | 0.1626 | 0.3252 | 0.3252 | nan | 0.3252 | 0.0 | 0.3252 |
| 0.0168 | 17.62 | 11010 | 0.0188 | 0.1724 | 0.3447 | 0.3447 | nan | 0.3447 | 0.0 | 0.3447 |
| 0.0056 | 17.66 | 11040 | 0.0191 | 0.1582 | 0.3165 | 0.3165 | nan | 0.3165 | 0.0 | 0.3165 |
| 0.0062 | 17.71 | 11070 | 0.0194 | 0.1439 | 0.2877 | 0.2877 | nan | 0.2877 | 0.0 | 0.2877 |
| 0.0035 | 17.76 | 11100 | 0.0189 | 0.1584 | 0.3168 | 0.3168 | nan | 0.3168 | 0.0 | 0.3168 |
| 0.0198 | 17.81 | 11130 | 0.0191 | 0.1671 | 0.3343 | 0.3343 | nan | 0.3343 | 0.0 | 0.3343 |
| 0.0018 | 17.86 | 11160 | 0.0195 | 0.1473 | 0.2945 | 0.2945 | nan | 0.2945 | 0.0 | 0.2945 |
| 0.0083 | 17.9 | 11190 | 0.0189 | 0.1866 | 0.3732 | 0.3732 | nan | 0.3732 | 0.0 | 0.3732 |
| 0.0122 | 17.95 | 11220 | 0.0192 | 0.1647 | 0.3294 | 0.3294 | nan | 0.3294 | 0.0 | 0.3294 |
| 0.0099 | 18.0 | 11250 | 0.0192 | 0.1858 | 0.3716 | 0.3716 | nan | 0.3716 | 0.0 | 0.3716 |
| 0.0129 | 18.05 | 11280 | 0.0191 | 0.1828 | 0.3656 | 0.3656 | nan | 0.3656 | 0.0 | 0.3656 |
| 0.026 | 18.1 | 11310 | 0.0195 | 0.1661 | 0.3322 | 0.3322 | nan | 0.3322 | 0.0 | 0.3322 |
| 0.0353 | 18.14 | 11340 | 0.0196 | 0.1703 | 0.3407 | 0.3407 | nan | 0.3407 | 0.0 | 0.3407 |
| 0.0104 | 18.19 | 11370 | 0.0196 | 0.1764 | 0.3528 | 0.3528 | nan | 0.3528 | 0.0 | 0.3528 |
| 0.0184 | 18.24 | 11400 | 0.0196 | 0.1441 | 0.2881 | 0.2881 | nan | 0.2881 | 0.0 | 0.2881 |
| 0.0071 | 18.29 | 11430 | 0.0193 | 0.1693 | 0.3385 | 0.3385 | nan | 0.3385 | 0.0 | 0.3385 |
| 0.0359 | 18.34 | 11460 | 0.0194 | 0.1994 | 0.3988 | 0.3988 | nan | 0.3988 | 0.0 | 0.3988 |
| 0.0338 | 18.38 | 11490 | 0.0199 | 0.1578 | 0.3156 | 0.3156 | nan | 0.3156 | 0.0 | 0.3156 |
| 0.0137 | 18.43 | 11520 | 0.0196 | 0.1741 | 0.3481 | 0.3481 | nan | 0.3481 | 0.0 | 0.3481 |
| 0.0098 | 18.48 | 11550 | 0.0193 | 0.1641 | 0.3281 | 0.3281 | nan | 0.3281 | 0.0 | 0.3281 |
| 0.013 | 18.53 | 11580 | 0.0193 | 0.1508 | 0.3016 | 0.3016 | nan | 0.3016 | 0.0 | 0.3016 |
| 0.008 | 18.58 | 11610 | 0.0192 | 0.1758 | 0.3517 | 0.3517 | nan | 0.3517 | 0.0 | 0.3517 |
| 0.0089 | 18.62 | 11640 | 0.0193 | 0.1511 | 0.3023 | 0.3023 | nan | 0.3023 | 0.0 | 0.3023 |
| 0.0176 | 18.67 | 11670 | 0.0190 | 0.1646 | 0.3292 | 0.3292 | nan | 0.3292 | 0.0 | 0.3292 |
| 0.0091 | 18.72 | 11700 | 0.0193 | 0.1514 | 0.3028 | 0.3028 | nan | 0.3028 | 0.0 | 0.3028 |
| 0.0075 | 18.77 | 11730 | 0.0190 | 0.1644 | 0.3288 | 0.3288 | nan | 0.3288 | 0.0 | 0.3288 |
| 0.0057 | 18.82 | 11760 | 0.0191 | 0.1789 | 0.3577 | 0.3577 | nan | 0.3577 | 0.0 | 0.3577 |
| 0.0063 | 18.86 | 11790 | 0.0188 | 0.1874 | 0.3749 | 0.3749 | nan | 0.3749 | 0.0 | 0.3749 |
| 0.0119 | 18.91 | 11820 | 0.0197 | 0.1316 | 0.2632 | 0.2632 | nan | 0.2632 | 0.0 | 0.2632 |
| 0.0068 | 18.96 | 11850 | 0.0192 | 0.1963 | 0.3927 | 0.3927 | nan | 0.3927 | 0.0 | 0.3927 |
| 0.0179 | 19.01 | 11880 | 0.0194 | 0.1603 | 0.3206 | 0.3206 | nan | 0.3206 | 0.0 | 0.3206 |
| 0.0107 | 19.06 | 11910 | 0.0194 | 0.1469 | 0.2939 | 0.2939 | nan | 0.2939 | 0.0 | 0.2939 |
| 0.0131 | 19.1 | 11940 | 0.0197 | 0.1692 | 0.3385 | 0.3385 | nan | 0.3385 | 0.0 | 0.3385 |
| 0.0093 | 19.15 | 11970 | 0.0198 | 0.1533 | 0.3067 | 0.3067 | nan | 0.3067 | 0.0 | 0.3067 |
| 0.0022 | 19.2 | 12000 | 0.0191 | 0.1794 | 0.3588 | 0.3588 | nan | 0.3588 | 0.0 | 0.3588 |
| 0.0095 | 19.25 | 12030 | 0.0192 | 0.1663 | 0.3327 | 0.3327 | nan | 0.3327 | 0.0 | 0.3327 |
| 0.0129 | 19.3 | 12060 | 0.0188 | 0.1776 | 0.3553 | 0.3553 | nan | 0.3553 | 0.0 | 0.3553 |
| 0.0132 | 19.34 | 12090 | 0.0192 | 0.1745 | 0.3491 | 0.3491 | nan | 0.3491 | 0.0 | 0.3491 |
| 0.0114 | 19.39 | 12120 | 0.0191 | 0.1755 | 0.3510 | 0.3510 | nan | 0.3510 | 0.0 | 0.3510 |
| 0.0117 | 19.44 | 12150 | 0.0195 | 0.1568 | 0.3135 | 0.3135 | nan | 0.3135 | 0.0 | 0.3135 |
| 0.0152 | 19.49 | 12180 | 0.0195 | 0.1631 | 0.3263 | 0.3263 | nan | 0.3263 | 0.0 | 0.3263 |
| 0.0102 | 19.54 | 12210 | 0.0196 | 0.1699 | 0.3398 | 0.3398 | nan | 0.3398 | 0.0 | 0.3398 |
| 0.0424 | 19.58 | 12240 | 0.0192 | 0.1833 | 0.3665 | 0.3665 | nan | 0.3665 | 0.0 | 0.3665 |
| 0.0051 | 19.63 | 12270 | 0.0194 | 0.1720 | 0.3439 | 0.3439 | nan | 0.3439 | 0.0 | 0.3439 |
| 0.0087 | 19.68 | 12300 | 0.0195 | 0.1760 | 0.3520 | 0.3520 | nan | 0.3520 | 0.0 | 0.3520 |
| 0.0116 | 19.73 | 12330 | 0.0196 | 0.1535 | 0.3069 | 0.3069 | nan | 0.3069 | 0.0 | 0.3069 |
| 0.0159 | 19.78 | 12360 | 0.0193 | 0.1547 | 0.3095 | 0.3095 | nan | 0.3095 | 0.0 | 0.3095 |
| 0.0155 | 19.82 | 12390 | 0.0197 | 0.1531 | 0.3061 | 0.3061 | nan | 0.3061 | 0.0 | 0.3061 |
| 0.0193 | 19.87 | 12420 | 0.0199 | 0.1677 | 0.3355 | 0.3355 | nan | 0.3355 | 0.0 | 0.3355 |
| 0.0045 | 19.92 | 12450 | 0.0197 | 0.1755 | 0.3510 | 0.3510 | nan | 0.3510 | 0.0 | 0.3510 |
| 0.015 | 19.97 | 12480 | 0.0192 | 0.1873 | 0.3747 | 0.3747 | nan | 0.3747 | 0.0 | 0.3747 |
| 0.0124 | 20.02 | 12510 | 0.0198 | 0.1526 | 0.3053 | 0.3053 | nan | 0.3053 | 0.0 | 0.3053 |
| 0.009 | 20.06 | 12540 | 0.0192 | 0.1834 | 0.3668 | 0.3668 | nan | 0.3668 | 0.0 | 0.3668 |
| 0.0152 | 20.11 | 12570 | 0.0197 | 0.1663 | 0.3327 | 0.3327 | nan | 0.3327 | 0.0 | 0.3327 |
| 0.0089 | 20.16 | 12600 | 0.0195 | 0.1823 | 0.3647 | 0.3647 | nan | 0.3647 | 0.0 | 0.3647 |
| 0.0057 | 20.21 | 12630 | 0.0196 | 0.1693 | 0.3385 | 0.3385 | nan | 0.3385 | 0.0 | 0.3385 |
| 0.0091 | 20.26 | 12660 | 0.0194 | 0.1911 | 0.3821 | 0.3821 | nan | 0.3821 | 0.0 | 0.3821 |
| 0.0094 | 20.3 | 12690 | 0.0197 | 0.1814 | 0.3628 | 0.3628 | nan | 0.3628 | 0.0 | 0.3628 |
| 0.0132 | 20.35 | 12720 | 0.0192 | 0.1724 | 0.3447 | 0.3447 | nan | 0.3447 | 0.0 | 0.3447 |
| 0.0136 | 20.4 | 12750 | 0.0189 | 0.1840 | 0.3679 | 0.3679 | nan | 0.3679 | 0.0 | 0.3679 |
| 0.004 | 20.45 | 12780 | 0.0191 | 0.1719 | 0.3437 | 0.3437 | nan | 0.3437 | 0.0 | 0.3437 |
| 0.001 | 20.5 | 12810 | 0.0191 | 0.1773 | 0.3545 | 0.3545 | nan | 0.3545 | 0.0 | 0.3545 |
| 0.0148 | 20.54 | 12840 | 0.0193 | 0.1675 | 0.3351 | 0.3351 | nan | 0.3351 | 0.0 | 0.3351 |
| 0.0136 | 20.59 | 12870 | 0.0191 | 0.1812 | 0.3624 | 0.3624 | nan | 0.3624 | 0.0 | 0.3624 |
| 0.01 | 20.64 | 12900 | 0.0192 | 0.1713 | 0.3426 | 0.3426 | nan | 0.3426 | 0.0 | 0.3426 |
| 0.0071 | 20.69 | 12930 | 0.0193 | 0.1588 | 0.3175 | 0.3175 | nan | 0.3175 | 0.0 | 0.3175 |
| 0.0176 | 20.74 | 12960 | 0.0192 | 0.1752 | 0.3504 | 0.3504 | nan | 0.3504 | 0.0 | 0.3504 |
| 0.0122 | 20.78 | 12990 | 0.0195 | 0.1603 | 0.3205 | 0.3205 | nan | 0.3205 | 0.0 | 0.3205 |
| 0.0087 | 20.83 | 13020 | 0.0196 | 0.1670 | 0.3340 | 0.3340 | nan | 0.3340 | 0.0 | 0.3340 |
| 0.0118 | 20.88 | 13050 | 0.0190 | 0.1727 | 0.3454 | 0.3454 | nan | 0.3454 | 0.0 | 0.3454 |
| 0.0112 | 20.93 | 13080 | 0.0192 | 0.1669 | 0.3337 | 0.3337 | nan | 0.3337 | 0.0 | 0.3337 |
| 0.0195 | 20.98 | 13110 | 0.0191 | 0.1936 | 0.3872 | 0.3872 | nan | 0.3872 | 0.0 | 0.3872 |
| 0.0171 | 21.02 | 13140 | 0.0196 | 0.1571 | 0.3142 | 0.3142 | nan | 0.3142 | 0.0 | 0.3142 |
| 0.0062 | 21.07 | 13170 | 0.0192 | 0.1928 | 0.3856 | 0.3856 | nan | 0.3856 | 0.0 | 0.3856 |
| 0.016 | 21.12 | 13200 | 0.0194 | 0.1548 | 0.3095 | 0.3095 | nan | 0.3095 | 0.0 | 0.3095 |
| 0.0103 | 21.17 | 13230 | 0.0198 | 0.1855 | 0.3710 | 0.3710 | nan | 0.3710 | 0.0 | 0.3710 |
| 0.0127 | 21.22 | 13260 | 0.0196 | 0.1760 | 0.3521 | 0.3521 | nan | 0.3521 | 0.0 | 0.3521 |
| 0.0076 | 21.26 | 13290 | 0.0193 | 0.1732 | 0.3463 | 0.3463 | nan | 0.3463 | 0.0 | 0.3463 |
| 0.0178 | 21.31 | 13320 | 0.0196 | 0.1751 | 0.3503 | 0.3503 | nan | 0.3503 | 0.0 | 0.3503 |
| 0.0127 | 21.36 | 13350 | 0.0200 | 0.1527 | 0.3055 | 0.3055 | nan | 0.3055 | 0.0 | 0.3055 |
| 0.0128 | 21.41 | 13380 | 0.0197 | 0.1580 | 0.3159 | 0.3159 | nan | 0.3159 | 0.0 | 0.3159 |
| 0.0081 | 21.46 | 13410 | 0.0190 | 0.1721 | 0.3443 | 0.3443 | nan | 0.3443 | 0.0 | 0.3443 |
| 0.0159 | 21.5 | 13440 | 0.0193 | 0.1633 | 0.3267 | 0.3267 | nan | 0.3267 | 0.0 | 0.3267 |
| 0.0084 | 21.55 | 13470 | 0.0195 | 0.1530 | 0.3060 | 0.3060 | nan | 0.3060 | 0.0 | 0.3060 |
| 0.0227 | 21.6 | 13500 | 0.0192 | 0.1608 | 0.3217 | 0.3217 | nan | 0.3217 | 0.0 | 0.3217 |
| 0.0086 | 21.65 | 13530 | 0.0200 | 0.1520 | 0.3039 | 0.3039 | nan | 0.3039 | 0.0 | 0.3039 |
| 0.0087 | 21.7 | 13560 | 0.0196 | 0.1685 | 0.3370 | 0.3370 | nan | 0.3370 | 0.0 | 0.3370 |
| 0.005 | 21.74 | 13590 | 0.0192 | 0.1762 | 0.3523 | 0.3523 | nan | 0.3523 | 0.0 | 0.3523 |
| 0.0072 | 21.79 | 13620 | 0.0196 | 0.1577 | 0.3153 | 0.3153 | nan | 0.3153 | 0.0 | 0.3153 |
| 0.0158 | 21.84 | 13650 | 0.0194 | 0.1881 | 0.3762 | 0.3762 | nan | 0.3762 | 0.0 | 0.3762 |
| 0.0149 | 21.89 | 13680 | 0.0195 | 0.1565 | 0.3130 | 0.3130 | nan | 0.3130 | 0.0 | 0.3130 |
| 0.0028 | 21.94 | 13710 | 0.0190 | 0.1885 | 0.3770 | 0.3770 | nan | 0.3770 | 0.0 | 0.3770 |
| 0.0054 | 21.98 | 13740 | 0.0192 | 0.1741 | 0.3481 | 0.3481 | nan | 0.3481 | 0.0 | 0.3481 |
| 0.0117 | 22.03 | 13770 | 0.0191 | 0.1779 | 0.3559 | 0.3559 | nan | 0.3559 | 0.0 | 0.3559 |
| 0.008 | 22.08 | 13800 | 0.0195 | 0.1800 | 0.3601 | 0.3601 | nan | 0.3601 | 0.0 | 0.3601 |
| 0.0072 | 22.13 | 13830 | 0.0193 | 0.1631 | 0.3263 | 0.3263 | nan | 0.3263 | 0.0 | 0.3263 |
| 0.0101 | 22.18 | 13860 | 0.0193 | 0.1646 | 0.3292 | 0.3292 | nan | 0.3292 | 0.0 | 0.3292 |
| 0.0054 | 22.22 | 13890 | 0.0195 | 0.1703 | 0.3405 | 0.3405 | nan | 0.3405 | 0.0 | 0.3405 |
| 0.0091 | 22.27 | 13920 | 0.0197 | 0.1656 | 0.3312 | 0.3312 | nan | 0.3312 | 0.0 | 0.3312 |
| 0.0137 | 22.32 | 13950 | 0.0193 | 0.1817 | 0.3635 | 0.3635 | nan | 0.3635 | 0.0 | 0.3635 |
| 0.011 | 22.37 | 13980 | 0.0194 | 0.1695 | 0.3391 | 0.3391 | nan | 0.3391 | 0.0 | 0.3391 |
| 0.0141 | 22.42 | 14010 | 0.0193 | 0.1778 | 0.3556 | 0.3556 | nan | 0.3556 | 0.0 | 0.3556 |
| 0.0087 | 22.46 | 14040 | 0.0193 | 0.1806 | 0.3613 | 0.3613 | nan | 0.3613 | 0.0 | 0.3613 |
| 0.037 | 22.51 | 14070 | 0.0189 | 0.1882 | 0.3764 | 0.3764 | nan | 0.3764 | 0.0 | 0.3764 |
| 0.0815 | 22.56 | 14100 | 0.0193 | 0.1602 | 0.3204 | 0.3204 | nan | 0.3204 | 0.0 | 0.3204 |
| 0.0132 | 22.61 | 14130 | 0.0195 | 0.1702 | 0.3403 | 0.3403 | nan | 0.3403 | 0.0 | 0.3403 |
| 0.0042 | 22.66 | 14160 | 0.0191 | 0.1764 | 0.3528 | 0.3528 | nan | 0.3528 | 0.0 | 0.3528 |
| 0.0057 | 22.7 | 14190 | 0.0190 | 0.1807 | 0.3614 | 0.3614 | nan | 0.3614 | 0.0 | 0.3614 |
| 0.0199 | 22.75 | 14220 | 0.0194 | 0.1628 | 0.3257 | 0.3257 | nan | 0.3257 | 0.0 | 0.3257 |
| 0.0103 | 22.8 | 14250 | 0.0200 | 0.1540 | 0.3080 | 0.3080 | nan | 0.3080 | 0.0 | 0.3080 |
| 0.0087 | 22.85 | 14280 | 0.0192 | 0.1805 | 0.3610 | 0.3610 | nan | 0.3610 | 0.0 | 0.3610 |
| 0.0082 | 22.9 | 14310 | 0.0194 | 0.1516 | 0.3032 | 0.3032 | nan | 0.3032 | 0.0 | 0.3032 |
| 0.0186 | 22.94 | 14340 | 0.0194 | 0.1589 | 0.3177 | 0.3177 | nan | 0.3177 | 0.0 | 0.3177 |
| 0.0034 | 22.99 | 14370 | 0.0190 | 0.1836 | 0.3671 | 0.3671 | nan | 0.3671 | 0.0 | 0.3671 |
| 0.0031 | 23.04 | 14400 | 0.0191 | 0.1798 | 0.3596 | 0.3596 | nan | 0.3596 | 0.0 | 0.3596 |
| 0.0171 | 23.09 | 14430 | 0.0195 | 0.1778 | 0.3556 | 0.3556 | nan | 0.3556 | 0.0 | 0.3556 |
| 0.0073 | 23.14 | 14460 | 0.0192 | 0.1904 | 0.3808 | 0.3808 | nan | 0.3808 | 0.0 | 0.3808 |
| 0.0026 | 23.18 | 14490 | 0.0196 | 0.1704 | 0.3407 | 0.3407 | nan | 0.3407 | 0.0 | 0.3407 |
| 0.0067 | 23.23 | 14520 | 0.0192 | 0.1695 | 0.3391 | 0.3391 | nan | 0.3391 | 0.0 | 0.3391 |
| 0.0183 | 23.28 | 14550 | 0.0192 | 0.1851 | 0.3703 | 0.3703 | nan | 0.3703 | 0.0 | 0.3703 |
| 0.0025 | 23.33 | 14580 | 0.0193 | 0.1735 | 0.3470 | 0.3470 | nan | 0.3470 | 0.0 | 0.3470 |
| 0.0055 | 23.38 | 14610 | 0.0194 | 0.1788 | 0.3576 | 0.3576 | nan | 0.3576 | 0.0 | 0.3576 |
| 0.0018 | 23.42 | 14640 | 0.0193 | 0.1890 | 0.3780 | 0.3780 | nan | 0.3780 | 0.0 | 0.3780 |
| 0.0044 | 23.47 | 14670 | 0.0194 | 0.1809 | 0.3617 | 0.3617 | nan | 0.3617 | 0.0 | 0.3617 |
| 0.0209 | 23.52 | 14700 | 0.0197 | 0.1817 | 0.3633 | 0.3633 | nan | 0.3633 | 0.0 | 0.3633 |
| 0.0116 | 23.57 | 14730 | 0.0193 | 0.1797 | 0.3594 | 0.3594 | nan | 0.3594 | 0.0 | 0.3594 |
| 0.0134 | 23.62 | 14760 | 0.0193 | 0.1807 | 0.3614 | 0.3614 | nan | 0.3614 | 0.0 | 0.3614 |
| 0.0067 | 23.66 | 14790 | 0.0194 | 0.1718 | 0.3436 | 0.3436 | nan | 0.3436 | 0.0 | 0.3436 |
| 0.0057 | 23.71 | 14820 | 0.0194 | 0.1741 | 0.3482 | 0.3482 | nan | 0.3482 | 0.0 | 0.3482 |
| 0.0034 | 23.76 | 14850 | 0.0193 | 0.1679 | 0.3358 | 0.3358 | nan | 0.3358 | 0.0 | 0.3358 |
| 0.0176 | 23.81 | 14880 | 0.0191 | 0.2018 | 0.4035 | 0.4035 | nan | 0.4035 | 0.0 | 0.4035 |
| 0.0071 | 23.86 | 14910 | 0.0192 | 0.1884 | 0.3768 | 0.3768 | nan | 0.3768 | 0.0 | 0.3768 |
| 0.0065 | 23.9 | 14940 | 0.0193 | 0.1744 | 0.3488 | 0.3488 | nan | 0.3488 | 0.0 | 0.3488 |
| 0.0188 | 23.95 | 14970 | 0.0199 | 0.1540 | 0.3080 | 0.3080 | nan | 0.3080 | 0.0 | 0.3080 |
| 0.0014 | 24.0 | 15000 | 0.0194 | 0.2232 | 0.4464 | 0.4464 | nan | 0.4464 | 0.0 | 0.4464 |
| 0.0192 | 24.05 | 15030 | 0.0194 | 0.1709 | 0.3418 | 0.3418 | nan | 0.3418 | 0.0 | 0.3418 |
| 0.0064 | 24.1 | 15060 | 0.0193 | 0.1852 | 0.3704 | 0.3704 | nan | 0.3704 | 0.0 | 0.3704 |
| 0.0067 | 24.14 | 15090 | 0.0194 | 0.1782 | 0.3563 | 0.3563 | nan | 0.3563 | 0.0 | 0.3563 |
| 0.0153 | 24.19 | 15120 | 0.0196 | 0.1827 | 0.3654 | 0.3654 | nan | 0.3654 | 0.0 | 0.3654 |
| 0.0072 | 24.24 | 15150 | 0.0196 | 0.1898 | 0.3797 | 0.3797 | nan | 0.3797 | 0.0 | 0.3797 |
| 0.0217 | 24.29 | 15180 | 0.0194 | 0.1697 | 0.3394 | 0.3394 | nan | 0.3394 | 0.0 | 0.3394 |
| 0.0098 | 24.34 | 15210 | 0.0191 | 0.1801 | 0.3602 | 0.3602 | nan | 0.3602 | 0.0 | 0.3602 |
| 0.0031 | 24.38 | 15240 | 0.0191 | 0.1818 | 0.3636 | 0.3636 | nan | 0.3636 | 0.0 | 0.3636 |
| 0.0064 | 24.43 | 15270 | 0.0195 | 0.1677 | 0.3354 | 0.3354 | nan | 0.3354 | 0.0 | 0.3354 |
| 0.0135 | 24.48 | 15300 | 0.0193 | 0.1727 | 0.3455 | 0.3455 | nan | 0.3455 | 0.0 | 0.3455 |
| 0.0048 | 24.53 | 15330 | 0.0193 | 0.1822 | 0.3643 | 0.3643 | nan | 0.3643 | 0.0 | 0.3643 |
| 0.0155 | 24.58 | 15360 | 0.0199 | 0.1571 | 0.3142 | 0.3142 | nan | 0.3142 | 0.0 | 0.3142 |
| 0.0034 | 24.62 | 15390 | 0.0196 | 0.1758 | 0.3517 | 0.3517 | nan | 0.3517 | 0.0 | 0.3517 |
| 0.0057 | 24.67 | 15420 | 0.0192 | 0.1833 | 0.3667 | 0.3667 | nan | 0.3667 | 0.0 | 0.3667 |
| 0.0176 | 24.72 | 15450 | 0.0193 | 0.1773 | 0.3545 | 0.3545 | nan | 0.3545 | 0.0 | 0.3545 |
| 0.0095 | 24.77 | 15480 | 0.0194 | 0.1799 | 0.3599 | 0.3599 | nan | 0.3599 | 0.0 | 0.3599 |
| 0.0166 | 24.82 | 15510 | 0.0191 | 0.1908 | 0.3815 | 0.3815 | nan | 0.3815 | 0.0 | 0.3815 |
| 0.0172 | 24.86 | 15540 | 0.0192 | 0.1741 | 0.3482 | 0.3482 | nan | 0.3482 | 0.0 | 0.3482 |
| 0.0111 | 24.91 | 15570 | 0.0192 | 0.1702 | 0.3403 | 0.3403 | nan | 0.3403 | 0.0 | 0.3403 |
| 0.0075 | 24.96 | 15600 | 0.0196 | 0.1575 | 0.3150 | 0.3150 | nan | 0.3150 | 0.0 | 0.3150 |
| 0.0095 | 25.01 | 15630 | 0.0193 | 0.1789 | 0.3579 | 0.3579 | nan | 0.3579 | 0.0 | 0.3579 |
| 0.008 | 25.06 | 15660 | 0.0196 | 0.1579 | 0.3158 | 0.3158 | nan | 0.3158 | 0.0 | 0.3158 |
| 0.0063 | 25.1 | 15690 | 0.0195 | 0.1660 | 0.3319 | 0.3319 | nan | 0.3319 | 0.0 | 0.3319 |
| 0.0103 | 25.15 | 15720 | 0.0195 | 0.1689 | 0.3379 | 0.3379 | nan | 0.3379 | 0.0 | 0.3379 |
| 0.0115 | 25.2 | 15750 | 0.0194 | 0.1729 | 0.3457 | 0.3457 | nan | 0.3457 | 0.0 | 0.3457 |
| 0.0076 | 25.25 | 15780 | 0.0195 | 0.1731 | 0.3461 | 0.3461 | nan | 0.3461 | 0.0 | 0.3461 |
| 0.0375 | 25.3 | 15810 | 0.0196 | 0.1754 | 0.3508 | 0.3508 | nan | 0.3508 | 0.0 | 0.3508 |
| 0.0055 | 25.34 | 15840 | 0.0198 | 0.1738 | 0.3475 | 0.3475 | nan | 0.3475 | 0.0 | 0.3475 |
| 0.0087 | 25.39 | 15870 | 0.0196 | 0.1677 | 0.3353 | 0.3353 | nan | 0.3353 | 0.0 | 0.3353 |
| 0.0099 | 25.44 | 15900 | 0.0193 | 0.1882 | 0.3763 | 0.3763 | nan | 0.3763 | 0.0 | 0.3763 |
| 0.0123 | 25.49 | 15930 | 0.0195 | 0.1744 | 0.3488 | 0.3488 | nan | 0.3488 | 0.0 | 0.3488 |
| 0.0127 | 25.54 | 15960 | 0.0195 | 0.1818 | 0.3636 | 0.3636 | nan | 0.3636 | 0.0 | 0.3636 |
| 0.0074 | 25.58 | 15990 | 0.0196 | 0.1656 | 0.3311 | 0.3311 | nan | 0.3311 | 0.0 | 0.3311 |
| 0.0055 | 25.63 | 16020 | 0.0194 | 0.1756 | 0.3511 | 0.3511 | nan | 0.3511 | 0.0 | 0.3511 |
| 0.0013 | 25.68 | 16050 | 0.0196 | 0.1834 | 0.3667 | 0.3667 | nan | 0.3667 | 0.0 | 0.3667 |
| 0.0149 | 25.73 | 16080 | 0.0197 | 0.1668 | 0.3336 | 0.3336 | nan | 0.3336 | 0.0 | 0.3336 |
| 0.0124 | 25.78 | 16110 | 0.0196 | 0.1748 | 0.3497 | 0.3497 | nan | 0.3497 | 0.0 | 0.3497 |
| 0.0176 | 25.82 | 16140 | 0.0193 | 0.1926 | 0.3851 | 0.3851 | nan | 0.3851 | 0.0 | 0.3851 |
| 0.002 | 25.87 | 16170 | 0.0196 | 0.1635 | 0.3270 | 0.3270 | nan | 0.3270 | 0.0 | 0.3270 |
| 0.0074 | 25.92 | 16200 | 0.0195 | 0.1781 | 0.3562 | 0.3562 | nan | 0.3562 | 0.0 | 0.3562 |
| 0.0103 | 25.97 | 16230 | 0.0192 | 0.1845 | 0.3689 | 0.3689 | nan | 0.3689 | 0.0 | 0.3689 |
| 0.0209 | 26.02 | 16260 | 0.0195 | 0.1596 | 0.3193 | 0.3193 | nan | 0.3193 | 0.0 | 0.3193 |
| 0.0499 | 26.06 | 16290 | 0.0196 | 0.1589 | 0.3178 | 0.3178 | nan | 0.3178 | 0.0 | 0.3178 |
| 0.0123 | 26.11 | 16320 | 0.0196 | 0.1864 | 0.3728 | 0.3728 | nan | 0.3728 | 0.0 | 0.3728 |
| 0.0067 | 26.16 | 16350 | 0.0198 | 0.1725 | 0.3451 | 0.3451 | nan | 0.3451 | 0.0 | 0.3451 |
| 0.0081 | 26.21 | 16380 | 0.0194 | 0.1763 | 0.3527 | 0.3527 | nan | 0.3527 | 0.0 | 0.3527 |
| 0.004 | 26.26 | 16410 | 0.0196 | 0.1746 | 0.3491 | 0.3491 | nan | 0.3491 | 0.0 | 0.3491 |
| 0.0159 | 26.3 | 16440 | 0.0198 | 0.1775 | 0.3551 | 0.3551 | nan | 0.3551 | 0.0 | 0.3551 |
| 0.0044 | 26.35 | 16470 | 0.0200 | 0.1773 | 0.3546 | 0.3546 | nan | 0.3546 | 0.0 | 0.3546 |
| 0.006 | 26.4 | 16500 | 0.0197 | 0.1687 | 0.3373 | 0.3373 | nan | 0.3373 | 0.0 | 0.3373 |
| 0.0115 | 26.45 | 16530 | 0.0196 | 0.1638 | 0.3277 | 0.3277 | nan | 0.3277 | 0.0 | 0.3277 |
| 0.0166 | 26.5 | 16560 | 0.0196 | 0.1697 | 0.3394 | 0.3394 | nan | 0.3394 | 0.0 | 0.3394 |
| 0.0113 | 26.54 | 16590 | 0.0198 | 0.1709 | 0.3419 | 0.3419 | nan | 0.3419 | 0.0 | 0.3419 |
| 0.0092 | 26.59 | 16620 | 0.0197 | 0.1655 | 0.3310 | 0.3310 | nan | 0.3310 | 0.0 | 0.3310 |
| 0.0028 | 26.64 | 16650 | 0.0193 | 0.1796 | 0.3592 | 0.3592 | nan | 0.3592 | 0.0 | 0.3592 |
| 0.0057 | 26.69 | 16680 | 0.0197 | 0.1637 | 0.3275 | 0.3275 | nan | 0.3275 | 0.0 | 0.3275 |
| 0.0041 | 26.74 | 16710 | 0.0194 | 0.1851 | 0.3701 | 0.3701 | nan | 0.3701 | 0.0 | 0.3701 |
| 0.0157 | 26.78 | 16740 | 0.0196 | 0.1638 | 0.3277 | 0.3277 | nan | 0.3277 | 0.0 | 0.3277 |
| 0.0061 | 26.83 | 16770 | 0.0194 | 0.1873 | 0.3747 | 0.3747 | nan | 0.3747 | 0.0 | 0.3747 |
| 0.0068 | 26.88 | 16800 | 0.0196 | 0.1668 | 0.3337 | 0.3337 | nan | 0.3337 | 0.0 | 0.3337 |
| 0.0113 | 26.93 | 16830 | 0.0195 | 0.1770 | 0.3540 | 0.3540 | nan | 0.3540 | 0.0 | 0.3540 |
| 0.0054 | 26.98 | 16860 | 0.0196 | 0.1800 | 0.3599 | 0.3599 | nan | 0.3599 | 0.0 | 0.3599 |
| 0.0091 | 27.02 | 16890 | 0.0196 | 0.1706 | 0.3413 | 0.3413 | nan | 0.3413 | 0.0 | 0.3413 |
| 0.0071 | 27.07 | 16920 | 0.0195 | 0.1799 | 0.3598 | 0.3598 | nan | 0.3598 | 0.0 | 0.3598 |
| 0.0205 | 27.12 | 16950 | 0.0196 | 0.1749 | 0.3499 | 0.3499 | nan | 0.3499 | 0.0 | 0.3499 |
| 0.0092 | 27.17 | 16980 | 0.0198 | 0.1683 | 0.3366 | 0.3366 | nan | 0.3366 | 0.0 | 0.3366 |
| 0.0074 | 27.22 | 17010 | 0.0197 | 0.1734 | 0.3468 | 0.3468 | nan | 0.3468 | 0.0 | 0.3468 |
| 0.0182 | 27.26 | 17040 | 0.0197 | 0.1706 | 0.3412 | 0.3412 | nan | 0.3412 | 0.0 | 0.3412 |
| 0.008 | 27.31 | 17070 | 0.0196 | 0.1755 | 0.3510 | 0.3510 | nan | 0.3510 | 0.0 | 0.3510 |
| 0.0046 | 27.36 | 17100 | 0.0195 | 0.1864 | 0.3727 | 0.3727 | nan | 0.3727 | 0.0 | 0.3727 |
| 0.0033 | 27.41 | 17130 | 0.0196 | 0.1913 | 0.3826 | 0.3826 | nan | 0.3826 | 0.0 | 0.3826 |
| 0.0036 | 27.46 | 17160 | 0.0199 | 0.1749 | 0.3498 | 0.3498 | nan | 0.3498 | 0.0 | 0.3498 |
| 0.0162 | 27.5 | 17190 | 0.0195 | 0.1833 | 0.3666 | 0.3666 | nan | 0.3666 | 0.0 | 0.3666 |
| 0.0058 | 27.55 | 17220 | 0.0195 | 0.1798 | 0.3596 | 0.3596 | nan | 0.3596 | 0.0 | 0.3596 |
| 0.0068 | 27.6 | 17250 | 0.0196 | 0.1746 | 0.3492 | 0.3492 | nan | 0.3492 | 0.0 | 0.3492 |
| 0.0089 | 27.65 | 17280 | 0.0196 | 0.1827 | 0.3654 | 0.3654 | nan | 0.3654 | 0.0 | 0.3654 |
| 0.014 | 27.7 | 17310 | 0.0198 | 0.1794 | 0.3589 | 0.3589 | nan | 0.3589 | 0.0 | 0.3589 |
| 0.013 | 27.74 | 17340 | 0.0197 | 0.1886 | 0.3772 | 0.3772 | nan | 0.3772 | 0.0 | 0.3772 |
| 0.005 | 27.79 | 17370 | 0.0196 | 0.1839 | 0.3678 | 0.3678 | nan | 0.3678 | 0.0 | 0.3678 |
| 0.0043 | 27.84 | 17400 | 0.0197 | 0.1691 | 0.3381 | 0.3381 | nan | 0.3381 | 0.0 | 0.3381 |
| 0.0095 | 27.89 | 17430 | 0.0197 | 0.1657 | 0.3314 | 0.3314 | nan | 0.3314 | 0.0 | 0.3314 |
| 0.0061 | 27.94 | 17460 | 0.0196 | 0.1746 | 0.3492 | 0.3492 | nan | 0.3492 | 0.0 | 0.3492 |
| 0.0049 | 27.98 | 17490 | 0.0198 | 0.1660 | 0.3321 | 0.3321 | nan | 0.3321 | 0.0 | 0.3321 |
| 0.0116 | 28.03 | 17520 | 0.0196 | 0.1853 | 0.3707 | 0.3707 | nan | 0.3707 | 0.0 | 0.3707 |
| 0.0172 | 28.08 | 17550 | 0.0196 | 0.1715 | 0.3430 | 0.3430 | nan | 0.3430 | 0.0 | 0.3430 |
| 0.008 | 28.13 | 17580 | 0.0198 | 0.1725 | 0.3450 | 0.3450 | nan | 0.3450 | 0.0 | 0.3450 |
| 0.0168 | 28.18 | 17610 | 0.0197 | 0.1784 | 0.3569 | 0.3569 | nan | 0.3569 | 0.0 | 0.3569 |
| 0.01 | 28.22 | 17640 | 0.0199 | 0.1714 | 0.3427 | 0.3427 | nan | 0.3427 | 0.0 | 0.3427 |
| 0.0263 | 28.27 | 17670 | 0.0197 | 0.1725 | 0.3450 | 0.3450 | nan | 0.3450 | 0.0 | 0.3450 |
| 0.0035 | 28.32 | 17700 | 0.0197 | 0.1820 | 0.3640 | 0.3640 | nan | 0.3640 | 0.0 | 0.3640 |
| 0.0192 | 28.37 | 17730 | 0.0201 | 0.1675 | 0.3350 | 0.3350 | nan | 0.3350 | 0.0 | 0.3350 |
| 0.0174 | 28.42 | 17760 | 0.0198 | 0.1819 | 0.3638 | 0.3638 | nan | 0.3638 | 0.0 | 0.3638 |
| 0.0049 | 28.46 | 17790 | 0.0195 | 0.1899 | 0.3797 | 0.3797 | nan | 0.3797 | 0.0 | 0.3797 |
| 0.0134 | 28.51 | 17820 | 0.0196 | 0.1816 | 0.3632 | 0.3632 | nan | 0.3632 | 0.0 | 0.3632 |
| 0.0056 | 28.56 | 17850 | 0.0195 | 0.1682 | 0.3365 | 0.3365 | nan | 0.3365 | 0.0 | 0.3365 |
| 0.0017 | 28.61 | 17880 | 0.0195 | 0.1778 | 0.3555 | 0.3555 | nan | 0.3555 | 0.0 | 0.3555 |
| 0.0129 | 28.66 | 17910 | 0.0198 | 0.1701 | 0.3401 | 0.3401 | nan | 0.3401 | 0.0 | 0.3401 |
| 0.0039 | 28.7 | 17940 | 0.0197 | 0.1762 | 0.3523 | 0.3523 | nan | 0.3523 | 0.0 | 0.3523 |
| 0.0089 | 28.75 | 17970 | 0.0197 | 0.1859 | 0.3717 | 0.3717 | nan | 0.3717 | 0.0 | 0.3717 |
| 0.0017 | 28.8 | 18000 | 0.0196 | 0.1790 | 0.3579 | 0.3579 | nan | 0.3579 | 0.0 | 0.3579 |
| 0.004 | 28.85 | 18030 | 0.0199 | 0.1749 | 0.3498 | 0.3498 | nan | 0.3498 | 0.0 | 0.3498 |
| 0.0053 | 28.9 | 18060 | 0.0196 | 0.1767 | 0.3534 | 0.3534 | nan | 0.3534 | 0.0 | 0.3534 |
| 0.0026 | 28.94 | 18090 | 0.0198 | 0.1740 | 0.3480 | 0.3480 | nan | 0.3480 | 0.0 | 0.3480 |
| 0.0073 | 28.99 | 18120 | 0.0197 | 0.1784 | 0.3568 | 0.3568 | nan | 0.3568 | 0.0 | 0.3568 |
| 0.0044 | 29.04 | 18150 | 0.0197 | 0.1825 | 0.3649 | 0.3649 | nan | 0.3649 | 0.0 | 0.3649 |
| 0.0099 | 29.09 | 18180 | 0.0197 | 0.1771 | 0.3542 | 0.3542 | nan | 0.3542 | 0.0 | 0.3542 |
| 0.0062 | 29.14 | 18210 | 0.0198 | 0.1785 | 0.3570 | 0.3570 | nan | 0.3570 | 0.0 | 0.3570 |
| 0.0113 | 29.18 | 18240 | 0.0198 | 0.1730 | 0.3459 | 0.3459 | nan | 0.3459 | 0.0 | 0.3459 |
| 0.0097 | 29.23 | 18270 | 0.0197 | 0.1728 | 0.3456 | 0.3456 | nan | 0.3456 | 0.0 | 0.3456 |
| 0.0197 | 29.28 | 18300 | 0.0197 | 0.1799 | 0.3599 | 0.3599 | nan | 0.3599 | 0.0 | 0.3599 |
| 0.0038 | 29.33 | 18330 | 0.0198 | 0.1745 | 0.3491 | 0.3491 | nan | 0.3491 | 0.0 | 0.3491 |
| 0.0068 | 29.38 | 18360 | 0.0196 | 0.1750 | 0.3500 | 0.3500 | nan | 0.3500 | 0.0 | 0.3500 |
| 0.0064 | 29.42 | 18390 | 0.0197 | 0.1793 | 0.3587 | 0.3587 | nan | 0.3587 | 0.0 | 0.3587 |
| 0.002 | 29.47 | 18420 | 0.0196 | 0.1765 | 0.3531 | 0.3531 | nan | 0.3531 | 0.0 | 0.3531 |
| 0.014 | 29.52 | 18450 | 0.0198 | 0.1732 | 0.3463 | 0.3463 | nan | 0.3463 | 0.0 | 0.3463 |
| 0.0136 | 29.57 | 18480 | 0.0197 | 0.1743 | 0.3486 | 0.3486 | nan | 0.3486 | 0.0 | 0.3486 |
| 0.0123 | 29.62 | 18510 | 0.0197 | 0.1785 | 0.3570 | 0.3570 | nan | 0.3570 | 0.0 | 0.3570 |
| 0.0249 | 29.66 | 18540 | 0.0197 | 0.1726 | 0.3452 | 0.3452 | nan | 0.3452 | 0.0 | 0.3452 |
| 0.0081 | 29.71 | 18570 | 0.0196 | 0.1818 | 0.3635 | 0.3635 | nan | 0.3635 | 0.0 | 0.3635 |
| 0.0028 | 29.76 | 18600 | 0.0197 | 0.1826 | 0.3652 | 0.3652 | nan | 0.3652 | 0.0 | 0.3652 |
| 0.0133 | 29.81 | 18630 | 0.0197 | 0.1751 | 0.3502 | 0.3502 | nan | 0.3502 | 0.0 | 0.3502 |
| 0.0075 | 29.86 | 18660 | 0.0196 | 0.1764 | 0.3527 | 0.3527 | nan | 0.3527 | 0.0 | 0.3527 |
| 0.0231 | 29.9 | 18690 | 0.0197 | 0.1734 | 0.3469 | 0.3469 | nan | 0.3469 | 0.0 | 0.3469 |
| 0.0024 | 29.95 | 18720 | 0.0197 | 0.1766 | 0.3531 | 0.3531 | nan | 0.3531 | 0.0 | 0.3531 |
| 0.0105 | 30.0 | 18750 | 0.0197 | 0.1778 | 0.3556 | 0.3556 | nan | 0.3556 | 0.0 | 0.3556 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"not_kelp",
"kelp"
] |
blzncz/segformer-finetuned-4ss1st3r_s3gs3m_24Jan_gris-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-4ss1st3r_s3gs3m_24Jan_gris-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the blzncz/4ss1st3r_s3gs3m_24Jan_gris dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2539
- Mean Iou: 0.5001
- Mean Accuracy: 0.7682
- Overall Accuracy: 0.9671
- Accuracy Bg: nan
- Accuracy Fallo cohesivo: 0.9929
- Accuracy Fallo malla: 0.5837
- Accuracy Fallo adhesivo: 0.8806
- Accuracy Fallo burbuja: 0.6154
- Iou Bg: 0.0
- Iou Fallo cohesivo: 0.9663
- Iou Fallo malla: 0.5505
- Iou Fallo adhesivo: 0.4321
- Iou Fallo burbuja: 0.5515
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Fallo cohesivo | Accuracy Fallo malla | Accuracy Fallo adhesivo | Accuracy Fallo burbuja | Iou Bg | Iou Fallo cohesivo | Iou Fallo malla | Iou Fallo adhesivo | Iou Fallo burbuja |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-----------------------:|:--------------------:|:-----------------------:|:----------------------:|:------:|:------------------:|:---------------:|:------------------:|:-----------------:|
| 0.1186 | 1.0 | 259 | 0.1688 | 0.5045 | 0.6750 | 0.9611 | nan | 0.9940 | 0.5027 | 0.8539 | 0.3494 | 0.0 | 0.9600 | 0.4717 | 0.7563 | 0.3344 |
| 0.0669 | 2.0 | 518 | 0.1603 | 0.4270 | 0.7755 | 0.9501 | nan | 0.9685 | 0.7091 | 0.8964 | 0.5282 | 0.0 | 0.9490 | 0.5466 | 0.1627 | 0.4767 |
| 0.0608 | 3.0 | 777 | 0.1863 | 0.4142 | 0.7612 | 0.9458 | nan | 0.9703 | 0.5906 | 0.9321 | 0.5517 | 0.0 | 0.9467 | 0.5366 | 0.0891 | 0.4985 |
| 0.0551 | 4.0 | 1036 | 0.1654 | 0.4515 | 0.7496 | 0.9620 | nan | 0.9879 | 0.5881 | 0.8763 | 0.5462 | 0.0 | 0.9620 | 0.5560 | 0.2349 | 0.5043 |
| 0.0462 | 5.0 | 1295 | 0.2067 | 0.4267 | 0.7598 | 0.9487 | nan | 0.9752 | 0.5450 | 0.8796 | 0.6392 | 0.0 | 0.9502 | 0.5377 | 0.0838 | 0.5620 |
| 0.0445 | 6.0 | 1554 | 0.1565 | 0.4557 | 0.7685 | 0.9627 | nan | 0.9873 | 0.5954 | 0.8571 | 0.6343 | 0.0 | 0.9636 | 0.5689 | 0.1837 | 0.5623 |
| 0.039 | 7.0 | 1813 | 0.1523 | 0.4576 | 0.8005 | 0.9609 | nan | 0.9817 | 0.6535 | 0.9036 | 0.6630 | 0.0 | 0.9612 | 0.5885 | 0.1643 | 0.5738 |
| 0.0367 | 8.0 | 2072 | 0.1954 | 0.4573 | 0.7462 | 0.9614 | nan | 0.9917 | 0.4963 | 0.8762 | 0.6206 | 0.0 | 0.9612 | 0.4850 | 0.2790 | 0.5612 |
| 0.0352 | 9.0 | 2331 | 0.2244 | 0.4757 | 0.7542 | 0.9636 | nan | 0.9932 | 0.5098 | 0.8867 | 0.6269 | 0.0 | 0.9629 | 0.5013 | 0.3466 | 0.5674 |
| 0.0357 | 10.0 | 2590 | 0.2119 | 0.4687 | 0.7394 | 0.9645 | nan | 0.9934 | 0.5378 | 0.8710 | 0.5552 | 0.0 | 0.9641 | 0.5209 | 0.3377 | 0.5207 |
| 0.0352 | 11.0 | 2849 | 0.1957 | 0.4469 | 0.7903 | 0.9584 | nan | 0.9791 | 0.6656 | 0.9237 | 0.5927 | 0.0 | 0.9591 | 0.5829 | 0.1459 | 0.5465 |
| 0.032 | 12.0 | 3108 | 0.1811 | 0.4521 | 0.8058 | 0.9594 | nan | 0.9797 | 0.6634 | 0.9338 | 0.6464 | 0.0 | 0.9608 | 0.5929 | 0.1397 | 0.5671 |
| 0.0299 | 13.0 | 3367 | 0.2403 | 0.4298 | 0.7596 | 0.9557 | nan | 0.9827 | 0.5553 | 0.9271 | 0.5733 | 0.0 | 0.9572 | 0.5336 | 0.1272 | 0.5311 |
| 0.0292 | 14.0 | 3626 | 0.2233 | 0.4667 | 0.7638 | 0.9642 | nan | 0.9900 | 0.5759 | 0.8508 | 0.6385 | 0.0 | 0.9638 | 0.5475 | 0.2511 | 0.5709 |
| 0.0264 | 15.0 | 3885 | 0.2382 | 0.4431 | 0.7690 | 0.9594 | nan | 0.9865 | 0.5492 | 0.9139 | 0.6267 | 0.0 | 0.9602 | 0.5326 | 0.1568 | 0.5658 |
| 0.0273 | 16.0 | 4144 | 0.2339 | 0.4382 | 0.7751 | 0.9570 | nan | 0.9818 | 0.5876 | 0.9193 | 0.6115 | 0.0 | 0.9584 | 0.5419 | 0.1352 | 0.5554 |
| 0.0249 | 17.0 | 4403 | 0.2078 | 0.4950 | 0.7846 | 0.9669 | nan | 0.9925 | 0.5784 | 0.9197 | 0.6477 | 0.0 | 0.9663 | 0.5508 | 0.3921 | 0.5658 |
| 0.0242 | 18.0 | 4662 | 0.2495 | 0.4809 | 0.7706 | 0.9645 | nan | 0.9922 | 0.5392 | 0.9007 | 0.6503 | 0.0 | 0.9640 | 0.5147 | 0.3577 | 0.5682 |
| 0.0241 | 19.0 | 4921 | 0.2117 | 0.4491 | 0.7954 | 0.9589 | nan | 0.9815 | 0.6243 | 0.9423 | 0.6336 | 0.0 | 0.9597 | 0.5703 | 0.1508 | 0.5647 |
| 0.0243 | 20.0 | 5180 | 0.1989 | 0.4754 | 0.8013 | 0.9656 | nan | 0.9875 | 0.6416 | 0.9194 | 0.6568 | 0.0 | 0.9658 | 0.5879 | 0.2482 | 0.5751 |
| 0.0251 | 21.0 | 5439 | 0.2095 | 0.4607 | 0.7962 | 0.9629 | nan | 0.9853 | 0.6324 | 0.9337 | 0.6334 | 0.0 | 0.9634 | 0.5732 | 0.2073 | 0.5598 |
| 0.0238 | 22.0 | 5698 | 0.2063 | 0.4747 | 0.7927 | 0.9650 | nan | 0.9873 | 0.6383 | 0.9158 | 0.6293 | 0.0 | 0.9645 | 0.5779 | 0.2744 | 0.5569 |
| 0.0225 | 23.0 | 5957 | 0.2260 | 0.4656 | 0.7915 | 0.9640 | nan | 0.9880 | 0.6003 | 0.9106 | 0.6672 | 0.0 | 0.9642 | 0.5647 | 0.2241 | 0.5752 |
| 0.0231 | 24.0 | 6216 | 0.2454 | 0.4688 | 0.7783 | 0.9645 | nan | 0.9891 | 0.6019 | 0.9197 | 0.6024 | 0.0 | 0.9643 | 0.5591 | 0.2766 | 0.5442 |
| 0.0218 | 25.0 | 6475 | 0.2482 | 0.5143 | 0.7752 | 0.9665 | nan | 0.9919 | 0.5896 | 0.9136 | 0.6057 | 0.0 | 0.9655 | 0.5433 | 0.5236 | 0.5390 |
| 0.0223 | 26.0 | 6734 | 0.2474 | 0.4648 | 0.7660 | 0.9642 | nan | 0.9903 | 0.5784 | 0.9054 | 0.5898 | 0.0 | 0.9639 | 0.5502 | 0.2768 | 0.5334 |
| 0.0238 | 27.0 | 6993 | 0.2475 | 0.4717 | 0.7669 | 0.9651 | nan | 0.9920 | 0.5597 | 0.9019 | 0.6138 | 0.0 | 0.9648 | 0.5379 | 0.3087 | 0.5470 |
| 0.021 | 28.0 | 7252 | 0.2490 | 0.4740 | 0.7708 | 0.9649 | nan | 0.9919 | 0.5573 | 0.9116 | 0.6222 | 0.0 | 0.9645 | 0.5362 | 0.3142 | 0.5553 |
| 0.0208 | 29.0 | 7511 | 0.2369 | 0.4633 | 0.7669 | 0.9653 | nan | 0.9896 | 0.6134 | 0.8846 | 0.5799 | 0.0 | 0.9652 | 0.5762 | 0.2422 | 0.5327 |
| 0.0202 | 30.0 | 7770 | 0.2498 | 0.4863 | 0.7654 | 0.9655 | nan | 0.9930 | 0.5488 | 0.8931 | 0.6267 | 0.0 | 0.9647 | 0.5273 | 0.3811 | 0.5582 |
| 0.021 | 31.0 | 8029 | 0.2534 | 0.4799 | 0.7729 | 0.9657 | nan | 0.9915 | 0.5794 | 0.9043 | 0.6164 | 0.0 | 0.9652 | 0.5474 | 0.3368 | 0.5502 |
| 0.0202 | 32.0 | 8288 | 0.2626 | 0.4771 | 0.7627 | 0.9653 | nan | 0.9930 | 0.5464 | 0.9014 | 0.6098 | 0.0 | 0.9647 | 0.5272 | 0.3464 | 0.5474 |
| 0.0201 | 33.0 | 8547 | 0.2710 | 0.4903 | 0.7673 | 0.9659 | nan | 0.9936 | 0.5431 | 0.8994 | 0.6329 | 0.0 | 0.9653 | 0.5221 | 0.3997 | 0.5645 |
| 0.0195 | 34.0 | 8806 | 0.2589 | 0.4915 | 0.7662 | 0.9663 | nan | 0.9930 | 0.5644 | 0.8895 | 0.6177 | 0.0 | 0.9656 | 0.5368 | 0.4014 | 0.5537 |
| 0.0194 | 35.0 | 9065 | 0.2304 | 0.5092 | 0.7801 | 0.9675 | nan | 0.9919 | 0.6048 | 0.8941 | 0.6295 | 0.0 | 0.9667 | 0.5615 | 0.4576 | 0.5603 |
| 0.0188 | 36.0 | 9324 | 0.2674 | 0.5022 | 0.7629 | 0.9670 | nan | 0.9933 | 0.5783 | 0.8819 | 0.5982 | 0.0 | 0.9662 | 0.5461 | 0.4567 | 0.5418 |
| 0.0188 | 37.0 | 9583 | 0.2580 | 0.4897 | 0.7702 | 0.9665 | nan | 0.9925 | 0.5791 | 0.8884 | 0.6207 | 0.0 | 0.9660 | 0.5485 | 0.3793 | 0.5548 |
| 0.0192 | 38.0 | 9842 | 0.2556 | 0.5065 | 0.7656 | 0.9673 | nan | 0.9933 | 0.5823 | 0.8739 | 0.6130 | 0.0 | 0.9665 | 0.5494 | 0.4667 | 0.5500 |
| 0.019 | 38.61 | 10000 | 0.2539 | 0.5001 | 0.7682 | 0.9671 | nan | 0.9929 | 0.5837 | 0.8806 | 0.6154 | 0.0 | 0.9663 | 0.5505 | 0.4321 | 0.5515 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"bg",
"fallo cohesivo",
"fallo malla",
"fallo adhesivo",
"fallo burbuja"
] |
samitizerxu/segformer-b1-kelp-rgb-agg-imgaug-jan-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-kelp-rgb-agg-imgaug-jan-22
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the samitizerxu/kelp_data dataset.
It achieves the following results on the evaluation set:
- eval_accuracy_kelp: nan
- eval_iou_kelp: 0.0
- eval_loss: 0.3223
- eval_mean_iou: 0.0205
- eval_mean_accuracy: 0.0410
- eval_overall_accuracy: 0.0410
- eval_runtime: 62.0057
- eval_samples_per_second: 27.272
- eval_steps_per_second: 3.419
- epoch: 1.16
- step: 570
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 40
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"background",
"kelp"
] |
rohan8020/segformer-b0-finetuned-segments-dots |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-dots
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the rohan8020/test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1328
- Mean Iou: 0.3201
- Mean Accuracy: 0.6402
- Overall Accuracy: 0.6402
- Accuracy Unlabeled: nan
- Accuracy Dots: 0.6402
- Iou Unlabeled: 0.0
- Iou Dots: 0.6402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dots | Iou Unlabeled | Iou Dots |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
| 0.5642 | 4.0 | 20 | 0.6209 | 0.4838 | 0.9677 | 0.9677 | nan | 0.9677 | 0.0 | 0.9677 |
| 0.4154 | 8.0 | 40 | 0.4119 | 0.2969 | 0.5939 | 0.5939 | nan | 0.5939 | 0.0 | 0.5939 |
| 0.3246 | 12.0 | 60 | 0.2900 | 0.3123 | 0.6246 | 0.6246 | nan | 0.6246 | 0.0 | 0.6246 |
| 0.2898 | 16.0 | 80 | 0.3168 | 0.4260 | 0.8520 | 0.8520 | nan | 0.8520 | 0.0 | 0.8520 |
| 0.2419 | 20.0 | 100 | 0.2201 | 0.3446 | 0.6892 | 0.6892 | nan | 0.6892 | 0.0 | 0.6892 |
| 0.2042 | 24.0 | 120 | 0.2199 | 0.3213 | 0.6426 | 0.6426 | nan | 0.6426 | 0.0 | 0.6426 |
| 0.1662 | 28.0 | 140 | 0.1797 | 0.3002 | 0.6005 | 0.6005 | nan | 0.6005 | 0.0 | 0.6005 |
| 0.1757 | 32.0 | 160 | 0.1611 | 0.2919 | 0.5839 | 0.5839 | nan | 0.5839 | 0.0 | 0.5839 |
| 0.1473 | 36.0 | 180 | 0.1477 | 0.3219 | 0.6439 | 0.6439 | nan | 0.6439 | 0.0 | 0.6439 |
| 0.1645 | 40.0 | 200 | 0.1448 | 0.3267 | 0.6534 | 0.6534 | nan | 0.6534 | 0.0 | 0.6534 |
| 0.1576 | 44.0 | 220 | 0.1389 | 0.3377 | 0.6754 | 0.6754 | nan | 0.6754 | 0.0 | 0.6754 |
| 0.1381 | 48.0 | 240 | 0.1328 | 0.3201 | 0.6402 | 0.6402 | nan | 0.6402 | 0.0 | 0.6402 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"dots"
] |
rohan8020/segformer-b0-finetuned-segments-dots-1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-dots-1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the rohan8020/test dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Mean Iou: 0.0
- Mean Accuracy: nan
- Overall Accuracy: nan
- Accuracy Unlabeled: nan
- Accuracy Dots: nan
- Iou Unlabeled: 0.0
- Iou Dots: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 250
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dots | Iou Unlabeled | Iou Dots |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
| 0.0029 | 4.0 | 20 | 0.0122 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0004 | 8.0 | 40 | 0.0010 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0003 | 12.0 | 60 | 0.0004 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0003 | 16.0 | 80 | 0.0003 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0003 | 20.0 | 100 | 0.0002 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0002 | 24.0 | 120 | 0.0002 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 28.0 | 140 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0002 | 32.0 | 160 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 36.0 | 180 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 40.0 | 200 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0002 | 44.0 | 220 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 48.0 | 240 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 52.0 | 260 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 56.0 | 280 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 60.0 | 300 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 64.0 | 320 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 68.0 | 340 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 72.0 | 360 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 76.0 | 380 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 80.0 | 400 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 84.0 | 420 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 88.0 | 440 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0001 | 92.0 | 460 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 96.0 | 480 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 100.0 | 500 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 104.0 | 520 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 108.0 | 540 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 112.0 | 560 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 116.0 | 580 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 120.0 | 600 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 124.0 | 620 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 128.0 | 640 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 132.0 | 660 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 136.0 | 680 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 140.0 | 700 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 144.0 | 720 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 148.0 | 740 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 152.0 | 760 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 156.0 | 780 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 160.0 | 800 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 164.0 | 820 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 168.0 | 840 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 172.0 | 860 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 176.0 | 880 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 180.0 | 900 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 184.0 | 920 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 188.0 | 940 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 192.0 | 960 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 196.0 | 980 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 200.0 | 1000 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 204.0 | 1020 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 208.0 | 1040 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 212.0 | 1060 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 216.0 | 1080 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 220.0 | 1100 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 224.0 | 1120 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 228.0 | 1140 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 232.0 | 1160 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 236.0 | 1180 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 240.0 | 1200 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 244.0 | 1220 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
| 0.0 | 248.0 | 1240 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"dots"
] |
mrkprc1/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the mrkprc1/SudokuSegmentation2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3909
- Mean Iou: 0.3084
- Mean Accuracy: 0.9142
- Overall Accuracy: 0.9142
- Accuracy Empty-cell: nan
- Accuracy Complete-cell: 0.9142
- Iou Empty-cell: 0.0
- Iou Complete-cell: 0.6169
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Empty-cell | Accuracy Complete-cell | Iou Empty-cell | Iou Complete-cell |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------------:|:--------------:|:-----------------:|
| 0.3784 | 10.0 | 20 | 0.4056 | 0.3166 | 0.9695 | 0.9695 | nan | 0.9695 | 0.0 | 0.6333 |
| 0.3037 | 20.0 | 40 | 0.4253 | 0.2816 | 0.7997 | 0.7997 | nan | 0.7997 | 0.0 | 0.5631 |
| 0.3326 | 30.0 | 60 | 0.4163 | 0.2894 | 0.8280 | 0.8280 | nan | 0.8280 | 0.0 | 0.5789 |
| 0.276 | 40.0 | 80 | 0.4037 | 0.2990 | 0.8758 | 0.8758 | nan | 0.8758 | 0.0 | 0.5979 |
| 0.2616 | 50.0 | 100 | 0.3909 | 0.3084 | 0.9142 | 0.9142 | nan | 0.9142 | 0.0 | 0.6169 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"empty-cell",
"complete-cell"
] |
mrkprc1/segformer-b0-finetuned-sudoku |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-sudoku
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the mrkprc1/SudokuBoundaries2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5465
- Mean Iou: 0.2407
- Mean Accuracy: 0.5
- Overall Accuracy: 0.4814
- Accuracy Unlabelled: 1.0
- Accuracy Sudoku-boundary: 0.0
- Iou Unlabelled: 0.4814
- Iou Sudoku-boundary: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Sudoku-boundary | Iou Unlabelled | Iou Sudoku-boundary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------------------:|:--------------:|:-------------------:|
| 0.6257 | 2.5 | 20 | 0.7024 | 0.2992 | 0.4856 | 0.4769 | 0.7186 | 0.2525 | 0.3981 | 0.2002 |
| 0.6194 | 5.0 | 40 | 0.7513 | 0.2593 | 0.4960 | 0.4797 | 0.9332 | 0.0588 | 0.4633 | 0.0553 |
| 0.6134 | 7.5 | 60 | 0.8649 | 0.2428 | 0.4993 | 0.4809 | 0.9921 | 0.0065 | 0.4792 | 0.0065 |
| 0.4962 | 10.0 | 80 | 0.9245 | 0.2434 | 0.5006 | 0.4822 | 0.9949 | 0.0063 | 0.4805 | 0.0063 |
| 0.5552 | 12.5 | 100 | 0.8606 | 0.2442 | 0.5009 | 0.4826 | 0.9939 | 0.0080 | 0.4804 | 0.0079 |
| 0.6282 | 15.0 | 120 | 1.1507 | 0.2407 | 0.5000 | 0.4814 | 1.0000 | 0.0000 | 0.4813 | 0.0000 |
| 0.4042 | 17.5 | 140 | 1.0916 | 0.2408 | 0.4997 | 0.4811 | 0.9988 | 0.0007 | 0.4810 | 0.0007 |
| 0.8174 | 20.0 | 160 | 0.9731 | 0.2424 | 0.4991 | 0.4807 | 0.9926 | 0.0056 | 0.4792 | 0.0055 |
| 0.5353 | 22.5 | 180 | 0.9754 | 0.2409 | 0.4991 | 0.4805 | 0.9964 | 0.0017 | 0.4801 | 0.0017 |
| 0.4792 | 25.0 | 200 | 1.6835 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.4244 | 27.5 | 220 | 1.5039 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.376 | 30.0 | 240 | 2.2746 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.4129 | 32.5 | 260 | 2.0116 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.4717 | 35.0 | 280 | 1.8957 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.4229 | 37.5 | 300 | 1.7574 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.5708 | 40.0 | 320 | 2.0764 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.5826 | 42.5 | 340 | 1.6177 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.3765 | 45.0 | 360 | 1.8119 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 0.3704 | 47.5 | 380 | 1.6863 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
| 1.3265 | 50.0 | 400 | 1.5465 | 0.2407 | 0.5 | 0.4814 | 1.0 | 0.0 | 0.4814 | 0.0 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"unlabelled",
"sudoku-boundary"
] |
unreal-hug/segformer-b0-finetuned-segments-ECHO-jan-25-v2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-ECHO-jan-25-v2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the unreal-hug/REAL_DATASET_SEG_401_6_lbls dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4155
- Mean Iou: 0.3349
- Mean Accuracy: 0.3935
- Overall Accuracy: 0.5591
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.6815
- Accuracy Rv: 0.3865
- Accuracy Ra: 0.5805
- Accuracy La: 0.6544
- Accuracy Vs: 0.1155
- Accuracy As: nan
- Accuracy Mk: 0.0497
- Accuracy Tk: nan
- Accuracy Asd: 0.2779
- Accuracy Vsd: 0.3995
- Accuracy Ak: 0.3959
- Iou Unlabeled: 0.0
- Iou Lv: 0.6626
- Iou Rv: 0.3764
- Iou Ra: 0.5699
- Iou La: 0.6056
- Iou Vs: 0.1108
- Iou As: nan
- Iou Mk: 0.0485
- Iou Tk: nan
- Iou Asd: 0.2565
- Iou Vsd: 0.3465
- Iou Ak: 0.3718
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:-----------:|:-------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|:-------:|:------:|
| 2.0322 | 0.12 | 20 | 2.2124 | 0.0954 | 0.1885 | 0.3033 | nan | 0.3903 | 0.4680 | 0.0850 | 0.0173 | 0.0 | nan | 0.0011 | nan | 0.0 | 0.1087 | 0.6263 | 0.0 | 0.2970 | 0.2085 | 0.0782 | 0.0172 | 0.0 | nan | 0.0011 | 0.0 | 0.0 | 0.0823 | 0.3647 |
| 1.6027 | 0.25 | 40 | 1.5649 | 0.0789 | 0.1168 | 0.2640 | nan | 0.5149 | 0.0061 | 0.0264 | 0.0839 | 0.0 | nan | 0.0 | nan | 0.0001 | 0.0014 | 0.4180 | 0.0 | 0.3418 | 0.0061 | 0.0262 | 0.0787 | 0.0 | nan | 0.0 | nan | 0.0001 | 0.0014 | 0.3342 |
| 1.2877 | 0.38 | 60 | 1.2616 | 0.0943 | 0.1296 | 0.2685 | nan | 0.4665 | 0.0053 | 0.0547 | 0.2421 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0050 | 0.3930 | 0.0 | 0.3612 | 0.0053 | 0.0529 | 0.1877 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0050 | 0.3312 |
| 1.0981 | 0.5 | 80 | 1.2208 | 0.0967 | 0.1552 | 0.3898 | nan | 0.8151 | 0.0079 | 0.0082 | 0.0794 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4863 | 0.0 | 0.4737 | 0.0079 | 0.0082 | 0.0750 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4020 |
| 1.0235 | 0.62 | 100 | 0.9343 | 0.1218 | 0.1888 | 0.4419 | nan | 0.8508 | 0.0102 | 0.0423 | 0.3015 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4947 | 0.0 | 0.5319 | 0.0101 | 0.0418 | 0.2283 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4059 |
| 0.8977 | 0.75 | 120 | 0.7806 | 0.1592 | 0.2227 | 0.4764 | nan | 0.8124 | 0.1787 | 0.1188 | 0.4178 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4763 | 0.0 | 0.6151 | 0.1741 | 0.1124 | 0.2995 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3906 |
| 0.6932 | 0.88 | 140 | 0.6246 | 0.1262 | 0.1590 | 0.3766 | nan | 0.6794 | 0.2019 | 0.1415 | 0.2810 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1276 | 0.0 | 0.5674 | 0.1941 | 0.1372 | 0.2414 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1217 |
| 0.6168 | 1.0 | 160 | 0.6124 | 0.1752 | 0.2277 | 0.4717 | nan | 0.7500 | 0.3261 | 0.1491 | 0.4375 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3864 | 0.0 | 0.6106 | 0.2973 | 0.1475 | 0.3522 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3439 |
| 0.5758 | 1.12 | 180 | 0.5658 | 0.2037 | 0.2520 | 0.4750 | nan | 0.6646 | 0.3955 | 0.3596 | 0.4433 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4048 | 0.0 | 0.6048 | 0.3705 | 0.3133 | 0.3865 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3623 |
| 0.5081 | 1.25 | 200 | 0.5116 | 0.2316 | 0.2993 | 0.5280 | nan | 0.6460 | 0.4867 | 0.4741 | 0.6477 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.4396 | 0.0 | 0.6098 | 0.4523 | 0.3961 | 0.4611 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3965 |
| 0.6351 | 1.38 | 220 | 0.4879 | 0.1127 | 0.1324 | 0.2609 | nan | 0.3749 | 0.0902 | 0.2601 | 0.3883 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0783 | 0.0 | 0.3623 | 0.0897 | 0.2510 | 0.3466 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0774 |
| 0.6241 | 1.5 | 240 | 0.4593 | 0.2439 | 0.3090 | 0.5686 | nan | 0.7439 | 0.4492 | 0.5367 | 0.6916 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3597 | 0.0 | 0.6995 | 0.4322 | 0.4400 | 0.5265 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3410 |
| 0.4315 | 1.62 | 260 | 0.4082 | 0.2175 | 0.2611 | 0.4948 | nan | 0.6811 | 0.3535 | 0.4253 | 0.5871 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.3025 | 0.0 | 0.6398 | 0.3459 | 0.3952 | 0.5052 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.2886 |
| 0.5236 | 1.75 | 280 | 0.4651 | 0.1063 | 0.1353 | 0.2191 | nan | 0.2161 | 0.0885 | 0.3687 | 0.4434 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1015 | 0.0 | 0.2138 | 0.0884 | 0.3282 | 0.3313 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.1012 |
| 0.3688 | 1.88 | 300 | 0.4279 | 0.2796 | 0.3459 | 0.6382 | nan | 0.8529 | 0.5705 | 0.5493 | 0.6449 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0051 | 0.4903 | 0.0 | 0.7546 | 0.5277 | 0.5044 | 0.5537 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0051 | 0.4500 |
| 0.3659 | 2.0 | 320 | 0.3907 | 0.1881 | 0.2192 | 0.4461 | nan | 0.7156 | 0.1476 | 0.3144 | 0.4135 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0006 | 0.3810 | 0.0 | 0.6851 | 0.1461 | 0.3012 | 0.3919 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0006 | 0.3560 |
| 0.3243 | 2.12 | 340 | 0.3846 | 0.2737 | 0.3272 | 0.5846 | nan | 0.7313 | 0.4747 | 0.6435 | 0.7038 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0010 | 0.3904 | 0.0 | 0.7045 | 0.4610 | 0.5733 | 0.6223 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0010 | 0.3752 |
| 0.4169 | 2.25 | 360 | 0.4099 | 0.1292 | 0.1475 | 0.2563 | nan | 0.3286 | 0.0968 | 0.3184 | 0.3088 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0005 | 0.2741 | 0.0 | 0.3241 | 0.0965 | 0.3061 | 0.2960 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0005 | 0.2685 |
| 0.2951 | 2.38 | 380 | 0.3583 | 0.2277 | 0.2701 | 0.4962 | nan | 0.6695 | 0.2136 | 0.5730 | 0.6784 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0442 | 0.2519 | 0.0 | 0.6409 | 0.2125 | 0.5347 | 0.5967 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0435 | 0.2488 |
| 0.3847 | 2.5 | 400 | 0.3565 | 0.2410 | 0.2843 | 0.5032 | nan | 0.6544 | 0.3067 | 0.5888 | 0.6409 | 0.0 | nan | 0.0 | nan | 0.0 | 0.1089 | 0.2594 | 0.0 | 0.6304 | 0.3023 | 0.5347 | 0.5853 | 0.0 | nan | 0.0 | nan | 0.0 | 0.1033 | 0.2535 |
| 0.339 | 2.62 | 420 | 0.3715 | 0.3085 | 0.3697 | 0.6227 | nan | 0.7530 | 0.5620 | 0.6411 | 0.6900 | 0.0 | nan | 0.0 | nan | 0.0015 | 0.1337 | 0.5460 | 0.0 | 0.7083 | 0.5347 | 0.5722 | 0.6160 | 0.0 | nan | 0.0 | nan | 0.0015 | 0.1261 | 0.5260 |
| 0.7318 | 2.75 | 440 | 0.3574 | 0.2478 | 0.2950 | 0.4525 | nan | 0.5247 | 0.2338 | 0.5171 | 0.6926 | 0.0 | nan | 0.0 | nan | 0.0097 | 0.3424 | 0.3350 | 0.0 | 0.5100 | 0.2322 | 0.4803 | 0.6174 | 0.0 | nan | 0.0 | nan | 0.0097 | 0.3048 | 0.3235 |
| 0.2905 | 2.88 | 460 | 0.3609 | 0.1903 | 0.2262 | 0.3935 | nan | 0.4734 | 0.1841 | 0.5925 | 0.5863 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0201 | 0.1799 | 0.0 | 0.4671 | 0.1834 | 0.5348 | 0.5192 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0199 | 0.1786 |
| 0.3793 | 3.0 | 480 | 0.3452 | 0.2734 | 0.3213 | 0.5973 | nan | 0.8327 | 0.4635 | 0.5374 | 0.6168 | 0.0 | nan | 0.0 | nan | 0.0263 | 0.0746 | 0.3404 | 0.0 | 0.7723 | 0.4512 | 0.5139 | 0.5700 | 0.0 | nan | 0.0 | nan | 0.0260 | 0.0734 | 0.3270 |
| 0.3922 | 3.12 | 500 | 0.3695 | 0.2151 | 0.2604 | 0.3659 | nan | 0.2751 | 0.2847 | 0.6318 | 0.7206 | 0.0 | nan | 0.0 | nan | 0.0045 | 0.1409 | 0.2863 | 0.0 | 0.2726 | 0.2824 | 0.5652 | 0.6103 | 0.0 | nan | 0.0 | nan | 0.0045 | 0.1339 | 0.2824 |
| 0.3299 | 3.25 | 520 | 0.3326 | 0.3063 | 0.3610 | 0.6202 | nan | 0.8029 | 0.5001 | 0.5866 | 0.6558 | 0.0 | nan | 0.0 | nan | 0.0422 | 0.1575 | 0.5038 | 0.0 | 0.7639 | 0.4932 | 0.5461 | 0.5948 | 0.0 | nan | 0.0 | nan | 0.0416 | 0.1472 | 0.4762 |
| 0.2547 | 3.38 | 540 | 0.3323 | 0.2650 | 0.3121 | 0.5052 | nan | 0.6042 | 0.4311 | 0.6044 | 0.5282 | 0.0 | nan | 0.0 | nan | 0.0813 | 0.1438 | 0.4164 | 0.0 | 0.5882 | 0.4189 | 0.5254 | 0.5006 | 0.0 | nan | 0.0 | nan | 0.0801 | 0.1359 | 0.4010 |
| 0.2154 | 3.5 | 560 | 0.3211 | 0.2903 | 0.3397 | 0.5796 | nan | 0.7327 | 0.4341 | 0.6265 | 0.6269 | 0.0 | nan | 0.0 | nan | 0.0340 | 0.1079 | 0.4955 | 0.0 | 0.7034 | 0.4304 | 0.5828 | 0.5874 | 0.0 | nan | 0.0 | nan | 0.0337 | 0.1022 | 0.4634 |
| 0.3146 | 3.62 | 580 | 0.3642 | 0.3096 | 0.3854 | 0.5967 | nan | 0.6732 | 0.4518 | 0.7254 | 0.8100 | 0.0 | nan | 0.0 | nan | 0.1293 | 0.2673 | 0.4116 | 0.0 | 0.6557 | 0.4444 | 0.5843 | 0.6517 | 0.0 | nan | 0.0 | nan | 0.1212 | 0.2434 | 0.3957 |
| 0.2216 | 3.75 | 600 | 0.3178 | 0.3241 | 0.3818 | 0.5998 | nan | 0.7614 | 0.4294 | 0.5415 | 0.7168 | 0.0 | nan | 0.0 | nan | 0.1378 | 0.4248 | 0.4242 | 0.0 | 0.7254 | 0.4212 | 0.5274 | 0.6520 | 0.0 | nan | 0.0 | nan | 0.1338 | 0.3687 | 0.4125 |
| 0.2973 | 3.88 | 620 | 0.3199 | 0.3486 | 0.4127 | 0.6217 | nan | 0.7369 | 0.5178 | 0.5558 | 0.7739 | 0.0 | nan | 0.0 | nan | 0.1965 | 0.4456 | 0.4876 | 0.0 | 0.7072 | 0.4974 | 0.5407 | 0.7010 | 0.0 | nan | 0.0 | nan | 0.1859 | 0.3845 | 0.4692 |
| 0.2434 | 4.0 | 640 | 0.3179 | 0.3415 | 0.4057 | 0.6154 | nan | 0.7161 | 0.4582 | 0.6827 | 0.7445 | 0.0 | nan | 0.0 | nan | 0.1295 | 0.3827 | 0.5376 | 0.0 | 0.6869 | 0.4483 | 0.6280 | 0.6769 | 0.0 | nan | 0.0 | nan | 0.1254 | 0.3360 | 0.5134 |
| 0.2283 | 4.12 | 660 | 0.3310 | 0.2584 | 0.3073 | 0.5076 | nan | 0.6237 | 0.2267 | 0.6673 | 0.7014 | 0.0 | nan | 0.0 | nan | 0.0718 | 0.1288 | 0.3464 | 0.0 | 0.6078 | 0.2260 | 0.5912 | 0.6270 | 0.0 | nan | 0.0 | nan | 0.0707 | 0.1212 | 0.3401 |
| 0.6263 | 4.25 | 680 | 0.3153 | 0.2947 | 0.3436 | 0.5198 | nan | 0.6461 | 0.2824 | 0.5694 | 0.6236 | 0.0 | nan | 0.0 | nan | 0.1512 | 0.3950 | 0.4248 | 0.0 | 0.6244 | 0.2811 | 0.5498 | 0.5852 | 0.0 | nan | 0.0 | nan | 0.1449 | 0.3479 | 0.4140 |
| 0.1708 | 4.38 | 700 | 0.3173 | 0.2957 | 0.3435 | 0.5834 | nan | 0.7531 | 0.3902 | 0.5853 | 0.7153 | 0.0 | nan | 0.0 | nan | 0.1331 | 0.1239 | 0.3908 | 0.0 | 0.7188 | 0.3869 | 0.5656 | 0.6612 | 0.0 | nan | 0.0 | nan | 0.1298 | 0.1159 | 0.3788 |
| 0.246 | 4.5 | 720 | 0.3138 | 0.2570 | 0.2955 | 0.5052 | nan | 0.6686 | 0.3447 | 0.4552 | 0.5989 | 0.0 | nan | 0.0 | nan | 0.1237 | 0.1230 | 0.3459 | 0.0 | 0.6469 | 0.3416 | 0.4442 | 0.5640 | 0.0 | nan | 0.0 | nan | 0.1213 | 0.1159 | 0.3366 |
| 0.3876 | 4.62 | 740 | 0.3084 | 0.3646 | 0.4336 | 0.6321 | nan | 0.7367 | 0.4776 | 0.6536 | 0.7478 | 0.0 | nan | 0.0 | nan | 0.2351 | 0.4973 | 0.5539 | 0.0 | 0.7108 | 0.4700 | 0.6166 | 0.6824 | 0.0 | nan | 0.0 | nan | 0.2208 | 0.4179 | 0.5274 |
| 0.4766 | 4.75 | 760 | 0.3251 | 0.2509 | 0.2894 | 0.4716 | nan | 0.6095 | 0.3498 | 0.4348 | 0.4989 | 0.0 | nan | 0.0 | nan | 0.1119 | 0.2020 | 0.3972 | 0.0 | 0.5954 | 0.3434 | 0.4157 | 0.4754 | 0.0 | nan | 0.0 | nan | 0.1092 | 0.1836 | 0.3865 |
| 0.4431 | 4.88 | 780 | 0.3052 | 0.3104 | 0.3654 | 0.5781 | nan | 0.7024 | 0.4862 | 0.5150 | 0.7363 | 0.0 | nan | 0.0 | nan | 0.2163 | 0.2456 | 0.3866 | 0.0 | 0.6801 | 0.4736 | 0.5039 | 0.6461 | 0.0 | nan | 0.0 | nan | 0.2021 | 0.2209 | 0.3771 |
| 0.2319 | 5.0 | 800 | 0.3104 | 0.3316 | 0.3938 | 0.5875 | nan | 0.6790 | 0.5433 | 0.6711 | 0.6572 | 0.0 | nan | 0.0 | nan | 0.2908 | 0.3349 | 0.3675 | 0.0 | 0.6628 | 0.5265 | 0.5922 | 0.6113 | 0.0 | nan | 0.0 | nan | 0.2656 | 0.2987 | 0.3585 |
| 0.3361 | 5.12 | 820 | 0.3125 | 0.3219 | 0.3808 | 0.5905 | nan | 0.7234 | 0.3480 | 0.6026 | 0.7698 | 0.0 | nan | 0.0 | nan | 0.1558 | 0.3461 | 0.4818 | 0.0 | 0.7028 | 0.3453 | 0.5677 | 0.6877 | 0.0 | nan | 0.0 | nan | 0.1498 | 0.3077 | 0.4584 |
| 0.412 | 5.25 | 840 | 0.3477 | 0.2427 | 0.2810 | 0.4099 | nan | 0.3970 | 0.2768 | 0.5965 | 0.6918 | 0.0 | nan | 0.0 | nan | 0.1238 | 0.1614 | 0.2814 | 0.0 | 0.3899 | 0.2752 | 0.5703 | 0.6446 | 0.0 | nan | 0.0 | nan | 0.1208 | 0.1494 | 0.2767 |
| 0.1799 | 5.38 | 860 | 0.3132 | 0.3444 | 0.4035 | 0.6161 | nan | 0.7651 | 0.4804 | 0.6609 | 0.5953 | 0.0 | nan | 0.0 | nan | 0.2167 | 0.3901 | 0.5227 | 0.0 | 0.7389 | 0.4759 | 0.6240 | 0.5643 | 0.0 | nan | 0.0 | nan | 0.2033 | 0.3414 | 0.4965 |
| 0.1716 | 5.5 | 880 | 0.3186 | 0.2805 | 0.3289 | 0.4955 | nan | 0.5685 | 0.3185 | 0.5785 | 0.6888 | 0.0 | nan | 0.0 | nan | 0.1934 | 0.2548 | 0.3577 | 0.0 | 0.5592 | 0.3165 | 0.5487 | 0.6271 | 0.0 | nan | 0.0 | nan | 0.1798 | 0.2295 | 0.3441 |
| 0.4388 | 5.62 | 900 | 0.3171 | 0.4098 | 0.4914 | 0.7348 | nan | 0.8788 | 0.6109 | 0.7475 | 0.7979 | 0.0 | nan | 0.0 | nan | 0.2607 | 0.5234 | 0.6032 | 0.0 | 0.8320 | 0.5956 | 0.6842 | 0.7286 | 0.0 | nan | 0.0 | nan | 0.2445 | 0.4481 | 0.5648 |
| 0.2632 | 5.75 | 920 | 0.3163 | 0.2697 | 0.3130 | 0.4551 | nan | 0.5145 | 0.3445 | 0.4613 | 0.6042 | 0.0 | nan | 0.0 | nan | 0.1180 | 0.3896 | 0.3846 | 0.0 | 0.5045 | 0.3404 | 0.4568 | 0.5718 | 0.0 | nan | 0.0 | nan | 0.1141 | 0.3416 | 0.3677 |
| 0.3024 | 5.88 | 940 | 0.3063 | 0.3883 | 0.4645 | 0.6758 | nan | 0.7778 | 0.6624 | 0.7137 | 0.7013 | 0.0 | nan | 0.0 | nan | 0.3253 | 0.4950 | 0.5054 | 0.0 | 0.7479 | 0.6323 | 0.6434 | 0.6506 | 0.0 | nan | 0.0 | nan | 0.2919 | 0.4251 | 0.4919 |
| 0.2551 | 6.0 | 960 | 0.3489 | 0.2261 | 0.2625 | 0.4024 | nan | 0.5011 | 0.1084 | 0.4074 | 0.6709 | 0.0 | nan | 0.0 | nan | 0.1666 | 0.2592 | 0.2489 | 0.0 | 0.4903 | 0.1081 | 0.4042 | 0.6181 | 0.0 | nan | 0.0 | nan | 0.1562 | 0.2369 | 0.2470 |
| 0.3281 | 6.12 | 980 | 0.2939 | 0.3635 | 0.4275 | 0.6116 | nan | 0.6803 | 0.5665 | 0.6418 | 0.6806 | 0.0 | nan | 0.0 | nan | 0.2545 | 0.4660 | 0.5579 | 0.0 | 0.6659 | 0.5508 | 0.6049 | 0.6359 | 0.0 | nan | 0.0 | nan | 0.2372 | 0.4071 | 0.5330 |
| 0.1372 | 6.25 | 1000 | 0.2998 | 0.3755 | 0.4413 | 0.6450 | nan | 0.7530 | 0.5417 | 0.6673 | 0.7023 | 0.0 | nan | 0.0 | nan | 0.2979 | 0.4450 | 0.5648 | 0.0 | 0.7287 | 0.5300 | 0.6359 | 0.6582 | 0.0 | nan | 0.0 | nan | 0.2737 | 0.3899 | 0.5389 |
| 0.3485 | 6.38 | 1020 | 0.3398 | 0.2557 | 0.2941 | 0.4515 | nan | 0.5305 | 0.2957 | 0.5158 | 0.6263 | 0.0 | nan | 0.0 | nan | 0.1937 | 0.2043 | 0.2811 | 0.0 | 0.5206 | 0.2931 | 0.5070 | 0.5912 | 0.0 | nan | 0.0 | nan | 0.1833 | 0.1846 | 0.2769 |
| 0.3755 | 6.5 | 1040 | 0.3034 | 0.3526 | 0.4160 | 0.5795 | nan | 0.6346 | 0.4564 | 0.7050 | 0.6986 | 0.0 | nan | 0.0 | nan | 0.3010 | 0.4881 | 0.4598 | 0.0 | 0.6188 | 0.4509 | 0.6639 | 0.6554 | 0.0 | nan | 0.0 | nan | 0.2758 | 0.4166 | 0.4442 |
| 0.2617 | 6.62 | 1060 | 0.3166 | 0.2905 | 0.3384 | 0.4820 | nan | 0.5401 | 0.3225 | 0.5981 | 0.6153 | 0.0 | nan | 0.0 | nan | 0.1880 | 0.4060 | 0.3756 | 0.0 | 0.5337 | 0.3212 | 0.5770 | 0.5817 | 0.0 | nan | 0.0 | nan | 0.1774 | 0.3511 | 0.3627 |
| 0.2937 | 6.75 | 1080 | 0.3090 | 0.3864 | 0.4585 | 0.7031 | nan | 0.8093 | 0.6687 | 0.7189 | 0.7808 | 0.0 | nan | 0.0 | nan | 0.3271 | 0.2123 | 0.6092 | 0.0 | 0.7810 | 0.6460 | 0.6639 | 0.7094 | 0.0 | nan | 0.0 | nan | 0.2942 | 0.1957 | 0.5738 |
| 0.3588 | 6.88 | 1100 | 0.3011 | 0.3653 | 0.4310 | 0.6482 | nan | 0.8132 | 0.4360 | 0.6549 | 0.7523 | 0.0 | nan | 0.0 | nan | 0.3123 | 0.4840 | 0.4267 | 0.0 | 0.7784 | 0.4310 | 0.6235 | 0.6944 | 0.0 | nan | 0.0 | nan | 0.2884 | 0.4223 | 0.4149 |
| 0.1613 | 7.0 | 1120 | 0.3302 | 0.2838 | 0.3344 | 0.4622 | nan | 0.4687 | 0.3133 | 0.6402 | 0.6782 | 0.0 | nan | 0.0 | nan | 0.1601 | 0.4001 | 0.3490 | 0.0 | 0.4620 | 0.3100 | 0.5933 | 0.6247 | 0.0 | nan | 0.0 | nan | 0.1525 | 0.3558 | 0.3400 |
| 0.4217 | 7.12 | 1140 | 0.3087 | 0.3723 | 0.4451 | 0.6405 | nan | 0.7463 | 0.4361 | 0.7284 | 0.7778 | 0.0 | nan | 0.0 | nan | 0.3229 | 0.4981 | 0.4960 | 0.0 | 0.7258 | 0.4307 | 0.6602 | 0.7060 | 0.0 | nan | 0.0 | nan | 0.2946 | 0.4255 | 0.4800 |
| 0.1429 | 7.25 | 1160 | 0.3227 | 0.2794 | 0.3221 | 0.5335 | nan | 0.7381 | 0.3377 | 0.5059 | 0.5342 | 0.0 | nan | 0.0 | nan | 0.2719 | 0.1916 | 0.3198 | 0.0 | 0.7147 | 0.3361 | 0.4943 | 0.5100 | 0.0 | nan | 0.0 | nan | 0.2479 | 0.1761 | 0.3151 |
| 0.227 | 7.38 | 1180 | 0.3087 | 0.3749 | 0.4471 | 0.6221 | nan | 0.6645 | 0.5048 | 0.7103 | 0.7872 | 0.0 | nan | 0.0 | nan | 0.3502 | 0.4474 | 0.5594 | 0.0 | 0.6499 | 0.4966 | 0.6631 | 0.7065 | 0.0 | nan | 0.0 | nan | 0.3168 | 0.3915 | 0.5250 |
| 0.3733 | 7.5 | 1200 | 0.3304 | 0.2777 | 0.3229 | 0.4832 | nan | 0.5603 | 0.3886 | 0.5612 | 0.5532 | 0.0 | nan | 0.0 | nan | 0.1744 | 0.2915 | 0.3773 | 0.0 | 0.5501 | 0.3824 | 0.5434 | 0.5248 | 0.0 | nan | 0.0 | nan | 0.1655 | 0.2561 | 0.3542 |
| 0.3148 | 7.62 | 1220 | 0.3075 | 0.3787 | 0.4500 | 0.6531 | nan | 0.7425 | 0.5909 | 0.7189 | 0.7270 | 0.0 | nan | 0.0 | nan | 0.3257 | 0.4420 | 0.5030 | 0.0 | 0.7152 | 0.5687 | 0.6673 | 0.6700 | 0.0 | nan | 0.0 | nan | 0.2976 | 0.3823 | 0.4863 |
| 0.22 | 7.75 | 1240 | 0.3156 | 0.3340 | 0.3934 | 0.5589 | nan | 0.6127 | 0.4262 | 0.6387 | 0.7554 | 0.0 | nan | 0.0 | nan | 0.2170 | 0.4800 | 0.4108 | 0.0 | 0.6002 | 0.4203 | 0.6121 | 0.6848 | 0.0 | nan | 0.0 | nan | 0.2073 | 0.4168 | 0.3984 |
| 0.499 | 7.88 | 1260 | 0.3085 | 0.3454 | 0.4092 | 0.6278 | nan | 0.7534 | 0.4363 | 0.7109 | 0.7256 | 0.0 | nan | 0.0 | nan | 0.2525 | 0.2773 | 0.5267 | 0.0 | 0.7296 | 0.4311 | 0.6556 | 0.6668 | 0.0 | nan | 0.0 | nan | 0.2355 | 0.2512 | 0.4848 |
| 0.2604 | 8.0 | 1280 | 0.3123 | 0.3504 | 0.4118 | 0.6089 | nan | 0.7175 | 0.4779 | 0.6668 | 0.6668 | 0.0 | nan | 0.0 | nan | 0.2368 | 0.4184 | 0.5218 | 0.0 | 0.6949 | 0.4708 | 0.6402 | 0.6225 | 0.0 | nan | 0.0 | nan | 0.2192 | 0.3649 | 0.4915 |
| 0.146 | 8.12 | 1300 | 0.3274 | 0.3036 | 0.3526 | 0.5368 | nan | 0.6413 | 0.4378 | 0.6158 | 0.5674 | 0.0 | nan | 0.0 | nan | 0.1757 | 0.3165 | 0.4191 | 0.0 | 0.6216 | 0.4333 | 0.5946 | 0.5339 | 0.0 | nan | 0.0 | nan | 0.1697 | 0.2810 | 0.4015 |
| 0.1103 | 8.25 | 1320 | 0.3339 | 0.2738 | 0.3155 | 0.4762 | nan | 0.5556 | 0.4026 | 0.5015 | 0.5408 | 0.0 | nan | 0.0 | nan | 0.1370 | 0.2938 | 0.4084 | 0.0 | 0.5454 | 0.3969 | 0.4921 | 0.5111 | 0.0 | nan | 0.0 | nan | 0.1330 | 0.2658 | 0.3939 |
| 0.1323 | 8.38 | 1340 | 0.3179 | 0.3304 | 0.3865 | 0.5986 | nan | 0.7334 | 0.4769 | 0.6287 | 0.6839 | 0.0 | nan | 0.0 | nan | 0.2152 | 0.3473 | 0.3933 | 0.0 | 0.7022 | 0.4679 | 0.6091 | 0.6261 | 0.0 | nan | 0.0 | nan | 0.2049 | 0.3080 | 0.3863 |
| 0.1057 | 8.5 | 1360 | 0.4118 | 0.1949 | 0.2242 | 0.3076 | nan | 0.3007 | 0.1559 | 0.4492 | 0.5135 | 0.0 | nan | 0.0 | nan | 0.1282 | 0.2228 | 0.2472 | 0.0 | 0.2972 | 0.1552 | 0.4441 | 0.4845 | 0.0 | nan | 0.0 | nan | 0.1241 | 0.2028 | 0.2412 |
| 0.1248 | 8.62 | 1380 | 0.3228 | 0.4155 | 0.4991 | 0.7269 | nan | 0.8415 | 0.6462 | 0.7622 | 0.7778 | 0.0 | nan | 0.0 | nan | 0.3683 | 0.4851 | 0.6106 | 0.0 | 0.8100 | 0.6271 | 0.6994 | 0.7057 | 0.0 | nan | 0.0 | nan | 0.3280 | 0.4172 | 0.5674 |
| 0.1165 | 8.75 | 1400 | 0.3307 | 0.2995 | 0.3485 | 0.5194 | nan | 0.6149 | 0.3102 | 0.5592 | 0.6835 | 0.0 | nan | 0.0 | nan | 0.1857 | 0.3513 | 0.4318 | 0.0 | 0.5982 | 0.3074 | 0.5485 | 0.6349 | 0.0 | nan | 0.0 | nan | 0.1765 | 0.3142 | 0.4156 |
| 0.2999 | 8.88 | 1420 | 0.3766 | 0.2329 | 0.2673 | 0.3927 | nan | 0.4223 | 0.2954 | 0.4437 | 0.5620 | 0.0 | nan | 0.0 | nan | 0.1641 | 0.1857 | 0.3327 | 0.0 | 0.4163 | 0.2897 | 0.4411 | 0.5318 | 0.0 | nan | 0.0 | nan | 0.1570 | 0.1704 | 0.3232 |
| 0.2005 | 9.0 | 1440 | 0.3224 | 0.3457 | 0.4100 | 0.5800 | nan | 0.6510 | 0.4458 | 0.6701 | 0.6765 | 0.0 | nan | 0.0002 | nan | 0.2510 | 0.4869 | 0.5085 | 0.0 | 0.6327 | 0.4381 | 0.6441 | 0.6348 | 0.0 | nan | 0.0002 | nan | 0.2321 | 0.4092 | 0.4656 |
| 0.0952 | 9.12 | 1460 | 0.3368 | 0.2986 | 0.3475 | 0.5230 | nan | 0.5872 | 0.4686 | 0.6328 | 0.6070 | 0.0 | nan | 0.0 | nan | 0.2227 | 0.2252 | 0.3843 | 0.0 | 0.5748 | 0.4534 | 0.5986 | 0.5720 | 0.0 | nan | 0.0 | nan | 0.2114 | 0.2061 | 0.3692 |
| 0.3493 | 9.25 | 1480 | 0.3637 | 0.2527 | 0.2909 | 0.4285 | nan | 0.5072 | 0.3061 | 0.4793 | 0.5032 | 0.0 | nan | 0.0 | nan | 0.1539 | 0.3356 | 0.3325 | 0.0 | 0.4971 | 0.3025 | 0.4757 | 0.4801 | 0.0 | nan | 0.0 | nan | 0.1476 | 0.2993 | 0.3245 |
| 0.6102 | 9.38 | 1500 | 0.3302 | 0.3325 | 0.3885 | 0.5757 | nan | 0.6527 | 0.5490 | 0.6148 | 0.6472 | 0.0 | nan | 0.0 | nan | 0.2155 | 0.3649 | 0.4522 | 0.0 | 0.6350 | 0.5320 | 0.5993 | 0.6117 | 0.0 | nan | 0.0 | nan | 0.2015 | 0.3228 | 0.4231 |
| 0.1355 | 9.5 | 1520 | 0.3136 | 0.3397 | 0.3985 | 0.5917 | nan | 0.7078 | 0.4385 | 0.6197 | 0.6754 | 0.0 | nan | 0.0 | nan | 0.2411 | 0.4128 | 0.4908 | 0.0 | 0.6904 | 0.4342 | 0.6004 | 0.6272 | 0.0 | nan | 0.0 | nan | 0.2228 | 0.3615 | 0.4608 |
| 0.2828 | 9.62 | 1540 | 0.3214 | 0.3632 | 0.4329 | 0.6220 | nan | 0.7412 | 0.4203 | 0.6106 | 0.7371 | 0.0 | nan | 0.0004 | nan | 0.3513 | 0.4797 | 0.5558 | 0.0 | 0.7149 | 0.4099 | 0.5925 | 0.6724 | 0.0 | nan | 0.0004 | nan | 0.3130 | 0.4125 | 0.5160 |
| 0.2499 | 9.75 | 1560 | 0.3470 | 0.3178 | 0.3744 | 0.5370 | nan | 0.6135 | 0.4310 | 0.6613 | 0.5944 | 0.0 | nan | 0.0001 | nan | 0.3109 | 0.3698 | 0.3889 | 0.0 | 0.5963 | 0.4247 | 0.6161 | 0.5602 | 0.0 | nan | 0.0001 | nan | 0.2767 | 0.3282 | 0.3756 |
| 0.3973 | 9.88 | 1580 | 0.3292 | 0.3557 | 0.4222 | 0.6036 | nan | 0.6854 | 0.5253 | 0.6598 | 0.6929 | 0.0 | nan | 0.0 | nan | 0.2791 | 0.5040 | 0.4535 | 0.0 | 0.6632 | 0.5042 | 0.6184 | 0.6434 | 0.0 | nan | 0.0 | nan | 0.2550 | 0.4358 | 0.4374 |
| 0.1764 | 10.0 | 1600 | 0.3317 | 0.3493 | 0.4150 | 0.5984 | nan | 0.6897 | 0.4370 | 0.6896 | 0.7262 | 0.0 | nan | 0.0023 | nan | 0.2221 | 0.5208 | 0.4472 | 0.0 | 0.6702 | 0.4293 | 0.6340 | 0.6649 | 0.0 | nan | 0.0023 | nan | 0.2127 | 0.4505 | 0.4294 |
| 0.3667 | 10.12 | 1620 | 0.3224 | 0.3385 | 0.3978 | 0.5951 | nan | 0.7262 | 0.4129 | 0.5865 | 0.6864 | 0.0 | nan | 0.0041 | nan | 0.2466 | 0.4033 | 0.5143 | 0.0 | 0.7033 | 0.4053 | 0.5673 | 0.6383 | 0.0 | nan | 0.0041 | nan | 0.2340 | 0.3562 | 0.4768 |
| 0.2782 | 10.25 | 1640 | 0.3243 | 0.3675 | 0.4383 | 0.6355 | nan | 0.7304 | 0.5449 | 0.7001 | 0.7129 | 0.0 | nan | 0.0021 | nan | 0.2615 | 0.5006 | 0.4920 | 0.0 | 0.7054 | 0.5218 | 0.6534 | 0.6531 | 0.0 | nan | 0.0021 | nan | 0.2478 | 0.4247 | 0.4667 |
| 0.1716 | 10.38 | 1660 | 0.3199 | 0.3531 | 0.4131 | 0.6228 | nan | 0.7347 | 0.5687 | 0.6019 | 0.7168 | 0.0 | nan | 0.0001 | nan | 0.2756 | 0.3677 | 0.4526 | 0.0 | 0.7107 | 0.5562 | 0.5817 | 0.6609 | 0.0 | nan | 0.0001 | nan | 0.2583 | 0.3276 | 0.4354 |
| 0.1938 | 10.5 | 1680 | 0.3304 | 0.3369 | 0.4038 | 0.5768 | nan | 0.6403 | 0.3871 | 0.6906 | 0.7228 | 0.0 | nan | 0.0049 | nan | 0.2373 | 0.4005 | 0.5506 | 0.0 | 0.6248 | 0.3827 | 0.6360 | 0.6713 | 0.0 | nan | 0.0049 | nan | 0.2232 | 0.3537 | 0.4722 |
| 0.0939 | 10.62 | 1700 | 0.3178 | 0.3848 | 0.4610 | 0.6472 | nan | 0.7358 | 0.5401 | 0.7080 | 0.7452 | 0.0 | nan | 0.0062 | nan | 0.3044 | 0.6229 | 0.4866 | 0.0 | 0.7137 | 0.5308 | 0.6585 | 0.6909 | 0.0 | nan | 0.0062 | nan | 0.2798 | 0.5091 | 0.4593 |
| 0.1592 | 10.75 | 1720 | 0.3323 | 0.3312 | 0.3861 | 0.5834 | nan | 0.6894 | 0.6042 | 0.5845 | 0.5805 | 0.0 | nan | 0.0055 | nan | 0.2218 | 0.3658 | 0.4236 | 0.0 | 0.6704 | 0.5786 | 0.5710 | 0.5451 | 0.0 | nan | 0.0055 | nan | 0.2094 | 0.3236 | 0.4085 |
| 0.186 | 10.88 | 1740 | 0.3280 | 0.3838 | 0.4597 | 0.6407 | nan | 0.7285 | 0.4968 | 0.6695 | 0.7578 | 0.0 | nan | 0.0145 | nan | 0.4074 | 0.5172 | 0.5460 | 0.0 | 0.7056 | 0.4866 | 0.6377 | 0.6958 | 0.0 | nan | 0.0144 | nan | 0.3540 | 0.4358 | 0.5086 |
| 0.124 | 11.0 | 1760 | 0.4089 | 0.2396 | 0.2751 | 0.4128 | nan | 0.5165 | 0.2682 | 0.4594 | 0.4520 | 0.0 | nan | 0.0095 | nan | 0.2177 | 0.2646 | 0.2879 | 0.0 | 0.5080 | 0.2658 | 0.4487 | 0.4315 | 0.0 | nan | 0.0095 | nan | 0.2031 | 0.2473 | 0.2822 |
| 0.1084 | 11.12 | 1780 | 0.3512 | 0.3283 | 0.3864 | 0.5415 | nan | 0.5910 | 0.4464 | 0.6008 | 0.6724 | 0.0 | nan | 0.0105 | nan | 0.2345 | 0.4593 | 0.4626 | 0.0 | 0.5774 | 0.4313 | 0.5885 | 0.6218 | 0.0 | nan | 0.0105 | nan | 0.2220 | 0.3926 | 0.4390 |
| 0.3364 | 11.25 | 1800 | 0.3514 | 0.3245 | 0.3806 | 0.5425 | nan | 0.6046 | 0.4578 | 0.6162 | 0.6777 | 0.0 | nan | 0.0107 | nan | 0.2340 | 0.4572 | 0.3669 | 0.0 | 0.5876 | 0.4430 | 0.6018 | 0.6301 | 0.0 | nan | 0.0107 | nan | 0.2216 | 0.3951 | 0.3547 |
| 0.186 | 11.38 | 1820 | 0.3398 | 0.3337 | 0.3937 | 0.5743 | nan | 0.6718 | 0.3964 | 0.6547 | 0.6960 | 0.0 | nan | 0.0095 | nan | 0.2726 | 0.3967 | 0.4452 | 0.0 | 0.6555 | 0.3905 | 0.6240 | 0.6329 | 0.0 | nan | 0.0095 | nan | 0.2543 | 0.3500 | 0.4209 |
| 0.085 | 11.5 | 1840 | 0.3395 | 0.3541 | 0.4172 | 0.5969 | nan | 0.6834 | 0.4750 | 0.6591 | 0.6675 | 0.0029 | nan | 0.0163 | nan | 0.2791 | 0.4399 | 0.5321 | 0.0 | 0.6637 | 0.4648 | 0.6337 | 0.6201 | 0.0029 | nan | 0.0161 | nan | 0.2594 | 0.3801 | 0.5002 |
| 0.2861 | 11.62 | 1860 | 0.3575 | 0.3064 | 0.3548 | 0.5451 | nan | 0.6531 | 0.4069 | 0.6701 | 0.6340 | 0.0000 | nan | 0.0111 | nan | 0.2071 | 0.2802 | 0.3303 | 0.0 | 0.6370 | 0.4012 | 0.6428 | 0.5936 | 0.0000 | nan | 0.0110 | nan | 0.1952 | 0.2599 | 0.3230 |
| 0.2855 | 11.75 | 1880 | 0.3932 | 0.2415 | 0.2791 | 0.4276 | nan | 0.5475 | 0.2912 | 0.4359 | 0.4478 | 0.0 | nan | 0.0104 | nan | 0.1519 | 0.3073 | 0.3201 | 0.0 | 0.5356 | 0.2855 | 0.4203 | 0.4307 | 0.0 | nan | 0.0104 | nan | 0.1446 | 0.2782 | 0.3099 |
| 0.1548 | 11.88 | 1900 | 0.3398 | 0.3513 | 0.4167 | 0.6004 | nan | 0.7097 | 0.3884 | 0.6305 | 0.7354 | 0.0002 | nan | 0.0138 | nan | 0.2828 | 0.4755 | 0.5141 | 0.0 | 0.6920 | 0.3832 | 0.6074 | 0.6691 | 0.0002 | nan | 0.0138 | nan | 0.2669 | 0.4032 | 0.4775 |
| 0.123 | 12.0 | 1920 | 0.3279 | 0.3495 | 0.4113 | 0.6009 | nan | 0.7406 | 0.4218 | 0.5964 | 0.6630 | 0.0028 | nan | 0.0183 | nan | 0.2751 | 0.5053 | 0.4784 | 0.0 | 0.7190 | 0.4153 | 0.5867 | 0.6196 | 0.0028 | nan | 0.0181 | nan | 0.2542 | 0.4223 | 0.4568 |
| 0.1138 | 12.12 | 1940 | 0.3308 | 0.3983 | 0.4753 | 0.6792 | nan | 0.7682 | 0.5832 | 0.7082 | 0.8045 | 0.0028 | nan | 0.0209 | nan | 0.3537 | 0.4880 | 0.5477 | 0.0 | 0.7424 | 0.5667 | 0.6711 | 0.7307 | 0.0028 | nan | 0.0207 | nan | 0.3242 | 0.4171 | 0.5076 |
| 0.1582 | 12.25 | 1960 | 0.3342 | 0.3720 | 0.4410 | 0.6306 | nan | 0.7554 | 0.4633 | 0.6444 | 0.7011 | 0.0062 | nan | 0.0198 | nan | 0.3419 | 0.5214 | 0.5155 | 0.0 | 0.7309 | 0.4556 | 0.6269 | 0.6504 | 0.0062 | nan | 0.0196 | nan | 0.3087 | 0.4391 | 0.4823 |
| 0.3449 | 12.38 | 1980 | 0.3976 | 0.2429 | 0.2797 | 0.4225 | nan | 0.5187 | 0.2813 | 0.4234 | 0.5055 | 0.0 | nan | 0.0111 | nan | 0.1548 | 0.2818 | 0.3408 | 0.0 | 0.5069 | 0.2772 | 0.4172 | 0.4855 | 0.0 | nan | 0.0111 | nan | 0.1490 | 0.2573 | 0.3246 |
| 0.0296 | 12.5 | 2000 | 0.3332 | 0.3525 | 0.4166 | 0.5979 | nan | 0.6804 | 0.4709 | 0.6924 | 0.6988 | 0.0 | nan | 0.0172 | nan | 0.3403 | 0.3831 | 0.4662 | 0.0 | 0.6615 | 0.4562 | 0.6530 | 0.6470 | 0.0 | nan | 0.0171 | nan | 0.3043 | 0.3389 | 0.4466 |
| 0.2308 | 12.62 | 2020 | 0.3418 | 0.3574 | 0.4208 | 0.6123 | nan | 0.7446 | 0.3992 | 0.6491 | 0.7142 | 0.0 | nan | 0.0130 | nan | 0.3085 | 0.4940 | 0.4650 | 0.0 | 0.7205 | 0.3948 | 0.6289 | 0.6646 | 0.0 | nan | 0.0129 | nan | 0.2849 | 0.4238 | 0.4435 |
| 0.3632 | 12.75 | 2040 | 0.3847 | 0.2694 | 0.3118 | 0.4605 | nan | 0.5391 | 0.3475 | 0.5106 | 0.5736 | 0.0 | nan | 0.0090 | nan | 0.1930 | 0.3284 | 0.3053 | 0.0 | 0.5278 | 0.3411 | 0.5017 | 0.5453 | 0.0 | nan | 0.0089 | nan | 0.1846 | 0.2916 | 0.2930 |
| 0.284 | 12.88 | 2060 | 0.3425 | 0.3836 | 0.4597 | 0.6559 | nan | 0.7536 | 0.5838 | 0.6914 | 0.7272 | 0.0094 | nan | 0.0148 | nan | 0.3443 | 0.5142 | 0.4986 | 0.0 | 0.7278 | 0.5383 | 0.6459 | 0.6707 | 0.0094 | nan | 0.0147 | nan | 0.3187 | 0.4375 | 0.4732 |
| 0.1566 | 13.0 | 2080 | 0.3586 | 0.3093 | 0.3628 | 0.5439 | nan | 0.6643 | 0.4048 | 0.5981 | 0.6177 | 0.0075 | nan | 0.0124 | nan | 0.2639 | 0.3493 | 0.3475 | 0.0 | 0.6486 | 0.3917 | 0.5754 | 0.5727 | 0.0075 | nan | 0.0123 | nan | 0.2477 | 0.3058 | 0.3311 |
| 0.1545 | 13.12 | 2100 | 0.3630 | 0.3109 | 0.3644 | 0.5329 | nan | 0.6530 | 0.3620 | 0.5186 | 0.6261 | 0.0122 | nan | 0.0107 | nan | 0.1922 | 0.4837 | 0.4209 | 0.0 | 0.6339 | 0.3549 | 0.5053 | 0.5850 | 0.0122 | nan | 0.0106 | nan | 0.1847 | 0.4173 | 0.4049 |
| 0.1118 | 13.25 | 2120 | 0.3435 | 0.3579 | 0.4228 | 0.6077 | nan | 0.7231 | 0.4451 | 0.6276 | 0.7012 | 0.0175 | nan | 0.0249 | nan | 0.2535 | 0.5218 | 0.4904 | 0.0 | 0.7009 | 0.4350 | 0.6087 | 0.6502 | 0.0175 | nan | 0.0246 | nan | 0.2404 | 0.4449 | 0.4571 |
| 0.0828 | 13.38 | 2140 | 0.3544 | 0.3361 | 0.3956 | 0.5662 | nan | 0.6733 | 0.3762 | 0.6572 | 0.6600 | 0.0125 | nan | 0.0328 | nan | 0.3596 | 0.3828 | 0.4058 | 0.0 | 0.6520 | 0.3665 | 0.6258 | 0.6161 | 0.0125 | nan | 0.0321 | nan | 0.3236 | 0.3448 | 0.3878 |
| 0.2605 | 13.5 | 2160 | 0.3451 | 0.3732 | 0.4421 | 0.6309 | nan | 0.7398 | 0.4876 | 0.6322 | 0.7386 | 0.0182 | nan | 0.0378 | nan | 0.3453 | 0.4635 | 0.5161 | 0.0 | 0.7155 | 0.4705 | 0.6104 | 0.6734 | 0.0182 | nan | 0.0369 | nan | 0.3171 | 0.4016 | 0.4886 |
| 0.0129 | 13.62 | 2180 | 0.3919 | 0.2765 | 0.3196 | 0.4836 | nan | 0.5955 | 0.3326 | 0.5530 | 0.5408 | 0.0179 | nan | 0.0140 | nan | 0.1846 | 0.2991 | 0.3392 | 0.0 | 0.5800 | 0.3270 | 0.5417 | 0.5094 | 0.0179 | nan | 0.0139 | nan | 0.1754 | 0.2717 | 0.3283 |
| 0.1744 | 13.75 | 2200 | 0.3543 | 0.3287 | 0.3864 | 0.5730 | nan | 0.6835 | 0.3695 | 0.6680 | 0.7169 | 0.0132 | nan | 0.0120 | nan | 0.2276 | 0.4016 | 0.3853 | 0.0 | 0.6621 | 0.3663 | 0.6327 | 0.6620 | 0.0132 | nan | 0.0120 | nan | 0.2145 | 0.3531 | 0.3708 |
| 0.0863 | 13.88 | 2220 | 0.3536 | 0.3503 | 0.4130 | 0.6052 | nan | 0.7206 | 0.4645 | 0.5874 | 0.6916 | 0.0115 | nan | 0.0200 | nan | 0.3492 | 0.3373 | 0.5352 | 0.0 | 0.6962 | 0.4546 | 0.5755 | 0.6385 | 0.0115 | nan | 0.0198 | nan | 0.3158 | 0.2964 | 0.4949 |
| 0.2218 | 14.0 | 2240 | 0.3552 | 0.3527 | 0.4186 | 0.6185 | nan | 0.7443 | 0.4727 | 0.6913 | 0.6287 | 0.0118 | nan | 0.0181 | nan | 0.3010 | 0.3621 | 0.5372 | 0.0 | 0.7196 | 0.4609 | 0.6293 | 0.5846 | 0.0118 | nan | 0.0180 | nan | 0.2818 | 0.3178 | 0.5032 |
| 0.1603 | 14.12 | 2260 | 0.3853 | 0.2835 | 0.3305 | 0.4804 | nan | 0.5713 | 0.3329 | 0.5072 | 0.5800 | 0.0061 | nan | 0.0185 | nan | 0.2341 | 0.3506 | 0.3738 | 0.0 | 0.5570 | 0.3257 | 0.4960 | 0.5457 | 0.0061 | nan | 0.0183 | nan | 0.2195 | 0.3115 | 0.3554 |
| 0.1556 | 14.25 | 2280 | 0.3580 | 0.3469 | 0.4112 | 0.6041 | nan | 0.7349 | 0.4383 | 0.6388 | 0.6923 | 0.0131 | nan | 0.0196 | nan | 0.3261 | 0.4219 | 0.4161 | 0.0 | 0.7132 | 0.4194 | 0.6082 | 0.6401 | 0.0131 | nan | 0.0194 | nan | 0.2961 | 0.3680 | 0.3921 |
| 0.2714 | 14.38 | 2300 | 0.3716 | 0.3215 | 0.3763 | 0.5454 | nan | 0.6469 | 0.3780 | 0.5739 | 0.6474 | 0.0130 | nan | 0.0128 | nan | 0.2433 | 0.4166 | 0.4552 | 0.0 | 0.6285 | 0.3722 | 0.5628 | 0.6024 | 0.0130 | nan | 0.0127 | nan | 0.2288 | 0.3676 | 0.4273 |
| 0.2624 | 14.5 | 2320 | 0.3524 | 0.3357 | 0.3931 | 0.5833 | nan | 0.7198 | 0.4113 | 0.6229 | 0.6339 | 0.0164 | nan | 0.0153 | nan | 0.2559 | 0.4207 | 0.4414 | 0.0 | 0.6967 | 0.4056 | 0.6019 | 0.5973 | 0.0164 | nan | 0.0151 | nan | 0.2376 | 0.3674 | 0.4185 |
| 0.2223 | 14.62 | 2340 | 0.3570 | 0.3148 | 0.3663 | 0.5565 | nan | 0.6820 | 0.4156 | 0.5894 | 0.6286 | 0.0155 | nan | 0.0149 | nan | 0.2473 | 0.3015 | 0.4022 | 0.0 | 0.6633 | 0.4037 | 0.5782 | 0.5907 | 0.0155 | nan | 0.0148 | nan | 0.2266 | 0.2731 | 0.3817 |
| 0.1125 | 14.75 | 2360 | 0.3766 | 0.3027 | 0.3526 | 0.5064 | nan | 0.6058 | 0.3030 | 0.5083 | 0.6290 | 0.0217 | nan | 0.0107 | nan | 0.2239 | 0.4108 | 0.4599 | 0.0 | 0.5916 | 0.2977 | 0.5031 | 0.5910 | 0.0217 | nan | 0.0106 | nan | 0.2101 | 0.3637 | 0.4379 |
| 0.1139 | 14.88 | 2380 | 0.3541 | 0.3752 | 0.4445 | 0.6352 | nan | 0.7230 | 0.5186 | 0.7029 | 0.7593 | 0.0249 | nan | 0.0174 | nan | 0.2855 | 0.4914 | 0.4778 | 0.0 | 0.7011 | 0.4986 | 0.6740 | 0.6961 | 0.0249 | nan | 0.0172 | nan | 0.2652 | 0.4230 | 0.4514 |
| 0.1841 | 15.0 | 2400 | 0.3596 | 0.3337 | 0.3915 | 0.5678 | nan | 0.6749 | 0.3898 | 0.6395 | 0.6779 | 0.0267 | nan | 0.0162 | nan | 0.2609 | 0.4275 | 0.4104 | 0.0 | 0.6576 | 0.3815 | 0.6209 | 0.6334 | 0.0267 | nan | 0.0161 | nan | 0.2406 | 0.3728 | 0.3871 |
| 0.1828 | 15.12 | 2420 | 0.3641 | 0.3060 | 0.3564 | 0.5373 | nan | 0.6464 | 0.3564 | 0.5524 | 0.6620 | 0.0132 | nan | 0.0079 | nan | 0.1817 | 0.3260 | 0.4615 | 0.0 | 0.6299 | 0.3491 | 0.5459 | 0.6195 | 0.0132 | nan | 0.0078 | nan | 0.1742 | 0.2937 | 0.4271 |
| 0.0202 | 15.25 | 2440 | 0.3637 | 0.3310 | 0.3910 | 0.5513 | nan | 0.6071 | 0.4158 | 0.6488 | 0.7365 | 0.0339 | nan | 0.0181 | nan | 0.2819 | 0.3906 | 0.3863 | 0.0 | 0.5933 | 0.3991 | 0.6291 | 0.6687 | 0.0339 | nan | 0.0179 | nan | 0.2585 | 0.3465 | 0.3631 |
| 0.3244 | 15.38 | 2460 | 0.3752 | 0.3290 | 0.3885 | 0.5348 | nan | 0.5915 | 0.4283 | 0.6163 | 0.6207 | 0.0442 | nan | 0.0320 | nan | 0.2746 | 0.4170 | 0.4722 | 0.0 | 0.5762 | 0.4087 | 0.5914 | 0.5837 | 0.0442 | nan | 0.0315 | nan | 0.2498 | 0.3633 | 0.4410 |
| 0.0619 | 15.5 | 2480 | 0.3794 | 0.3052 | 0.3560 | 0.5207 | nan | 0.6266 | 0.3283 | 0.6050 | 0.6392 | 0.0387 | nan | 0.0303 | nan | 0.2255 | 0.3605 | 0.3501 | 0.0 | 0.6104 | 0.3232 | 0.5877 | 0.5951 | 0.0387 | nan | 0.0300 | nan | 0.2125 | 0.3189 | 0.3357 |
| 0.0788 | 15.62 | 2500 | 0.3641 | 0.3564 | 0.4204 | 0.6062 | nan | 0.6924 | 0.5027 | 0.6264 | 0.7243 | 0.0330 | nan | 0.0246 | nan | 0.2279 | 0.4379 | 0.5142 | 0.0 | 0.6721 | 0.4863 | 0.6116 | 0.6645 | 0.0330 | nan | 0.0244 | nan | 0.2181 | 0.3780 | 0.4764 |
| 0.1819 | 15.75 | 2520 | 0.3730 | 0.3330 | 0.3919 | 0.5496 | nan | 0.6366 | 0.3864 | 0.5794 | 0.6584 | 0.0296 | nan | 0.0193 | nan | 0.2730 | 0.4636 | 0.4804 | 0.0 | 0.6209 | 0.3793 | 0.5687 | 0.6158 | 0.0296 | nan | 0.0190 | nan | 0.2520 | 0.3970 | 0.4476 |
| 0.1583 | 15.88 | 2540 | 0.3707 | 0.3437 | 0.4053 | 0.5775 | nan | 0.6838 | 0.4042 | 0.6664 | 0.6669 | 0.0270 | nan | 0.0380 | nan | 0.2653 | 0.4832 | 0.4127 | 0.0 | 0.6658 | 0.3962 | 0.6401 | 0.6213 | 0.0269 | nan | 0.0374 | nan | 0.2491 | 0.4074 | 0.3930 |
| 0.0973 | 16.0 | 2560 | 0.3789 | 0.3102 | 0.3645 | 0.5251 | nan | 0.6202 | 0.3226 | 0.6377 | 0.6612 | 0.0240 | nan | 0.0420 | nan | 0.2656 | 0.3646 | 0.3432 | 0.0 | 0.6064 | 0.3155 | 0.6133 | 0.6167 | 0.0240 | nan | 0.0411 | nan | 0.2490 | 0.3193 | 0.3171 |
| 0.188 | 16.12 | 2580 | 0.3646 | 0.3456 | 0.4070 | 0.5929 | nan | 0.7021 | 0.4230 | 0.6325 | 0.7055 | 0.0310 | nan | 0.0434 | nan | 0.3221 | 0.3235 | 0.4801 | 0.0 | 0.6798 | 0.4127 | 0.6135 | 0.6518 | 0.0309 | nan | 0.0423 | nan | 0.2943 | 0.2847 | 0.4458 |
| 0.0581 | 16.25 | 2600 | 0.4030 | 0.2992 | 0.3506 | 0.4870 | nan | 0.5565 | 0.3320 | 0.6005 | 0.6297 | 0.0621 | nan | 0.0399 | nan | 0.2508 | 0.4016 | 0.2824 | 0.0 | 0.5438 | 0.3243 | 0.5851 | 0.5852 | 0.0610 | nan | 0.0391 | nan | 0.2336 | 0.3470 | 0.2729 |
| 0.1891 | 16.38 | 2620 | 0.3766 | 0.3408 | 0.4029 | 0.5618 | nan | 0.6308 | 0.4264 | 0.6309 | 0.6672 | 0.0537 | nan | 0.0358 | nan | 0.2444 | 0.4289 | 0.5077 | 0.0 | 0.6150 | 0.4147 | 0.6043 | 0.6202 | 0.0528 | nan | 0.0353 | nan | 0.2302 | 0.3673 | 0.4679 |
| 0.2495 | 16.5 | 2640 | 0.3758 | 0.3481 | 0.4106 | 0.5897 | nan | 0.7078 | 0.4004 | 0.6212 | 0.6981 | 0.0769 | nan | 0.0402 | nan | 0.2365 | 0.4410 | 0.4736 | 0.0 | 0.6873 | 0.3937 | 0.6026 | 0.6416 | 0.0749 | nan | 0.0391 | nan | 0.2227 | 0.3776 | 0.4418 |
| 0.153 | 16.62 | 2660 | 0.3899 | 0.2935 | 0.3435 | 0.5074 | nan | 0.6166 | 0.3835 | 0.5905 | 0.5641 | 0.0402 | nan | 0.0290 | nan | 0.2244 | 0.3407 | 0.3025 | 0.0 | 0.6027 | 0.3733 | 0.5639 | 0.5320 | 0.0402 | nan | 0.0286 | nan | 0.2092 | 0.2969 | 0.2883 |
| 0.083 | 16.75 | 2680 | 0.3758 | 0.3137 | 0.3669 | 0.5555 | nan | 0.6916 | 0.3837 | 0.5386 | 0.6336 | 0.0400 | nan | 0.0247 | nan | 0.2183 | 0.3063 | 0.4655 | 0.0 | 0.6742 | 0.3761 | 0.5322 | 0.5845 | 0.0400 | nan | 0.0243 | nan | 0.2066 | 0.2715 | 0.4276 |
| 0.136 | 16.88 | 2700 | 0.3570 | 0.3606 | 0.4264 | 0.6044 | nan | 0.7070 | 0.4583 | 0.6819 | 0.6820 | 0.0525 | nan | 0.0404 | nan | 0.3045 | 0.4473 | 0.4636 | 0.0 | 0.6892 | 0.4490 | 0.6517 | 0.6349 | 0.0524 | nan | 0.0396 | nan | 0.2758 | 0.3799 | 0.4333 |
| 0.0609 | 17.0 | 2720 | 0.3657 | 0.3182 | 0.3719 | 0.5547 | nan | 0.6883 | 0.3931 | 0.5851 | 0.6371 | 0.0482 | nan | 0.0290 | nan | 0.2633 | 0.3435 | 0.3598 | 0.0 | 0.6688 | 0.3841 | 0.5697 | 0.5975 | 0.0482 | nan | 0.0285 | nan | 0.2450 | 0.3019 | 0.3384 |
| 0.1483 | 17.12 | 2740 | 0.3847 | 0.3068 | 0.3620 | 0.5117 | nan | 0.5805 | 0.3386 | 0.5781 | 0.6593 | 0.0445 | nan | 0.0343 | nan | 0.2763 | 0.3060 | 0.4403 | 0.0 | 0.5686 | 0.3269 | 0.5604 | 0.6165 | 0.0439 | nan | 0.0335 | nan | 0.2507 | 0.2700 | 0.3978 |
| 0.2166 | 17.25 | 2760 | 0.3986 | 0.2853 | 0.3307 | 0.5154 | nan | 0.6550 | 0.3083 | 0.5705 | 0.6325 | 0.0442 | nan | 0.0205 | nan | 0.1784 | 0.2618 | 0.3047 | 0.0 | 0.6390 | 0.3038 | 0.5618 | 0.5883 | 0.0441 | nan | 0.0203 | nan | 0.1703 | 0.2369 | 0.2887 |
| 0.096 | 17.38 | 2780 | 0.4041 | 0.2884 | 0.3367 | 0.4939 | nan | 0.6043 | 0.2952 | 0.5538 | 0.6037 | 0.0470 | nan | 0.0231 | nan | 0.2257 | 0.3329 | 0.3444 | 0.0 | 0.5912 | 0.2905 | 0.5458 | 0.5617 | 0.0470 | nan | 0.0228 | nan | 0.2106 | 0.2930 | 0.3217 |
| 0.0839 | 17.5 | 2800 | 0.3773 | 0.3516 | 0.4152 | 0.6011 | nan | 0.7099 | 0.4639 | 0.6553 | 0.7115 | 0.0586 | nan | 0.0328 | nan | 0.3030 | 0.3879 | 0.4140 | 0.0 | 0.6884 | 0.4484 | 0.6341 | 0.6528 | 0.0586 | nan | 0.0324 | nan | 0.2784 | 0.3349 | 0.3877 |
| 0.1185 | 17.62 | 2820 | 0.3753 | 0.3255 | 0.3816 | 0.5517 | nan | 0.6575 | 0.4173 | 0.6167 | 0.6411 | 0.0711 | nan | 0.0270 | nan | 0.2554 | 0.3842 | 0.3643 | 0.0 | 0.6400 | 0.4044 | 0.6019 | 0.5946 | 0.0708 | nan | 0.0267 | nan | 0.2403 | 0.3319 | 0.3448 |
| 0.1155 | 17.75 | 2840 | 0.3742 | 0.3354 | 0.3939 | 0.5575 | nan | 0.6693 | 0.3661 | 0.6355 | 0.6422 | 0.0786 | nan | 0.0323 | nan | 0.2502 | 0.4593 | 0.4115 | 0.0 | 0.6510 | 0.3595 | 0.6193 | 0.5977 | 0.0776 | nan | 0.0320 | nan | 0.2347 | 0.3894 | 0.3928 |
| 0.1311 | 17.88 | 2860 | 0.3862 | 0.3306 | 0.3882 | 0.5436 | nan | 0.6268 | 0.3595 | 0.6226 | 0.6840 | 0.0823 | nan | 0.0400 | nan | 0.2510 | 0.4016 | 0.4261 | 0.0 | 0.6125 | 0.3525 | 0.6087 | 0.6301 | 0.0816 | nan | 0.0394 | nan | 0.2348 | 0.3472 | 0.3995 |
| 0.0059 | 18.0 | 2880 | 0.3997 | 0.2999 | 0.3509 | 0.5209 | nan | 0.6406 | 0.3559 | 0.6409 | 0.5987 | 0.0524 | nan | 0.0490 | nan | 0.2912 | 0.2650 | 0.2648 | 0.0 | 0.6221 | 0.3495 | 0.6051 | 0.5625 | 0.0523 | nan | 0.0474 | nan | 0.2684 | 0.2353 | 0.2563 |
| 0.2505 | 18.12 | 2900 | 0.3948 | 0.3107 | 0.3648 | 0.5266 | nan | 0.6174 | 0.3923 | 0.5960 | 0.6209 | 0.0640 | nan | 0.0383 | nan | 0.2507 | 0.3099 | 0.3937 | 0.0 | 0.6028 | 0.3777 | 0.5739 | 0.5786 | 0.0634 | nan | 0.0375 | nan | 0.2350 | 0.2722 | 0.3660 |
| 0.1181 | 18.25 | 2920 | 0.3764 | 0.3401 | 0.3999 | 0.5709 | nan | 0.6792 | 0.4368 | 0.6006 | 0.6382 | 0.0752 | nan | 0.0399 | nan | 0.2711 | 0.3991 | 0.4587 | 0.0 | 0.6604 | 0.4226 | 0.5815 | 0.5978 | 0.0736 | nan | 0.0392 | nan | 0.2526 | 0.3440 | 0.4290 |
| 0.1169 | 18.38 | 2940 | 0.3737 | 0.3522 | 0.4141 | 0.5853 | nan | 0.6818 | 0.4810 | 0.6037 | 0.6819 | 0.1025 | nan | 0.0410 | nan | 0.2644 | 0.4201 | 0.4503 | 0.0 | 0.6615 | 0.4636 | 0.5918 | 0.6288 | 0.1004 | nan | 0.0400 | nan | 0.2486 | 0.3615 | 0.4256 |
| 0.1075 | 18.5 | 2960 | 0.3985 | 0.3176 | 0.3711 | 0.5438 | nan | 0.6841 | 0.3154 | 0.5765 | 0.6472 | 0.0906 | nan | 0.0435 | nan | 0.2634 | 0.3396 | 0.3801 | 0.0 | 0.6643 | 0.3104 | 0.5673 | 0.6015 | 0.0897 | nan | 0.0423 | nan | 0.2444 | 0.3020 | 0.3537 |
| 0.1468 | 18.62 | 2980 | 0.3809 | 0.3592 | 0.4249 | 0.5883 | nan | 0.6884 | 0.4059 | 0.6539 | 0.6849 | 0.0905 | nan | 0.0482 | nan | 0.2846 | 0.4887 | 0.4791 | 0.0 | 0.6685 | 0.3996 | 0.6290 | 0.6350 | 0.0881 | nan | 0.0469 | nan | 0.2632 | 0.4144 | 0.4469 |
| 0.1438 | 18.75 | 3000 | 0.4059 | 0.3267 | 0.3847 | 0.5308 | nan | 0.6163 | 0.4193 | 0.5594 | 0.6195 | 0.1263 | nan | 0.0415 | nan | 0.2273 | 0.4443 | 0.4081 | 0.0 | 0.6014 | 0.4035 | 0.5470 | 0.5813 | 0.1224 | nan | 0.0406 | nan | 0.2127 | 0.3774 | 0.3810 |
| 0.1021 | 18.88 | 3020 | 0.3904 | 0.3525 | 0.4154 | 0.5957 | nan | 0.7113 | 0.4367 | 0.6382 | 0.7089 | 0.1015 | nan | 0.0432 | nan | 0.2595 | 0.4177 | 0.4213 | 0.0 | 0.6907 | 0.4264 | 0.6212 | 0.6528 | 0.0988 | nan | 0.0422 | nan | 0.2428 | 0.3582 | 0.3923 |
| 0.0308 | 19.0 | 3040 | 0.3790 | 0.3502 | 0.4129 | 0.5842 | nan | 0.6850 | 0.4325 | 0.6381 | 0.6733 | 0.0994 | nan | 0.0429 | nan | 0.2607 | 0.4038 | 0.4803 | 0.0 | 0.6662 | 0.4228 | 0.6189 | 0.6261 | 0.0967 | nan | 0.0420 | nan | 0.2443 | 0.3470 | 0.4380 |
| 0.2127 | 19.12 | 3060 | 0.3938 | 0.3268 | 0.3842 | 0.5413 | nan | 0.6469 | 0.3713 | 0.5834 | 0.6338 | 0.0856 | nan | 0.0419 | nan | 0.2657 | 0.4172 | 0.4118 | 0.0 | 0.6307 | 0.3641 | 0.5711 | 0.5914 | 0.0838 | nan | 0.0410 | nan | 0.2465 | 0.3570 | 0.3822 |
| 0.1228 | 19.25 | 3080 | 0.3930 | 0.3371 | 0.3961 | 0.5707 | nan | 0.6900 | 0.3839 | 0.5852 | 0.6874 | 0.0759 | nan | 0.0337 | nan | 0.2645 | 0.4055 | 0.4391 | 0.0 | 0.6701 | 0.3767 | 0.5733 | 0.6383 | 0.0745 | nan | 0.0331 | nan | 0.2462 | 0.3494 | 0.4094 |
| 0.0882 | 19.38 | 3100 | 0.3940 | 0.3372 | 0.3954 | 0.5712 | nan | 0.6829 | 0.4213 | 0.6223 | 0.6689 | 0.0740 | nan | 0.0338 | nan | 0.2622 | 0.3936 | 0.3997 | 0.0 | 0.6636 | 0.4108 | 0.6046 | 0.6226 | 0.0729 | nan | 0.0332 | nan | 0.2445 | 0.3419 | 0.3776 |
| 0.0798 | 19.5 | 3120 | 0.4141 | 0.3078 | 0.3595 | 0.5247 | nan | 0.6568 | 0.2977 | 0.5794 | 0.6253 | 0.0788 | nan | 0.0341 | nan | 0.2380 | 0.3701 | 0.3549 | 0.0 | 0.6388 | 0.2941 | 0.5651 | 0.5852 | 0.0775 | nan | 0.0332 | nan | 0.2237 | 0.3256 | 0.3351 |
| 0.2337 | 19.62 | 3140 | 0.3981 | 0.3068 | 0.3583 | 0.5271 | nan | 0.6597 | 0.3512 | 0.5748 | 0.5754 | 0.0715 | nan | 0.0304 | nan | 0.2115 | 0.3767 | 0.3733 | 0.0 | 0.6439 | 0.3439 | 0.5569 | 0.5412 | 0.0701 | nan | 0.0299 | nan | 0.2004 | 0.3301 | 0.3515 |
| 0.265 | 19.75 | 3160 | 0.3878 | 0.3441 | 0.4051 | 0.5883 | nan | 0.7216 | 0.4309 | 0.6112 | 0.6456 | 0.1042 | nan | 0.0316 | nan | 0.2539 | 0.3974 | 0.4499 | 0.0 | 0.6987 | 0.4186 | 0.5900 | 0.6016 | 0.1009 | nan | 0.0311 | nan | 0.2385 | 0.3425 | 0.4188 |
| 0.1612 | 19.88 | 3180 | 0.3921 | 0.3399 | 0.4015 | 0.5622 | nan | 0.6680 | 0.3758 | 0.6031 | 0.6745 | 0.1219 | nan | 0.0368 | nan | 0.2783 | 0.4113 | 0.4439 | 0.0 | 0.6509 | 0.3660 | 0.5870 | 0.6189 | 0.1176 | nan | 0.0361 | nan | 0.2584 | 0.3531 | 0.4113 |
| 0.119 | 20.0 | 3200 | 0.3930 | 0.3381 | 0.3973 | 0.5638 | nan | 0.6846 | 0.3830 | 0.6002 | 0.6528 | 0.1236 | nan | 0.0364 | nan | 0.2504 | 0.4254 | 0.4196 | 0.0 | 0.6659 | 0.3747 | 0.5862 | 0.6027 | 0.1201 | nan | 0.0357 | nan | 0.2355 | 0.3642 | 0.3958 |
| 0.2127 | 20.12 | 3220 | 0.4055 | 0.3262 | 0.3828 | 0.5438 | nan | 0.6687 | 0.3572 | 0.5735 | 0.6260 | 0.1227 | nan | 0.0452 | nan | 0.2759 | 0.3804 | 0.3954 | 0.0 | 0.6509 | 0.3480 | 0.5618 | 0.5802 | 0.1193 | nan | 0.0442 | nan | 0.2554 | 0.3293 | 0.3729 |
| 0.1082 | 20.25 | 3240 | 0.4076 | 0.3233 | 0.3790 | 0.5477 | nan | 0.6622 | 0.3678 | 0.6170 | 0.6725 | 0.1201 | nan | 0.0408 | nan | 0.2368 | 0.3502 | 0.3435 | 0.0 | 0.6445 | 0.3588 | 0.5987 | 0.6188 | 0.1167 | nan | 0.0400 | nan | 0.2242 | 0.3062 | 0.3253 |
| 0.1413 | 20.38 | 3260 | 0.3997 | 0.3315 | 0.3894 | 0.5515 | nan | 0.6595 | 0.3799 | 0.5992 | 0.6447 | 0.1206 | nan | 0.0406 | nan | 0.2610 | 0.3701 | 0.4294 | 0.0 | 0.6426 | 0.3715 | 0.5838 | 0.5996 | 0.1176 | nan | 0.0399 | nan | 0.2422 | 0.3200 | 0.3973 |
| 0.1308 | 20.5 | 3280 | 0.4210 | 0.3100 | 0.3624 | 0.5150 | nan | 0.6198 | 0.3069 | 0.5631 | 0.6500 | 0.1115 | nan | 0.0402 | nan | 0.2334 | 0.3535 | 0.3831 | 0.0 | 0.6049 | 0.3025 | 0.5540 | 0.6033 | 0.1102 | nan | 0.0393 | nan | 0.2189 | 0.3098 | 0.3574 |
| 0.0599 | 20.62 | 3300 | 0.3929 | 0.3457 | 0.4067 | 0.5822 | nan | 0.6963 | 0.4452 | 0.6235 | 0.6543 | 0.1024 | nan | 0.0453 | nan | 0.2641 | 0.3904 | 0.4386 | 0.0 | 0.6756 | 0.4337 | 0.6062 | 0.6087 | 0.1002 | nan | 0.0443 | nan | 0.2460 | 0.3365 | 0.4061 |
| 0.0948 | 20.75 | 3320 | 0.3978 | 0.3346 | 0.3933 | 0.5553 | nan | 0.6649 | 0.4108 | 0.6084 | 0.6221 | 0.1142 | nan | 0.0400 | nan | 0.2518 | 0.4197 | 0.4076 | 0.0 | 0.6479 | 0.3990 | 0.5918 | 0.5812 | 0.1109 | nan | 0.0393 | nan | 0.2337 | 0.3621 | 0.3800 |
| 0.0418 | 20.88 | 3340 | 0.3987 | 0.3413 | 0.4016 | 0.5691 | nan | 0.6820 | 0.4091 | 0.6041 | 0.6482 | 0.1110 | nan | 0.0344 | nan | 0.2501 | 0.4283 | 0.4476 | 0.0 | 0.6632 | 0.3996 | 0.5894 | 0.6026 | 0.1079 | nan | 0.0337 | nan | 0.2342 | 0.3677 | 0.4142 |
| 0.2251 | 21.0 | 3360 | 0.4091 | 0.3067 | 0.3576 | 0.5235 | nan | 0.6628 | 0.3239 | 0.5825 | 0.6036 | 0.1097 | nan | 0.0348 | nan | 0.2448 | 0.3554 | 0.3010 | 0.0 | 0.6446 | 0.3177 | 0.5663 | 0.5655 | 0.1064 | nan | 0.0340 | nan | 0.2288 | 0.3149 | 0.2890 |
| 0.0887 | 21.12 | 3380 | 0.3958 | 0.3502 | 0.4144 | 0.5830 | nan | 0.6798 | 0.4381 | 0.6436 | 0.7003 | 0.0985 | nan | 0.0553 | nan | 0.3298 | 0.3692 | 0.4148 | 0.0 | 0.6608 | 0.4252 | 0.6204 | 0.6454 | 0.0957 | nan | 0.0537 | nan | 0.2975 | 0.3220 | 0.3809 |
| 0.0981 | 21.25 | 3400 | 0.4053 | 0.3346 | 0.3938 | 0.5521 | nan | 0.6416 | 0.4158 | 0.6278 | 0.6327 | 0.1152 | nan | 0.0472 | nan | 0.2642 | 0.3607 | 0.4387 | 0.0 | 0.6267 | 0.4034 | 0.6096 | 0.5906 | 0.1116 | nan | 0.0460 | nan | 0.2430 | 0.3153 | 0.3998 |
| 0.129 | 21.38 | 3420 | 0.4044 | 0.3195 | 0.3724 | 0.5357 | nan | 0.6534 | 0.3715 | 0.5931 | 0.6088 | 0.1166 | nan | 0.0411 | nan | 0.2463 | 0.3438 | 0.3765 | 0.0 | 0.6364 | 0.3635 | 0.5791 | 0.5711 | 0.1137 | nan | 0.0403 | nan | 0.2292 | 0.3042 | 0.3575 |
| 0.0612 | 21.5 | 3440 | 0.3903 | 0.3486 | 0.4101 | 0.5821 | nan | 0.6849 | 0.4416 | 0.6240 | 0.6569 | 0.1031 | nan | 0.0424 | nan | 0.2770 | 0.3685 | 0.4925 | 0.0 | 0.6663 | 0.4307 | 0.6044 | 0.6109 | 0.0999 | nan | 0.0416 | nan | 0.2569 | 0.3219 | 0.4536 |
| 0.1272 | 21.62 | 3460 | 0.4190 | 0.3084 | 0.3600 | 0.5155 | nan | 0.6333 | 0.3347 | 0.5558 | 0.6046 | 0.0905 | nan | 0.0351 | nan | 0.2328 | 0.4021 | 0.3511 | 0.0 | 0.6178 | 0.3281 | 0.5458 | 0.5679 | 0.0895 | nan | 0.0345 | nan | 0.2190 | 0.3491 | 0.3325 |
| 0.0396 | 21.75 | 3480 | 0.4083 | 0.3243 | 0.3801 | 0.5463 | nan | 0.6695 | 0.3636 | 0.6050 | 0.6290 | 0.0988 | nan | 0.0423 | nan | 0.2516 | 0.3892 | 0.3716 | 0.0 | 0.6523 | 0.3566 | 0.5879 | 0.5871 | 0.0963 | nan | 0.0414 | nan | 0.2360 | 0.3372 | 0.3485 |
| 0.1612 | 21.88 | 3500 | 0.4034 | 0.3276 | 0.3836 | 0.5571 | nan | 0.6817 | 0.4096 | 0.5779 | 0.6470 | 0.1009 | nan | 0.0430 | nan | 0.2657 | 0.3577 | 0.3690 | 0.0 | 0.6632 | 0.3995 | 0.5630 | 0.6014 | 0.0982 | nan | 0.0420 | nan | 0.2475 | 0.3112 | 0.3502 |
| 0.168 | 22.0 | 3520 | 0.3960 | 0.3299 | 0.3866 | 0.5620 | nan | 0.6894 | 0.3956 | 0.5776 | 0.6484 | 0.0963 | nan | 0.0393 | nan | 0.2551 | 0.3656 | 0.4123 | 0.0 | 0.6689 | 0.3867 | 0.5646 | 0.6040 | 0.0935 | nan | 0.0384 | nan | 0.2394 | 0.3177 | 0.3853 |
| 0.1447 | 22.12 | 3540 | 0.4078 | 0.3373 | 0.3970 | 0.5641 | nan | 0.6879 | 0.3803 | 0.5834 | 0.6534 | 0.0952 | nan | 0.0500 | nan | 0.2945 | 0.4033 | 0.4248 | 0.0 | 0.6674 | 0.3724 | 0.5691 | 0.6079 | 0.0923 | nan | 0.0486 | nan | 0.2704 | 0.3478 | 0.3974 |
| 0.053 | 22.25 | 3560 | 0.4011 | 0.3369 | 0.3956 | 0.5696 | nan | 0.7026 | 0.4088 | 0.5707 | 0.6348 | 0.0921 | nan | 0.0507 | nan | 0.2935 | 0.3820 | 0.4256 | 0.0 | 0.6803 | 0.3990 | 0.5570 | 0.5941 | 0.0895 | nan | 0.0494 | nan | 0.2709 | 0.3313 | 0.3978 |
| 0.1187 | 22.38 | 3580 | 0.4053 | 0.3330 | 0.3913 | 0.5555 | nan | 0.6709 | 0.3798 | 0.5832 | 0.6476 | 0.0971 | nan | 0.0440 | nan | 0.2728 | 0.3996 | 0.4266 | 0.0 | 0.6529 | 0.3718 | 0.5682 | 0.6036 | 0.0940 | nan | 0.0429 | nan | 0.2524 | 0.3462 | 0.3977 |
| 0.1373 | 22.5 | 3600 | 0.4094 | 0.3264 | 0.3829 | 0.5411 | nan | 0.6504 | 0.3713 | 0.5818 | 0.6355 | 0.1050 | nan | 0.0402 | nan | 0.2590 | 0.4045 | 0.3984 | 0.0 | 0.6343 | 0.3624 | 0.5688 | 0.5951 | 0.1009 | nan | 0.0394 | nan | 0.2407 | 0.3515 | 0.3709 |
| 0.144 | 22.62 | 3620 | 0.4051 | 0.3243 | 0.3792 | 0.5460 | nan | 0.6617 | 0.3776 | 0.6009 | 0.6535 | 0.1049 | nan | 0.0384 | nan | 0.2643 | 0.3601 | 0.3512 | 0.0 | 0.6448 | 0.3688 | 0.5872 | 0.6082 | 0.1005 | nan | 0.0377 | nan | 0.2463 | 0.3173 | 0.3320 |
| 0.0716 | 22.75 | 3640 | 0.4071 | 0.3209 | 0.3750 | 0.5386 | nan | 0.6443 | 0.3817 | 0.5979 | 0.6464 | 0.1080 | nan | 0.0381 | nan | 0.2470 | 0.3450 | 0.3667 | 0.0 | 0.6288 | 0.3727 | 0.5835 | 0.6006 | 0.1032 | nan | 0.0374 | nan | 0.2315 | 0.3057 | 0.3453 |
| 0.0869 | 22.88 | 3660 | 0.4162 | 0.3118 | 0.3636 | 0.5269 | nan | 0.6438 | 0.3654 | 0.5745 | 0.6012 | 0.1058 | nan | 0.0359 | nan | 0.2423 | 0.3257 | 0.3781 | 0.0 | 0.6281 | 0.3557 | 0.5610 | 0.5643 | 0.1014 | nan | 0.0353 | nan | 0.2266 | 0.2902 | 0.3554 |
| 0.0846 | 23.0 | 3680 | 0.4079 | 0.3326 | 0.3902 | 0.5584 | nan | 0.6786 | 0.3830 | 0.5896 | 0.6438 | 0.1063 | nan | 0.0384 | nan | 0.2539 | 0.3928 | 0.4253 | 0.0 | 0.6605 | 0.3742 | 0.5765 | 0.5994 | 0.1019 | nan | 0.0376 | nan | 0.2376 | 0.3425 | 0.3957 |
| 0.1137 | 23.12 | 3700 | 0.4062 | 0.3270 | 0.3827 | 0.5498 | nan | 0.6647 | 0.3757 | 0.6069 | 0.6502 | 0.1083 | nan | 0.0380 | nan | 0.2465 | 0.3729 | 0.3814 | 0.0 | 0.6474 | 0.3675 | 0.5903 | 0.6042 | 0.1038 | nan | 0.0372 | nan | 0.2317 | 0.3290 | 0.3588 |
| 0.109 | 23.25 | 3720 | 0.4160 | 0.3217 | 0.3761 | 0.5445 | nan | 0.6679 | 0.3698 | 0.5816 | 0.6386 | 0.1013 | nan | 0.0424 | nan | 0.2568 | 0.3538 | 0.3723 | 0.0 | 0.6503 | 0.3618 | 0.5679 | 0.5943 | 0.0978 | nan | 0.0415 | nan | 0.2394 | 0.3129 | 0.3514 |
| 0.0314 | 23.38 | 3740 | 0.4166 | 0.3156 | 0.3685 | 0.5342 | nan | 0.6615 | 0.3651 | 0.5650 | 0.6126 | 0.1027 | nan | 0.0433 | nan | 0.2581 | 0.3479 | 0.3605 | 0.0 | 0.6445 | 0.3558 | 0.5521 | 0.5746 | 0.0988 | nan | 0.0424 | nan | 0.2393 | 0.3083 | 0.3401 |
| 0.1021 | 23.5 | 3760 | 0.4215 | 0.3218 | 0.3774 | 0.5350 | nan | 0.6494 | 0.3625 | 0.5961 | 0.6217 | 0.1038 | nan | 0.0448 | nan | 0.2675 | 0.3971 | 0.3539 | 0.0 | 0.6335 | 0.3532 | 0.5796 | 0.5818 | 0.0997 | nan | 0.0438 | nan | 0.2465 | 0.3460 | 0.3336 |
| 0.0086 | 23.62 | 3780 | 0.4121 | 0.3224 | 0.3779 | 0.5430 | nan | 0.6630 | 0.3837 | 0.5842 | 0.6257 | 0.1028 | nan | 0.0432 | nan | 0.2651 | 0.3702 | 0.3634 | 0.0 | 0.6461 | 0.3725 | 0.5697 | 0.5847 | 0.0990 | nan | 0.0423 | nan | 0.2451 | 0.3231 | 0.3413 |
| 0.1086 | 23.75 | 3800 | 0.4078 | 0.3309 | 0.3892 | 0.5521 | nan | 0.6630 | 0.3944 | 0.5991 | 0.6368 | 0.1092 | nan | 0.0444 | nan | 0.2721 | 0.3831 | 0.4007 | 0.0 | 0.6464 | 0.3824 | 0.5830 | 0.5932 | 0.1047 | nan | 0.0435 | nan | 0.2511 | 0.3331 | 0.3716 |
| 0.1121 | 23.88 | 3820 | 0.4119 | 0.3221 | 0.3780 | 0.5369 | nan | 0.6487 | 0.3695 | 0.5765 | 0.6271 | 0.1155 | nan | 0.0431 | nan | 0.2546 | 0.3730 | 0.3941 | 0.0 | 0.6329 | 0.3588 | 0.5643 | 0.5842 | 0.1105 | nan | 0.0422 | nan | 0.2368 | 0.3252 | 0.3666 |
| 0.1118 | 24.0 | 3840 | 0.4161 | 0.3239 | 0.3799 | 0.5430 | nan | 0.6645 | 0.3623 | 0.5649 | 0.6499 | 0.1168 | nan | 0.0422 | nan | 0.2492 | 0.3927 | 0.3769 | 0.0 | 0.6471 | 0.3532 | 0.5559 | 0.6011 | 0.1122 | nan | 0.0413 | nan | 0.2332 | 0.3407 | 0.3547 |
| 0.0399 | 24.12 | 3860 | 0.4107 | 0.3313 | 0.3888 | 0.5557 | nan | 0.6795 | 0.3847 | 0.5899 | 0.6415 | 0.1208 | nan | 0.0444 | nan | 0.2652 | 0.3843 | 0.3891 | 0.0 | 0.6607 | 0.3748 | 0.5767 | 0.5956 | 0.1152 | nan | 0.0435 | nan | 0.2462 | 0.3345 | 0.3660 |
| 0.0892 | 24.25 | 3880 | 0.4233 | 0.3200 | 0.3743 | 0.5371 | nan | 0.6571 | 0.3608 | 0.5803 | 0.6290 | 0.1144 | nan | 0.0414 | nan | 0.2556 | 0.3617 | 0.3685 | 0.0 | 0.6402 | 0.3525 | 0.5683 | 0.5850 | 0.1098 | nan | 0.0406 | nan | 0.2377 | 0.3184 | 0.3476 |
| 0.0504 | 24.38 | 3900 | 0.4126 | 0.3272 | 0.3838 | 0.5469 | nan | 0.6627 | 0.3726 | 0.5902 | 0.6472 | 0.1122 | nan | 0.0434 | nan | 0.2626 | 0.3820 | 0.3810 | 0.0 | 0.6457 | 0.3638 | 0.5776 | 0.5995 | 0.1075 | nan | 0.0425 | nan | 0.2436 | 0.3331 | 0.3583 |
| 0.1415 | 24.5 | 3920 | 0.4125 | 0.3313 | 0.3890 | 0.5544 | nan | 0.6739 | 0.3827 | 0.5877 | 0.6506 | 0.1154 | nan | 0.0461 | nan | 0.2685 | 0.3880 | 0.3885 | 0.0 | 0.6554 | 0.3725 | 0.5757 | 0.6023 | 0.1107 | nan | 0.0451 | nan | 0.2488 | 0.3378 | 0.3647 |
| 0.0919 | 24.62 | 3940 | 0.4155 | 0.3205 | 0.3752 | 0.5383 | nan | 0.6617 | 0.3538 | 0.5750 | 0.6351 | 0.1112 | nan | 0.0444 | nan | 0.2523 | 0.3764 | 0.3666 | 0.0 | 0.6444 | 0.3457 | 0.5639 | 0.5899 | 0.1069 | nan | 0.0434 | nan | 0.2354 | 0.3296 | 0.3458 |
| 0.0443 | 24.75 | 3960 | 0.4101 | 0.3270 | 0.3837 | 0.5447 | nan | 0.6616 | 0.3704 | 0.5699 | 0.6538 | 0.1158 | nan | 0.0460 | nan | 0.2670 | 0.3933 | 0.3753 | 0.0 | 0.6444 | 0.3607 | 0.5605 | 0.6039 | 0.1111 | nan | 0.0450 | nan | 0.2475 | 0.3427 | 0.3542 |
| 0.1815 | 24.88 | 3980 | 0.4182 | 0.3204 | 0.3750 | 0.5340 | nan | 0.6499 | 0.3529 | 0.5731 | 0.6316 | 0.1129 | nan | 0.0422 | nan | 0.2545 | 0.3768 | 0.3816 | 0.0 | 0.6337 | 0.3452 | 0.5621 | 0.5873 | 0.1083 | nan | 0.0413 | nan | 0.2370 | 0.3306 | 0.3586 |
| 0.005 | 25.0 | 4000 | 0.4155 | 0.3349 | 0.3935 | 0.5591 | nan | 0.6815 | 0.3865 | 0.5805 | 0.6544 | 0.1155 | nan | 0.0497 | nan | 0.2779 | 0.3995 | 0.3959 | 0.0 | 0.6626 | 0.3764 | 0.5699 | 0.6056 | 0.1108 | nan | 0.0485 | nan | 0.2565 | 0.3465 | 0.3718 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| [
"unlabeled",
"lv",
"rv",
"ra",
"la",
"vs",
"as",
"mk",
"tk",
"asd",
"vsd",
"ak"
] |
mrkprc1/segformer-b1-finetuned-sudoku |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-sudoku
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the mrkprc1/SudokuBoundaries2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9826
- Mean Iou: 0.2452
- Mean Accuracy: 0.4999
- Overall Accuracy: 0.4903
- Accuracy Unlabelled: 0.9996
- Accuracy Sudoku-boundary: 0.0001
- Iou Unlabelled: 0.4903
- Iou Sudoku-boundary: 0.0001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Sudoku-boundary | Iou Unlabelled | Iou Sudoku-boundary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------------------:|:--------------:|:-------------------:|
| 0.6034 | 3.33 | 20 | 0.6951 | 0.3427 | 0.5173 | 0.5149 | 0.6432 | 0.3914 | 0.3940 | 0.2913 |
| 0.7796 | 6.67 | 40 | 0.7150 | 0.3049 | 0.5083 | 0.5021 | 0.8309 | 0.1857 | 0.4501 | 0.1597 |
| 0.4378 | 10.0 | 60 | 0.9772 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.6804 | 13.33 | 80 | 1.1605 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.58 | 16.67 | 100 | 0.9787 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.6563 | 20.0 | 120 | 1.1860 | 0.2452 | 0.5 | 0.4904 | 1.0 | 0.0 | 0.4904 | 0.0 |
| 0.5128 | 23.33 | 140 | 0.8884 | 0.2457 | 0.5002 | 0.4907 | 0.9996 | 0.0009 | 0.4905 | 0.0009 |
| 0.5054 | 26.67 | 160 | 0.8746 | 0.2455 | 0.5002 | 0.4907 | 0.9998 | 0.0006 | 0.4905 | 0.0006 |
| 0.5532 | 30.0 | 180 | 0.9540 | 0.2452 | 0.5000 | 0.4905 | 1.0 | 0.0000 | 0.4905 | 0.0000 |
| 0.3238 | 33.33 | 200 | 0.8916 | 0.2470 | 0.5009 | 0.4914 | 0.9984 | 0.0035 | 0.4905 | 0.0035 |
| 0.2964 | 36.67 | 220 | 1.0162 | 0.2453 | 0.5000 | 0.4905 | 1.0000 | 0.0000 | 0.4905 | 0.0000 |
| 0.2102 | 40.0 | 240 | 0.9650 | 0.2452 | 0.4998 | 0.4903 | 0.9996 | 0.0001 | 0.4903 | 0.0001 |
| 0.623 | 43.33 | 260 | 0.9071 | 0.2461 | 0.5004 | 0.4909 | 0.9991 | 0.0017 | 0.4904 | 0.0017 |
| 0.3741 | 46.67 | 280 | 0.9245 | 0.2454 | 0.5000 | 0.4904 | 0.9994 | 0.0006 | 0.4903 | 0.0006 |
| 0.5765 | 50.0 | 300 | 0.9826 | 0.2452 | 0.4999 | 0.4903 | 0.9996 | 0.0001 | 0.4903 | 0.0001 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"unlabelled",
"sudoku-boundary"
] |
samitizerxu/segformer-b2-kelp-rgb-agg-imgaug-jan-27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b2-kelp-rgb-agg-imgaug-jan-27
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the samitizerxu/kelp_data dataset.
It achieves the following results on the evaluation set:
- Accuracy Kelp: 0.4483
- Iou Kelp: 0.3982
- Accuracy Bg: 0.9991
- Iou Bg: 0.9954
- Loss: 0.0174
- Mean Iou: 0.6968
- Mean Accuracy: 0.7237
- Overall Accuracy: 0.9955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Accuracy Kelp | Iou Kelp | Accuracy Bg | Iou Bg | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
|:-------------:|:-----:|:-----:|:-------------:|:--------:|:-----------:|:------:|:---------------:|:--------:|:-------------:|:----------------:|
| 0.7557 | 0.06 | 30 | 0.5865 | 0.0073 | 0.4625 | 0.4612 | 0.7403 | 0.2342 | 0.5245 | 0.4633 |
| 0.7383 | 0.12 | 60 | 0.5811 | 0.0071 | 0.4541 | 0.4528 | 0.7518 | 0.2300 | 0.5176 | 0.4550 |
| 0.7122 | 0.18 | 90 | 0.5460 | 0.0072 | 0.4913 | 0.4898 | 0.7268 | 0.2485 | 0.5187 | 0.4917 |
| 0.6843 | 0.24 | 120 | 0.5273 | 0.0074 | 0.5269 | 0.5252 | 0.7031 | 0.2663 | 0.5271 | 0.5269 |
| 0.6517 | 0.3 | 150 | 0.5363 | 0.0086 | 0.5842 | 0.5824 | 0.6704 | 0.2955 | 0.5602 | 0.5839 |
| 0.5976 | 0.37 | 180 | 0.4706 | 0.0101 | 0.6913 | 0.6888 | 0.5971 | 0.3494 | 0.5809 | 0.6898 |
| 0.5402 | 0.43 | 210 | 0.4111 | 0.0125 | 0.7837 | 0.7806 | 0.5262 | 0.3965 | 0.5974 | 0.7812 |
| 0.4614 | 0.49 | 240 | 0.3286 | 0.0143 | 0.8518 | 0.8479 | 0.4517 | 0.4311 | 0.5902 | 0.8483 |
| 0.4098 | 0.55 | 270 | 0.2838 | 0.0157 | 0.8843 | 0.8801 | 0.4001 | 0.4479 | 0.5841 | 0.8803 |
| 0.3617 | 0.61 | 300 | 0.1543 | 0.0166 | 0.9441 | 0.9387 | 0.3193 | 0.4777 | 0.5492 | 0.9388 |
| 0.2873 | 0.67 | 330 | 0.0990 | 0.0182 | 0.9701 | 0.9642 | 0.2682 | 0.4912 | 0.5345 | 0.9642 |
| 0.3307 | 0.73 | 360 | 0.0594 | 0.0137 | 0.9775 | 0.9713 | 0.2341 | 0.4925 | 0.5185 | 0.9713 |
| 0.2259 | 0.79 | 390 | 0.0153 | 0.0080 | 0.9938 | 0.9872 | 0.1845 | 0.4976 | 0.5045 | 0.9872 |
| 0.3572 | 0.85 | 420 | 0.0188 | 0.0107 | 0.9949 | 0.9883 | 0.1745 | 0.4995 | 0.5068 | 0.9883 |
| 0.216 | 0.91 | 450 | 0.0039 | 0.0033 | 0.9989 | 0.9922 | 0.1289 | 0.4978 | 0.5014 | 0.9922 |
| 0.169 | 0.97 | 480 | 0.0080 | 0.0068 | 0.9988 | 0.9922 | 0.1304 | 0.4995 | 0.5034 | 0.9922 |
| 0.1336 | 1.03 | 510 | 0.0086 | 0.0077 | 0.9993 | 0.9926 | 0.1179 | 0.5002 | 0.5039 | 0.9926 |
| 0.1186 | 1.1 | 540 | 0.0029 | 0.0028 | 0.9999 | 0.9932 | 0.0943 | 0.4980 | 0.5014 | 0.9932 |
| 0.1175 | 1.16 | 570 | 0.0070 | 0.0069 | 0.9999 | 0.9932 | 0.0845 | 0.5001 | 0.5035 | 0.9932 |
| 0.0977 | 1.22 | 600 | 0.0002 | 0.0002 | 1.0000 | 0.9933 | 0.0659 | 0.4967 | 0.5001 | 0.9933 |
| 0.073 | 1.28 | 630 | 0.0319 | 0.0307 | 0.9997 | 0.9932 | 0.0739 | 0.5119 | 0.5158 | 0.9932 |
| 0.072 | 1.34 | 660 | 0.0014 | 0.0014 | 1.0000 | 0.9933 | 0.0553 | 0.4973 | 0.5007 | 0.9933 |
| 0.0568 | 1.4 | 690 | 0.0027 | 0.0027 | 1.0000 | 0.9933 | 0.0517 | 0.4980 | 0.5013 | 0.9933 |
| 0.0418 | 1.46 | 720 | 0.0019 | 0.0019 | 1.0000 | 0.9933 | 0.0458 | 0.4976 | 0.5009 | 0.9933 |
| 0.0318 | 1.52 | 750 | 0.0060 | 0.0060 | 1.0000 | 0.9933 | 0.0452 | 0.4997 | 0.5030 | 0.9933 |
| 0.0359 | 1.58 | 780 | 0.0707 | 0.0682 | 0.9998 | 0.9935 | 0.0403 | 0.5309 | 0.5352 | 0.9935 |
| 0.0438 | 1.64 | 810 | 0.1112 | 0.1055 | 0.9996 | 0.9937 | 0.0362 | 0.5496 | 0.5554 | 0.9937 |
| 0.0325 | 1.7 | 840 | 0.1098 | 0.1052 | 0.9997 | 0.9937 | 0.0333 | 0.5495 | 0.5548 | 0.9937 |
| 0.022 | 1.76 | 870 | 0.1215 | 0.1173 | 0.9998 | 0.9939 | 0.0318 | 0.5556 | 0.5606 | 0.9939 |
| 0.0264 | 1.83 | 900 | 0.0352 | 0.0350 | 1.0000 | 0.9935 | 0.0316 | 0.5143 | 0.5176 | 0.9935 |
| 0.0191 | 1.89 | 930 | 0.1969 | 0.1849 | 0.9996 | 0.9942 | 0.0289 | 0.5895 | 0.5982 | 0.9942 |
| 0.0268 | 1.95 | 960 | 0.2421 | 0.2221 | 0.9994 | 0.9943 | 0.0284 | 0.6082 | 0.6207 | 0.9943 |
| 0.0164 | 2.01 | 990 | 0.1332 | 0.1298 | 0.9998 | 0.9940 | 0.0273 | 0.5619 | 0.5665 | 0.9940 |
| 0.0261 | 2.07 | 1020 | 0.3293 | 0.2820 | 0.9989 | 0.9944 | 0.0258 | 0.6382 | 0.6641 | 0.9944 |
| 0.0255 | 2.13 | 1050 | 0.1026 | 0.1010 | 0.9999 | 0.9939 | 0.0268 | 0.5474 | 0.5512 | 0.9939 |
| 0.0178 | 2.19 | 1080 | 0.3405 | 0.2944 | 0.9989 | 0.9945 | 0.0260 | 0.6445 | 0.6697 | 0.9945 |
| 0.0119 | 2.25 | 1110 | 0.3838 | 0.3184 | 0.9986 | 0.9945 | 0.0238 | 0.6564 | 0.6912 | 0.9945 |
| 0.0253 | 2.31 | 1140 | 0.3337 | 0.2942 | 0.9991 | 0.9946 | 0.0227 | 0.6444 | 0.6664 | 0.9946 |
| 0.0116 | 2.37 | 1170 | 0.2765 | 0.2549 | 0.9994 | 0.9946 | 0.0224 | 0.6247 | 0.6380 | 0.9946 |
| 0.0145 | 2.43 | 1200 | 0.1745 | 0.1689 | 0.9998 | 0.9942 | 0.0241 | 0.5816 | 0.5871 | 0.9942 |
| 0.0185 | 2.49 | 1230 | 0.2434 | 0.2293 | 0.9996 | 0.9945 | 0.0223 | 0.6119 | 0.6215 | 0.9945 |
| 0.0248 | 2.56 | 1260 | 0.2604 | 0.2429 | 0.9995 | 0.9945 | 0.0219 | 0.6187 | 0.6299 | 0.9946 |
| 0.0172 | 2.62 | 1290 | 0.2145 | 0.2048 | 0.9997 | 0.9944 | 0.0221 | 0.5996 | 0.6071 | 0.9944 |
| 0.0125 | 2.68 | 1320 | 0.3472 | 0.3058 | 0.9991 | 0.9947 | 0.0208 | 0.6502 | 0.6731 | 0.9947 |
| 0.0089 | 2.74 | 1350 | 0.3391 | 0.3003 | 0.9991 | 0.9947 | 0.0209 | 0.6475 | 0.6691 | 0.9947 |
| 0.0061 | 2.8 | 1380 | 0.3696 | 0.3189 | 0.9989 | 0.9947 | 0.0207 | 0.6568 | 0.6843 | 0.9947 |
| 0.0079 | 2.86 | 1410 | 0.6068 | 0.3737 | 0.9958 | 0.9931 | 0.0252 | 0.6834 | 0.8013 | 0.9932 |
| 0.01 | 2.92 | 1440 | 0.4511 | 0.3647 | 0.9984 | 0.9947 | 0.0205 | 0.6797 | 0.7248 | 0.9947 |
| 0.0112 | 2.98 | 1470 | 0.3328 | 0.2972 | 0.9992 | 0.9947 | 0.0204 | 0.6460 | 0.6660 | 0.9947 |
| 0.007 | 3.04 | 1500 | 0.3705 | 0.3214 | 0.9990 | 0.9947 | 0.0203 | 0.6581 | 0.6847 | 0.9947 |
| 0.0119 | 3.1 | 1530 | 0.4911 | 0.3717 | 0.9978 | 0.9944 | 0.0207 | 0.6831 | 0.7445 | 0.9944 |
| 0.0086 | 3.16 | 1560 | 0.2780 | 0.2584 | 0.9995 | 0.9946 | 0.0200 | 0.6265 | 0.6387 | 0.9946 |
| 0.0542 | 3.23 | 1590 | 0.4441 | 0.3631 | 0.9985 | 0.9948 | 0.0196 | 0.6789 | 0.7213 | 0.9948 |
| 0.0096 | 3.29 | 1620 | 0.4264 | 0.3542 | 0.9986 | 0.9948 | 0.0195 | 0.6745 | 0.7125 | 0.9948 |
| 0.0164 | 3.35 | 1650 | 0.3326 | 0.2997 | 0.9993 | 0.9948 | 0.0195 | 0.6472 | 0.6659 | 0.9948 |
| 0.0076 | 3.41 | 1680 | 0.4205 | 0.3515 | 0.9987 | 0.9948 | 0.0197 | 0.6732 | 0.7096 | 0.9948 |
| 0.0056 | 3.47 | 1710 | 0.3465 | 0.3085 | 0.9992 | 0.9948 | 0.0194 | 0.6516 | 0.6728 | 0.9948 |
| 0.0047 | 3.53 | 1740 | 0.4351 | 0.3550 | 0.9985 | 0.9947 | 0.0193 | 0.6748 | 0.7168 | 0.9947 |
| 0.0079 | 3.59 | 1770 | 0.3970 | 0.3436 | 0.9989 | 0.9949 | 0.0190 | 0.6693 | 0.6980 | 0.9949 |
| 0.0175 | 3.65 | 1800 | 0.3844 | 0.3369 | 0.9990 | 0.9949 | 0.0189 | 0.6659 | 0.6917 | 0.9949 |
| 0.004 | 3.71 | 1830 | 0.3719 | 0.3306 | 0.9992 | 0.9949 | 0.0189 | 0.6628 | 0.6855 | 0.9949 |
| 0.0034 | 3.77 | 1860 | 0.4341 | 0.3590 | 0.9986 | 0.9948 | 0.0189 | 0.6769 | 0.7164 | 0.9948 |
| 0.0139 | 3.83 | 1890 | 0.3380 | 0.3051 | 0.9993 | 0.9948 | 0.0192 | 0.6500 | 0.6686 | 0.9948 |
| 0.0072 | 3.89 | 1920 | 0.4258 | 0.3585 | 0.9987 | 0.9949 | 0.0188 | 0.6767 | 0.7123 | 0.9949 |
| 0.0269 | 3.96 | 1950 | 0.2233 | 0.2132 | 0.9997 | 0.9945 | 0.0207 | 0.6038 | 0.6115 | 0.9945 |
| 0.006 | 4.02 | 1980 | 0.3002 | 0.2762 | 0.9994 | 0.9947 | 0.0196 | 0.6355 | 0.6498 | 0.9947 |
| 0.0034 | 4.08 | 2010 | 0.3036 | 0.2785 | 0.9994 | 0.9947 | 0.0194 | 0.6366 | 0.6515 | 0.9947 |
| 0.0039 | 4.14 | 2040 | 0.2260 | 0.2154 | 0.9997 | 0.9945 | 0.0208 | 0.6049 | 0.6129 | 0.9945 |
| 0.0085 | 4.2 | 2070 | 0.3807 | 0.3353 | 0.9991 | 0.9949 | 0.0187 | 0.6651 | 0.6899 | 0.9949 |
| 0.0064 | 4.26 | 2100 | 0.4472 | 0.3671 | 0.9985 | 0.9948 | 0.0189 | 0.6810 | 0.7229 | 0.9948 |
| 0.0072 | 4.32 | 2130 | 0.3930 | 0.3431 | 0.9990 | 0.9949 | 0.0188 | 0.6690 | 0.6960 | 0.9949 |
| 0.0285 | 4.38 | 2160 | 0.3110 | 0.2853 | 0.9994 | 0.9948 | 0.0192 | 0.6400 | 0.6552 | 0.9948 |
| 0.0106 | 4.44 | 2190 | 0.3427 | 0.3094 | 0.9993 | 0.9949 | 0.0190 | 0.6521 | 0.6710 | 0.9949 |
| 0.0139 | 4.5 | 2220 | 0.3754 | 0.3311 | 0.9991 | 0.9949 | 0.0184 | 0.6630 | 0.6873 | 0.9949 |
| 0.0109 | 4.56 | 2250 | 0.1866 | 0.1809 | 0.9998 | 0.9943 | 0.0202 | 0.5876 | 0.5932 | 0.9943 |
| 0.0143 | 4.62 | 2280 | 0.3296 | 0.3005 | 0.9993 | 0.9948 | 0.0185 | 0.6477 | 0.6645 | 0.9948 |
| 0.0061 | 4.69 | 2310 | 0.4646 | 0.3774 | 0.9984 | 0.9948 | 0.0185 | 0.6861 | 0.7315 | 0.9949 |
| 0.0039 | 4.75 | 2340 | 0.3154 | 0.2822 | 0.9992 | 0.9946 | 0.0193 | 0.6384 | 0.6573 | 0.9946 |
| 0.0059 | 4.81 | 2370 | 0.3287 | 0.3011 | 0.9994 | 0.9949 | 0.0185 | 0.6480 | 0.6640 | 0.9949 |
| 0.008 | 4.87 | 2400 | 0.4402 | 0.3721 | 0.9988 | 0.9950 | 0.0182 | 0.6835 | 0.7195 | 0.9950 |
| 0.0123 | 4.93 | 2430 | 0.3758 | 0.3328 | 0.9991 | 0.9949 | 0.0186 | 0.6639 | 0.6875 | 0.9949 |
| 0.0329 | 4.99 | 2460 | 0.3555 | 0.3223 | 0.9993 | 0.9950 | 0.0183 | 0.6586 | 0.6774 | 0.9950 |
| 0.0051 | 5.05 | 2490 | 0.4204 | 0.3602 | 0.9989 | 0.9950 | 0.0182 | 0.6776 | 0.7096 | 0.9950 |
| 0.0132 | 5.11 | 2520 | 0.3182 | 0.2873 | 0.9993 | 0.9947 | 0.0190 | 0.6410 | 0.6587 | 0.9947 |
| 0.013 | 5.17 | 2550 | 0.3397 | 0.3094 | 0.9993 | 0.9949 | 0.0183 | 0.6522 | 0.6695 | 0.9949 |
| 0.0014 | 5.23 | 2580 | 0.2051 | 0.1987 | 0.9998 | 0.9944 | 0.0202 | 0.5965 | 0.6025 | 0.9944 |
| 0.0045 | 5.29 | 2610 | 0.4802 | 0.3916 | 0.9985 | 0.9950 | 0.0185 | 0.6933 | 0.7393 | 0.9950 |
| 0.0085 | 5.35 | 2640 | 0.3296 | 0.3016 | 0.9994 | 0.9949 | 0.0188 | 0.6482 | 0.6645 | 0.9949 |
| 0.0049 | 5.42 | 2670 | 0.3292 | 0.3010 | 0.9994 | 0.9949 | 0.0184 | 0.6479 | 0.6643 | 0.9949 |
| 0.0181 | 5.48 | 2700 | 0.3973 | 0.3465 | 0.9990 | 0.9950 | 0.0180 | 0.6707 | 0.6982 | 0.9950 |
| 0.0026 | 5.54 | 2730 | 0.4025 | 0.3520 | 0.9990 | 0.9950 | 0.0179 | 0.6735 | 0.7007 | 0.9950 |
| 0.0037 | 5.6 | 2760 | 0.2881 | 0.2691 | 0.9995 | 0.9947 | 0.0185 | 0.6319 | 0.6438 | 0.9947 |
| 0.0067 | 5.66 | 2790 | 0.4916 | 0.3854 | 0.9981 | 0.9947 | 0.0188 | 0.6901 | 0.7449 | 0.9947 |
| 0.0045 | 5.72 | 2820 | 0.4345 | 0.3703 | 0.9988 | 0.9950 | 0.0180 | 0.6827 | 0.7166 | 0.9950 |
| 0.0029 | 5.78 | 2850 | 0.4856 | 0.3766 | 0.9980 | 0.9946 | 0.0191 | 0.6856 | 0.7418 | 0.9946 |
| 0.0058 | 5.84 | 2880 | 0.3707 | 0.3316 | 0.9992 | 0.9950 | 0.0187 | 0.6633 | 0.6850 | 0.9950 |
| 0.0224 | 5.9 | 2910 | 0.5015 | 0.4023 | 0.9983 | 0.9950 | 0.0183 | 0.6986 | 0.7499 | 0.9950 |
| 0.0161 | 5.96 | 2940 | 0.4042 | 0.3541 | 0.9990 | 0.9950 | 0.0183 | 0.6746 | 0.7016 | 0.9951 |
| 0.0054 | 6.02 | 2970 | 0.4196 | 0.3623 | 0.9989 | 0.9950 | 0.0183 | 0.6787 | 0.7093 | 0.9950 |
| 0.0118 | 6.09 | 3000 | 0.4446 | 0.3753 | 0.9988 | 0.9950 | 0.0179 | 0.6852 | 0.7217 | 0.9950 |
| 0.0043 | 6.15 | 3030 | 0.2735 | 0.2587 | 0.9996 | 0.9947 | 0.0192 | 0.6267 | 0.6366 | 0.9947 |
| 0.0058 | 6.21 | 3060 | 0.2908 | 0.2707 | 0.9995 | 0.9947 | 0.0188 | 0.6327 | 0.6452 | 0.9947 |
| 0.0037 | 6.27 | 3090 | 0.3848 | 0.3405 | 0.9991 | 0.9950 | 0.0179 | 0.6677 | 0.6920 | 0.9950 |
| 0.0038 | 6.33 | 3120 | 0.3463 | 0.3133 | 0.9993 | 0.9949 | 0.0178 | 0.6541 | 0.6728 | 0.9949 |
| 0.0234 | 6.39 | 3150 | 0.4518 | 0.3825 | 0.9988 | 0.9951 | 0.0176 | 0.6888 | 0.7253 | 0.9951 |
| 0.0066 | 6.45 | 3180 | 0.3940 | 0.3407 | 0.9989 | 0.9949 | 0.0184 | 0.6678 | 0.6965 | 0.9949 |
| 0.0041 | 6.51 | 3210 | 0.4930 | 0.4010 | 0.9985 | 0.9950 | 0.0175 | 0.6980 | 0.7457 | 0.9951 |
| 0.0139 | 6.57 | 3240 | 0.5347 | 0.4133 | 0.9980 | 0.9949 | 0.0178 | 0.7041 | 0.7663 | 0.9949 |
| 0.0085 | 6.63 | 3270 | 0.4837 | 0.3867 | 0.9983 | 0.9948 | 0.0182 | 0.6908 | 0.7410 | 0.9949 |
| 0.0024 | 6.69 | 3300 | 0.3644 | 0.3251 | 0.9992 | 0.9949 | 0.0185 | 0.6600 | 0.6818 | 0.9949 |
| 0.0041 | 6.75 | 3330 | 0.3855 | 0.3450 | 0.9992 | 0.9951 | 0.0177 | 0.6700 | 0.6923 | 0.9951 |
| 0.0021 | 6.82 | 3360 | 0.3847 | 0.3422 | 0.9992 | 0.9950 | 0.0184 | 0.6686 | 0.6920 | 0.9950 |
| 0.0156 | 6.88 | 3390 | 0.3380 | 0.3129 | 0.9995 | 0.9950 | 0.0179 | 0.6540 | 0.6687 | 0.9950 |
| 0.0042 | 6.94 | 3420 | 0.5245 | 0.4071 | 0.9981 | 0.9949 | 0.0183 | 0.7010 | 0.7613 | 0.9949 |
| 0.0075 | 7.0 | 3450 | 0.4134 | 0.3642 | 0.9991 | 0.9951 | 0.0177 | 0.6797 | 0.7062 | 0.9952 |
| 0.0036 | 7.06 | 3480 | 0.3749 | 0.3362 | 0.9992 | 0.9950 | 0.0183 | 0.6656 | 0.6871 | 0.9950 |
| 0.0113 | 7.12 | 3510 | 0.4672 | 0.3887 | 0.9986 | 0.9951 | 0.0178 | 0.6919 | 0.7329 | 0.9951 |
| 0.0385 | 7.18 | 3540 | 0.2639 | 0.2513 | 0.9997 | 0.9947 | 0.0199 | 0.6230 | 0.6318 | 0.9947 |
| 0.0135 | 7.24 | 3570 | 0.3820 | 0.3435 | 0.9992 | 0.9951 | 0.0178 | 0.6693 | 0.6906 | 0.9951 |
| 0.0032 | 7.3 | 3600 | 0.3842 | 0.3397 | 0.9991 | 0.9950 | 0.0182 | 0.6673 | 0.6917 | 0.9950 |
| 0.0081 | 7.36 | 3630 | 0.1317 | 0.1292 | 0.9999 | 0.9940 | 0.0235 | 0.5616 | 0.5658 | 0.9940 |
| 0.0029 | 7.42 | 3660 | 0.3218 | 0.2976 | 0.9995 | 0.9949 | 0.0184 | 0.6462 | 0.6606 | 0.9949 |
| 0.0056 | 7.48 | 3690 | 0.5155 | 0.4111 | 0.9983 | 0.9950 | 0.0181 | 0.7031 | 0.7569 | 0.9950 |
| 0.0212 | 7.55 | 3720 | 0.4519 | 0.3843 | 0.9988 | 0.9951 | 0.0178 | 0.6897 | 0.7254 | 0.9951 |
| 0.0019 | 7.61 | 3750 | 0.4913 | 0.3989 | 0.9984 | 0.9950 | 0.0176 | 0.6970 | 0.7449 | 0.9950 |
| 0.0049 | 7.67 | 3780 | 0.3845 | 0.3463 | 0.9993 | 0.9951 | 0.0178 | 0.6707 | 0.6919 | 0.9951 |
| 0.0062 | 7.73 | 3810 | 0.4232 | 0.3606 | 0.9988 | 0.9949 | 0.0202 | 0.6778 | 0.7110 | 0.9950 |
| 0.0036 | 7.79 | 3840 | 0.3965 | 0.3536 | 0.9992 | 0.9951 | 0.0182 | 0.6743 | 0.6978 | 0.9951 |
| 0.008 | 7.85 | 3870 | 0.3852 | 0.3479 | 0.9993 | 0.9951 | 0.0178 | 0.6715 | 0.6923 | 0.9952 |
| 0.0037 | 7.91 | 3900 | 0.4829 | 0.3891 | 0.9984 | 0.9949 | 0.0182 | 0.6920 | 0.7406 | 0.9949 |
| 0.007 | 7.97 | 3930 | 0.4051 | 0.3582 | 0.9991 | 0.9951 | 0.0181 | 0.6767 | 0.7021 | 0.9951 |
| 0.0151 | 8.03 | 3960 | 0.3396 | 0.3099 | 0.9994 | 0.9949 | 0.0187 | 0.6524 | 0.6695 | 0.9949 |
| 0.0156 | 8.09 | 3990 | 0.4679 | 0.3832 | 0.9985 | 0.9949 | 0.0183 | 0.6891 | 0.7332 | 0.9949 |
| 0.0114 | 8.15 | 4020 | 0.4465 | 0.3838 | 0.9989 | 0.9952 | 0.0178 | 0.6895 | 0.7227 | 0.9952 |
| 0.0091 | 8.22 | 4050 | 0.5417 | 0.4095 | 0.9978 | 0.9947 | 0.0181 | 0.7021 | 0.7698 | 0.9948 |
| 0.0058 | 8.28 | 4080 | 0.5075 | 0.4157 | 0.9985 | 0.9952 | 0.0173 | 0.7054 | 0.7530 | 0.9952 |
| 0.0057 | 8.34 | 4110 | 0.5139 | 0.4156 | 0.9984 | 0.9951 | 0.0171 | 0.7054 | 0.7562 | 0.9951 |
| 0.0196 | 8.4 | 4140 | 0.3755 | 0.3357 | 0.9992 | 0.9950 | 0.0176 | 0.6653 | 0.6874 | 0.9950 |
| 0.0019 | 8.46 | 4170 | 0.4160 | 0.3638 | 0.9990 | 0.9951 | 0.0175 | 0.6794 | 0.7075 | 0.9951 |
| 0.004 | 8.52 | 4200 | 0.3155 | 0.2948 | 0.9995 | 0.9949 | 0.0179 | 0.6449 | 0.6575 | 0.9949 |
| 0.015 | 8.58 | 4230 | 0.3264 | 0.3041 | 0.9995 | 0.9950 | 0.0180 | 0.6495 | 0.6630 | 0.9950 |
| 0.0024 | 8.64 | 4260 | 0.3284 | 0.3059 | 0.9995 | 0.9950 | 0.0183 | 0.6504 | 0.6639 | 0.9950 |
| 0.0367 | 8.7 | 4290 | 0.4347 | 0.3764 | 0.9990 | 0.9952 | 0.0172 | 0.6858 | 0.7168 | 0.9952 |
| 0.0126 | 8.76 | 4320 | 0.4370 | 0.3820 | 0.9990 | 0.9952 | 0.0171 | 0.6886 | 0.7180 | 0.9953 |
| 0.0046 | 8.82 | 4350 | 0.4161 | 0.3627 | 0.9990 | 0.9951 | 0.0176 | 0.6789 | 0.7076 | 0.9951 |
| 0.0041 | 8.88 | 4380 | 0.5022 | 0.4108 | 0.9985 | 0.9951 | 0.0178 | 0.7030 | 0.7503 | 0.9952 |
| 0.0082 | 8.95 | 4410 | 0.3560 | 0.3239 | 0.9993 | 0.9950 | 0.0184 | 0.6594 | 0.6776 | 0.9950 |
| 0.0072 | 9.01 | 4440 | 0.5267 | 0.4208 | 0.9983 | 0.9951 | 0.0181 | 0.7080 | 0.7625 | 0.9951 |
| 0.017 | 9.07 | 4470 | 0.3270 | 0.3061 | 0.9995 | 0.9950 | 0.0178 | 0.6506 | 0.6633 | 0.9950 |
| 0.019 | 9.13 | 4500 | 0.4695 | 0.4015 | 0.9989 | 0.9953 | 0.0172 | 0.6984 | 0.7342 | 0.9953 |
| 0.0029 | 9.19 | 4530 | 0.4155 | 0.3695 | 0.9992 | 0.9952 | 0.0167 | 0.6824 | 0.7073 | 0.9952 |
| 0.0077 | 9.25 | 4560 | 0.4622 | 0.3910 | 0.9988 | 0.9952 | 0.0169 | 0.6931 | 0.7305 | 0.9952 |
| 0.0021 | 9.31 | 4590 | 0.5527 | 0.4208 | 0.9979 | 0.9949 | 0.0176 | 0.7079 | 0.7753 | 0.9949 |
| 0.0076 | 9.37 | 4620 | 0.3425 | 0.3159 | 0.9994 | 0.9950 | 0.0174 | 0.6555 | 0.6709 | 0.9950 |
| 0.0216 | 9.43 | 4650 | 0.4100 | 0.3655 | 0.9992 | 0.9952 | 0.0174 | 0.6804 | 0.7046 | 0.9952 |
| 0.0013 | 9.49 | 4680 | 0.3184 | 0.2920 | 0.9994 | 0.9948 | 0.0190 | 0.6434 | 0.6589 | 0.9948 |
| 0.0025 | 9.55 | 4710 | 0.4960 | 0.4125 | 0.9986 | 0.9952 | 0.0170 | 0.7039 | 0.7473 | 0.9953 |
| 0.0139 | 9.61 | 4740 | 0.4090 | 0.3646 | 0.9992 | 0.9952 | 0.0173 | 0.6799 | 0.7041 | 0.9952 |
| 0.0095 | 9.68 | 4770 | 0.4806 | 0.4038 | 0.9987 | 0.9952 | 0.0173 | 0.6995 | 0.7397 | 0.9952 |
| 0.0167 | 9.74 | 4800 | 0.6091 | 0.4088 | 0.9967 | 0.9941 | 0.0195 | 0.7014 | 0.8029 | 0.9941 |
| 0.0025 | 9.8 | 4830 | 0.4785 | 0.4023 | 0.9987 | 0.9952 | 0.0170 | 0.6987 | 0.7386 | 0.9952 |
| 0.0054 | 9.86 | 4860 | 0.2847 | 0.2681 | 0.9996 | 0.9948 | 0.0183 | 0.6315 | 0.6422 | 0.9948 |
| 0.0107 | 9.92 | 4890 | 0.3816 | 0.3482 | 0.9994 | 0.9952 | 0.0178 | 0.6717 | 0.6905 | 0.9952 |
| 0.0039 | 9.98 | 4920 | 0.3384 | 0.3163 | 0.9995 | 0.9951 | 0.0175 | 0.6557 | 0.6690 | 0.9951 |
| 0.0028 | 10.04 | 4950 | 0.3742 | 0.3350 | 0.9992 | 0.9950 | 0.0182 | 0.6650 | 0.6867 | 0.9950 |
| 0.006 | 10.1 | 4980 | 0.3311 | 0.3071 | 0.9995 | 0.9950 | 0.0187 | 0.6510 | 0.6653 | 0.9950 |
| 0.0077 | 10.16 | 5010 | 0.3679 | 0.3369 | 0.9994 | 0.9951 | 0.0179 | 0.6660 | 0.6836 | 0.9951 |
| 0.0015 | 10.22 | 5040 | 0.3777 | 0.3462 | 0.9994 | 0.9952 | 0.0177 | 0.6707 | 0.6885 | 0.9952 |
| 0.004 | 10.28 | 5070 | 0.3744 | 0.3442 | 0.9994 | 0.9952 | 0.0178 | 0.6697 | 0.6869 | 0.9952 |
| 0.0071 | 10.34 | 5100 | 0.5113 | 0.4167 | 0.9985 | 0.9952 | 0.0176 | 0.7060 | 0.7549 | 0.9952 |
| 0.0095 | 10.41 | 5130 | 0.3498 | 0.3191 | 0.9993 | 0.9950 | 0.0182 | 0.6570 | 0.6746 | 0.9950 |
| 0.0031 | 10.47 | 5160 | 0.4331 | 0.3818 | 0.9991 | 0.9953 | 0.0175 | 0.6885 | 0.7161 | 0.9953 |
| 0.0044 | 10.53 | 5190 | 0.4276 | 0.3762 | 0.9991 | 0.9952 | 0.0173 | 0.6857 | 0.7133 | 0.9952 |
| 0.0041 | 10.59 | 5220 | 0.4177 | 0.3680 | 0.9991 | 0.9952 | 0.0183 | 0.6816 | 0.7084 | 0.9952 |
| 0.0047 | 10.65 | 5250 | 0.4054 | 0.3648 | 0.9992 | 0.9952 | 0.0175 | 0.6800 | 0.7023 | 0.9953 |
| 0.0072 | 10.71 | 5280 | 0.4657 | 0.4011 | 0.9989 | 0.9953 | 0.0172 | 0.6982 | 0.7323 | 0.9953 |
| 0.0026 | 10.77 | 5310 | 0.5030 | 0.4209 | 0.9987 | 0.9953 | 0.0172 | 0.7081 | 0.7509 | 0.9954 |
| 0.0025 | 10.83 | 5340 | 0.5024 | 0.4142 | 0.9986 | 0.9952 | 0.0177 | 0.7047 | 0.7505 | 0.9952 |
| 0.0182 | 10.89 | 5370 | 0.4298 | 0.3824 | 0.9992 | 0.9953 | 0.0174 | 0.6889 | 0.7145 | 0.9953 |
| 0.0019 | 10.95 | 5400 | 0.4940 | 0.4172 | 0.9988 | 0.9954 | 0.0175 | 0.7063 | 0.7464 | 0.9954 |
| 0.0106 | 11.01 | 5430 | 0.2958 | 0.2791 | 0.9996 | 0.9949 | 0.0188 | 0.6370 | 0.6477 | 0.9949 |
| 0.0053 | 11.08 | 5460 | 0.5134 | 0.4229 | 0.9986 | 0.9953 | 0.0161 | 0.7091 | 0.7560 | 0.9953 |
| 0.0095 | 11.14 | 5490 | 0.4817 | 0.3820 | 0.9982 | 0.9948 | 0.0181 | 0.6884 | 0.7400 | 0.9948 |
| 0.0074 | 11.2 | 5520 | 0.3901 | 0.3532 | 0.9993 | 0.9952 | 0.0178 | 0.6742 | 0.6947 | 0.9952 |
| 0.006 | 11.26 | 5550 | 0.4780 | 0.4037 | 0.9988 | 0.9952 | 0.0176 | 0.6995 | 0.7384 | 0.9953 |
| 0.0128 | 11.32 | 5580 | 0.3996 | 0.3579 | 0.9992 | 0.9952 | 0.0162 | 0.6765 | 0.6994 | 0.9952 |
| 0.0129 | 11.38 | 5610 | 0.5160 | 0.4236 | 0.9985 | 0.9953 | 0.0168 | 0.7094 | 0.7573 | 0.9953 |
| 0.0139 | 11.44 | 5640 | 0.4689 | 0.4012 | 0.9989 | 0.9953 | 0.0168 | 0.6982 | 0.7339 | 0.9953 |
| 0.0115 | 11.5 | 5670 | 0.3573 | 0.3294 | 0.9994 | 0.9951 | 0.0181 | 0.6623 | 0.6784 | 0.9951 |
| 0.0028 | 11.56 | 5700 | 0.3349 | 0.3133 | 0.9995 | 0.9951 | 0.0178 | 0.6542 | 0.6672 | 0.9951 |
| 0.0058 | 11.62 | 5730 | 0.5205 | 0.4313 | 0.9986 | 0.9954 | 0.0170 | 0.7134 | 0.7595 | 0.9954 |
| 0.0046 | 11.68 | 5760 | 0.4486 | 0.3942 | 0.9991 | 0.9954 | 0.0170 | 0.6948 | 0.7238 | 0.9954 |
| 0.004 | 11.74 | 5790 | 0.3965 | 0.3591 | 0.9993 | 0.9952 | 0.0172 | 0.6772 | 0.6979 | 0.9952 |
| 0.0222 | 11.81 | 5820 | 0.4083 | 0.3670 | 0.9992 | 0.9953 | 0.0176 | 0.6811 | 0.7038 | 0.9953 |
| 0.0048 | 11.87 | 5850 | 0.4489 | 0.3904 | 0.9990 | 0.9953 | 0.0175 | 0.6929 | 0.7239 | 0.9953 |
| 0.0025 | 11.93 | 5880 | 0.3839 | 0.3497 | 0.9993 | 0.9952 | 0.0181 | 0.6724 | 0.6916 | 0.9952 |
| 0.0127 | 11.99 | 5910 | 0.4677 | 0.4063 | 0.9990 | 0.9954 | 0.0174 | 0.7008 | 0.7334 | 0.9954 |
| 0.0201 | 12.05 | 5940 | 0.4691 | 0.4053 | 0.9989 | 0.9954 | 0.0175 | 0.7003 | 0.7340 | 0.9954 |
| 0.0181 | 12.11 | 5970 | 0.2999 | 0.2851 | 0.9996 | 0.9949 | 0.0201 | 0.6400 | 0.6498 | 0.9950 |
| 0.0043 | 12.17 | 6000 | 0.3289 | 0.3005 | 0.9994 | 0.9948 | 0.0184 | 0.6477 | 0.6641 | 0.9949 |
| 0.0108 | 12.23 | 6030 | 0.3651 | 0.3365 | 0.9994 | 0.9952 | 0.0170 | 0.6658 | 0.6823 | 0.9952 |
| 0.006 | 12.29 | 6060 | 0.4369 | 0.3833 | 0.9991 | 0.9953 | 0.0171 | 0.6893 | 0.7180 | 0.9953 |
| 0.0041 | 12.35 | 6090 | 0.3919 | 0.3542 | 0.9993 | 0.9952 | 0.0174 | 0.6747 | 0.6956 | 0.9952 |
| 0.0034 | 12.41 | 6120 | 0.4418 | 0.3914 | 0.9991 | 0.9954 | 0.0168 | 0.6934 | 0.7205 | 0.9954 |
| 0.0007 | 12.47 | 6150 | 0.4338 | 0.3864 | 0.9992 | 0.9954 | 0.0167 | 0.6909 | 0.7165 | 0.9954 |
| 0.0048 | 12.54 | 6180 | 0.4303 | 0.3839 | 0.9992 | 0.9954 | 0.0174 | 0.6896 | 0.7147 | 0.9954 |
| 0.0078 | 12.6 | 6210 | 0.3482 | 0.3178 | 0.9994 | 0.9950 | 0.0185 | 0.6564 | 0.6738 | 0.9950 |
| 0.0038 | 12.66 | 6240 | 0.2892 | 0.2742 | 0.9996 | 0.9949 | 0.0184 | 0.6345 | 0.6444 | 0.9949 |
| 0.0078 | 12.72 | 6270 | 0.4238 | 0.3712 | 0.9990 | 0.9952 | 0.0180 | 0.6832 | 0.7114 | 0.9952 |
| 0.0013 | 12.78 | 6300 | 0.3916 | 0.3584 | 0.9994 | 0.9953 | 0.0175 | 0.6768 | 0.6955 | 0.9953 |
| 0.0025 | 12.84 | 6330 | 0.3016 | 0.2810 | 0.9995 | 0.9948 | 0.0195 | 0.6379 | 0.6505 | 0.9948 |
| 0.0033 | 12.9 | 6360 | 0.4662 | 0.4071 | 0.9990 | 0.9954 | 0.0168 | 0.7013 | 0.7326 | 0.9954 |
| 0.0225 | 12.96 | 6390 | 0.5055 | 0.4238 | 0.9987 | 0.9954 | 0.0169 | 0.7096 | 0.7521 | 0.9954 |
| 0.0081 | 13.02 | 6420 | 0.2816 | 0.2664 | 0.9996 | 0.9948 | 0.0184 | 0.6306 | 0.6406 | 0.9948 |
| 0.0032 | 13.08 | 6450 | 0.4263 | 0.3805 | 0.9992 | 0.9953 | 0.0175 | 0.6879 | 0.7128 | 0.9953 |
| 0.0139 | 13.14 | 6480 | 0.3732 | 0.3428 | 0.9994 | 0.9952 | 0.0157 | 0.6690 | 0.6863 | 0.9952 |
| 0.003 | 13.2 | 6510 | 0.3906 | 0.3565 | 0.9994 | 0.9953 | 0.0162 | 0.6759 | 0.6950 | 0.9953 |
| 0.0098 | 13.27 | 6540 | 0.4435 | 0.3848 | 0.9990 | 0.9952 | 0.0168 | 0.6900 | 0.7212 | 0.9952 |
| 0.0144 | 13.33 | 6570 | 0.4259 | 0.3729 | 0.9990 | 0.9952 | 0.0167 | 0.6840 | 0.7125 | 0.9952 |
| 0.007 | 13.39 | 6600 | 0.4175 | 0.3731 | 0.9992 | 0.9953 | 0.0165 | 0.6842 | 0.7084 | 0.9953 |
| 0.0012 | 13.45 | 6630 | 0.4576 | 0.4013 | 0.9991 | 0.9954 | 0.0161 | 0.6983 | 0.7283 | 0.9954 |
| 0.0032 | 13.51 | 6660 | 0.3585 | 0.3310 | 0.9994 | 0.9951 | 0.0174 | 0.6631 | 0.6790 | 0.9951 |
| 0.0077 | 13.57 | 6690 | 0.4255 | 0.3817 | 0.9992 | 0.9954 | 0.0164 | 0.6885 | 0.7124 | 0.9954 |
| 0.002 | 13.63 | 6720 | 0.3523 | 0.3248 | 0.9994 | 0.9951 | 0.0175 | 0.6599 | 0.6759 | 0.9951 |
| 0.0037 | 13.69 | 6750 | 0.4441 | 0.3920 | 0.9991 | 0.9954 | 0.0164 | 0.6937 | 0.7216 | 0.9954 |
| 0.0043 | 13.75 | 6780 | 0.4799 | 0.4152 | 0.9989 | 0.9954 | 0.0165 | 0.7053 | 0.7394 | 0.9955 |
| 0.008 | 13.81 | 6810 | 0.4662 | 0.3999 | 0.9989 | 0.9953 | 0.0165 | 0.6976 | 0.7326 | 0.9953 |
| 0.0066 | 13.87 | 6840 | 0.4061 | 0.3643 | 0.9992 | 0.9952 | 0.0167 | 0.6798 | 0.7027 | 0.9952 |
| 0.0061 | 13.94 | 6870 | 0.3404 | 0.3158 | 0.9995 | 0.9950 | 0.0175 | 0.6554 | 0.6699 | 0.9950 |
| 0.0098 | 14.0 | 6900 | 0.5015 | 0.4226 | 0.9987 | 0.9954 | 0.0166 | 0.7090 | 0.7501 | 0.9954 |
| 0.0067 | 14.06 | 6930 | 0.4454 | 0.3921 | 0.9991 | 0.9954 | 0.0167 | 0.6937 | 0.7222 | 0.9954 |
| 0.0125 | 14.12 | 6960 | 0.4326 | 0.3792 | 0.9990 | 0.9952 | 0.0166 | 0.6872 | 0.7158 | 0.9952 |
| 0.0032 | 14.18 | 6990 | 0.4498 | 0.3966 | 0.9991 | 0.9954 | 0.0169 | 0.6960 | 0.7244 | 0.9954 |
| 0.0018 | 14.24 | 7020 | 0.3867 | 0.3527 | 0.9993 | 0.9952 | 0.0174 | 0.6740 | 0.6930 | 0.9952 |
| 0.0022 | 14.3 | 7050 | 0.5163 | 0.4336 | 0.9987 | 0.9955 | 0.0168 | 0.7145 | 0.7575 | 0.9955 |
| 0.0024 | 14.36 | 7080 | 0.4913 | 0.4189 | 0.9988 | 0.9954 | 0.0168 | 0.7071 | 0.7451 | 0.9954 |
| 0.0037 | 14.42 | 7110 | 0.4814 | 0.4053 | 0.9987 | 0.9952 | 0.0170 | 0.7003 | 0.7401 | 0.9953 |
| 0.0034 | 14.48 | 7140 | 0.4541 | 0.3577 | 0.9982 | 0.9945 | 0.0196 | 0.6761 | 0.7262 | 0.9945 |
| 0.005 | 14.54 | 7170 | 0.4347 | 0.3862 | 0.9992 | 0.9953 | 0.0170 | 0.6908 | 0.7169 | 0.9954 |
| 0.0019 | 14.6 | 7200 | 0.4984 | 0.4203 | 0.9987 | 0.9954 | 0.0170 | 0.7078 | 0.7486 | 0.9954 |
| 0.0034 | 14.67 | 7230 | 0.2893 | 0.2756 | 0.9997 | 0.9949 | 0.0194 | 0.6353 | 0.6445 | 0.9949 |
| 0.003 | 14.73 | 7260 | 0.4117 | 0.3725 | 0.9993 | 0.9953 | 0.0171 | 0.6839 | 0.7055 | 0.9953 |
| 0.0081 | 14.79 | 7290 | 0.4518 | 0.3980 | 0.9991 | 0.9954 | 0.0169 | 0.6967 | 0.7254 | 0.9954 |
| 0.0087 | 14.85 | 7320 | 0.4720 | 0.4094 | 0.9990 | 0.9954 | 0.0170 | 0.7024 | 0.7355 | 0.9954 |
| 0.0051 | 14.91 | 7350 | 0.3505 | 0.3257 | 0.9995 | 0.9951 | 0.0173 | 0.6604 | 0.6750 | 0.9951 |
| 0.0029 | 14.97 | 7380 | 0.2699 | 0.2504 | 0.9995 | 0.9946 | 0.0183 | 0.6225 | 0.6347 | 0.9946 |
| 0.0014 | 15.03 | 7410 | 0.4490 | 0.3937 | 0.9991 | 0.9953 | 0.0150 | 0.6945 | 0.7240 | 0.9954 |
| 0.0067 | 15.09 | 7440 | 0.3776 | 0.3474 | 0.9994 | 0.9952 | 0.0162 | 0.6713 | 0.6885 | 0.9952 |
| 0.0013 | 15.15 | 7470 | 0.2608 | 0.2514 | 0.9997 | 0.9948 | 0.0191 | 0.6231 | 0.6303 | 0.9948 |
| 0.0024 | 15.21 | 7500 | 0.4044 | 0.3670 | 0.9993 | 0.9953 | 0.0172 | 0.6811 | 0.7018 | 0.9953 |
| 0.0255 | 15.27 | 7530 | 0.4400 | 0.3799 | 0.9989 | 0.9952 | 0.0169 | 0.6875 | 0.7195 | 0.9952 |
| 0.0016 | 15.33 | 7560 | 0.5440 | 0.4439 | 0.9985 | 0.9954 | 0.0168 | 0.7196 | 0.7712 | 0.9954 |
| 0.0153 | 15.4 | 7590 | 0.5414 | 0.4439 | 0.9985 | 0.9954 | 0.0165 | 0.7197 | 0.7699 | 0.9954 |
| 0.015 | 15.46 | 7620 | 0.3053 | 0.2900 | 0.9996 | 0.9950 | 0.0185 | 0.6425 | 0.6524 | 0.9950 |
| 0.0047 | 15.52 | 7650 | 0.5346 | 0.4336 | 0.9984 | 0.9953 | 0.0170 | 0.7144 | 0.7665 | 0.9953 |
| 0.0086 | 15.58 | 7680 | 0.5241 | 0.4292 | 0.9985 | 0.9953 | 0.0172 | 0.7122 | 0.7613 | 0.9953 |
| 0.0103 | 15.64 | 7710 | 0.3444 | 0.3208 | 0.9995 | 0.9951 | 0.0177 | 0.6580 | 0.6719 | 0.9951 |
| 0.0091 | 15.7 | 7740 | 0.3906 | 0.3555 | 0.9993 | 0.9952 | 0.0173 | 0.6753 | 0.6949 | 0.9952 |
| 0.0024 | 15.76 | 7770 | 0.3728 | 0.3452 | 0.9995 | 0.9952 | 0.0182 | 0.6702 | 0.6862 | 0.9953 |
| 0.0061 | 15.82 | 7800 | 0.4315 | 0.3839 | 0.9992 | 0.9953 | 0.0158 | 0.6896 | 0.7153 | 0.9954 |
| 0.0077 | 15.88 | 7830 | 0.4274 | 0.3831 | 0.9992 | 0.9954 | 0.0160 | 0.6892 | 0.7133 | 0.9954 |
| 0.0072 | 15.94 | 7860 | 0.4330 | 0.3841 | 0.9991 | 0.9953 | 0.0160 | 0.6897 | 0.7161 | 0.9953 |
| 0.009 | 16.0 | 7890 | 0.3586 | 0.3333 | 0.9995 | 0.9952 | 0.0163 | 0.6642 | 0.6790 | 0.9952 |
| 0.0092 | 16.06 | 7920 | 0.4129 | 0.3706 | 0.9992 | 0.9953 | 0.0161 | 0.6829 | 0.7060 | 0.9953 |
| 0.0032 | 16.13 | 7950 | 0.4836 | 0.4160 | 0.9989 | 0.9954 | 0.0161 | 0.7057 | 0.7413 | 0.9954 |
| 0.0062 | 16.19 | 7980 | 0.4115 | 0.3322 | 0.9984 | 0.9944 | 0.0206 | 0.6633 | 0.7049 | 0.9944 |
| 0.0093 | 16.25 | 8010 | 0.3616 | 0.3322 | 0.9994 | 0.9951 | 0.0173 | 0.6637 | 0.6805 | 0.9951 |
| 0.001 | 16.31 | 8040 | 0.4858 | 0.4150 | 0.9988 | 0.9954 | 0.0161 | 0.7052 | 0.7423 | 0.9954 |
| 0.0132 | 16.37 | 8070 | 0.3209 | 0.2952 | 0.9994 | 0.9948 | 0.0188 | 0.6450 | 0.6602 | 0.9949 |
| 0.0016 | 16.43 | 8100 | 0.4150 | 0.3742 | 0.9993 | 0.9953 | 0.0166 | 0.6848 | 0.7071 | 0.9953 |
| 0.0007 | 16.49 | 8130 | 0.4981 | 0.3988 | 0.9983 | 0.9949 | 0.0185 | 0.6969 | 0.7482 | 0.9950 |
| 0.002 | 16.55 | 8160 | 0.3659 | 0.3385 | 0.9995 | 0.9952 | 0.0184 | 0.6668 | 0.6827 | 0.9952 |
| 0.0074 | 16.61 | 8190 | 0.4173 | 0.3763 | 0.9993 | 0.9953 | 0.0166 | 0.6858 | 0.7083 | 0.9954 |
| 0.0048 | 16.67 | 8220 | 0.3306 | 0.3108 | 0.9996 | 0.9951 | 0.0179 | 0.6529 | 0.6651 | 0.9951 |
| 0.0028 | 16.73 | 8250 | 0.4462 | 0.3932 | 0.9991 | 0.9954 | 0.0166 | 0.6943 | 0.7227 | 0.9954 |
| 0.0135 | 16.8 | 8280 | 0.3967 | 0.3617 | 0.9993 | 0.9953 | 0.0172 | 0.6785 | 0.6980 | 0.9953 |
| 0.0138 | 16.86 | 8310 | 0.3657 | 0.3396 | 0.9995 | 0.9952 | 0.0173 | 0.6674 | 0.6826 | 0.9952 |
| 0.0017 | 16.92 | 8340 | 0.3303 | 0.3061 | 0.9995 | 0.9950 | 0.0191 | 0.6505 | 0.6649 | 0.9950 |
| 0.0071 | 16.98 | 8370 | 0.3825 | 0.3512 | 0.9994 | 0.9952 | 0.0174 | 0.6732 | 0.6909 | 0.9953 |
| 0.0044 | 17.04 | 8400 | 0.4303 | 0.3849 | 0.9992 | 0.9954 | 0.0171 | 0.6901 | 0.7148 | 0.9954 |
| 0.0101 | 17.1 | 8430 | 0.4256 | 0.3771 | 0.9991 | 0.9953 | 0.0172 | 0.6862 | 0.7123 | 0.9953 |
| 0.0076 | 17.16 | 8460 | 0.4438 | 0.3939 | 0.9991 | 0.9954 | 0.0168 | 0.6947 | 0.7215 | 0.9954 |
| 0.0073 | 17.22 | 8490 | 0.5011 | 0.4236 | 0.9988 | 0.9954 | 0.0164 | 0.7095 | 0.7500 | 0.9954 |
| 0.0029 | 17.28 | 8520 | 0.2741 | 0.2627 | 0.9997 | 0.9948 | 0.0177 | 0.6288 | 0.6369 | 0.9948 |
| 0.0109 | 17.34 | 8550 | 0.4682 | 0.4074 | 0.9990 | 0.9954 | 0.0160 | 0.7014 | 0.7336 | 0.9954 |
| 0.0258 | 17.4 | 8580 | 0.4508 | 0.3901 | 0.9989 | 0.9953 | 0.0166 | 0.6927 | 0.7249 | 0.9953 |
| 0.0181 | 17.46 | 8610 | 0.4780 | 0.4058 | 0.9988 | 0.9953 | 0.0168 | 0.7006 | 0.7384 | 0.9953 |
| 0.0052 | 17.53 | 8640 | 0.3767 | 0.3447 | 0.9994 | 0.9952 | 0.0177 | 0.6699 | 0.6880 | 0.9952 |
| 0.0069 | 17.59 | 8670 | 0.3409 | 0.3125 | 0.9994 | 0.9950 | 0.0187 | 0.6537 | 0.6702 | 0.9950 |
| 0.004 | 17.65 | 8700 | 0.3400 | 0.3172 | 0.9995 | 0.9951 | 0.0189 | 0.6561 | 0.6697 | 0.9951 |
| 0.0061 | 17.71 | 8730 | 0.3931 | 0.3594 | 0.9994 | 0.9953 | 0.0183 | 0.6773 | 0.6962 | 0.9953 |
| 0.0038 | 17.77 | 8760 | 0.2883 | 0.2749 | 0.9997 | 0.9949 | 0.0195 | 0.6349 | 0.6440 | 0.9949 |
| 0.0021 | 17.83 | 8790 | 0.3568 | 0.3300 | 0.9995 | 0.9951 | 0.0182 | 0.6626 | 0.6781 | 0.9951 |
| 0.0019 | 17.89 | 8820 | 0.5072 | 0.4183 | 0.9986 | 0.9952 | 0.0176 | 0.7068 | 0.7529 | 0.9953 |
| 0.0006 | 17.95 | 8850 | 0.3592 | 0.3334 | 0.9995 | 0.9952 | 0.0182 | 0.6643 | 0.6793 | 0.9952 |
| 0.0031 | 18.01 | 8880 | 0.3860 | 0.3439 | 0.9992 | 0.9950 | 0.0182 | 0.6695 | 0.6926 | 0.9951 |
| 0.003 | 18.07 | 8910 | 0.2987 | 0.2766 | 0.9995 | 0.9947 | 0.0198 | 0.6357 | 0.6491 | 0.9948 |
| 0.0033 | 18.13 | 8940 | 0.4374 | 0.3876 | 0.9991 | 0.9953 | 0.0173 | 0.6915 | 0.7182 | 0.9954 |
| 0.0067 | 18.19 | 8970 | 0.5144 | 0.4266 | 0.9986 | 0.9953 | 0.0176 | 0.7110 | 0.7565 | 0.9954 |
| 0.0056 | 18.26 | 9000 | 0.3742 | 0.3451 | 0.9994 | 0.9952 | 0.0179 | 0.6701 | 0.6868 | 0.9952 |
| 0.0008 | 18.32 | 9030 | 0.3526 | 0.3308 | 0.9996 | 0.9952 | 0.0178 | 0.6630 | 0.6761 | 0.9952 |
| 0.0038 | 18.38 | 9060 | 0.4611 | 0.4051 | 0.9991 | 0.9954 | 0.0176 | 0.7003 | 0.7301 | 0.9955 |
| 0.005 | 18.44 | 9090 | 0.4017 | 0.3636 | 0.9993 | 0.9953 | 0.0183 | 0.6794 | 0.7005 | 0.9953 |
| 0.0028 | 18.5 | 9120 | 0.4492 | 0.3950 | 0.9991 | 0.9954 | 0.0159 | 0.6952 | 0.7241 | 0.9954 |
| 0.0055 | 18.56 | 9150 | 0.5008 | 0.4227 | 0.9988 | 0.9954 | 0.0154 | 0.7090 | 0.7498 | 0.9954 |
| 0.0057 | 18.62 | 9180 | 0.3915 | 0.3568 | 0.9993 | 0.9952 | 0.0159 | 0.6760 | 0.6954 | 0.9953 |
| 0.0081 | 18.68 | 9210 | 0.4314 | 0.3832 | 0.9991 | 0.9953 | 0.0159 | 0.6892 | 0.7153 | 0.9953 |
| 0.0051 | 18.74 | 9240 | 0.3941 | 0.3605 | 0.9994 | 0.9953 | 0.0161 | 0.6779 | 0.6967 | 0.9953 |
| 0.0053 | 18.8 | 9270 | 0.3960 | 0.3606 | 0.9993 | 0.9953 | 0.0165 | 0.6779 | 0.6977 | 0.9953 |
| 0.0171 | 18.86 | 9300 | 0.4220 | 0.3768 | 0.9992 | 0.9953 | 0.0165 | 0.6861 | 0.7106 | 0.9953 |
| 0.0026 | 18.92 | 9330 | 0.4337 | 0.3876 | 0.9992 | 0.9954 | 0.0166 | 0.6915 | 0.7165 | 0.9954 |
| 0.0188 | 18.99 | 9360 | 0.4283 | 0.3835 | 0.9992 | 0.9954 | 0.0168 | 0.6894 | 0.7138 | 0.9954 |
| 0.0062 | 19.05 | 9390 | 0.4129 | 0.3726 | 0.9993 | 0.9953 | 0.0166 | 0.6840 | 0.7061 | 0.9953 |
| 0.0136 | 19.11 | 9420 | 0.4603 | 0.4005 | 0.9990 | 0.9954 | 0.0166 | 0.6979 | 0.7296 | 0.9954 |
| 0.005 | 19.17 | 9450 | 0.3971 | 0.3607 | 0.9993 | 0.9953 | 0.0170 | 0.6780 | 0.6982 | 0.9953 |
| 0.0106 | 19.23 | 9480 | 0.4597 | 0.3994 | 0.9990 | 0.9953 | 0.0163 | 0.6974 | 0.7293 | 0.9954 |
| 0.0045 | 19.29 | 9510 | 0.3873 | 0.3532 | 0.9993 | 0.9952 | 0.0167 | 0.6742 | 0.6933 | 0.9952 |
| 0.0015 | 19.35 | 9540 | 0.3104 | 0.2948 | 0.9996 | 0.9950 | 0.0175 | 0.6449 | 0.6550 | 0.9950 |
| 0.0049 | 19.41 | 9570 | 0.4511 | 0.3973 | 0.9991 | 0.9954 | 0.0165 | 0.6964 | 0.7251 | 0.9954 |
| 0.0023 | 19.47 | 9600 | 0.2654 | 0.2552 | 0.9997 | 0.9948 | 0.0187 | 0.6250 | 0.6326 | 0.9948 |
| 0.0079 | 19.53 | 9630 | 0.3844 | 0.3489 | 0.9993 | 0.9952 | 0.0177 | 0.6720 | 0.6918 | 0.9952 |
| 0.0112 | 19.59 | 9660 | 0.4717 | 0.4130 | 0.9990 | 0.9955 | 0.0166 | 0.7042 | 0.7353 | 0.9955 |
| 0.0021 | 19.66 | 9690 | 0.3977 | 0.3602 | 0.9993 | 0.9952 | 0.0167 | 0.6777 | 0.6985 | 0.9953 |
| 0.0056 | 19.72 | 9720 | 0.4466 | 0.3951 | 0.9991 | 0.9954 | 0.0169 | 0.6952 | 0.7229 | 0.9954 |
| 0.0089 | 19.78 | 9750 | 0.3270 | 0.3070 | 0.9996 | 0.9950 | 0.0179 | 0.6510 | 0.6633 | 0.9950 |
| 0.0076 | 19.84 | 9780 | 0.3947 | 0.3586 | 0.9993 | 0.9952 | 0.0181 | 0.6769 | 0.6970 | 0.9953 |
| 0.0012 | 19.9 | 9810 | 0.5196 | 0.4334 | 0.9987 | 0.9954 | 0.0174 | 0.7144 | 0.7592 | 0.9954 |
| 0.0074 | 19.96 | 9840 | 0.4607 | 0.4064 | 0.9991 | 0.9955 | 0.0178 | 0.7009 | 0.7299 | 0.9955 |
| 0.012 | 20.02 | 9870 | 0.3824 | 0.3508 | 0.9994 | 0.9952 | 0.0186 | 0.6730 | 0.6909 | 0.9952 |
| 0.0034 | 20.08 | 9900 | 0.4868 | 0.4136 | 0.9988 | 0.9954 | 0.0176 | 0.7045 | 0.7428 | 0.9954 |
| 0.0043 | 20.14 | 9930 | 0.4499 | 0.3988 | 0.9991 | 0.9954 | 0.0181 | 0.6971 | 0.7245 | 0.9954 |
| 0.0021 | 20.2 | 9960 | 0.3666 | 0.3397 | 0.9995 | 0.9952 | 0.0162 | 0.6675 | 0.6830 | 0.9952 |
| 0.0109 | 20.26 | 9990 | 0.3804 | 0.3483 | 0.9994 | 0.9952 | 0.0156 | 0.6718 | 0.6899 | 0.9952 |
| 0.0045 | 20.32 | 10020 | 0.4206 | 0.3782 | 0.9992 | 0.9953 | 0.0152 | 0.6868 | 0.7099 | 0.9954 |
| 0.0036 | 20.39 | 10050 | 0.4397 | 0.3924 | 0.9992 | 0.9954 | 0.0157 | 0.6939 | 0.7194 | 0.9954 |
| 0.0029 | 20.45 | 10080 | 0.4284 | 0.3800 | 0.9991 | 0.9953 | 0.0155 | 0.6876 | 0.7138 | 0.9953 |
| 0.0041 | 20.51 | 10110 | 0.4948 | 0.4209 | 0.9988 | 0.9954 | 0.0159 | 0.7082 | 0.7468 | 0.9954 |
| 0.0017 | 20.57 | 10140 | 0.4869 | 0.4188 | 0.9989 | 0.9954 | 0.0157 | 0.7071 | 0.7429 | 0.9955 |
| 0.0052 | 20.63 | 10170 | 0.4236 | 0.3800 | 0.9992 | 0.9953 | 0.0160 | 0.6877 | 0.7114 | 0.9954 |
| 0.0096 | 20.69 | 10200 | 0.3932 | 0.3608 | 0.9994 | 0.9953 | 0.0161 | 0.6781 | 0.6963 | 0.9953 |
| 0.003 | 20.75 | 10230 | 0.4181 | 0.3794 | 0.9993 | 0.9954 | 0.0159 | 0.6874 | 0.7087 | 0.9954 |
| 0.0019 | 20.81 | 10260 | 0.3584 | 0.3341 | 0.9995 | 0.9952 | 0.0162 | 0.6646 | 0.6790 | 0.9952 |
| 0.0041 | 20.87 | 10290 | 0.3149 | 0.2979 | 0.9996 | 0.9950 | 0.0169 | 0.6465 | 0.6573 | 0.9950 |
| 0.0163 | 20.93 | 10320 | 0.4067 | 0.3711 | 0.9994 | 0.9954 | 0.0160 | 0.6833 | 0.7030 | 0.9954 |
| 0.0083 | 20.99 | 10350 | 0.4386 | 0.3883 | 0.9991 | 0.9953 | 0.0162 | 0.6918 | 0.7189 | 0.9954 |
| 0.0059 | 21.05 | 10380 | 0.4596 | 0.3989 | 0.9990 | 0.9953 | 0.0161 | 0.6971 | 0.7293 | 0.9954 |
| 0.0136 | 21.12 | 10410 | 0.4530 | 0.4004 | 0.9991 | 0.9954 | 0.0160 | 0.6979 | 0.7261 | 0.9954 |
| 0.0019 | 21.18 | 10440 | 0.3820 | 0.3496 | 0.9994 | 0.9952 | 0.0168 | 0.6724 | 0.6907 | 0.9952 |
| 0.0034 | 21.24 | 10470 | 0.5635 | 0.4307 | 0.9979 | 0.9950 | 0.0175 | 0.7128 | 0.7807 | 0.9950 |
| 0.0089 | 21.3 | 10500 | 0.4849 | 0.4173 | 0.9989 | 0.9954 | 0.0164 | 0.7064 | 0.7419 | 0.9955 |
| 0.0067 | 21.36 | 10530 | 0.3740 | 0.3465 | 0.9995 | 0.9953 | 0.0168 | 0.6709 | 0.6867 | 0.9953 |
| 0.0011 | 21.42 | 10560 | 0.4060 | 0.3705 | 0.9994 | 0.9954 | 0.0166 | 0.6829 | 0.7027 | 0.9954 |
| 0.0051 | 21.48 | 10590 | 0.4662 | 0.4087 | 0.9990 | 0.9955 | 0.0161 | 0.7021 | 0.7326 | 0.9955 |
| 0.0012 | 21.54 | 10620 | 0.4241 | 0.3834 | 0.9993 | 0.9954 | 0.0157 | 0.6894 | 0.7117 | 0.9954 |
| 0.0175 | 21.6 | 10650 | 0.3203 | 0.3027 | 0.9996 | 0.9950 | 0.0169 | 0.6489 | 0.6599 | 0.9950 |
| 0.0062 | 21.66 | 10680 | 0.4179 | 0.3777 | 0.9993 | 0.9954 | 0.0164 | 0.6865 | 0.7086 | 0.9954 |
| 0.001 | 21.72 | 10710 | 0.4611 | 0.4031 | 0.9990 | 0.9954 | 0.0162 | 0.6993 | 0.7301 | 0.9954 |
| 0.0007 | 21.78 | 10740 | 0.4893 | 0.4156 | 0.9988 | 0.9954 | 0.0166 | 0.7055 | 0.7440 | 0.9954 |
| 0.0074 | 21.85 | 10770 | 0.4030 | 0.3601 | 0.9992 | 0.9952 | 0.0169 | 0.6776 | 0.7011 | 0.9952 |
| 0.0064 | 21.91 | 10800 | 0.5096 | 0.4213 | 0.9986 | 0.9953 | 0.0168 | 0.7083 | 0.7541 | 0.9953 |
| 0.0052 | 21.97 | 10830 | 0.3540 | 0.3284 | 0.9995 | 0.9951 | 0.0176 | 0.6618 | 0.6767 | 0.9951 |
| 0.0075 | 22.03 | 10860 | 0.3808 | 0.3493 | 0.9994 | 0.9952 | 0.0181 | 0.6723 | 0.6901 | 0.9952 |
| 0.0013 | 22.09 | 10890 | 0.2467 | 0.2382 | 0.9998 | 0.9947 | 0.0198 | 0.6164 | 0.6232 | 0.9947 |
| 0.0055 | 22.15 | 10920 | 0.4700 | 0.4061 | 0.9989 | 0.9954 | 0.0173 | 0.7007 | 0.7345 | 0.9954 |
| 0.0061 | 22.21 | 10950 | 0.4901 | 0.4211 | 0.9989 | 0.9955 | 0.0168 | 0.7083 | 0.7445 | 0.9955 |
| 0.0004 | 22.27 | 10980 | 0.4764 | 0.4113 | 0.9989 | 0.9954 | 0.0168 | 0.7033 | 0.7377 | 0.9954 |
| 0.0138 | 22.33 | 11010 | 0.4446 | 0.3937 | 0.9991 | 0.9954 | 0.0168 | 0.6945 | 0.7219 | 0.9954 |
| 0.0094 | 22.39 | 11040 | 0.4146 | 0.3736 | 0.9993 | 0.9953 | 0.0171 | 0.6845 | 0.7069 | 0.9953 |
| 0.0019 | 22.45 | 11070 | 0.4256 | 0.3792 | 0.9992 | 0.9953 | 0.0177 | 0.6873 | 0.7124 | 0.9953 |
| 0.0061 | 22.52 | 11100 | 0.4614 | 0.4072 | 0.9991 | 0.9955 | 0.0166 | 0.7013 | 0.7303 | 0.9955 |
| 0.0248 | 22.58 | 11130 | 0.3462 | 0.3249 | 0.9996 | 0.9952 | 0.0173 | 0.6600 | 0.6729 | 0.9952 |
| 0.0038 | 22.64 | 11160 | 0.2986 | 0.2849 | 0.9997 | 0.9950 | 0.0181 | 0.6399 | 0.6491 | 0.9950 |
| 0.0086 | 22.7 | 11190 | 0.4815 | 0.4106 | 0.9988 | 0.9953 | 0.0177 | 0.7030 | 0.7402 | 0.9954 |
| 0.0024 | 22.76 | 11220 | 0.4619 | 0.4066 | 0.9991 | 0.9955 | 0.0171 | 0.7010 | 0.7305 | 0.9955 |
| 0.5688 | 22.82 | 11250 | 0.4511 | 0.3964 | 0.9991 | 0.9954 | 0.0171 | 0.6959 | 0.7251 | 0.9954 |
| 0.0245 | 22.88 | 11280 | 0.3592 | 0.3349 | 0.9995 | 0.9952 | 0.0160 | 0.6651 | 0.6794 | 0.9952 |
| 0.0042 | 22.94 | 11310 | 0.4520 | 0.3982 | 0.9991 | 0.9954 | 0.0152 | 0.6968 | 0.7256 | 0.9954 |
| 0.0071 | 23.0 | 11340 | 0.4718 | 0.3989 | 0.9988 | 0.9952 | 0.0153 | 0.6970 | 0.7353 | 0.9952 |
| 0.0072 | 23.06 | 11370 | 0.2602 | 0.2505 | 0.9997 | 0.9948 | 0.0174 | 0.6226 | 0.6300 | 0.9948 |
| 0.0018 | 23.12 | 11400 | 0.3847 | 0.3524 | 0.9994 | 0.9952 | 0.0156 | 0.6738 | 0.6921 | 0.9953 |
| 0.0059 | 23.18 | 11430 | 0.3958 | 0.3630 | 0.9994 | 0.9953 | 0.0160 | 0.6792 | 0.6976 | 0.9953 |
| 0.0061 | 23.25 | 11460 | 0.4973 | 0.4261 | 0.9989 | 0.9955 | 0.0150 | 0.7108 | 0.7481 | 0.9955 |
| 0.0064 | 23.31 | 11490 | 0.4901 | 0.4158 | 0.9988 | 0.9954 | 0.0157 | 0.7056 | 0.7444 | 0.9954 |
| 0.0038 | 23.37 | 11520 | 0.4829 | 0.4165 | 0.9989 | 0.9954 | 0.0153 | 0.7060 | 0.7409 | 0.9955 |
| 0.0071 | 23.43 | 11550 | 0.4206 | 0.3773 | 0.9992 | 0.9953 | 0.0157 | 0.6863 | 0.7099 | 0.9953 |
| 0.0038 | 23.49 | 11580 | 0.4850 | 0.4152 | 0.9989 | 0.9954 | 0.0157 | 0.7053 | 0.7419 | 0.9954 |
| 0.0067 | 23.55 | 11610 | 0.3487 | 0.3226 | 0.9995 | 0.9951 | 0.0167 | 0.6588 | 0.6741 | 0.9951 |
| 0.0153 | 23.61 | 11640 | 0.3981 | 0.3636 | 0.9994 | 0.9953 | 0.0167 | 0.6795 | 0.6988 | 0.9953 |
| 0.0051 | 23.67 | 11670 | 0.3383 | 0.3170 | 0.9995 | 0.9951 | 0.0169 | 0.6560 | 0.6689 | 0.9951 |
| 0.0046 | 23.73 | 11700 | 0.3682 | 0.3399 | 0.9994 | 0.9952 | 0.0170 | 0.6675 | 0.6838 | 0.9952 |
| 0.0067 | 23.79 | 11730 | 0.4416 | 0.3886 | 0.9991 | 0.9953 | 0.0165 | 0.6920 | 0.7203 | 0.9953 |
| 0.0064 | 23.85 | 11760 | 0.4353 | 0.3844 | 0.9991 | 0.9953 | 0.0167 | 0.6898 | 0.7172 | 0.9953 |
| 0.0154 | 23.91 | 11790 | 0.3648 | 0.3389 | 0.9995 | 0.9952 | 0.0167 | 0.6670 | 0.6821 | 0.9952 |
| 0.0024 | 23.98 | 11820 | 0.3661 | 0.3369 | 0.9994 | 0.9951 | 0.0168 | 0.6660 | 0.6828 | 0.9952 |
| 0.0033 | 24.04 | 11850 | 0.3889 | 0.3486 | 0.9992 | 0.9951 | 0.0164 | 0.6719 | 0.6941 | 0.9951 |
| 0.0008 | 24.1 | 11880 | 0.3108 | 0.2920 | 0.9996 | 0.9949 | 0.0175 | 0.6435 | 0.6552 | 0.9949 |
| 0.0122 | 24.16 | 11910 | 0.3765 | 0.3477 | 0.9994 | 0.9952 | 0.0165 | 0.6715 | 0.6880 | 0.9953 |
| 0.023 | 24.22 | 11940 | 0.4958 | 0.4147 | 0.9987 | 0.9953 | 0.0159 | 0.7050 | 0.7472 | 0.9953 |
| 0.0144 | 24.28 | 11970 | 0.4176 | 0.3776 | 0.9993 | 0.9954 | 0.0159 | 0.6865 | 0.7084 | 0.9954 |
| 0.0084 | 24.34 | 12000 | 0.3756 | 0.3454 | 0.9994 | 0.9952 | 0.0162 | 0.6703 | 0.6875 | 0.9952 |
| 0.0026 | 24.4 | 12030 | 0.4246 | 0.3801 | 0.9992 | 0.9953 | 0.0158 | 0.6877 | 0.7119 | 0.9954 |
| 0.003 | 24.46 | 12060 | 0.4904 | 0.4161 | 0.9988 | 0.9954 | 0.0161 | 0.7057 | 0.7446 | 0.9954 |
| 0.0067 | 24.52 | 12090 | 0.4726 | 0.4060 | 0.9989 | 0.9953 | 0.0163 | 0.7007 | 0.7357 | 0.9954 |
| 0.01 | 24.58 | 12120 | 0.5012 | 0.4232 | 0.9988 | 0.9954 | 0.0163 | 0.7093 | 0.7500 | 0.9954 |
| 0.0047 | 24.65 | 12150 | 0.4273 | 0.3820 | 0.9992 | 0.9953 | 0.0167 | 0.6887 | 0.7132 | 0.9954 |
| 0.008 | 24.71 | 12180 | 0.4555 | 0.3992 | 0.9990 | 0.9954 | 0.0165 | 0.6973 | 0.7273 | 0.9954 |
| 0.004 | 24.77 | 12210 | 0.4153 | 0.3676 | 0.9991 | 0.9952 | 0.0174 | 0.6814 | 0.7072 | 0.9952 |
| 0.0017 | 24.83 | 12240 | 0.4730 | 0.4066 | 0.9989 | 0.9954 | 0.0158 | 0.7010 | 0.7360 | 0.9954 |
| 0.0141 | 24.89 | 12270 | 0.4485 | 0.3946 | 0.9991 | 0.9954 | 0.0173 | 0.6950 | 0.7238 | 0.9954 |
| 0.018 | 24.95 | 12300 | 0.4337 | 0.3848 | 0.9991 | 0.9953 | 0.0181 | 0.6901 | 0.7164 | 0.9953 |
| 0.004 | 25.01 | 12330 | 0.5078 | 0.4322 | 0.9988 | 0.9955 | 0.0171 | 0.7139 | 0.7533 | 0.9955 |
| 0.0093 | 25.07 | 12360 | 0.4210 | 0.3783 | 0.9992 | 0.9953 | 0.0172 | 0.6868 | 0.7101 | 0.9954 |
| 0.0054 | 25.13 | 12390 | 0.4701 | 0.4077 | 0.9990 | 0.9954 | 0.0174 | 0.7015 | 0.7346 | 0.9954 |
| 0.0066 | 25.19 | 12420 | 0.6023 | 0.4358 | 0.9974 | 0.9947 | 0.0189 | 0.7153 | 0.7999 | 0.9948 |
| 0.0017 | 25.25 | 12450 | 0.4582 | 0.4010 | 0.9990 | 0.9954 | 0.0182 | 0.6982 | 0.7286 | 0.9954 |
| 0.0021 | 25.31 | 12480 | 0.3981 | 0.3630 | 0.9993 | 0.9953 | 0.0184 | 0.6791 | 0.6987 | 0.9953 |
| 0.0017 | 25.38 | 12510 | 0.4041 | 0.3635 | 0.9992 | 0.9952 | 0.0181 | 0.6794 | 0.7017 | 0.9952 |
| 0.0026 | 25.44 | 12540 | 0.4181 | 0.3758 | 0.9992 | 0.9953 | 0.0184 | 0.6856 | 0.7087 | 0.9953 |
| 0.0029 | 25.5 | 12570 | 0.3562 | 0.3329 | 0.9995 | 0.9952 | 0.0191 | 0.6641 | 0.6778 | 0.9952 |
| 0.0146 | 25.56 | 12600 | 0.4022 | 0.3673 | 0.9994 | 0.9953 | 0.0185 | 0.6813 | 0.7008 | 0.9953 |
| 0.0015 | 25.62 | 12630 | 0.3870 | 0.3565 | 0.9994 | 0.9953 | 0.0166 | 0.6759 | 0.6932 | 0.9953 |
| 0.0024 | 25.68 | 12660 | 0.3898 | 0.3570 | 0.9994 | 0.9953 | 0.0171 | 0.6762 | 0.6946 | 0.9953 |
| 0.0022 | 25.74 | 12690 | 0.4325 | 0.3888 | 0.9992 | 0.9954 | 0.0176 | 0.6921 | 0.7159 | 0.9954 |
| 0.004 | 25.8 | 12720 | 0.4414 | 0.3940 | 0.9992 | 0.9954 | 0.0172 | 0.6947 | 0.7203 | 0.9954 |
| 0.0084 | 25.86 | 12750 | 0.4358 | 0.3912 | 0.9992 | 0.9954 | 0.0165 | 0.6933 | 0.7175 | 0.9954 |
| 0.0065 | 25.92 | 12780 | 0.3569 | 0.3323 | 0.9995 | 0.9952 | 0.0182 | 0.6638 | 0.6782 | 0.9952 |
| 0.0079 | 25.98 | 12810 | 0.4055 | 0.3689 | 0.9993 | 0.9953 | 0.0172 | 0.6821 | 0.7024 | 0.9953 |
| 0.005 | 26.04 | 12840 | 0.4212 | 0.3794 | 0.9993 | 0.9954 | 0.0172 | 0.6874 | 0.7102 | 0.9954 |
| 0.0007 | 26.11 | 12870 | 0.4125 | 0.3731 | 0.9993 | 0.9953 | 0.0172 | 0.6842 | 0.7059 | 0.9953 |
| 0.01 | 26.17 | 12900 | 0.3635 | 0.3363 | 0.9995 | 0.9952 | 0.0181 | 0.6657 | 0.6815 | 0.9952 |
| 0.0029 | 26.23 | 12930 | 0.4441 | 0.3959 | 0.9992 | 0.9954 | 0.0172 | 0.6957 | 0.7216 | 0.9955 |
| 0.0028 | 26.29 | 12960 | 0.3467 | 0.3259 | 0.9996 | 0.9952 | 0.0181 | 0.6605 | 0.6731 | 0.9952 |
| 0.01 | 26.35 | 12990 | 0.3661 | 0.3394 | 0.9995 | 0.9952 | 0.0184 | 0.6673 | 0.6828 | 0.9952 |
| 0.0008 | 26.41 | 13020 | 0.4187 | 0.3783 | 0.9993 | 0.9954 | 0.0176 | 0.6868 | 0.7090 | 0.9954 |
| 0.0046 | 26.47 | 13050 | 0.3741 | 0.3459 | 0.9994 | 0.9952 | 0.0182 | 0.6705 | 0.6868 | 0.9952 |
| 0.0019 | 26.53 | 13080 | 0.3689 | 0.3407 | 0.9994 | 0.9952 | 0.0184 | 0.6680 | 0.6842 | 0.9952 |
| 0.0143 | 26.59 | 13110 | 0.3326 | 0.3133 | 0.9996 | 0.9951 | 0.0189 | 0.6542 | 0.6661 | 0.9951 |
| 0.0041 | 26.65 | 13140 | 0.4335 | 0.3869 | 0.9992 | 0.9954 | 0.0177 | 0.6911 | 0.7163 | 0.9954 |
| 0.005 | 26.71 | 13170 | 0.3742 | 0.3444 | 0.9994 | 0.9952 | 0.0187 | 0.6698 | 0.6868 | 0.9952 |
| 0.0019 | 26.77 | 13200 | 0.3227 | 0.3048 | 0.9996 | 0.9950 | 0.0190 | 0.6499 | 0.6611 | 0.9951 |
| 0.0006 | 26.84 | 13230 | 0.3938 | 0.3619 | 0.9994 | 0.9953 | 0.0157 | 0.6786 | 0.6966 | 0.9953 |
| 0.0096 | 26.9 | 13260 | 0.4391 | 0.3894 | 0.9991 | 0.9954 | 0.0162 | 0.6924 | 0.7191 | 0.9954 |
| 0.0028 | 26.96 | 13290 | 0.5010 | 0.4275 | 0.9988 | 0.9955 | 0.0169 | 0.7115 | 0.7499 | 0.9955 |
| 0.0067 | 27.02 | 13320 | 0.4395 | 0.3918 | 0.9992 | 0.9954 | 0.0176 | 0.6936 | 0.7193 | 0.9954 |
| 0.0124 | 27.08 | 13350 | 0.3646 | 0.3392 | 0.9995 | 0.9952 | 0.0181 | 0.6672 | 0.6820 | 0.9952 |
| 0.0016 | 27.14 | 13380 | 0.4036 | 0.3668 | 0.9993 | 0.9953 | 0.0174 | 0.6810 | 0.7015 | 0.9953 |
| 0.0069 | 27.2 | 13410 | 0.4628 | 0.4058 | 0.9990 | 0.9954 | 0.0172 | 0.7006 | 0.7309 | 0.9954 |
| 0.003 | 27.26 | 13440 | 0.4313 | 0.3868 | 0.9992 | 0.9954 | 0.0162 | 0.6911 | 0.7153 | 0.9954 |
| 0.0015 | 27.32 | 13470 | 0.4527 | 0.3979 | 0.9991 | 0.9954 | 0.0165 | 0.6967 | 0.7259 | 0.9954 |
| 0.0109 | 27.38 | 13500 | 0.4257 | 0.3809 | 0.9992 | 0.9953 | 0.0169 | 0.6881 | 0.7124 | 0.9954 |
| 0.0053 | 27.44 | 13530 | 0.4349 | 0.3895 | 0.9992 | 0.9954 | 0.0170 | 0.6924 | 0.7171 | 0.9954 |
| 0.0049 | 27.51 | 13560 | 0.3426 | 0.3183 | 0.9995 | 0.9951 | 0.0175 | 0.6567 | 0.6711 | 0.9951 |
| 0.0023 | 27.57 | 13590 | 0.3896 | 0.3572 | 0.9994 | 0.9953 | 0.0163 | 0.6762 | 0.6945 | 0.9953 |
| 0.0065 | 27.63 | 13620 | 0.5389 | 0.4445 | 0.9986 | 0.9955 | 0.0162 | 0.7200 | 0.7687 | 0.9955 |
| 0.0009 | 27.69 | 13650 | 0.4391 | 0.3864 | 0.9991 | 0.9953 | 0.0177 | 0.6908 | 0.7191 | 0.9953 |
| 0.0009 | 27.75 | 13680 | 0.4727 | 0.4134 | 0.9990 | 0.9955 | 0.0177 | 0.7044 | 0.7358 | 0.9955 |
| 0.0056 | 27.81 | 13710 | 0.4976 | 0.4227 | 0.9988 | 0.9954 | 0.0174 | 0.7091 | 0.7482 | 0.9954 |
| 0.0046 | 27.87 | 13740 | 0.3521 | 0.3289 | 0.9995 | 0.9952 | 0.0183 | 0.6620 | 0.6758 | 0.9952 |
| 0.0053 | 27.93 | 13770 | 0.4465 | 0.3968 | 0.9992 | 0.9954 | 0.0175 | 0.6961 | 0.7228 | 0.9954 |
| 0.0072 | 27.99 | 13800 | 0.4351 | 0.3902 | 0.9992 | 0.9954 | 0.0177 | 0.6928 | 0.7171 | 0.9954 |
| 0.0067 | 28.05 | 13830 | 0.3882 | 0.3585 | 0.9994 | 0.9953 | 0.0176 | 0.6769 | 0.6938 | 0.9953 |
| 0.0018 | 28.11 | 13860 | 0.3821 | 0.3486 | 0.9993 | 0.9952 | 0.0177 | 0.6719 | 0.6907 | 0.9952 |
| 0.0044 | 28.17 | 13890 | 0.4906 | 0.4144 | 0.9988 | 0.9953 | 0.0182 | 0.7048 | 0.7447 | 0.9953 |
| 0.0029 | 28.24 | 13920 | 0.4622 | 0.4051 | 0.9990 | 0.9954 | 0.0173 | 0.7003 | 0.7306 | 0.9954 |
| 0.0037 | 28.3 | 13950 | 0.3649 | 0.3392 | 0.9995 | 0.9952 | 0.0182 | 0.6672 | 0.6822 | 0.9952 |
| 0.0027 | 28.36 | 13980 | 0.4789 | 0.4142 | 0.9989 | 0.9954 | 0.0176 | 0.7048 | 0.7389 | 0.9955 |
| 0.0035 | 28.42 | 14010 | 0.4909 | 0.4227 | 0.9989 | 0.9955 | 0.0174 | 0.7091 | 0.7449 | 0.9955 |
| 0.0041 | 28.48 | 14040 | 0.4197 | 0.3795 | 0.9993 | 0.9954 | 0.0179 | 0.6874 | 0.7095 | 0.9954 |
| 0.0034 | 28.54 | 14070 | 0.4251 | 0.3841 | 0.9993 | 0.9954 | 0.0177 | 0.6898 | 0.7122 | 0.9954 |
| 0.012 | 28.6 | 14100 | 0.4654 | 0.4085 | 0.9991 | 0.9955 | 0.0167 | 0.7020 | 0.7323 | 0.9955 |
| 0.0058 | 28.66 | 14130 | 0.3843 | 0.3532 | 0.9994 | 0.9953 | 0.0157 | 0.6742 | 0.6919 | 0.9953 |
| 0.0018 | 28.72 | 14160 | 0.4380 | 0.3929 | 0.9992 | 0.9954 | 0.0154 | 0.6942 | 0.7186 | 0.9955 |
| 0.0017 | 28.78 | 14190 | 0.4560 | 0.4016 | 0.9991 | 0.9954 | 0.0158 | 0.6985 | 0.7276 | 0.9954 |
| 0.0037 | 28.84 | 14220 | 0.4252 | 0.3844 | 0.9993 | 0.9954 | 0.0155 | 0.6899 | 0.7122 | 0.9954 |
| 0.0041 | 28.9 | 14250 | 0.4537 | 0.3999 | 0.9991 | 0.9954 | 0.0157 | 0.6977 | 0.7264 | 0.9954 |
| 0.0079 | 28.97 | 14280 | 0.3648 | 0.3398 | 0.9995 | 0.9952 | 0.0161 | 0.6675 | 0.6822 | 0.9952 |
| 0.0026 | 29.03 | 14310 | 0.4027 | 0.3670 | 0.9993 | 0.9953 | 0.0158 | 0.6811 | 0.7010 | 0.9953 |
| 0.0071 | 29.09 | 14340 | 0.4438 | 0.3939 | 0.9991 | 0.9954 | 0.0161 | 0.6946 | 0.7215 | 0.9954 |
| 0.0039 | 29.15 | 14370 | 0.4662 | 0.4061 | 0.9990 | 0.9954 | 0.0161 | 0.7007 | 0.7326 | 0.9954 |
| 0.0037 | 29.21 | 14400 | 0.3539 | 0.3298 | 0.9995 | 0.9952 | 0.0166 | 0.6625 | 0.6767 | 0.9952 |
| 0.0082 | 29.27 | 14430 | 0.4226 | 0.3833 | 0.9993 | 0.9954 | 0.0161 | 0.6894 | 0.7109 | 0.9954 |
| 0.0014 | 29.33 | 14460 | 0.4325 | 0.3880 | 0.9992 | 0.9954 | 0.0160 | 0.6917 | 0.7159 | 0.9954 |
| 0.0079 | 29.39 | 14490 | 0.4482 | 0.3975 | 0.9991 | 0.9954 | 0.0161 | 0.6965 | 0.7237 | 0.9954 |
| 0.0008 | 29.45 | 14520 | 0.3945 | 0.3625 | 0.9994 | 0.9953 | 0.0175 | 0.6789 | 0.6970 | 0.9953 |
| 0.0026 | 29.51 | 14550 | 0.4091 | 0.3721 | 0.9993 | 0.9954 | 0.0174 | 0.6837 | 0.7042 | 0.9954 |
| 0.0034 | 29.57 | 14580 | 0.4193 | 0.3791 | 0.9993 | 0.9954 | 0.0178 | 0.6872 | 0.7093 | 0.9954 |
| 0.0041 | 29.63 | 14610 | 0.4392 | 0.3892 | 0.9991 | 0.9954 | 0.0180 | 0.6923 | 0.7192 | 0.9954 |
| 0.0136 | 29.7 | 14640 | 0.4384 | 0.3918 | 0.9992 | 0.9954 | 0.0156 | 0.6936 | 0.7188 | 0.9954 |
| 0.004 | 29.76 | 14670 | 0.4131 | 0.3740 | 0.9993 | 0.9953 | 0.0159 | 0.6847 | 0.7062 | 0.9954 |
| 0.0045 | 29.82 | 14700 | 0.4490 | 0.3985 | 0.9991 | 0.9954 | 0.0155 | 0.6969 | 0.7241 | 0.9954 |
| 0.0013 | 29.88 | 14730 | 0.5070 | 0.4303 | 0.9988 | 0.9955 | 0.0156 | 0.7129 | 0.7529 | 0.9955 |
| 0.0097 | 29.94 | 14760 | 0.4140 | 0.3752 | 0.9993 | 0.9954 | 0.0161 | 0.6853 | 0.7066 | 0.9954 |
| 0.0175 | 30.0 | 14790 | 0.3519 | 0.3306 | 0.9996 | 0.9952 | 0.0166 | 0.6629 | 0.6758 | 0.9952 |
| 0.0063 | 30.06 | 14820 | 0.5193 | 0.4337 | 0.9987 | 0.9954 | 0.0163 | 0.7146 | 0.7590 | 0.9954 |
| 0.0017 | 30.12 | 14850 | 0.4257 | 0.3856 | 0.9993 | 0.9954 | 0.0159 | 0.6905 | 0.7125 | 0.9954 |
| 0.0021 | 30.18 | 14880 | 0.4579 | 0.4069 | 0.9992 | 0.9955 | 0.0163 | 0.7012 | 0.7285 | 0.9955 |
| 0.0119 | 30.24 | 14910 | 0.4442 | 0.3942 | 0.9991 | 0.9954 | 0.0169 | 0.6948 | 0.7217 | 0.9954 |
| 0.0032 | 30.3 | 14940 | 0.5246 | 0.4310 | 0.9985 | 0.9953 | 0.0179 | 0.7132 | 0.7616 | 0.9954 |
| 0.0001 | 30.37 | 14970 | 0.4919 | 0.4252 | 0.9989 | 0.9955 | 0.0174 | 0.7104 | 0.7454 | 0.9955 |
| 0.0031 | 30.43 | 15000 | 0.4361 | 0.3913 | 0.9992 | 0.9954 | 0.0193 | 0.6933 | 0.7177 | 0.9954 |
| 0.0195 | 30.49 | 15030 | 0.4252 | 0.3837 | 0.9993 | 0.9954 | 0.0189 | 0.6895 | 0.7122 | 0.9954 |
| 0.0053 | 30.55 | 15060 | 0.4938 | 0.4235 | 0.9989 | 0.9955 | 0.0192 | 0.7095 | 0.7464 | 0.9955 |
| 0.0077 | 30.61 | 15090 | 0.4642 | 0.4081 | 0.9991 | 0.9955 | 0.0189 | 0.7018 | 0.7316 | 0.9955 |
| 0.0024 | 30.67 | 15120 | 0.4152 | 0.3775 | 0.9993 | 0.9954 | 0.0185 | 0.6865 | 0.7073 | 0.9954 |
| 0.0148 | 30.73 | 15150 | 0.4397 | 0.3916 | 0.9992 | 0.9954 | 0.0187 | 0.6935 | 0.7194 | 0.9954 |
| 0.0036 | 30.79 | 15180 | 0.4450 | 0.3959 | 0.9992 | 0.9954 | 0.0185 | 0.6957 | 0.7221 | 0.9954 |
| 0.0029 | 30.85 | 15210 | 0.4752 | 0.4155 | 0.9990 | 0.9955 | 0.0183 | 0.7055 | 0.7371 | 0.9955 |
| 0.0094 | 30.91 | 15240 | 0.4414 | 0.3928 | 0.9992 | 0.9954 | 0.0183 | 0.6941 | 0.7203 | 0.9954 |
| 0.0027 | 30.97 | 15270 | 0.4677 | 0.4082 | 0.9990 | 0.9954 | 0.0186 | 0.7018 | 0.7334 | 0.9954 |
| 0.003 | 31.03 | 15300 | 0.5050 | 0.4270 | 0.9988 | 0.9954 | 0.0185 | 0.7112 | 0.7519 | 0.9954 |
| 0.0027 | 31.1 | 15330 | 0.4934 | 0.4153 | 0.9987 | 0.9953 | 0.0190 | 0.7053 | 0.7460 | 0.9953 |
| 0.001 | 31.16 | 15360 | 0.4425 | 0.3920 | 0.9991 | 0.9954 | 0.0185 | 0.6937 | 0.7208 | 0.9954 |
| 0.0116 | 31.22 | 15390 | 0.4061 | 0.3690 | 0.9993 | 0.9953 | 0.0180 | 0.6822 | 0.7027 | 0.9953 |
| 0.0048 | 31.28 | 15420 | 0.4669 | 0.4056 | 0.9990 | 0.9954 | 0.0170 | 0.7005 | 0.7329 | 0.9954 |
| 0.0024 | 31.34 | 15450 | 0.4965 | 0.4136 | 0.9986 | 0.9953 | 0.0181 | 0.7044 | 0.7476 | 0.9953 |
| 0.0046 | 31.4 | 15480 | 0.4865 | 0.4205 | 0.9989 | 0.9955 | 0.0168 | 0.7080 | 0.7427 | 0.9955 |
| 0.0022 | 31.46 | 15510 | 0.4112 | 0.3718 | 0.9993 | 0.9953 | 0.0171 | 0.6836 | 0.7052 | 0.9953 |
| 0.0084 | 31.52 | 15540 | 0.4468 | 0.3923 | 0.9991 | 0.9953 | 0.0178 | 0.6938 | 0.7229 | 0.9954 |
| 0.0048 | 31.58 | 15570 | 0.3812 | 0.3515 | 0.9994 | 0.9953 | 0.0177 | 0.6734 | 0.6903 | 0.9953 |
| 0.0007 | 31.64 | 15600 | 0.4963 | 0.4164 | 0.9987 | 0.9953 | 0.0177 | 0.7058 | 0.7475 | 0.9953 |
| 0.0036 | 31.7 | 15630 | 0.4129 | 0.3734 | 0.9993 | 0.9953 | 0.0171 | 0.6843 | 0.7061 | 0.9953 |
| 0.0058 | 31.76 | 15660 | 0.4910 | 0.4203 | 0.9989 | 0.9954 | 0.0168 | 0.7079 | 0.7449 | 0.9955 |
| 0.0061 | 31.83 | 15690 | 0.4776 | 0.4021 | 0.9987 | 0.9952 | 0.0188 | 0.6987 | 0.7382 | 0.9952 |
| 0.0089 | 31.89 | 15720 | 0.4732 | 0.4122 | 0.9990 | 0.9955 | 0.0175 | 0.7038 | 0.7361 | 0.9955 |
| 0.0039 | 31.95 | 15750 | 0.4279 | 0.3841 | 0.9992 | 0.9954 | 0.0167 | 0.6897 | 0.7136 | 0.9954 |
| 0.0063 | 32.01 | 15780 | 0.4312 | 0.3876 | 0.9992 | 0.9954 | 0.0169 | 0.6915 | 0.7152 | 0.9954 |
| 0.0045 | 32.07 | 15810 | 0.4655 | 0.4066 | 0.9990 | 0.9954 | 0.0175 | 0.7010 | 0.7323 | 0.9954 |
| 0.0018 | 32.13 | 15840 | 0.4271 | 0.3829 | 0.9992 | 0.9954 | 0.0178 | 0.6892 | 0.7132 | 0.9954 |
| 0.0182 | 32.19 | 15870 | 0.4328 | 0.3860 | 0.9992 | 0.9954 | 0.0176 | 0.6907 | 0.7160 | 0.9954 |
| 0.0066 | 32.25 | 15900 | 0.4436 | 0.3935 | 0.9991 | 0.9954 | 0.0182 | 0.6944 | 0.7214 | 0.9954 |
| 0.0006 | 32.31 | 15930 | 0.4739 | 0.4133 | 0.9990 | 0.9955 | 0.0178 | 0.7044 | 0.7365 | 0.9955 |
| 0.0045 | 32.37 | 15960 | 0.4645 | 0.4079 | 0.9991 | 0.9955 | 0.0166 | 0.7017 | 0.7318 | 0.9955 |
| 0.0109 | 32.43 | 15990 | 0.4274 | 0.3834 | 0.9992 | 0.9954 | 0.0162 | 0.6894 | 0.7133 | 0.9954 |
| 0.0041 | 32.49 | 16020 | 0.3816 | 0.3520 | 0.9994 | 0.9953 | 0.0166 | 0.6736 | 0.6905 | 0.9953 |
| 0.0069 | 32.56 | 16050 | 0.4434 | 0.3934 | 0.9991 | 0.9954 | 0.0161 | 0.6944 | 0.7213 | 0.9954 |
| 0.006 | 32.62 | 16080 | 0.4011 | 0.3665 | 0.9994 | 0.9953 | 0.0180 | 0.6809 | 0.7002 | 0.9953 |
| 0.0011 | 32.68 | 16110 | 0.4647 | 0.4076 | 0.9991 | 0.9955 | 0.0180 | 0.7015 | 0.7319 | 0.9955 |
| 0.004 | 32.74 | 16140 | 0.4268 | 0.3837 | 0.9992 | 0.9954 | 0.0186 | 0.6895 | 0.7130 | 0.9954 |
| 0.0035 | 32.8 | 16170 | 0.4609 | 0.4083 | 0.9991 | 0.9955 | 0.0181 | 0.7019 | 0.7300 | 0.9955 |
| 0.0065 | 32.86 | 16200 | 0.4633 | 0.4065 | 0.9991 | 0.9954 | 0.0177 | 0.7010 | 0.7312 | 0.9955 |
| 0.0076 | 32.92 | 16230 | 0.5158 | 0.4170 | 0.9984 | 0.9951 | 0.0193 | 0.7061 | 0.7571 | 0.9952 |
| 0.0044 | 32.98 | 16260 | 0.4693 | 0.4100 | 0.9990 | 0.9955 | 0.0178 | 0.7027 | 0.7342 | 0.9955 |
| 0.0089 | 33.04 | 16290 | 0.4852 | 0.4169 | 0.9989 | 0.9954 | 0.0182 | 0.7062 | 0.7421 | 0.9954 |
| 0.0051 | 33.1 | 16320 | 0.4001 | 0.3625 | 0.9993 | 0.9953 | 0.0195 | 0.6789 | 0.6997 | 0.9953 |
| 0.002 | 33.16 | 16350 | 0.4790 | 0.4157 | 0.9990 | 0.9955 | 0.0182 | 0.7056 | 0.7390 | 0.9955 |
| 0.0036 | 33.23 | 16380 | 0.4408 | 0.3912 | 0.9991 | 0.9954 | 0.0187 | 0.6933 | 0.7200 | 0.9954 |
| 0.0039 | 33.29 | 16410 | 0.4106 | 0.3733 | 0.9993 | 0.9954 | 0.0185 | 0.6843 | 0.7050 | 0.9954 |
| 0.0047 | 33.35 | 16440 | 0.4391 | 0.3945 | 0.9992 | 0.9955 | 0.0181 | 0.6950 | 0.7192 | 0.9955 |
| 0.0077 | 33.41 | 16470 | 0.4937 | 0.4278 | 0.9990 | 0.9956 | 0.0178 | 0.7117 | 0.7464 | 0.9956 |
| 0.0047 | 33.47 | 16500 | 0.4677 | 0.4104 | 0.9991 | 0.9955 | 0.0181 | 0.7029 | 0.7334 | 0.9955 |
| 0.0029 | 33.53 | 16530 | 0.4279 | 0.3858 | 0.9993 | 0.9954 | 0.0182 | 0.6906 | 0.7136 | 0.9954 |
| 0.0019 | 33.59 | 16560 | 0.4796 | 0.4114 | 0.9989 | 0.9954 | 0.0186 | 0.7034 | 0.7392 | 0.9954 |
| 0.0095 | 33.65 | 16590 | 0.4710 | 0.4125 | 0.9990 | 0.9955 | 0.0179 | 0.7040 | 0.7350 | 0.9955 |
| 0.0025 | 33.71 | 16620 | 0.4587 | 0.4053 | 0.9991 | 0.9955 | 0.0182 | 0.7004 | 0.7289 | 0.9955 |
| 0.0056 | 33.77 | 16650 | 0.4961 | 0.4237 | 0.9988 | 0.9955 | 0.0194 | 0.7096 | 0.7475 | 0.9955 |
| 0.0026 | 33.83 | 16680 | 0.4664 | 0.4095 | 0.9991 | 0.9955 | 0.0190 | 0.7025 | 0.7327 | 0.9955 |
| 0.0008 | 33.89 | 16710 | 0.4138 | 0.3757 | 0.9993 | 0.9954 | 0.0188 | 0.6855 | 0.7066 | 0.9954 |
| 0.0093 | 33.96 | 16740 | 0.4634 | 0.4078 | 0.9991 | 0.9955 | 0.0180 | 0.7017 | 0.7313 | 0.9955 |
| 0.0088 | 34.02 | 16770 | 0.4480 | 0.3977 | 0.9991 | 0.9954 | 0.0182 | 0.6966 | 0.7236 | 0.9954 |
| 0.004 | 34.08 | 16800 | 0.4497 | 0.3994 | 0.9991 | 0.9954 | 0.0186 | 0.6974 | 0.7244 | 0.9955 |
| 0.0074 | 34.14 | 16830 | 0.4425 | 0.3965 | 0.9992 | 0.9955 | 0.0180 | 0.6960 | 0.7209 | 0.9955 |
| 0.0039 | 34.2 | 16860 | 0.4196 | 0.3796 | 0.9993 | 0.9954 | 0.0182 | 0.6875 | 0.7095 | 0.9954 |
| 0.0008 | 34.26 | 16890 | 0.5240 | 0.4323 | 0.9986 | 0.9954 | 0.0183 | 0.7138 | 0.7613 | 0.9954 |
| 0.006 | 34.32 | 16920 | 0.4810 | 0.4149 | 0.9989 | 0.9954 | 0.0176 | 0.7051 | 0.7399 | 0.9954 |
| 0.0045 | 34.38 | 16950 | 0.4393 | 0.3918 | 0.9992 | 0.9954 | 0.0181 | 0.6936 | 0.7192 | 0.9954 |
| 0.0022 | 34.44 | 16980 | 0.4047 | 0.3701 | 0.9994 | 0.9954 | 0.0180 | 0.6827 | 0.7020 | 0.9954 |
| 0.0034 | 34.5 | 17010 | 0.4488 | 0.4005 | 0.9992 | 0.9955 | 0.0179 | 0.6980 | 0.7240 | 0.9955 |
| 0.0045 | 34.56 | 17040 | 0.4926 | 0.4229 | 0.9989 | 0.9955 | 0.0180 | 0.7092 | 0.7457 | 0.9955 |
| 0.0093 | 34.62 | 17070 | 0.4787 | 0.4095 | 0.9989 | 0.9953 | 0.0189 | 0.7024 | 0.7388 | 0.9954 |
| 0.0104 | 34.69 | 17100 | 0.4431 | 0.3949 | 0.9992 | 0.9954 | 0.0184 | 0.6952 | 0.7211 | 0.9954 |
| 0.0078 | 34.75 | 17130 | 0.4445 | 0.3946 | 0.9991 | 0.9954 | 0.0185 | 0.6950 | 0.7218 | 0.9954 |
| 0.0687 | 34.81 | 17160 | 0.4465 | 0.3940 | 0.9991 | 0.9954 | 0.0191 | 0.6947 | 0.7228 | 0.9954 |
| 0.0238 | 34.87 | 17190 | 0.4192 | 0.3795 | 0.9993 | 0.9954 | 0.0187 | 0.6875 | 0.7093 | 0.9954 |
| 0.0037 | 34.93 | 17220 | 0.4306 | 0.3873 | 0.9992 | 0.9954 | 0.0187 | 0.6914 | 0.7149 | 0.9954 |
| 0.0056 | 34.99 | 17250 | 0.4309 | 0.3861 | 0.9992 | 0.9954 | 0.0186 | 0.6908 | 0.7151 | 0.9954 |
| 0.0067 | 35.05 | 17280 | 0.4714 | 0.4125 | 0.9990 | 0.9955 | 0.0172 | 0.7040 | 0.7352 | 0.9955 |
| 0.0014 | 35.11 | 17310 | 0.4805 | 0.4171 | 0.9990 | 0.9955 | 0.0163 | 0.7063 | 0.7397 | 0.9955 |
| 0.0095 | 35.17 | 17340 | 0.4185 | 0.3798 | 0.9993 | 0.9954 | 0.0163 | 0.6876 | 0.7089 | 0.9954 |
| 0.0094 | 35.23 | 17370 | 0.4587 | 0.4050 | 0.9991 | 0.9955 | 0.0164 | 0.7002 | 0.7289 | 0.9955 |
| 0.0004 | 35.29 | 17400 | 0.4358 | 0.3914 | 0.9992 | 0.9954 | 0.0163 | 0.6934 | 0.7175 | 0.9954 |
| 0.0054 | 35.35 | 17430 | 0.4985 | 0.4226 | 0.9988 | 0.9954 | 0.0163 | 0.7090 | 0.7486 | 0.9954 |
| 0.0026 | 35.42 | 17460 | 0.4057 | 0.3708 | 0.9994 | 0.9954 | 0.0168 | 0.6831 | 0.7025 | 0.9954 |
| 0.0271 | 35.48 | 17490 | 0.4883 | 0.4182 | 0.9989 | 0.9954 | 0.0173 | 0.7068 | 0.7436 | 0.9954 |
| 0.006 | 35.54 | 17520 | 0.4228 | 0.3823 | 0.9993 | 0.9954 | 0.0170 | 0.6889 | 0.7110 | 0.9954 |
| 0.0114 | 35.6 | 17550 | 0.4158 | 0.3780 | 0.9993 | 0.9954 | 0.0170 | 0.6867 | 0.7076 | 0.9954 |
| 0.0029 | 35.66 | 17580 | 0.4267 | 0.3848 | 0.9993 | 0.9954 | 0.0167 | 0.6901 | 0.7130 | 0.9954 |
| 0.007 | 35.72 | 17610 | 0.4375 | 0.3900 | 0.9992 | 0.9954 | 0.0170 | 0.6927 | 0.7183 | 0.9954 |
| 0.001 | 35.78 | 17640 | 0.4386 | 0.3920 | 0.9992 | 0.9954 | 0.0169 | 0.6937 | 0.7189 | 0.9954 |
| 0.0022 | 35.84 | 17670 | 0.4560 | 0.4036 | 0.9991 | 0.9955 | 0.0173 | 0.6995 | 0.7276 | 0.9955 |
| 0.0044 | 35.9 | 17700 | 0.4911 | 0.4245 | 0.9989 | 0.9955 | 0.0168 | 0.7100 | 0.7450 | 0.9955 |
| 0.0024 | 35.96 | 17730 | 0.4288 | 0.3862 | 0.9993 | 0.9954 | 0.0170 | 0.6908 | 0.7140 | 0.9954 |
| 0.0025 | 36.02 | 17760 | 0.4409 | 0.3935 | 0.9992 | 0.9954 | 0.0177 | 0.6945 | 0.7200 | 0.9954 |
| 0.0007 | 36.09 | 17790 | 0.4002 | 0.3664 | 0.9994 | 0.9953 | 0.0170 | 0.6809 | 0.6998 | 0.9954 |
| 0.0068 | 36.15 | 17820 | 0.4613 | 0.4075 | 0.9991 | 0.9955 | 0.0167 | 0.7015 | 0.7302 | 0.9955 |
| 0.0016 | 36.21 | 17850 | 0.4642 | 0.4079 | 0.9991 | 0.9955 | 0.0165 | 0.7017 | 0.7316 | 0.9955 |
| 0.0086 | 36.27 | 17880 | 0.4357 | 0.3909 | 0.9992 | 0.9954 | 0.0167 | 0.6932 | 0.7175 | 0.9954 |
| 0.0327 | 36.33 | 17910 | 0.4583 | 0.4054 | 0.9991 | 0.9955 | 0.0169 | 0.7005 | 0.7287 | 0.9955 |
| 0.0048 | 36.39 | 17940 | 0.4437 | 0.3969 | 0.9992 | 0.9955 | 0.0167 | 0.6962 | 0.7215 | 0.9955 |
| 0.0033 | 36.45 | 17970 | 0.4461 | 0.3994 | 0.9992 | 0.9955 | 0.0166 | 0.6975 | 0.7226 | 0.9955 |
| 0.0073 | 36.51 | 18000 | 0.4410 | 0.3950 | 0.9992 | 0.9955 | 0.0162 | 0.6952 | 0.7201 | 0.9955 |
| 0.0195 | 36.57 | 18030 | 0.4657 | 0.4091 | 0.9991 | 0.9955 | 0.0162 | 0.7023 | 0.7324 | 0.9955 |
| 0.0047 | 36.63 | 18060 | 0.4303 | 0.3871 | 0.9992 | 0.9954 | 0.0167 | 0.6913 | 0.7148 | 0.9954 |
| 0.0023 | 36.69 | 18090 | 0.5117 | 0.4306 | 0.9987 | 0.9954 | 0.0168 | 0.7130 | 0.7552 | 0.9955 |
| 0.0104 | 36.75 | 18120 | 0.4503 | 0.3998 | 0.9991 | 0.9954 | 0.0166 | 0.6976 | 0.7247 | 0.9955 |
| 0.0044 | 36.82 | 18150 | 0.4384 | 0.3919 | 0.9992 | 0.9954 | 0.0170 | 0.6937 | 0.7188 | 0.9954 |
| 0.0008 | 36.88 | 18180 | 0.4641 | 0.4074 | 0.9991 | 0.9955 | 0.0167 | 0.7014 | 0.7316 | 0.9955 |
| 0.0076 | 36.94 | 18210 | 0.4561 | 0.4008 | 0.9991 | 0.9954 | 0.0172 | 0.6981 | 0.7276 | 0.9954 |
| 0.0038 | 37.0 | 18240 | 0.4060 | 0.3706 | 0.9994 | 0.9954 | 0.0171 | 0.6830 | 0.7027 | 0.9954 |
| 0.0049 | 37.06 | 18270 | 0.4560 | 0.4028 | 0.9991 | 0.9954 | 0.0172 | 0.6991 | 0.7275 | 0.9955 |
| 0.009 | 37.12 | 18300 | 0.4147 | 0.3776 | 0.9993 | 0.9954 | 0.0166 | 0.6865 | 0.7070 | 0.9954 |
| 0.0042 | 37.18 | 18330 | 0.4605 | 0.4069 | 0.9991 | 0.9955 | 0.0162 | 0.7012 | 0.7298 | 0.9955 |
| 0.0058 | 37.24 | 18360 | 0.4897 | 0.4210 | 0.9989 | 0.9955 | 0.0166 | 0.7083 | 0.7443 | 0.9955 |
| 0.0077 | 37.3 | 18390 | 0.4272 | 0.3848 | 0.9993 | 0.9954 | 0.0167 | 0.6901 | 0.7132 | 0.9954 |
| 0.0033 | 37.36 | 18420 | 0.4664 | 0.4075 | 0.9990 | 0.9954 | 0.0166 | 0.7015 | 0.7327 | 0.9954 |
| 0.0098 | 37.42 | 18450 | 0.4841 | 0.4172 | 0.9989 | 0.9954 | 0.0166 | 0.7063 | 0.7415 | 0.9955 |
| 0.0062 | 37.48 | 18480 | 0.4760 | 0.4123 | 0.9990 | 0.9954 | 0.0166 | 0.7038 | 0.7375 | 0.9954 |
| 0.0109 | 37.55 | 18510 | 0.4307 | 0.3856 | 0.9992 | 0.9954 | 0.0167 | 0.6905 | 0.7150 | 0.9954 |
| 0.0015 | 37.61 | 18540 | 0.4692 | 0.4105 | 0.9990 | 0.9955 | 0.0166 | 0.7030 | 0.7341 | 0.9955 |
| 0.001 | 37.67 | 18570 | 0.4478 | 0.3990 | 0.9992 | 0.9955 | 0.0165 | 0.6972 | 0.7235 | 0.9955 |
| 0.004 | 37.73 | 18600 | 0.4803 | 0.4152 | 0.9989 | 0.9954 | 0.0170 | 0.7053 | 0.7396 | 0.9955 |
| 0.0058 | 37.79 | 18630 | 0.4536 | 0.4029 | 0.9991 | 0.9955 | 0.0166 | 0.6992 | 0.7264 | 0.9955 |
| 0.0049 | 37.85 | 18660 | 0.4491 | 0.3995 | 0.9992 | 0.9955 | 0.0166 | 0.6975 | 0.7242 | 0.9955 |
| 0.0027 | 37.91 | 18690 | 0.4636 | 0.4083 | 0.9991 | 0.9955 | 0.0165 | 0.7019 | 0.7314 | 0.9955 |
| 0.003 | 37.97 | 18720 | 0.4497 | 0.4002 | 0.9992 | 0.9955 | 0.0166 | 0.6978 | 0.7244 | 0.9955 |
| 0.0064 | 38.03 | 18750 | 0.4670 | 0.4109 | 0.9991 | 0.9955 | 0.0171 | 0.7032 | 0.7330 | 0.9955 |
| 0.0061 | 38.09 | 18780 | 0.4513 | 0.4016 | 0.9992 | 0.9955 | 0.0172 | 0.6985 | 0.7253 | 0.9955 |
| 0.0028 | 38.15 | 18810 | 0.4654 | 0.4093 | 0.9991 | 0.9955 | 0.0169 | 0.7024 | 0.7322 | 0.9955 |
| 0.0148 | 38.22 | 18840 | 0.4696 | 0.4111 | 0.9990 | 0.9955 | 0.0172 | 0.7033 | 0.7343 | 0.9955 |
| 0.0022 | 38.28 | 18870 | 0.4793 | 0.4161 | 0.9990 | 0.9955 | 0.0170 | 0.7058 | 0.7392 | 0.9955 |
| 0.0009 | 38.34 | 18900 | 0.4668 | 0.4085 | 0.9990 | 0.9954 | 0.0172 | 0.7020 | 0.7329 | 0.9955 |
| 0.0955 | 38.4 | 18930 | 0.4690 | 0.4109 | 0.9990 | 0.9955 | 0.0169 | 0.7032 | 0.7340 | 0.9955 |
| 0.0023 | 38.46 | 18960 | 0.4585 | 0.4047 | 0.9991 | 0.9955 | 0.0170 | 0.7001 | 0.7288 | 0.9955 |
| 0.0066 | 38.52 | 18990 | 0.4475 | 0.3983 | 0.9992 | 0.9954 | 0.0169 | 0.6969 | 0.7233 | 0.9955 |
| 0.0013 | 38.58 | 19020 | 0.4621 | 0.4073 | 0.9991 | 0.9955 | 0.0169 | 0.7014 | 0.7306 | 0.9955 |
| 0.0062 | 38.64 | 19050 | 0.4719 | 0.4130 | 0.9990 | 0.9955 | 0.0171 | 0.7042 | 0.7355 | 0.9955 |
| 0.0068 | 38.7 | 19080 | 0.4541 | 0.4032 | 0.9991 | 0.9955 | 0.0168 | 0.6994 | 0.7266 | 0.9955 |
| 0.0039 | 38.76 | 19110 | 0.4740 | 0.4145 | 0.9990 | 0.9955 | 0.0166 | 0.7050 | 0.7365 | 0.9955 |
| 0.0076 | 38.82 | 19140 | 0.4421 | 0.3953 | 0.9992 | 0.9954 | 0.0170 | 0.6954 | 0.7206 | 0.9955 |
| 0.003 | 38.88 | 19170 | 0.4267 | 0.3849 | 0.9993 | 0.9954 | 0.0172 | 0.6901 | 0.7130 | 0.9954 |
| 0.0044 | 38.95 | 19200 | 0.4539 | 0.4013 | 0.9991 | 0.9954 | 0.0172 | 0.6984 | 0.7265 | 0.9955 |
| 0.005 | 39.01 | 19230 | 0.4478 | 0.3977 | 0.9991 | 0.9954 | 0.0173 | 0.6966 | 0.7235 | 0.9954 |
| 0.0059 | 39.07 | 19260 | 0.4546 | 0.4024 | 0.9991 | 0.9955 | 0.0173 | 0.6989 | 0.7269 | 0.9955 |
| 0.0134 | 39.13 | 19290 | 0.4450 | 0.3965 | 0.9992 | 0.9954 | 0.0171 | 0.6960 | 0.7221 | 0.9955 |
| 0.0064 | 39.19 | 19320 | 0.4387 | 0.3928 | 0.9992 | 0.9954 | 0.0172 | 0.6941 | 0.7189 | 0.9954 |
| 0.0034 | 39.25 | 19350 | 0.4557 | 0.4029 | 0.9991 | 0.9955 | 0.0172 | 0.6992 | 0.7274 | 0.9955 |
| 0.0069 | 39.31 | 19380 | 0.4393 | 0.3931 | 0.9992 | 0.9954 | 0.0172 | 0.6943 | 0.7193 | 0.9954 |
| 0.0037 | 39.37 | 19410 | 0.4398 | 0.3933 | 0.9992 | 0.9954 | 0.0174 | 0.6944 | 0.7195 | 0.9954 |
| 0.0184 | 39.43 | 19440 | 0.4530 | 0.4012 | 0.9991 | 0.9954 | 0.0174 | 0.6983 | 0.7261 | 0.9955 |
| 0.0044 | 39.49 | 19470 | 0.4468 | 0.3975 | 0.9992 | 0.9954 | 0.0172 | 0.6965 | 0.7230 | 0.9955 |
| 0.0028 | 39.55 | 19500 | 0.4435 | 0.3953 | 0.9992 | 0.9954 | 0.0173 | 0.6954 | 0.7213 | 0.9954 |
| 0.0099 | 39.61 | 19530 | 0.4530 | 0.4009 | 0.9991 | 0.9954 | 0.0174 | 0.6982 | 0.7260 | 0.9955 |
| 0.0089 | 39.68 | 19560 | 0.4471 | 0.3977 | 0.9992 | 0.9954 | 0.0174 | 0.6965 | 0.7231 | 0.9955 |
| 0.0027 | 39.74 | 19590 | 0.4503 | 0.3996 | 0.9991 | 0.9954 | 0.0172 | 0.6975 | 0.7247 | 0.9955 |
| 0.0009 | 39.8 | 19620 | 0.4504 | 0.3996 | 0.9991 | 0.9954 | 0.0173 | 0.6975 | 0.7248 | 0.9955 |
| 0.0046 | 39.86 | 19650 | 0.4526 | 0.4008 | 0.9991 | 0.9954 | 0.0173 | 0.6981 | 0.7259 | 0.9955 |
| 0.0038 | 39.92 | 19680 | 0.4547 | 0.4021 | 0.9991 | 0.9954 | 0.0174 | 0.6988 | 0.7269 | 0.9955 |
| 0.0057 | 39.98 | 19710 | 0.4483 | 0.3982 | 0.9991 | 0.9954 | 0.0174 | 0.6968 | 0.7237 | 0.9955 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"background",
"kelp"
] |
heroza/segformer-finetuned-biofilm |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-biofilm
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the heroza/biofilm dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3028
- Mean Iou: 0.3319
- Mean Accuracy: 0.6638
- Overall Accuracy: 0.6638
- Accuracy Background: nan
- Accuracy Biofilm: 0.6638
- Iou Background: 0.0
- Iou Biofilm: 0.6638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
| No log | 1.0 | 17 | 0.6476 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 |
| No log | 2.0 | 34 | 0.5609 | 0.4991 | 0.9981 | 0.9981 | nan | 0.9981 | 0.0 | 0.9981 |
| No log | 3.0 | 51 | 0.4363 | 0.4869 | 0.9738 | 0.9738 | nan | 0.9738 | 0.0 | 0.9738 |
| No log | 4.0 | 68 | 0.3583 | 0.3954 | 0.7908 | 0.7908 | nan | 0.7908 | 0.0 | 0.7908 |
| No log | 5.0 | 85 | 0.3015 | 0.4016 | 0.8033 | 0.8033 | nan | 0.8033 | 0.0 | 0.8033 |
| 0.4792 | 6.0 | 102 | 0.2964 | 0.0504 | 0.1008 | 0.1008 | nan | 0.1008 | 0.0 | 0.1008 |
| 0.4792 | 7.0 | 119 | 0.2995 | 0.2103 | 0.4206 | 0.4206 | nan | 0.4206 | 0.0 | 0.4206 |
| 0.4792 | 8.0 | 136 | 0.2895 | 0.0417 | 0.0833 | 0.0833 | nan | 0.0833 | 0.0 | 0.0833 |
| 0.4792 | 9.0 | 153 | 0.2499 | 0.0562 | 0.1123 | 0.1123 | nan | 0.1123 | 0.0 | 0.1123 |
| 0.4792 | 10.0 | 170 | 0.2770 | 0.0570 | 0.1140 | 0.1140 | nan | 0.1140 | 0.0 | 0.1140 |
| 0.4792 | 11.0 | 187 | 0.2268 | 0.2041 | 0.4082 | 0.4082 | nan | 0.4082 | 0.0 | 0.4082 |
| 0.3238 | 12.0 | 204 | 0.2684 | 0.1290 | 0.2580 | 0.2580 | nan | 0.2580 | 0.0 | 0.2580 |
| 0.3238 | 13.0 | 221 | 0.2584 | 0.2469 | 0.4938 | 0.4938 | nan | 0.4938 | 0.0 | 0.4938 |
| 0.3238 | 14.0 | 238 | 0.2409 | 0.1139 | 0.2278 | 0.2278 | nan | 0.2278 | 0.0 | 0.2278 |
| 0.3238 | 15.0 | 255 | 0.2800 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
| 0.3238 | 16.0 | 272 | 0.2348 | 0.0002 | 0.0004 | 0.0004 | nan | 0.0004 | 0.0 | 0.0004 |
| 0.3238 | 17.0 | 289 | 0.2290 | 0.0009 | 0.0018 | 0.0018 | nan | 0.0018 | 0.0 | 0.0018 |
| 0.289 | 18.0 | 306 | 0.2077 | 0.2453 | 0.4906 | 0.4906 | nan | 0.4906 | 0.0 | 0.4906 |
| 0.289 | 19.0 | 323 | 0.2471 | 0.0117 | 0.0233 | 0.0233 | nan | 0.0233 | 0.0 | 0.0233 |
| 0.289 | 20.0 | 340 | 0.2226 | 0.0346 | 0.0692 | 0.0692 | nan | 0.0692 | 0.0 | 0.0692 |
| 0.289 | 21.0 | 357 | 0.2539 | 0.0044 | 0.0088 | 0.0088 | nan | 0.0088 | 0.0 | 0.0088 |
| 0.289 | 22.0 | 374 | 0.2323 | 0.0029 | 0.0058 | 0.0058 | nan | 0.0058 | 0.0 | 0.0058 |
| 0.289 | 23.0 | 391 | 0.2700 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
| 0.2751 | 24.0 | 408 | 0.2107 | 0.2176 | 0.4351 | 0.4351 | nan | 0.4351 | 0.0 | 0.4351 |
| 0.2751 | 25.0 | 425 | 0.1984 | 0.0114 | 0.0228 | 0.0228 | nan | 0.0228 | 0.0 | 0.0228 |
| 0.2751 | 26.0 | 442 | 0.2531 | 0.1690 | 0.3379 | 0.3379 | nan | 0.3379 | 0.0 | 0.3379 |
| 0.2751 | 27.0 | 459 | 0.2402 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
| 0.2751 | 28.0 | 476 | 0.2446 | 0.1299 | 0.2597 | 0.2597 | nan | 0.2597 | 0.0 | 0.2597 |
| 0.2751 | 29.0 | 493 | 0.2327 | 0.0069 | 0.0139 | 0.0139 | nan | 0.0139 | 0.0 | 0.0139 |
| 0.2736 | 30.0 | 510 | 0.2440 | 0.0031 | 0.0061 | 0.0061 | nan | 0.0061 | 0.0 | 0.0061 |
| 0.2736 | 31.0 | 527 | 0.2527 | 0.0060 | 0.0119 | 0.0119 | nan | 0.0119 | 0.0 | 0.0119 |
| 0.2736 | 32.0 | 544 | 0.2185 | 0.0897 | 0.1795 | 0.1795 | nan | 0.1795 | 0.0 | 0.1795 |
| 0.2736 | 33.0 | 561 | 0.2256 | 0.2468 | 0.4936 | 0.4936 | nan | 0.4936 | 0.0 | 0.4936 |
| 0.2736 | 34.0 | 578 | 0.2347 | 0.0419 | 0.0837 | 0.0837 | nan | 0.0837 | 0.0 | 0.0837 |
| 0.2736 | 35.0 | 595 | 0.2034 | 0.1546 | 0.3091 | 0.3091 | nan | 0.3091 | 0.0 | 0.3091 |
| 0.2661 | 36.0 | 612 | 0.2182 | 0.0437 | 0.0873 | 0.0873 | nan | 0.0873 | 0.0 | 0.0873 |
| 0.2661 | 37.0 | 629 | 0.1937 | 0.3058 | 0.6116 | 0.6116 | nan | 0.6116 | 0.0 | 0.6116 |
| 0.2661 | 38.0 | 646 | 0.2028 | 0.0014 | 0.0028 | 0.0028 | nan | 0.0028 | 0.0 | 0.0028 |
| 0.2661 | 39.0 | 663 | 0.1853 | 0.0649 | 0.1298 | 0.1298 | nan | 0.1298 | 0.0 | 0.1298 |
| 0.2661 | 40.0 | 680 | 0.2272 | 0.3264 | 0.6527 | 0.6527 | nan | 0.6527 | 0.0 | 0.6527 |
| 0.2661 | 41.0 | 697 | 0.2654 | 0.4513 | 0.9027 | 0.9027 | nan | 0.9027 | 0.0 | 0.9027 |
| 0.256 | 42.0 | 714 | 0.2408 | 0.3147 | 0.6295 | 0.6295 | nan | 0.6295 | 0.0 | 0.6295 |
| 0.256 | 43.0 | 731 | 0.2253 | 0.0708 | 0.1415 | 0.1415 | nan | 0.1415 | 0.0 | 0.1415 |
| 0.256 | 44.0 | 748 | 0.2025 | 0.3538 | 0.7076 | 0.7076 | nan | 0.7076 | 0.0 | 0.7076 |
| 0.256 | 45.0 | 765 | 0.2271 | 0.0238 | 0.0476 | 0.0476 | nan | 0.0476 | 0.0 | 0.0476 |
| 0.256 | 46.0 | 782 | 0.2171 | 0.0911 | 0.1821 | 0.1821 | nan | 0.1821 | 0.0 | 0.1821 |
| 0.256 | 47.0 | 799 | 0.2525 | 0.2226 | 0.4453 | 0.4453 | nan | 0.4453 | 0.0 | 0.4453 |
| 0.2588 | 48.0 | 816 | 0.2044 | 0.3965 | 0.7929 | 0.7929 | nan | 0.7929 | 0.0 | 0.7929 |
| 0.2588 | 49.0 | 833 | 0.2328 | 0.3985 | 0.7969 | 0.7969 | nan | 0.7969 | 0.0 | 0.7969 |
| 0.2588 | 50.0 | 850 | 0.2241 | 0.4584 | 0.9168 | 0.9168 | nan | 0.9168 | 0.0 | 0.9168 |
| 0.2588 | 51.0 | 867 | 0.1806 | 0.3473 | 0.6946 | 0.6946 | nan | 0.6946 | 0.0 | 0.6946 |
| 0.2588 | 52.0 | 884 | 0.2081 | 0.3036 | 0.6071 | 0.6071 | nan | 0.6071 | 0.0 | 0.6071 |
| 0.2462 | 53.0 | 901 | 0.2037 | 0.1534 | 0.3068 | 0.3068 | nan | 0.3068 | 0.0 | 0.3068 |
| 0.2462 | 54.0 | 918 | 0.2024 | 0.2510 | 0.5021 | 0.5021 | nan | 0.5021 | 0.0 | 0.5021 |
| 0.2462 | 55.0 | 935 | 0.2100 | 0.3440 | 0.6880 | 0.6880 | nan | 0.6880 | 0.0 | 0.6880 |
| 0.2462 | 56.0 | 952 | 0.1887 | 0.3399 | 0.6799 | 0.6799 | nan | 0.6799 | 0.0 | 0.6799 |
| 0.2462 | 57.0 | 969 | 0.2333 | 0.2049 | 0.4097 | 0.4097 | nan | 0.4097 | 0.0 | 0.4097 |
| 0.2462 | 58.0 | 986 | 0.2432 | 0.0556 | 0.1112 | 0.1112 | nan | 0.1112 | 0.0 | 0.1112 |
| 0.2414 | 59.0 | 1003 | 0.2298 | 0.0935 | 0.1870 | 0.1870 | nan | 0.1870 | 0.0 | 0.1870 |
| 0.2414 | 60.0 | 1020 | 0.2172 | 0.1357 | 0.2714 | 0.2714 | nan | 0.2714 | 0.0 | 0.2714 |
| 0.2414 | 61.0 | 1037 | 0.1975 | 0.2473 | 0.4945 | 0.4945 | nan | 0.4945 | 0.0 | 0.4945 |
| 0.2414 | 62.0 | 1054 | 0.2019 | 0.3072 | 0.6144 | 0.6144 | nan | 0.6144 | 0.0 | 0.6144 |
| 0.2414 | 63.0 | 1071 | 0.2331 | 0.2901 | 0.5802 | 0.5802 | nan | 0.5802 | 0.0 | 0.5802 |
| 0.2414 | 64.0 | 1088 | 0.2391 | 0.0202 | 0.0405 | 0.0405 | nan | 0.0405 | 0.0 | 0.0405 |
| 0.2244 | 65.0 | 1105 | 0.2013 | 0.2051 | 0.4103 | 0.4103 | nan | 0.4103 | 0.0 | 0.4103 |
| 0.2244 | 66.0 | 1122 | 0.2076 | 0.2277 | 0.4554 | 0.4554 | nan | 0.4554 | 0.0 | 0.4554 |
| 0.2244 | 67.0 | 1139 | 0.2289 | 0.2376 | 0.4752 | 0.4752 | nan | 0.4752 | 0.0 | 0.4752 |
| 0.2244 | 68.0 | 1156 | 0.2293 | 0.2633 | 0.5266 | 0.5266 | nan | 0.5266 | 0.0 | 0.5266 |
| 0.2244 | 69.0 | 1173 | 0.1907 | 0.2973 | 0.5946 | 0.5946 | nan | 0.5946 | 0.0 | 0.5946 |
| 0.2244 | 70.0 | 1190 | 0.2714 | 0.4149 | 0.8298 | 0.8298 | nan | 0.8298 | 0.0 | 0.8298 |
| 0.2067 | 71.0 | 1207 | 0.2621 | 0.1077 | 0.2154 | 0.2154 | nan | 0.2154 | 0.0 | 0.2154 |
| 0.2067 | 72.0 | 1224 | 0.2028 | 0.3925 | 0.7849 | 0.7849 | nan | 0.7849 | 0.0 | 0.7849 |
| 0.2067 | 73.0 | 1241 | 0.2457 | 0.3271 | 0.6543 | 0.6543 | nan | 0.6543 | 0.0 | 0.6543 |
| 0.2067 | 74.0 | 1258 | 0.2533 | 0.2758 | 0.5516 | 0.5516 | nan | 0.5516 | 0.0 | 0.5516 |
| 0.2067 | 75.0 | 1275 | 0.2223 | 0.2553 | 0.5106 | 0.5106 | nan | 0.5106 | 0.0 | 0.5106 |
| 0.2067 | 76.0 | 1292 | 0.2784 | 0.1558 | 0.3116 | 0.3116 | nan | 0.3116 | 0.0 | 0.3116 |
| 0.2111 | 77.0 | 1309 | 0.2238 | 0.2742 | 0.5485 | 0.5485 | nan | 0.5485 | 0.0 | 0.5485 |
| 0.2111 | 78.0 | 1326 | 0.2486 | 0.3661 | 0.7322 | 0.7322 | nan | 0.7322 | 0.0 | 0.7322 |
| 0.2111 | 79.0 | 1343 | 0.2279 | 0.2980 | 0.5961 | 0.5961 | nan | 0.5961 | 0.0 | 0.5961 |
| 0.2111 | 80.0 | 1360 | 0.2106 | 0.4261 | 0.8522 | 0.8522 | nan | 0.8522 | 0.0 | 0.8522 |
| 0.2111 | 81.0 | 1377 | 0.2611 | 0.1272 | 0.2544 | 0.2544 | nan | 0.2544 | 0.0 | 0.2544 |
| 0.2111 | 82.0 | 1394 | 0.2742 | 0.2939 | 0.5879 | 0.5879 | nan | 0.5879 | 0.0 | 0.5879 |
| 0.1945 | 83.0 | 1411 | 0.2058 | 0.2690 | 0.5380 | 0.5380 | nan | 0.5380 | 0.0 | 0.5380 |
| 0.1945 | 84.0 | 1428 | 0.2239 | 0.2701 | 0.5401 | 0.5401 | nan | 0.5401 | 0.0 | 0.5401 |
| 0.1945 | 85.0 | 1445 | 0.3142 | 0.3677 | 0.7355 | 0.7355 | nan | 0.7355 | 0.0 | 0.7355 |
| 0.1945 | 86.0 | 1462 | 0.3306 | 0.1677 | 0.3353 | 0.3353 | nan | 0.3353 | 0.0 | 0.3353 |
| 0.1945 | 87.0 | 1479 | 0.2530 | 0.2969 | 0.5938 | 0.5938 | nan | 0.5938 | 0.0 | 0.5938 |
| 0.1945 | 88.0 | 1496 | 0.2500 | 0.2320 | 0.4640 | 0.4640 | nan | 0.4640 | 0.0 | 0.4640 |
| 0.192 | 89.0 | 1513 | 0.2924 | 0.1946 | 0.3891 | 0.3891 | nan | 0.3891 | 0.0 | 0.3891 |
| 0.192 | 90.0 | 1530 | 0.3585 | 0.0835 | 0.1670 | 0.1670 | nan | 0.1670 | 0.0 | 0.1670 |
| 0.192 | 91.0 | 1547 | 0.3411 | 0.1406 | 0.2813 | 0.2813 | nan | 0.2813 | 0.0 | 0.2813 |
| 0.192 | 92.0 | 1564 | 0.2961 | 0.2882 | 0.5764 | 0.5764 | nan | 0.5764 | 0.0 | 0.5764 |
| 0.192 | 93.0 | 1581 | 0.2800 | 0.1694 | 0.3387 | 0.3387 | nan | 0.3387 | 0.0 | 0.3387 |
| 0.192 | 94.0 | 1598 | 0.3560 | 0.3134 | 0.6269 | 0.6269 | nan | 0.6269 | 0.0 | 0.6269 |
| 0.1913 | 95.0 | 1615 | 0.3817 | 0.2125 | 0.4251 | 0.4251 | nan | 0.4251 | 0.0 | 0.4251 |
| 0.1913 | 96.0 | 1632 | 0.3245 | 0.0876 | 0.1753 | 0.1753 | nan | 0.1753 | 0.0 | 0.1753 |
| 0.1913 | 97.0 | 1649 | 0.3458 | 0.1685 | 0.3369 | 0.3369 | nan | 0.3369 | 0.0 | 0.3369 |
| 0.1913 | 98.0 | 1666 | 0.3581 | 0.2758 | 0.5515 | 0.5515 | nan | 0.5515 | 0.0 | 0.5515 |
| 0.1913 | 99.0 | 1683 | 0.3175 | 0.2537 | 0.5074 | 0.5074 | nan | 0.5074 | 0.0 | 0.5074 |
| 0.1731 | 100.0 | 1700 | 0.2857 | 0.2969 | 0.5939 | 0.5939 | nan | 0.5939 | 0.0 | 0.5939 |
| 0.1731 | 101.0 | 1717 | 0.3411 | 0.3170 | 0.6340 | 0.6340 | nan | 0.6340 | 0.0 | 0.6340 |
| 0.1731 | 102.0 | 1734 | 0.3221 | 0.2288 | 0.4576 | 0.4576 | nan | 0.4576 | 0.0 | 0.4576 |
| 0.1731 | 103.0 | 1751 | 0.2913 | 0.3578 | 0.7156 | 0.7156 | nan | 0.7156 | 0.0 | 0.7156 |
| 0.1731 | 104.0 | 1768 | 0.2708 | 0.3599 | 0.7197 | 0.7197 | nan | 0.7197 | 0.0 | 0.7197 |
| 0.1731 | 105.0 | 1785 | 0.3456 | 0.2584 | 0.5168 | 0.5168 | nan | 0.5168 | 0.0 | 0.5168 |
| 0.1581 | 106.0 | 1802 | 0.2770 | 0.3497 | 0.6995 | 0.6995 | nan | 0.6995 | 0.0 | 0.6995 |
| 0.1581 | 107.0 | 1819 | 0.2698 | 0.3113 | 0.6226 | 0.6226 | nan | 0.6226 | 0.0 | 0.6226 |
| 0.1581 | 108.0 | 1836 | 0.2393 | 0.3194 | 0.6389 | 0.6389 | nan | 0.6389 | 0.0 | 0.6389 |
| 0.1581 | 109.0 | 1853 | 0.3066 | 0.2162 | 0.4324 | 0.4324 | nan | 0.4324 | 0.0 | 0.4324 |
| 0.1581 | 110.0 | 1870 | 0.2795 | 0.3652 | 0.7304 | 0.7304 | nan | 0.7304 | 0.0 | 0.7304 |
| 0.1581 | 111.0 | 1887 | 0.2847 | 0.3003 | 0.6007 | 0.6007 | nan | 0.6007 | 0.0 | 0.6007 |
| 0.1441 | 112.0 | 1904 | 0.2758 | 0.3359 | 0.6718 | 0.6718 | nan | 0.6718 | 0.0 | 0.6718 |
| 0.1441 | 113.0 | 1921 | 0.3062 | 0.3258 | 0.6516 | 0.6516 | nan | 0.6516 | 0.0 | 0.6516 |
| 0.1441 | 114.0 | 1938 | 0.2293 | 0.3128 | 0.6256 | 0.6256 | nan | 0.6256 | 0.0 | 0.6256 |
| 0.1441 | 115.0 | 1955 | 0.2223 | 0.3407 | 0.6813 | 0.6813 | nan | 0.6813 | 0.0 | 0.6813 |
| 0.1441 | 116.0 | 1972 | 0.3118 | 0.4092 | 0.8185 | 0.8185 | nan | 0.8185 | 0.0 | 0.8185 |
| 0.1441 | 117.0 | 1989 | 0.2838 | 0.2334 | 0.4668 | 0.4668 | nan | 0.4668 | 0.0 | 0.4668 |
| 0.1393 | 118.0 | 2006 | 0.3241 | 0.2276 | 0.4551 | 0.4551 | nan | 0.4551 | 0.0 | 0.4551 |
| 0.1393 | 119.0 | 2023 | 0.2716 | 0.3810 | 0.7621 | 0.7621 | nan | 0.7621 | 0.0 | 0.7621 |
| 0.1393 | 120.0 | 2040 | 0.3328 | 0.3760 | 0.7520 | 0.7520 | nan | 0.7520 | 0.0 | 0.7520 |
| 0.1393 | 121.0 | 2057 | 0.3282 | 0.2801 | 0.5602 | 0.5602 | nan | 0.5602 | 0.0 | 0.5602 |
| 0.1393 | 122.0 | 2074 | 0.3348 | 0.3117 | 0.6233 | 0.6233 | nan | 0.6233 | 0.0 | 0.6233 |
| 0.1393 | 123.0 | 2091 | 0.3851 | 0.2782 | 0.5564 | 0.5564 | nan | 0.5564 | 0.0 | 0.5564 |
| 0.1449 | 124.0 | 2108 | 0.3402 | 0.3162 | 0.6323 | 0.6323 | nan | 0.6323 | 0.0 | 0.6323 |
| 0.1449 | 125.0 | 2125 | 0.3053 | 0.2355 | 0.4711 | 0.4711 | nan | 0.4711 | 0.0 | 0.4711 |
| 0.1449 | 126.0 | 2142 | 0.3265 | 0.2472 | 0.4944 | 0.4944 | nan | 0.4944 | 0.0 | 0.4944 |
| 0.1449 | 127.0 | 2159 | 0.4374 | 0.1463 | 0.2927 | 0.2927 | nan | 0.2927 | 0.0 | 0.2927 |
| 0.1449 | 128.0 | 2176 | 0.3182 | 0.2567 | 0.5134 | 0.5134 | nan | 0.5134 | 0.0 | 0.5134 |
| 0.1449 | 129.0 | 2193 | 0.3109 | 0.3480 | 0.6960 | 0.6960 | nan | 0.6960 | 0.0 | 0.6960 |
| 0.1245 | 130.0 | 2210 | 0.3833 | 0.1749 | 0.3498 | 0.3498 | nan | 0.3498 | 0.0 | 0.3498 |
| 0.1245 | 131.0 | 2227 | 0.3002 | 0.2612 | 0.5224 | 0.5224 | nan | 0.5224 | 0.0 | 0.5224 |
| 0.1245 | 132.0 | 2244 | 0.3869 | 0.3064 | 0.6129 | 0.6129 | nan | 0.6129 | 0.0 | 0.6129 |
| 0.1245 | 133.0 | 2261 | 0.3192 | 0.3360 | 0.6720 | 0.6720 | nan | 0.6720 | 0.0 | 0.6720 |
| 0.1245 | 134.0 | 2278 | 0.2726 | 0.3727 | 0.7453 | 0.7453 | nan | 0.7453 | 0.0 | 0.7453 |
| 0.1245 | 135.0 | 2295 | 0.2383 | 0.3435 | 0.6869 | 0.6869 | nan | 0.6869 | 0.0 | 0.6869 |
| 0.1235 | 136.0 | 2312 | 0.2310 | 0.3693 | 0.7386 | 0.7386 | nan | 0.7386 | 0.0 | 0.7386 |
| 0.1235 | 137.0 | 2329 | 0.3270 | 0.3227 | 0.6453 | 0.6453 | nan | 0.6453 | 0.0 | 0.6453 |
| 0.1235 | 138.0 | 2346 | 0.2932 | 0.3149 | 0.6298 | 0.6298 | nan | 0.6298 | 0.0 | 0.6298 |
| 0.1235 | 139.0 | 2363 | 0.2976 | 0.3455 | 0.6911 | 0.6911 | nan | 0.6911 | 0.0 | 0.6911 |
| 0.1235 | 140.0 | 2380 | 0.3069 | 0.3496 | 0.6991 | 0.6991 | nan | 0.6991 | 0.0 | 0.6991 |
| 0.1235 | 141.0 | 2397 | 0.2529 | 0.2496 | 0.4993 | 0.4993 | nan | 0.4993 | 0.0 | 0.4993 |
| 0.1128 | 142.0 | 2414 | 0.2553 | 0.2952 | 0.5904 | 0.5904 | nan | 0.5904 | 0.0 | 0.5904 |
| 0.1128 | 143.0 | 2431 | 0.2483 | 0.3372 | 0.6743 | 0.6743 | nan | 0.6743 | 0.0 | 0.6743 |
| 0.1128 | 144.0 | 2448 | 0.2817 | 0.3429 | 0.6857 | 0.6857 | nan | 0.6857 | 0.0 | 0.6857 |
| 0.1128 | 145.0 | 2465 | 0.2906 | 0.1424 | 0.2847 | 0.2847 | nan | 0.2847 | 0.0 | 0.2847 |
| 0.1128 | 146.0 | 2482 | 0.2827 | 0.2326 | 0.4653 | 0.4653 | nan | 0.4653 | 0.0 | 0.4653 |
| 0.1128 | 147.0 | 2499 | 0.2806 | 0.2263 | 0.4525 | 0.4525 | nan | 0.4525 | 0.0 | 0.4525 |
| 0.1086 | 148.0 | 2516 | 0.3055 | 0.2203 | 0.4406 | 0.4406 | nan | 0.4406 | 0.0 | 0.4406 |
| 0.1086 | 149.0 | 2533 | 0.2875 | 0.2702 | 0.5403 | 0.5403 | nan | 0.5403 | 0.0 | 0.5403 |
| 0.1086 | 150.0 | 2550 | 0.4335 | 0.2037 | 0.4074 | 0.4074 | nan | 0.4074 | 0.0 | 0.4074 |
| 0.1086 | 151.0 | 2567 | 0.3218 | 0.2663 | 0.5326 | 0.5326 | nan | 0.5326 | 0.0 | 0.5326 |
| 0.1086 | 152.0 | 2584 | 0.2494 | 0.3017 | 0.6035 | 0.6035 | nan | 0.6035 | 0.0 | 0.6035 |
| 0.1059 | 153.0 | 2601 | 0.2533 | 0.3175 | 0.6351 | 0.6351 | nan | 0.6351 | 0.0 | 0.6351 |
| 0.1059 | 154.0 | 2618 | 0.3656 | 0.2223 | 0.4447 | 0.4447 | nan | 0.4447 | 0.0 | 0.4447 |
| 0.1059 | 155.0 | 2635 | 0.3427 | 0.2402 | 0.4803 | 0.4803 | nan | 0.4803 | 0.0 | 0.4803 |
| 0.1059 | 156.0 | 2652 | 0.3269 | 0.2970 | 0.5939 | 0.5939 | nan | 0.5939 | 0.0 | 0.5939 |
| 0.1059 | 157.0 | 2669 | 0.3159 | 0.2391 | 0.4783 | 0.4783 | nan | 0.4783 | 0.0 | 0.4783 |
| 0.1059 | 158.0 | 2686 | 0.3799 | 0.3644 | 0.7287 | 0.7287 | nan | 0.7287 | 0.0 | 0.7287 |
| 0.0998 | 159.0 | 2703 | 0.3057 | 0.2416 | 0.4831 | 0.4831 | nan | 0.4831 | 0.0 | 0.4831 |
| 0.0998 | 160.0 | 2720 | 0.3725 | 0.2123 | 0.4245 | 0.4245 | nan | 0.4245 | 0.0 | 0.4245 |
| 0.0998 | 161.0 | 2737 | 0.4095 | 0.2383 | 0.4767 | 0.4767 | nan | 0.4767 | 0.0 | 0.4767 |
| 0.0998 | 162.0 | 2754 | 0.3927 | 0.3185 | 0.6371 | 0.6371 | nan | 0.6371 | 0.0 | 0.6371 |
| 0.0998 | 163.0 | 2771 | 0.3511 | 0.3410 | 0.6820 | 0.6820 | nan | 0.6820 | 0.0 | 0.6820 |
| 0.0998 | 164.0 | 2788 | 0.3122 | 0.2452 | 0.4904 | 0.4904 | nan | 0.4904 | 0.0 | 0.4904 |
| 0.1008 | 165.0 | 2805 | 0.4119 | 0.2560 | 0.5119 | 0.5119 | nan | 0.5119 | 0.0 | 0.5119 |
| 0.1008 | 166.0 | 2822 | 0.4577 | 0.2518 | 0.5035 | 0.5035 | nan | 0.5035 | 0.0 | 0.5035 |
| 0.1008 | 167.0 | 2839 | 0.3426 | 0.2673 | 0.5346 | 0.5346 | nan | 0.5346 | 0.0 | 0.5346 |
| 0.1008 | 168.0 | 2856 | 0.3069 | 0.3632 | 0.7265 | 0.7265 | nan | 0.7265 | 0.0 | 0.7265 |
| 0.1008 | 169.0 | 2873 | 0.4477 | 0.2209 | 0.4417 | 0.4417 | nan | 0.4417 | 0.0 | 0.4417 |
| 0.1008 | 170.0 | 2890 | 0.3307 | 0.2525 | 0.5049 | 0.5049 | nan | 0.5049 | 0.0 | 0.5049 |
| 0.0998 | 171.0 | 2907 | 0.3338 | 0.2725 | 0.5450 | 0.5450 | nan | 0.5450 | 0.0 | 0.5450 |
| 0.0998 | 172.0 | 2924 | 0.3028 | 0.3637 | 0.7275 | 0.7275 | nan | 0.7275 | 0.0 | 0.7275 |
| 0.0998 | 173.0 | 2941 | 0.3716 | 0.2877 | 0.5753 | 0.5753 | nan | 0.5753 | 0.0 | 0.5753 |
| 0.0998 | 174.0 | 2958 | 0.4544 | 0.3364 | 0.6729 | 0.6729 | nan | 0.6729 | 0.0 | 0.6729 |
| 0.0998 | 175.0 | 2975 | 0.3750 | 0.2699 | 0.5399 | 0.5399 | nan | 0.5399 | 0.0 | 0.5399 |
| 0.0998 | 176.0 | 2992 | 0.3580 | 0.3064 | 0.6128 | 0.6128 | nan | 0.6128 | 0.0 | 0.6128 |
| 0.0944 | 177.0 | 3009 | 0.3519 | 0.2820 | 0.5641 | 0.5641 | nan | 0.5641 | 0.0 | 0.5641 |
| 0.0944 | 178.0 | 3026 | 0.4045 | 0.2488 | 0.4975 | 0.4975 | nan | 0.4975 | 0.0 | 0.4975 |
| 0.0944 | 179.0 | 3043 | 0.4432 | 0.2521 | 0.5041 | 0.5041 | nan | 0.5041 | 0.0 | 0.5041 |
| 0.0944 | 180.0 | 3060 | 0.4220 | 0.1950 | 0.3900 | 0.3900 | nan | 0.3900 | 0.0 | 0.3900 |
| 0.0944 | 181.0 | 3077 | 0.3030 | 0.3492 | 0.6983 | 0.6983 | nan | 0.6983 | 0.0 | 0.6983 |
| 0.0944 | 182.0 | 3094 | 0.3034 | 0.2901 | 0.5803 | 0.5803 | nan | 0.5803 | 0.0 | 0.5803 |
| 0.0934 | 183.0 | 3111 | 0.3266 | 0.2783 | 0.5566 | 0.5566 | nan | 0.5566 | 0.0 | 0.5566 |
| 0.0934 | 184.0 | 3128 | 0.3688 | 0.2025 | 0.4051 | 0.4051 | nan | 0.4051 | 0.0 | 0.4051 |
| 0.0934 | 185.0 | 3145 | 0.3183 | 0.3159 | 0.6318 | 0.6318 | nan | 0.6318 | 0.0 | 0.6318 |
| 0.0934 | 186.0 | 3162 | 0.2926 | 0.3334 | 0.6668 | 0.6668 | nan | 0.6668 | 0.0 | 0.6668 |
| 0.0934 | 187.0 | 3179 | 0.3351 | 0.2926 | 0.5851 | 0.5851 | nan | 0.5851 | 0.0 | 0.5851 |
| 0.0934 | 188.0 | 3196 | 0.3440 | 0.3410 | 0.6821 | 0.6821 | nan | 0.6821 | 0.0 | 0.6821 |
| 0.0835 | 189.0 | 3213 | 0.2707 | 0.3727 | 0.7454 | 0.7454 | nan | 0.7454 | 0.0 | 0.7454 |
| 0.0835 | 190.0 | 3230 | 0.2855 | 0.3325 | 0.6649 | 0.6649 | nan | 0.6649 | 0.0 | 0.6649 |
| 0.0835 | 191.0 | 3247 | 0.3349 | 0.3753 | 0.7505 | 0.7505 | nan | 0.7505 | 0.0 | 0.7505 |
| 0.0835 | 192.0 | 3264 | 0.3246 | 0.3052 | 0.6105 | 0.6105 | nan | 0.6105 | 0.0 | 0.6105 |
| 0.0835 | 193.0 | 3281 | 0.3379 | 0.3133 | 0.6266 | 0.6266 | nan | 0.6266 | 0.0 | 0.6266 |
| 0.0835 | 194.0 | 3298 | 0.2440 | 0.3287 | 0.6573 | 0.6573 | nan | 0.6573 | 0.0 | 0.6573 |
| 0.0886 | 195.0 | 3315 | 0.2616 | 0.3371 | 0.6743 | 0.6743 | nan | 0.6743 | 0.0 | 0.6743 |
| 0.0886 | 196.0 | 3332 | 0.3202 | 0.3586 | 0.7173 | 0.7173 | nan | 0.7173 | 0.0 | 0.7173 |
| 0.0886 | 197.0 | 3349 | 0.3853 | 0.3157 | 0.6315 | 0.6315 | nan | 0.6315 | 0.0 | 0.6315 |
| 0.0886 | 198.0 | 3366 | 0.2670 | 0.3694 | 0.7387 | 0.7387 | nan | 0.7387 | 0.0 | 0.7387 |
| 0.0886 | 199.0 | 3383 | 0.2904 | 0.3741 | 0.7483 | 0.7483 | nan | 0.7483 | 0.0 | 0.7483 |
| 0.0852 | 200.0 | 3400 | 0.2935 | 0.3762 | 0.7525 | 0.7525 | nan | 0.7525 | 0.0 | 0.7525 |
| 0.0852 | 201.0 | 3417 | 0.2990 | 0.2311 | 0.4623 | 0.4623 | nan | 0.4623 | 0.0 | 0.4623 |
| 0.0852 | 202.0 | 3434 | 0.4198 | 0.2415 | 0.4830 | 0.4830 | nan | 0.4830 | 0.0 | 0.4830 |
| 0.0852 | 203.0 | 3451 | 0.2925 | 0.3272 | 0.6543 | 0.6543 | nan | 0.6543 | 0.0 | 0.6543 |
| 0.0852 | 204.0 | 3468 | 0.3397 | 0.3312 | 0.6625 | 0.6625 | nan | 0.6625 | 0.0 | 0.6625 |
| 0.0852 | 205.0 | 3485 | 0.3388 | 0.3187 | 0.6374 | 0.6374 | nan | 0.6374 | 0.0 | 0.6374 |
| 0.0799 | 206.0 | 3502 | 0.4443 | 0.2287 | 0.4573 | 0.4573 | nan | 0.4573 | 0.0 | 0.4573 |
| 0.0799 | 207.0 | 3519 | 0.3457 | 0.2403 | 0.4807 | 0.4807 | nan | 0.4807 | 0.0 | 0.4807 |
| 0.0799 | 208.0 | 3536 | 0.2849 | 0.3857 | 0.7714 | 0.7714 | nan | 0.7714 | 0.0 | 0.7714 |
| 0.0799 | 209.0 | 3553 | 0.2780 | 0.3685 | 0.7370 | 0.7370 | nan | 0.7370 | 0.0 | 0.7370 |
| 0.0799 | 210.0 | 3570 | 0.3077 | 0.4219 | 0.8438 | 0.8438 | nan | 0.8438 | 0.0 | 0.8438 |
| 0.0799 | 211.0 | 3587 | 0.3165 | 0.3990 | 0.7980 | 0.7980 | nan | 0.7980 | 0.0 | 0.7980 |
| 0.0814 | 212.0 | 3604 | 0.2359 | 0.3532 | 0.7065 | 0.7065 | nan | 0.7065 | 0.0 | 0.7065 |
| 0.0814 | 213.0 | 3621 | 0.2817 | 0.3445 | 0.6890 | 0.6890 | nan | 0.6890 | 0.0 | 0.6890 |
| 0.0814 | 214.0 | 3638 | 0.2271 | 0.3884 | 0.7767 | 0.7767 | nan | 0.7767 | 0.0 | 0.7767 |
| 0.0814 | 215.0 | 3655 | 0.2554 | 0.3485 | 0.6970 | 0.6970 | nan | 0.6970 | 0.0 | 0.6970 |
| 0.0814 | 216.0 | 3672 | 0.3288 | 0.2850 | 0.5700 | 0.5700 | nan | 0.5700 | 0.0 | 0.5700 |
| 0.0814 | 217.0 | 3689 | 0.3606 | 0.2887 | 0.5775 | 0.5775 | nan | 0.5775 | 0.0 | 0.5775 |
| 0.076 | 218.0 | 3706 | 0.3455 | 0.2865 | 0.5730 | 0.5730 | nan | 0.5730 | 0.0 | 0.5730 |
| 0.076 | 219.0 | 3723 | 0.2988 | 0.2831 | 0.5662 | 0.5662 | nan | 0.5662 | 0.0 | 0.5662 |
| 0.076 | 220.0 | 3740 | 0.2780 | 0.3819 | 0.7639 | 0.7639 | nan | 0.7639 | 0.0 | 0.7639 |
| 0.076 | 221.0 | 3757 | 0.3546 | 0.3373 | 0.6745 | 0.6745 | nan | 0.6745 | 0.0 | 0.6745 |
| 0.076 | 222.0 | 3774 | 0.2463 | 0.3351 | 0.6701 | 0.6701 | nan | 0.6701 | 0.0 | 0.6701 |
| 0.076 | 223.0 | 3791 | 0.2828 | 0.3337 | 0.6673 | 0.6673 | nan | 0.6673 | 0.0 | 0.6673 |
| 0.0695 | 224.0 | 3808 | 0.2713 | 0.3310 | 0.6620 | 0.6620 | nan | 0.6620 | 0.0 | 0.6620 |
| 0.0695 | 225.0 | 3825 | 0.2579 | 0.3943 | 0.7886 | 0.7886 | nan | 0.7886 | 0.0 | 0.7886 |
| 0.0695 | 226.0 | 3842 | 0.2866 | 0.3328 | 0.6656 | 0.6656 | nan | 0.6656 | 0.0 | 0.6656 |
| 0.0695 | 227.0 | 3859 | 0.2017 | 0.3899 | 0.7799 | 0.7799 | nan | 0.7799 | 0.0 | 0.7799 |
| 0.0695 | 228.0 | 3876 | 0.2404 | 0.3488 | 0.6977 | 0.6977 | nan | 0.6977 | 0.0 | 0.6977 |
| 0.0695 | 229.0 | 3893 | 0.2647 | 0.3062 | 0.6124 | 0.6124 | nan | 0.6124 | 0.0 | 0.6124 |
| 0.0711 | 230.0 | 3910 | 0.3399 | 0.3073 | 0.6146 | 0.6146 | nan | 0.6146 | 0.0 | 0.6146 |
| 0.0711 | 231.0 | 3927 | 0.2394 | 0.2819 | 0.5637 | 0.5637 | nan | 0.5637 | 0.0 | 0.5637 |
| 0.0711 | 232.0 | 3944 | 0.2756 | 0.2701 | 0.5402 | 0.5402 | nan | 0.5402 | 0.0 | 0.5402 |
| 0.0711 | 233.0 | 3961 | 0.3077 | 0.1907 | 0.3815 | 0.3815 | nan | 0.3815 | 0.0 | 0.3815 |
| 0.0711 | 234.0 | 3978 | 0.2459 | 0.3408 | 0.6817 | 0.6817 | nan | 0.6817 | 0.0 | 0.6817 |
| 0.0711 | 235.0 | 3995 | 0.2907 | 0.3307 | 0.6613 | 0.6613 | nan | 0.6613 | 0.0 | 0.6613 |
| 0.0708 | 236.0 | 4012 | 0.2833 | 0.3640 | 0.7280 | 0.7280 | nan | 0.7280 | 0.0 | 0.7280 |
| 0.0708 | 237.0 | 4029 | 0.3665 | 0.2503 | 0.5006 | 0.5006 | nan | 0.5006 | 0.0 | 0.5006 |
| 0.0708 | 238.0 | 4046 | 0.3428 | 0.2794 | 0.5589 | 0.5589 | nan | 0.5589 | 0.0 | 0.5589 |
| 0.0708 | 239.0 | 4063 | 0.3150 | 0.2842 | 0.5684 | 0.5684 | nan | 0.5684 | 0.0 | 0.5684 |
| 0.0708 | 240.0 | 4080 | 0.2640 | 0.3057 | 0.6114 | 0.6114 | nan | 0.6114 | 0.0 | 0.6114 |
| 0.0708 | 241.0 | 4097 | 0.2757 | 0.3047 | 0.6095 | 0.6095 | nan | 0.6095 | 0.0 | 0.6095 |
| 0.0723 | 242.0 | 4114 | 0.3195 | 0.2267 | 0.4534 | 0.4534 | nan | 0.4534 | 0.0 | 0.4534 |
| 0.0723 | 243.0 | 4131 | 0.2558 | 0.3521 | 0.7042 | 0.7042 | nan | 0.7042 | 0.0 | 0.7042 |
| 0.0723 | 244.0 | 4148 | 0.2594 | 0.3304 | 0.6608 | 0.6608 | nan | 0.6608 | 0.0 | 0.6608 |
| 0.0723 | 245.0 | 4165 | 0.3000 | 0.2973 | 0.5946 | 0.5946 | nan | 0.5946 | 0.0 | 0.5946 |
| 0.0723 | 246.0 | 4182 | 0.2605 | 0.2818 | 0.5635 | 0.5635 | nan | 0.5635 | 0.0 | 0.5635 |
| 0.0723 | 247.0 | 4199 | 0.4257 | 0.2287 | 0.4573 | 0.4573 | nan | 0.4573 | 0.0 | 0.4573 |
| 0.071 | 248.0 | 4216 | 0.2179 | 0.3327 | 0.6654 | 0.6654 | nan | 0.6654 | 0.0 | 0.6654 |
| 0.071 | 249.0 | 4233 | 0.2834 | 0.3390 | 0.6780 | 0.6780 | nan | 0.6780 | 0.0 | 0.6780 |
| 0.071 | 250.0 | 4250 | 0.2524 | 0.3294 | 0.6587 | 0.6587 | nan | 0.6587 | 0.0 | 0.6587 |
| 0.071 | 251.0 | 4267 | 0.2615 | 0.3814 | 0.7628 | 0.7628 | nan | 0.7628 | 0.0 | 0.7628 |
| 0.071 | 252.0 | 4284 | 0.3364 | 0.3251 | 0.6502 | 0.6502 | nan | 0.6502 | 0.0 | 0.6502 |
| 0.0698 | 253.0 | 4301 | 0.2771 | 0.3535 | 0.7069 | 0.7069 | nan | 0.7069 | 0.0 | 0.7069 |
| 0.0698 | 254.0 | 4318 | 0.2185 | 0.3216 | 0.6432 | 0.6432 | nan | 0.6432 | 0.0 | 0.6432 |
| 0.0698 | 255.0 | 4335 | 0.3342 | 0.2726 | 0.5452 | 0.5452 | nan | 0.5452 | 0.0 | 0.5452 |
| 0.0698 | 256.0 | 4352 | 0.3268 | 0.2718 | 0.5436 | 0.5436 | nan | 0.5436 | 0.0 | 0.5436 |
| 0.0698 | 257.0 | 4369 | 0.2967 | 0.2964 | 0.5929 | 0.5929 | nan | 0.5929 | 0.0 | 0.5929 |
| 0.0698 | 258.0 | 4386 | 0.2684 | 0.3280 | 0.6559 | 0.6559 | nan | 0.6559 | 0.0 | 0.6559 |
| 0.0669 | 259.0 | 4403 | 0.3126 | 0.2626 | 0.5251 | 0.5251 | nan | 0.5251 | 0.0 | 0.5251 |
| 0.0669 | 260.0 | 4420 | 0.2726 | 0.3176 | 0.6353 | 0.6353 | nan | 0.6353 | 0.0 | 0.6353 |
| 0.0669 | 261.0 | 4437 | 0.3289 | 0.2687 | 0.5374 | 0.5374 | nan | 0.5374 | 0.0 | 0.5374 |
| 0.0669 | 262.0 | 4454 | 0.2902 | 0.3025 | 0.6050 | 0.6050 | nan | 0.6050 | 0.0 | 0.6050 |
| 0.0669 | 263.0 | 4471 | 0.2427 | 0.3462 | 0.6925 | 0.6925 | nan | 0.6925 | 0.0 | 0.6925 |
| 0.0669 | 264.0 | 4488 | 0.3117 | 0.2864 | 0.5727 | 0.5727 | nan | 0.5727 | 0.0 | 0.5727 |
| 0.062 | 265.0 | 4505 | 0.2793 | 0.3098 | 0.6195 | 0.6195 | nan | 0.6195 | 0.0 | 0.6195 |
| 0.062 | 266.0 | 4522 | 0.2447 | 0.3196 | 0.6391 | 0.6391 | nan | 0.6391 | 0.0 | 0.6391 |
| 0.062 | 267.0 | 4539 | 0.2943 | 0.2910 | 0.5821 | 0.5821 | nan | 0.5821 | 0.0 | 0.5821 |
| 0.062 | 268.0 | 4556 | 0.2506 | 0.2764 | 0.5527 | 0.5527 | nan | 0.5527 | 0.0 | 0.5527 |
| 0.062 | 269.0 | 4573 | 0.2507 | 0.3380 | 0.6760 | 0.6760 | nan | 0.6760 | 0.0 | 0.6760 |
| 0.062 | 270.0 | 4590 | 0.2783 | 0.2740 | 0.5480 | 0.5480 | nan | 0.5480 | 0.0 | 0.5480 |
| 0.0565 | 271.0 | 4607 | 0.2896 | 0.3476 | 0.6952 | 0.6952 | nan | 0.6952 | 0.0 | 0.6952 |
| 0.0565 | 272.0 | 4624 | 0.2855 | 0.3333 | 0.6665 | 0.6665 | nan | 0.6665 | 0.0 | 0.6665 |
| 0.0565 | 273.0 | 4641 | 0.2183 | 0.3395 | 0.6790 | 0.6790 | nan | 0.6790 | 0.0 | 0.6790 |
| 0.0565 | 274.0 | 4658 | 0.2132 | 0.3567 | 0.7134 | 0.7134 | nan | 0.7134 | 0.0 | 0.7134 |
| 0.0565 | 275.0 | 4675 | 0.2632 | 0.3130 | 0.6260 | 0.6260 | nan | 0.6260 | 0.0 | 0.6260 |
| 0.0565 | 276.0 | 4692 | 0.2548 | 0.2878 | 0.5756 | 0.5756 | nan | 0.5756 | 0.0 | 0.5756 |
| 0.0585 | 277.0 | 4709 | 0.2379 | 0.3666 | 0.7333 | 0.7333 | nan | 0.7333 | 0.0 | 0.7333 |
| 0.0585 | 278.0 | 4726 | 0.3023 | 0.2528 | 0.5056 | 0.5056 | nan | 0.5056 | 0.0 | 0.5056 |
| 0.0585 | 279.0 | 4743 | 0.2598 | 0.3065 | 0.6130 | 0.6130 | nan | 0.6130 | 0.0 | 0.6130 |
| 0.0585 | 280.0 | 4760 | 0.2836 | 0.3839 | 0.7679 | 0.7679 | nan | 0.7679 | 0.0 | 0.7679 |
| 0.0585 | 281.0 | 4777 | 0.2904 | 0.2997 | 0.5994 | 0.5994 | nan | 0.5994 | 0.0 | 0.5994 |
| 0.0585 | 282.0 | 4794 | 0.2363 | 0.3810 | 0.7621 | 0.7621 | nan | 0.7621 | 0.0 | 0.7621 |
| 0.0622 | 283.0 | 4811 | 0.2126 | 0.3643 | 0.7286 | 0.7286 | nan | 0.7286 | 0.0 | 0.7286 |
| 0.0622 | 284.0 | 4828 | 0.2295 | 0.3264 | 0.6528 | 0.6528 | nan | 0.6528 | 0.0 | 0.6528 |
| 0.0622 | 285.0 | 4845 | 0.2663 | 0.2939 | 0.5879 | 0.5879 | nan | 0.5879 | 0.0 | 0.5879 |
| 0.0622 | 286.0 | 4862 | 0.3011 | 0.2987 | 0.5974 | 0.5974 | nan | 0.5974 | 0.0 | 0.5974 |
| 0.0622 | 287.0 | 4879 | 0.2626 | 0.3025 | 0.6051 | 0.6051 | nan | 0.6051 | 0.0 | 0.6051 |
| 0.0622 | 288.0 | 4896 | 0.2773 | 0.2663 | 0.5326 | 0.5326 | nan | 0.5326 | 0.0 | 0.5326 |
| 0.0608 | 289.0 | 4913 | 0.2915 | 0.2532 | 0.5064 | 0.5064 | nan | 0.5064 | 0.0 | 0.5064 |
| 0.0608 | 290.0 | 4930 | 0.2915 | 0.2240 | 0.4480 | 0.4480 | nan | 0.4480 | 0.0 | 0.4480 |
| 0.0608 | 291.0 | 4947 | 0.2605 | 0.3051 | 0.6103 | 0.6103 | nan | 0.6103 | 0.0 | 0.6103 |
| 0.0608 | 292.0 | 4964 | 0.3391 | 0.2572 | 0.5145 | 0.5145 | nan | 0.5145 | 0.0 | 0.5145 |
| 0.0608 | 293.0 | 4981 | 0.2621 | 0.2815 | 0.5629 | 0.5629 | nan | 0.5629 | 0.0 | 0.5629 |
| 0.0608 | 294.0 | 4998 | 0.2932 | 0.3072 | 0.6144 | 0.6144 | nan | 0.6144 | 0.0 | 0.6144 |
| 0.0536 | 295.0 | 5015 | 0.3546 | 0.2762 | 0.5524 | 0.5524 | nan | 0.5524 | 0.0 | 0.5524 |
| 0.0536 | 296.0 | 5032 | 0.2652 | 0.2772 | 0.5545 | 0.5545 | nan | 0.5545 | 0.0 | 0.5545 |
| 0.0536 | 297.0 | 5049 | 0.2781 | 0.2515 | 0.5030 | 0.5030 | nan | 0.5030 | 0.0 | 0.5030 |
| 0.0536 | 298.0 | 5066 | 0.2777 | 0.2666 | 0.5333 | 0.5333 | nan | 0.5333 | 0.0 | 0.5333 |
| 0.0536 | 299.0 | 5083 | 0.2573 | 0.2863 | 0.5726 | 0.5726 | nan | 0.5726 | 0.0 | 0.5726 |
| 0.0572 | 300.0 | 5100 | 0.2443 | 0.3174 | 0.6348 | 0.6348 | nan | 0.6348 | 0.0 | 0.6348 |
| 0.0572 | 301.0 | 5117 | 0.2724 | 0.3107 | 0.6214 | 0.6214 | nan | 0.6214 | 0.0 | 0.6214 |
| 0.0572 | 302.0 | 5134 | 0.2443 | 0.3254 | 0.6509 | 0.6509 | nan | 0.6509 | 0.0 | 0.6509 |
| 0.0572 | 303.0 | 5151 | 0.2556 | 0.2854 | 0.5708 | 0.5708 | nan | 0.5708 | 0.0 | 0.5708 |
| 0.0572 | 304.0 | 5168 | 0.2798 | 0.3086 | 0.6171 | 0.6171 | nan | 0.6171 | 0.0 | 0.6171 |
| 0.0572 | 305.0 | 5185 | 0.2805 | 0.3136 | 0.6271 | 0.6271 | nan | 0.6271 | 0.0 | 0.6271 |
| 0.057 | 306.0 | 5202 | 0.1925 | 0.3286 | 0.6572 | 0.6572 | nan | 0.6572 | 0.0 | 0.6572 |
| 0.057 | 307.0 | 5219 | 0.2125 | 0.4029 | 0.8058 | 0.8058 | nan | 0.8058 | 0.0 | 0.8058 |
| 0.057 | 308.0 | 5236 | 0.2009 | 0.3365 | 0.6731 | 0.6731 | nan | 0.6731 | 0.0 | 0.6731 |
| 0.057 | 309.0 | 5253 | 0.2251 | 0.3493 | 0.6986 | 0.6986 | nan | 0.6986 | 0.0 | 0.6986 |
| 0.057 | 310.0 | 5270 | 0.2298 | 0.3558 | 0.7116 | 0.7116 | nan | 0.7116 | 0.0 | 0.7116 |
| 0.057 | 311.0 | 5287 | 0.2192 | 0.2883 | 0.5767 | 0.5767 | nan | 0.5767 | 0.0 | 0.5767 |
| 0.0522 | 312.0 | 5304 | 0.2349 | 0.3551 | 0.7102 | 0.7102 | nan | 0.7102 | 0.0 | 0.7102 |
| 0.0522 | 313.0 | 5321 | 0.1832 | 0.4190 | 0.8379 | 0.8379 | nan | 0.8379 | 0.0 | 0.8379 |
| 0.0522 | 314.0 | 5338 | 0.2119 | 0.3985 | 0.7971 | 0.7971 | nan | 0.7971 | 0.0 | 0.7971 |
| 0.0522 | 315.0 | 5355 | 0.2038 | 0.4374 | 0.8747 | 0.8747 | nan | 0.8747 | 0.0 | 0.8747 |
| 0.0522 | 316.0 | 5372 | 0.2124 | 0.3713 | 0.7427 | 0.7427 | nan | 0.7427 | 0.0 | 0.7427 |
| 0.0522 | 317.0 | 5389 | 0.1980 | 0.3498 | 0.6995 | 0.6995 | nan | 0.6995 | 0.0 | 0.6995 |
| 0.0523 | 318.0 | 5406 | 0.2483 | 0.3521 | 0.7042 | 0.7042 | nan | 0.7042 | 0.0 | 0.7042 |
| 0.0523 | 319.0 | 5423 | 0.2873 | 0.3058 | 0.6116 | 0.6116 | nan | 0.6116 | 0.0 | 0.6116 |
| 0.0523 | 320.0 | 5440 | 0.2366 | 0.3530 | 0.7060 | 0.7060 | nan | 0.7060 | 0.0 | 0.7060 |
| 0.0523 | 321.0 | 5457 | 0.2613 | 0.3360 | 0.6720 | 0.6720 | nan | 0.6720 | 0.0 | 0.6720 |
| 0.0523 | 322.0 | 5474 | 0.2392 | 0.3401 | 0.6802 | 0.6802 | nan | 0.6802 | 0.0 | 0.6802 |
| 0.0523 | 323.0 | 5491 | 0.2279 | 0.3464 | 0.6928 | 0.6928 | nan | 0.6928 | 0.0 | 0.6928 |
| 0.05 | 324.0 | 5508 | 0.2718 | 0.2724 | 0.5449 | 0.5449 | nan | 0.5449 | 0.0 | 0.5449 |
| 0.05 | 325.0 | 5525 | 0.2367 | 0.3879 | 0.7758 | 0.7758 | nan | 0.7758 | 0.0 | 0.7758 |
| 0.05 | 326.0 | 5542 | 0.2976 | 0.3504 | 0.7008 | 0.7008 | nan | 0.7008 | 0.0 | 0.7008 |
| 0.05 | 327.0 | 5559 | 0.2424 | 0.3214 | 0.6429 | 0.6429 | nan | 0.6429 | 0.0 | 0.6429 |
| 0.05 | 328.0 | 5576 | 0.2852 | 0.3042 | 0.6084 | 0.6084 | nan | 0.6084 | 0.0 | 0.6084 |
| 0.05 | 329.0 | 5593 | 0.2473 | 0.2739 | 0.5479 | 0.5479 | nan | 0.5479 | 0.0 | 0.5479 |
| 0.0552 | 330.0 | 5610 | 0.2461 | 0.3971 | 0.7943 | 0.7943 | nan | 0.7943 | 0.0 | 0.7943 |
| 0.0552 | 331.0 | 5627 | 0.2122 | 0.3252 | 0.6503 | 0.6503 | nan | 0.6503 | 0.0 | 0.6503 |
| 0.0552 | 332.0 | 5644 | 0.2318 | 0.2996 | 0.5993 | 0.5993 | nan | 0.5993 | 0.0 | 0.5993 |
| 0.0552 | 333.0 | 5661 | 0.2186 | 0.3774 | 0.7547 | 0.7547 | nan | 0.7547 | 0.0 | 0.7547 |
| 0.0552 | 334.0 | 5678 | 0.2682 | 0.2615 | 0.5230 | 0.5230 | nan | 0.5230 | 0.0 | 0.5230 |
| 0.0552 | 335.0 | 5695 | 0.2490 | 0.3225 | 0.6451 | 0.6451 | nan | 0.6451 | 0.0 | 0.6451 |
| 0.0524 | 336.0 | 5712 | 0.2334 | 0.3464 | 0.6927 | 0.6927 | nan | 0.6927 | 0.0 | 0.6927 |
| 0.0524 | 337.0 | 5729 | 0.2234 | 0.3504 | 0.7008 | 0.7008 | nan | 0.7008 | 0.0 | 0.7008 |
| 0.0524 | 338.0 | 5746 | 0.2413 | 0.3737 | 0.7473 | 0.7473 | nan | 0.7473 | 0.0 | 0.7473 |
| 0.0524 | 339.0 | 5763 | 0.2368 | 0.3699 | 0.7399 | 0.7399 | nan | 0.7399 | 0.0 | 0.7399 |
| 0.0524 | 340.0 | 5780 | 0.2442 | 0.3809 | 0.7619 | 0.7619 | nan | 0.7619 | 0.0 | 0.7619 |
| 0.0524 | 341.0 | 5797 | 0.2208 | 0.3740 | 0.7481 | 0.7481 | nan | 0.7481 | 0.0 | 0.7481 |
| 0.0513 | 342.0 | 5814 | 0.2509 | 0.3849 | 0.7698 | 0.7698 | nan | 0.7698 | 0.0 | 0.7698 |
| 0.0513 | 343.0 | 5831 | 0.2194 | 0.3553 | 0.7106 | 0.7106 | nan | 0.7106 | 0.0 | 0.7106 |
| 0.0513 | 344.0 | 5848 | 0.2536 | 0.3990 | 0.7980 | 0.7980 | nan | 0.7980 | 0.0 | 0.7980 |
| 0.0513 | 345.0 | 5865 | 0.2803 | 0.3740 | 0.7479 | 0.7479 | nan | 0.7479 | 0.0 | 0.7479 |
| 0.0513 | 346.0 | 5882 | 0.2732 | 0.3944 | 0.7889 | 0.7889 | nan | 0.7889 | 0.0 | 0.7889 |
| 0.0513 | 347.0 | 5899 | 0.2759 | 0.3588 | 0.7176 | 0.7176 | nan | 0.7176 | 0.0 | 0.7176 |
| 0.0504 | 348.0 | 5916 | 0.2941 | 0.3472 | 0.6945 | 0.6945 | nan | 0.6945 | 0.0 | 0.6945 |
| 0.0504 | 349.0 | 5933 | 0.2170 | 0.3646 | 0.7292 | 0.7292 | nan | 0.7292 | 0.0 | 0.7292 |
| 0.0504 | 350.0 | 5950 | 0.2464 | 0.3842 | 0.7685 | 0.7685 | nan | 0.7685 | 0.0 | 0.7685 |
| 0.0504 | 351.0 | 5967 | 0.2394 | 0.3697 | 0.7395 | 0.7395 | nan | 0.7395 | 0.0 | 0.7395 |
| 0.0504 | 352.0 | 5984 | 0.2645 | 0.3719 | 0.7438 | 0.7438 | nan | 0.7438 | 0.0 | 0.7438 |
| 0.0497 | 353.0 | 6001 | 0.2226 | 0.3932 | 0.7865 | 0.7865 | nan | 0.7865 | 0.0 | 0.7865 |
| 0.0497 | 354.0 | 6018 | 0.2579 | 0.3718 | 0.7436 | 0.7436 | nan | 0.7436 | 0.0 | 0.7436 |
| 0.0497 | 355.0 | 6035 | 0.2149 | 0.3905 | 0.7810 | 0.7810 | nan | 0.7810 | 0.0 | 0.7810 |
| 0.0497 | 356.0 | 6052 | 0.2202 | 0.3803 | 0.7606 | 0.7606 | nan | 0.7606 | 0.0 | 0.7606 |
| 0.0497 | 357.0 | 6069 | 0.2281 | 0.3398 | 0.6795 | 0.6795 | nan | 0.6795 | 0.0 | 0.6795 |
| 0.0497 | 358.0 | 6086 | 0.2857 | 0.3210 | 0.6419 | 0.6419 | nan | 0.6419 | 0.0 | 0.6419 |
| 0.0464 | 359.0 | 6103 | 0.2393 | 0.3573 | 0.7146 | 0.7146 | nan | 0.7146 | 0.0 | 0.7146 |
| 0.0464 | 360.0 | 6120 | 0.2901 | 0.2873 | 0.5747 | 0.5747 | nan | 0.5747 | 0.0 | 0.5747 |
| 0.0464 | 361.0 | 6137 | 0.2689 | 0.3335 | 0.6669 | 0.6669 | nan | 0.6669 | 0.0 | 0.6669 |
| 0.0464 | 362.0 | 6154 | 0.3531 | 0.2828 | 0.5655 | 0.5655 | nan | 0.5655 | 0.0 | 0.5655 |
| 0.0464 | 363.0 | 6171 | 0.2432 | 0.4020 | 0.8039 | 0.8039 | nan | 0.8039 | 0.0 | 0.8039 |
| 0.0464 | 364.0 | 6188 | 0.2345 | 0.3927 | 0.7855 | 0.7855 | nan | 0.7855 | 0.0 | 0.7855 |
| 0.0513 | 365.0 | 6205 | 0.3075 | 0.3593 | 0.7185 | 0.7185 | nan | 0.7185 | 0.0 | 0.7185 |
| 0.0513 | 366.0 | 6222 | 0.2853 | 0.3391 | 0.6782 | 0.6782 | nan | 0.6782 | 0.0 | 0.6782 |
| 0.0513 | 367.0 | 6239 | 0.3308 | 0.3121 | 0.6243 | 0.6243 | nan | 0.6243 | 0.0 | 0.6243 |
| 0.0513 | 368.0 | 6256 | 0.2364 | 0.3805 | 0.7610 | 0.7610 | nan | 0.7610 | 0.0 | 0.7610 |
| 0.0513 | 369.0 | 6273 | 0.2420 | 0.3628 | 0.7257 | 0.7257 | nan | 0.7257 | 0.0 | 0.7257 |
| 0.0513 | 370.0 | 6290 | 0.2562 | 0.3500 | 0.7000 | 0.7000 | nan | 0.7000 | 0.0 | 0.7000 |
| 0.0491 | 371.0 | 6307 | 0.2455 | 0.3431 | 0.6863 | 0.6863 | nan | 0.6863 | 0.0 | 0.6863 |
| 0.0491 | 372.0 | 6324 | 0.2793 | 0.3599 | 0.7198 | 0.7198 | nan | 0.7198 | 0.0 | 0.7198 |
| 0.0491 | 373.0 | 6341 | 0.2232 | 0.3733 | 0.7466 | 0.7466 | nan | 0.7466 | 0.0 | 0.7466 |
| 0.0491 | 374.0 | 6358 | 0.2899 | 0.3353 | 0.6706 | 0.6706 | nan | 0.6706 | 0.0 | 0.6706 |
| 0.0491 | 375.0 | 6375 | 0.2351 | 0.3562 | 0.7124 | 0.7124 | nan | 0.7124 | 0.0 | 0.7124 |
| 0.0491 | 376.0 | 6392 | 0.2447 | 0.3252 | 0.6504 | 0.6504 | nan | 0.6504 | 0.0 | 0.6504 |
| 0.0477 | 377.0 | 6409 | 0.2346 | 0.3344 | 0.6689 | 0.6689 | nan | 0.6689 | 0.0 | 0.6689 |
| 0.0477 | 378.0 | 6426 | 0.2468 | 0.3630 | 0.7259 | 0.7259 | nan | 0.7259 | 0.0 | 0.7259 |
| 0.0477 | 379.0 | 6443 | 0.3616 | 0.3322 | 0.6645 | 0.6645 | nan | 0.6645 | 0.0 | 0.6645 |
| 0.0477 | 380.0 | 6460 | 0.2846 | 0.3387 | 0.6775 | 0.6775 | nan | 0.6775 | 0.0 | 0.6775 |
| 0.0477 | 381.0 | 6477 | 0.3733 | 0.2779 | 0.5558 | 0.5558 | nan | 0.5558 | 0.0 | 0.5558 |
| 0.0477 | 382.0 | 6494 | 0.3140 | 0.3178 | 0.6356 | 0.6356 | nan | 0.6356 | 0.0 | 0.6356 |
| 0.0446 | 383.0 | 6511 | 0.3926 | 0.3009 | 0.6018 | 0.6018 | nan | 0.6018 | 0.0 | 0.6018 |
| 0.0446 | 384.0 | 6528 | 0.2901 | 0.3070 | 0.6140 | 0.6140 | nan | 0.6140 | 0.0 | 0.6140 |
| 0.0446 | 385.0 | 6545 | 0.3247 | 0.3514 | 0.7027 | 0.7027 | nan | 0.7027 | 0.0 | 0.7027 |
| 0.0446 | 386.0 | 6562 | 0.3177 | 0.3340 | 0.6681 | 0.6681 | nan | 0.6681 | 0.0 | 0.6681 |
| 0.0446 | 387.0 | 6579 | 0.2939 | 0.3542 | 0.7084 | 0.7084 | nan | 0.7084 | 0.0 | 0.7084 |
| 0.0446 | 388.0 | 6596 | 0.2585 | 0.3410 | 0.6820 | 0.6820 | nan | 0.6820 | 0.0 | 0.6820 |
| 0.0489 | 389.0 | 6613 | 0.3240 | 0.3161 | 0.6321 | 0.6321 | nan | 0.6321 | 0.0 | 0.6321 |
| 0.0489 | 390.0 | 6630 | 0.2895 | 0.3698 | 0.7396 | 0.7396 | nan | 0.7396 | 0.0 | 0.7396 |
| 0.0489 | 391.0 | 6647 | 0.2994 | 0.3214 | 0.6428 | 0.6428 | nan | 0.6428 | 0.0 | 0.6428 |
| 0.0489 | 392.0 | 6664 | 0.2779 | 0.3668 | 0.7336 | 0.7336 | nan | 0.7336 | 0.0 | 0.7336 |
| 0.0489 | 393.0 | 6681 | 0.2841 | 0.3098 | 0.6197 | 0.6197 | nan | 0.6197 | 0.0 | 0.6197 |
| 0.0489 | 394.0 | 6698 | 0.3211 | 0.2982 | 0.5964 | 0.5964 | nan | 0.5964 | 0.0 | 0.5964 |
| 0.0449 | 395.0 | 6715 | 0.3262 | 0.2988 | 0.5977 | 0.5977 | nan | 0.5977 | 0.0 | 0.5977 |
| 0.0449 | 396.0 | 6732 | 0.3133 | 0.3101 | 0.6202 | 0.6202 | nan | 0.6202 | 0.0 | 0.6202 |
| 0.0449 | 397.0 | 6749 | 0.3241 | 0.3381 | 0.6762 | 0.6762 | nan | 0.6762 | 0.0 | 0.6762 |
| 0.0449 | 398.0 | 6766 | 0.3566 | 0.3000 | 0.5999 | 0.5999 | nan | 0.5999 | 0.0 | 0.5999 |
| 0.0449 | 399.0 | 6783 | 0.2994 | 0.3600 | 0.7199 | 0.7199 | nan | 0.7199 | 0.0 | 0.7199 |
| 0.0463 | 400.0 | 6800 | 0.2672 | 0.3268 | 0.6536 | 0.6536 | nan | 0.6536 | 0.0 | 0.6536 |
| 0.0463 | 401.0 | 6817 | 0.2945 | 0.3565 | 0.7131 | 0.7131 | nan | 0.7131 | 0.0 | 0.7131 |
| 0.0463 | 402.0 | 6834 | 0.2970 | 0.3397 | 0.6794 | 0.6794 | nan | 0.6794 | 0.0 | 0.6794 |
| 0.0463 | 403.0 | 6851 | 0.2687 | 0.3577 | 0.7154 | 0.7154 | nan | 0.7154 | 0.0 | 0.7154 |
| 0.0463 | 404.0 | 6868 | 0.2877 | 0.3387 | 0.6774 | 0.6774 | nan | 0.6774 | 0.0 | 0.6774 |
| 0.0463 | 405.0 | 6885 | 0.2600 | 0.3489 | 0.6977 | 0.6977 | nan | 0.6977 | 0.0 | 0.6977 |
| 0.0443 | 406.0 | 6902 | 0.3077 | 0.3165 | 0.6330 | 0.6330 | nan | 0.6330 | 0.0 | 0.6330 |
| 0.0443 | 407.0 | 6919 | 0.2634 | 0.3436 | 0.6873 | 0.6873 | nan | 0.6873 | 0.0 | 0.6873 |
| 0.0443 | 408.0 | 6936 | 0.2766 | 0.3393 | 0.6786 | 0.6786 | nan | 0.6786 | 0.0 | 0.6786 |
| 0.0443 | 409.0 | 6953 | 0.2781 | 0.3096 | 0.6191 | 0.6191 | nan | 0.6191 | 0.0 | 0.6191 |
| 0.0443 | 410.0 | 6970 | 0.2749 | 0.3357 | 0.6714 | 0.6714 | nan | 0.6714 | 0.0 | 0.6714 |
| 0.0443 | 411.0 | 6987 | 0.3368 | 0.3182 | 0.6364 | 0.6364 | nan | 0.6364 | 0.0 | 0.6364 |
| 0.0429 | 412.0 | 7004 | 0.3096 | 0.3016 | 0.6032 | 0.6032 | nan | 0.6032 | 0.0 | 0.6032 |
| 0.0429 | 413.0 | 7021 | 0.3003 | 0.3402 | 0.6804 | 0.6804 | nan | 0.6804 | 0.0 | 0.6804 |
| 0.0429 | 414.0 | 7038 | 0.2831 | 0.3491 | 0.6983 | 0.6983 | nan | 0.6983 | 0.0 | 0.6983 |
| 0.0429 | 415.0 | 7055 | 0.3294 | 0.2715 | 0.5430 | 0.5430 | nan | 0.5430 | 0.0 | 0.5430 |
| 0.0429 | 416.0 | 7072 | 0.2549 | 0.3333 | 0.6665 | 0.6665 | nan | 0.6665 | 0.0 | 0.6665 |
| 0.0429 | 417.0 | 7089 | 0.3011 | 0.2956 | 0.5911 | 0.5911 | nan | 0.5911 | 0.0 | 0.5911 |
| 0.0394 | 418.0 | 7106 | 0.2614 | 0.3257 | 0.6514 | 0.6514 | nan | 0.6514 | 0.0 | 0.6514 |
| 0.0394 | 419.0 | 7123 | 0.3040 | 0.3185 | 0.6369 | 0.6369 | nan | 0.6369 | 0.0 | 0.6369 |
| 0.0394 | 420.0 | 7140 | 0.2870 | 0.3443 | 0.6885 | 0.6885 | nan | 0.6885 | 0.0 | 0.6885 |
| 0.0394 | 421.0 | 7157 | 0.2593 | 0.3536 | 0.7072 | 0.7072 | nan | 0.7072 | 0.0 | 0.7072 |
| 0.0394 | 422.0 | 7174 | 0.2808 | 0.3458 | 0.6915 | 0.6915 | nan | 0.6915 | 0.0 | 0.6915 |
| 0.0394 | 423.0 | 7191 | 0.2958 | 0.3261 | 0.6522 | 0.6522 | nan | 0.6522 | 0.0 | 0.6522 |
| 0.0432 | 424.0 | 7208 | 0.2818 | 0.3377 | 0.6753 | 0.6753 | nan | 0.6753 | 0.0 | 0.6753 |
| 0.0432 | 425.0 | 7225 | 0.3045 | 0.3385 | 0.6769 | 0.6769 | nan | 0.6769 | 0.0 | 0.6769 |
| 0.0432 | 426.0 | 7242 | 0.3077 | 0.3070 | 0.6139 | 0.6139 | nan | 0.6139 | 0.0 | 0.6139 |
| 0.0432 | 427.0 | 7259 | 0.3225 | 0.3227 | 0.6455 | 0.6455 | nan | 0.6455 | 0.0 | 0.6455 |
| 0.0432 | 428.0 | 7276 | 0.3013 | 0.3387 | 0.6774 | 0.6774 | nan | 0.6774 | 0.0 | 0.6774 |
| 0.0432 | 429.0 | 7293 | 0.2909 | 0.3348 | 0.6697 | 0.6697 | nan | 0.6697 | 0.0 | 0.6697 |
| 0.0419 | 430.0 | 7310 | 0.3022 | 0.3250 | 0.6501 | 0.6501 | nan | 0.6501 | 0.0 | 0.6501 |
| 0.0419 | 431.0 | 7327 | 0.2724 | 0.3467 | 0.6934 | 0.6934 | nan | 0.6934 | 0.0 | 0.6934 |
| 0.0419 | 432.0 | 7344 | 0.3426 | 0.3265 | 0.6529 | 0.6529 | nan | 0.6529 | 0.0 | 0.6529 |
| 0.0419 | 433.0 | 7361 | 0.2962 | 0.3380 | 0.6760 | 0.6760 | nan | 0.6760 | 0.0 | 0.6760 |
| 0.0419 | 434.0 | 7378 | 0.2787 | 0.3242 | 0.6484 | 0.6484 | nan | 0.6484 | 0.0 | 0.6484 |
| 0.0419 | 435.0 | 7395 | 0.3095 | 0.3365 | 0.6730 | 0.6730 | nan | 0.6730 | 0.0 | 0.6730 |
| 0.0398 | 436.0 | 7412 | 0.3047 | 0.3122 | 0.6243 | 0.6243 | nan | 0.6243 | 0.0 | 0.6243 |
| 0.0398 | 437.0 | 7429 | 0.3225 | 0.3024 | 0.6048 | 0.6048 | nan | 0.6048 | 0.0 | 0.6048 |
| 0.0398 | 438.0 | 7446 | 0.3274 | 0.2866 | 0.5731 | 0.5731 | nan | 0.5731 | 0.0 | 0.5731 |
| 0.0398 | 439.0 | 7463 | 0.3423 | 0.2367 | 0.4735 | 0.4735 | nan | 0.4735 | 0.0 | 0.4735 |
| 0.0398 | 440.0 | 7480 | 0.3609 | 0.2558 | 0.5117 | 0.5117 | nan | 0.5117 | 0.0 | 0.5117 |
| 0.0398 | 441.0 | 7497 | 0.2948 | 0.3113 | 0.6227 | 0.6227 | nan | 0.6227 | 0.0 | 0.6227 |
| 0.0455 | 442.0 | 7514 | 0.3299 | 0.2566 | 0.5132 | 0.5132 | nan | 0.5132 | 0.0 | 0.5132 |
| 0.0455 | 443.0 | 7531 | 0.2974 | 0.3005 | 0.6011 | 0.6011 | nan | 0.6011 | 0.0 | 0.6011 |
| 0.0455 | 444.0 | 7548 | 0.3208 | 0.2764 | 0.5529 | 0.5529 | nan | 0.5529 | 0.0 | 0.5529 |
| 0.0455 | 445.0 | 7565 | 0.2894 | 0.3427 | 0.6854 | 0.6854 | nan | 0.6854 | 0.0 | 0.6854 |
| 0.0455 | 446.0 | 7582 | 0.2981 | 0.3060 | 0.6119 | 0.6119 | nan | 0.6119 | 0.0 | 0.6119 |
| 0.0455 | 447.0 | 7599 | 0.2535 | 0.3309 | 0.6618 | 0.6618 | nan | 0.6618 | 0.0 | 0.6618 |
| 0.0434 | 448.0 | 7616 | 0.2865 | 0.2696 | 0.5392 | 0.5392 | nan | 0.5392 | 0.0 | 0.5392 |
| 0.0434 | 449.0 | 7633 | 0.2940 | 0.3166 | 0.6332 | 0.6332 | nan | 0.6332 | 0.0 | 0.6332 |
| 0.0434 | 450.0 | 7650 | 0.3000 | 0.3000 | 0.6001 | 0.6001 | nan | 0.6001 | 0.0 | 0.6001 |
| 0.0434 | 451.0 | 7667 | 0.3164 | 0.2847 | 0.5694 | 0.5694 | nan | 0.5694 | 0.0 | 0.5694 |
| 0.0434 | 452.0 | 7684 | 0.2465 | 0.3287 | 0.6575 | 0.6575 | nan | 0.6575 | 0.0 | 0.6575 |
| 0.0412 | 453.0 | 7701 | 0.2836 | 0.3172 | 0.6344 | 0.6344 | nan | 0.6344 | 0.0 | 0.6344 |
| 0.0412 | 454.0 | 7718 | 0.3480 | 0.2801 | 0.5603 | 0.5603 | nan | 0.5603 | 0.0 | 0.5603 |
| 0.0412 | 455.0 | 7735 | 0.3047 | 0.3197 | 0.6394 | 0.6394 | nan | 0.6394 | 0.0 | 0.6394 |
| 0.0412 | 456.0 | 7752 | 0.3430 | 0.3214 | 0.6428 | 0.6428 | nan | 0.6428 | 0.0 | 0.6428 |
| 0.0412 | 457.0 | 7769 | 0.3213 | 0.3358 | 0.6717 | 0.6717 | nan | 0.6717 | 0.0 | 0.6717 |
| 0.0412 | 458.0 | 7786 | 0.2413 | 0.3538 | 0.7076 | 0.7076 | nan | 0.7076 | 0.0 | 0.7076 |
| 0.0399 | 459.0 | 7803 | 0.2633 | 0.3588 | 0.7176 | 0.7176 | nan | 0.7176 | 0.0 | 0.7176 |
| 0.0399 | 460.0 | 7820 | 0.2632 | 0.3204 | 0.6409 | 0.6409 | nan | 0.6409 | 0.0 | 0.6409 |
| 0.0399 | 461.0 | 7837 | 0.2530 | 0.3445 | 0.6890 | 0.6890 | nan | 0.6890 | 0.0 | 0.6890 |
| 0.0399 | 462.0 | 7854 | 0.2841 | 0.3305 | 0.6610 | 0.6610 | nan | 0.6610 | 0.0 | 0.6610 |
| 0.0399 | 463.0 | 7871 | 0.3084 | 0.3473 | 0.6945 | 0.6945 | nan | 0.6945 | 0.0 | 0.6945 |
| 0.0399 | 464.0 | 7888 | 0.2717 | 0.3447 | 0.6893 | 0.6893 | nan | 0.6893 | 0.0 | 0.6893 |
| 0.0368 | 465.0 | 7905 | 0.3134 | 0.3144 | 0.6288 | 0.6288 | nan | 0.6288 | 0.0 | 0.6288 |
| 0.0368 | 466.0 | 7922 | 0.2957 | 0.3273 | 0.6546 | 0.6546 | nan | 0.6546 | 0.0 | 0.6546 |
| 0.0368 | 467.0 | 7939 | 0.3295 | 0.3207 | 0.6413 | 0.6413 | nan | 0.6413 | 0.0 | 0.6413 |
| 0.0368 | 468.0 | 7956 | 0.2908 | 0.3230 | 0.6461 | 0.6461 | nan | 0.6461 | 0.0 | 0.6461 |
| 0.0368 | 469.0 | 7973 | 0.2739 | 0.3202 | 0.6405 | 0.6405 | nan | 0.6405 | 0.0 | 0.6405 |
| 0.0368 | 470.0 | 7990 | 0.2764 | 0.3203 | 0.6406 | 0.6406 | nan | 0.6406 | 0.0 | 0.6406 |
| 0.0368 | 471.0 | 8007 | 0.3048 | 0.3294 | 0.6587 | 0.6587 | nan | 0.6587 | 0.0 | 0.6587 |
| 0.0368 | 472.0 | 8024 | 0.2829 | 0.3251 | 0.6502 | 0.6502 | nan | 0.6502 | 0.0 | 0.6502 |
| 0.0368 | 473.0 | 8041 | 0.2717 | 0.3276 | 0.6551 | 0.6551 | nan | 0.6551 | 0.0 | 0.6551 |
| 0.0368 | 474.0 | 8058 | 0.2902 | 0.3323 | 0.6647 | 0.6647 | nan | 0.6647 | 0.0 | 0.6647 |
| 0.0368 | 475.0 | 8075 | 0.2730 | 0.3443 | 0.6886 | 0.6886 | nan | 0.6886 | 0.0 | 0.6886 |
| 0.0368 | 476.0 | 8092 | 0.2629 | 0.3312 | 0.6624 | 0.6624 | nan | 0.6624 | 0.0 | 0.6624 |
| 0.0399 | 477.0 | 8109 | 0.2836 | 0.3352 | 0.6704 | 0.6704 | nan | 0.6704 | 0.0 | 0.6704 |
| 0.0399 | 478.0 | 8126 | 0.2831 | 0.3203 | 0.6405 | 0.6405 | nan | 0.6405 | 0.0 | 0.6405 |
| 0.0399 | 479.0 | 8143 | 0.2949 | 0.3243 | 0.6487 | 0.6487 | nan | 0.6487 | 0.0 | 0.6487 |
| 0.0399 | 480.0 | 8160 | 0.2918 | 0.3236 | 0.6471 | 0.6471 | nan | 0.6471 | 0.0 | 0.6471 |
| 0.0399 | 481.0 | 8177 | 0.3012 | 0.3402 | 0.6805 | 0.6805 | nan | 0.6805 | 0.0 | 0.6805 |
| 0.0399 | 482.0 | 8194 | 0.2733 | 0.3648 | 0.7297 | 0.7297 | nan | 0.7297 | 0.0 | 0.7297 |
| 0.0369 | 483.0 | 8211 | 0.2584 | 0.3431 | 0.6862 | 0.6862 | nan | 0.6862 | 0.0 | 0.6862 |
| 0.0369 | 484.0 | 8228 | 0.2849 | 0.3199 | 0.6397 | 0.6397 | nan | 0.6397 | 0.0 | 0.6397 |
| 0.0369 | 485.0 | 8245 | 0.2702 | 0.3411 | 0.6822 | 0.6822 | nan | 0.6822 | 0.0 | 0.6822 |
| 0.0369 | 486.0 | 8262 | 0.2605 | 0.3625 | 0.7251 | 0.7251 | nan | 0.7251 | 0.0 | 0.7251 |
| 0.0369 | 487.0 | 8279 | 0.2785 | 0.3134 | 0.6269 | 0.6269 | nan | 0.6269 | 0.0 | 0.6269 |
| 0.0369 | 488.0 | 8296 | 0.2773 | 0.3261 | 0.6521 | 0.6521 | nan | 0.6521 | 0.0 | 0.6521 |
| 0.0383 | 489.0 | 8313 | 0.2727 | 0.3387 | 0.6774 | 0.6774 | nan | 0.6774 | 0.0 | 0.6774 |
| 0.0383 | 490.0 | 8330 | 0.2823 | 0.3219 | 0.6438 | 0.6438 | nan | 0.6438 | 0.0 | 0.6438 |
| 0.0383 | 491.0 | 8347 | 0.2764 | 0.3363 | 0.6727 | 0.6727 | nan | 0.6727 | 0.0 | 0.6727 |
| 0.0383 | 492.0 | 8364 | 0.2678 | 0.3299 | 0.6598 | 0.6598 | nan | 0.6598 | 0.0 | 0.6598 |
| 0.0383 | 493.0 | 8381 | 0.2692 | 0.3311 | 0.6621 | 0.6621 | nan | 0.6621 | 0.0 | 0.6621 |
| 0.0383 | 494.0 | 8398 | 0.2727 | 0.3456 | 0.6911 | 0.6911 | nan | 0.6911 | 0.0 | 0.6911 |
| 0.0394 | 495.0 | 8415 | 0.2802 | 0.3402 | 0.6804 | 0.6804 | nan | 0.6804 | 0.0 | 0.6804 |
| 0.0394 | 496.0 | 8432 | 0.3122 | 0.3183 | 0.6367 | 0.6367 | nan | 0.6367 | 0.0 | 0.6367 |
| 0.0394 | 497.0 | 8449 | 0.3404 | 0.3141 | 0.6281 | 0.6281 | nan | 0.6281 | 0.0 | 0.6281 |
| 0.0394 | 498.0 | 8466 | 0.2993 | 0.3081 | 0.6162 | 0.6162 | nan | 0.6162 | 0.0 | 0.6162 |
| 0.0394 | 499.0 | 8483 | 0.3233 | 0.3339 | 0.6679 | 0.6679 | nan | 0.6679 | 0.0 | 0.6679 |
| 0.0367 | 500.0 | 8500 | 0.2986 | 0.3229 | 0.6458 | 0.6458 | nan | 0.6458 | 0.0 | 0.6458 |
| 0.0367 | 501.0 | 8517 | 0.3184 | 0.3021 | 0.6042 | 0.6042 | nan | 0.6042 | 0.0 | 0.6042 |
| 0.0367 | 502.0 | 8534 | 0.3128 | 0.3209 | 0.6419 | 0.6419 | nan | 0.6419 | 0.0 | 0.6419 |
| 0.0367 | 503.0 | 8551 | 0.3056 | 0.2974 | 0.5949 | 0.5949 | nan | 0.5949 | 0.0 | 0.5949 |
| 0.0367 | 504.0 | 8568 | 0.3157 | 0.3028 | 0.6056 | 0.6056 | nan | 0.6056 | 0.0 | 0.6056 |
| 0.0367 | 505.0 | 8585 | 0.3014 | 0.3058 | 0.6115 | 0.6115 | nan | 0.6115 | 0.0 | 0.6115 |
| 0.0391 | 506.0 | 8602 | 0.2977 | 0.3321 | 0.6643 | 0.6643 | nan | 0.6643 | 0.0 | 0.6643 |
| 0.0391 | 507.0 | 8619 | 0.2992 | 0.3053 | 0.6105 | 0.6105 | nan | 0.6105 | 0.0 | 0.6105 |
| 0.0391 | 508.0 | 8636 | 0.3318 | 0.3268 | 0.6536 | 0.6536 | nan | 0.6536 | 0.0 | 0.6536 |
| 0.0391 | 509.0 | 8653 | 0.2701 | 0.3549 | 0.7097 | 0.7097 | nan | 0.7097 | 0.0 | 0.7097 |
| 0.0391 | 510.0 | 8670 | 0.2745 | 0.3606 | 0.7212 | 0.7212 | nan | 0.7212 | 0.0 | 0.7212 |
| 0.0391 | 511.0 | 8687 | 0.2766 | 0.3344 | 0.6687 | 0.6687 | nan | 0.6687 | 0.0 | 0.6687 |
| 0.0386 | 512.0 | 8704 | 0.2634 | 0.3547 | 0.7094 | 0.7094 | nan | 0.7094 | 0.0 | 0.7094 |
| 0.0386 | 513.0 | 8721 | 0.2668 | 0.3444 | 0.6888 | 0.6888 | nan | 0.6888 | 0.0 | 0.6888 |
| 0.0386 | 514.0 | 8738 | 0.2762 | 0.3647 | 0.7295 | 0.7295 | nan | 0.7295 | 0.0 | 0.7295 |
| 0.0386 | 515.0 | 8755 | 0.2736 | 0.3652 | 0.7304 | 0.7304 | nan | 0.7304 | 0.0 | 0.7304 |
| 0.0386 | 516.0 | 8772 | 0.2756 | 0.3618 | 0.7236 | 0.7236 | nan | 0.7236 | 0.0 | 0.7236 |
| 0.0386 | 517.0 | 8789 | 0.2841 | 0.3720 | 0.7440 | 0.7440 | nan | 0.7440 | 0.0 | 0.7440 |
| 0.0338 | 518.0 | 8806 | 0.2861 | 0.3610 | 0.7220 | 0.7220 | nan | 0.7220 | 0.0 | 0.7220 |
| 0.0338 | 519.0 | 8823 | 0.2724 | 0.3430 | 0.6861 | 0.6861 | nan | 0.6861 | 0.0 | 0.6861 |
| 0.0338 | 520.0 | 8840 | 0.2911 | 0.3522 | 0.7044 | 0.7044 | nan | 0.7044 | 0.0 | 0.7044 |
| 0.0338 | 521.0 | 8857 | 0.2740 | 0.3668 | 0.7335 | 0.7335 | nan | 0.7335 | 0.0 | 0.7335 |
| 0.0338 | 522.0 | 8874 | 0.2657 | 0.3511 | 0.7023 | 0.7023 | nan | 0.7023 | 0.0 | 0.7023 |
| 0.0338 | 523.0 | 8891 | 0.2856 | 0.3520 | 0.7041 | 0.7041 | nan | 0.7041 | 0.0 | 0.7041 |
| 0.0369 | 524.0 | 8908 | 0.2662 | 0.3424 | 0.6848 | 0.6848 | nan | 0.6848 | 0.0 | 0.6848 |
| 0.0369 | 525.0 | 8925 | 0.2772 | 0.3398 | 0.6796 | 0.6796 | nan | 0.6796 | 0.0 | 0.6796 |
| 0.0369 | 526.0 | 8942 | 0.2844 | 0.3388 | 0.6776 | 0.6776 | nan | 0.6776 | 0.0 | 0.6776 |
| 0.0369 | 527.0 | 8959 | 0.2786 | 0.3548 | 0.7096 | 0.7096 | nan | 0.7096 | 0.0 | 0.7096 |
| 0.0369 | 528.0 | 8976 | 0.2524 | 0.3508 | 0.7016 | 0.7016 | nan | 0.7016 | 0.0 | 0.7016 |
| 0.0369 | 529.0 | 8993 | 0.2647 | 0.3509 | 0.7017 | 0.7017 | nan | 0.7017 | 0.0 | 0.7017 |
| 0.0361 | 530.0 | 9010 | 0.2829 | 0.3421 | 0.6842 | 0.6842 | nan | 0.6842 | 0.0 | 0.6842 |
| 0.0361 | 531.0 | 9027 | 0.2837 | 0.3338 | 0.6676 | 0.6676 | nan | 0.6676 | 0.0 | 0.6676 |
| 0.0361 | 532.0 | 9044 | 0.2799 | 0.3444 | 0.6888 | 0.6888 | nan | 0.6888 | 0.0 | 0.6888 |
| 0.0361 | 533.0 | 9061 | 0.2871 | 0.3425 | 0.6850 | 0.6850 | nan | 0.6850 | 0.0 | 0.6850 |
| 0.0361 | 534.0 | 9078 | 0.2889 | 0.3486 | 0.6971 | 0.6971 | nan | 0.6971 | 0.0 | 0.6971 |
| 0.0361 | 535.0 | 9095 | 0.2979 | 0.3557 | 0.7115 | 0.7115 | nan | 0.7115 | 0.0 | 0.7115 |
| 0.0367 | 536.0 | 9112 | 0.2985 | 0.3555 | 0.7109 | 0.7109 | nan | 0.7109 | 0.0 | 0.7109 |
| 0.0367 | 537.0 | 9129 | 0.2993 | 0.3417 | 0.6835 | 0.6835 | nan | 0.6835 | 0.0 | 0.6835 |
| 0.0367 | 538.0 | 9146 | 0.2988 | 0.3512 | 0.7023 | 0.7023 | nan | 0.7023 | 0.0 | 0.7023 |
| 0.0367 | 539.0 | 9163 | 0.3023 | 0.3459 | 0.6918 | 0.6918 | nan | 0.6918 | 0.0 | 0.6918 |
| 0.0367 | 540.0 | 9180 | 0.2876 | 0.3139 | 0.6277 | 0.6277 | nan | 0.6277 | 0.0 | 0.6277 |
| 0.0367 | 541.0 | 9197 | 0.2854 | 0.3197 | 0.6394 | 0.6394 | nan | 0.6394 | 0.0 | 0.6394 |
| 0.0393 | 542.0 | 9214 | 0.2806 | 0.3452 | 0.6904 | 0.6904 | nan | 0.6904 | 0.0 | 0.6904 |
| 0.0393 | 543.0 | 9231 | 0.2664 | 0.3571 | 0.7142 | 0.7142 | nan | 0.7142 | 0.0 | 0.7142 |
| 0.0393 | 544.0 | 9248 | 0.2923 | 0.3503 | 0.7006 | 0.7006 | nan | 0.7006 | 0.0 | 0.7006 |
| 0.0393 | 545.0 | 9265 | 0.2719 | 0.3553 | 0.7105 | 0.7105 | nan | 0.7105 | 0.0 | 0.7105 |
| 0.0393 | 546.0 | 9282 | 0.2820 | 0.3617 | 0.7234 | 0.7234 | nan | 0.7234 | 0.0 | 0.7234 |
| 0.0393 | 547.0 | 9299 | 0.2697 | 0.3491 | 0.6982 | 0.6982 | nan | 0.6982 | 0.0 | 0.6982 |
| 0.0354 | 548.0 | 9316 | 0.2908 | 0.3322 | 0.6645 | 0.6645 | nan | 0.6645 | 0.0 | 0.6645 |
| 0.0354 | 549.0 | 9333 | 0.2798 | 0.3340 | 0.6680 | 0.6680 | nan | 0.6680 | 0.0 | 0.6680 |
| 0.0354 | 550.0 | 9350 | 0.2844 | 0.3518 | 0.7037 | 0.7037 | nan | 0.7037 | 0.0 | 0.7037 |
| 0.0354 | 551.0 | 9367 | 0.2983 | 0.3524 | 0.7047 | 0.7047 | nan | 0.7047 | 0.0 | 0.7047 |
| 0.0354 | 552.0 | 9384 | 0.2837 | 0.3202 | 0.6405 | 0.6405 | nan | 0.6405 | 0.0 | 0.6405 |
| 0.0376 | 553.0 | 9401 | 0.2840 | 0.3301 | 0.6603 | 0.6603 | nan | 0.6603 | 0.0 | 0.6603 |
| 0.0376 | 554.0 | 9418 | 0.2836 | 0.3496 | 0.6993 | 0.6993 | nan | 0.6993 | 0.0 | 0.6993 |
| 0.0376 | 555.0 | 9435 | 0.2829 | 0.3432 | 0.6864 | 0.6864 | nan | 0.6864 | 0.0 | 0.6864 |
| 0.0376 | 556.0 | 9452 | 0.2956 | 0.3330 | 0.6659 | 0.6659 | nan | 0.6659 | 0.0 | 0.6659 |
| 0.0376 | 557.0 | 9469 | 0.2928 | 0.3373 | 0.6745 | 0.6745 | nan | 0.6745 | 0.0 | 0.6745 |
| 0.0376 | 558.0 | 9486 | 0.2903 | 0.3444 | 0.6888 | 0.6888 | nan | 0.6888 | 0.0 | 0.6888 |
| 0.0409 | 559.0 | 9503 | 0.3086 | 0.3323 | 0.6646 | 0.6646 | nan | 0.6646 | 0.0 | 0.6646 |
| 0.0409 | 560.0 | 9520 | 0.3257 | 0.3188 | 0.6377 | 0.6377 | nan | 0.6377 | 0.0 | 0.6377 |
| 0.0409 | 561.0 | 9537 | 0.3098 | 0.3307 | 0.6614 | 0.6614 | nan | 0.6614 | 0.0 | 0.6614 |
| 0.0409 | 562.0 | 9554 | 0.2905 | 0.3315 | 0.6631 | 0.6631 | nan | 0.6631 | 0.0 | 0.6631 |
| 0.0409 | 563.0 | 9571 | 0.2886 | 0.3368 | 0.6736 | 0.6736 | nan | 0.6736 | 0.0 | 0.6736 |
| 0.0409 | 564.0 | 9588 | 0.2952 | 0.3354 | 0.6709 | 0.6709 | nan | 0.6709 | 0.0 | 0.6709 |
| 0.0336 | 565.0 | 9605 | 0.3089 | 0.3303 | 0.6605 | 0.6605 | nan | 0.6605 | 0.0 | 0.6605 |
| 0.0336 | 566.0 | 9622 | 0.3004 | 0.3305 | 0.6611 | 0.6611 | nan | 0.6611 | 0.0 | 0.6611 |
| 0.0336 | 567.0 | 9639 | 0.3005 | 0.3417 | 0.6835 | 0.6835 | nan | 0.6835 | 0.0 | 0.6835 |
| 0.0336 | 568.0 | 9656 | 0.2944 | 0.3374 | 0.6748 | 0.6748 | nan | 0.6748 | 0.0 | 0.6748 |
| 0.0336 | 569.0 | 9673 | 0.2885 | 0.3375 | 0.6750 | 0.6750 | nan | 0.6750 | 0.0 | 0.6750 |
| 0.0336 | 570.0 | 9690 | 0.2940 | 0.3365 | 0.6731 | 0.6731 | nan | 0.6731 | 0.0 | 0.6731 |
| 0.0379 | 571.0 | 9707 | 0.2970 | 0.3249 | 0.6498 | 0.6498 | nan | 0.6498 | 0.0 | 0.6498 |
| 0.0379 | 572.0 | 9724 | 0.3117 | 0.3362 | 0.6723 | 0.6723 | nan | 0.6723 | 0.0 | 0.6723 |
| 0.0379 | 573.0 | 9741 | 0.3093 | 0.3406 | 0.6813 | 0.6813 | nan | 0.6813 | 0.0 | 0.6813 |
| 0.0379 | 574.0 | 9758 | 0.3059 | 0.3450 | 0.6901 | 0.6901 | nan | 0.6901 | 0.0 | 0.6901 |
| 0.0379 | 575.0 | 9775 | 0.2997 | 0.3425 | 0.6849 | 0.6849 | nan | 0.6849 | 0.0 | 0.6849 |
| 0.0379 | 576.0 | 9792 | 0.3000 | 0.3420 | 0.6840 | 0.6840 | nan | 0.6840 | 0.0 | 0.6840 |
| 0.0355 | 577.0 | 9809 | 0.3034 | 0.3334 | 0.6669 | 0.6669 | nan | 0.6669 | 0.0 | 0.6669 |
| 0.0355 | 578.0 | 9826 | 0.3058 | 0.3415 | 0.6831 | 0.6831 | nan | 0.6831 | 0.0 | 0.6831 |
| 0.0355 | 579.0 | 9843 | 0.2928 | 0.3354 | 0.6708 | 0.6708 | nan | 0.6708 | 0.0 | 0.6708 |
| 0.0355 | 580.0 | 9860 | 0.2982 | 0.3291 | 0.6582 | 0.6582 | nan | 0.6582 | 0.0 | 0.6582 |
| 0.0355 | 581.0 | 9877 | 0.3069 | 0.3263 | 0.6526 | 0.6526 | nan | 0.6526 | 0.0 | 0.6526 |
| 0.0355 | 582.0 | 9894 | 0.3015 | 0.3348 | 0.6696 | 0.6696 | nan | 0.6696 | 0.0 | 0.6696 |
| 0.0339 | 583.0 | 9911 | 0.2990 | 0.3225 | 0.6450 | 0.6450 | nan | 0.6450 | 0.0 | 0.6450 |
| 0.0339 | 584.0 | 9928 | 0.3005 | 0.3259 | 0.6518 | 0.6518 | nan | 0.6518 | 0.0 | 0.6518 |
| 0.0339 | 585.0 | 9945 | 0.3164 | 0.3330 | 0.6661 | 0.6661 | nan | 0.6661 | 0.0 | 0.6661 |
| 0.0339 | 586.0 | 9962 | 0.3049 | 0.3255 | 0.6510 | 0.6510 | nan | 0.6510 | 0.0 | 0.6510 |
| 0.0339 | 587.0 | 9979 | 0.3079 | 0.3267 | 0.6534 | 0.6534 | nan | 0.6534 | 0.0 | 0.6534 |
| 0.0339 | 588.0 | 9996 | 0.3019 | 0.3333 | 0.6667 | 0.6667 | nan | 0.6667 | 0.0 | 0.6667 |
| 0.0328 | 588.24 | 10000 | 0.3028 | 0.3319 | 0.6638 | 0.6638 | nan | 0.6638 | 0.0 | 0.6638 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.15.1
| [
"background",
"biofilm"
] |
blzncz/segformer-finetuned-4ss1st3r_s3gs3m_24Jan_rojo-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-4ss1st3r_s3gs3m_24Jan_rojo-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the blzncz/4ss1st3r_s3gs3m_24Jan_rojo dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2098
- Mean Iou: 0.3648
- Mean Accuracy: 0.6821
- Overall Accuracy: 0.6947
- Accuracy Bg: nan
- Accuracy Fallo cohesivo: 0.7354
- Accuracy Fallo malla: 0.6052
- Accuracy Fallo adhesivo: 0.9884
- Accuracy Fallo burbuja: 0.3995
- Iou Bg: 0.0
- Iou Fallo cohesivo: 0.5920
- Iou Fallo malla: 0.5774
- Iou Fallo adhesivo: 0.2950
- Iou Fallo burbuja: 0.3598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Fallo cohesivo | Accuracy Fallo malla | Accuracy Fallo adhesivo | Accuracy Fallo burbuja | Iou Bg | Iou Fallo cohesivo | Iou Fallo malla | Iou Fallo adhesivo | Iou Fallo burbuja |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-----------------------:|:--------------------:|:-----------------------:|:----------------------:|:------:|:------------------:|:---------------:|:------------------:|:-----------------:|
| 0.5778 | 1.0 | 114 | 0.8590 | 0.2588 | 0.5626 | 0.6271 | nan | 0.3415 | 0.9120 | 0.9748 | 0.0221 | 0.0 | 0.3339 | 0.6211 | 0.3168 | 0.0220 |
| 0.3326 | 2.0 | 228 | 0.6845 | 0.3570 | 0.6755 | 0.7131 | nan | 0.5232 | 0.8953 | 0.9911 | 0.2921 | 0.0 | 0.5003 | 0.6924 | 0.3417 | 0.2503 |
| 0.2636 | 3.0 | 342 | 0.6662 | 0.3896 | 0.7107 | 0.7344 | nan | 0.7666 | 0.6622 | 0.9838 | 0.4304 | 0.0 | 0.6088 | 0.6188 | 0.4014 | 0.3191 |
| 0.2505 | 4.0 | 456 | 0.7666 | 0.3732 | 0.7408 | 0.6807 | nan | 0.4141 | 0.9417 | 0.9778 | 0.6297 | 0.0 | 0.4065 | 0.6276 | 0.4337 | 0.3980 |
| 0.2306 | 5.0 | 570 | 0.4680 | 0.4690 | 0.7389 | 0.8099 | nan | 0.7461 | 0.8649 | 0.9742 | 0.3705 | 0.0 | 0.6711 | 0.7095 | 0.6349 | 0.3294 |
| 0.1998 | 6.0 | 684 | 0.5711 | 0.4449 | 0.7494 | 0.7824 | nan | 0.8528 | 0.6732 | 0.9865 | 0.4850 | 0.0 | 0.6781 | 0.6338 | 0.5320 | 0.3807 |
| 0.2062 | 7.0 | 798 | 0.6403 | 0.4070 | 0.7437 | 0.7283 | nan | 0.5736 | 0.8683 | 0.9881 | 0.5447 | 0.0 | 0.5300 | 0.6452 | 0.4613 | 0.3987 |
| 0.182 | 8.0 | 912 | 0.5934 | 0.4344 | 0.7309 | 0.7770 | nan | 0.8171 | 0.7036 | 0.9840 | 0.4190 | 0.0 | 0.6640 | 0.6485 | 0.4916 | 0.3681 |
| 0.178 | 9.0 | 1026 | 0.7158 | 0.3811 | 0.6915 | 0.7313 | nan | 0.7292 | 0.6984 | 0.9913 | 0.3472 | 0.0 | 0.6148 | 0.6404 | 0.3348 | 0.3153 |
| 0.1568 | 10.0 | 1140 | 0.5892 | 0.4169 | 0.6970 | 0.7873 | nan | 0.8088 | 0.7398 | 0.9855 | 0.2538 | 0.0 | 0.6770 | 0.6664 | 0.5004 | 0.2407 |
| 0.1576 | 11.0 | 1254 | 0.6419 | 0.4228 | 0.7177 | 0.7652 | nan | 0.7970 | 0.7001 | 0.9805 | 0.3931 | 0.0 | 0.6509 | 0.6318 | 0.4701 | 0.3614 |
| 0.1667 | 12.0 | 1368 | 0.6563 | 0.4060 | 0.7369 | 0.7605 | nan | 0.7409 | 0.7517 | 0.9871 | 0.4681 | 0.0 | 0.6326 | 0.6731 | 0.4103 | 0.3139 |
| 0.1436 | 13.0 | 1482 | 0.9148 | 0.3864 | 0.7079 | 0.7187 | nan | 0.6666 | 0.7400 | 0.9900 | 0.4352 | 0.0 | 0.6025 | 0.6632 | 0.2829 | 0.3835 |
| 0.1469 | 14.0 | 1596 | 0.6680 | 0.4166 | 0.7216 | 0.7689 | nan | 0.7843 | 0.7225 | 0.9861 | 0.3936 | 0.0 | 0.6703 | 0.6608 | 0.3946 | 0.3571 |
| 0.1288 | 15.0 | 1710 | 0.8170 | 0.3765 | 0.6849 | 0.7164 | nan | 0.8269 | 0.5509 | 0.9859 | 0.3759 | 0.0 | 0.6242 | 0.5368 | 0.3815 | 0.3398 |
| 0.1243 | 16.0 | 1824 | 0.8197 | 0.4034 | 0.7169 | 0.7375 | nan | 0.8456 | 0.5776 | 0.9842 | 0.4602 | 0.0 | 0.6517 | 0.5582 | 0.4078 | 0.3991 |
| 0.1208 | 17.0 | 1938 | 0.7927 | 0.3848 | 0.6774 | 0.7295 | nan | 0.8592 | 0.5460 | 0.9810 | 0.3233 | 0.0 | 0.6359 | 0.5256 | 0.4647 | 0.2978 |
| 0.115 | 18.0 | 2052 | 1.1226 | 0.3376 | 0.6484 | 0.6727 | nan | 0.7053 | 0.5900 | 0.9905 | 0.3079 | 0.0 | 0.5659 | 0.5688 | 0.2673 | 0.2860 |
| 0.1138 | 19.0 | 2166 | 0.8244 | 0.4055 | 0.7099 | 0.7446 | nan | 0.8200 | 0.6248 | 0.9833 | 0.4115 | 0.0 | 0.6364 | 0.5964 | 0.4287 | 0.3659 |
| 0.1144 | 20.0 | 2280 | 0.5964 | 0.4493 | 0.7179 | 0.8034 | nan | 0.8594 | 0.7188 | 0.9808 | 0.3127 | 0.0 | 0.6995 | 0.6608 | 0.5990 | 0.2873 |
| 0.108 | 21.0 | 2394 | 0.6545 | 0.4418 | 0.7348 | 0.7902 | nan | 0.8263 | 0.7241 | 0.9835 | 0.4053 | 0.0 | 0.6832 | 0.6653 | 0.5023 | 0.3582 |
| 0.109 | 22.0 | 2508 | 0.9552 | 0.3775 | 0.6990 | 0.7058 | nan | 0.6835 | 0.6906 | 0.9894 | 0.4325 | 0.0 | 0.5907 | 0.6391 | 0.2756 | 0.3819 |
| 0.0987 | 23.0 | 2622 | 0.7971 | 0.3974 | 0.7133 | 0.7453 | nan | 0.7451 | 0.7124 | 0.9871 | 0.4084 | 0.0 | 0.6281 | 0.6560 | 0.3577 | 0.3452 |
| 0.0977 | 24.0 | 2736 | 0.9783 | 0.3718 | 0.6984 | 0.7001 | nan | 0.5950 | 0.7793 | 0.9916 | 0.4276 | 0.0 | 0.5491 | 0.6786 | 0.2620 | 0.3692 |
| 0.0954 | 25.0 | 2850 | 0.9562 | 0.3856 | 0.6981 | 0.7352 | nan | 0.7102 | 0.7294 | 0.9904 | 0.3623 | 0.0 | 0.6355 | 0.6603 | 0.2988 | 0.3332 |
| 0.0928 | 26.0 | 2964 | 0.9185 | 0.3787 | 0.6870 | 0.7355 | nan | 0.7815 | 0.6491 | 0.9847 | 0.3327 | 0.0 | 0.6569 | 0.6184 | 0.3151 | 0.3028 |
| 0.0918 | 27.0 | 3078 | 0.9617 | 0.3845 | 0.6916 | 0.7175 | nan | 0.8211 | 0.5605 | 0.9809 | 0.4037 | 0.0 | 0.6123 | 0.5462 | 0.3994 | 0.3648 |
| 0.0801 | 28.0 | 3192 | 1.1167 | 0.3672 | 0.6811 | 0.7091 | nan | 0.7352 | 0.6393 | 0.9927 | 0.3570 | 0.0 | 0.6151 | 0.6141 | 0.2816 | 0.3250 |
| 0.0852 | 29.0 | 3306 | 0.8549 | 0.4217 | 0.7108 | 0.7596 | nan | 0.8684 | 0.6040 | 0.9848 | 0.3862 | 0.0 | 0.6576 | 0.5808 | 0.5146 | 0.3553 |
| 0.0816 | 30.0 | 3420 | 0.9536 | 0.3902 | 0.7034 | 0.7366 | nan | 0.7752 | 0.6573 | 0.9885 | 0.3926 | 0.0 | 0.6415 | 0.6301 | 0.3274 | 0.3517 |
| 0.0876 | 31.0 | 3534 | 1.0597 | 0.3873 | 0.7065 | 0.7158 | nan | 0.7490 | 0.6374 | 0.9920 | 0.4475 | 0.0 | 0.6117 | 0.6160 | 0.3051 | 0.4035 |
| 0.0811 | 32.0 | 3648 | 0.8829 | 0.4038 | 0.7077 | 0.7569 | nan | 0.7949 | 0.6829 | 0.9860 | 0.3669 | 0.0 | 0.6442 | 0.6498 | 0.3943 | 0.3304 |
| 0.0789 | 33.0 | 3762 | 0.9615 | 0.4002 | 0.7104 | 0.7436 | nan | 0.7890 | 0.6575 | 0.9884 | 0.4066 | 0.0 | 0.6344 | 0.6308 | 0.3702 | 0.3658 |
| 0.0752 | 34.0 | 3876 | 0.7799 | 0.4297 | 0.7280 | 0.7806 | nan | 0.8279 | 0.6991 | 0.9873 | 0.3975 | 0.0 | 0.6787 | 0.6605 | 0.4458 | 0.3634 |
| 0.0731 | 35.0 | 3990 | 0.9285 | 0.4061 | 0.7025 | 0.7531 | nan | 0.8595 | 0.5987 | 0.9898 | 0.3619 | 0.0 | 0.6579 | 0.5797 | 0.4600 | 0.3330 |
| 0.0752 | 36.0 | 4104 | 0.9218 | 0.4112 | 0.7276 | 0.7463 | nan | 0.7632 | 0.6926 | 0.9880 | 0.4667 | 0.0 | 0.6393 | 0.6507 | 0.3462 | 0.4200 |
| 0.0701 | 37.0 | 4218 | 0.8808 | 0.4105 | 0.7184 | 0.7562 | nan | 0.8090 | 0.6635 | 0.9893 | 0.4119 | 0.0 | 0.6569 | 0.6342 | 0.3876 | 0.3740 |
| 0.0717 | 38.0 | 4332 | 1.1090 | 0.3748 | 0.6881 | 0.7166 | nan | 0.7554 | 0.6334 | 0.9905 | 0.3729 | 0.0 | 0.6272 | 0.6069 | 0.2969 | 0.3433 |
| 0.0716 | 39.0 | 4446 | 0.9456 | 0.4018 | 0.7064 | 0.7528 | nan | 0.8217 | 0.6418 | 0.9872 | 0.3747 | 0.0 | 0.6638 | 0.6131 | 0.3863 | 0.3456 |
| 0.069 | 40.0 | 4560 | 0.8462 | 0.4157 | 0.7038 | 0.7697 | nan | 0.8656 | 0.6316 | 0.9856 | 0.3324 | 0.0 | 0.6750 | 0.6041 | 0.4917 | 0.3078 |
| 0.07 | 41.0 | 4674 | 0.9715 | 0.3843 | 0.6886 | 0.7393 | nan | 0.8006 | 0.6353 | 0.9896 | 0.3289 | 0.0 | 0.6420 | 0.6104 | 0.3633 | 0.3056 |
| 0.0649 | 42.0 | 4788 | 0.9114 | 0.3997 | 0.7066 | 0.7592 | nan | 0.7682 | 0.7185 | 0.9917 | 0.3478 | 0.0 | 0.6613 | 0.6728 | 0.3449 | 0.3196 |
| 0.0665 | 43.0 | 4902 | 1.1847 | 0.3662 | 0.6812 | 0.6981 | nan | 0.7131 | 0.6389 | 0.9912 | 0.3817 | 0.0 | 0.5853 | 0.6122 | 0.2832 | 0.3504 |
| 0.0646 | 44.0 | 5016 | 1.1242 | 0.3744 | 0.6906 | 0.7086 | nan | 0.6930 | 0.6870 | 0.9891 | 0.3932 | 0.0 | 0.5902 | 0.6495 | 0.2770 | 0.3555 |
| 0.0662 | 45.0 | 5130 | 1.1017 | 0.3605 | 0.6735 | 0.7023 | nan | 0.7333 | 0.6261 | 0.9906 | 0.3439 | 0.0 | 0.5997 | 0.5996 | 0.2906 | 0.3126 |
| 0.0644 | 46.0 | 5244 | 1.2989 | 0.3470 | 0.6600 | 0.6735 | nan | 0.6567 | 0.6473 | 0.9917 | 0.3445 | 0.0 | 0.5607 | 0.6182 | 0.2377 | 0.3185 |
| 0.0595 | 47.0 | 5358 | 1.0764 | 0.3833 | 0.6982 | 0.7241 | nan | 0.7650 | 0.6389 | 0.9932 | 0.3957 | 0.0 | 0.6345 | 0.6134 | 0.3071 | 0.3618 |
| 0.0603 | 48.0 | 5472 | 1.0871 | 0.3692 | 0.6813 | 0.7128 | nan | 0.7153 | 0.6718 | 0.9884 | 0.3497 | 0.0 | 0.6079 | 0.6388 | 0.2797 | 0.3197 |
| 0.0591 | 49.0 | 5586 | 1.1054 | 0.3800 | 0.6956 | 0.7171 | nan | 0.7103 | 0.6866 | 0.9892 | 0.3963 | 0.0 | 0.6116 | 0.6458 | 0.2816 | 0.3609 |
| 0.0612 | 50.0 | 5700 | 1.1061 | 0.3652 | 0.6768 | 0.7087 | nan | 0.7394 | 0.6340 | 0.9903 | 0.3435 | 0.0 | 0.6027 | 0.6074 | 0.3009 | 0.3147 |
| 0.0609 | 51.0 | 5814 | 0.9938 | 0.3742 | 0.6850 | 0.7206 | nan | 0.7555 | 0.6433 | 0.9890 | 0.3523 | 0.0 | 0.6210 | 0.6121 | 0.3143 | 0.3235 |
| 0.058 | 52.0 | 5928 | 1.0391 | 0.3745 | 0.6836 | 0.7248 | nan | 0.7691 | 0.6374 | 0.9901 | 0.3379 | 0.0 | 0.6275 | 0.6082 | 0.3257 | 0.3109 |
| 0.0559 | 53.0 | 6042 | 0.9916 | 0.3922 | 0.7033 | 0.7373 | nan | 0.8044 | 0.6249 | 0.9902 | 0.3938 | 0.0 | 0.6429 | 0.6003 | 0.3644 | 0.3537 |
| 0.0572 | 54.0 | 6156 | 1.0124 | 0.3801 | 0.6907 | 0.7262 | nan | 0.7721 | 0.6371 | 0.9885 | 0.3650 | 0.0 | 0.6284 | 0.6052 | 0.3326 | 0.3341 |
| 0.0558 | 55.0 | 6270 | 1.0856 | 0.3692 | 0.6823 | 0.7120 | nan | 0.7232 | 0.6604 | 0.9894 | 0.3565 | 0.0 | 0.6094 | 0.6255 | 0.2864 | 0.3246 |
| 0.058 | 56.0 | 6384 | 1.0581 | 0.3837 | 0.6998 | 0.7212 | nan | 0.7353 | 0.6668 | 0.9910 | 0.4062 | 0.0 | 0.6126 | 0.6269 | 0.3125 | 0.3666 |
| 0.0518 | 57.0 | 6498 | 1.0176 | 0.3933 | 0.7060 | 0.7362 | nan | 0.7857 | 0.6440 | 0.9884 | 0.4060 | 0.0 | 0.6395 | 0.6127 | 0.3489 | 0.3655 |
| 0.0537 | 58.0 | 6612 | 1.2001 | 0.3676 | 0.6853 | 0.6947 | nan | 0.7737 | 0.5607 | 0.9884 | 0.4184 | 0.0 | 0.6003 | 0.5391 | 0.3221 | 0.3764 |
| 0.0552 | 59.0 | 6726 | 0.9751 | 0.3940 | 0.7068 | 0.7314 | nan | 0.8019 | 0.6139 | 0.9870 | 0.4244 | 0.0 | 0.6353 | 0.5871 | 0.3662 | 0.3816 |
| 0.0538 | 60.0 | 6840 | 1.0382 | 0.3782 | 0.6909 | 0.7203 | nan | 0.7216 | 0.6813 | 0.9895 | 0.3714 | 0.0 | 0.6093 | 0.6389 | 0.3011 | 0.3418 |
| 0.0528 | 61.0 | 6954 | 1.1785 | 0.3662 | 0.6819 | 0.7019 | nan | 0.7278 | 0.6310 | 0.9904 | 0.3784 | 0.0 | 0.5966 | 0.6013 | 0.2914 | 0.3419 |
| 0.0531 | 62.0 | 7068 | 1.1054 | 0.3685 | 0.6852 | 0.7026 | nan | 0.7290 | 0.6310 | 0.9899 | 0.3911 | 0.0 | 0.5969 | 0.5981 | 0.2961 | 0.3514 |
| 0.0522 | 63.0 | 7182 | 1.1271 | 0.3717 | 0.6871 | 0.7094 | nan | 0.7268 | 0.6496 | 0.9906 | 0.3816 | 0.0 | 0.6069 | 0.6148 | 0.2905 | 0.3460 |
| 0.0507 | 64.0 | 7296 | 1.0440 | 0.3734 | 0.6825 | 0.7242 | nan | 0.7678 | 0.6380 | 0.9884 | 0.3359 | 0.0 | 0.6279 | 0.6043 | 0.3272 | 0.3076 |
| 0.0519 | 65.0 | 7410 | 1.1191 | 0.3727 | 0.6884 | 0.7102 | nan | 0.7264 | 0.6517 | 0.9911 | 0.3843 | 0.0 | 0.6028 | 0.6156 | 0.2978 | 0.3472 |
| 0.0502 | 66.0 | 7524 | 1.0089 | 0.3917 | 0.7036 | 0.7408 | nan | 0.7555 | 0.6898 | 0.9896 | 0.3794 | 0.0 | 0.6413 | 0.6472 | 0.3261 | 0.3437 |
| 0.051 | 67.0 | 7638 | 1.2112 | 0.3672 | 0.6806 | 0.7083 | nan | 0.7352 | 0.6378 | 0.9899 | 0.3593 | 0.0 | 0.6078 | 0.6085 | 0.2918 | 0.3279 |
| 0.0508 | 68.0 | 7752 | 1.1584 | 0.3702 | 0.6860 | 0.7052 | nan | 0.7202 | 0.6477 | 0.9888 | 0.3875 | 0.0 | 0.5956 | 0.6155 | 0.2902 | 0.3495 |
| 0.048 | 69.0 | 7866 | 1.1363 | 0.3773 | 0.6922 | 0.7165 | nan | 0.7297 | 0.6628 | 0.9895 | 0.3865 | 0.0 | 0.6158 | 0.6289 | 0.2901 | 0.3518 |
| 0.0483 | 70.0 | 7980 | 1.1489 | 0.3749 | 0.6916 | 0.7103 | nan | 0.7398 | 0.6367 | 0.9889 | 0.4011 | 0.0 | 0.6074 | 0.6080 | 0.2994 | 0.3598 |
| 0.0495 | 71.0 | 8094 | 1.1470 | 0.3774 | 0.6943 | 0.7102 | nan | 0.7454 | 0.6295 | 0.9891 | 0.4131 | 0.0 | 0.6059 | 0.6032 | 0.3053 | 0.3724 |
| 0.0472 | 72.0 | 8208 | 1.2749 | 0.3597 | 0.6782 | 0.6864 | nan | 0.7291 | 0.5930 | 0.9891 | 0.4017 | 0.0 | 0.5899 | 0.5704 | 0.2771 | 0.3612 |
| 0.0486 | 73.0 | 8322 | 1.1217 | 0.3773 | 0.6946 | 0.7117 | nan | 0.7549 | 0.6224 | 0.9882 | 0.4128 | 0.0 | 0.6094 | 0.5946 | 0.3150 | 0.3678 |
| 0.051 | 74.0 | 8436 | 1.1895 | 0.3724 | 0.6889 | 0.7069 | nan | 0.7432 | 0.6247 | 0.9888 | 0.3990 | 0.0 | 0.6052 | 0.5959 | 0.3021 | 0.3590 |
| 0.0472 | 75.0 | 8550 | 1.2084 | 0.3677 | 0.6847 | 0.7009 | nan | 0.7179 | 0.6399 | 0.9905 | 0.3904 | 0.0 | 0.5979 | 0.6078 | 0.2808 | 0.3522 |
| 0.0481 | 76.0 | 8664 | 1.1778 | 0.3688 | 0.6841 | 0.7049 | nan | 0.7395 | 0.6244 | 0.9899 | 0.3824 | 0.0 | 0.6024 | 0.5950 | 0.2996 | 0.3469 |
| 0.0462 | 77.0 | 8778 | 1.2409 | 0.3693 | 0.6863 | 0.7015 | nan | 0.7278 | 0.6297 | 0.9900 | 0.3975 | 0.0 | 0.5964 | 0.5990 | 0.2918 | 0.3593 |
| 0.0464 | 78.0 | 8892 | 1.2724 | 0.3606 | 0.6792 | 0.6877 | nan | 0.7119 | 0.6158 | 0.9905 | 0.3986 | 0.0 | 0.5825 | 0.5857 | 0.2770 | 0.3578 |
| 0.0477 | 79.0 | 9006 | 1.2107 | 0.3629 | 0.6797 | 0.6936 | nan | 0.7322 | 0.6063 | 0.9898 | 0.3905 | 0.0 | 0.5928 | 0.5791 | 0.2889 | 0.3540 |
| 0.0452 | 80.0 | 9120 | 1.1745 | 0.3721 | 0.6889 | 0.7059 | nan | 0.7548 | 0.6087 | 0.9899 | 0.4022 | 0.0 | 0.6080 | 0.5820 | 0.3085 | 0.3620 |
| 0.0447 | 81.0 | 9234 | 1.2787 | 0.3599 | 0.6776 | 0.6876 | nan | 0.7199 | 0.6063 | 0.9902 | 0.3938 | 0.0 | 0.5857 | 0.5788 | 0.2786 | 0.3566 |
| 0.0481 | 82.0 | 9348 | 1.2049 | 0.3658 | 0.6836 | 0.6947 | nan | 0.7515 | 0.5865 | 0.9887 | 0.4078 | 0.0 | 0.5956 | 0.5627 | 0.3044 | 0.3660 |
| 0.0444 | 83.0 | 9462 | 1.1427 | 0.3746 | 0.6930 | 0.7051 | nan | 0.7520 | 0.6100 | 0.9883 | 0.4215 | 0.0 | 0.6042 | 0.5824 | 0.3100 | 0.3763 |
| 0.0481 | 84.0 | 9576 | 1.1876 | 0.3669 | 0.6848 | 0.6968 | nan | 0.7358 | 0.6094 | 0.9895 | 0.4046 | 0.0 | 0.5944 | 0.5818 | 0.2947 | 0.3636 |
| 0.046 | 85.0 | 9690 | 1.2264 | 0.3628 | 0.6799 | 0.6928 | nan | 0.7348 | 0.6015 | 0.9885 | 0.3948 | 0.0 | 0.5906 | 0.5746 | 0.2930 | 0.3560 |
| 0.0472 | 86.0 | 9804 | 1.2377 | 0.3659 | 0.6828 | 0.6967 | nan | 0.7287 | 0.6176 | 0.9890 | 0.3959 | 0.0 | 0.5926 | 0.5876 | 0.2913 | 0.3577 |
| 0.0465 | 87.0 | 9918 | 1.2037 | 0.3644 | 0.6841 | 0.6903 | nan | 0.7176 | 0.6150 | 0.9893 | 0.4146 | 0.0 | 0.5859 | 0.5856 | 0.2808 | 0.3697 |
| 0.0475 | 87.72 | 10000 | 1.2098 | 0.3648 | 0.6821 | 0.6947 | nan | 0.7354 | 0.6052 | 0.9884 | 0.3995 | 0.0 | 0.5920 | 0.5774 | 0.2950 | 0.3598 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"bg",
"fallo cohesivo",
"fallo malla",
"fallo adhesivo",
"fallo burbuja"
] |
blzncz/segformer-finetuned-4ss1st3r_s3gs3m_24Jan_negro-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-4ss1st3r_s3gs3m_24Jan_negro-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the blzncz/4ss1st3r_s3gs3m_24Jan_negro dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2142
- Mean Iou: 0.5724
- Mean Accuracy: 0.7571
- Overall Accuracy: 0.9468
- Accuracy Bg: nan
- Accuracy Fallo cohesivo: 0.9826
- Accuracy Fallo malla: 0.7246
- Accuracy Fallo adhesivo: 0.9679
- Accuracy Fallo burbuja: 0.3533
- Iou Bg: 0.0
- Iou Fallo cohesivo: 0.9368
- Iou Fallo malla: 0.6678
- Iou Fallo adhesivo: 0.9310
- Iou Fallo burbuja: 0.3263
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Fallo cohesivo | Accuracy Fallo malla | Accuracy Fallo adhesivo | Accuracy Fallo burbuja | Iou Bg | Iou Fallo cohesivo | Iou Fallo malla | Iou Fallo adhesivo | Iou Fallo burbuja |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-----------------------:|:--------------------:|:-----------------------:|:----------------------:|:------:|:------------------:|:---------------:|:------------------:|:-----------------:|
| 0.1902 | 1.0 | 219 | 0.2615 | 0.5072 | 0.7247 | 0.9038 | nan | 0.9203 | 0.7991 | 0.9401 | 0.2393 | 0.0 | 0.8853 | 0.5556 | 0.9006 | 0.1944 |
| 0.1367 | 2.0 | 438 | 0.2067 | 0.5492 | 0.7602 | 0.9293 | nan | 0.9599 | 0.7487 | 0.9317 | 0.4004 | 0.0 | 0.9160 | 0.6120 | 0.8988 | 0.3195 |
| 0.1066 | 3.0 | 657 | 0.1963 | 0.5659 | 0.7814 | 0.9313 | nan | 0.9520 | 0.8022 | 0.9545 | 0.4169 | 0.0 | 0.9175 | 0.6270 | 0.9267 | 0.3584 |
| 0.1102 | 4.0 | 876 | 0.1595 | 0.5782 | 0.7756 | 0.9444 | nan | 0.9727 | 0.7669 | 0.9693 | 0.3934 | 0.0 | 0.9336 | 0.6828 | 0.9326 | 0.3422 |
| 0.1114 | 5.0 | 1095 | 0.1678 | 0.5772 | 0.7950 | 0.9378 | nan | 0.9619 | 0.7778 | 0.9756 | 0.4648 | 0.0 | 0.9255 | 0.6534 | 0.9151 | 0.3922 |
| 0.0897 | 6.0 | 1314 | 0.1726 | 0.5811 | 0.7976 | 0.9420 | nan | 0.9701 | 0.7598 | 0.9723 | 0.4881 | 0.0 | 0.9307 | 0.6613 | 0.9170 | 0.3965 |
| 0.0788 | 7.0 | 1533 | 0.2096 | 0.5491 | 0.7253 | 0.9342 | nan | 0.9898 | 0.5936 | 0.9381 | 0.3797 | 0.0 | 0.9235 | 0.5698 | 0.9149 | 0.3374 |
| 0.0788 | 8.0 | 1752 | 0.1574 | 0.5774 | 0.7733 | 0.9465 | nan | 0.9726 | 0.7858 | 0.9675 | 0.3673 | 0.0 | 0.9359 | 0.6914 | 0.9264 | 0.3331 |
| 0.0855 | 9.0 | 1971 | 0.1970 | 0.5406 | 0.7141 | 0.9380 | nan | 0.9866 | 0.6305 | 0.9708 | 0.2687 | 0.0 | 0.9274 | 0.5984 | 0.9224 | 0.2548 |
| 0.0761 | 10.0 | 2190 | 0.1903 | 0.5564 | 0.7479 | 0.9382 | nan | 0.9746 | 0.7050 | 0.9737 | 0.3383 | 0.0 | 0.9268 | 0.6272 | 0.9182 | 0.3098 |
| 0.0686 | 11.0 | 2409 | 0.1910 | 0.5562 | 0.7435 | 0.9393 | nan | 0.9827 | 0.6605 | 0.9738 | 0.3572 | 0.0 | 0.9285 | 0.6156 | 0.9209 | 0.3160 |
| 0.062 | 12.0 | 2628 | 0.2038 | 0.5453 | 0.7399 | 0.9334 | nan | 0.9728 | 0.6739 | 0.9811 | 0.3317 | 0.0 | 0.9214 | 0.6013 | 0.9035 | 0.3001 |
| 0.0586 | 13.0 | 2847 | 0.1914 | 0.5471 | 0.7342 | 0.9402 | nan | 0.9758 | 0.7103 | 0.9814 | 0.2693 | 0.0 | 0.9290 | 0.6397 | 0.9150 | 0.2517 |
| 0.0531 | 14.0 | 3066 | 0.1747 | 0.5716 | 0.7689 | 0.9449 | nan | 0.9701 | 0.7945 | 0.9588 | 0.3522 | 0.0 | 0.9339 | 0.6815 | 0.9280 | 0.3147 |
| 0.0522 | 15.0 | 3285 | 0.1933 | 0.5591 | 0.7399 | 0.9454 | nan | 0.9810 | 0.7222 | 0.9744 | 0.2820 | 0.0 | 0.9351 | 0.6603 | 0.9355 | 0.2645 |
| 0.059 | 16.0 | 3504 | 0.1897 | 0.5691 | 0.7878 | 0.9384 | nan | 0.9499 | 0.8594 | 0.9809 | 0.3608 | 0.0 | 0.9252 | 0.6741 | 0.9159 | 0.3303 |
| 0.0503 | 17.0 | 3723 | 0.1895 | 0.5652 | 0.7795 | 0.9365 | nan | 0.9588 | 0.7866 | 0.9808 | 0.3917 | 0.0 | 0.9238 | 0.6508 | 0.9004 | 0.3511 |
| 0.0518 | 18.0 | 3942 | 0.2131 | 0.5533 | 0.7332 | 0.9402 | nan | 0.9807 | 0.6877 | 0.9645 | 0.2998 | 0.0 | 0.9294 | 0.6248 | 0.9334 | 0.2790 |
| 0.0439 | 19.0 | 4161 | 0.2168 | 0.5565 | 0.7411 | 0.9388 | nan | 0.9801 | 0.6828 | 0.9567 | 0.3448 | 0.0 | 0.9278 | 0.6194 | 0.9234 | 0.3121 |
| 0.0459 | 20.0 | 4380 | 0.2688 | 0.5266 | 0.7127 | 0.9266 | nan | 0.9824 | 0.5567 | 0.9841 | 0.3277 | 0.0 | 0.9149 | 0.5329 | 0.8866 | 0.2987 |
| 0.043 | 21.0 | 4599 | 0.2395 | 0.5542 | 0.7409 | 0.9369 | nan | 0.9821 | 0.6444 | 0.9745 | 0.3625 | 0.0 | 0.9258 | 0.5974 | 0.9228 | 0.3248 |
| 0.0436 | 22.0 | 4818 | 0.1790 | 0.5736 | 0.7750 | 0.9441 | nan | 0.9706 | 0.7783 | 0.9694 | 0.3819 | 0.0 | 0.9331 | 0.6772 | 0.9143 | 0.3433 |
| 0.0443 | 23.0 | 5037 | 0.1843 | 0.5683 | 0.7613 | 0.9442 | nan | 0.9756 | 0.7470 | 0.9716 | 0.3511 | 0.0 | 0.9335 | 0.6684 | 0.9177 | 0.3219 |
| 0.0402 | 24.0 | 5256 | 0.2048 | 0.5666 | 0.7535 | 0.9429 | nan | 0.9800 | 0.7089 | 0.9706 | 0.3544 | 0.0 | 0.9324 | 0.6457 | 0.9302 | 0.3246 |
| 0.0399 | 25.0 | 5475 | 0.2102 | 0.5651 | 0.7524 | 0.9430 | nan | 0.9830 | 0.6875 | 0.9754 | 0.3637 | 0.0 | 0.9327 | 0.6412 | 0.9231 | 0.3287 |
| 0.0404 | 26.0 | 5694 | 0.1993 | 0.5792 | 0.7815 | 0.9460 | nan | 0.9690 | 0.8035 | 0.9697 | 0.3837 | 0.0 | 0.9351 | 0.6876 | 0.9289 | 0.3443 |
| 0.0388 | 27.0 | 5913 | 0.2024 | 0.5681 | 0.7501 | 0.9470 | nan | 0.9821 | 0.7343 | 0.9605 | 0.3236 | 0.0 | 0.9370 | 0.6715 | 0.9322 | 0.3001 |
| 0.0369 | 28.0 | 6132 | 0.1830 | 0.5701 | 0.7553 | 0.9481 | nan | 0.9779 | 0.7698 | 0.9608 | 0.3126 | 0.0 | 0.9379 | 0.6871 | 0.9323 | 0.2931 |
| 0.0373 | 29.0 | 6351 | 0.2162 | 0.5682 | 0.7535 | 0.9438 | nan | 0.9828 | 0.7011 | 0.9639 | 0.3665 | 0.0 | 0.9335 | 0.6482 | 0.9239 | 0.3352 |
| 0.0348 | 30.0 | 6570 | 0.2126 | 0.5640 | 0.7479 | 0.9435 | nan | 0.9813 | 0.7097 | 0.9623 | 0.3384 | 0.0 | 0.9330 | 0.6537 | 0.9197 | 0.3135 |
| 0.0354 | 31.0 | 6789 | 0.2025 | 0.5626 | 0.7467 | 0.9469 | nan | 0.9795 | 0.7453 | 0.9725 | 0.2896 | 0.0 | 0.9368 | 0.6762 | 0.9285 | 0.2716 |
| 0.0344 | 32.0 | 7008 | 0.1973 | 0.5786 | 0.7739 | 0.9469 | nan | 0.9734 | 0.7828 | 0.9698 | 0.3695 | 0.0 | 0.9364 | 0.6853 | 0.9326 | 0.3389 |
| 0.0333 | 33.0 | 7227 | 0.2199 | 0.5722 | 0.7624 | 0.9438 | nan | 0.9817 | 0.7045 | 0.9696 | 0.3940 | 0.0 | 0.9334 | 0.6481 | 0.9287 | 0.3510 |
| 0.0345 | 34.0 | 7446 | 0.2052 | 0.5791 | 0.7724 | 0.9465 | nan | 0.9799 | 0.7347 | 0.9736 | 0.4015 | 0.0 | 0.9363 | 0.6698 | 0.9311 | 0.3582 |
| 0.0326 | 35.0 | 7665 | 0.2176 | 0.5758 | 0.7629 | 0.9462 | nan | 0.9835 | 0.7124 | 0.9689 | 0.3868 | 0.0 | 0.9362 | 0.6595 | 0.9345 | 0.3490 |
| 0.034 | 36.0 | 7884 | 0.2247 | 0.5717 | 0.7557 | 0.9453 | nan | 0.9841 | 0.7033 | 0.9661 | 0.3694 | 0.0 | 0.9352 | 0.6533 | 0.9331 | 0.3369 |
| 0.0324 | 37.0 | 8103 | 0.1957 | 0.5797 | 0.7736 | 0.9490 | nan | 0.9763 | 0.7801 | 0.9725 | 0.3657 | 0.0 | 0.9390 | 0.6963 | 0.9299 | 0.3333 |
| 0.0332 | 38.0 | 8322 | 0.1996 | 0.5770 | 0.7644 | 0.9478 | nan | 0.9826 | 0.7310 | 0.9696 | 0.3743 | 0.0 | 0.9379 | 0.6741 | 0.9336 | 0.3393 |
| 0.0332 | 39.0 | 8541 | 0.2129 | 0.5638 | 0.7423 | 0.9449 | nan | 0.9845 | 0.7021 | 0.9616 | 0.3212 | 0.0 | 0.9348 | 0.6514 | 0.9328 | 0.3001 |
| 0.03 | 40.0 | 8760 | 0.2283 | 0.5694 | 0.7539 | 0.9441 | nan | 0.9840 | 0.6931 | 0.9686 | 0.3699 | 0.0 | 0.9339 | 0.6464 | 0.9277 | 0.3387 |
| 0.0319 | 41.0 | 8979 | 0.2013 | 0.5741 | 0.7624 | 0.9471 | nan | 0.9804 | 0.7416 | 0.9670 | 0.3606 | 0.0 | 0.9370 | 0.6760 | 0.9277 | 0.3300 |
| 0.0361 | 42.0 | 9198 | 0.2094 | 0.5709 | 0.7568 | 0.9463 | nan | 0.9810 | 0.7317 | 0.9663 | 0.3483 | 0.0 | 0.9362 | 0.6689 | 0.9279 | 0.3216 |
| 0.0304 | 43.0 | 9417 | 0.2098 | 0.5731 | 0.7586 | 0.9468 | nan | 0.9821 | 0.7282 | 0.9666 | 0.3575 | 0.0 | 0.9368 | 0.6700 | 0.9295 | 0.3293 |
| 0.0303 | 44.0 | 9636 | 0.2155 | 0.5705 | 0.7554 | 0.9470 | nan | 0.9814 | 0.7329 | 0.9702 | 0.3370 | 0.0 | 0.9369 | 0.6718 | 0.9301 | 0.3137 |
| 0.03 | 45.0 | 9855 | 0.2183 | 0.5703 | 0.7541 | 0.9464 | nan | 0.9825 | 0.7229 | 0.9677 | 0.3435 | 0.0 | 0.9364 | 0.6657 | 0.9311 | 0.3181 |
| 0.0301 | 45.66 | 10000 | 0.2142 | 0.5724 | 0.7571 | 0.9468 | nan | 0.9826 | 0.7246 | 0.9679 | 0.3533 | 0.0 | 0.9368 | 0.6678 | 0.9310 | 0.3263 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"bg",
"fallo cohesivo",
"fallo malla",
"fallo adhesivo",
"fallo burbuja"
] |
Mohamad-Jaallouk/segformer-b0-finetuned-segments-sidewalk-oct-22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-oct-22
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.8820
- eval_mean_iou: 0.1648
- eval_mean_accuracy: 0.2025
- eval_overall_accuracy: 0.7805
- eval_accuracy_unlabeled: nan
- eval_accuracy_flat-road: 0.8435
- eval_accuracy_flat-sidewalk: 0.9378
- eval_accuracy_flat-crosswalk: 0.0
- eval_accuracy_flat-cyclinglane: 0.5809
- eval_accuracy_flat-parkingdriveway: 0.0715
- eval_accuracy_flat-railtrack: 0.0
- eval_accuracy_flat-curb: 0.0041
- eval_accuracy_human-person: 0.0
- eval_accuracy_human-rider: 0.0
- eval_accuracy_vehicle-car: 0.8730
- eval_accuracy_vehicle-truck: 0.0
- eval_accuracy_vehicle-bus: 0.0
- eval_accuracy_vehicle-tramtrain: 0.0
- eval_accuracy_vehicle-motorcycle: 0.0
- eval_accuracy_vehicle-bicycle: 0.0
- eval_accuracy_vehicle-caravan: 0.0
- eval_accuracy_vehicle-cartrailer: 0.0
- eval_accuracy_construction-building: 0.8780
- eval_accuracy_construction-door: 0.0
- eval_accuracy_construction-wall: 0.0000
- eval_accuracy_construction-fenceguardrail: 0.0
- eval_accuracy_construction-bridge: 0.0
- eval_accuracy_construction-tunnel: 0.0
- eval_accuracy_construction-stairs: 0.0
- eval_accuracy_object-pole: 0.0
- eval_accuracy_object-trafficsign: 0.0
- eval_accuracy_object-trafficlight: 0.0
- eval_accuracy_nature-vegetation: 0.9399
- eval_accuracy_nature-terrain: 0.8232
- eval_accuracy_sky: 0.9347
- eval_accuracy_void-ground: 0.0
- eval_accuracy_void-dynamic: 0.0
- eval_accuracy_void-static: 0.0
- eval_accuracy_void-unclear: 0.0
- eval_iou_unlabeled: nan
- eval_iou_flat-road: 0.5426
- eval_iou_flat-sidewalk: 0.8046
- eval_iou_flat-crosswalk: 0.0
- eval_iou_flat-cyclinglane: 0.5502
- eval_iou_flat-parkingdriveway: 0.0678
- eval_iou_flat-railtrack: 0.0
- eval_iou_flat-curb: 0.0041
- eval_iou_human-person: 0.0
- eval_iou_human-rider: 0.0
- eval_iou_vehicle-car: 0.6930
- eval_iou_vehicle-truck: 0.0
- eval_iou_vehicle-bus: 0.0
- eval_iou_vehicle-tramtrain: 0.0
- eval_iou_vehicle-motorcycle: 0.0
- eval_iou_vehicle-bicycle: 0.0
- eval_iou_vehicle-caravan: 0.0
- eval_iou_vehicle-cartrailer: 0.0
- eval_iou_construction-building: 0.6055
- eval_iou_construction-door: 0.0
- eval_iou_construction-wall: 0.0000
- eval_iou_construction-fenceguardrail: 0.0
- eval_iou_construction-bridge: 0.0
- eval_iou_construction-tunnel: 0.0
- eval_iou_construction-stairs: 0.0
- eval_iou_object-pole: 0.0
- eval_iou_object-trafficsign: 0.0
- eval_iou_object-trafficlight: 0.0
- eval_iou_nature-vegetation: 0.7900
- eval_iou_nature-terrain: 0.7063
- eval_iou_sky: 0.8381
- eval_iou_void-ground: 0.0
- eval_iou_void-dynamic: 0.0
- eval_iou_void-static: 0.0
- eval_iou_void-unclear: 0.0
- eval_runtime: 21.9758
- eval_samples_per_second: 9.101
- eval_steps_per_second: 0.592
- epoch: 0.4
- step: 20
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
IrshadG/segformer-b0-finetuned-segments-sidewalk-123 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-sidewalk-123
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5603
- eval_mean_iou: 0.3194
- eval_mean_accuracy: 0.3797
- eval_overall_accuracy: 0.8649
- eval_accuracy_unlabeled: nan
- eval_accuracy_flat-road: 0.8652
- eval_accuracy_flat-sidewalk: 0.9642
- eval_accuracy_flat-crosswalk: 0.6083
- eval_accuracy_flat-cyclinglane: 0.7173
- eval_accuracy_flat-parkingdriveway: 0.5189
- eval_accuracy_flat-railtrack: 0.0
- eval_accuracy_flat-curb: 0.6089
- eval_accuracy_human-person: 0.8421
- eval_accuracy_human-rider: 0.0
- eval_accuracy_vehicle-car: 0.9347
- eval_accuracy_vehicle-truck: 0.0
- eval_accuracy_vehicle-bus: 0.0
- eval_accuracy_vehicle-tramtrain: 0.0
- eval_accuracy_vehicle-motorcycle: 0.0
- eval_accuracy_vehicle-bicycle: 0.7877
- eval_accuracy_vehicle-caravan: 0.0
- eval_accuracy_vehicle-cartrailer: 0.0
- eval_accuracy_construction-building: 0.9288
- eval_accuracy_construction-door: 0.0851
- eval_accuracy_construction-wall: 0.4696
- eval_accuracy_construction-fenceguardrail: 0.4756
- eval_accuracy_construction-bridge: 0.0
- eval_accuracy_construction-tunnel: nan
- eval_accuracy_construction-stairs: 0.0047
- eval_accuracy_object-pole: 0.3599
- eval_accuracy_object-trafficsign: 0.0028
- eval_accuracy_object-trafficlight: 0.0
- eval_accuracy_nature-vegetation: 0.9419
- eval_accuracy_nature-terrain: 0.8921
- eval_accuracy_sky: 0.9773
- eval_accuracy_void-ground: 0.0003
- eval_accuracy_void-dynamic: 0.1852
- eval_accuracy_void-static: 0.3603
- eval_accuracy_void-unclear: 0.0
- eval_iou_unlabeled: nan
- eval_iou_flat-road: 0.7774
- eval_iou_flat-sidewalk: 0.8659
- eval_iou_flat-crosswalk: 0.4889
- eval_iou_flat-cyclinglane: 0.6488
- eval_iou_flat-parkingdriveway: 0.4072
- eval_iou_flat-railtrack: 0.0
- eval_iou_flat-curb: 0.4944
- eval_iou_human-person: 0.6064
- eval_iou_human-rider: 0.0
- eval_iou_vehicle-car: 0.8283
- eval_iou_vehicle-truck: 0.0
- eval_iou_vehicle-bus: 0.0
- eval_iou_vehicle-tramtrain: 0.0
- eval_iou_vehicle-motorcycle: 0.0
- eval_iou_vehicle-bicycle: 0.5105
- eval_iou_vehicle-caravan: 0.0
- eval_iou_vehicle-cartrailer: 0.0
- eval_iou_construction-building: 0.7458
- eval_iou_construction-door: 0.0760
- eval_iou_construction-wall: 0.4006
- eval_iou_construction-fenceguardrail: 0.3288
- eval_iou_construction-bridge: 0.0
- eval_iou_construction-tunnel: nan
- eval_iou_construction-stairs: 0.0047
- eval_iou_object-pole: 0.2789
- eval_iou_object-trafficsign: 0.0027
- eval_iou_object-trafficlight: 0.0
- eval_iou_nature-vegetation: 0.8781
- eval_iou_nature-terrain: 0.8170
- eval_iou_sky: 0.9417
- eval_iou_void-ground: 0.0002
- eval_iou_void-dynamic: 0.1706
- eval_iou_void-static: 0.2686
- eval_iou_void-unclear: 0.0
- eval_runtime: 246.8492
- eval_samples_per_second: 0.81
- eval_steps_per_second: 0.405
- epoch: 15.45
- step: 6180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Framework versions
- Transformers 4.35.0
- Pytorch 2.2.0+cpu
- Datasets 2.14.6
- Tokenizers 0.14.1
| [
"unlabeled",
"flat-road",
"flat-sidewalk",
"flat-crosswalk",
"flat-cyclinglane",
"flat-parkingdriveway",
"flat-railtrack",
"flat-curb",
"human-person",
"human-rider",
"vehicle-car",
"vehicle-truck",
"vehicle-bus",
"vehicle-tramtrain",
"vehicle-motorcycle",
"vehicle-bicycle",
"vehicle-caravan",
"vehicle-cartrailer",
"construction-building",
"construction-door",
"construction-wall",
"construction-fenceguardrail",
"construction-bridge",
"construction-tunnel",
"construction-stairs",
"object-pole",
"object-trafficsign",
"object-trafficlight",
"nature-vegetation",
"nature-terrain",
"sky",
"void-ground",
"void-dynamic",
"void-static",
"void-unclear"
] |
sam1120/safety-utcustom-train-SF-RGBD-b5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF-RGBD-b5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0867
- Mean Iou: 0.7280
- Mean Accuracy: 0.7762
- Overall Accuracy: 0.9818
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.5578
- Accuracy Unsafe: 0.9947
- Iou Unlabeled: nan
- Iou Safe: 0.4745
- Iou Unsafe: 0.9814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Accuracy Safe | Accuracy Unlabeled | Accuracy Unsafe | Iou Safe | Iou Unlabeled | Iou Unsafe | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:------:|:----:|:-------------:|:------------------:|:---------------:|:--------:|:-------------:|:----------:|:---------------:|:-------------:|:--------:|:----------------:|
| 0.789 | 0.91 | 10 | 0.0203 | nan | 0.8957 | 0.0095 | 0.0 | 0.8722 | 0.9555 | 0.4580 | 0.2939 | 0.8698 |
| 0.7579 | 1.82 | 20 | 0.0117 | nan | 0.9614 | 0.0069 | 0.0 | 0.9338 | 0.8322 | 0.4866 | 0.3136 | 0.9334 |
| 0.7103 | 2.73 | 30 | 0.0051 | nan | 0.9893 | 0.0043 | 0.0 | 0.9604 | 0.6729 | 0.4972 | 0.3216 | 0.9602 |
| 0.676 | 3.64 | 40 | 0.0021 | nan | 0.9969 | 0.0020 | 0.0 | 0.9675 | 0.5336 | 0.4995 | 0.3232 | 0.9675 |
| 0.5955 | 4.55 | 50 | 0.0001 | nan | 0.9993 | 0.0001 | 0.0 | 0.9698 | 0.4440 | 0.4997 | 0.3233 | 0.9698 |
| 0.5691 | 5.45 | 60 | 0.0000 | nan | 0.9997 | 0.0000 | 0.0 | 0.9702 | 0.3812 | 0.4999 | 0.3234 | 0.9702 |
| 0.5067 | 6.36 | 70 | 0.0 | nan | 0.9996 | 0.0 | 0.0 | 0.9701 | 0.3590 | 0.4998 | 0.3234 | 0.9701 |
| 0.4656 | 7.27 | 80 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9703 | 0.3247 | 0.4999 | 0.3234 | 0.9703 |
| 0.4227 | 8.18 | 90 | 0.0 | nan | 0.9998 | 0.0 | 0.0 | 0.9702 | 0.3171 | 0.4999 | 0.3234 | 0.9702 |
| 0.3898 | 9.09 | 100 | 0.0004 | nan | 0.9996 | 0.0004 | 0.0 | 0.9701 | 0.3122 | 0.5000 | 0.3235 | 0.9701 |
| 0.3513 | 10.0 | 110 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9703 | 0.2876 | 0.4999 | 0.3234 | 0.9703 |
| 0.4157 | 10.91 | 120 | 0.0000 | nan | 0.9998 | 0.0000 | 0.0 | 0.9703 | 0.2820 | 0.4999 | 0.3234 | 0.9703 |
| 0.3317 | 11.82 | 130 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9703 | 0.2693 | 0.4999 | 0.3234 | 0.9703 |
| 0.321 | 12.73 | 140 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9704 | 0.2647 | 0.4999 | 0.3235 | 0.9704 |
| 0.2887 | 13.64 | 150 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9704 | 0.2539 | 0.5000 | 0.3235 | 0.9704 |
| 0.3008 | 14.55 | 160 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9704 | 0.2536 | 0.5000 | 0.3235 | 0.9704 |
| 0.2853 | 15.45 | 170 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9704 | 0.2397 | 0.5000 | 0.3235 | 0.9704 |
| 0.2684 | 16.36 | 180 | 0.0 | nan | 0.9999 | 0.0 | 0.0 | 0.9704 | 0.2321 | 0.5000 | 0.3235 | 0.9704 |
| 0.2585 | 17.27 | 190 | 0.0000 | nan | 0.9999 | 0.0000 | 0.0 | 0.9704 | 0.2208 | 0.5000 | 0.3235 | 0.9704 |
| 0.2088 | 18.18 | 200 | 0.0084 | nan | 0.9997 | 0.0083 | 0.0 | 0.9704 | 0.2011 | 0.5041 | 0.3262 | 0.9704 |
| 0.2518 | 19.09 | 210 | 0.0468 | nan | 0.9989 | 0.0451 | 0.0 | 0.9707 | 0.2026 | 0.5228 | 0.3386 | 0.9707 |
| 0.218 | 20.0 | 220 | 0.0879 | nan | 0.9984 | 0.0834 | nan | 0.9714 | 0.1889 | 0.5431 | 0.5274 | 0.9715 |
| 0.2046 | 20.91 | 230 | 0.1931 | nan | 0.9969 | 0.1752 | nan | 0.9730 | 0.1847 | 0.5950 | 0.5741 | 0.9732 |
| 0.2147 | 21.82 | 240 | 0.2042 | nan | 0.9968 | 0.1850 | nan | 0.9733 | 0.1766 | 0.6005 | 0.5791 | 0.9734 |
| 0.188 | 22.73 | 250 | 0.2020 | nan | 0.9972 | 0.1849 | nan | 0.9735 | 0.1726 | 0.5996 | 0.5792 | 0.9737 |
| 0.2175 | 23.64 | 260 | 0.1898 | nan | 0.9974 | 0.1748 | nan | 0.9734 | 0.1706 | 0.5936 | 0.5741 | 0.9735 |
| 0.2059 | 24.55 | 270 | 0.3006 | nan | 0.9962 | 0.2670 | nan | 0.9754 | 0.1689 | 0.6484 | 0.6212 | 0.9756 |
| 0.1776 | 25.45 | 280 | 0.2870 | nan | 0.9967 | 0.2587 | nan | 0.9755 | 0.1612 | 0.6418 | 0.6171 | 0.9757 |
| 0.1585 | 26.36 | 290 | 0.4254 | nan | 0.9944 | 0.3593 | nan | 0.9773 | 0.1537 | 0.7099 | 0.6683 | 0.9776 |
| 0.1588 | 27.27 | 300 | 0.2798 | nan | 0.9970 | 0.2548 | nan | 0.9756 | 0.1527 | 0.6384 | 0.6152 | 0.9758 |
| 0.153 | 28.18 | 310 | 0.4288 | nan | 0.9946 | 0.3646 | nan | 0.9776 | 0.1452 | 0.7117 | 0.6711 | 0.9779 |
| 0.1623 | 29.09 | 320 | 0.4401 | nan | 0.9945 | 0.3726 | nan | 0.9778 | 0.1442 | 0.7173 | 0.6752 | 0.9781 |
| 0.1603 | 30.0 | 330 | 0.4050 | nan | 0.9958 | 0.3562 | nan | 0.9781 | 0.1407 | 0.7004 | 0.6671 | 0.9784 |
| 0.1694 | 30.91 | 340 | 0.4585 | nan | 0.9948 | 0.3911 | nan | 0.9786 | 0.1343 | 0.7266 | 0.6849 | 0.9789 |
| 0.1585 | 31.82 | 350 | 0.3861 | nan | 0.9962 | 0.3433 | nan | 0.9779 | 0.1353 | 0.6912 | 0.6606 | 0.9782 |
| 0.1342 | 32.73 | 360 | 0.4963 | nan | 0.9939 | 0.4132 | nan | 0.9789 | 0.1338 | 0.7451 | 0.6961 | 0.9792 |
| 0.1358 | 33.64 | 370 | 0.5048 | nan | 0.9937 | 0.4182 | nan | 0.9789 | 0.1342 | 0.7493 | 0.6986 | 0.9793 |
| 0.1493 | 34.55 | 380 | 0.4809 | nan | 0.9946 | 0.4080 | nan | 0.9791 | 0.1297 | 0.7377 | 0.6936 | 0.9794 |
| 0.1435 | 35.45 | 390 | 0.5658 | nan | 0.9923 | 0.4518 | nan | 0.9794 | 0.1271 | 0.7791 | 0.7156 | 0.9797 |
| 0.1305 | 36.36 | 400 | 0.4157 | nan | 0.9968 | 0.3758 | nan | 0.9793 | 0.1225 | 0.7062 | 0.6776 | 0.9796 |
| 0.1496 | 37.27 | 410 | 0.5385 | nan | 0.9934 | 0.4420 | nan | 0.9796 | 0.1237 | 0.7659 | 0.7108 | 0.9799 |
| 0.1445 | 38.18 | 420 | 0.5763 | nan | 0.9924 | 0.4615 | nan | 0.9798 | 0.1207 | 0.7843 | 0.7206 | 0.9801 |
| 0.1307 | 39.09 | 430 | 0.4853 | nan | 0.9956 | 0.4244 | nan | 0.9803 | 0.1194 | 0.7404 | 0.7023 | 0.9806 |
| 0.1379 | 40.0 | 440 | 0.5722 | nan | 0.9922 | 0.4557 | nan | 0.9795 | 0.1174 | 0.7822 | 0.7176 | 0.9798 |
| 0.1202 | 40.91 | 450 | 0.5399 | nan | 0.9943 | 0.4544 | nan | 0.9805 | 0.1143 | 0.7671 | 0.7175 | 0.9809 |
| 0.1239 | 41.82 | 460 | 0.5580 | nan | 0.9932 | 0.4558 | nan | 0.9800 | 0.1150 | 0.7756 | 0.7179 | 0.9803 |
| 0.1183 | 42.73 | 470 | 0.4777 | nan | 0.9961 | 0.4236 | nan | 0.9805 | 0.1129 | 0.7369 | 0.7021 | 0.9808 |
| 0.1202 | 43.64 | 480 | 0.5933 | nan | 0.9928 | 0.4793 | nan | 0.9806 | 0.1119 | 0.7930 | 0.7300 | 0.9810 |
| 0.1276 | 44.55 | 490 | 0.5425 | nan | 0.9942 | 0.4561 | nan | 0.9806 | 0.1131 | 0.7683 | 0.7183 | 0.9809 |
| 0.1172 | 45.45 | 500 | 0.6272 | nan | 0.9898 | 0.4700 | nan | 0.9787 | 0.1135 | 0.8085 | 0.7244 | 0.9791 |
| 0.1288 | 46.36 | 510 | 0.4236 | nan | 0.9974 | 0.3898 | nan | 0.9802 | 0.1105 | 0.7105 | 0.6850 | 0.9804 |
| 0.1185 | 47.27 | 520 | 0.6035 | nan | 0.9914 | 0.4711 | nan | 0.9796 | 0.1130 | 0.7975 | 0.7254 | 0.9800 |
| 0.1045 | 48.18 | 530 | 0.5750 | nan | 0.9930 | 0.4679 | nan | 0.9804 | 0.1102 | 0.7840 | 0.7241 | 0.9807 |
| 0.1211 | 49.09 | 540 | 0.5812 | nan | 0.9929 | 0.4715 | nan | 0.9804 | 0.1069 | 0.7870 | 0.7260 | 0.9808 |
| 0.1206 | 50.0 | 550 | 0.5221 | nan | 0.9953 | 0.4528 | nan | 0.9811 | 0.1071 | 0.7587 | 0.7169 | 0.9814 |
| 0.1193 | 50.91 | 560 | 0.4956 | nan | 0.9961 | 0.4398 | nan | 0.9811 | 0.1053 | 0.7459 | 0.7105 | 0.9814 |
| 0.1116 | 51.82 | 570 | 0.5257 | nan | 0.9951 | 0.4528 | nan | 0.9809 | 0.1043 | 0.7604 | 0.7169 | 0.9812 |
| 0.1218 | 52.73 | 580 | 0.5936 | nan | 0.9922 | 0.4724 | nan | 0.9801 | 0.1078 | 0.7929 | 0.7262 | 0.9804 |
| 0.1284 | 53.64 | 590 | 0.5872 | nan | 0.9924 | 0.4696 | nan | 0.9801 | 0.1054 | 0.7898 | 0.7248 | 0.9804 |
| 0.096 | 54.55 | 600 | 0.5451 | nan | 0.9942 | 0.4580 | nan | 0.9806 | 0.1028 | 0.7697 | 0.7193 | 0.9809 |
| 0.1091 | 55.45 | 610 | 0.6014 | nan | 0.9917 | 0.4725 | nan | 0.9798 | 0.1022 | 0.7965 | 0.7261 | 0.9802 |
| 0.1068 | 56.36 | 620 | 0.4926 | nan | 0.9962 | 0.4374 | nan | 0.9810 | 0.1015 | 0.7444 | 0.7092 | 0.9813 |
| 0.106 | 57.27 | 630 | 0.5713 | nan | 0.9937 | 0.4731 | nan | 0.9809 | 0.1011 | 0.7825 | 0.7270 | 0.9812 |
| 0.1009 | 58.18 | 640 | 0.4512 | nan | 0.9969 | 0.4089 | nan | 0.9805 | 0.1028 | 0.7240 | 0.6947 | 0.9807 |
| 0.1018 | 59.09 | 650 | 0.6053 | nan | 0.9919 | 0.4779 | nan | 0.9801 | 0.1022 | 0.7986 | 0.7290 | 0.9805 |
| 0.1012 | 60.0 | 660 | 0.5167 | nan | 0.9949 | 0.4427 | nan | 0.9805 | 0.1016 | 0.7558 | 0.7116 | 0.9808 |
| 0.1052 | 60.91 | 670 | 0.5464 | nan | 0.9943 | 0.4604 | nan | 0.9808 | 0.0999 | 0.7703 | 0.7206 | 0.9811 |
| 0.1229 | 61.82 | 680 | 0.5706 | nan | 0.9939 | 0.4750 | nan | 0.9810 | 0.0993 | 0.7822 | 0.7280 | 0.9814 |
| 0.0963 | 62.73 | 690 | 0.5746 | nan | 0.9936 | 0.4754 | nan | 0.9809 | 0.0974 | 0.7841 | 0.7282 | 0.9813 |
| 0.1115 | 63.64 | 700 | 0.5239 | nan | 0.9955 | 0.4562 | nan | 0.9813 | 0.0974 | 0.7597 | 0.7187 | 0.9816 |
| 0.1025 | 64.55 | 710 | 0.5845 | nan | 0.9935 | 0.4813 | nan | 0.9811 | 0.0964 | 0.7890 | 0.7312 | 0.9814 |
| 0.0916 | 65.45 | 720 | 0.5493 | nan | 0.9947 | 0.4685 | nan | 0.9813 | 0.0962 | 0.7720 | 0.7249 | 0.9816 |
| 0.1055 | 66.36 | 730 | 0.5273 | nan | 0.9953 | 0.4571 | nan | 0.9812 | 0.0947 | 0.7613 | 0.7191 | 0.9815 |
| 0.1081 | 67.27 | 740 | 0.6093 | nan | 0.9919 | 0.4813 | nan | 0.9802 | 0.0964 | 0.8006 | 0.7308 | 0.9806 |
| 0.1039 | 68.18 | 750 | 0.5405 | nan | 0.9945 | 0.4573 | nan | 0.9807 | 0.0950 | 0.7675 | 0.7190 | 0.9811 |
| 0.106 | 69.09 | 760 | 0.5564 | nan | 0.9943 | 0.4682 | nan | 0.9810 | 0.0939 | 0.7753 | 0.7246 | 0.9813 |
| 0.0912 | 70.0 | 770 | 0.5377 | nan | 0.9949 | 0.4612 | nan | 0.9811 | 0.0936 | 0.7663 | 0.7212 | 0.9814 |
| 0.0951 | 70.91 | 780 | 0.5600 | nan | 0.9941 | 0.4689 | nan | 0.9809 | 0.0938 | 0.7771 | 0.7249 | 0.9813 |
| 0.0998 | 71.82 | 790 | 0.5573 | nan | 0.9944 | 0.4705 | nan | 0.9812 | 0.0928 | 0.7759 | 0.7258 | 0.9815 |
| 0.0889 | 72.73 | 800 | 0.5398 | nan | 0.9949 | 0.4628 | nan | 0.9812 | 0.0931 | 0.7674 | 0.7220 | 0.9815 |
| 0.0906 | 73.64 | 810 | 0.5151 | nan | 0.9958 | 0.4528 | nan | 0.9813 | 0.0928 | 0.7555 | 0.7171 | 0.9816 |
| 0.0911 | 74.55 | 820 | 0.5682 | nan | 0.9938 | 0.4722 | nan | 0.9809 | 0.0924 | 0.7810 | 0.7265 | 0.9812 |
| 0.0907 | 75.45 | 830 | 0.4864 | nan | 0.9965 | 0.4365 | nan | 0.9812 | 0.0929 | 0.7415 | 0.7089 | 0.9815 |
| 0.1117 | 76.36 | 840 | 0.5239 | nan | 0.9956 | 0.4576 | nan | 0.9814 | 0.0934 | 0.7598 | 0.7195 | 0.9817 |
| 0.0812 | 77.27 | 850 | 0.5279 | nan | 0.9956 | 0.4605 | nan | 0.9814 | 0.0915 | 0.7617 | 0.7210 | 0.9817 |
| 0.0888 | 78.18 | 860 | 0.5615 | nan | 0.9942 | 0.4720 | nan | 0.9811 | 0.0915 | 0.7778 | 0.7266 | 0.9814 |
| 0.09 | 79.09 | 870 | 0.5414 | nan | 0.9948 | 0.4628 | nan | 0.9811 | 0.0920 | 0.7681 | 0.7220 | 0.9814 |
| 0.1052 | 80.0 | 880 | 0.5866 | nan | 0.9932 | 0.4790 | nan | 0.9808 | 0.0917 | 0.7899 | 0.7299 | 0.9812 |
| 0.0867 | 80.91 | 890 | 0.5252 | nan | 0.9955 | 0.4573 | nan | 0.9813 | 0.0912 | 0.7603 | 0.7193 | 0.9816 |
| 0.0942 | 81.82 | 900 | 0.5091 | nan | 0.9959 | 0.4490 | nan | 0.9813 | 0.0925 | 0.7525 | 0.7152 | 0.9815 |
| 0.0917 | 82.73 | 910 | 0.5454 | nan | 0.9950 | 0.4682 | nan | 0.9814 | 0.0908 | 0.7702 | 0.7248 | 0.9817 |
| 0.103 | 83.64 | 920 | 0.5452 | nan | 0.9949 | 0.4672 | nan | 0.9813 | 0.0912 | 0.7701 | 0.7243 | 0.9816 |
| 0.0939 | 84.55 | 930 | 0.5539 | nan | 0.9947 | 0.4717 | nan | 0.9814 | 0.0900 | 0.7743 | 0.7265 | 0.9817 |
| 0.0892 | 85.45 | 940 | 0.5330 | nan | 0.9954 | 0.4635 | nan | 0.9815 | 0.0900 | 0.7642 | 0.7225 | 0.9818 |
| 0.0899 | 86.36 | 950 | 0.5756 | nan | 0.9938 | 0.4778 | nan | 0.9811 | 0.0905 | 0.7847 | 0.7295 | 0.9814 |
| 0.0877 | 87.27 | 960 | 0.5771 | nan | 0.9937 | 0.4787 | nan | 0.9811 | 0.0893 | 0.7854 | 0.7299 | 0.9814 |
| 0.0851 | 88.18 | 970 | 0.5087 | nan | 0.9961 | 0.4512 | nan | 0.9814 | 0.0897 | 0.7524 | 0.7163 | 0.9817 |
| 0.0857 | 89.09 | 980 | 0.5363 | nan | 0.9953 | 0.4644 | nan | 0.9814 | 0.0894 | 0.7658 | 0.7229 | 0.9817 |
| 0.0821 | 90.0 | 990 | 0.5333 | nan | 0.9953 | 0.4623 | nan | 0.9814 | 0.0895 | 0.7643 | 0.7218 | 0.9817 |
| 0.0931 | 90.91 | 1000 | 0.5581 | nan | 0.9944 | 0.4718 | nan | 0.9812 | 0.0895 | 0.7763 | 0.7265 | 0.9815 |
| 0.0787 | 91.82 | 1010 | 0.5525 | nan | 0.9946 | 0.4689 | nan | 0.9812 | 0.0889 | 0.7735 | 0.7251 | 0.9815 |
| 0.0865 | 92.73 | 1020 | 0.5659 | nan | 0.9941 | 0.4746 | nan | 0.9812 | 0.0883 | 0.7800 | 0.7279 | 0.9815 |
| 0.0939 | 93.64 | 1030 | 0.5583 | nan | 0.9945 | 0.4723 | nan | 0.9813 | 0.0891 | 0.7764 | 0.7268 | 0.9816 |
| 0.0874 | 94.55 | 1040 | 0.5258 | nan | 0.9955 | 0.4580 | nan | 0.9813 | 0.0893 | 0.7607 | 0.7197 | 0.9816 |
| 0.0927 | 95.45 | 1050 | 0.5319 | nan | 0.9953 | 0.4608 | nan | 0.9813 | 0.0894 | 0.7636 | 0.7211 | 0.9816 |
| 0.0808 | 96.36 | 1060 | 0.5444 | nan | 0.9949 | 0.4665 | nan | 0.9813 | 0.0897 | 0.7696 | 0.7239 | 0.9816 |
| 0.0924 | 97.27 | 1070 | 0.5445 | nan | 0.9950 | 0.4671 | nan | 0.9814 | 0.0892 | 0.7697 | 0.7243 | 0.9817 |
| 0.08 | 98.18 | 1080 | 0.5522 | nan | 0.9947 | 0.4703 | nan | 0.9813 | 0.0884 | 0.7735 | 0.7258 | 0.9816 |
| 0.0798 | 99.09 | 1090 | 0.0880 | 0.7300 | 0.7842 | 0.9815 | nan | 0.5745 | 0.9939 | nan | 0.4788 | 0.9812 |
| 0.0789 | 100.0 | 1100 | 0.0877 | 0.7231 | 0.7668 | 0.9817 | nan | 0.5383 | 0.9952 | nan | 0.4647 | 0.9814 |
| 0.0801 | 100.91 | 1110 | 0.0885 | 0.7232 | 0.7677 | 0.9816 | nan | 0.5404 | 0.9951 | nan | 0.4650 | 0.9813 |
| 0.1043 | 101.82 | 1120 | 0.0891 | 0.7242 | 0.7697 | 0.9816 | nan | 0.5445 | 0.9950 | nan | 0.4670 | 0.9813 |
| 0.0893 | 102.73 | 1130 | 0.0882 | 0.7263 | 0.7728 | 0.9817 | nan | 0.5508 | 0.9949 | nan | 0.4712 | 0.9814 |
| 0.0923 | 103.64 | 1140 | 0.0892 | 0.7134 | 0.7504 | 0.9815 | nan | 0.5048 | 0.9960 | nan | 0.4457 | 0.9812 |
| 0.0915 | 104.55 | 1150 | 0.0884 | 0.7293 | 0.7795 | 0.9817 | nan | 0.5646 | 0.9944 | nan | 0.4772 | 0.9814 |
| 0.0859 | 105.45 | 1160 | 0.0880 | 0.7340 | 0.7941 | 0.9815 | nan | 0.5949 | 0.9932 | nan | 0.4869 | 0.9811 |
| 0.0872 | 106.36 | 1170 | 0.0872 | 0.7298 | 0.7815 | 0.9817 | nan | 0.5688 | 0.9942 | nan | 0.4783 | 0.9814 |
| 0.0845 | 107.27 | 1180 | 0.0881 | 0.7310 | 0.7843 | 0.9817 | nan | 0.5746 | 0.9940 | nan | 0.4806 | 0.9813 |
| 0.0842 | 108.18 | 1190 | 0.0869 | 0.7285 | 0.7766 | 0.9818 | nan | 0.5584 | 0.9947 | nan | 0.4755 | 0.9815 |
| 0.0906 | 109.09 | 1200 | 0.0875 | 0.7277 | 0.7754 | 0.9818 | nan | 0.5560 | 0.9947 | nan | 0.4740 | 0.9815 |
| 0.0953 | 110.0 | 1210 | 0.0878 | 0.7289 | 0.7777 | 0.9818 | nan | 0.5608 | 0.9946 | nan | 0.4764 | 0.9815 |
| 0.0988 | 110.91 | 1220 | 0.0880 | 0.7303 | 0.7809 | 0.9818 | nan | 0.5674 | 0.9944 | nan | 0.4790 | 0.9815 |
| 0.0894 | 111.82 | 1230 | 0.0869 | 0.7300 | 0.7801 | 0.9818 | nan | 0.5657 | 0.9945 | nan | 0.4785 | 0.9815 |
| 0.0788 | 112.73 | 1240 | 0.0868 | 0.7283 | 0.7758 | 0.9818 | nan | 0.5569 | 0.9948 | nan | 0.4750 | 0.9815 |
| 0.0793 | 113.64 | 1250 | 0.0870 | 0.7281 | 0.7758 | 0.9818 | nan | 0.5569 | 0.9947 | nan | 0.4747 | 0.9815 |
| 0.084 | 114.55 | 1260 | 0.0874 | 0.7295 | 0.7809 | 0.9817 | nan | 0.5675 | 0.9943 | nan | 0.4777 | 0.9814 |
| 0.0832 | 115.45 | 1270 | 0.0875 | 0.7277 | 0.7760 | 0.9817 | nan | 0.5574 | 0.9946 | nan | 0.4739 | 0.9814 |
| 0.0833 | 116.36 | 1280 | 0.0873 | 0.7274 | 0.7755 | 0.9817 | nan | 0.5563 | 0.9947 | nan | 0.4735 | 0.9814 |
| 0.0786 | 117.27 | 1290 | 0.0867 | 0.7277 | 0.7754 | 0.9818 | nan | 0.5561 | 0.9947 | nan | 0.4740 | 0.9815 |
| 0.0839 | 118.18 | 1300 | 0.0865 | 0.7285 | 0.7779 | 0.9817 | nan | 0.5613 | 0.9945 | nan | 0.4755 | 0.9814 |
| 0.0847 | 119.09 | 1310 | 0.0877 | 0.7293 | 0.7816 | 0.9816 | nan | 0.5691 | 0.9941 | nan | 0.4773 | 0.9813 |
| 0.0933 | 120.0 | 1320 | 0.0867 | 0.7280 | 0.7762 | 0.9818 | nan | 0.5578 | 0.9947 | nan | 0.4745 | 0.9814 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/safety-utcustom-train-SF-RGB-b0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF-RGB-b0
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3221
- Mean Iou: 0.7557
- Mean Accuracy: 0.8092
- Overall Accuracy: 0.9835
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.6240
- Accuracy Unsafe: 0.9945
- Iou Unlabeled: nan
- Iou Safe: 0.5281
- Iou Unsafe: 0.9832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 1.2069 | 1.0 | 10 | 1.1287 | 0.0406 | 0.3613 | 0.1117 | nan | 0.6267 | 0.0960 | 0.0 | 0.0261 | 0.0958 |
| 1.196 | 2.0 | 20 | 1.1408 | 0.0465 | 0.3971 | 0.1274 | nan | 0.6837 | 0.1105 | 0.0 | 0.0290 | 0.1104 |
| 1.1866 | 3.0 | 30 | 1.1441 | 0.0662 | 0.4586 | 0.1826 | nan | 0.7519 | 0.1653 | 0.0 | 0.0335 | 0.1652 |
| 1.1701 | 4.0 | 40 | 1.1350 | 0.1016 | 0.5469 | 0.2805 | nan | 0.8301 | 0.2638 | 0.0 | 0.0410 | 0.2637 |
| 1.1467 | 5.0 | 50 | 1.1285 | 0.1325 | 0.6266 | 0.3646 | nan | 0.9052 | 0.3481 | 0.0 | 0.0496 | 0.3481 |
| 1.1126 | 6.0 | 60 | 1.0914 | 0.1933 | 0.7318 | 0.5257 | nan | 0.9508 | 0.5128 | 0.0 | 0.0673 | 0.5127 |
| 1.0735 | 7.0 | 70 | 1.0392 | 0.2462 | 0.8075 | 0.6582 | nan | 0.9662 | 0.6489 | 0.0 | 0.0900 | 0.6487 |
| 1.0335 | 8.0 | 80 | 1.0015 | 0.2783 | 0.8456 | 0.7301 | nan | 0.9683 | 0.7228 | 0.0 | 0.1122 | 0.7226 |
| 1.0088 | 9.0 | 90 | 0.9502 | 0.3061 | 0.8736 | 0.7884 | nan | 0.9643 | 0.7830 | 0.0 | 0.1359 | 0.7825 |
| 0.9993 | 10.0 | 100 | 0.9158 | 0.3246 | 0.8886 | 0.8232 | nan | 0.9581 | 0.8191 | 0.0 | 0.1556 | 0.8183 |
| 0.9114 | 11.0 | 110 | 0.8472 | 0.3562 | 0.9061 | 0.8732 | nan | 0.9411 | 0.8711 | 0.0 | 0.1990 | 0.8697 |
| 0.9027 | 12.0 | 120 | 0.8073 | 0.3687 | 0.9085 | 0.8909 | nan | 0.9271 | 0.8898 | 0.0 | 0.2182 | 0.8881 |
| 0.8775 | 13.0 | 130 | 0.7756 | 0.3819 | 0.9011 | 0.9086 | nan | 0.8931 | 0.9090 | 0.0 | 0.2394 | 0.9062 |
| 0.8532 | 14.0 | 140 | 0.7544 | 0.3883 | 0.9005 | 0.9156 | nan | 0.8844 | 0.9166 | 0.0 | 0.2513 | 0.9135 |
| 0.7509 | 15.0 | 150 | 0.7137 | 0.4039 | 0.8965 | 0.9311 | nan | 0.8597 | 0.9333 | 0.0 | 0.2824 | 0.9294 |
| 0.7711 | 16.0 | 160 | 0.6837 | 0.4131 | 0.8959 | 0.9394 | nan | 0.8497 | 0.9422 | 0.0 | 0.3014 | 0.9379 |
| 0.7163 | 17.0 | 170 | 0.6573 | 0.4230 | 0.8859 | 0.9467 | nan | 0.8212 | 0.9505 | 0.0 | 0.3234 | 0.9454 |
| 0.6609 | 18.0 | 180 | 0.6698 | 0.4200 | 0.8889 | 0.9449 | nan | 0.8294 | 0.9484 | 0.0 | 0.3163 | 0.9436 |
| 0.7237 | 19.0 | 190 | 0.6465 | 0.4236 | 0.8821 | 0.9479 | nan | 0.8121 | 0.9520 | 0.0 | 0.3241 | 0.9467 |
| 0.6264 | 20.0 | 200 | 0.6300 | 0.4293 | 0.8776 | 0.9520 | nan | 0.7985 | 0.9566 | 0.0 | 0.3372 | 0.9508 |
| 0.6711 | 21.0 | 210 | 0.6050 | 0.4391 | 0.8731 | 0.9576 | nan | 0.7833 | 0.9630 | 0.0 | 0.3605 | 0.9567 |
| 0.626 | 22.0 | 220 | 0.5855 | 0.4409 | 0.8742 | 0.9585 | nan | 0.7846 | 0.9637 | 0.0 | 0.3653 | 0.9575 |
| 0.6103 | 23.0 | 230 | 0.5651 | 0.4474 | 0.8671 | 0.9623 | nan | 0.7658 | 0.9683 | 0.0 | 0.3807 | 0.9615 |
| 0.6462 | 24.0 | 240 | 0.5621 | 0.4489 | 0.8643 | 0.9631 | nan | 0.7592 | 0.9693 | 0.0 | 0.3844 | 0.9623 |
| 0.5442 | 25.0 | 250 | 0.5460 | 0.4563 | 0.8592 | 0.9668 | nan | 0.7450 | 0.9735 | 0.0 | 0.4028 | 0.9660 |
| 0.6764 | 26.0 | 260 | 0.5673 | 0.4544 | 0.8646 | 0.9657 | nan | 0.7571 | 0.9721 | 0.0 | 0.3983 | 0.9650 |
| 0.6471 | 27.0 | 270 | 0.5412 | 0.4586 | 0.8561 | 0.9679 | nan | 0.7374 | 0.9749 | 0.0 | 0.4087 | 0.9672 |
| 0.5589 | 28.0 | 280 | 0.5427 | 0.4573 | 0.8601 | 0.9671 | nan | 0.7465 | 0.9738 | 0.0 | 0.4057 | 0.9663 |
| 0.6512 | 29.0 | 290 | 0.5264 | 0.4600 | 0.8567 | 0.9681 | nan | 0.7384 | 0.9751 | 0.0 | 0.4126 | 0.9674 |
| 0.6146 | 30.0 | 300 | 0.5321 | 0.4616 | 0.8619 | 0.9688 | nan | 0.7482 | 0.9755 | 0.0 | 0.4167 | 0.9681 |
| 0.4938 | 31.0 | 310 | 0.5025 | 0.4751 | 0.8475 | 0.9744 | nan | 0.7127 | 0.9823 | 0.0 | 0.4515 | 0.9738 |
| 0.4868 | 32.0 | 320 | 0.4836 | 0.4781 | 0.8342 | 0.9761 | nan | 0.6833 | 0.9851 | 0.0 | 0.4586 | 0.9756 |
| 0.6315 | 33.0 | 330 | 0.4918 | 0.4739 | 0.8479 | 0.9740 | nan | 0.7139 | 0.9819 | 0.0 | 0.4483 | 0.9735 |
| 0.5529 | 34.0 | 340 | 0.4879 | 0.4753 | 0.8414 | 0.9749 | nan | 0.6995 | 0.9832 | 0.0 | 0.4516 | 0.9743 |
| 0.4592 | 35.0 | 350 | 0.4826 | 0.4764 | 0.8364 | 0.9754 | nan | 0.6887 | 0.9842 | 0.0 | 0.4542 | 0.9749 |
| 0.5904 | 36.0 | 360 | 0.4611 | 0.4859 | 0.8159 | 0.9793 | nan | 0.6423 | 0.9896 | 0.0 | 0.4789 | 0.9789 |
| 0.4804 | 37.0 | 370 | 0.4654 | 0.4796 | 0.8359 | 0.9764 | nan | 0.6865 | 0.9853 | 0.0 | 0.4627 | 0.9760 |
| 0.4701 | 38.0 | 380 | 0.4625 | 0.4846 | 0.8251 | 0.9784 | nan | 0.6623 | 0.9880 | 0.0 | 0.4758 | 0.9779 |
| 0.4729 | 39.0 | 390 | 0.4536 | 0.4838 | 0.8231 | 0.9783 | nan | 0.6582 | 0.9881 | 0.0 | 0.4736 | 0.9779 |
| 0.4219 | 40.0 | 400 | 0.4514 | 0.4838 | 0.8305 | 0.9779 | nan | 0.6738 | 0.9872 | 0.0 | 0.4739 | 0.9775 |
| 0.6494 | 41.0 | 410 | 0.4425 | 0.4892 | 0.8162 | 0.9801 | nan | 0.6420 | 0.9904 | 0.0 | 0.4878 | 0.9797 |
| 0.4616 | 42.0 | 420 | 0.4390 | 0.7316 | 0.8225 | 0.9794 | nan | 0.6558 | 0.9892 | nan | 0.4842 | 0.9790 |
| 0.4408 | 43.0 | 430 | 0.4419 | 0.7358 | 0.8272 | 0.9797 | nan | 0.6652 | 0.9893 | nan | 0.4923 | 0.9793 |
| 0.4532 | 44.0 | 440 | 0.4371 | 0.7375 | 0.8274 | 0.9800 | nan | 0.6651 | 0.9896 | nan | 0.4954 | 0.9796 |
| 0.5015 | 45.0 | 450 | 0.4376 | 0.7364 | 0.8276 | 0.9798 | nan | 0.6659 | 0.9894 | nan | 0.4933 | 0.9794 |
| 0.4965 | 46.0 | 460 | 0.4201 | 0.7405 | 0.8137 | 0.9812 | nan | 0.6357 | 0.9918 | nan | 0.5002 | 0.9809 |
| 0.4837 | 47.0 | 470 | 0.4281 | 0.7378 | 0.8279 | 0.9800 | nan | 0.6662 | 0.9896 | nan | 0.4961 | 0.9796 |
| 0.4221 | 48.0 | 480 | 0.4288 | 0.7371 | 0.8227 | 0.9802 | nan | 0.6553 | 0.9901 | nan | 0.4944 | 0.9798 |
| 0.4491 | 49.0 | 490 | 0.4152 | 0.7371 | 0.8074 | 0.9811 | nan | 0.6228 | 0.9920 | nan | 0.4935 | 0.9808 |
| 0.4121 | 50.0 | 500 | 0.4159 | 0.7367 | 0.8063 | 0.9811 | nan | 0.6205 | 0.9921 | nan | 0.4927 | 0.9808 |
| 0.4727 | 51.0 | 510 | 0.4199 | 0.7354 | 0.8095 | 0.9807 | nan | 0.6274 | 0.9915 | nan | 0.4905 | 0.9804 |
| 0.5323 | 52.0 | 520 | 0.4079 | 0.7383 | 0.8074 | 0.9813 | nan | 0.6227 | 0.9922 | nan | 0.4957 | 0.9809 |
| 0.409 | 53.0 | 530 | 0.4103 | 0.7392 | 0.8161 | 0.9809 | nan | 0.6409 | 0.9913 | nan | 0.4978 | 0.9805 |
| 0.6391 | 54.0 | 540 | 0.4063 | 0.7406 | 0.8133 | 0.9813 | nan | 0.6349 | 0.9918 | nan | 0.5003 | 0.9809 |
| 0.3905 | 55.0 | 550 | 0.4000 | 0.7409 | 0.8122 | 0.9814 | nan | 0.6325 | 0.9920 | nan | 0.5007 | 0.9810 |
| 0.4138 | 56.0 | 560 | 0.4028 | 0.7398 | 0.8183 | 0.9809 | nan | 0.6455 | 0.9911 | nan | 0.4990 | 0.9805 |
| 0.3977 | 57.0 | 570 | 0.3865 | 0.7372 | 0.7912 | 0.9821 | nan | 0.5884 | 0.9941 | nan | 0.4926 | 0.9818 |
| 0.4186 | 58.0 | 580 | 0.3845 | 0.7416 | 0.7994 | 0.9822 | nan | 0.6050 | 0.9937 | nan | 0.5014 | 0.9819 |
| 0.4921 | 59.0 | 590 | 0.3881 | 0.7427 | 0.8102 | 0.9817 | nan | 0.6278 | 0.9925 | nan | 0.5039 | 0.9814 |
| 0.3953 | 60.0 | 600 | 0.3823 | 0.7429 | 0.8027 | 0.9822 | nan | 0.6119 | 0.9935 | nan | 0.5039 | 0.9819 |
| 0.4263 | 61.0 | 610 | 0.3841 | 0.7420 | 0.8075 | 0.9818 | nan | 0.6222 | 0.9928 | nan | 0.5026 | 0.9815 |
| 0.3798 | 62.0 | 620 | 0.3763 | 0.7446 | 0.8054 | 0.9823 | nan | 0.6174 | 0.9934 | nan | 0.5072 | 0.9820 |
| 0.4208 | 63.0 | 630 | 0.3724 | 0.7437 | 0.7919 | 0.9829 | nan | 0.5888 | 0.9949 | nan | 0.5047 | 0.9826 |
| 0.3627 | 64.0 | 640 | 0.3760 | 0.7466 | 0.8111 | 0.9822 | nan | 0.6292 | 0.9930 | nan | 0.5112 | 0.9819 |
| 0.4156 | 65.0 | 650 | 0.3669 | 0.7478 | 0.8018 | 0.9829 | nan | 0.6092 | 0.9943 | nan | 0.5130 | 0.9826 |
| 0.468 | 66.0 | 660 | 0.3706 | 0.7508 | 0.8145 | 0.9826 | nan | 0.6359 | 0.9932 | nan | 0.5193 | 0.9823 |
| 0.4547 | 67.0 | 670 | 0.3692 | 0.7512 | 0.8189 | 0.9824 | nan | 0.6451 | 0.9927 | nan | 0.5204 | 0.9821 |
| 0.3604 | 68.0 | 680 | 0.3691 | 0.7520 | 0.8152 | 0.9827 | nan | 0.6371 | 0.9933 | nan | 0.5215 | 0.9824 |
| 0.4476 | 69.0 | 690 | 0.3679 | 0.7516 | 0.8195 | 0.9825 | nan | 0.6463 | 0.9927 | nan | 0.5210 | 0.9821 |
| 0.3535 | 70.0 | 700 | 0.3589 | 0.7522 | 0.8097 | 0.9831 | nan | 0.6255 | 0.9939 | nan | 0.5217 | 0.9827 |
| 0.3539 | 71.0 | 710 | 0.3572 | 0.7526 | 0.8091 | 0.9831 | nan | 0.6242 | 0.9941 | nan | 0.5224 | 0.9828 |
| 0.3675 | 72.0 | 720 | 0.3589 | 0.7518 | 0.8100 | 0.9830 | nan | 0.6261 | 0.9939 | nan | 0.5209 | 0.9827 |
| 0.4148 | 73.0 | 730 | 0.3536 | 0.7504 | 0.8093 | 0.9828 | nan | 0.6249 | 0.9937 | nan | 0.5182 | 0.9825 |
| 0.3941 | 74.0 | 740 | 0.3538 | 0.7497 | 0.8099 | 0.9827 | nan | 0.6263 | 0.9936 | nan | 0.5169 | 0.9824 |
| 0.4264 | 75.0 | 750 | 0.3595 | 0.7469 | 0.8197 | 0.9818 | nan | 0.6473 | 0.9920 | nan | 0.5123 | 0.9814 |
| 0.3815 | 76.0 | 760 | 0.3525 | 0.7492 | 0.8097 | 0.9827 | nan | 0.6258 | 0.9935 | nan | 0.5162 | 0.9823 |
| 0.3459 | 77.0 | 770 | 0.3443 | 0.7452 | 0.7926 | 0.9831 | nan | 0.5901 | 0.9951 | nan | 0.5076 | 0.9828 |
| 0.3794 | 78.0 | 780 | 0.3538 | 0.7501 | 0.8154 | 0.9825 | nan | 0.6377 | 0.9930 | nan | 0.5180 | 0.9821 |
| 0.3761 | 79.0 | 790 | 0.3525 | 0.7483 | 0.8169 | 0.9821 | nan | 0.6412 | 0.9925 | nan | 0.5147 | 0.9818 |
| 0.3612 | 80.0 | 800 | 0.3495 | 0.7513 | 0.8128 | 0.9828 | nan | 0.6321 | 0.9934 | nan | 0.5201 | 0.9824 |
| 0.405 | 81.0 | 810 | 0.3466 | 0.7502 | 0.8148 | 0.9825 | nan | 0.6365 | 0.9931 | nan | 0.5182 | 0.9822 |
| 0.4289 | 82.0 | 820 | 0.3458 | 0.7498 | 0.8092 | 0.9828 | nan | 0.6247 | 0.9937 | nan | 0.5171 | 0.9824 |
| 0.3523 | 83.0 | 830 | 0.3435 | 0.7503 | 0.8112 | 0.9827 | nan | 0.6288 | 0.9935 | nan | 0.5183 | 0.9824 |
| 0.4254 | 84.0 | 840 | 0.3403 | 0.7495 | 0.8000 | 0.9832 | nan | 0.6052 | 0.9947 | nan | 0.5160 | 0.9829 |
| 0.3399 | 85.0 | 850 | 0.3355 | 0.7492 | 0.8003 | 0.9832 | nan | 0.6059 | 0.9947 | nan | 0.5155 | 0.9829 |
| 0.3251 | 86.0 | 860 | 0.3395 | 0.7503 | 0.8028 | 0.9832 | nan | 0.6111 | 0.9945 | nan | 0.5178 | 0.9829 |
| 0.3748 | 87.0 | 870 | 0.3400 | 0.7502 | 0.8117 | 0.9827 | nan | 0.6299 | 0.9934 | nan | 0.5181 | 0.9824 |
| 0.4398 | 88.0 | 880 | 0.3450 | 0.7527 | 0.8197 | 0.9826 | nan | 0.6466 | 0.9928 | nan | 0.5231 | 0.9822 |
| 0.3782 | 89.0 | 890 | 0.3454 | 0.7547 | 0.8180 | 0.9829 | nan | 0.6426 | 0.9933 | nan | 0.5268 | 0.9826 |
| 0.4318 | 90.0 | 900 | 0.3424 | 0.7541 | 0.8162 | 0.9830 | nan | 0.6390 | 0.9934 | nan | 0.5255 | 0.9826 |
| 0.3428 | 91.0 | 910 | 0.3327 | 0.7541 | 0.8124 | 0.9832 | nan | 0.6309 | 0.9939 | nan | 0.5253 | 0.9828 |
| 0.4303 | 92.0 | 920 | 0.3364 | 0.7525 | 0.8108 | 0.9830 | nan | 0.6277 | 0.9939 | nan | 0.5223 | 0.9827 |
| 0.3624 | 93.0 | 930 | 0.3277 | 0.7531 | 0.8063 | 0.9834 | nan | 0.6182 | 0.9945 | nan | 0.5231 | 0.9830 |
| 0.3418 | 94.0 | 940 | 0.3315 | 0.7548 | 0.8125 | 0.9833 | nan | 0.6311 | 0.9940 | nan | 0.5267 | 0.9829 |
| 0.321 | 95.0 | 950 | 0.3266 | 0.7541 | 0.8070 | 0.9835 | nan | 0.6195 | 0.9945 | nan | 0.5251 | 0.9831 |
| 0.3152 | 96.0 | 960 | 0.3265 | 0.7531 | 0.8025 | 0.9836 | nan | 0.6101 | 0.9949 | nan | 0.5230 | 0.9833 |
| 0.3153 | 97.0 | 970 | 0.3263 | 0.7537 | 0.8048 | 0.9835 | nan | 0.6149 | 0.9947 | nan | 0.5243 | 0.9832 |
| 0.3158 | 98.0 | 980 | 0.3299 | 0.7553 | 0.8139 | 0.9832 | nan | 0.6340 | 0.9939 | nan | 0.5278 | 0.9829 |
| 0.3162 | 99.0 | 990 | 0.3248 | 0.7546 | 0.8076 | 0.9835 | nan | 0.6207 | 0.9945 | nan | 0.5260 | 0.9832 |
| 0.3748 | 100.0 | 1000 | 0.3238 | 0.7553 | 0.8077 | 0.9836 | nan | 0.6208 | 0.9946 | nan | 0.5274 | 0.9833 |
| 0.3598 | 101.0 | 1010 | 0.3221 | 0.7544 | 0.8096 | 0.9833 | nan | 0.6250 | 0.9943 | nan | 0.5257 | 0.9830 |
| 0.3245 | 102.0 | 1020 | 0.3247 | 0.7527 | 0.8156 | 0.9828 | nan | 0.6380 | 0.9933 | nan | 0.5228 | 0.9825 |
| 0.3527 | 103.0 | 1030 | 0.3275 | 0.7537 | 0.8193 | 0.9827 | nan | 0.6456 | 0.9930 | nan | 0.5250 | 0.9824 |
| 0.5087 | 104.0 | 1040 | 0.3221 | 0.7559 | 0.8105 | 0.9835 | nan | 0.6266 | 0.9944 | nan | 0.5287 | 0.9832 |
| 0.3331 | 105.0 | 1050 | 0.3183 | 0.7560 | 0.8064 | 0.9837 | nan | 0.6180 | 0.9948 | nan | 0.5285 | 0.9834 |
| 0.324 | 106.0 | 1060 | 0.3198 | 0.7561 | 0.8090 | 0.9836 | nan | 0.6235 | 0.9946 | nan | 0.5289 | 0.9833 |
| 0.3512 | 107.0 | 1070 | 0.3194 | 0.7549 | 0.8052 | 0.9836 | nan | 0.6155 | 0.9949 | nan | 0.5265 | 0.9833 |
| 0.3274 | 108.0 | 1080 | 0.3185 | 0.7569 | 0.8122 | 0.9835 | nan | 0.6301 | 0.9943 | nan | 0.5306 | 0.9832 |
| 0.335 | 109.0 | 1090 | 0.3177 | 0.7554 | 0.8081 | 0.9836 | nan | 0.6217 | 0.9946 | nan | 0.5276 | 0.9832 |
| 0.3581 | 110.0 | 1100 | 0.3204 | 0.7568 | 0.8146 | 0.9834 | nan | 0.6352 | 0.9940 | nan | 0.5306 | 0.9831 |
| 0.3307 | 111.0 | 1110 | 0.3216 | 0.7571 | 0.8138 | 0.9835 | nan | 0.6335 | 0.9941 | nan | 0.5310 | 0.9832 |
| 0.3162 | 112.0 | 1120 | 0.3227 | 0.7575 | 0.8181 | 0.9833 | nan | 0.6425 | 0.9937 | nan | 0.5320 | 0.9830 |
| 0.3687 | 113.0 | 1130 | 0.3188 | 0.7567 | 0.8124 | 0.9835 | nan | 0.6306 | 0.9942 | nan | 0.5302 | 0.9832 |
| 0.4099 | 114.0 | 1140 | 0.3151 | 0.7550 | 0.8063 | 0.9836 | nan | 0.6178 | 0.9947 | nan | 0.5266 | 0.9833 |
| 0.3283 | 115.0 | 1150 | 0.3152 | 0.7557 | 0.8088 | 0.9836 | nan | 0.6232 | 0.9945 | nan | 0.5281 | 0.9832 |
| 0.3118 | 116.0 | 1160 | 0.3180 | 0.7556 | 0.8097 | 0.9835 | nan | 0.6249 | 0.9944 | nan | 0.5280 | 0.9832 |
| 0.3233 | 117.0 | 1170 | 0.3164 | 0.7551 | 0.8070 | 0.9836 | nan | 0.6192 | 0.9947 | nan | 0.5269 | 0.9833 |
| 0.3401 | 118.0 | 1180 | 0.3192 | 0.7562 | 0.8122 | 0.9834 | nan | 0.6303 | 0.9942 | nan | 0.5292 | 0.9831 |
| 0.3867 | 119.0 | 1190 | 0.3199 | 0.7566 | 0.8160 | 0.9833 | nan | 0.6382 | 0.9938 | nan | 0.5302 | 0.9830 |
| 0.3217 | 120.0 | 1200 | 0.3221 | 0.7557 | 0.8092 | 0.9835 | nan | 0.6240 | 0.9945 | nan | 0.5281 | 0.9832 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
blzncz/segformer-finetuned-4ss1st3r_s3gs3m_24Jan_all-10k-steps |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-finetuned-4ss1st3r_s3gs3m_24Jan_all-10k-steps
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the blzncz/4ss1st3r_s3gs3m_24Jan_all dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3095
- Mean Iou: 0.5513
- Mean Accuracy: 0.7874
- Overall Accuracy: 0.9260
- Accuracy Bg: nan
- Accuracy Fallo cohesivo: 0.9668
- Accuracy Fallo malla: 0.6808
- Accuracy Fallo adhesivo: 0.9727
- Accuracy Fallo burbuja: 0.5291
- Iou Bg: 0.0
- Iou Fallo cohesivo: 0.9167
- Iou Fallo malla: 0.6189
- Iou Fallo adhesivo: 0.7307
- Iou Fallo burbuja: 0.4903
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Fallo cohesivo | Accuracy Fallo malla | Accuracy Fallo adhesivo | Accuracy Fallo burbuja | Iou Bg | Iou Fallo cohesivo | Iou Fallo malla | Iou Fallo adhesivo | Iou Fallo burbuja |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-----------------------:|:--------------------:|:-----------------------:|:----------------------:|:------:|:------------------:|:---------------:|:------------------:|:-----------------:|
| 0.1378 | 1.0 | 783 | 0.2677 | 0.4895 | 0.7143 | 0.9122 | nan | 0.9724 | 0.5531 | 0.9663 | 0.3654 | 0.0 | 0.9038 | 0.5327 | 0.6757 | 0.3351 |
| 0.1117 | 2.0 | 1566 | 0.2305 | 0.5289 | 0.7978 | 0.9246 | nan | 0.9507 | 0.7727 | 0.9705 | 0.4974 | 0.0 | 0.9214 | 0.6808 | 0.5876 | 0.4549 |
| 0.0881 | 3.0 | 2349 | 0.2041 | 0.5556 | 0.7867 | 0.9354 | nan | 0.9712 | 0.7391 | 0.9389 | 0.4975 | 0.0 | 0.9273 | 0.6790 | 0.7323 | 0.4394 |
| 0.0878 | 4.0 | 3132 | 0.1984 | 0.5584 | 0.8003 | 0.9346 | nan | 0.9556 | 0.8247 | 0.9602 | 0.4606 | 0.0 | 0.9261 | 0.6935 | 0.7373 | 0.4352 |
| 0.0895 | 5.0 | 3915 | 0.2841 | 0.5246 | 0.8086 | 0.9088 | nan | 0.9137 | 0.8834 | 0.9719 | 0.4652 | 0.0 | 0.8964 | 0.6309 | 0.6593 | 0.4365 |
| 0.0773 | 6.0 | 4698 | 0.2547 | 0.5652 | 0.7823 | 0.9336 | nan | 0.9775 | 0.6843 | 0.9384 | 0.5291 | 0.0 | 0.9251 | 0.6378 | 0.7820 | 0.4813 |
| 0.0667 | 7.0 | 5481 | 0.2726 | 0.5609 | 0.7932 | 0.9295 | nan | 0.9741 | 0.6609 | 0.9689 | 0.5689 | 0.0 | 0.9203 | 0.6202 | 0.7548 | 0.5093 |
| 0.0678 | 8.0 | 6264 | 0.2950 | 0.5276 | 0.8002 | 0.9175 | nan | 0.9443 | 0.7561 | 0.9713 | 0.5292 | 0.0 | 0.9089 | 0.6570 | 0.5900 | 0.4822 |
| 0.0653 | 9.0 | 7047 | 0.2712 | 0.5467 | 0.7682 | 0.9288 | nan | 0.9690 | 0.6971 | 0.9641 | 0.4425 | 0.0 | 0.9189 | 0.6330 | 0.7588 | 0.4228 |
| 0.0646 | 10.0 | 7830 | 0.2841 | 0.5499 | 0.7819 | 0.9272 | nan | 0.9681 | 0.6840 | 0.9688 | 0.5068 | 0.0 | 0.9178 | 0.6243 | 0.7345 | 0.4728 |
| 0.057 | 11.0 | 8613 | 0.3373 | 0.5257 | 0.7782 | 0.9166 | nan | 0.9593 | 0.6555 | 0.9739 | 0.5242 | 0.0 | 0.9075 | 0.6040 | 0.6319 | 0.4848 |
| 0.0591 | 12.0 | 9396 | 0.3082 | 0.5504 | 0.7900 | 0.9247 | nan | 0.9656 | 0.6776 | 0.9705 | 0.5463 | 0.0 | 0.9148 | 0.6172 | 0.7182 | 0.5019 |
| 0.053 | 12.77 | 10000 | 0.3095 | 0.5513 | 0.7874 | 0.9260 | nan | 0.9668 | 0.6808 | 0.9727 | 0.5291 | 0.0 | 0.9167 | 0.6189 | 0.7307 | 0.4903 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"bg",
"fallo cohesivo",
"fallo malla",
"fallo adhesivo",
"fallo burbuja"
] |
PostsDesert/segformer-b5-finetuned-segments-instryde-foot-test |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-segments-instryde-foot-test
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the inStryde/inStrydeSegmentationFoot dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0149
- Mean Iou: 0.4800
- Mean Accuracy: 0.9599
- Overall Accuracy: 0.9599
- Per Category Iou: [0.0, 0.9599216842864238]
- Per Category Accuracy: [nan, 0.9599216842864238]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------:|:-------------------------:|
| 0.1024 | 0.27 | 20 | 0.2085 | 0.4534 | 0.9067 | 0.9067 | [0.0, 0.9067344993758137] | [nan, 0.9067344993758137] |
| 0.0431 | 0.53 | 40 | 0.0487 | 0.4604 | 0.9207 | 0.9207 | [0.0, 0.9207331455341442] | [nan, 0.9207331455341442] |
| 0.0354 | 0.8 | 60 | 0.0319 | 0.4577 | 0.9155 | 0.9155 | [0.0, 0.9154662028576415] | [nan, 0.9154662028576415] |
| 0.0389 | 1.07 | 80 | 0.0276 | 0.4629 | 0.9257 | 0.9257 | [0.0, 0.9257162800419576] | [nan, 0.9257162800419576] |
| 0.0208 | 1.33 | 100 | 0.0244 | 0.4702 | 0.9404 | 0.9404 | [0.0, 0.9403945317069335] | [nan, 0.9403945317069335] |
| 0.0241 | 1.6 | 120 | 0.0212 | 0.4703 | 0.9406 | 0.9406 | [0.0, 0.9406131407017349] | [nan, 0.9406131407017349] |
| 0.0167 | 1.87 | 140 | 0.0208 | 0.4761 | 0.9521 | 0.9521 | [0.0, 0.9521215619420916] | [nan, 0.9521215619420916] |
| 0.0156 | 2.13 | 160 | 0.0205 | 0.4612 | 0.9224 | 0.9224 | [0.0, 0.9224359945462809] | [nan, 0.9224359945462809] |
| 0.0156 | 2.4 | 180 | 0.0208 | 0.4734 | 0.9468 | 0.9468 | [0.0, 0.9467575875538612] | [nan, 0.9467575875538612] |
| 0.0167 | 2.67 | 200 | 0.0182 | 0.4833 | 0.9667 | 0.9667 | [0.0, 0.9666659635383208] | [nan, 0.9666659635383208] |
| 0.0145 | 2.93 | 220 | 0.0243 | 0.4351 | 0.8702 | 0.8702 | [0.0, 0.8702122233110058] | [nan, 0.8702122233110058] |
| 0.0114 | 3.2 | 240 | 0.0176 | 0.4686 | 0.9373 | 0.9373 | [0.0, 0.93726765603217] | [nan, 0.93726765603217] |
| 0.0155 | 3.47 | 260 | 0.0161 | 0.4770 | 0.9541 | 0.9541 | [0.0, 0.9540767701096305] | [nan, 0.9540767701096305] |
| 0.0158 | 3.73 | 280 | 0.0169 | 0.4684 | 0.9368 | 0.9368 | [0.0, 0.9368239181251786] | [nan, 0.9368239181251786] |
| 0.0114 | 4.0 | 300 | 0.0162 | 0.4777 | 0.9554 | 0.9554 | [0.0, 0.9554348305492647] | [nan, 0.9554348305492647] |
| 0.0112 | 4.27 | 320 | 0.0159 | 0.4839 | 0.9678 | 0.9678 | [0.0, 0.9677532556440432] | [nan, 0.9677532556440432] |
| 0.0131 | 4.53 | 340 | 0.0154 | 0.4811 | 0.9622 | 0.9622 | [0.0, 0.9622032718479555] | [nan, 0.9622032718479555] |
| 0.0101 | 4.8 | 360 | 0.0156 | 0.4683 | 0.9367 | 0.9367 | [0.0, 0.9366846987126999] | [nan, 0.9366846987126999] |
| 0.0102 | 5.07 | 380 | 0.0152 | 0.4758 | 0.9517 | 0.9517 | [0.0, 0.9516509773164403] | [nan, 0.9516509773164403] |
| 0.0101 | 5.33 | 400 | 0.0169 | 0.4884 | 0.9768 | 0.9768 | [0.0, 0.9768393358121804] | [nan, 0.9768393358121804] |
| 0.0082 | 5.6 | 420 | 0.0150 | 0.4761 | 0.9522 | 0.9522 | [0.0, 0.9522462074215836] | [nan, 0.9522462074215836] |
| 0.01 | 5.87 | 440 | 0.0152 | 0.4788 | 0.9576 | 0.9576 | [0.0, 0.9575745140264517] | [nan, 0.9575745140264517] |
| 0.0098 | 6.13 | 460 | 0.0148 | 0.4783 | 0.9565 | 0.9565 | [0.0, 0.9565489693736469] | [nan, 0.9565489693736469] |
| 0.0088 | 6.4 | 480 | 0.0153 | 0.4795 | 0.9591 | 0.9591 | [0.0, 0.959051850601846] | [nan, 0.959051850601846] |
| 0.0091 | 6.67 | 500 | 0.0152 | 0.4828 | 0.9656 | 0.9656 | [0.0, 0.965590177169167] | [nan, 0.965590177169167] |
| 0.0102 | 6.93 | 520 | 0.0149 | 0.4800 | 0.9599 | 0.9599 | [0.0, 0.9599216842864238] | [nan, 0.9599216842864238] |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"unlabeled",
"foot"
] |
sam1120/safety-utcustom-train-SF-RGB-b5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF-RGB-b5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2236
- Mean Iou: 0.5051
- Mean Accuracy: 0.8441
- Overall Accuracy: 0.9820
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.6977
- Accuracy Unsafe: 0.9906
- Iou Unlabeled: 0.0
- Iou Safe: 0.5337
- Iou Unsafe: 0.9816
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 130
### Training results
| Training Loss | Epoch | Step | Accuracy Safe | Accuracy Unlabeled | Accuracy Unsafe | Iou Safe | Iou Unlabeled | Iou Unsafe | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:------:|:----:|:-------------:|:------------------:|:---------------:|:--------:|:-------------:|:----------:|:---------------:|:-------------:|:--------:|:----------------:|
| 1.2239 | 0.91 | 10 | 0.3992 | nan | 0.2951 | 0.0314 | 0.0 | 0.2939 | 1.1103 | 0.3472 | 0.1084 | 0.2982 |
| 1.1948 | 1.82 | 20 | 0.5219 | nan | 0.3705 | 0.0440 | 0.0 | 0.3689 | 1.0963 | 0.4462 | 0.1376 | 0.3750 |
| 1.1661 | 2.73 | 30 | 0.5863 | nan | 0.4988 | 0.0647 | 0.0 | 0.4961 | 1.0516 | 0.5426 | 0.1870 | 0.5014 |
| 1.1112 | 3.64 | 40 | 0.5459 | nan | 0.5794 | 0.0900 | 0.0 | 0.5754 | 1.0048 | 0.5626 | 0.2218 | 0.5784 |
| 1.0907 | 4.55 | 50 | 0.5993 | nan | 0.6367 | 0.1094 | 0.0 | 0.6321 | 0.9690 | 0.6180 | 0.2472 | 0.6356 |
| 1.047 | 5.45 | 60 | 0.6692 | nan | 0.6699 | 0.1159 | 0.0 | 0.6656 | 0.9437 | 0.6695 | 0.2605 | 0.6699 |
| 1.0112 | 6.36 | 70 | 0.6673 | nan | 0.7189 | 0.1349 | 0.0 | 0.7137 | 0.9084 | 0.6931 | 0.2829 | 0.7173 |
| 0.9925 | 7.27 | 80 | 0.6842 | nan | 0.7665 | 0.1452 | 0.0 | 0.7605 | 0.8647 | 0.7254 | 0.3019 | 0.7641 |
| 0.9395 | 8.18 | 90 | 0.6818 | nan | 0.7921 | 0.1620 | 0.0 | 0.7856 | 0.8319 | 0.7369 | 0.3159 | 0.7888 |
| 0.8902 | 9.09 | 100 | 0.6806 | nan | 0.8142 | 0.1770 | 0.0 | 0.8072 | 0.8014 | 0.7474 | 0.3281 | 0.8102 |
| 0.9057 | 10.0 | 110 | 0.6984 | nan | 0.8179 | 0.1733 | 0.0 | 0.8109 | 0.7867 | 0.7581 | 0.3281 | 0.8143 |
| 0.8321 | 10.91 | 120 | 0.6744 | nan | 0.8494 | 0.1862 | 0.0 | 0.8413 | 0.7440 | 0.7619 | 0.3425 | 0.8442 |
| 0.8152 | 11.82 | 130 | 0.6688 | nan | 0.8590 | 0.2006 | 0.0 | 0.8507 | 0.7270 | 0.7639 | 0.3504 | 0.8534 |
| 0.7929 | 12.73 | 140 | 0.6660 | nan | 0.8657 | 0.2085 | 0.0 | 0.8572 | 0.7045 | 0.7658 | 0.3553 | 0.8598 |
| 0.7568 | 13.64 | 150 | 0.6571 | nan | 0.8838 | 0.2185 | 0.0 | 0.8748 | 0.6744 | 0.7704 | 0.3644 | 0.8771 |
| 0.7085 | 14.55 | 160 | 0.6519 | nan | 0.8934 | 0.2260 | 0.0 | 0.8842 | 0.6556 | 0.7727 | 0.3701 | 0.8863 |
| 0.7147 | 15.45 | 170 | 0.6561 | nan | 0.8964 | 0.2283 | 0.0 | 0.8872 | 0.6509 | 0.7762 | 0.3718 | 0.8893 |
| 0.6991 | 16.36 | 180 | 0.6620 | nan | 0.8964 | 0.2267 | 0.0 | 0.8874 | 0.6502 | 0.7792 | 0.3714 | 0.8895 |
| 0.6357 | 17.27 | 190 | 0.6612 | nan | 0.9051 | 0.2411 | 0.0 | 0.8960 | 0.6230 | 0.7831 | 0.3790 | 0.8979 |
| 0.6815 | 18.18 | 200 | 0.6484 | nan | 0.9178 | 0.2594 | 0.0 | 0.9082 | 0.5993 | 0.7831 | 0.3892 | 0.9098 |
| 0.6398 | 19.09 | 210 | 0.6414 | nan | 0.9258 | 0.2682 | 0.0 | 0.9159 | 0.5785 | 0.7836 | 0.3947 | 0.9174 |
| 0.5845 | 20.0 | 220 | 0.6426 | nan | 0.9286 | 0.2698 | 0.0 | 0.9187 | 0.5641 | 0.7856 | 0.3962 | 0.9202 |
| 0.6062 | 20.91 | 230 | 0.6520 | nan | 0.9252 | 0.2641 | 0.0 | 0.9156 | 0.5693 | 0.7886 | 0.3932 | 0.9171 |
| 0.6071 | 21.82 | 240 | 0.6592 | nan | 0.9283 | 0.2675 | 0.0 | 0.9188 | 0.5627 | 0.7937 | 0.3955 | 0.9203 |
| 0.6209 | 22.73 | 250 | 0.6619 | nan | 0.9300 | 0.2724 | 0.0 | 0.9205 | 0.5632 | 0.7959 | 0.3977 | 0.9220 |
| 0.5609 | 23.64 | 260 | 0.6505 | nan | 0.9379 | 0.2868 | 0.0 | 0.9281 | 0.5416 | 0.7942 | 0.4050 | 0.9294 |
| 0.5752 | 24.55 | 270 | 0.6412 | nan | 0.9451 | 0.2983 | 0.0 | 0.9350 | 0.5141 | 0.7932 | 0.4111 | 0.9362 |
| 0.6004 | 25.45 | 280 | 0.6492 | nan | 0.9412 | 0.2907 | 0.0 | 0.9313 | 0.5255 | 0.7952 | 0.4073 | 0.9326 |
| 0.5524 | 26.36 | 290 | 0.6588 | nan | 0.9387 | 0.2868 | 0.0 | 0.9291 | 0.5314 | 0.7987 | 0.4053 | 0.9304 |
| 0.5758 | 27.27 | 300 | 0.6544 | nan | 0.9423 | 0.2913 | 0.0 | 0.9326 | 0.5268 | 0.7984 | 0.4080 | 0.9338 |
| 0.5598 | 28.18 | 310 | 0.6605 | nan | 0.9408 | 0.2897 | 0.0 | 0.9312 | 0.5240 | 0.8006 | 0.4070 | 0.9325 |
| 0.5505 | 29.09 | 320 | 0.6582 | nan | 0.9421 | 0.2959 | 0.0 | 0.9324 | 0.5165 | 0.8002 | 0.4094 | 0.9337 |
| 0.5754 | 30.0 | 330 | 0.6578 | nan | 0.9433 | 0.2959 | 0.0 | 0.9336 | 0.5145 | 0.8005 | 0.4098 | 0.9348 |
| 0.5284 | 30.91 | 340 | 0.6719 | nan | 0.9411 | 0.2941 | 0.0 | 0.9318 | 0.5175 | 0.8065 | 0.4086 | 0.9331 |
| 0.5463 | 31.82 | 350 | 0.6684 | nan | 0.9448 | 0.3020 | 0.0 | 0.9354 | 0.5016 | 0.8066 | 0.4125 | 0.9367 |
| 0.4923 | 32.73 | 360 | 0.6688 | nan | 0.9463 | 0.3066 | 0.0 | 0.9369 | 0.4947 | 0.8075 | 0.4145 | 0.9381 |
| 0.4922 | 33.64 | 370 | 0.6685 | nan | 0.9504 | 0.3165 | 0.0 | 0.9409 | 0.4738 | 0.8094 | 0.4191 | 0.9420 |
| 0.4976 | 34.55 | 380 | 0.6748 | nan | 0.9535 | 0.3233 | 0.0 | 0.9443 | 0.4663 | 0.8142 | 0.4225 | 0.9453 |
| 0.4922 | 35.45 | 390 | 0.6509 | nan | 0.9653 | 0.3484 | 0.0 | 0.9552 | 0.4295 | 0.8081 | 0.4345 | 0.9560 |
| 0.4608 | 36.36 | 400 | 0.6580 | nan | 0.9637 | 0.3507 | 0.0 | 0.9538 | 0.4434 | 0.8109 | 0.4348 | 0.9547 |
| 0.4836 | 37.27 | 410 | 0.6522 | nan | 0.9662 | 0.3588 | 0.0 | 0.9561 | 0.4328 | 0.8092 | 0.4383 | 0.9569 |
| 0.459 | 38.18 | 420 | 0.6477 | nan | 0.9691 | 0.3632 | 0.0 | 0.9588 | 0.4211 | 0.8084 | 0.4407 | 0.9596 |
| 0.4528 | 39.09 | 430 | 0.6593 | nan | 0.9668 | 0.3574 | 0.0 | 0.9569 | 0.4239 | 0.8131 | 0.4381 | 0.9577 |
| 0.4202 | 40.0 | 440 | 0.6572 | nan | 0.9689 | 0.3650 | 0.0 | 0.9590 | 0.4141 | 0.8130 | 0.4413 | 0.9597 |
| 0.4805 | 40.91 | 450 | 0.6470 | nan | 0.9724 | 0.3754 | 0.0 | 0.9621 | 0.4012 | 0.8097 | 0.4458 | 0.9628 |
| 0.4611 | 41.82 | 460 | 0.6525 | nan | 0.9718 | 0.3716 | 0.0 | 0.9617 | 0.4025 | 0.8122 | 0.4444 | 0.9624 |
| 0.4339 | 42.73 | 470 | 0.6487 | nan | 0.9726 | 0.3744 | 0.0 | 0.9624 | 0.3951 | 0.8107 | 0.4456 | 0.9631 |
| 0.4361 | 43.64 | 480 | 0.6448 | nan | 0.9740 | 0.3769 | 0.0 | 0.9636 | 0.3946 | 0.8094 | 0.4468 | 0.9643 |
| 0.4416 | 44.55 | 490 | 0.6447 | nan | 0.9746 | 0.3783 | 0.0 | 0.9642 | 0.3871 | 0.8097 | 0.4475 | 0.9649 |
| 0.4524 | 45.45 | 500 | 0.6589 | nan | 0.9712 | 0.3701 | 0.0 | 0.9612 | 0.4025 | 0.8151 | 0.4438 | 0.9620 |
| 0.4319 | 46.36 | 510 | 0.6730 | nan | 0.9673 | 0.3594 | 0.0 | 0.9578 | 0.4169 | 0.8202 | 0.4391 | 0.9586 |
| 0.4224 | 47.27 | 520 | 0.6603 | nan | 0.9712 | 0.3716 | 0.0 | 0.9613 | 0.3986 | 0.8158 | 0.4443 | 0.9620 |
| 0.4333 | 48.18 | 530 | 0.6650 | nan | 0.9703 | 0.3724 | 0.0 | 0.9605 | 0.4038 | 0.8176 | 0.4443 | 0.9612 |
| 0.3916 | 49.09 | 540 | 0.6624 | nan | 0.9724 | 0.3781 | 0.0 | 0.9626 | 0.3968 | 0.8174 | 0.4469 | 0.9633 |
| 0.4803 | 50.0 | 550 | 0.6680 | nan | 0.9726 | 0.3809 | 0.0 | 0.9629 | 0.3942 | 0.8203 | 0.4479 | 0.9636 |
| 0.3543 | 50.91 | 560 | 0.6473 | nan | 0.9777 | 0.3952 | 0.0 | 0.9673 | 0.3697 | 0.8125 | 0.4542 | 0.9680 |
| 0.3684 | 51.82 | 570 | 0.6515 | nan | 0.9772 | 0.3951 | 0.0 | 0.9670 | 0.3708 | 0.8143 | 0.4540 | 0.9676 |
| 0.4004 | 52.73 | 580 | 0.6437 | nan | 0.9793 | 0.4014 | 0.0 | 0.9688 | 0.3585 | 0.8115 | 0.4567 | 0.9694 |
| 0.3656 | 53.64 | 590 | 0.6559 | nan | 0.9780 | 0.4010 | 0.0 | 0.9679 | 0.3654 | 0.8169 | 0.4563 | 0.9685 |
| 0.3918 | 54.55 | 600 | 0.6432 | nan | 0.9809 | 0.4115 | 0.0 | 0.9704 | 0.3527 | 0.8121 | 0.4606 | 0.9709 |
| 0.3741 | 55.45 | 610 | 0.6393 | nan | 0.9827 | 0.4185 | 0.0 | 0.9720 | 0.3361 | 0.8110 | 0.4635 | 0.9726 |
| 0.3656 | 56.36 | 620 | 0.6540 | nan | 0.9807 | 0.4147 | 0.0 | 0.9705 | 0.3473 | 0.8174 | 0.4617 | 0.9710 |
| 0.3341 | 57.27 | 630 | 0.6258 | nan | 0.9845 | 0.4247 | 0.0 | 0.9734 | 0.3335 | 0.8052 | 0.4660 | 0.9739 |
| 0.3669 | 58.18 | 640 | 0.6495 | nan | 0.9815 | 0.4190 | 0.0 | 0.9712 | 0.3395 | 0.8155 | 0.4634 | 0.9717 |
| 0.3347 | 59.09 | 650 | 0.6612 | nan | 0.9800 | 0.4174 | 0.0 | 0.9700 | 0.3416 | 0.8206 | 0.4625 | 0.9706 |
| 0.4287 | 60.0 | 660 | 0.6673 | nan | 0.9797 | 0.4185 | 0.0 | 0.9699 | 0.3419 | 0.8235 | 0.4628 | 0.9705 |
| 0.3838 | 60.91 | 670 | 0.6611 | nan | 0.9812 | 0.4227 | 0.0 | 0.9712 | 0.3381 | 0.8211 | 0.4646 | 0.9718 |
| 0.352 | 61.82 | 680 | 0.6407 | nan | 0.9845 | 0.4318 | 0.0 | 0.9738 | 0.3216 | 0.8126 | 0.4685 | 0.9743 |
| 0.3343 | 62.73 | 690 | 0.6499 | nan | 0.9837 | 0.4311 | 0.0 | 0.9733 | 0.3275 | 0.8168 | 0.4681 | 0.9738 |
| 0.3443 | 63.64 | 700 | 0.6528 | nan | 0.9836 | 0.4324 | 0.0 | 0.9733 | 0.3273 | 0.8182 | 0.4686 | 0.9738 |
| 0.3183 | 64.55 | 710 | 0.6456 | nan | 0.9848 | 0.4367 | 0.0 | 0.9743 | 0.3155 | 0.8152 | 0.4703 | 0.9748 |
| 0.3346 | 65.45 | 720 | 0.6517 | nan | 0.9841 | 0.4356 | 0.0 | 0.9738 | 0.3212 | 0.8179 | 0.4698 | 0.9743 |
| 0.3225 | 66.36 | 730 | 0.6367 | nan | 0.9863 | 0.4432 | 0.0 | 0.9755 | 0.3052 | 0.8115 | 0.4729 | 0.9759 |
| 0.3792 | 67.27 | 740 | 0.6381 | nan | 0.9861 | 0.4429 | 0.0 | 0.9753 | 0.3037 | 0.8121 | 0.4728 | 0.9758 |
| 0.3177 | 68.18 | 750 | 0.6345 | nan | 0.9865 | 0.4446 | 0.0 | 0.9756 | 0.2989 | 0.8105 | 0.4734 | 0.9761 |
| 0.3295 | 69.09 | 760 | 0.6404 | nan | 0.9859 | 0.4426 | 0.0 | 0.9752 | 0.3064 | 0.8131 | 0.4726 | 0.9757 |
| 0.3847 | 70.0 | 770 | 0.6429 | nan | 0.9857 | 0.4439 | 0.0 | 0.9751 | 0.3054 | 0.8143 | 0.4730 | 0.9756 |
| 0.3406 | 70.91 | 780 | 0.6443 | nan | 0.9862 | 0.4476 | 0.0 | 0.9756 | 0.3075 | 0.8152 | 0.4744 | 0.9761 |
| 0.3847 | 71.82 | 790 | 0.6343 | nan | 0.9877 | 0.4546 | 0.0 | 0.9769 | 0.2911 | 0.8110 | 0.4772 | 0.9773 |
| 0.3292 | 72.73 | 800 | 0.6328 | nan | 0.9881 | 0.4567 | 0.0 | 0.9771 | 0.2905 | 0.8105 | 0.4779 | 0.9776 |
| 0.3156 | 73.64 | 810 | 0.6318 | nan | 0.9882 | 0.4579 | 0.0 | 0.9773 | 0.2865 | 0.8100 | 0.4784 | 0.9777 |
| 0.3106 | 74.55 | 820 | 0.6333 | nan | 0.9884 | 0.4600 | 0.0 | 0.9775 | 0.2812 | 0.8109 | 0.4792 | 0.9779 |
| 0.3004 | 75.45 | 830 | 0.6232 | nan | 0.9893 | 0.4632 | 0.0 | 0.9781 | 0.2798 | 0.8063 | 0.4804 | 0.9785 |
| 0.3336 | 76.36 | 840 | 0.6485 | nan | 0.9872 | 0.4593 | 0.0 | 0.9768 | 0.2954 | 0.8178 | 0.4787 | 0.9772 |
| 0.299 | 77.27 | 850 | 0.6490 | nan | 0.9874 | 0.4613 | 0.0 | 0.9769 | 0.2909 | 0.8182 | 0.4794 | 0.9774 |
| 0.292 | 78.18 | 860 | 0.6497 | nan | 0.9875 | 0.4629 | 0.0 | 0.9771 | 0.2853 | 0.8186 | 0.4800 | 0.9775 |
| 0.2922 | 79.09 | 870 | 0.6586 | nan | 0.9866 | 0.4601 | 0.0 | 0.9765 | 0.2917 | 0.8226 | 0.4789 | 0.9770 |
| 0.3583 | 80.0 | 880 | 0.6515 | nan | 0.9876 | 0.4644 | 0.0 | 0.9772 | 0.2876 | 0.8195 | 0.4805 | 0.9776 |
| 0.293 | 80.91 | 890 | 0.6465 | nan | 0.9882 | 0.4674 | 0.0 | 0.9777 | 0.2767 | 0.8173 | 0.4817 | 0.9781 |
| 0.3287 | 81.82 | 900 | 0.6518 | nan | 0.9876 | 0.4652 | 0.0 | 0.9773 | 0.2858 | 0.8197 | 0.4808 | 0.9777 |
| 0.3067 | 82.73 | 910 | 0.6528 | nan | 0.9875 | 0.4654 | 0.0 | 0.9772 | 0.2861 | 0.8202 | 0.4809 | 0.9776 |
| 0.3374 | 83.64 | 920 | 0.6577 | nan | 0.9870 | 0.4631 | 0.0 | 0.9768 | 0.2869 | 0.8224 | 0.4800 | 0.9773 |
| 0.3171 | 84.55 | 930 | 0.6442 | nan | 0.9887 | 0.4714 | 0.0 | 0.9781 | 0.2706 | 0.8164 | 0.4832 | 0.9785 |
| 0.3156 | 85.45 | 940 | 0.6321 | nan | 0.9899 | 0.4757 | 0.0 | 0.9789 | 0.2708 | 0.8110 | 0.4849 | 0.9793 |
| 0.2749 | 86.36 | 950 | 0.6518 | nan | 0.9887 | 0.4765 | 0.0 | 0.9783 | 0.2760 | 0.8202 | 0.4850 | 0.9787 |
| 0.2725 | 87.27 | 960 | 0.6681 | nan | 0.9876 | 0.4765 | 0.0 | 0.9777 | 0.2780 | 0.8279 | 0.4847 | 0.9782 |
| 0.2948 | 88.18 | 970 | 0.6565 | nan | 0.9891 | 0.4845 | 0.0 | 0.9788 | 0.2636 | 0.8228 | 0.4878 | 0.9793 |
| 0.2972 | 89.09 | 980 | 0.6722 | nan | 0.9879 | 0.4829 | 0.0 | 0.9782 | 0.2770 | 0.8301 | 0.4870 | 0.9786 |
| 0.3101 | 90.0 | 990 | 0.6711 | nan | 0.9882 | 0.4859 | 0.0 | 0.9784 | 0.2765 | 0.8297 | 0.4881 | 0.9788 |
| 0.2874 | 90.91 | 1000 | 0.6689 | nan | 0.9888 | 0.4899 | 0.0 | 0.9789 | 0.2690 | 0.8288 | 0.4896 | 0.9793 |
| 0.275 | 91.82 | 1010 | 0.6542 | nan | 0.9901 | 0.4947 | 0.0 | 0.9798 | 0.2593 | 0.8221 | 0.4915 | 0.9802 |
| 0.2711 | 92.73 | 1020 | 0.6673 | nan | 0.9893 | 0.4957 | 0.0 | 0.9794 | 0.2608 | 0.8283 | 0.4917 | 0.9798 |
| 0.2691 | 93.64 | 1030 | 0.6819 | nan | 0.9884 | 0.4954 | 0.0 | 0.9789 | 0.2609 | 0.8352 | 0.4915 | 0.9794 |
| 0.274 | 94.55 | 1040 | 0.6722 | nan | 0.9895 | 0.5007 | 0.0 | 0.9797 | 0.2542 | 0.8309 | 0.4935 | 0.9801 |
| 0.27 | 95.45 | 1050 | 0.6436 | nan | 0.9919 | 0.5087 | 0.0 | 0.9812 | 0.2357 | 0.8177 | 0.4966 | 0.9816 |
| 0.255 | 96.36 | 1060 | 0.6671 | nan | 0.9903 | 0.5074 | 0.0 | 0.9804 | 0.2460 | 0.8287 | 0.4959 | 0.9808 |
| 0.2756 | 97.27 | 1070 | 0.6634 | nan | 0.9909 | 0.5113 | 0.0 | 0.9809 | 0.2411 | 0.8271 | 0.4974 | 0.9812 |
| 0.2473 | 98.18 | 1080 | 0.6724 | nan | 0.9904 | 0.5116 | 0.0 | 0.9806 | 0.2447 | 0.8314 | 0.4974 | 0.9810 |
| 0.266 | 99.09 | 1090 | 0.6778 | nan | 0.9901 | 0.5118 | 0.0 | 0.9804 | 0.2455 | 0.8339 | 0.4974 | 0.9808 |
| 0.2682 | 100.0 | 1100 | 0.6651 | nan | 0.9911 | 0.5156 | 0.0 | 0.9811 | 0.2359 | 0.8281 | 0.4989 | 0.9815 |
| 0.2607 | 100.91 | 1110 | 0.6739 | nan | 0.9905 | 0.5144 | 0.0 | 0.9808 | 0.2376 | 0.8322 | 0.4984 | 0.9812 |
| 0.2506 | 101.82 | 1120 | 0.6727 | nan | 0.9907 | 0.5153 | 0.0 | 0.9809 | 0.2380 | 0.8317 | 0.4987 | 0.9813 |
| 0.2729 | 102.73 | 1130 | 0.6802 | nan | 0.9902 | 0.5146 | 0.0 | 0.9806 | 0.2375 | 0.8352 | 0.4984 | 0.9810 |
| 0.2348 | 103.64 | 1140 | 0.6731 | nan | 0.9908 | 0.5172 | 0.0 | 0.9810 | 0.2335 | 0.8319 | 0.4994 | 0.9814 |
| 0.2409 | 104.55 | 1150 | 0.6781 | nan | 0.9904 | 0.5164 | 0.0 | 0.9808 | 0.2385 | 0.8343 | 0.4991 | 0.9812 |
| 0.2737 | 105.45 | 1160 | 0.6774 | nan | 0.9906 | 0.5177 | 0.0 | 0.9809 | 0.2357 | 0.8340 | 0.4995 | 0.9813 |
| 0.2857 | 106.36 | 1170 | 0.6659 | nan | 0.9915 | 0.5203 | 0.0 | 0.9815 | 0.2304 | 0.8287 | 0.5006 | 0.9818 |
| 0.2503 | 107.27 | 1180 | 0.6822 | nan | 0.9902 | 0.5172 | 0.0 | 0.9807 | 0.2397 | 0.8362 | 0.4993 | 0.9811 |
| 0.2524 | 108.18 | 1190 | 0.6741 | nan | 0.9909 | 0.5199 | 0.0 | 0.9812 | 0.2294 | 0.8325 | 0.5004 | 0.9816 |
| 0.2722 | 109.09 | 1200 | 0.6928 | nan | 0.9894 | 0.5145 | 0.0 | 0.9802 | 0.2461 | 0.8411 | 0.4982 | 0.9806 |
| 0.2761 | 110.0 | 1210 | 0.2530 | 0.4979 | 0.8435 | 0.9804 | nan | 0.6981 | 0.9889 | 0.0 | 0.5136 | 0.9799 |
| 0.2595 | 110.91 | 1220 | 0.2386 | 0.5002 | 0.8395 | 0.9811 | nan | 0.6891 | 0.9900 | 0.0 | 0.5197 | 0.9808 |
| 0.2877 | 111.82 | 1230 | 0.2260 | 0.5022 | 0.8345 | 0.9819 | nan | 0.6779 | 0.9911 | 0.0 | 0.5251 | 0.9815 |
| 0.2307 | 112.73 | 1240 | 0.2219 | 0.5031 | 0.8317 | 0.9822 | nan | 0.6717 | 0.9916 | 0.0 | 0.5275 | 0.9818 |
| 0.2559 | 113.64 | 1250 | 0.2382 | 0.5011 | 0.8413 | 0.9812 | nan | 0.6927 | 0.9900 | 0.0 | 0.5224 | 0.9808 |
| 0.2668 | 114.55 | 1260 | 0.2275 | 0.5024 | 0.8395 | 0.9816 | nan | 0.6883 | 0.9906 | 0.0 | 0.5258 | 0.9813 |
| 0.2269 | 115.45 | 1270 | 0.2212 | 0.5038 | 0.8356 | 0.9821 | nan | 0.6798 | 0.9913 | 0.0 | 0.5296 | 0.9818 |
| 0.2713 | 116.36 | 1280 | 0.2265 | 0.5041 | 0.8365 | 0.9821 | nan | 0.6817 | 0.9913 | 0.0 | 0.5305 | 0.9818 |
| 0.2351 | 117.27 | 1290 | 0.2113 | 0.5064 | 0.8255 | 0.9832 | nan | 0.6580 | 0.9931 | 0.0 | 0.5363 | 0.9828 |
| 0.2306 | 118.18 | 1300 | 0.2258 | 0.5053 | 0.8354 | 0.9824 | nan | 0.6791 | 0.9917 | 0.0 | 0.5337 | 0.9821 |
| 0.2371 | 119.09 | 1310 | 0.2234 | 0.5057 | 0.8342 | 0.9826 | nan | 0.6765 | 0.9919 | 0.0 | 0.5348 | 0.9822 |
| 0.277 | 120.0 | 1320 | 0.2263 | 0.5061 | 0.8340 | 0.9827 | nan | 0.6760 | 0.9920 | 0.0 | 0.5359 | 0.9823 |
| 0.2121 | 120.91 | 1330 | 0.2191 | 0.5065 | 0.8337 | 0.9828 | nan | 0.6752 | 0.9921 | 0.0 | 0.5370 | 0.9824 |
| 0.2426 | 121.82 | 1340 | 0.2237 | 0.5055 | 0.8400 | 0.9822 | nan | 0.6889 | 0.9912 | 0.0 | 0.5345 | 0.9819 |
| 0.2429 | 122.73 | 1350 | 0.2106 | 0.5069 | 0.8340 | 0.9829 | nan | 0.6757 | 0.9922 | 0.0 | 0.5383 | 0.9825 |
| 0.244 | 123.64 | 1360 | 0.2133 | 0.5062 | 0.8395 | 0.9824 | nan | 0.6876 | 0.9914 | 0.0 | 0.5364 | 0.9821 |
| 0.2287 | 124.55 | 1370 | 0.2126 | 0.5068 | 0.8371 | 0.9827 | nan | 0.6823 | 0.9918 | 0.0 | 0.5381 | 0.9823 |
| 0.2223 | 125.45 | 1380 | 0.1988 | 0.5083 | 0.8305 | 0.9833 | nan | 0.6681 | 0.9929 | 0.0 | 0.5420 | 0.9830 |
| 0.2275 | 126.36 | 1390 | 0.2164 | 0.5061 | 0.8409 | 0.9823 | nan | 0.6906 | 0.9912 | 0.0 | 0.5363 | 0.9820 |
| 0.2378 | 127.27 | 1400 | 0.2201 | 0.5062 | 0.8405 | 0.9824 | nan | 0.6898 | 0.9913 | 0.0 | 0.5365 | 0.9820 |
| 0.2385 | 128.18 | 1410 | 0.2286 | 0.5046 | 0.8455 | 0.9818 | nan | 0.7006 | 0.9903 | 0.0 | 0.5324 | 0.9814 |
| 0.2787 | 129.09 | 1420 | 0.2157 | 0.5063 | 0.8405 | 0.9824 | nan | 0.6896 | 0.9913 | 0.0 | 0.5369 | 0.9820 |
| 0.2377 | 130.0 | 1430 | 0.2236 | 0.5051 | 0.8441 | 0.9820 | nan | 0.6977 | 0.9906 | 0.0 | 0.5337 | 0.9816 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/safety-utcustom-train-SF-RGBD-b0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF-RGBD-b0
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1043
- Mean Iou: 0.7188
- Mean Accuracy: 0.7607
- Overall Accuracy: 0.9815
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.5261
- Accuracy Unsafe: 0.9953
- Iou Unlabeled: nan
- Iou Safe: 0.4564
- Iou Unsafe: 0.9812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 130
### Training results
| Training Loss | Epoch | Step | Accuracy Safe | Accuracy Unlabeled | Accuracy Unsafe | Iou Safe | Iou Unlabeled | Iou Unsafe | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:-----:|:----:|:-------------:|:------------------:|:---------------:|:--------:|:-------------:|:----------:|:---------------:|:-------------:|:--------:|:----------------:|
| 1.0084 | 1.0 | 10 | 0.0368 | nan | 0.7845 | 0.0163 | 0.0 | 0.7666 | 1.0688 | 0.4107 | 0.2610 | 0.7625 |
| 0.8483 | 2.0 | 20 | 0.0002 | nan | 0.9980 | 0.0002 | 0.0 | 0.9687 | 0.8740 | 0.4991 | 0.3230 | 0.9686 |
| 0.7058 | 3.0 | 30 | 0.0009 | nan | 0.9930 | 0.0009 | 0.0 | 0.9641 | 0.7416 | 0.4969 | 0.3217 | 0.9637 |
| 0.578 | 4.0 | 40 | 0.0007 | nan | 0.9953 | 0.0007 | 0.0 | 0.9662 | 0.5969 | 0.4980 | 0.3223 | 0.9659 |
| 0.5531 | 5.0 | 50 | 0.0061 | nan | 0.9974 | 0.0059 | 0.0 | 0.9682 | 0.5068 | 0.5018 | 0.3247 | 0.9681 |
| 0.4786 | 6.0 | 60 | 0.0097 | nan | 0.9961 | 0.0092 | 0.0 | 0.9671 | 0.4575 | 0.5029 | 0.3254 | 0.9670 |
| 0.4681 | 7.0 | 70 | 0.0067 | nan | 0.9983 | 0.0064 | 0.0 | 0.9690 | 0.4382 | 0.5025 | 0.3251 | 0.9690 |
| 0.4139 | 8.0 | 80 | 0.0017 | nan | 0.9980 | 0.0016 | 0.0 | 0.9686 | 0.3973 | 0.4998 | 0.3234 | 0.9686 |
| 0.4275 | 9.0 | 90 | 0.0077 | nan | 0.9994 | 0.0076 | nan | 0.9701 | 0.3983 | 0.5036 | 0.4888 | 0.9701 |
| 0.3975 | 10.0 | 100 | 0.0008 | nan | 0.9998 | 0.0008 | 0.0 | 0.9702 | 0.3398 | 0.5003 | 0.3237 | 0.9702 |
| 0.4325 | 11.0 | 110 | 0.0941 | nan | 0.9993 | 0.0919 | 0.0 | 0.9725 | 0.3785 | 0.5467 | 0.3548 | 0.9725 |
| 0.3239 | 12.0 | 120 | 0.0772 | nan | 0.9995 | 0.0759 | 0.0 | 0.9722 | 0.3338 | 0.5383 | 0.3493 | 0.9722 |
| 0.3733 | 13.0 | 130 | 0.0763 | nan | 0.9995 | 0.0751 | nan | 0.9722 | 0.3013 | 0.5379 | 0.5236 | 0.9722 |
| 0.3165 | 14.0 | 140 | 0.0800 | nan | 0.9994 | 0.0786 | nan | 0.9722 | 0.2849 | 0.5397 | 0.5254 | 0.9723 |
| 0.3329 | 15.0 | 150 | 0.1118 | nan | 0.9990 | 0.1083 | nan | 0.9727 | 0.3002 | 0.5554 | 0.5405 | 0.9728 |
| 0.3214 | 16.0 | 160 | 0.0908 | nan | 0.9995 | 0.0892 | nan | 0.9726 | 0.2725 | 0.5451 | 0.5309 | 0.9726 |
| 0.2744 | 17.0 | 170 | 0.1573 | nan | 0.9986 | 0.1503 | nan | 0.9736 | 0.2896 | 0.5780 | 0.5620 | 0.9737 |
| 0.2948 | 18.0 | 180 | 0.1330 | nan | 0.9989 | 0.1282 | nan | 0.9732 | 0.2564 | 0.5659 | 0.5507 | 0.9733 |
| 0.2653 | 19.0 | 190 | 0.1732 | nan | 0.9987 | 0.1660 | nan | 0.9742 | 0.2518 | 0.5860 | 0.5701 | 0.9743 |
| 0.3026 | 20.0 | 200 | 0.1408 | nan | 0.9990 | 0.1364 | nan | 0.9735 | 0.2531 | 0.5699 | 0.5550 | 0.9737 |
| 0.2649 | 21.0 | 210 | 0.1802 | nan | 0.9986 | 0.1722 | nan | 0.9743 | 0.2384 | 0.5894 | 0.5732 | 0.9744 |
| 0.2431 | 22.0 | 220 | 0.1993 | nan | 0.9983 | 0.1890 | nan | 0.9746 | 0.2390 | 0.5988 | 0.5818 | 0.9747 |
| 0.2608 | 23.0 | 230 | 0.2317 | nan | 0.9981 | 0.2181 | nan | 0.9753 | 0.2355 | 0.6149 | 0.5967 | 0.9755 |
| 0.223 | 24.0 | 240 | 0.1697 | nan | 0.9989 | 0.1637 | nan | 0.9743 | 0.2290 | 0.5843 | 0.5690 | 0.9744 |
| 0.2448 | 25.0 | 250 | 0.2141 | nan | 0.9985 | 0.2037 | nan | 0.9751 | 0.2262 | 0.6063 | 0.5894 | 0.9753 |
| 0.2547 | 26.0 | 260 | 0.2737 | nan | 0.9978 | 0.2555 | nan | 0.9763 | 0.2281 | 0.6357 | 0.6159 | 0.9764 |
| 0.2266 | 27.0 | 270 | 0.2391 | nan | 0.9981 | 0.2252 | nan | 0.9755 | 0.2191 | 0.6186 | 0.6004 | 0.9757 |
| 0.2357 | 28.0 | 280 | 0.2227 | nan | 0.9985 | 0.2122 | nan | 0.9754 | 0.2218 | 0.6106 | 0.5938 | 0.9756 |
| 0.2563 | 29.0 | 290 | 0.1852 | nan | 0.9988 | 0.1782 | nan | 0.9746 | 0.2096 | 0.5920 | 0.5764 | 0.9748 |
| 0.226 | 30.0 | 300 | 0.2844 | nan | 0.9977 | 0.2643 | nan | 0.9764 | 0.2121 | 0.6410 | 0.6203 | 0.9766 |
| 0.2221 | 31.0 | 310 | 0.2718 | nan | 0.9978 | 0.2533 | nan | 0.9761 | 0.2016 | 0.6348 | 0.6147 | 0.9763 |
| 0.2317 | 32.0 | 320 | 0.2649 | nan | 0.9982 | 0.2499 | nan | 0.9763 | 0.2008 | 0.6315 | 0.6131 | 0.9765 |
| 0.2643 | 33.0 | 330 | 0.3254 | nan | 0.9976 | 0.3014 | nan | 0.9775 | 0.1989 | 0.6615 | 0.6394 | 0.9777 |
| 0.2118 | 34.0 | 340 | 0.3347 | nan | 0.9977 | 0.3117 | nan | 0.9779 | 0.1901 | 0.6662 | 0.6448 | 0.9782 |
| 0.2133 | 35.0 | 350 | 0.3619 | nan | 0.9976 | 0.3350 | nan | 0.9785 | 0.1917 | 0.6797 | 0.6568 | 0.9788 |
| 0.2064 | 36.0 | 360 | 0.3401 | nan | 0.9978 | 0.3174 | nan | 0.9782 | 0.1860 | 0.6690 | 0.6478 | 0.9784 |
| 0.2341 | 37.0 | 370 | 0.2704 | nan | 0.9983 | 0.2557 | nan | 0.9766 | 0.1775 | 0.6343 | 0.6162 | 0.9768 |
| 0.2093 | 38.0 | 380 | 0.3552 | nan | 0.9928 | 0.2874 | nan | 0.9737 | 0.1934 | 0.6740 | 0.6306 | 0.9740 |
| 0.1958 | 39.0 | 390 | 0.3001 | nan | 0.9980 | 0.2818 | nan | 0.9772 | 0.1755 | 0.6491 | 0.6295 | 0.9774 |
| 0.1886 | 40.0 | 400 | 0.3881 | nan | 0.9969 | 0.3522 | nan | 0.9787 | 0.1768 | 0.6925 | 0.6654 | 0.9789 |
| 0.1734 | 41.0 | 410 | 0.3948 | nan | 0.9973 | 0.3626 | nan | 0.9793 | 0.1745 | 0.6960 | 0.6709 | 0.9795 |
| 0.1795 | 42.0 | 420 | 0.4168 | nan | 0.9970 | 0.3789 | nan | 0.9796 | 0.1710 | 0.7069 | 0.6793 | 0.9798 |
| 0.222 | 43.0 | 430 | 0.4041 | nan | 0.9972 | 0.3700 | nan | 0.9794 | 0.1706 | 0.7007 | 0.6747 | 0.9797 |
| 0.1831 | 44.0 | 440 | 0.4044 | nan | 0.9972 | 0.3708 | nan | 0.9795 | 0.1687 | 0.7008 | 0.6752 | 0.9797 |
| 0.1935 | 45.0 | 450 | 0.4347 | nan | 0.9964 | 0.3889 | nan | 0.9796 | 0.1711 | 0.7155 | 0.6842 | 0.9798 |
| 0.1728 | 46.0 | 460 | 0.4208 | nan | 0.9969 | 0.3819 | nan | 0.9796 | 0.1714 | 0.7088 | 0.6808 | 0.9799 |
| 0.1742 | 47.0 | 470 | 0.3898 | nan | 0.9974 | 0.3590 | nan | 0.9792 | 0.1670 | 0.6936 | 0.6691 | 0.9794 |
| 0.2064 | 48.0 | 480 | 0.4209 | nan | 0.9970 | 0.3827 | nan | 0.9797 | 0.1683 | 0.7089 | 0.6812 | 0.9799 |
| 0.1946 | 49.0 | 490 | 0.3746 | nan | 0.9976 | 0.3471 | nan | 0.9790 | 0.1659 | 0.6861 | 0.6630 | 0.9792 |
| 0.1836 | 50.0 | 500 | 0.4487 | nan | 0.9965 | 0.4020 | nan | 0.9800 | 0.1618 | 0.7226 | 0.6910 | 0.9803 |
| 0.1786 | 51.0 | 510 | 0.4327 | nan | 0.9966 | 0.3896 | nan | 0.9797 | 0.1595 | 0.7147 | 0.6846 | 0.9800 |
| 0.1867 | 52.0 | 520 | 0.4540 | nan | 0.9966 | 0.4083 | nan | 0.9803 | 0.1555 | 0.7253 | 0.6943 | 0.9806 |
| 0.1824 | 53.0 | 530 | 0.4386 | nan | 0.9966 | 0.3942 | nan | 0.9798 | 0.1564 | 0.7176 | 0.6870 | 0.9801 |
| 0.1494 | 54.0 | 540 | 0.4920 | nan | 0.9956 | 0.4299 | nan | 0.9804 | 0.1540 | 0.7438 | 0.7052 | 0.9807 |
| 0.1583 | 55.0 | 550 | 0.4558 | nan | 0.9964 | 0.4075 | nan | 0.9802 | 0.1502 | 0.7261 | 0.6939 | 0.9804 |
| 0.1648 | 56.0 | 560 | 0.4791 | nan | 0.9958 | 0.4208 | nan | 0.9802 | 0.1523 | 0.7374 | 0.7005 | 0.9805 |
| 0.1993 | 57.0 | 570 | 0.4586 | nan | 0.9964 | 0.4103 | nan | 0.9803 | 0.1502 | 0.7275 | 0.6953 | 0.9805 |
| 0.2243 | 58.0 | 580 | 0.3920 | nan | 0.9973 | 0.3599 | nan | 0.9792 | 0.1474 | 0.6946 | 0.6695 | 0.9794 |
| 0.1551 | 59.0 | 590 | 0.4687 | nan | 0.9961 | 0.4157 | nan | 0.9803 | 0.1445 | 0.7324 | 0.6980 | 0.9805 |
| 0.1666 | 60.0 | 600 | 0.4460 | nan | 0.9964 | 0.3986 | nan | 0.9799 | 0.1444 | 0.7212 | 0.6892 | 0.9801 |
| 0.1632 | 61.0 | 610 | 0.5120 | nan | 0.9951 | 0.4411 | nan | 0.9805 | 0.1504 | 0.7535 | 0.7108 | 0.9808 |
| 0.1589 | 62.0 | 620 | 0.4059 | nan | 0.9971 | 0.3704 | nan | 0.9794 | 0.1430 | 0.7015 | 0.6749 | 0.9796 |
| 0.1454 | 63.0 | 630 | 0.4835 | nan | 0.9959 | 0.4260 | nan | 0.9805 | 0.1423 | 0.7397 | 0.7032 | 0.9808 |
| 0.1635 | 64.0 | 640 | 0.4902 | nan | 0.9957 | 0.4299 | nan | 0.9805 | 0.1424 | 0.7430 | 0.7052 | 0.9808 |
| 0.1515 | 65.0 | 650 | 0.4775 | nan | 0.9962 | 0.4239 | nan | 0.9806 | 0.1422 | 0.7368 | 0.7022 | 0.9808 |
| 0.151 | 66.0 | 660 | 0.4718 | nan | 0.9962 | 0.4195 | nan | 0.9804 | 0.1423 | 0.7340 | 0.7000 | 0.9807 |
| 0.166 | 67.0 | 670 | 0.4721 | nan | 0.9963 | 0.4208 | nan | 0.9805 | 0.1427 | 0.7342 | 0.7007 | 0.9808 |
| 0.1561 | 68.0 | 680 | 0.4916 | nan | 0.9959 | 0.4332 | nan | 0.9807 | 0.1420 | 0.7437 | 0.7070 | 0.9810 |
| 0.1501 | 69.0 | 690 | 0.4906 | nan | 0.9958 | 0.4311 | nan | 0.9806 | 0.1437 | 0.7432 | 0.7058 | 0.9809 |
| 0.1598 | 70.0 | 700 | 0.3445 | nan | 0.9977 | 0.3204 | nan | 0.9782 | 0.1379 | 0.6711 | 0.6493 | 0.9784 |
| 0.1431 | 71.0 | 710 | 0.4898 | nan | 0.9960 | 0.4325 | nan | 0.9807 | 0.1400 | 0.7429 | 0.7066 | 0.9810 |
| 0.164 | 72.0 | 720 | 0.4698 | nan | 0.9964 | 0.4196 | nan | 0.9805 | 0.1347 | 0.7331 | 0.7001 | 0.9808 |
| 0.1555 | 73.0 | 730 | 0.5271 | nan | 0.9937 | 0.4364 | nan | 0.9796 | 0.1368 | 0.7604 | 0.7080 | 0.9799 |
| 0.1924 | 74.0 | 740 | 0.4638 | nan | 0.9965 | 0.4159 | nan | 0.9805 | 0.1312 | 0.7301 | 0.6982 | 0.9808 |
| 0.1612 | 75.0 | 750 | 0.5052 | nan | 0.9956 | 0.4409 | nan | 0.9808 | 0.1340 | 0.7504 | 0.7108 | 0.9811 |
| 0.1234 | 76.0 | 760 | 0.5301 | nan | 0.9946 | 0.4501 | nan | 0.9806 | 0.1354 | 0.7624 | 0.7153 | 0.9809 |
| 0.1679 | 77.0 | 770 | 0.4644 | nan | 0.9964 | 0.4156 | nan | 0.9804 | 0.1323 | 0.7304 | 0.6980 | 0.9807 |
| 0.1375 | 78.0 | 780 | 0.4804 | nan | 0.9961 | 0.4263 | nan | 0.9806 | 0.1355 | 0.7383 | 0.7035 | 0.9809 |
| 0.1839 | 79.0 | 790 | 0.5070 | nan | 0.9955 | 0.4422 | nan | 0.9808 | 0.1319 | 0.7512 | 0.7115 | 0.9811 |
| 0.155 | 80.0 | 800 | 0.4846 | nan | 0.9961 | 0.4295 | nan | 0.9807 | 0.1298 | 0.7403 | 0.7051 | 0.9810 |
| 0.1219 | 81.0 | 810 | 0.4671 | nan | 0.9963 | 0.4167 | nan | 0.9804 | 0.1302 | 0.7317 | 0.6986 | 0.9807 |
| 0.1218 | 82.0 | 820 | 0.4864 | nan | 0.9960 | 0.4300 | nan | 0.9807 | 0.1313 | 0.7412 | 0.7054 | 0.9810 |
| 0.138 | 83.0 | 830 | 0.5097 | nan | 0.9955 | 0.4445 | nan | 0.9809 | 0.1318 | 0.7526 | 0.7127 | 0.9812 |
| 0.1399 | 84.0 | 840 | 0.5067 | nan | 0.9957 | 0.4441 | nan | 0.9810 | 0.1290 | 0.7512 | 0.7126 | 0.9813 |
| 0.1455 | 85.0 | 850 | 0.5024 | nan | 0.9957 | 0.4404 | nan | 0.9809 | 0.1277 | 0.7491 | 0.7106 | 0.9811 |
| 0.1466 | 86.0 | 860 | 0.4920 | nan | 0.9959 | 0.4341 | nan | 0.9808 | 0.1243 | 0.7440 | 0.7074 | 0.9811 |
| 0.1769 | 87.0 | 870 | 0.5737 | nan | 0.9924 | 0.4592 | nan | 0.9797 | 0.1317 | 0.7831 | 0.7194 | 0.9800 |
| 0.1453 | 88.0 | 880 | 0.3341 | nan | 0.9978 | 0.3115 | nan | 0.9780 | 0.1254 | 0.6659 | 0.6447 | 0.9782 |
| 0.133 | 89.0 | 890 | 0.5257 | nan | 0.9950 | 0.4518 | nan | 0.9809 | 0.1283 | 0.7603 | 0.7163 | 0.9812 |
| 0.1288 | 90.0 | 900 | 0.5049 | nan | 0.9957 | 0.4420 | nan | 0.9809 | 0.1221 | 0.7503 | 0.7115 | 0.9812 |
| 0.1318 | 91.0 | 910 | 0.4838 | nan | 0.9961 | 0.4290 | nan | 0.9807 | 0.1219 | 0.7400 | 0.7049 | 0.9810 |
| 0.1211 | 92.0 | 920 | 0.5355 | nan | 0.9950 | 0.4596 | nan | 0.9811 | 0.1242 | 0.7652 | 0.7203 | 0.9814 |
| 0.1137 | 93.0 | 930 | 0.5135 | nan | 0.9958 | 0.4517 | nan | 0.9813 | 0.1181 | 0.7547 | 0.7165 | 0.9816 |
| 0.1312 | 94.0 | 940 | 0.4775 | nan | 0.9963 | 0.4262 | nan | 0.9807 | 0.1199 | 0.7369 | 0.7035 | 0.9810 |
| 0.1591 | 95.0 | 950 | 0.5115 | nan | 0.9956 | 0.4473 | nan | 0.9810 | 0.1182 | 0.7536 | 0.7142 | 0.9813 |
| 0.1207 | 96.0 | 960 | 0.5206 | nan | 0.9956 | 0.4544 | nan | 0.9812 | 0.1156 | 0.7581 | 0.7178 | 0.9815 |
| 0.1203 | 97.0 | 970 | 0.5054 | nan | 0.9958 | 0.4439 | nan | 0.9810 | 0.1165 | 0.7506 | 0.7124 | 0.9813 |
| 0.1196 | 98.0 | 980 | 0.5296 | nan | 0.9953 | 0.4585 | nan | 0.9812 | 0.1131 | 0.7624 | 0.7199 | 0.9815 |
| 0.1304 | 99.0 | 990 | 0.5269 | nan | 0.9953 | 0.4568 | nan | 0.9812 | 0.1155 | 0.7611 | 0.7190 | 0.9815 |
| 0.1058 | 100.0 | 1000 | 0.5163 | nan | 0.9955 | 0.4496 | nan | 0.9810 | 0.1144 | 0.7559 | 0.7153 | 0.9813 |
| 0.1135 | 101.0 | 1010 | 0.4934 | nan | 0.9961 | 0.4368 | nan | 0.9809 | 0.1113 | 0.7447 | 0.7089 | 0.9812 |
| 0.1116 | 102.0 | 1020 | 0.5878 | nan | 0.9932 | 0.4799 | nan | 0.9808 | 0.1128 | 0.7905 | 0.7304 | 0.9812 |
| 0.1036 | 103.0 | 1030 | 0.4826 | nan | 0.9963 | 0.4304 | nan | 0.9809 | 0.1078 | 0.7394 | 0.7056 | 0.9811 |
| 0.1195 | 104.0 | 1040 | 0.4364 | nan | 0.9966 | 0.3930 | nan | 0.9798 | 0.1110 | 0.7165 | 0.6864 | 0.9801 |
| 0.1205 | 105.0 | 1050 | 0.5793 | nan | 0.9934 | 0.4762 | nan | 0.9808 | 0.1120 | 0.7864 | 0.7285 | 0.9812 |
| 0.1453 | 106.0 | 1060 | 0.4707 | nan | 0.9964 | 0.4205 | nan | 0.9806 | 0.1110 | 0.7336 | 0.7005 | 0.9808 |
| 0.0965 | 107.0 | 1070 | 0.5638 | nan | 0.9941 | 0.4723 | nan | 0.9811 | 0.1091 | 0.7789 | 0.7267 | 0.9814 |
| 0.1058 | 108.0 | 1080 | 0.4881 | nan | 0.9962 | 0.4337 | nan | 0.9809 | 0.1085 | 0.7422 | 0.7073 | 0.9812 |
| 0.1163 | 109.0 | 1090 | 0.5128 | nan | 0.9957 | 0.4493 | nan | 0.9811 | 0.1077 | 0.7542 | 0.7152 | 0.9814 |
| 0.1145 | 110.0 | 1100 | 0.5228 | nan | 0.9954 | 0.4547 | nan | 0.9812 | 0.1081 | 0.7591 | 0.7179 | 0.9815 |
| 0.1031 | 111.0 | 1110 | 0.5522 | nan | 0.9945 | 0.4673 | nan | 0.9811 | 0.1073 | 0.7733 | 0.7242 | 0.9814 |
| 0.1042 | 112.0 | 1120 | 0.5490 | nan | 0.9947 | 0.4669 | nan | 0.9812 | 0.1064 | 0.7718 | 0.7241 | 0.9815 |
| 0.1119 | 113.0 | 1130 | 0.5064 | nan | 0.9958 | 0.4449 | nan | 0.9811 | 0.1063 | 0.7511 | 0.7130 | 0.9813 |
| 0.1116 | 114.0 | 1140 | 0.5172 | nan | 0.9956 | 0.4520 | nan | 0.9812 | 0.1074 | 0.7564 | 0.7166 | 0.9815 |
| 0.1063 | 115.0 | 1150 | 0.5163 | nan | 0.9956 | 0.4511 | nan | 0.9812 | 0.1072 | 0.7560 | 0.7161 | 0.9814 |
| 0.1054 | 116.0 | 1160 | 0.4994 | nan | 0.9960 | 0.4408 | nan | 0.9810 | 0.1065 | 0.7477 | 0.7109 | 0.9813 |
| 0.1613 | 117.0 | 1170 | 0.5251 | nan | 0.9955 | 0.4576 | nan | 0.9813 | 0.1060 | 0.7603 | 0.7195 | 0.9816 |
| 0.1542 | 118.0 | 1180 | 0.5454 | nan | 0.9947 | 0.4649 | nan | 0.9812 | 0.1058 | 0.7701 | 0.7230 | 0.9815 |
| 0.1226 | 119.0 | 1190 | 0.5469 | nan | 0.9947 | 0.4658 | nan | 0.9812 | 0.1064 | 0.7708 | 0.7235 | 0.9815 |
| 0.1295 | 120.0 | 1200 | 0.5437 | nan | 0.9948 | 0.4646 | nan | 0.9812 | 0.1060 | 0.7693 | 0.7229 | 0.9815 |
| 0.1438 | 121.0 | 1210 | 0.1076 | 0.7084 | 0.7435 | 0.9812 | nan | 0.4909 | 0.9962 | nan | 0.4358 | 0.9809 |
| 0.1391 | 122.0 | 1220 | 0.1081 | 0.7221 | 0.7683 | 0.9814 | nan | 0.5417 | 0.9948 | nan | 0.4630 | 0.9811 |
| 0.1756 | 123.0 | 1230 | 0.1041 | 0.7233 | 0.7710 | 0.9814 | nan | 0.5473 | 0.9947 | nan | 0.4655 | 0.9811 |
| 0.1174 | 124.0 | 1240 | 0.1029 | 0.7189 | 0.7614 | 0.9815 | nan | 0.5275 | 0.9953 | nan | 0.4566 | 0.9812 |
| 0.1025 | 125.0 | 1250 | 0.1043 | 0.7100 | 0.7470 | 0.9812 | nan | 0.4980 | 0.9959 | nan | 0.4391 | 0.9809 |
| 0.0997 | 126.0 | 1260 | 0.1038 | 0.7211 | 0.7638 | 0.9816 | nan | 0.5323 | 0.9953 | nan | 0.4609 | 0.9813 |
| 0.1768 | 127.0 | 1270 | 0.1037 | 0.7204 | 0.7617 | 0.9817 | nan | 0.5279 | 0.9955 | nan | 0.4594 | 0.9814 |
| 0.1527 | 128.0 | 1280 | 0.1027 | 0.7167 | 0.7564 | 0.9815 | nan | 0.5171 | 0.9956 | nan | 0.4522 | 0.9812 |
| 0.1269 | 129.0 | 1290 | 0.1041 | 0.7178 | 0.7583 | 0.9815 | nan | 0.5211 | 0.9955 | nan | 0.4543 | 0.9812 |
| 0.0968 | 130.0 | 1300 | 0.1043 | 0.7188 | 0.7607 | 0.9815 | nan | 0.5261 | 0.9953 | nan | 0.4564 | 0.9812 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/INTERNAL_BEST-safety-utcustom-train-SF-RGB-b5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# INTERNAL_BEST-safety-utcustom-train-SF-RGB-b5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0472
- Mean Iou: 0.8728
- Mean Accuracy: 0.9195
- Overall Accuracy: 0.9919
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.8426
- Accuracy Unsafe: 0.9964
- Iou Unlabeled: nan
- Iou Safe: 0.7540
- Iou Unsafe: 0.9917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 1.2199 | 2.0 | 20 | 1.1474 | 0.0765 | 0.4399 | 0.2168 | nan | 0.6770 | 0.2028 | 0.0 | 0.0279 | 0.2014 |
| 1.1542 | 4.0 | 40 | 1.0616 | 0.1558 | 0.6082 | 0.4365 | nan | 0.7908 | 0.4257 | 0.0 | 0.0436 | 0.4237 |
| 1.0324 | 6.0 | 60 | 0.9140 | 0.2569 | 0.6886 | 0.7091 | nan | 0.6667 | 0.7104 | 0.0 | 0.0672 | 0.7036 |
| 0.8058 | 8.0 | 80 | 0.7629 | 0.2970 | 0.6780 | 0.8115 | nan | 0.5360 | 0.8199 | 0.0 | 0.0823 | 0.8086 |
| 0.681 | 10.0 | 100 | 0.5545 | 0.3510 | 0.6964 | 0.9135 | nan | 0.4657 | 0.9271 | 0.0 | 0.1407 | 0.9123 |
| 0.5248 | 12.0 | 120 | 0.4153 | 0.3738 | 0.6747 | 0.9462 | nan | 0.3861 | 0.9633 | 0.0 | 0.1757 | 0.9456 |
| 0.3372 | 14.0 | 140 | 0.3050 | 0.3896 | 0.6548 | 0.9628 | nan | 0.3276 | 0.9821 | 0.0 | 0.2064 | 0.9624 |
| 0.2818 | 16.0 | 160 | 0.2346 | 0.4313 | 0.7331 | 0.9703 | nan | 0.4810 | 0.9852 | 0.0 | 0.3239 | 0.9699 |
| 0.2081 | 18.0 | 180 | 0.1802 | 0.4762 | 0.7973 | 0.9782 | nan | 0.6050 | 0.9896 | 0.0 | 0.4509 | 0.9778 |
| 0.141 | 20.0 | 200 | 0.1362 | 0.4968 | 0.7945 | 0.9830 | nan | 0.5943 | 0.9948 | 0.0 | 0.5078 | 0.9827 |
| 0.0963 | 22.0 | 220 | 0.1032 | 0.7409 | 0.7652 | 0.9841 | nan | 0.5326 | 0.9979 | nan | 0.4978 | 0.9839 |
| 0.0842 | 24.0 | 240 | 0.0770 | 0.7840 | 0.8200 | 0.9863 | nan | 0.6432 | 0.9968 | nan | 0.5818 | 0.9861 |
| 0.0702 | 26.0 | 260 | 0.0669 | 0.7836 | 0.8193 | 0.9863 | nan | 0.6417 | 0.9968 | nan | 0.5812 | 0.9861 |
| 0.0706 | 28.0 | 280 | 0.0671 | 0.8065 | 0.8593 | 0.9872 | nan | 0.7234 | 0.9953 | nan | 0.6261 | 0.9870 |
| 0.0747 | 30.0 | 300 | 0.0551 | 0.7808 | 0.7980 | 0.9870 | nan | 0.5971 | 0.9988 | nan | 0.5748 | 0.9867 |
| 0.057 | 32.0 | 320 | 0.0492 | 0.8267 | 0.8736 | 0.9888 | nan | 0.7511 | 0.9961 | nan | 0.6648 | 0.9886 |
| 0.0435 | 34.0 | 340 | 0.0507 | 0.7956 | 0.8134 | 0.9878 | nan | 0.6280 | 0.9988 | nan | 0.6035 | 0.9876 |
| 0.0326 | 36.0 | 360 | 0.0418 | 0.8422 | 0.8895 | 0.9898 | nan | 0.7830 | 0.9961 | nan | 0.6947 | 0.9896 |
| 0.0262 | 38.0 | 380 | 0.0420 | 0.8280 | 0.8550 | 0.9895 | nan | 0.7120 | 0.9979 | nan | 0.6667 | 0.9893 |
| 0.0268 | 40.0 | 400 | 0.0392 | 0.8407 | 0.8822 | 0.9899 | nan | 0.7676 | 0.9967 | nan | 0.6918 | 0.9897 |
| 0.0395 | 42.0 | 420 | 0.0466 | 0.5436 | 0.8370 | 0.9889 | nan | 0.6755 | 0.9984 | 0.0 | 0.6422 | 0.9887 |
| 0.0279 | 44.0 | 440 | 0.0439 | 0.8321 | 0.8946 | 0.9887 | nan | 0.7945 | 0.9947 | nan | 0.6758 | 0.9885 |
| 0.0468 | 46.0 | 460 | 0.0360 | 0.8480 | 0.8894 | 0.9904 | nan | 0.7822 | 0.9967 | nan | 0.7059 | 0.9901 |
| 0.0233 | 48.0 | 480 | 0.0376 | 0.8507 | 0.8962 | 0.9905 | nan | 0.7960 | 0.9964 | nan | 0.7113 | 0.9902 |
| 0.0288 | 50.0 | 500 | 0.0386 | 0.8404 | 0.8845 | 0.9898 | nan | 0.7725 | 0.9964 | nan | 0.6913 | 0.9896 |
| 0.0266 | 52.0 | 520 | 0.0361 | 0.8455 | 0.8768 | 0.9905 | nan | 0.7560 | 0.9976 | nan | 0.7008 | 0.9902 |
| 0.0241 | 54.0 | 540 | 0.0367 | 0.8504 | 0.9039 | 0.9902 | nan | 0.8122 | 0.9957 | nan | 0.7109 | 0.9900 |
| 0.0239 | 56.0 | 560 | 0.0414 | 0.8401 | 0.8809 | 0.9899 | nan | 0.7650 | 0.9967 | nan | 0.6906 | 0.9896 |
| 0.0221 | 58.0 | 580 | 0.0375 | 0.8536 | 0.8971 | 0.9907 | nan | 0.7977 | 0.9966 | nan | 0.7167 | 0.9905 |
| 0.0324 | 60.0 | 600 | 0.0390 | 0.8566 | 0.9017 | 0.9908 | nan | 0.8069 | 0.9964 | nan | 0.7226 | 0.9906 |
| 0.0264 | 62.0 | 620 | 0.0405 | 0.8506 | 0.9088 | 0.9901 | nan | 0.8224 | 0.9952 | nan | 0.7114 | 0.9899 |
| 0.0146 | 64.0 | 640 | 0.0356 | 0.8627 | 0.9158 | 0.9911 | nan | 0.8358 | 0.9958 | nan | 0.7346 | 0.9909 |
| 0.0252 | 66.0 | 660 | 0.0310 | 0.8667 | 0.9010 | 0.9917 | nan | 0.8046 | 0.9974 | nan | 0.7418 | 0.9915 |
| 0.0155 | 68.0 | 680 | 0.0359 | 0.8567 | 0.9056 | 0.9908 | nan | 0.8152 | 0.9961 | nan | 0.7229 | 0.9905 |
| 0.0169 | 70.0 | 700 | 0.0490 | 0.8476 | 0.9182 | 0.9896 | nan | 0.8422 | 0.9941 | nan | 0.7058 | 0.9894 |
| 0.0142 | 72.0 | 720 | 0.0357 | 0.8442 | 0.8771 | 0.9903 | nan | 0.7568 | 0.9974 | nan | 0.6982 | 0.9901 |
| 0.0244 | 74.0 | 740 | 0.0400 | 0.8523 | 0.9070 | 0.9903 | nan | 0.8183 | 0.9956 | nan | 0.7146 | 0.9901 |
| 0.016 | 76.0 | 760 | 0.0302 | 0.8644 | 0.9037 | 0.9915 | nan | 0.8105 | 0.9970 | nan | 0.7376 | 0.9913 |
| 0.0137 | 78.0 | 780 | 0.0325 | 0.8664 | 0.9118 | 0.9915 | nan | 0.8271 | 0.9965 | nan | 0.7415 | 0.9913 |
| 0.0115 | 80.0 | 800 | 0.0347 | 0.8678 | 0.9162 | 0.9915 | nan | 0.8362 | 0.9962 | nan | 0.7443 | 0.9913 |
| 0.0117 | 82.0 | 820 | 0.0320 | 0.8697 | 0.9084 | 0.9918 | nan | 0.8197 | 0.9971 | nan | 0.7478 | 0.9916 |
| 0.0108 | 84.0 | 840 | 0.0348 | 0.8691 | 0.9192 | 0.9916 | nan | 0.8423 | 0.9961 | nan | 0.7468 | 0.9913 |
| 0.0101 | 86.0 | 860 | 0.0342 | 0.8683 | 0.9081 | 0.9917 | nan | 0.8192 | 0.9970 | nan | 0.7452 | 0.9915 |
| 0.0085 | 88.0 | 880 | 0.0441 | 0.8639 | 0.9214 | 0.9911 | nan | 0.8474 | 0.9954 | nan | 0.7370 | 0.9908 |
| 0.009 | 90.0 | 900 | 0.0428 | 0.8619 | 0.9086 | 0.9912 | nan | 0.8209 | 0.9963 | nan | 0.7330 | 0.9909 |
| 0.009 | 92.0 | 920 | 0.0444 | 0.8620 | 0.9089 | 0.9912 | nan | 0.8215 | 0.9963 | nan | 0.7331 | 0.9909 |
| 0.0089 | 94.0 | 940 | 0.0410 | 0.8645 | 0.9147 | 0.9913 | nan | 0.8334 | 0.9961 | nan | 0.7380 | 0.9910 |
| 0.0091 | 96.0 | 960 | 0.0418 | 0.8663 | 0.9155 | 0.9914 | nan | 0.8349 | 0.9962 | nan | 0.7413 | 0.9912 |
| 0.0079 | 98.0 | 980 | 0.0398 | 0.8629 | 0.9085 | 0.9913 | nan | 0.8205 | 0.9965 | nan | 0.7348 | 0.9910 |
| 0.0084 | 100.0 | 1000 | 0.0497 | 0.8553 | 0.9109 | 0.9905 | nan | 0.8262 | 0.9955 | nan | 0.7204 | 0.9903 |
| 0.0088 | 102.0 | 1020 | 0.0399 | 0.8558 | 0.9058 | 0.9907 | nan | 0.8156 | 0.9960 | nan | 0.7212 | 0.9905 |
| 0.0089 | 104.0 | 1040 | 0.0388 | 0.8678 | 0.9225 | 0.9914 | nan | 0.8494 | 0.9957 | nan | 0.7444 | 0.9912 |
| 0.008 | 106.0 | 1060 | 0.0449 | 0.8622 | 0.9225 | 0.9909 | nan | 0.8498 | 0.9952 | nan | 0.7337 | 0.9907 |
| 0.0084 | 108.0 | 1080 | 0.0429 | 0.8687 | 0.9233 | 0.9914 | nan | 0.8510 | 0.9957 | nan | 0.7462 | 0.9912 |
| 0.0084 | 110.0 | 1100 | 0.0405 | 0.8687 | 0.9169 | 0.9916 | nan | 0.8375 | 0.9963 | nan | 0.7460 | 0.9914 |
| 0.007 | 112.0 | 1120 | 0.0544 | 0.8620 | 0.9180 | 0.9910 | nan | 0.8404 | 0.9956 | nan | 0.7333 | 0.9907 |
| 0.0079 | 114.0 | 1140 | 0.0501 | 0.8602 | 0.9176 | 0.9908 | nan | 0.8399 | 0.9954 | nan | 0.7299 | 0.9906 |
| 0.0084 | 116.0 | 1160 | 0.0508 | 0.8605 | 0.9212 | 0.9908 | nan | 0.8473 | 0.9951 | nan | 0.7304 | 0.9905 |
| 0.0113 | 118.0 | 1180 | 0.0511 | 0.8601 | 0.9228 | 0.9907 | nan | 0.8507 | 0.9950 | nan | 0.7298 | 0.9905 |
| 0.0076 | 120.0 | 1200 | 0.0556 | 0.8602 | 0.9264 | 0.9906 | nan | 0.8582 | 0.9947 | nan | 0.7299 | 0.9904 |
| 0.0081 | 122.0 | 1220 | 0.0471 | 0.8665 | 0.9256 | 0.9912 | nan | 0.8559 | 0.9953 | nan | 0.7420 | 0.9910 |
| 0.0054 | 124.0 | 1240 | 0.0504 | 0.8652 | 0.9174 | 0.9913 | nan | 0.8389 | 0.9959 | nan | 0.7394 | 0.9910 |
| 0.0054 | 126.0 | 1260 | 0.0502 | 0.8666 | 0.9209 | 0.9913 | nan | 0.8461 | 0.9957 | nan | 0.7420 | 0.9911 |
| 0.0092 | 128.0 | 1280 | 0.0540 | 0.8642 | 0.9223 | 0.9911 | nan | 0.8492 | 0.9954 | nan | 0.7376 | 0.9908 |
| 0.007 | 130.0 | 1300 | 0.0533 | 0.8637 | 0.9207 | 0.9911 | nan | 0.8459 | 0.9955 | nan | 0.7366 | 0.9908 |
| 0.0063 | 132.0 | 1320 | 0.0526 | 0.8644 | 0.9259 | 0.9910 | nan | 0.8567 | 0.9951 | nan | 0.7380 | 0.9908 |
| 0.0101 | 134.0 | 1340 | 0.0462 | 0.8653 | 0.9067 | 0.9915 | nan | 0.8166 | 0.9968 | nan | 0.7393 | 0.9913 |
| 0.0183 | 136.0 | 1360 | 0.0516 | 0.5675 | 0.9024 | 0.9904 | nan | 0.8089 | 0.9959 | 0.0 | 0.7123 | 0.9901 |
| 0.0102 | 138.0 | 1380 | 0.0388 | 0.8366 | 0.8716 | 0.9898 | nan | 0.7460 | 0.9972 | nan | 0.6837 | 0.9896 |
| 0.0277 | 140.0 | 1400 | 0.0649 | 0.8159 | 0.9590 | 0.9850 | nan | 0.9313 | 0.9866 | nan | 0.6472 | 0.9846 |
| 0.0169 | 142.0 | 1420 | 0.0340 | 0.8444 | 0.9148 | 0.9894 | nan | 0.8355 | 0.9941 | nan | 0.6996 | 0.9891 |
| 0.0359 | 144.0 | 1440 | 0.0314 | 0.8667 | 0.8987 | 0.9918 | nan | 0.7997 | 0.9976 | nan | 0.7419 | 0.9916 |
| 0.0117 | 146.0 | 1460 | 0.0307 | 0.8517 | 0.8869 | 0.9908 | nan | 0.7765 | 0.9973 | nan | 0.7129 | 0.9905 |
| 0.0097 | 148.0 | 1480 | 0.0323 | 0.8757 | 0.9070 | 0.9924 | nan | 0.8162 | 0.9977 | nan | 0.7593 | 0.9922 |
| 0.0063 | 150.0 | 1500 | 0.0302 | 0.8808 | 0.9155 | 0.9926 | nan | 0.8335 | 0.9975 | nan | 0.7692 | 0.9924 |
| 0.0085 | 152.0 | 1520 | 0.0352 | 0.8697 | 0.9113 | 0.9918 | nan | 0.8258 | 0.9968 | nan | 0.7478 | 0.9916 |
| 0.0078 | 154.0 | 1540 | 0.0428 | 0.8649 | 0.9190 | 0.9912 | nan | 0.8423 | 0.9957 | nan | 0.7388 | 0.9910 |
| 0.0056 | 156.0 | 1560 | 0.0340 | 0.8709 | 0.9170 | 0.9918 | nan | 0.8376 | 0.9965 | nan | 0.7502 | 0.9916 |
| 0.0063 | 158.0 | 1580 | 0.0359 | 0.8661 | 0.9201 | 0.9913 | nan | 0.8445 | 0.9958 | nan | 0.7412 | 0.9911 |
| 0.0083 | 160.0 | 1600 | 0.0375 | 0.8684 | 0.9186 | 0.9915 | nan | 0.8410 | 0.9961 | nan | 0.7456 | 0.9913 |
| 0.0065 | 162.0 | 1620 | 0.0370 | 0.8699 | 0.9210 | 0.9916 | nan | 0.8459 | 0.9960 | nan | 0.7484 | 0.9914 |
| 0.0063 | 164.0 | 1640 | 0.0388 | 0.8699 | 0.9228 | 0.9916 | nan | 0.8498 | 0.9959 | nan | 0.7484 | 0.9913 |
| 0.0056 | 166.0 | 1660 | 0.0386 | 0.8702 | 0.9238 | 0.9916 | nan | 0.8517 | 0.9958 | nan | 0.7491 | 0.9914 |
| 0.0049 | 168.0 | 1680 | 0.0394 | 0.8703 | 0.9199 | 0.9917 | nan | 0.8436 | 0.9962 | nan | 0.7491 | 0.9914 |
| 0.0054 | 170.0 | 1700 | 0.0400 | 0.8704 | 0.9195 | 0.9917 | nan | 0.8428 | 0.9962 | nan | 0.7494 | 0.9915 |
| 0.0046 | 172.0 | 1720 | 0.0398 | 0.8728 | 0.9187 | 0.9919 | nan | 0.8410 | 0.9965 | nan | 0.7539 | 0.9917 |
| 0.0058 | 174.0 | 1740 | 0.0402 | 0.8711 | 0.9166 | 0.9918 | nan | 0.8367 | 0.9965 | nan | 0.7507 | 0.9916 |
| 0.005 | 176.0 | 1760 | 0.0400 | 0.8720 | 0.9196 | 0.9918 | nan | 0.8428 | 0.9963 | nan | 0.7525 | 0.9916 |
| 0.0061 | 178.0 | 1780 | 0.0417 | 0.8714 | 0.9226 | 0.9917 | nan | 0.8492 | 0.9960 | nan | 0.7513 | 0.9915 |
| 0.0061 | 180.0 | 1800 | 0.0407 | 0.8731 | 0.9249 | 0.9918 | nan | 0.8538 | 0.9960 | nan | 0.7545 | 0.9916 |
| 0.0065 | 182.0 | 1820 | 0.0420 | 0.8712 | 0.9235 | 0.9917 | nan | 0.8511 | 0.9959 | nan | 0.7509 | 0.9914 |
| 0.0045 | 184.0 | 1840 | 0.0421 | 0.8718 | 0.9250 | 0.9917 | nan | 0.8541 | 0.9959 | nan | 0.7522 | 0.9915 |
| 0.0056 | 186.0 | 1860 | 0.0435 | 0.8703 | 0.9157 | 0.9917 | nan | 0.8349 | 0.9965 | nan | 0.7490 | 0.9915 |
| 0.0059 | 188.0 | 1880 | 0.0436 | 0.8707 | 0.9191 | 0.9917 | nan | 0.8419 | 0.9963 | nan | 0.7499 | 0.9915 |
| 0.0042 | 190.0 | 1900 | 0.0436 | 0.8707 | 0.9210 | 0.9917 | nan | 0.8458 | 0.9961 | nan | 0.7499 | 0.9915 |
| 0.006 | 192.0 | 1920 | 0.0426 | 0.8697 | 0.9193 | 0.9916 | nan | 0.8425 | 0.9962 | nan | 0.7480 | 0.9914 |
| 0.0053 | 194.0 | 1940 | 0.0447 | 0.8697 | 0.9199 | 0.9916 | nan | 0.8437 | 0.9961 | nan | 0.7480 | 0.9914 |
| 0.0044 | 196.0 | 1960 | 0.0441 | 0.8710 | 0.9238 | 0.9916 | nan | 0.8516 | 0.9959 | nan | 0.7505 | 0.9914 |
| 0.0049 | 198.0 | 1980 | 0.0453 | 0.8693 | 0.9219 | 0.9915 | nan | 0.8479 | 0.9959 | nan | 0.7473 | 0.9913 |
| 0.0059 | 200.0 | 2000 | 0.0444 | 0.8726 | 0.9233 | 0.9918 | nan | 0.8506 | 0.9961 | nan | 0.7537 | 0.9916 |
| 0.005 | 202.0 | 2020 | 0.0447 | 0.8717 | 0.9256 | 0.9917 | nan | 0.8555 | 0.9958 | nan | 0.7519 | 0.9914 |
| 0.005 | 204.0 | 2040 | 0.0451 | 0.8711 | 0.9227 | 0.9917 | nan | 0.8494 | 0.9960 | nan | 0.7507 | 0.9915 |
| 0.0043 | 206.0 | 2060 | 0.0458 | 0.8707 | 0.9220 | 0.9916 | nan | 0.8480 | 0.9960 | nan | 0.7499 | 0.9914 |
| 0.0043 | 208.0 | 2080 | 0.0462 | 0.8696 | 0.9221 | 0.9916 | nan | 0.8482 | 0.9959 | nan | 0.7479 | 0.9913 |
| 0.0062 | 210.0 | 2100 | 0.0451 | 0.8715 | 0.9211 | 0.9917 | nan | 0.8461 | 0.9962 | nan | 0.7515 | 0.9915 |
| 0.0056 | 212.0 | 2120 | 0.0470 | 0.8706 | 0.9213 | 0.9917 | nan | 0.8466 | 0.9961 | nan | 0.7498 | 0.9914 |
| 0.0049 | 214.0 | 2140 | 0.0480 | 0.8679 | 0.9229 | 0.9914 | nan | 0.8500 | 0.9957 | nan | 0.7447 | 0.9912 |
| 0.0038 | 216.0 | 2160 | 0.0474 | 0.8700 | 0.9194 | 0.9916 | nan | 0.8427 | 0.9962 | nan | 0.7486 | 0.9914 |
| 0.0043 | 218.0 | 2180 | 0.0472 | 0.8693 | 0.9231 | 0.9915 | nan | 0.8503 | 0.9958 | nan | 0.7474 | 0.9913 |
| 0.005 | 220.0 | 2200 | 0.0471 | 0.8695 | 0.9156 | 0.9917 | nan | 0.8348 | 0.9964 | nan | 0.7475 | 0.9915 |
| 0.0041 | 222.0 | 2220 | 0.0472 | 0.8719 | 0.9187 | 0.9918 | nan | 0.8411 | 0.9964 | nan | 0.7522 | 0.9916 |
| 0.0041 | 224.0 | 2240 | 0.0471 | 0.8720 | 0.9219 | 0.9918 | nan | 0.8477 | 0.9962 | nan | 0.7525 | 0.9916 |
| 0.005 | 226.0 | 2260 | 0.0479 | 0.8720 | 0.9191 | 0.9918 | nan | 0.8418 | 0.9964 | nan | 0.7524 | 0.9916 |
| 0.0041 | 228.0 | 2280 | 0.0489 | 0.8706 | 0.9183 | 0.9917 | nan | 0.8403 | 0.9963 | nan | 0.7498 | 0.9915 |
| 0.005 | 230.0 | 2300 | 0.0472 | 0.8728 | 0.9195 | 0.9919 | nan | 0.8426 | 0.9964 | nan | 0.7540 | 0.9917 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/INTERNAL_BEST-safety-utcustom-train-SF-RGBD-b5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# INTERNAL_BEST-safety-utcustom-train-SF-RGBD-b5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0506
- Mean Iou: 0.8519
- Mean Accuracy: 0.9125
- Overall Accuracy: 0.9902
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.8300
- Accuracy Unsafe: 0.9950
- Iou Unlabeled: nan
- Iou Safe: 0.7138
- Iou Unsafe: 0.9899
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 1.4012 | 2.0 | 20 | 1.1653 | 0.0379 | 0.0923 | 0.0926 | nan | 0.0920 | 0.0926 | 0.0 | 0.0214 | 0.0923 |
| 1.2461 | 4.0 | 40 | 0.9899 | 0.2255 | 0.3670 | 0.6307 | nan | 0.0868 | 0.6473 | 0.0 | 0.0379 | 0.6386 |
| 1.0596 | 6.0 | 60 | 0.7738 | 0.2703 | 0.4188 | 0.7941 | nan | 0.0199 | 0.8177 | 0.0 | 0.0143 | 0.7967 |
| 0.8267 | 8.0 | 80 | 0.6767 | 0.2902 | 0.4512 | 0.8507 | nan | 0.0265 | 0.8758 | 0.0 | 0.0183 | 0.8522 |
| 0.7282 | 10.0 | 100 | 0.5637 | 0.3086 | 0.4776 | 0.9098 | nan | 0.0183 | 0.9370 | 0.0 | 0.0149 | 0.9110 |
| 0.5124 | 12.0 | 120 | 0.4667 | 0.3254 | 0.5053 | 0.9512 | nan | 0.0314 | 0.9792 | 0.0 | 0.0247 | 0.9516 |
| 0.3126 | 14.0 | 140 | 0.3585 | 0.3325 | 0.5147 | 0.9662 | nan | 0.0349 | 0.9945 | 0.0 | 0.0313 | 0.9663 |
| 0.2862 | 16.0 | 160 | 0.2890 | 0.3346 | 0.5168 | 0.9703 | nan | 0.0349 | 0.9988 | 0.0 | 0.0336 | 0.9703 |
| 0.2374 | 18.0 | 180 | 0.2102 | 0.3647 | 0.5637 | 0.9725 | nan | 0.1291 | 0.9982 | 0.0 | 0.1218 | 0.9724 |
| 0.1583 | 20.0 | 200 | 0.1730 | 0.6293 | 0.6574 | 0.9761 | nan | 0.3186 | 0.9961 | nan | 0.2827 | 0.9759 |
| 0.1082 | 22.0 | 220 | 0.1317 | 0.6306 | 0.6566 | 0.9765 | nan | 0.3166 | 0.9966 | nan | 0.2849 | 0.9763 |
| 0.1025 | 24.0 | 240 | 0.1116 | 0.6494 | 0.6766 | 0.9777 | nan | 0.3565 | 0.9967 | nan | 0.3212 | 0.9775 |
| 0.1158 | 26.0 | 260 | 0.0965 | 0.7200 | 0.7978 | 0.9791 | nan | 0.6051 | 0.9905 | nan | 0.4612 | 0.9787 |
| 0.0882 | 28.0 | 280 | 0.0857 | 0.7356 | 0.7857 | 0.9822 | nan | 0.5769 | 0.9946 | nan | 0.4893 | 0.9819 |
| 0.07 | 30.0 | 300 | 0.0829 | 0.6717 | 0.6934 | 0.9799 | nan | 0.3890 | 0.9979 | nan | 0.3637 | 0.9797 |
| 0.0911 | 32.0 | 320 | 0.0677 | 0.7680 | 0.8244 | 0.9843 | nan | 0.6545 | 0.9944 | nan | 0.5521 | 0.9840 |
| 0.0807 | 34.0 | 340 | 0.0696 | 0.7779 | 0.8716 | 0.9834 | nan | 0.7528 | 0.9904 | nan | 0.5727 | 0.9830 |
| 0.0531 | 36.0 | 360 | 0.0611 | 0.7761 | 0.8781 | 0.9829 | nan | 0.7668 | 0.9895 | nan | 0.5698 | 0.9825 |
| 0.0407 | 38.0 | 380 | 0.0567 | 0.7828 | 0.8396 | 0.9854 | nan | 0.6846 | 0.9945 | nan | 0.5805 | 0.9851 |
| 0.0449 | 40.0 | 400 | 0.0639 | 0.7725 | 0.8200 | 0.9851 | nan | 0.6446 | 0.9954 | nan | 0.5602 | 0.9848 |
| 0.0932 | 42.0 | 420 | 0.0503 | 0.7726 | 0.7983 | 0.9861 | nan | 0.5987 | 0.9979 | nan | 0.5593 | 0.9858 |
| 0.0362 | 44.0 | 440 | 0.0634 | 0.7553 | 0.8670 | 0.9805 | nan | 0.7464 | 0.9876 | nan | 0.5306 | 0.9801 |
| 0.0324 | 46.0 | 460 | 0.0501 | 0.8024 | 0.8615 | 0.9867 | nan | 0.7284 | 0.9946 | nan | 0.6184 | 0.9864 |
| 0.036 | 48.0 | 480 | 0.0454 | 0.8010 | 0.8454 | 0.9872 | nan | 0.6947 | 0.9961 | nan | 0.6151 | 0.9869 |
| 0.0356 | 50.0 | 500 | 0.0495 | 0.8061 | 0.8760 | 0.9866 | nan | 0.7585 | 0.9936 | nan | 0.6260 | 0.9863 |
| 0.0333 | 52.0 | 520 | 0.0483 | 0.7743 | 0.8128 | 0.9856 | nan | 0.6292 | 0.9964 | nan | 0.5632 | 0.9853 |
| 0.0277 | 54.0 | 540 | 0.0445 | 0.7714 | 0.7932 | 0.9862 | nan | 0.5880 | 0.9983 | nan | 0.5569 | 0.9859 |
| 0.0298 | 56.0 | 560 | 0.0460 | 0.8034 | 0.8518 | 0.9872 | nan | 0.7078 | 0.9957 | nan | 0.6198 | 0.9869 |
| 0.0256 | 58.0 | 580 | 0.0416 | 0.8181 | 0.8548 | 0.9886 | nan | 0.7126 | 0.9970 | nan | 0.6479 | 0.9883 |
| 0.0336 | 60.0 | 600 | 0.0442 | 0.7957 | 0.8168 | 0.9877 | nan | 0.6351 | 0.9984 | nan | 0.6039 | 0.9875 |
| 0.0283 | 62.0 | 620 | 0.0425 | 0.8141 | 0.8812 | 0.9873 | nan | 0.7684 | 0.9940 | nan | 0.6413 | 0.9870 |
| 0.0198 | 64.0 | 640 | 0.0455 | 0.8059 | 0.8401 | 0.9879 | nan | 0.6830 | 0.9971 | nan | 0.6242 | 0.9876 |
| 0.0181 | 66.0 | 660 | 0.0444 | 0.8144 | 0.8733 | 0.9876 | nan | 0.7519 | 0.9948 | nan | 0.6415 | 0.9873 |
| 0.0188 | 68.0 | 680 | 0.0456 | 0.8179 | 0.8696 | 0.9881 | nan | 0.7436 | 0.9955 | nan | 0.6479 | 0.9878 |
| 0.0165 | 70.0 | 700 | 0.0431 | 0.8208 | 0.8985 | 0.9875 | nan | 0.8040 | 0.9930 | nan | 0.6544 | 0.9872 |
| 0.0184 | 72.0 | 720 | 0.0421 | 0.8165 | 0.8785 | 0.9876 | nan | 0.7625 | 0.9945 | nan | 0.6457 | 0.9874 |
| 0.0336 | 74.0 | 740 | 0.0441 | 0.8081 | 0.8792 | 0.9867 | nan | 0.7650 | 0.9935 | nan | 0.6298 | 0.9864 |
| 0.0165 | 76.0 | 760 | 0.0374 | 0.8200 | 0.8555 | 0.9887 | nan | 0.7139 | 0.9971 | nan | 0.6515 | 0.9885 |
| 0.0127 | 78.0 | 780 | 0.0402 | 0.8222 | 0.8780 | 0.9882 | nan | 0.7608 | 0.9952 | nan | 0.6563 | 0.9880 |
| 0.0152 | 80.0 | 800 | 0.0430 | 0.8230 | 0.8687 | 0.9886 | nan | 0.7413 | 0.9961 | nan | 0.6576 | 0.9883 |
| 0.0143 | 82.0 | 820 | 0.0410 | 0.8087 | 0.8422 | 0.9881 | nan | 0.6873 | 0.9972 | nan | 0.6297 | 0.9878 |
| 0.0134 | 84.0 | 840 | 0.0335 | 0.8429 | 0.8893 | 0.9899 | nan | 0.7823 | 0.9962 | nan | 0.6962 | 0.9897 |
| 0.0122 | 86.0 | 860 | 0.0396 | 0.8312 | 0.8749 | 0.9892 | nan | 0.7534 | 0.9964 | nan | 0.6734 | 0.9890 |
| 0.0126 | 88.0 | 880 | 0.0405 | 0.8341 | 0.8805 | 0.9893 | nan | 0.7649 | 0.9962 | nan | 0.6791 | 0.9891 |
| 0.0121 | 90.0 | 900 | 0.0400 | 0.8390 | 0.8810 | 0.9898 | nan | 0.7654 | 0.9966 | nan | 0.6884 | 0.9895 |
| 0.0104 | 92.0 | 920 | 0.0372 | 0.8453 | 0.8990 | 0.9899 | nan | 0.8024 | 0.9956 | nan | 0.7010 | 0.9896 |
| 0.0128 | 94.0 | 940 | 0.0394 | 0.8411 | 0.8893 | 0.9897 | nan | 0.7825 | 0.9961 | nan | 0.6927 | 0.9895 |
| 0.0124 | 96.0 | 960 | 0.0409 | 0.8395 | 0.8948 | 0.9895 | nan | 0.7943 | 0.9954 | nan | 0.6899 | 0.9892 |
| 0.0095 | 98.0 | 980 | 0.0413 | 0.8258 | 0.8903 | 0.9882 | nan | 0.7863 | 0.9944 | nan | 0.6637 | 0.9880 |
| 0.0147 | 100.0 | 1000 | 0.0468 | 0.8181 | 0.9044 | 0.9870 | nan | 0.8167 | 0.9922 | nan | 0.6496 | 0.9867 |
| 0.0125 | 102.0 | 1020 | 0.0379 | 0.8213 | 0.8961 | 0.9876 | nan | 0.7989 | 0.9933 | nan | 0.6553 | 0.9873 |
| 0.0142 | 104.0 | 1040 | 0.0328 | 0.8449 | 0.9154 | 0.9894 | nan | 0.8366 | 0.9941 | nan | 0.7006 | 0.9892 |
| 0.0101 | 106.0 | 1060 | 0.0428 | 0.8407 | 0.9144 | 0.9891 | nan | 0.8351 | 0.9937 | nan | 0.6927 | 0.9888 |
| 0.0097 | 108.0 | 1080 | 0.0397 | 0.8296 | 0.8847 | 0.9888 | nan | 0.7740 | 0.9953 | nan | 0.6707 | 0.9885 |
| 0.01 | 110.0 | 1100 | 0.0384 | 0.8457 | 0.8935 | 0.9901 | nan | 0.7910 | 0.9961 | nan | 0.7016 | 0.9898 |
| 0.0084 | 112.0 | 1120 | 0.0385 | 0.8421 | 0.8874 | 0.9899 | nan | 0.7784 | 0.9963 | nan | 0.6945 | 0.9896 |
| 0.0086 | 114.0 | 1140 | 0.0413 | 0.8488 | 0.8882 | 0.9905 | nan | 0.7795 | 0.9969 | nan | 0.7074 | 0.9903 |
| 0.0112 | 116.0 | 1160 | 0.0427 | 0.8459 | 0.8942 | 0.9901 | nan | 0.7924 | 0.9961 | nan | 0.7020 | 0.9898 |
| 0.0132 | 118.0 | 1180 | 0.0407 | 0.8510 | 0.9011 | 0.9904 | nan | 0.8062 | 0.9960 | nan | 0.7118 | 0.9901 |
| 0.0084 | 120.0 | 1200 | 0.0432 | 0.8510 | 0.9015 | 0.9903 | nan | 0.8071 | 0.9959 | nan | 0.7118 | 0.9901 |
| 0.008 | 122.0 | 1220 | 0.0431 | 0.8504 | 0.9077 | 0.9901 | nan | 0.8202 | 0.9953 | nan | 0.7109 | 0.9899 |
| 0.0069 | 124.0 | 1240 | 0.0424 | 0.8522 | 0.8982 | 0.9905 | nan | 0.8001 | 0.9963 | nan | 0.7141 | 0.9903 |
| 0.006 | 126.0 | 1260 | 0.0447 | 0.8537 | 0.9114 | 0.9904 | nan | 0.8275 | 0.9953 | nan | 0.7173 | 0.9901 |
| 0.0123 | 128.0 | 1280 | 0.0464 | 0.8529 | 0.9102 | 0.9903 | nan | 0.8250 | 0.9954 | nan | 0.7157 | 0.9901 |
| 0.0073 | 130.0 | 1300 | 0.0441 | 0.8520 | 0.9025 | 0.9904 | nan | 0.8090 | 0.9959 | nan | 0.7139 | 0.9902 |
| 0.0066 | 132.0 | 1320 | 0.0447 | 0.8524 | 0.9086 | 0.9903 | nan | 0.8217 | 0.9954 | nan | 0.7148 | 0.9901 |
| 0.0063 | 134.0 | 1340 | 0.0434 | 0.8546 | 0.9077 | 0.9905 | nan | 0.8197 | 0.9957 | nan | 0.7189 | 0.9903 |
| 0.0068 | 136.0 | 1360 | 0.0475 | 0.8518 | 0.9090 | 0.9902 | nan | 0.8226 | 0.9953 | nan | 0.7135 | 0.9900 |
| 0.0056 | 138.0 | 1380 | 0.0458 | 0.8549 | 0.9122 | 0.9905 | nan | 0.8291 | 0.9954 | nan | 0.7195 | 0.9902 |
| 0.007 | 140.0 | 1400 | 0.0455 | 0.8554 | 0.9126 | 0.9905 | nan | 0.8298 | 0.9954 | nan | 0.7205 | 0.9903 |
| 0.0064 | 142.0 | 1420 | 0.0476 | 0.8542 | 0.9047 | 0.9906 | nan | 0.8133 | 0.9960 | nan | 0.7180 | 0.9903 |
| 0.0065 | 144.0 | 1440 | 0.0437 | 0.8556 | 0.9107 | 0.9906 | nan | 0.8258 | 0.9956 | nan | 0.7210 | 0.9903 |
| 0.005 | 146.0 | 1460 | 0.0455 | 0.8551 | 0.9098 | 0.9905 | nan | 0.8239 | 0.9956 | nan | 0.7198 | 0.9903 |
| 0.005 | 148.0 | 1480 | 0.0458 | 0.8539 | 0.9084 | 0.9905 | nan | 0.8212 | 0.9956 | nan | 0.7175 | 0.9902 |
| 0.0048 | 150.0 | 1500 | 0.0462 | 0.8558 | 0.9041 | 0.9907 | nan | 0.8121 | 0.9962 | nan | 0.7211 | 0.9905 |
| 0.0063 | 152.0 | 1520 | 0.0453 | 0.8560 | 0.9175 | 0.9904 | nan | 0.8400 | 0.9950 | nan | 0.7217 | 0.9902 |
| 0.006 | 154.0 | 1540 | 0.0473 | 0.8531 | 0.9073 | 0.9904 | nan | 0.8190 | 0.9956 | nan | 0.7160 | 0.9902 |
| 0.0043 | 156.0 | 1560 | 0.0448 | 0.8562 | 0.9100 | 0.9906 | nan | 0.8243 | 0.9957 | nan | 0.7220 | 0.9904 |
| 0.0049 | 158.0 | 1580 | 0.0480 | 0.8518 | 0.9137 | 0.9901 | nan | 0.8324 | 0.9949 | nan | 0.7138 | 0.9899 |
| 0.0065 | 160.0 | 1600 | 0.0475 | 0.8556 | 0.9095 | 0.9906 | nan | 0.8233 | 0.9957 | nan | 0.7209 | 0.9903 |
| 0.0052 | 162.0 | 1620 | 0.0479 | 0.8531 | 0.9087 | 0.9904 | nan | 0.8218 | 0.9955 | nan | 0.7161 | 0.9901 |
| 0.0063 | 164.0 | 1640 | 0.0488 | 0.8571 | 0.9115 | 0.9907 | nan | 0.8273 | 0.9956 | nan | 0.7238 | 0.9904 |
| 0.0053 | 166.0 | 1660 | 0.0514 | 0.8515 | 0.9152 | 0.9901 | nan | 0.8357 | 0.9948 | nan | 0.7132 | 0.9898 |
| 0.0046 | 168.0 | 1680 | 0.0476 | 0.8540 | 0.9040 | 0.9906 | nan | 0.8119 | 0.9960 | nan | 0.7177 | 0.9903 |
| 0.0039 | 170.0 | 1700 | 0.0483 | 0.5699 | 0.9121 | 0.9905 | nan | 0.8289 | 0.9954 | 0.0 | 0.7195 | 0.9902 |
| 0.0044 | 172.0 | 1720 | 0.0494 | 0.8550 | 0.9114 | 0.9905 | nan | 0.8273 | 0.9954 | nan | 0.7197 | 0.9902 |
| 0.0051 | 174.0 | 1740 | 0.0503 | 0.8556 | 0.9103 | 0.9906 | nan | 0.8250 | 0.9956 | nan | 0.7208 | 0.9903 |
| 0.0041 | 176.0 | 1760 | 0.0499 | 0.8545 | 0.9118 | 0.9904 | nan | 0.8283 | 0.9954 | nan | 0.7188 | 0.9902 |
| 0.0049 | 178.0 | 1780 | 0.0525 | 0.8541 | 0.9066 | 0.9905 | nan | 0.8174 | 0.9958 | nan | 0.7179 | 0.9903 |
| 0.0048 | 180.0 | 1800 | 0.0496 | 0.8556 | 0.9165 | 0.9904 | nan | 0.8380 | 0.9951 | nan | 0.7210 | 0.9902 |
| 0.008 | 182.0 | 1820 | 0.0487 | 0.8528 | 0.9085 | 0.9904 | nan | 0.8215 | 0.9955 | nan | 0.7155 | 0.9901 |
| 0.0041 | 184.0 | 1840 | 0.0506 | 0.8519 | 0.9125 | 0.9902 | nan | 0.8300 | 0.9950 | nan | 0.7138 | 0.9899 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/safety-utcustom-train-SF30-RGB-b0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF30-RGB-b0
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/safety-utcustom-TRAIN-30 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7492
- Mean Iou: 0.3878
- Mean Accuracy: 0.8431
- Overall Accuracy: 0.9233
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.7575
- Accuracy Unsafe: 0.9287
- Iou Unlabeled: 0.0
- Iou Safe: 0.2418
- Iou Unsafe: 0.9214
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 1.1527 | 5.0 | 10 | 1.1085 | 0.0590 | 0.4585 | 0.1664 | nan | 0.7704 | 0.1465 | 0.0 | 0.0307 | 0.1464 |
| 1.1326 | 10.0 | 20 | 1.1091 | 0.0963 | 0.6082 | 0.2699 | nan | 0.9695 | 0.2470 | 0.0 | 0.0419 | 0.2470 |
| 1.0981 | 15.0 | 30 | 1.0980 | 0.1530 | 0.6989 | 0.4242 | nan | 0.9922 | 0.4055 | 0.0 | 0.0535 | 0.4055 |
| 1.086 | 20.0 | 40 | 1.0822 | 0.1916 | 0.7515 | 0.5256 | nan | 0.9927 | 0.5103 | 0.0 | 0.0644 | 0.5103 |
| 1.0466 | 25.0 | 50 | 1.0541 | 0.2226 | 0.7909 | 0.6043 | nan | 0.9902 | 0.5917 | 0.0 | 0.0761 | 0.5917 |
| 1.0533 | 30.0 | 60 | 1.0249 | 0.2444 | 0.8167 | 0.6580 | nan | 0.9863 | 0.6472 | 0.0 | 0.0861 | 0.6471 |
| 0.9779 | 35.0 | 70 | 1.0010 | 0.2607 | 0.8322 | 0.6966 | nan | 0.9771 | 0.6874 | 0.0 | 0.0951 | 0.6871 |
| 0.9161 | 40.0 | 80 | 0.9695 | 0.2808 | 0.8487 | 0.7412 | nan | 0.9635 | 0.7339 | 0.0 | 0.1091 | 0.7334 |
| 0.9843 | 45.0 | 90 | 0.9403 | 0.3004 | 0.8631 | 0.7823 | nan | 0.9494 | 0.7768 | 0.0 | 0.1254 | 0.7759 |
| 0.9568 | 50.0 | 100 | 0.9071 | 0.3176 | 0.8663 | 0.8169 | nan | 0.9191 | 0.8135 | 0.0 | 0.1412 | 0.8117 |
| 0.8443 | 55.0 | 110 | 0.8627 | 0.3403 | 0.8656 | 0.8576 | nan | 0.8742 | 0.8570 | 0.0 | 0.1672 | 0.8537 |
| 0.8765 | 60.0 | 120 | 0.8488 | 0.3450 | 0.8625 | 0.8657 | nan | 0.8591 | 0.8659 | 0.0 | 0.1729 | 0.8620 |
| 0.899 | 65.0 | 130 | 0.8429 | 0.3481 | 0.8629 | 0.8705 | nan | 0.8548 | 0.8710 | 0.0 | 0.1772 | 0.8669 |
| 0.7713 | 70.0 | 140 | 0.8085 | 0.3632 | 0.8497 | 0.8939 | nan | 0.8026 | 0.8969 | 0.0 | 0.1983 | 0.8912 |
| 0.8505 | 75.0 | 150 | 0.7821 | 0.3762 | 0.8465 | 0.9102 | nan | 0.7786 | 0.9145 | 0.0 | 0.2208 | 0.9079 |
| 0.7352 | 80.0 | 160 | 0.7841 | 0.3819 | 0.8392 | 0.9173 | nan | 0.7557 | 0.9226 | 0.0 | 0.2304 | 0.9153 |
| 0.7205 | 85.0 | 170 | 0.7502 | 0.3974 | 0.8400 | 0.9325 | nan | 0.7413 | 0.9388 | 0.0 | 0.2613 | 0.9309 |
| 0.711 | 90.0 | 180 | 0.7417 | 0.3962 | 0.8428 | 0.9313 | nan | 0.7484 | 0.9373 | 0.0 | 0.2591 | 0.9296 |
| 0.7855 | 95.0 | 190 | 0.7281 | 0.4003 | 0.8439 | 0.9343 | nan | 0.7473 | 0.9404 | 0.0 | 0.2683 | 0.9327 |
| 0.7632 | 100.0 | 200 | 0.7494 | 0.3883 | 0.8419 | 0.9237 | nan | 0.7545 | 0.9293 | 0.0 | 0.2430 | 0.9219 |
| 0.8145 | 105.0 | 210 | 0.7495 | 0.3862 | 0.8412 | 0.9219 | nan | 0.7551 | 0.9274 | 0.0 | 0.2387 | 0.9201 |
| 0.8217 | 110.0 | 220 | 0.7355 | 0.3933 | 0.8422 | 0.9282 | nan | 0.7502 | 0.9341 | 0.0 | 0.2533 | 0.9265 |
| 0.7784 | 115.0 | 230 | 0.7258 | 0.4088 | 0.8411 | 0.9413 | nan | 0.7340 | 0.9481 | 0.0 | 0.2864 | 0.9400 |
| 0.8349 | 120.0 | 240 | 0.7492 | 0.3878 | 0.8431 | 0.9233 | nan | 0.7575 | 0.9287 | 0.0 | 0.2418 | 0.9214 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/safety-utcustom-train-SF30-RGB-b5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF30-RGB-b5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN-30 dataset.
It achieves the following results on the evaluation set:
- Accuracy Safe: 0.8299
- Accuracy Unlabeled: nan
- Accuracy Unsafe: 0.9036
- Iou Safe: 0.3480
- Iou Unlabeled: 0.0
- Iou Unsafe: 0.8996
- Loss: 0.5783
- Mean Accuracy: 0.8668
- Mean Iou: 0.4158
- Overall Accuracy: 0.9013
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Accuracy Safe | Accuracy Unlabeled | Accuracy Unsafe | Iou Safe | Iou Unlabeled | Iou Unsafe | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:-----:|:----:|:-------------:|:------------------:|:---------------:|:--------:|:-------------:|:----------:|:---------------:|:-------------:|:--------:|:----------------:|
| 1.0614 | 5.0 | 10 | 0.1904 | nan | 0.5439 | 0.0682 | 0.0 | 0.5350 | 1.0385 | 0.3672 | 0.2011 | 0.5327 |
| 1.0269 | 10.0 | 20 | 0.4801 | nan | 0.5773 | 0.1795 | 0.0 | 0.5719 | 0.9975 | 0.5287 | 0.2505 | 0.5742 |
| 1.0005 | 15.0 | 30 | 0.6270 | nan | 0.6316 | 0.2261 | 0.0 | 0.6269 | 0.9428 | 0.6293 | 0.2843 | 0.6315 |
| 0.9716 | 20.0 | 40 | 0.6870 | nan | 0.6802 | 0.2529 | 0.0 | 0.6756 | 0.8918 | 0.6836 | 0.3095 | 0.6804 |
| 0.9255 | 25.0 | 50 | 0.7339 | nan | 0.7081 | 0.2805 | 0.0 | 0.7037 | 0.8542 | 0.7210 | 0.3281 | 0.7089 |
| 0.9256 | 30.0 | 60 | 0.7705 | nan | 0.7229 | 0.2781 | 0.0 | 0.7189 | 0.8330 | 0.7467 | 0.3324 | 0.7244 |
| 0.8167 | 35.0 | 70 | 0.7622 | nan | 0.7349 | 0.3004 | 0.0 | 0.7311 | 0.8114 | 0.7485 | 0.3438 | 0.7358 |
| 0.7927 | 40.0 | 80 | 0.7776 | nan | 0.7594 | 0.3154 | 0.0 | 0.7559 | 0.7793 | 0.7685 | 0.3571 | 0.7600 |
| 0.8227 | 45.0 | 90 | 0.8020 | nan | 0.7821 | 0.3152 | 0.0 | 0.7789 | 0.7574 | 0.7920 | 0.3647 | 0.7827 |
| 0.81 | 50.0 | 100 | 0.8114 | nan | 0.7983 | 0.3140 | 0.0 | 0.7955 | 0.7370 | 0.8049 | 0.3698 | 0.7987 |
| 0.7198 | 55.0 | 110 | 0.8002 | nan | 0.8194 | 0.3303 | 0.0 | 0.8162 | 0.7118 | 0.8098 | 0.3822 | 0.8188 |
| 0.7523 | 60.0 | 120 | 0.7877 | nan | 0.8482 | 0.3457 | 0.0 | 0.8443 | 0.6832 | 0.8179 | 0.3967 | 0.8462 |
| 0.7239 | 65.0 | 130 | 0.8112 | nan | 0.8485 | 0.3197 | 0.0 | 0.8453 | 0.6745 | 0.8298 | 0.3883 | 0.8473 |
| 0.6235 | 70.0 | 140 | 0.7906 | nan | 0.8686 | 0.3507 | 0.0 | 0.8649 | 0.6419 | 0.8296 | 0.4052 | 0.8662 |
| 0.6887 | 75.0 | 150 | 0.7951 | nan | 0.8758 | 0.3568 | 0.0 | 0.8720 | 0.6302 | 0.8354 | 0.4096 | 0.8732 |
| 0.6079 | 80.0 | 160 | 0.8069 | nan | 0.8879 | 0.3561 | 0.0 | 0.8841 | 0.6120 | 0.8474 | 0.4134 | 0.8853 |
| 0.6022 | 85.0 | 170 | 0.8126 | nan | 0.9062 | 0.3699 | 0.0 | 0.9020 | 0.5849 | 0.8594 | 0.4240 | 0.9032 |
| 0.5748 | 90.0 | 180 | 0.8053 | nan | 0.9047 | 0.3793 | 0.0 | 0.9005 | 0.5802 | 0.8550 | 0.4266 | 0.9016 |
| 0.6228 | 95.0 | 190 | 0.8164 | nan | 0.9050 | 0.3624 | 0.0 | 0.9007 | 0.5793 | 0.8607 | 0.4210 | 0.9022 |
| 0.5332 | 100.0 | 200 | 0.8214 | nan | 0.9134 | 0.3623 | 0.0 | 0.9091 | 0.5616 | 0.8674 | 0.4238 | 0.9105 |
| 0.6655 | 105.0 | 210 | 0.8262 | nan | 0.9072 | 0.3572 | 0.0 | 0.9031 | 0.5688 | 0.8667 | 0.4201 | 0.9046 |
| 0.5835 | 110.0 | 220 | 0.8233 | nan | 0.9092 | 0.3599 | 0.0 | 0.9050 | 0.5653 | 0.8662 | 0.4216 | 0.9064 |
| 0.5764 | 115.0 | 230 | 0.8099 | nan | 0.9165 | 0.3783 | 0.0 | 0.9120 | 0.5460 | 0.8632 | 0.4301 | 0.9131 |
| 0.5621 | 120.0 | 240 | 0.8299 | nan | 0.9036 | 0.3480 | 0.0 | 0.8996 | 0.5783 | 0.8668 | 0.4158 | 0.9013 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/safety-utcustom-train-SF30-RGBD-b5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF30-RGBD-b5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/safety-utcustom-TRAIN-30 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1952
- Mean Iou: 0.6486
- Mean Accuracy: 0.7199
- Overall Accuracy: 0.9704
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.4523
- Accuracy Unsafe: 0.9874
- Iou Unlabeled: nan
- Iou Safe: 0.3271
- Iou Unsafe: 0.9700
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 0.8758 | 5.0 | 10 | 0.9831 | 0.3415 | 0.6100 | 0.9154 | nan | 0.2839 | 0.9362 | 0.0 | 0.1099 | 0.9147 |
| 0.7637 | 10.0 | 20 | 0.7236 | 0.3771 | 0.6275 | 0.9582 | nan | 0.2745 | 0.9806 | 0.0 | 0.1735 | 0.9578 |
| 0.6698 | 15.0 | 30 | 0.5510 | 0.3789 | 0.6286 | 0.9593 | nan | 0.2755 | 0.9818 | 0.0 | 0.1776 | 0.9590 |
| 0.5935 | 20.0 | 40 | 0.4632 | 0.3822 | 0.6388 | 0.9591 | nan | 0.2967 | 0.9809 | 0.0 | 0.1877 | 0.9588 |
| 0.5108 | 25.0 | 50 | 0.4239 | 0.3814 | 0.6492 | 0.9560 | nan | 0.3214 | 0.9769 | 0.0 | 0.1887 | 0.9556 |
| 0.4597 | 30.0 | 60 | 0.4134 | 0.3845 | 0.6422 | 0.9596 | nan | 0.3034 | 0.9811 | 0.0 | 0.1943 | 0.9592 |
| 0.4307 | 35.0 | 70 | 0.3918 | 0.3900 | 0.6516 | 0.9594 | nan | 0.3229 | 0.9803 | 0.0 | 0.2111 | 0.9590 |
| 0.367 | 40.0 | 80 | 0.3578 | 0.3885 | 0.6600 | 0.9582 | nan | 0.3415 | 0.9784 | 0.0 | 0.2077 | 0.9577 |
| 0.3249 | 45.0 | 90 | 0.3395 | 0.3921 | 0.6587 | 0.9607 | nan | 0.3360 | 0.9813 | 0.0 | 0.2161 | 0.9603 |
| 0.292 | 50.0 | 100 | 0.3124 | 0.3969 | 0.6622 | 0.9633 | nan | 0.3408 | 0.9837 | 0.0 | 0.2280 | 0.9629 |
| 0.2766 | 55.0 | 110 | 0.2820 | 0.4078 | 0.6878 | 0.9644 | nan | 0.3925 | 0.9831 | 0.0 | 0.2594 | 0.9639 |
| 0.2347 | 60.0 | 120 | 0.2673 | 0.6169 | 0.7000 | 0.9641 | nan | 0.4181 | 0.9820 | nan | 0.2701 | 0.9636 |
| 0.226 | 65.0 | 130 | 0.2350 | 0.6280 | 0.6854 | 0.9698 | nan | 0.3818 | 0.9891 | nan | 0.2865 | 0.9694 |
| 0.3262 | 70.0 | 140 | 0.2354 | 0.6338 | 0.7125 | 0.9674 | nan | 0.4402 | 0.9848 | nan | 0.3006 | 0.9670 |
| 0.1991 | 75.0 | 150 | 0.2231 | 0.6363 | 0.7169 | 0.9676 | nan | 0.4492 | 0.9846 | nan | 0.3056 | 0.9671 |
| 0.2106 | 80.0 | 160 | 0.2089 | 0.6399 | 0.7152 | 0.9688 | nan | 0.4444 | 0.9860 | nan | 0.3114 | 0.9683 |
| 0.1995 | 85.0 | 170 | 0.1969 | 0.6493 | 0.7179 | 0.9709 | nan | 0.4478 | 0.9880 | nan | 0.3281 | 0.9704 |
| 0.1981 | 90.0 | 180 | 0.1909 | 0.6503 | 0.7136 | 0.9716 | nan | 0.4381 | 0.9892 | nan | 0.3293 | 0.9712 |
| 0.1875 | 95.0 | 190 | 0.1965 | 0.6473 | 0.7231 | 0.9697 | nan | 0.4598 | 0.9864 | nan | 0.3254 | 0.9692 |
| 0.2088 | 100.0 | 200 | 0.1952 | 0.6486 | 0.7199 | 0.9704 | nan | 0.4523 | 0.9874 | nan | 0.3271 | 0.9700 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/safety-utcustom-train-SF30-RGBD-b0 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# safety-utcustom-train-SF30-RGBD-b0
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/safety-utcustom-TRAIN-30 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3227
- Mean Iou: 0.5786
- Mean Accuracy: 0.6222
- Overall Accuracy: 0.9658
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.2552
- Accuracy Unsafe: 0.9891
- Iou Unlabeled: nan
- Iou Safe: 0.1917
- Iou Unsafe: 0.9655
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Safe | Accuracy Unsafe | Iou Unlabeled | Iou Safe | Iou Unsafe |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------:|
| 0.9925 | 5.0 | 10 | 1.0612 | 0.3101 | 0.5355 | 0.8847 | nan | 0.1625 | 0.9085 | 0.0 | 0.0462 | 0.8841 |
| 0.8589 | 10.0 | 20 | 0.9441 | 0.3303 | 0.5181 | 0.9537 | nan | 0.0529 | 0.9833 | 0.0 | 0.0373 | 0.9537 |
| 0.7016 | 15.0 | 30 | 0.7764 | 0.3274 | 0.5069 | 0.9654 | nan | 0.0172 | 0.9965 | 0.0 | 0.0169 | 0.9654 |
| 0.6093 | 20.0 | 40 | 0.6213 | 0.3339 | 0.5219 | 0.9603 | nan | 0.0538 | 0.9901 | 0.0 | 0.0415 | 0.9603 |
| 0.5281 | 25.0 | 50 | 0.5431 | 0.3355 | 0.5213 | 0.9650 | nan | 0.0476 | 0.9951 | 0.0 | 0.0417 | 0.9649 |
| 0.5077 | 30.0 | 60 | 0.5043 | 0.3361 | 0.5231 | 0.9638 | nan | 0.0524 | 0.9938 | 0.0 | 0.0444 | 0.9638 |
| 0.5197 | 35.0 | 70 | 0.4579 | 0.3379 | 0.5249 | 0.9657 | nan | 0.0543 | 0.9956 | 0.0 | 0.0481 | 0.9656 |
| 0.4477 | 40.0 | 80 | 0.4340 | 0.3395 | 0.5271 | 0.9662 | nan | 0.0583 | 0.9960 | 0.0 | 0.0523 | 0.9661 |
| 0.4371 | 45.0 | 90 | 0.4033 | 0.3407 | 0.5287 | 0.9669 | nan | 0.0607 | 0.9967 | 0.0 | 0.0553 | 0.9669 |
| 0.3972 | 50.0 | 100 | 0.3975 | 0.3420 | 0.5292 | 0.9686 | nan | 0.0600 | 0.9985 | 0.0 | 0.0574 | 0.9686 |
| 0.4101 | 55.0 | 110 | 0.3777 | 0.5215 | 0.5381 | 0.9691 | nan | 0.0778 | 0.9983 | nan | 0.0740 | 0.9690 |
| 0.3528 | 60.0 | 120 | 0.3625 | 0.5360 | 0.5587 | 0.9668 | nan | 0.1229 | 0.9945 | nan | 0.1054 | 0.9667 |
| 0.3552 | 65.0 | 130 | 0.3733 | 0.5550 | 0.5829 | 0.9671 | nan | 0.1726 | 0.9932 | nan | 0.1430 | 0.9669 |
| 0.3798 | 70.0 | 140 | 0.3444 | 0.5598 | 0.5753 | 0.9722 | nan | 0.1515 | 0.9991 | nan | 0.1476 | 0.9720 |
| 0.3235 | 75.0 | 150 | 0.3461 | 0.5651 | 0.6041 | 0.9650 | nan | 0.2187 | 0.9895 | nan | 0.1656 | 0.9647 |
| 0.3457 | 80.0 | 160 | 0.3335 | 0.5638 | 0.5880 | 0.9695 | nan | 0.1806 | 0.9954 | nan | 0.1582 | 0.9693 |
| 0.318 | 85.0 | 170 | 0.3334 | 0.5739 | 0.6114 | 0.9667 | nan | 0.2321 | 0.9908 | nan | 0.1814 | 0.9665 |
| 0.32 | 90.0 | 180 | 0.3307 | 0.5779 | 0.6112 | 0.9684 | nan | 0.2299 | 0.9926 | nan | 0.1877 | 0.9681 |
| 0.3122 | 95.0 | 190 | 0.3263 | 0.5778 | 0.6175 | 0.9667 | nan | 0.2447 | 0.9904 | nan | 0.1891 | 0.9664 |
| 0.3554 | 100.0 | 200 | 0.3227 | 0.5786 | 0.6222 | 0.9658 | nan | 0.2552 | 0.9891 | nan | 0.1917 | 0.9655 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"safe",
"unsafe"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5626
- Mean Iou: 0.4261
- Mean Accuracy: 0.7046
- Overall Accuracy: 0.9598
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4247
- Accuracy Undropoff: 0.9846
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.3192
- Iou Undropoff: 0.9590
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1029 | 3.33 | 10 | 1.0852 | 0.1637 | 0.3955 | 0.4522 | nan | 0.3333 | 0.4577 | 0.0 | 0.0410 | 0.4501 |
| 1.0856 | 6.67 | 20 | 1.0764 | 0.1911 | 0.5086 | 0.5025 | nan | 0.5153 | 0.5019 | 0.0 | 0.0761 | 0.4972 |
| 1.0755 | 10.0 | 30 | 1.0611 | 0.2252 | 0.6367 | 0.5749 | nan | 0.7045 | 0.5688 | 0.0 | 0.1104 | 0.5652 |
| 1.0285 | 13.33 | 40 | 1.0382 | 0.2622 | 0.7487 | 0.6568 | nan | 0.8494 | 0.6479 | 0.0 | 0.1420 | 0.6445 |
| 0.9935 | 16.67 | 50 | 1.0151 | 0.2893 | 0.7814 | 0.7201 | nan | 0.8486 | 0.7141 | 0.0 | 0.1580 | 0.7099 |
| 0.9927 | 20.0 | 60 | 0.9834 | 0.3160 | 0.7963 | 0.7816 | nan | 0.8124 | 0.7801 | 0.0 | 0.1735 | 0.7744 |
| 0.938 | 23.33 | 70 | 0.9585 | 0.3308 | 0.8084 | 0.8127 | nan | 0.8036 | 0.8131 | 0.0 | 0.1860 | 0.8065 |
| 0.9169 | 26.67 | 80 | 0.9376 | 0.3457 | 0.8169 | 0.8376 | nan | 0.7943 | 0.8396 | 0.0 | 0.2048 | 0.8324 |
| 0.8814 | 30.0 | 90 | 0.9003 | 0.3624 | 0.8086 | 0.8691 | nan | 0.7421 | 0.8750 | 0.0 | 0.2220 | 0.8651 |
| 0.8618 | 33.33 | 100 | 0.8894 | 0.3669 | 0.8184 | 0.8761 | nan | 0.7550 | 0.8817 | 0.0 | 0.2287 | 0.8720 |
| 0.8388 | 36.67 | 110 | 0.8618 | 0.3774 | 0.8096 | 0.8926 | nan | 0.7187 | 0.9006 | 0.0 | 0.2431 | 0.8892 |
| 0.8878 | 40.0 | 120 | 0.8269 | 0.3929 | 0.7937 | 0.9140 | nan | 0.6618 | 0.9257 | 0.0 | 0.2671 | 0.9116 |
| 0.8066 | 43.33 | 130 | 0.8074 | 0.4014 | 0.7955 | 0.9225 | nan | 0.6562 | 0.9348 | 0.0 | 0.2839 | 0.9202 |
| 0.8084 | 46.67 | 140 | 0.7919 | 0.4023 | 0.7932 | 0.9248 | nan | 0.6487 | 0.9376 | 0.0 | 0.2844 | 0.9226 |
| 0.7415 | 50.0 | 150 | 0.7707 | 0.4068 | 0.7850 | 0.9309 | nan | 0.6249 | 0.9451 | 0.0 | 0.2913 | 0.9290 |
| 0.7508 | 53.33 | 160 | 0.7326 | 0.4154 | 0.7660 | 0.9415 | nan | 0.5735 | 0.9585 | 0.0 | 0.3063 | 0.9400 |
| 0.7312 | 56.67 | 170 | 0.7126 | 0.4196 | 0.7636 | 0.9449 | nan | 0.5646 | 0.9625 | 0.0 | 0.3155 | 0.9435 |
| 0.6442 | 60.0 | 180 | 0.6869 | 0.4255 | 0.7500 | 0.9509 | nan | 0.5296 | 0.9704 | 0.0 | 0.3268 | 0.9497 |
| 0.6633 | 63.33 | 190 | 0.6765 | 0.4286 | 0.7524 | 0.9525 | nan | 0.5328 | 0.9719 | 0.0 | 0.3343 | 0.9513 |
| 0.7247 | 66.67 | 200 | 0.6557 | 0.4307 | 0.7335 | 0.9568 | nan | 0.4886 | 0.9785 | 0.0 | 0.3364 | 0.9558 |
| 0.6133 | 70.0 | 210 | 0.6369 | 0.4298 | 0.7279 | 0.9573 | nan | 0.4761 | 0.9796 | 0.0 | 0.3330 | 0.9564 |
| 0.6309 | 73.33 | 220 | 0.6309 | 0.4298 | 0.7437 | 0.9547 | nan | 0.5123 | 0.9752 | 0.0 | 0.3356 | 0.9536 |
| 0.6373 | 76.67 | 230 | 0.6094 | 0.4276 | 0.7197 | 0.9577 | nan | 0.4585 | 0.9808 | 0.0 | 0.3262 | 0.9568 |
| 0.8436 | 80.0 | 240 | 0.6195 | 0.4341 | 0.7438 | 0.9569 | nan | 0.5101 | 0.9776 | 0.0 | 0.3463 | 0.9559 |
| 0.6172 | 83.33 | 250 | 0.6207 | 0.4323 | 0.7384 | 0.9570 | nan | 0.4987 | 0.9782 | 0.0 | 0.3409 | 0.9560 |
| 0.6048 | 86.67 | 260 | 0.5949 | 0.4272 | 0.7136 | 0.9586 | nan | 0.4449 | 0.9824 | 0.0 | 0.3237 | 0.9578 |
| 0.7887 | 90.0 | 270 | 0.6007 | 0.4308 | 0.7282 | 0.9580 | nan | 0.4760 | 0.9803 | 0.0 | 0.3353 | 0.9571 |
| 0.605 | 93.33 | 280 | 0.5883 | 0.4284 | 0.7157 | 0.9589 | nan | 0.4489 | 0.9825 | 0.0 | 0.3271 | 0.9581 |
| 0.5964 | 96.67 | 290 | 0.5872 | 0.4277 | 0.7134 | 0.9590 | nan | 0.4439 | 0.9828 | 0.0 | 0.3251 | 0.9581 |
| 0.6097 | 100.0 | 300 | 0.5903 | 0.4300 | 0.7240 | 0.9582 | nan | 0.4669 | 0.9810 | 0.0 | 0.3325 | 0.9573 |
| 0.5886 | 103.33 | 310 | 0.5710 | 0.4250 | 0.7035 | 0.9594 | nan | 0.4227 | 0.9843 | 0.0 | 0.3162 | 0.9586 |
| 0.6079 | 106.67 | 320 | 0.5695 | 0.4277 | 0.7112 | 0.9594 | nan | 0.4390 | 0.9835 | 0.0 | 0.3245 | 0.9586 |
| 0.8054 | 110.0 | 330 | 0.5746 | 0.4308 | 0.7237 | 0.9588 | nan | 0.4657 | 0.9816 | 0.0 | 0.3344 | 0.9579 |
| 0.5496 | 113.33 | 340 | 0.5631 | 0.4285 | 0.7129 | 0.9595 | nan | 0.4424 | 0.9835 | 0.0 | 0.3269 | 0.9587 |
| 0.6271 | 116.67 | 350 | 0.5761 | 0.4302 | 0.7214 | 0.9589 | nan | 0.4608 | 0.9819 | 0.0 | 0.3326 | 0.9580 |
| 0.5511 | 120.0 | 360 | 0.5626 | 0.4261 | 0.7046 | 0.9598 | nan | 0.4247 | 0.9846 | 0.0 | 0.3192 | 0.9590 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6222
- Mean Iou: 0.4086
- Mean Accuracy: 0.6638
- Overall Accuracy: 0.9583
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3408
- Accuracy Undropoff: 0.9869
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.2682
- Iou Undropoff: 0.9576
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1857 | 3.33 | 10 | 1.1215 | 0.0852 | 0.2039 | 0.0995 | nan | 0.3183 | 0.0894 | 0.0 | 0.1663 | 0.0893 |
| 1.1597 | 6.67 | 20 | 1.1165 | 0.1437 | 0.3568 | 0.2326 | nan | 0.4930 | 0.2206 | 0.0 | 0.2108 | 0.2203 |
| 1.1528 | 10.0 | 30 | 1.1040 | 0.1938 | 0.5140 | 0.3464 | nan | 0.6978 | 0.3301 | 0.0 | 0.2517 | 0.3297 |
| 1.0852 | 13.33 | 40 | 1.0896 | 0.2243 | 0.6289 | 0.4219 | nan | 0.8561 | 0.4018 | 0.0 | 0.2717 | 0.4011 |
| 1.0388 | 16.67 | 50 | 1.0511 | 0.2700 | 0.6748 | 0.5498 | nan | 0.8120 | 0.5377 | 0.0 | 0.2744 | 0.5357 |
| 1.0426 | 20.0 | 60 | 1.0089 | 0.3147 | 0.6787 | 0.6640 | nan | 0.6949 | 0.6625 | 0.0 | 0.2857 | 0.6583 |
| 0.9621 | 23.33 | 70 | 0.9921 | 0.3374 | 0.7060 | 0.7392 | nan | 0.6695 | 0.7424 | 0.0 | 0.2760 | 0.7361 |
| 0.925 | 26.67 | 80 | 0.9464 | 0.3591 | 0.7031 | 0.7964 | nan | 0.6007 | 0.8054 | 0.0 | 0.2807 | 0.7965 |
| 0.8872 | 30.0 | 90 | 0.8993 | 0.3858 | 0.7074 | 0.8676 | nan | 0.5316 | 0.8831 | 0.0 | 0.2888 | 0.8686 |
| 0.8751 | 33.33 | 100 | 0.8974 | 0.3896 | 0.7177 | 0.8817 | nan | 0.5379 | 0.8976 | 0.0 | 0.2866 | 0.8822 |
| 0.8571 | 36.67 | 110 | 0.8501 | 0.4028 | 0.7162 | 0.9122 | nan | 0.5011 | 0.9312 | 0.0 | 0.2953 | 0.9131 |
| 0.8866 | 40.0 | 120 | 0.8434 | 0.4072 | 0.7240 | 0.9252 | nan | 0.5032 | 0.9448 | 0.0 | 0.2963 | 0.9254 |
| 0.8127 | 43.33 | 130 | 0.7922 | 0.4142 | 0.7089 | 0.9404 | nan | 0.4548 | 0.9629 | 0.0 | 0.3025 | 0.9402 |
| 0.8062 | 46.67 | 140 | 0.7917 | 0.4123 | 0.7103 | 0.9432 | nan | 0.4548 | 0.9658 | 0.0 | 0.2943 | 0.9425 |
| 0.7512 | 50.0 | 150 | 0.7646 | 0.4142 | 0.7059 | 0.9478 | nan | 0.4404 | 0.9713 | 0.0 | 0.2955 | 0.9470 |
| 0.7554 | 53.33 | 160 | 0.7497 | 0.4161 | 0.7001 | 0.9510 | nan | 0.4248 | 0.9754 | 0.0 | 0.2981 | 0.9502 |
| 0.7468 | 56.67 | 170 | 0.7326 | 0.4177 | 0.6989 | 0.9535 | nan | 0.4195 | 0.9782 | 0.0 | 0.3005 | 0.9527 |
| 0.6506 | 60.0 | 180 | 0.7184 | 0.4173 | 0.6992 | 0.9541 | nan | 0.4196 | 0.9789 | 0.0 | 0.2987 | 0.9533 |
| 0.6761 | 63.33 | 190 | 0.7037 | 0.4142 | 0.6884 | 0.9546 | nan | 0.3964 | 0.9805 | 0.0 | 0.2886 | 0.9539 |
| 0.7245 | 66.67 | 200 | 0.6960 | 0.4122 | 0.6821 | 0.9553 | nan | 0.3824 | 0.9818 | 0.0 | 0.2820 | 0.9545 |
| 0.6514 | 70.0 | 210 | 0.6755 | 0.4104 | 0.6705 | 0.9573 | nan | 0.3559 | 0.9852 | 0.0 | 0.2746 | 0.9566 |
| 0.6433 | 73.33 | 220 | 0.6804 | 0.4180 | 0.6954 | 0.9556 | nan | 0.4100 | 0.9809 | 0.0 | 0.2991 | 0.9548 |
| 0.6686 | 76.67 | 230 | 0.6608 | 0.4107 | 0.6694 | 0.9578 | nan | 0.3531 | 0.9858 | 0.0 | 0.2749 | 0.9571 |
| 0.9091 | 80.0 | 240 | 0.6701 | 0.4160 | 0.6922 | 0.9557 | nan | 0.4031 | 0.9813 | 0.0 | 0.2930 | 0.9549 |
| 0.6346 | 83.33 | 250 | 0.6725 | 0.4166 | 0.6904 | 0.9563 | nan | 0.3987 | 0.9821 | 0.0 | 0.2944 | 0.9555 |
| 0.6303 | 86.67 | 260 | 0.6460 | 0.4090 | 0.6670 | 0.9576 | nan | 0.3481 | 0.9858 | 0.0 | 0.2702 | 0.9569 |
| 0.8923 | 90.0 | 270 | 0.6550 | 0.4131 | 0.6799 | 0.9568 | nan | 0.3760 | 0.9837 | 0.0 | 0.2832 | 0.9561 |
| 0.6334 | 93.33 | 280 | 0.6468 | 0.4100 | 0.6708 | 0.9572 | nan | 0.3566 | 0.9851 | 0.0 | 0.2734 | 0.9565 |
| 0.6242 | 96.67 | 290 | 0.6483 | 0.4106 | 0.6728 | 0.9572 | nan | 0.3607 | 0.9848 | 0.0 | 0.2754 | 0.9565 |
| 0.7401 | 100.0 | 300 | 0.6470 | 0.4129 | 0.6796 | 0.9569 | nan | 0.3755 | 0.9838 | 0.0 | 0.2825 | 0.9561 |
| 0.6148 | 103.33 | 310 | 0.6242 | 0.4081 | 0.6633 | 0.9582 | nan | 0.3397 | 0.9868 | 0.0 | 0.2668 | 0.9575 |
| 0.6345 | 106.67 | 320 | 0.6287 | 0.4093 | 0.6670 | 0.9579 | nan | 0.3478 | 0.9862 | 0.0 | 0.2708 | 0.9573 |
| 0.8711 | 110.0 | 330 | 0.6396 | 0.4130 | 0.6782 | 0.9572 | nan | 0.3720 | 0.9843 | 0.0 | 0.2826 | 0.9565 |
| 0.5812 | 113.33 | 340 | 0.6266 | 0.4101 | 0.6689 | 0.9580 | nan | 0.3517 | 0.9861 | 0.0 | 0.2731 | 0.9573 |
| 0.6503 | 116.67 | 350 | 0.6384 | 0.4130 | 0.6775 | 0.9573 | nan | 0.3706 | 0.9845 | 0.0 | 0.2824 | 0.9566 |
| 0.5923 | 120.0 | 360 | 0.6222 | 0.4086 | 0.6638 | 0.9583 | nan | 0.3408 | 0.9869 | 0.0 | 0.2682 | 0.9576 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_3
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3958
- Mean Iou: 0.6134
- Mean Accuracy: 0.6480
- Overall Accuracy: 0.9627
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3026
- Accuracy Undropoff: 0.9933
- Iou Unlabeled: nan
- Iou Dropoff: 0.2645
- Iou Undropoff: 0.9622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1015 | 3.33 | 10 | 1.0990 | 0.1184 | 0.4572 | 0.3294 | nan | 0.5975 | 0.3170 | 0.0 | 0.0427 | 0.3124 |
| 1.0478 | 6.67 | 20 | 1.0756 | 0.2121 | 0.7082 | 0.5654 | nan | 0.8648 | 0.5515 | 0.0 | 0.0879 | 0.5482 |
| 1.0451 | 10.0 | 30 | 1.0269 | 0.2846 | 0.8053 | 0.7334 | nan | 0.8842 | 0.7264 | 0.0 | 0.1313 | 0.7226 |
| 0.9095 | 13.33 | 40 | 0.9476 | 0.3360 | 0.7905 | 0.8411 | nan | 0.7349 | 0.8460 | 0.0 | 0.1723 | 0.8358 |
| 0.8091 | 16.67 | 50 | 0.8425 | 0.3858 | 0.7645 | 0.9167 | nan | 0.5975 | 0.9315 | 0.0 | 0.2429 | 0.9145 |
| 0.8094 | 20.0 | 60 | 0.7489 | 0.4090 | 0.7445 | 0.9417 | nan | 0.5281 | 0.9608 | 0.0 | 0.2866 | 0.9403 |
| 0.6945 | 23.33 | 70 | 0.7005 | 0.4148 | 0.7472 | 0.9453 | nan | 0.5298 | 0.9646 | 0.0 | 0.3004 | 0.9440 |
| 0.6337 | 26.67 | 80 | 0.6331 | 0.6267 | 0.7334 | 0.9499 | nan | 0.4958 | 0.9709 | nan | 0.3047 | 0.9488 |
| 0.603 | 30.0 | 90 | 0.5726 | 0.6222 | 0.6935 | 0.9559 | nan | 0.4057 | 0.9814 | nan | 0.2894 | 0.9551 |
| 0.5903 | 33.33 | 100 | 0.5841 | 0.6248 | 0.7151 | 0.9526 | nan | 0.4546 | 0.9757 | nan | 0.2980 | 0.9516 |
| 0.5514 | 36.67 | 110 | 0.5157 | 0.6227 | 0.6818 | 0.9585 | nan | 0.3781 | 0.9854 | nan | 0.2875 | 0.9578 |
| 0.6464 | 40.0 | 120 | 0.5141 | 0.6240 | 0.6889 | 0.9575 | nan | 0.3941 | 0.9836 | nan | 0.2912 | 0.9568 |
| 0.5198 | 43.33 | 130 | 0.4890 | 0.4141 | 0.6762 | 0.9591 | nan | 0.3657 | 0.9866 | 0.0 | 0.2838 | 0.9585 |
| 0.5077 | 46.67 | 140 | 0.4855 | 0.4118 | 0.6719 | 0.9588 | nan | 0.3572 | 0.9866 | 0.0 | 0.2773 | 0.9581 |
| 0.4817 | 50.0 | 150 | 0.4710 | 0.6182 | 0.6733 | 0.9587 | nan | 0.3602 | 0.9864 | nan | 0.2784 | 0.9580 |
| 0.4713 | 53.33 | 160 | 0.4669 | 0.6196 | 0.6683 | 0.9603 | nan | 0.3479 | 0.9887 | nan | 0.2795 | 0.9597 |
| 0.4516 | 56.67 | 170 | 0.4486 | 0.4107 | 0.6586 | 0.9612 | nan | 0.3265 | 0.9906 | 0.0 | 0.2715 | 0.9606 |
| 0.4059 | 60.0 | 180 | 0.4361 | 0.6136 | 0.6548 | 0.9612 | nan | 0.3187 | 0.9909 | nan | 0.2665 | 0.9606 |
| 0.4142 | 63.33 | 190 | 0.4267 | 0.6115 | 0.6503 | 0.9615 | nan | 0.3089 | 0.9917 | nan | 0.2621 | 0.9610 |
| 0.4393 | 66.67 | 200 | 0.4188 | 0.6035 | 0.6354 | 0.9623 | nan | 0.2768 | 0.9940 | nan | 0.2452 | 0.9618 |
| 0.4071 | 70.0 | 210 | 0.4224 | 0.6137 | 0.6528 | 0.9617 | nan | 0.3138 | 0.9917 | nan | 0.2663 | 0.9612 |
| 0.4009 | 73.33 | 220 | 0.4205 | 0.6136 | 0.6540 | 0.9614 | nan | 0.3167 | 0.9912 | nan | 0.2664 | 0.9608 |
| 0.4043 | 76.67 | 230 | 0.4148 | 0.6132 | 0.6514 | 0.9619 | nan | 0.3108 | 0.9920 | nan | 0.2651 | 0.9613 |
| 0.6302 | 80.0 | 240 | 0.4116 | 0.6133 | 0.6513 | 0.9619 | nan | 0.3105 | 0.9921 | nan | 0.2653 | 0.9614 |
| 0.3859 | 83.33 | 250 | 0.4113 | 0.6141 | 0.6543 | 0.9615 | nan | 0.3174 | 0.9913 | nan | 0.2673 | 0.9609 |
| 0.3791 | 86.67 | 260 | 0.4033 | 0.6042 | 0.6361 | 0.9623 | nan | 0.2782 | 0.9940 | nan | 0.2465 | 0.9619 |
| 0.5716 | 90.0 | 270 | 0.4088 | 0.6168 | 0.6575 | 0.9617 | nan | 0.3237 | 0.9913 | nan | 0.2724 | 0.9612 |
| 0.3803 | 93.33 | 280 | 0.4024 | 0.6171 | 0.6565 | 0.9621 | nan | 0.3211 | 0.9918 | nan | 0.2727 | 0.9615 |
| 0.371 | 96.67 | 290 | 0.3979 | 0.6166 | 0.6539 | 0.9625 | nan | 0.3154 | 0.9925 | nan | 0.2713 | 0.9620 |
| 0.3656 | 100.0 | 300 | 0.3992 | 0.6204 | 0.6615 | 0.9621 | nan | 0.3316 | 0.9913 | nan | 0.2793 | 0.9615 |
| 0.3674 | 103.33 | 310 | 0.3930 | 0.6110 | 0.6433 | 0.9630 | nan | 0.2925 | 0.9941 | nan | 0.2594 | 0.9625 |
| 0.378 | 106.67 | 320 | 0.3925 | 0.6124 | 0.6459 | 0.9629 | nan | 0.2981 | 0.9937 | nan | 0.2623 | 0.9624 |
| 0.5766 | 110.0 | 330 | 0.3965 | 0.6192 | 0.6594 | 0.9621 | nan | 0.3272 | 0.9916 | nan | 0.2768 | 0.9616 |
| 0.3513 | 113.33 | 340 | 0.3927 | 0.6161 | 0.6523 | 0.9627 | nan | 0.3118 | 0.9928 | nan | 0.2701 | 0.9622 |
| 0.3731 | 116.67 | 350 | 0.3975 | 0.6200 | 0.6613 | 0.9620 | nan | 0.3315 | 0.9912 | nan | 0.2785 | 0.9614 |
| 0.3489 | 120.0 | 360 | 0.3958 | 0.6134 | 0.6480 | 0.9627 | nan | 0.3026 | 0.9933 | nan | 0.2645 | 0.9622 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_4 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_4
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3032
- Mean Iou: 0.6301
- Mean Accuracy: 0.6710
- Overall Accuracy: 0.9634
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3502
- Accuracy Undropoff: 0.9918
- Iou Unlabeled: nan
- Iou Dropoff: 0.2973
- Iou Undropoff: 0.9628
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0311 | 3.33 | 10 | 1.0742 | 0.2063 | 0.6373 | 0.5492 | nan | 0.7339 | 0.5406 | 0.0 | 0.0848 | 0.5342 |
| 0.9741 | 6.67 | 20 | 1.0151 | 0.3072 | 0.8067 | 0.7686 | nan | 0.8485 | 0.7649 | 0.0 | 0.1619 | 0.7596 |
| 0.9441 | 10.0 | 30 | 0.9345 | 0.3432 | 0.8327 | 0.8408 | nan | 0.8239 | 0.8416 | 0.0 | 0.1947 | 0.8348 |
| 0.8222 | 13.33 | 40 | 0.8358 | 0.3643 | 0.8236 | 0.8773 | nan | 0.7646 | 0.8825 | 0.0 | 0.2199 | 0.8731 |
| 0.7243 | 16.67 | 50 | 0.7135 | 0.3924 | 0.7838 | 0.9194 | nan | 0.6350 | 0.9325 | 0.0 | 0.2603 | 0.9170 |
| 0.7213 | 20.0 | 60 | 0.6358 | 0.4054 | 0.7528 | 0.9374 | nan | 0.5502 | 0.9554 | 0.0 | 0.2805 | 0.9359 |
| 0.5836 | 23.33 | 70 | 0.5604 | 0.4211 | 0.7412 | 0.9505 | nan | 0.5115 | 0.9708 | 0.0 | 0.3139 | 0.9493 |
| 0.5285 | 26.67 | 80 | 0.5227 | 0.4281 | 0.7570 | 0.9519 | nan | 0.5432 | 0.9708 | 0.0 | 0.3335 | 0.9507 |
| 0.4955 | 30.0 | 90 | 0.4478 | 0.4191 | 0.6945 | 0.9581 | nan | 0.4052 | 0.9837 | 0.0 | 0.2999 | 0.9573 |
| 0.4646 | 33.33 | 100 | 0.4537 | 0.4215 | 0.6998 | 0.9584 | nan | 0.4161 | 0.9835 | 0.0 | 0.3069 | 0.9576 |
| 0.4356 | 36.67 | 110 | 0.4454 | 0.4224 | 0.7105 | 0.9569 | nan | 0.4402 | 0.9808 | 0.0 | 0.3112 | 0.9560 |
| 0.4829 | 40.0 | 120 | 0.4099 | 0.4196 | 0.6901 | 0.9593 | nan | 0.3947 | 0.9854 | 0.0 | 0.3002 | 0.9585 |
| 0.4051 | 43.33 | 130 | 0.3911 | 0.6267 | 0.6784 | 0.9607 | nan | 0.3687 | 0.9881 | nan | 0.2933 | 0.9600 |
| 0.3916 | 46.67 | 140 | 0.3841 | 0.4183 | 0.6897 | 0.9586 | nan | 0.3946 | 0.9847 | 0.0 | 0.2969 | 0.9579 |
| 0.3713 | 50.0 | 150 | 0.3788 | 0.4248 | 0.7001 | 0.9600 | nan | 0.4149 | 0.9853 | 0.0 | 0.3150 | 0.9593 |
| 0.359 | 53.33 | 160 | 0.3719 | 0.6254 | 0.6761 | 0.9607 | nan | 0.3639 | 0.9883 | nan | 0.2908 | 0.9601 |
| 0.3459 | 56.67 | 170 | 0.3610 | 0.6245 | 0.6774 | 0.9601 | nan | 0.3673 | 0.9876 | nan | 0.2895 | 0.9594 |
| 0.3099 | 60.0 | 180 | 0.3455 | 0.6246 | 0.6687 | 0.9620 | nan | 0.3468 | 0.9905 | nan | 0.2879 | 0.9614 |
| 0.3124 | 63.33 | 190 | 0.3436 | 0.6277 | 0.6763 | 0.9615 | nan | 0.3634 | 0.9892 | nan | 0.2946 | 0.9608 |
| 0.3283 | 66.67 | 200 | 0.3344 | 0.6237 | 0.6607 | 0.9634 | nan | 0.3286 | 0.9928 | nan | 0.2845 | 0.9629 |
| 0.2974 | 70.0 | 210 | 0.3412 | 0.6312 | 0.6817 | 0.9616 | nan | 0.3746 | 0.9888 | nan | 0.3014 | 0.9609 |
| 0.3003 | 73.33 | 220 | 0.3322 | 0.6320 | 0.6877 | 0.9607 | nan | 0.3881 | 0.9872 | nan | 0.3041 | 0.9600 |
| 0.2968 | 76.67 | 230 | 0.3289 | 0.6344 | 0.6807 | 0.9628 | nan | 0.3712 | 0.9902 | nan | 0.3066 | 0.9622 |
| 0.4415 | 80.0 | 240 | 0.3333 | 0.6320 | 0.6800 | 0.9622 | nan | 0.3705 | 0.9896 | nan | 0.3024 | 0.9615 |
| 0.2836 | 83.33 | 250 | 0.3271 | 0.6287 | 0.6757 | 0.9619 | nan | 0.3617 | 0.9897 | nan | 0.2960 | 0.9613 |
| 0.2762 | 86.67 | 260 | 0.3203 | 0.6263 | 0.6673 | 0.9629 | nan | 0.3429 | 0.9916 | nan | 0.2903 | 0.9623 |
| 0.3901 | 90.0 | 270 | 0.3186 | 0.6290 | 0.6787 | 0.9614 | nan | 0.3685 | 0.9889 | nan | 0.2971 | 0.9608 |
| 0.2755 | 93.33 | 280 | 0.3086 | 0.6283 | 0.6693 | 0.9631 | nan | 0.3468 | 0.9917 | nan | 0.2940 | 0.9625 |
| 0.2652 | 96.67 | 290 | 0.3099 | 0.6302 | 0.6779 | 0.9620 | nan | 0.3661 | 0.9896 | nan | 0.2991 | 0.9614 |
| 0.2627 | 100.0 | 300 | 0.3056 | 0.6294 | 0.6728 | 0.9627 | nan | 0.3548 | 0.9909 | nan | 0.2966 | 0.9622 |
| 0.2647 | 103.33 | 310 | 0.3036 | 0.6292 | 0.6689 | 0.9635 | nan | 0.3458 | 0.9921 | nan | 0.2954 | 0.9629 |
| 0.2697 | 106.67 | 320 | 0.3043 | 0.6298 | 0.6713 | 0.9632 | nan | 0.3510 | 0.9916 | nan | 0.2970 | 0.9626 |
| 0.3878 | 110.0 | 330 | 0.3037 | 0.6297 | 0.6740 | 0.9626 | nan | 0.3573 | 0.9907 | nan | 0.2973 | 0.9620 |
| 0.2521 | 113.33 | 340 | 0.3013 | 0.6300 | 0.6714 | 0.9633 | nan | 0.3513 | 0.9916 | nan | 0.2974 | 0.9627 |
| 0.2663 | 116.67 | 350 | 0.3060 | 0.6298 | 0.6766 | 0.9621 | nan | 0.3634 | 0.9899 | nan | 0.2981 | 0.9615 |
| 0.2507 | 120.0 | 360 | 0.3032 | 0.6301 | 0.6710 | 0.9634 | nan | 0.3502 | 0.9918 | nan | 0.2973 | 0.9628 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_5
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2543
- Mean Iou: 0.6541
- Mean Accuracy: 0.6937
- Overall Accuracy: 0.9665
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3944
- Accuracy Undropoff: 0.9930
- Iou Unlabeled: nan
- Iou Dropoff: 0.3424
- Iou Undropoff: 0.9659
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.2123 | 3.33 | 10 | 1.1206 | 0.0793 | 0.1898 | 0.1888 | nan | 0.1908 | 0.1887 | 0.0 | 0.0494 | 0.1886 |
| 1.0927 | 6.67 | 20 | 1.0985 | 0.2196 | 0.5875 | 0.5351 | nan | 0.6450 | 0.5300 | 0.0 | 0.1290 | 0.5298 |
| 1.0578 | 10.0 | 30 | 0.9786 | 0.3662 | 0.7562 | 0.8622 | nan | 0.6400 | 0.8725 | 0.0 | 0.2367 | 0.8621 |
| 0.788 | 13.33 | 40 | 0.7940 | 0.4289 | 0.7505 | 0.9456 | nan | 0.5365 | 0.9646 | 0.0 | 0.3398 | 0.9468 |
| 0.6353 | 16.67 | 50 | 0.6206 | 0.4182 | 0.6840 | 0.9583 | nan | 0.3830 | 0.9850 | 0.0 | 0.2966 | 0.9581 |
| 0.6944 | 20.0 | 60 | 0.5213 | 0.4211 | 0.6766 | 0.9623 | nan | 0.3631 | 0.9901 | 0.0 | 0.3014 | 0.9620 |
| 0.5046 | 23.33 | 70 | 0.4765 | 0.4239 | 0.6796 | 0.9634 | nan | 0.3683 | 0.9910 | 0.0 | 0.3090 | 0.9628 |
| 0.4684 | 26.67 | 80 | 0.4643 | 0.3982 | 0.6347 | 0.9598 | nan | 0.2779 | 0.9914 | 0.0 | 0.2352 | 0.9593 |
| 0.4401 | 30.0 | 90 | 0.4483 | 0.4110 | 0.6507 | 0.9632 | nan | 0.3077 | 0.9936 | 0.0 | 0.2703 | 0.9627 |
| 0.4268 | 33.33 | 100 | 0.4366 | 0.6489 | 0.7001 | 0.9638 | nan | 0.4108 | 0.9895 | nan | 0.3347 | 0.9632 |
| 0.3939 | 36.67 | 110 | 0.4027 | 0.4272 | 0.6798 | 0.9650 | nan | 0.3670 | 0.9927 | 0.0 | 0.3171 | 0.9644 |
| 0.4472 | 40.0 | 120 | 0.4159 | 0.6428 | 0.6896 | 0.9638 | nan | 0.3887 | 0.9905 | nan | 0.3225 | 0.9632 |
| 0.3618 | 43.33 | 130 | 0.3765 | 0.6325 | 0.6671 | 0.9650 | nan | 0.3402 | 0.9939 | nan | 0.3006 | 0.9644 |
| 0.3456 | 46.67 | 140 | 0.3671 | 0.6395 | 0.6816 | 0.9643 | nan | 0.3715 | 0.9917 | nan | 0.3153 | 0.9637 |
| 0.3352 | 50.0 | 150 | 0.3572 | 0.6431 | 0.6839 | 0.9650 | nan | 0.3755 | 0.9923 | nan | 0.3218 | 0.9644 |
| 0.3143 | 53.33 | 160 | 0.3451 | 0.6351 | 0.6702 | 0.9651 | nan | 0.3467 | 0.9938 | nan | 0.3056 | 0.9646 |
| 0.3009 | 56.67 | 170 | 0.3357 | 0.6449 | 0.6941 | 0.9636 | nan | 0.3984 | 0.9898 | nan | 0.3267 | 0.9630 |
| 0.2765 | 60.0 | 180 | 0.3188 | 0.6458 | 0.6934 | 0.9641 | nan | 0.3965 | 0.9903 | nan | 0.3282 | 0.9634 |
| 0.2703 | 63.33 | 190 | 0.3179 | 0.6385 | 0.6732 | 0.9656 | nan | 0.3525 | 0.9940 | nan | 0.3119 | 0.9650 |
| 0.2746 | 66.67 | 200 | 0.3067 | 0.6385 | 0.6702 | 0.9662 | nan | 0.3456 | 0.9949 | nan | 0.3113 | 0.9656 |
| 0.2516 | 70.0 | 210 | 0.2992 | 0.6569 | 0.6968 | 0.9667 | nan | 0.4008 | 0.9929 | nan | 0.3477 | 0.9661 |
| 0.2503 | 73.33 | 220 | 0.2999 | 0.6671 | 0.7198 | 0.9659 | nan | 0.4497 | 0.9899 | nan | 0.3689 | 0.9652 |
| 0.2443 | 76.67 | 230 | 0.2816 | 0.6439 | 0.6750 | 0.9668 | nan | 0.3547 | 0.9952 | nan | 0.3215 | 0.9663 |
| 0.3757 | 80.0 | 240 | 0.2907 | 0.6593 | 0.7063 | 0.9659 | nan | 0.4215 | 0.9911 | nan | 0.3535 | 0.9652 |
| 0.2306 | 83.33 | 250 | 0.2767 | 0.6439 | 0.6807 | 0.9658 | nan | 0.3680 | 0.9935 | nan | 0.3226 | 0.9652 |
| 0.2216 | 86.67 | 260 | 0.2792 | 0.6583 | 0.7018 | 0.9663 | nan | 0.4115 | 0.9920 | nan | 0.3509 | 0.9657 |
| 0.3202 | 90.0 | 270 | 0.2681 | 0.6425 | 0.6789 | 0.9657 | nan | 0.3642 | 0.9936 | nan | 0.3199 | 0.9652 |
| 0.2174 | 93.33 | 280 | 0.2633 | 0.6467 | 0.6860 | 0.9657 | nan | 0.3791 | 0.9928 | nan | 0.3284 | 0.9651 |
| 0.2086 | 96.67 | 290 | 0.2658 | 0.6476 | 0.6900 | 0.9652 | nan | 0.3880 | 0.9920 | nan | 0.3306 | 0.9646 |
| 0.2042 | 100.0 | 300 | 0.2651 | 0.6486 | 0.6898 | 0.9655 | nan | 0.3873 | 0.9923 | nan | 0.3322 | 0.9649 |
| 0.2071 | 103.33 | 310 | 0.2597 | 0.6445 | 0.6792 | 0.9662 | nan | 0.3643 | 0.9941 | nan | 0.3233 | 0.9657 |
| 0.2097 | 106.67 | 320 | 0.2596 | 0.6615 | 0.7062 | 0.9665 | nan | 0.4206 | 0.9918 | nan | 0.3571 | 0.9658 |
| 0.3118 | 110.0 | 330 | 0.2557 | 0.6516 | 0.6928 | 0.9659 | nan | 0.3931 | 0.9924 | nan | 0.3380 | 0.9653 |
| 0.1956 | 113.33 | 340 | 0.2517 | 0.6494 | 0.6865 | 0.9664 | nan | 0.3794 | 0.9936 | nan | 0.3331 | 0.9658 |
| 0.201 | 116.67 | 350 | 0.2570 | 0.6573 | 0.7032 | 0.9658 | nan | 0.4151 | 0.9913 | nan | 0.3494 | 0.9651 |
| 0.1952 | 120.0 | 360 | 0.2543 | 0.6541 | 0.6937 | 0.9665 | nan | 0.3944 | 0.9930 | nan | 0.3424 | 0.9659 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_6 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_6
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1833
- Mean Iou: 0.6595
- Mean Accuracy: 0.7018
- Overall Accuracy: 0.9666
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4113
- Accuracy Undropoff: 0.9924
- Iou Unlabeled: nan
- Iou Dropoff: 0.3531
- Iou Undropoff: 0.9660
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1234 | 3.33 | 10 | 1.0973 | 0.1779 | 0.5629 | 0.3723 | nan | 0.7720 | 0.3538 | 0.0 | 0.1801 | 0.3536 |
| 0.975 | 6.67 | 20 | 1.0260 | 0.3499 | 0.8180 | 0.8109 | nan | 0.8259 | 0.8102 | 0.0 | 0.2428 | 0.8069 |
| 0.9464 | 10.0 | 30 | 0.8130 | 0.4297 | 0.7456 | 0.9502 | nan | 0.5212 | 0.9700 | 0.0 | 0.3385 | 0.9507 |
| 0.6167 | 13.33 | 40 | 0.6001 | 0.4451 | 0.7438 | 0.9617 | nan | 0.5048 | 0.9829 | 0.0 | 0.3743 | 0.9610 |
| 0.4818 | 16.67 | 50 | 0.4629 | 0.4491 | 0.7237 | 0.9666 | nan | 0.4573 | 0.9902 | 0.0 | 0.3815 | 0.9659 |
| 0.4733 | 20.0 | 60 | 0.4379 | 0.4335 | 0.7067 | 0.9630 | nan | 0.4256 | 0.9879 | 0.0 | 0.3383 | 0.9623 |
| 0.3843 | 23.33 | 70 | 0.4073 | 0.4310 | 0.6872 | 0.9652 | nan | 0.3821 | 0.9922 | 0.0 | 0.3283 | 0.9646 |
| 0.3579 | 26.67 | 80 | 0.3731 | 0.4354 | 0.6999 | 0.9651 | nan | 0.4090 | 0.9908 | 0.0 | 0.3418 | 0.9644 |
| 0.3212 | 30.0 | 90 | 0.3655 | 0.6589 | 0.7129 | 0.9647 | nan | 0.4366 | 0.9892 | nan | 0.3538 | 0.9640 |
| 0.3088 | 33.33 | 100 | 0.3306 | 0.6310 | 0.6689 | 0.9641 | nan | 0.3451 | 0.9928 | nan | 0.2985 | 0.9635 |
| 0.2825 | 36.67 | 110 | 0.3253 | 0.6633 | 0.7103 | 0.9663 | nan | 0.4293 | 0.9912 | nan | 0.3609 | 0.9657 |
| 0.3029 | 40.0 | 120 | 0.3130 | 0.6556 | 0.7079 | 0.9645 | nan | 0.4264 | 0.9895 | nan | 0.3474 | 0.9638 |
| 0.252 | 43.33 | 130 | 0.2898 | 0.6703 | 0.7310 | 0.9652 | nan | 0.4740 | 0.9880 | nan | 0.3762 | 0.9645 |
| 0.2395 | 46.67 | 140 | 0.2843 | 0.6587 | 0.7088 | 0.9653 | nan | 0.4275 | 0.9902 | nan | 0.3527 | 0.9646 |
| 0.2308 | 50.0 | 150 | 0.2744 | 0.6481 | 0.6870 | 0.9659 | nan | 0.3811 | 0.9930 | nan | 0.3309 | 0.9653 |
| 0.2125 | 53.33 | 160 | 0.2579 | 0.6555 | 0.7028 | 0.9653 | nan | 0.4147 | 0.9909 | nan | 0.3464 | 0.9647 |
| 0.1953 | 56.67 | 170 | 0.2551 | 0.6549 | 0.7054 | 0.9647 | nan | 0.4209 | 0.9899 | nan | 0.3458 | 0.9641 |
| 0.1743 | 60.0 | 180 | 0.2377 | 0.6393 | 0.6768 | 0.9651 | nan | 0.3605 | 0.9931 | nan | 0.3140 | 0.9646 |
| 0.17 | 63.33 | 190 | 0.2342 | 0.6564 | 0.7002 | 0.9660 | nan | 0.4086 | 0.9918 | nan | 0.3474 | 0.9654 |
| 0.173 | 66.67 | 200 | 0.2296 | 0.6629 | 0.7095 | 0.9664 | nan | 0.4277 | 0.9913 | nan | 0.3602 | 0.9657 |
| 0.1487 | 70.0 | 210 | 0.2152 | 0.6525 | 0.6861 | 0.9673 | nan | 0.3777 | 0.9946 | nan | 0.3383 | 0.9667 |
| 0.1501 | 73.33 | 220 | 0.2179 | 0.6593 | 0.7019 | 0.9665 | nan | 0.4116 | 0.9923 | nan | 0.3527 | 0.9659 |
| 0.1419 | 76.67 | 230 | 0.2055 | 0.6605 | 0.7057 | 0.9663 | nan | 0.4199 | 0.9916 | nan | 0.3553 | 0.9656 |
| 0.2049 | 80.0 | 240 | 0.2060 | 0.6563 | 0.7004 | 0.9659 | nan | 0.4091 | 0.9917 | nan | 0.3472 | 0.9653 |
| 0.1339 | 83.33 | 250 | 0.2006 | 0.6514 | 0.6921 | 0.9660 | nan | 0.3916 | 0.9926 | nan | 0.3375 | 0.9654 |
| 0.1262 | 86.67 | 260 | 0.1963 | 0.6559 | 0.7033 | 0.9654 | nan | 0.4158 | 0.9908 | nan | 0.3470 | 0.9647 |
| 0.179 | 90.0 | 270 | 0.1907 | 0.6549 | 0.6976 | 0.9660 | nan | 0.4032 | 0.9921 | nan | 0.3445 | 0.9654 |
| 0.1216 | 93.33 | 280 | 0.1901 | 0.6561 | 0.6994 | 0.9661 | nan | 0.4068 | 0.9920 | nan | 0.3468 | 0.9655 |
| 0.1144 | 96.67 | 290 | 0.1917 | 0.6565 | 0.7017 | 0.9658 | nan | 0.4119 | 0.9915 | nan | 0.3478 | 0.9652 |
| 0.1095 | 100.0 | 300 | 0.1900 | 0.6621 | 0.7108 | 0.9659 | nan | 0.4309 | 0.9907 | nan | 0.3590 | 0.9653 |
| 0.1144 | 103.33 | 310 | 0.1848 | 0.6595 | 0.6994 | 0.9670 | nan | 0.4058 | 0.9930 | nan | 0.3526 | 0.9664 |
| 0.1144 | 106.67 | 320 | 0.1849 | 0.6585 | 0.7011 | 0.9665 | nan | 0.4100 | 0.9922 | nan | 0.3512 | 0.9658 |
| 0.1574 | 110.0 | 330 | 0.1852 | 0.6592 | 0.7025 | 0.9664 | nan | 0.4128 | 0.9921 | nan | 0.3526 | 0.9658 |
| 0.1085 | 113.33 | 340 | 0.1819 | 0.6595 | 0.7016 | 0.9667 | nan | 0.4108 | 0.9924 | nan | 0.3530 | 0.9660 |
| 0.1099 | 116.67 | 350 | 0.1856 | 0.6602 | 0.7057 | 0.9662 | nan | 0.4198 | 0.9915 | nan | 0.3548 | 0.9656 |
| 0.1048 | 120.0 | 360 | 0.1833 | 0.6595 | 0.7018 | 0.9666 | nan | 0.4113 | 0.9924 | nan | 0.3531 | 0.9660 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b0_7 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b0_7
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1457
- Mean Iou: 0.6795
- Mean Accuracy: 0.7207
- Overall Accuracy: 0.9691
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4481
- Accuracy Undropoff: 0.9932
- Iou Unlabeled: nan
- Iou Dropoff: 0.3907
- Iou Undropoff: 0.9684
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1505 | 3.33 | 10 | 1.1103 | 0.1106 | 0.6036 | 0.2919 | nan | 0.9456 | 0.2616 | 0.0 | 0.0703 | 0.2616 |
| 0.9635 | 6.67 | 20 | 1.0114 | 0.3710 | 0.8470 | 0.8737 | nan | 0.8177 | 0.8763 | 0.0 | 0.2435 | 0.8694 |
| 0.9358 | 10.0 | 30 | 0.8242 | 0.4206 | 0.7727 | 0.9440 | nan | 0.5848 | 0.9606 | 0.0 | 0.3194 | 0.9425 |
| 0.579 | 13.33 | 40 | 0.5703 | 0.4525 | 0.7615 | 0.9633 | nan | 0.5402 | 0.9829 | 0.0 | 0.3951 | 0.9624 |
| 0.4411 | 16.67 | 50 | 0.4166 | 0.4529 | 0.7380 | 0.9667 | nan | 0.4872 | 0.9889 | 0.0 | 0.3928 | 0.9659 |
| 0.4311 | 20.0 | 60 | 0.3843 | 0.6678 | 0.7156 | 0.9667 | nan | 0.4400 | 0.9911 | nan | 0.3695 | 0.9661 |
| 0.3437 | 23.33 | 70 | 0.3590 | 0.4347 | 0.6956 | 0.9655 | nan | 0.3995 | 0.9918 | 0.0 | 0.3392 | 0.9649 |
| 0.3136 | 26.67 | 80 | 0.3198 | 0.6259 | 0.6622 | 0.9638 | nan | 0.3312 | 0.9931 | nan | 0.2885 | 0.9633 |
| 0.2682 | 30.0 | 90 | 0.2919 | 0.6187 | 0.6470 | 0.9648 | nan | 0.2984 | 0.9957 | nan | 0.2730 | 0.9643 |
| 0.2521 | 33.33 | 100 | 0.2957 | 0.6448 | 0.6845 | 0.9653 | nan | 0.3764 | 0.9926 | nan | 0.3248 | 0.9648 |
| 0.2287 | 36.67 | 110 | 0.2747 | 0.6800 | 0.7256 | 0.9685 | nan | 0.4591 | 0.9921 | nan | 0.3922 | 0.9678 |
| 0.2203 | 40.0 | 120 | 0.2537 | 0.7108 | 0.7687 | 0.9706 | nan | 0.5472 | 0.9902 | nan | 0.4517 | 0.9699 |
| 0.1964 | 43.33 | 130 | 0.2356 | 0.6689 | 0.7054 | 0.9686 | nan | 0.4167 | 0.9941 | nan | 0.3699 | 0.9680 |
| 0.1776 | 46.67 | 140 | 0.2205 | 0.6729 | 0.7137 | 0.9684 | nan | 0.4343 | 0.9931 | nan | 0.3780 | 0.9677 |
| 0.1675 | 50.0 | 150 | 0.2061 | 0.6809 | 0.7244 | 0.9689 | nan | 0.4562 | 0.9926 | nan | 0.3936 | 0.9682 |
| 0.148 | 53.33 | 160 | 0.1954 | 0.6924 | 0.7418 | 0.9694 | nan | 0.4920 | 0.9915 | nan | 0.4160 | 0.9687 |
| 0.1364 | 56.67 | 170 | 0.1915 | 0.6869 | 0.7415 | 0.9681 | nan | 0.4928 | 0.9902 | nan | 0.4064 | 0.9674 |
| 0.1171 | 60.0 | 180 | 0.1776 | 0.7206 | 0.7816 | 0.9714 | nan | 0.5734 | 0.9899 | nan | 0.4706 | 0.9707 |
| 0.1169 | 63.33 | 190 | 0.1754 | 0.6580 | 0.6853 | 0.9689 | nan | 0.3741 | 0.9965 | nan | 0.3476 | 0.9684 |
| 0.1178 | 66.67 | 200 | 0.1676 | 0.6783 | 0.7233 | 0.9684 | nan | 0.4545 | 0.9922 | nan | 0.3888 | 0.9677 |
| 0.1016 | 70.0 | 210 | 0.1670 | 0.6633 | 0.6985 | 0.9682 | nan | 0.4025 | 0.9944 | nan | 0.3590 | 0.9676 |
| 0.1025 | 73.33 | 220 | 0.1648 | 0.6789 | 0.7154 | 0.9696 | nan | 0.4366 | 0.9943 | nan | 0.3888 | 0.9690 |
| 0.0956 | 76.67 | 230 | 0.1607 | 0.6684 | 0.7103 | 0.9677 | nan | 0.4279 | 0.9927 | nan | 0.3697 | 0.9671 |
| 0.1443 | 80.0 | 240 | 0.1611 | 0.6747 | 0.7134 | 0.9688 | nan | 0.4332 | 0.9937 | nan | 0.3811 | 0.9682 |
| 0.0902 | 83.33 | 250 | 0.1600 | 0.6713 | 0.7060 | 0.9691 | nan | 0.4174 | 0.9946 | nan | 0.3740 | 0.9685 |
| 0.0846 | 86.67 | 260 | 0.1559 | 0.6772 | 0.7263 | 0.9677 | nan | 0.4613 | 0.9912 | nan | 0.3874 | 0.9670 |
| 0.1166 | 90.0 | 270 | 0.1587 | 0.6615 | 0.6984 | 0.9677 | nan | 0.4030 | 0.9939 | nan | 0.3559 | 0.9671 |
| 0.0825 | 93.33 | 280 | 0.1538 | 0.6684 | 0.7068 | 0.9682 | nan | 0.4199 | 0.9936 | nan | 0.3692 | 0.9676 |
| 0.0769 | 96.67 | 290 | 0.1527 | 0.6649 | 0.7033 | 0.9679 | nan | 0.4130 | 0.9936 | nan | 0.3626 | 0.9673 |
| 0.0722 | 100.0 | 300 | 0.1473 | 0.6832 | 0.7247 | 0.9694 | nan | 0.4563 | 0.9932 | nan | 0.3976 | 0.9688 |
| 0.0779 | 103.33 | 310 | 0.1465 | 0.6809 | 0.7200 | 0.9695 | nan | 0.4462 | 0.9937 | nan | 0.3930 | 0.9689 |
| 0.0771 | 106.67 | 320 | 0.1494 | 0.6673 | 0.7052 | 0.9682 | nan | 0.4167 | 0.9937 | nan | 0.3670 | 0.9676 |
| 0.1082 | 110.0 | 330 | 0.1479 | 0.6753 | 0.7182 | 0.9683 | nan | 0.4438 | 0.9926 | nan | 0.3830 | 0.9677 |
| 0.0726 | 113.33 | 340 | 0.1451 | 0.6765 | 0.7159 | 0.9689 | nan | 0.4384 | 0.9935 | nan | 0.3846 | 0.9683 |
| 0.0743 | 116.67 | 350 | 0.1469 | 0.6814 | 0.7249 | 0.9689 | nan | 0.4571 | 0.9927 | nan | 0.3946 | 0.9683 |
| 0.0703 | 120.0 | 360 | 0.1457 | 0.6795 | 0.7207 | 0.9691 | nan | 0.4481 | 0.9932 | nan | 0.3907 | 0.9684 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4979
- Mean Iou: 0.4170
- Mean Accuracy: 0.6846
- Overall Accuracy: 0.9603
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3839
- Accuracy Undropoff: 0.9853
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.2914
- Iou Undropoff: 0.9597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0495 | 5.0 | 10 | 1.0890 | 0.1852 | 0.3572 | 0.4990 | nan | 0.2026 | 0.5119 | 0.0 | 0.0474 | 0.5081 |
| 0.9941 | 10.0 | 20 | 1.0479 | 0.3452 | 0.8357 | 0.8479 | nan | 0.8225 | 0.8490 | 0.0 | 0.1931 | 0.8425 |
| 0.9448 | 15.0 | 30 | 0.9839 | 0.3790 | 0.8217 | 0.9010 | nan | 0.7351 | 0.9082 | 0.0 | 0.2390 | 0.8980 |
| 0.8912 | 20.0 | 40 | 0.9041 | 0.3845 | 0.7150 | 0.9247 | nan | 0.4863 | 0.9437 | 0.0 | 0.2303 | 0.9233 |
| 0.8458 | 25.0 | 50 | 0.7997 | 0.3835 | 0.6687 | 0.9326 | nan | 0.3808 | 0.9565 | 0.0 | 0.2188 | 0.9316 |
| 0.8299 | 30.0 | 60 | 0.7387 | 0.3751 | 0.6333 | 0.9326 | nan | 0.3068 | 0.9597 | 0.0 | 0.1934 | 0.9318 |
| 0.7518 | 35.0 | 70 | 0.6810 | 0.3791 | 0.6322 | 0.9404 | nan | 0.2961 | 0.9683 | 0.0 | 0.1975 | 0.9397 |
| 0.6943 | 40.0 | 80 | 0.6322 | 0.3703 | 0.6069 | 0.9422 | nan | 0.2411 | 0.9726 | 0.0 | 0.1691 | 0.9417 |
| 0.6617 | 45.0 | 90 | 0.6071 | 0.3780 | 0.6240 | 0.9454 | nan | 0.2734 | 0.9746 | 0.0 | 0.1892 | 0.9449 |
| 0.634 | 50.0 | 100 | 0.5932 | 0.3765 | 0.6106 | 0.9497 | nan | 0.2407 | 0.9805 | 0.0 | 0.1802 | 0.9494 |
| 0.6157 | 55.0 | 110 | 0.5829 | 0.3982 | 0.6538 | 0.9524 | nan | 0.3281 | 0.9795 | 0.0 | 0.2425 | 0.9520 |
| 0.5814 | 60.0 | 120 | 0.5708 | 0.4038 | 0.6699 | 0.9533 | nan | 0.3608 | 0.9790 | 0.0 | 0.2586 | 0.9528 |
| 0.5988 | 65.0 | 130 | 0.5575 | 0.3974 | 0.6456 | 0.9569 | nan | 0.3061 | 0.9851 | 0.0 | 0.2357 | 0.9564 |
| 0.5583 | 70.0 | 140 | 0.5530 | 0.4224 | 0.7075 | 0.9576 | nan | 0.4346 | 0.9803 | 0.0 | 0.3103 | 0.9570 |
| 0.5596 | 75.0 | 150 | 0.5264 | 0.4034 | 0.6522 | 0.9598 | nan | 0.3167 | 0.9877 | 0.0 | 0.2510 | 0.9593 |
| 0.5524 | 80.0 | 160 | 0.5392 | 0.4208 | 0.7109 | 0.9567 | nan | 0.4429 | 0.9790 | 0.0 | 0.3065 | 0.9560 |
| 0.5294 | 85.0 | 170 | 0.5257 | 0.4161 | 0.6913 | 0.9582 | nan | 0.4002 | 0.9824 | 0.0 | 0.2909 | 0.9576 |
| 0.5477 | 90.0 | 180 | 0.5178 | 0.4207 | 0.6962 | 0.9591 | nan | 0.4095 | 0.9829 | 0.0 | 0.3035 | 0.9584 |
| 0.528 | 95.0 | 190 | 0.5185 | 0.4183 | 0.6939 | 0.9590 | nan | 0.4047 | 0.9831 | 0.0 | 0.2965 | 0.9584 |
| 0.5144 | 100.0 | 200 | 0.5004 | 0.4153 | 0.6788 | 0.9604 | nan | 0.3716 | 0.9860 | 0.0 | 0.2859 | 0.9599 |
| 0.5313 | 105.0 | 210 | 0.5032 | 0.4199 | 0.7005 | 0.9585 | nan | 0.4191 | 0.9819 | 0.0 | 0.3020 | 0.9578 |
| 0.5172 | 110.0 | 220 | 0.4993 | 0.4188 | 0.6931 | 0.9591 | nan | 0.4030 | 0.9832 | 0.0 | 0.2978 | 0.9585 |
| 0.5124 | 115.0 | 230 | 0.4999 | 0.4167 | 0.6828 | 0.9606 | nan | 0.3799 | 0.9858 | 0.0 | 0.2901 | 0.9600 |
| 0.5025 | 120.0 | 240 | 0.4979 | 0.4170 | 0.6846 | 0.9603 | nan | 0.3839 | 0.9853 | 0.0 | 0.2914 | 0.9597 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_2
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4274
- Mean Iou: 0.6102
- Mean Accuracy: 0.6603
- Overall Accuracy: 0.9607
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3326
- Accuracy Undropoff: 0.9879
- Iou Unlabeled: nan
- Iou Dropoff: 0.2602
- Iou Undropoff: 0.9601
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0555 | 5.0 | 10 | 1.0734 | 0.2254 | 0.4211 | 0.6018 | nan | 0.2240 | 0.6182 | 0.0 | 0.0622 | 0.6140 |
| 0.9825 | 10.0 | 20 | 1.0261 | 0.2992 | 0.6380 | 0.7780 | nan | 0.4852 | 0.7907 | 0.0 | 0.1170 | 0.7807 |
| 0.8991 | 15.0 | 30 | 0.8985 | 0.3231 | 0.5517 | 0.8892 | nan | 0.1836 | 0.9198 | 0.0 | 0.0776 | 0.8917 |
| 0.8191 | 20.0 | 40 | 0.7413 | 0.3270 | 0.5262 | 0.9299 | nan | 0.0858 | 0.9665 | 0.0 | 0.0513 | 0.9296 |
| 0.7562 | 25.0 | 50 | 0.6268 | 0.3259 | 0.5130 | 0.9436 | nan | 0.0433 | 0.9826 | 0.0 | 0.0343 | 0.9435 |
| 0.7395 | 30.0 | 60 | 0.5872 | 0.3235 | 0.5073 | 0.9498 | nan | 0.0246 | 0.9900 | 0.0 | 0.0206 | 0.9498 |
| 0.7272 | 35.0 | 70 | 0.5820 | 0.3379 | 0.5415 | 0.9411 | nan | 0.1055 | 0.9774 | 0.0 | 0.0729 | 0.9409 |
| 0.6525 | 40.0 | 80 | 0.5571 | 0.3445 | 0.5451 | 0.9498 | nan | 0.1036 | 0.9865 | 0.0 | 0.0839 | 0.9496 |
| 0.6161 | 45.0 | 90 | 0.5465 | 0.3480 | 0.5480 | 0.9528 | nan | 0.1064 | 0.9895 | 0.0 | 0.0914 | 0.9526 |
| 0.6131 | 50.0 | 100 | 0.5379 | 0.3712 | 0.5917 | 0.9555 | nan | 0.1949 | 0.9885 | 0.0 | 0.1584 | 0.9551 |
| 0.579 | 55.0 | 110 | 0.5229 | 0.3892 | 0.6411 | 0.9536 | nan | 0.3002 | 0.9819 | 0.0 | 0.2146 | 0.9530 |
| 0.5133 | 60.0 | 120 | 0.5113 | 0.3962 | 0.6596 | 0.9541 | nan | 0.3384 | 0.9808 | 0.0 | 0.2352 | 0.9535 |
| 0.535 | 65.0 | 130 | 0.4925 | 0.3981 | 0.6566 | 0.9561 | nan | 0.3299 | 0.9833 | 0.0 | 0.2386 | 0.9555 |
| 0.4866 | 70.0 | 140 | 0.4717 | 0.5993 | 0.6516 | 0.9584 | nan | 0.3169 | 0.9863 | nan | 0.2407 | 0.9579 |
| 0.5119 | 75.0 | 150 | 0.4712 | 0.5976 | 0.6513 | 0.9578 | nan | 0.3171 | 0.9856 | nan | 0.2380 | 0.9572 |
| 0.5034 | 80.0 | 160 | 0.4737 | 0.6120 | 0.6840 | 0.9562 | nan | 0.3872 | 0.9808 | nan | 0.2686 | 0.9554 |
| 0.4503 | 85.0 | 170 | 0.4496 | 0.6103 | 0.6618 | 0.9604 | nan | 0.3361 | 0.9875 | nan | 0.2607 | 0.9598 |
| 0.4653 | 90.0 | 180 | 0.4617 | 0.6201 | 0.6907 | 0.9580 | nan | 0.3992 | 0.9822 | nan | 0.2830 | 0.9572 |
| 0.4375 | 95.0 | 190 | 0.4412 | 0.6090 | 0.6592 | 0.9605 | nan | 0.3305 | 0.9878 | nan | 0.2580 | 0.9599 |
| 0.4306 | 100.0 | 200 | 0.4355 | 0.6120 | 0.6653 | 0.9602 | nan | 0.3436 | 0.9870 | nan | 0.2643 | 0.9597 |
| 0.4456 | 105.0 | 210 | 0.4414 | 0.6178 | 0.6756 | 0.9601 | nan | 0.3653 | 0.9860 | nan | 0.2760 | 0.9595 |
| 0.4435 | 110.0 | 220 | 0.4387 | 0.6150 | 0.6681 | 0.9608 | nan | 0.3489 | 0.9873 | nan | 0.2699 | 0.9602 |
| 0.4263 | 115.0 | 230 | 0.4348 | 0.6156 | 0.6692 | 0.9607 | nan | 0.3512 | 0.9872 | nan | 0.2711 | 0.9602 |
| 0.4123 | 120.0 | 240 | 0.4274 | 0.6102 | 0.6603 | 0.9607 | nan | 0.3326 | 0.9879 | nan | 0.2602 | 0.9601 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_3
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3666
- Mean Iou: 0.6400
- Mean Accuracy: 0.7120
- Overall Accuracy: 0.9610
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4404
- Accuracy Undropoff: 0.9836
- Iou Unlabeled: nan
- Iou Dropoff: 0.3196
- Iou Undropoff: 0.9603
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0352 | 5.0 | 10 | 1.0676 | 0.2560 | 0.5776 | 0.7142 | nan | 0.4286 | 0.7266 | 0.0 | 0.0589 | 0.7090 |
| 0.9564 | 10.0 | 20 | 0.9743 | 0.3355 | 0.5576 | 0.9248 | nan | 0.1571 | 0.9581 | 0.0 | 0.0822 | 0.9243 |
| 0.8577 | 15.0 | 30 | 0.8504 | 0.3318 | 0.5283 | 0.9409 | nan | 0.0782 | 0.9784 | 0.0 | 0.0545 | 0.9407 |
| 0.7512 | 20.0 | 40 | 0.6972 | 0.3270 | 0.5122 | 0.9527 | nan | 0.0318 | 0.9926 | 0.0 | 0.0283 | 0.9526 |
| 0.6955 | 25.0 | 50 | 0.5761 | 0.3259 | 0.5099 | 0.9545 | nan | 0.0250 | 0.9948 | 0.0 | 0.0234 | 0.9544 |
| 0.6691 | 30.0 | 60 | 0.5209 | 0.3360 | 0.5271 | 0.9525 | nan | 0.0632 | 0.9911 | 0.0 | 0.0557 | 0.9524 |
| 0.626 | 35.0 | 70 | 0.5297 | 0.3408 | 0.5362 | 0.9505 | nan | 0.0844 | 0.9881 | 0.0 | 0.0719 | 0.9503 |
| 0.5544 | 40.0 | 80 | 0.5263 | 0.3616 | 0.5757 | 0.9521 | nan | 0.1652 | 0.9862 | 0.0 | 0.1330 | 0.9518 |
| 0.5316 | 45.0 | 90 | 0.4825 | 0.3836 | 0.6353 | 0.9506 | nan | 0.2915 | 0.9792 | 0.0 | 0.2009 | 0.9500 |
| 0.4929 | 50.0 | 100 | 0.4763 | 0.3958 | 0.6588 | 0.9530 | nan | 0.3378 | 0.9797 | 0.0 | 0.2352 | 0.9524 |
| 0.468 | 55.0 | 110 | 0.4583 | 0.4077 | 0.6974 | 0.9528 | nan | 0.4188 | 0.9759 | 0.0 | 0.2713 | 0.9519 |
| 0.429 | 60.0 | 120 | 0.4268 | 0.3985 | 0.6526 | 0.9575 | nan | 0.3199 | 0.9852 | 0.0 | 0.2386 | 0.9569 |
| 0.4211 | 65.0 | 130 | 0.3988 | 0.3951 | 0.6406 | 0.9584 | nan | 0.2939 | 0.9872 | 0.0 | 0.2275 | 0.9578 |
| 0.3926 | 70.0 | 140 | 0.4085 | 0.4102 | 0.6780 | 0.9587 | nan | 0.3718 | 0.9842 | 0.0 | 0.2726 | 0.9581 |
| 0.4006 | 75.0 | 150 | 0.3944 | 0.6077 | 0.6574 | 0.9604 | nan | 0.3269 | 0.9879 | nan | 0.2555 | 0.9599 |
| 0.3978 | 80.0 | 160 | 0.3881 | 0.6216 | 0.6875 | 0.9591 | nan | 0.3912 | 0.9838 | nan | 0.2848 | 0.9585 |
| 0.3553 | 85.0 | 170 | 0.3877 | 0.6333 | 0.7077 | 0.9595 | nan | 0.4329 | 0.9824 | nan | 0.3079 | 0.9588 |
| 0.3637 | 90.0 | 180 | 0.4004 | 0.6428 | 0.7273 | 0.9594 | nan | 0.4741 | 0.9805 | nan | 0.3270 | 0.9586 |
| 0.3416 | 95.0 | 190 | 0.3835 | 0.6403 | 0.7166 | 0.9604 | nan | 0.4507 | 0.9825 | nan | 0.3210 | 0.9596 |
| 0.342 | 100.0 | 200 | 0.3634 | 0.6371 | 0.7061 | 0.9611 | nan | 0.4279 | 0.9842 | nan | 0.3137 | 0.9604 |
| 0.3393 | 105.0 | 210 | 0.3740 | 0.6429 | 0.7217 | 0.9604 | nan | 0.4614 | 0.9820 | nan | 0.3262 | 0.9596 |
| 0.3535 | 110.0 | 220 | 0.3771 | 0.6423 | 0.7199 | 0.9605 | nan | 0.4575 | 0.9823 | nan | 0.3249 | 0.9597 |
| 0.3159 | 115.0 | 230 | 0.3710 | 0.6423 | 0.7167 | 0.9610 | nan | 0.4502 | 0.9832 | nan | 0.3243 | 0.9603 |
| 0.3278 | 120.0 | 240 | 0.3666 | 0.6400 | 0.7120 | 0.9610 | nan | 0.4404 | 0.9836 | nan | 0.3196 | 0.9603 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_4 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_4
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3688
- Mean Iou: 0.3485
- Mean Accuracy: 0.5433
- Overall Accuracy: 0.9606
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0881
- Accuracy Undropoff: 0.9984
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.0851
- Iou Undropoff: 0.9604
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.2008 | 5.0 | 10 | 1.0960 | 0.1205 | 0.4461 | 0.2825 | nan | 0.6246 | 0.2677 | 0.0 | 0.0943 | 0.2671 |
| 1.0485 | 10.0 | 20 | 1.0952 | 0.1603 | 0.6272 | 0.4049 | nan | 0.8696 | 0.3848 | 0.0 | 0.0965 | 0.3843 |
| 0.9156 | 15.0 | 30 | 1.0312 | 0.3080 | 0.5963 | 0.8333 | nan | 0.3377 | 0.8548 | 0.0 | 0.0924 | 0.8317 |
| 0.7435 | 20.0 | 40 | 0.9448 | 0.3221 | 0.5508 | 0.8937 | nan | 0.1769 | 0.9248 | 0.0 | 0.0733 | 0.8930 |
| 0.7336 | 25.0 | 50 | 0.7446 | 0.3191 | 0.4998 | 0.9461 | nan | 0.0129 | 0.9866 | 0.0 | 0.0113 | 0.9461 |
| 0.6585 | 30.0 | 60 | 0.6397 | 0.3183 | 0.4981 | 0.9534 | nan | 0.0014 | 0.9948 | 0.0 | 0.0013 | 0.9534 |
| 0.583 | 35.0 | 70 | 0.5785 | 0.3181 | 0.4978 | 0.9537 | nan | 0.0006 | 0.9951 | 0.0 | 0.0005 | 0.9537 |
| 0.5324 | 40.0 | 80 | 0.5458 | 0.3182 | 0.4980 | 0.9545 | nan | 0.0002 | 0.9958 | 0.0 | 0.0002 | 0.9545 |
| 0.5155 | 45.0 | 90 | 0.5347 | 0.3186 | 0.4987 | 0.9558 | nan | 0.0001 | 0.9973 | 0.0 | 0.0001 | 0.9558 |
| 0.4874 | 50.0 | 100 | 0.4954 | 0.3179 | 0.4976 | 0.9537 | nan | 0.0 | 0.9951 | 0.0 | 0.0 | 0.9537 |
| 0.4716 | 55.0 | 110 | 0.4646 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9969 | 0.0 | 0.0 | 0.9555 |
| 0.4441 | 60.0 | 120 | 0.4426 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9970 | 0.0 | 0.0 | 0.9555 |
| 0.4659 | 65.0 | 130 | 0.4345 | 0.3189 | 0.4991 | 0.9567 | nan | 0.0 | 0.9982 | 0.0 | 0.0 | 0.9567 |
| 0.4758 | 70.0 | 140 | 0.4221 | 0.3181 | 0.4978 | 0.9543 | nan | 0.0 | 0.9957 | 0.0 | 0.0 | 0.9543 |
| 0.4208 | 75.0 | 150 | 0.4029 | 0.3190 | 0.4993 | 0.9571 | nan | 0.0 | 0.9987 | 0.0 | 0.0 | 0.9571 |
| 0.4395 | 80.0 | 160 | 0.4170 | 0.3207 | 0.5016 | 0.9559 | nan | 0.0062 | 0.9971 | 0.0 | 0.0062 | 0.9559 |
| 0.3981 | 85.0 | 170 | 0.3992 | 0.3214 | 0.5027 | 0.9574 | nan | 0.0067 | 0.9987 | 0.0 | 0.0066 | 0.9574 |
| 0.3983 | 90.0 | 180 | 0.3965 | 0.3282 | 0.5125 | 0.9560 | nan | 0.0288 | 0.9963 | 0.0 | 0.0285 | 0.9560 |
| 0.398 | 95.0 | 190 | 0.3747 | 0.3272 | 0.5112 | 0.9569 | nan | 0.0251 | 0.9973 | 0.0 | 0.0249 | 0.9568 |
| 0.3767 | 100.0 | 200 | 0.3722 | 0.3301 | 0.5155 | 0.9574 | nan | 0.0336 | 0.9975 | 0.0 | 0.0330 | 0.9573 |
| 0.3797 | 105.0 | 210 | 0.3781 | 0.3334 | 0.5204 | 0.9583 | nan | 0.0429 | 0.9980 | 0.0 | 0.0420 | 0.9582 |
| 0.373 | 110.0 | 220 | 0.3744 | 0.3409 | 0.5317 | 0.9593 | nan | 0.0654 | 0.9980 | 0.0 | 0.0636 | 0.9591 |
| 0.372 | 115.0 | 230 | 0.3700 | 0.3440 | 0.5364 | 0.9599 | nan | 0.0746 | 0.9983 | 0.0 | 0.0723 | 0.9598 |
| 0.3629 | 120.0 | 240 | 0.3688 | 0.3485 | 0.5433 | 0.9606 | nan | 0.0881 | 0.9984 | 0.0 | 0.0851 | 0.9604 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_5
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2608
- Mean Iou: 0.6161
- Mean Accuracy: 0.6630
- Overall Accuracy: 0.9623
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3365
- Accuracy Undropoff: 0.9894
- Iou Unlabeled: nan
- Iou Dropoff: 0.2705
- Iou Undropoff: 0.9617
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.9263 | 5.0 | 10 | 1.0370 | 0.2869 | 0.7147 | 0.7632 | nan | 0.6618 | 0.7675 | 0.0 | 0.1042 | 0.7565 |
| 0.8069 | 10.0 | 20 | 0.8622 | 0.4857 | 0.5062 | 0.9589 | nan | 0.0125 | 0.9999 | nan | 0.0124 | 0.9589 |
| 0.6851 | 15.0 | 30 | 0.6490 | 0.4876 | 0.5081 | 0.9586 | nan | 0.0167 | 0.9995 | nan | 0.0165 | 0.9586 |
| 0.5882 | 20.0 | 40 | 0.4739 | 0.3253 | 0.5085 | 0.9586 | nan | 0.0177 | 0.9994 | 0.0 | 0.0174 | 0.9585 |
| 0.53 | 25.0 | 50 | 0.4153 | 0.3375 | 0.5274 | 0.9584 | nan | 0.0573 | 0.9975 | 0.0 | 0.0542 | 0.9583 |
| 0.5009 | 30.0 | 60 | 0.4275 | 0.3835 | 0.6488 | 0.9475 | nan | 0.3230 | 0.9746 | 0.0 | 0.2037 | 0.9468 |
| 0.4699 | 35.0 | 70 | 0.3819 | 0.4158 | 0.6985 | 0.9578 | nan | 0.4157 | 0.9813 | 0.0 | 0.2904 | 0.9570 |
| 0.3946 | 40.0 | 80 | 0.3563 | 0.6183 | 0.6844 | 0.9585 | nan | 0.3854 | 0.9834 | nan | 0.2787 | 0.9579 |
| 0.3788 | 45.0 | 90 | 0.3259 | 0.6292 | 0.7011 | 0.9593 | nan | 0.4196 | 0.9827 | nan | 0.2998 | 0.9585 |
| 0.3412 | 50.0 | 100 | 0.3392 | 0.6170 | 0.6933 | 0.9562 | nan | 0.4066 | 0.9801 | nan | 0.2785 | 0.9555 |
| 0.3326 | 55.0 | 110 | 0.3214 | 0.6279 | 0.6914 | 0.9606 | nan | 0.3977 | 0.9851 | nan | 0.2958 | 0.9600 |
| 0.2954 | 60.0 | 120 | 0.3119 | 0.6261 | 0.6847 | 0.9613 | nan | 0.3831 | 0.9864 | nan | 0.2915 | 0.9607 |
| 0.3006 | 65.0 | 130 | 0.2853 | 0.5900 | 0.6223 | 0.9625 | nan | 0.2513 | 0.9934 | nan | 0.2180 | 0.9621 |
| 0.2715 | 70.0 | 140 | 0.3021 | 0.6314 | 0.6903 | 0.9620 | nan | 0.3938 | 0.9867 | nan | 0.3014 | 0.9614 |
| 0.276 | 75.0 | 150 | 0.2950 | 0.6243 | 0.6783 | 0.9619 | nan | 0.3690 | 0.9877 | nan | 0.2873 | 0.9613 |
| 0.2622 | 80.0 | 160 | 0.2843 | 0.6134 | 0.6651 | 0.9608 | nan | 0.3426 | 0.9876 | nan | 0.2665 | 0.9602 |
| 0.2395 | 85.0 | 170 | 0.2752 | 0.6050 | 0.6495 | 0.9613 | nan | 0.3094 | 0.9895 | nan | 0.2493 | 0.9608 |
| 0.2597 | 90.0 | 180 | 0.2813 | 0.6296 | 0.6874 | 0.9620 | nan | 0.3879 | 0.9869 | nan | 0.2979 | 0.9614 |
| 0.2294 | 95.0 | 190 | 0.2747 | 0.6106 | 0.6575 | 0.9615 | nan | 0.3259 | 0.9890 | nan | 0.2602 | 0.9609 |
| 0.2303 | 100.0 | 200 | 0.2606 | 0.6040 | 0.6462 | 0.9616 | nan | 0.3023 | 0.9902 | nan | 0.2468 | 0.9611 |
| 0.2335 | 105.0 | 210 | 0.2606 | 0.6080 | 0.6515 | 0.9619 | nan | 0.3130 | 0.9901 | nan | 0.2547 | 0.9614 |
| 0.2322 | 110.0 | 220 | 0.2619 | 0.6167 | 0.6631 | 0.9624 | nan | 0.3366 | 0.9896 | nan | 0.2715 | 0.9619 |
| 0.2116 | 115.0 | 230 | 0.2618 | 0.6183 | 0.6660 | 0.9624 | nan | 0.3427 | 0.9893 | nan | 0.2747 | 0.9618 |
| 0.2099 | 120.0 | 240 | 0.2608 | 0.6161 | 0.6630 | 0.9623 | nan | 0.3365 | 0.9894 | nan | 0.2705 | 0.9617 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_6 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_6
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2353
- Mean Iou: 0.6539
- Mean Accuracy: 0.7065
- Overall Accuracy: 0.9662
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4233
- Accuracy Undropoff: 0.9897
- Iou Unlabeled: nan
- Iou Dropoff: 0.3423
- Iou Undropoff: 0.9656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.9975 | 5.0 | 10 | 1.0470 | 0.2819 | 0.6747 | 0.7186 | nan | 0.6267 | 0.7226 | 0.0 | 0.1290 | 0.7167 |
| 0.8329 | 10.0 | 20 | 0.8435 | 0.3211 | 0.5026 | 0.9526 | nan | 0.0117 | 0.9934 | 0.0 | 0.0106 | 0.9526 |
| 0.6857 | 15.0 | 30 | 0.6184 | 0.3191 | 0.4994 | 0.9567 | nan | 0.0006 | 0.9981 | 0.0 | 0.0006 | 0.9567 |
| 0.5913 | 20.0 | 40 | 0.4793 | 0.3193 | 0.4997 | 0.9573 | nan | 0.0005 | 0.9988 | 0.0 | 0.0005 | 0.9573 |
| 0.5299 | 25.0 | 50 | 0.4529 | 0.3488 | 0.5442 | 0.9596 | nan | 0.0911 | 0.9973 | 0.0 | 0.0869 | 0.9595 |
| 0.4922 | 30.0 | 60 | 0.4037 | 0.4352 | 0.6983 | 0.9671 | nan | 0.4051 | 0.9915 | 0.0 | 0.3390 | 0.9666 |
| 0.4769 | 35.0 | 70 | 0.4161 | 0.4090 | 0.7560 | 0.9426 | nan | 0.5524 | 0.9595 | 0.0 | 0.2858 | 0.9412 |
| 0.3916 | 40.0 | 80 | 0.3343 | 0.6320 | 0.6946 | 0.9614 | nan | 0.4036 | 0.9856 | nan | 0.3033 | 0.9608 |
| 0.3567 | 45.0 | 90 | 0.3372 | 0.6374 | 0.7140 | 0.9598 | nan | 0.4458 | 0.9821 | nan | 0.3157 | 0.9591 |
| 0.3234 | 50.0 | 100 | 0.3074 | 0.6402 | 0.6883 | 0.9652 | nan | 0.3863 | 0.9903 | nan | 0.3157 | 0.9646 |
| 0.3181 | 55.0 | 110 | 0.3043 | 0.6396 | 0.7138 | 0.9606 | nan | 0.4446 | 0.9830 | nan | 0.3194 | 0.9599 |
| 0.2584 | 60.0 | 120 | 0.3069 | 0.6450 | 0.7204 | 0.9613 | nan | 0.4576 | 0.9831 | nan | 0.3294 | 0.9605 |
| 0.2566 | 65.0 | 130 | 0.2824 | 0.6431 | 0.7063 | 0.9630 | nan | 0.4263 | 0.9863 | nan | 0.3239 | 0.9623 |
| 0.2353 | 70.0 | 140 | 0.2763 | 0.6470 | 0.7046 | 0.9645 | nan | 0.4212 | 0.9880 | nan | 0.3301 | 0.9638 |
| 0.2368 | 75.0 | 150 | 0.2644 | 0.6474 | 0.6973 | 0.9658 | nan | 0.4044 | 0.9902 | nan | 0.3296 | 0.9652 |
| 0.2225 | 80.0 | 160 | 0.2673 | 0.6462 | 0.7089 | 0.9635 | nan | 0.4313 | 0.9866 | nan | 0.3296 | 0.9629 |
| 0.1976 | 85.0 | 170 | 0.2568 | 0.6449 | 0.7057 | 0.9637 | nan | 0.4244 | 0.9870 | nan | 0.3268 | 0.9630 |
| 0.1981 | 90.0 | 180 | 0.2572 | 0.6444 | 0.7110 | 0.9626 | nan | 0.4365 | 0.9855 | nan | 0.3269 | 0.9619 |
| 0.1857 | 95.0 | 190 | 0.2503 | 0.6504 | 0.7027 | 0.9658 | nan | 0.4157 | 0.9897 | nan | 0.3356 | 0.9652 |
| 0.1826 | 100.0 | 200 | 0.2345 | 0.6509 | 0.6984 | 0.9666 | nan | 0.4059 | 0.9909 | nan | 0.3357 | 0.9660 |
| 0.1818 | 105.0 | 210 | 0.2484 | 0.6506 | 0.7160 | 0.9637 | nan | 0.4458 | 0.9862 | nan | 0.3381 | 0.9630 |
| 0.1919 | 110.0 | 220 | 0.2343 | 0.6526 | 0.6996 | 0.9669 | nan | 0.4080 | 0.9912 | nan | 0.3389 | 0.9663 |
| 0.17 | 115.0 | 230 | 0.2377 | 0.6535 | 0.7065 | 0.9661 | nan | 0.4235 | 0.9896 | nan | 0.3416 | 0.9655 |
| 0.1739 | 120.0 | 240 | 0.2353 | 0.6539 | 0.7065 | 0.9662 | nan | 0.4233 | 0.9897 | nan | 0.3423 | 0.9656 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b0_7 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b0_7
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2075
- Mean Iou: 0.6372
- Mean Accuracy: 0.6861
- Overall Accuracy: 0.9647
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3822
- Accuracy Undropoff: 0.9900
- Iou Unlabeled: nan
- Iou Dropoff: 0.3104
- Iou Undropoff: 0.9641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.9508 | 5.0 | 10 | 1.0263 | 0.3104 | 0.5474 | 0.8717 | nan | 0.1937 | 0.9011 | 0.0 | 0.0605 | 0.8706 |
| 0.7814 | 10.0 | 20 | 0.7568 | 0.4971 | 0.5339 | 0.9361 | nan | 0.0952 | 0.9726 | nan | 0.0584 | 0.9359 |
| 0.642 | 15.0 | 30 | 0.5907 | 0.5134 | 0.5443 | 0.9494 | nan | 0.1026 | 0.9861 | nan | 0.0777 | 0.9492 |
| 0.5118 | 20.0 | 40 | 0.4804 | 0.3658 | 0.5923 | 0.9513 | nan | 0.2006 | 0.9839 | 0.0 | 0.1464 | 0.9509 |
| 0.4581 | 25.0 | 50 | 0.4405 | 0.3715 | 0.5915 | 0.9569 | nan | 0.1930 | 0.9900 | 0.0 | 0.1578 | 0.9565 |
| 0.4213 | 30.0 | 60 | 0.4146 | 0.3828 | 0.6136 | 0.9580 | nan | 0.2379 | 0.9892 | 0.0 | 0.1910 | 0.9575 |
| 0.3571 | 35.0 | 70 | 0.3750 | 0.3846 | 0.6180 | 0.9578 | nan | 0.2474 | 0.9887 | 0.0 | 0.1963 | 0.9574 |
| 0.3205 | 40.0 | 80 | 0.3478 | 0.5777 | 0.6202 | 0.9576 | nan | 0.2522 | 0.9882 | nan | 0.1982 | 0.9571 |
| 0.3114 | 45.0 | 90 | 0.3461 | 0.3895 | 0.6423 | 0.9541 | nan | 0.3022 | 0.9824 | 0.0 | 0.2150 | 0.9535 |
| 0.2747 | 50.0 | 100 | 0.3253 | 0.5875 | 0.6357 | 0.9575 | nan | 0.2847 | 0.9867 | nan | 0.2180 | 0.9570 |
| 0.2593 | 55.0 | 110 | 0.3083 | 0.5967 | 0.6599 | 0.9552 | nan | 0.3377 | 0.9820 | nan | 0.2387 | 0.9546 |
| 0.2293 | 60.0 | 120 | 0.2762 | 0.5966 | 0.6389 | 0.9606 | nan | 0.2880 | 0.9898 | nan | 0.2331 | 0.9601 |
| 0.2306 | 65.0 | 130 | 0.2655 | 0.6016 | 0.6587 | 0.9577 | nan | 0.3326 | 0.9848 | nan | 0.2462 | 0.9571 |
| 0.2118 | 70.0 | 140 | 0.2446 | 0.6039 | 0.6509 | 0.9605 | nan | 0.3133 | 0.9886 | nan | 0.2479 | 0.9600 |
| 0.2038 | 75.0 | 150 | 0.2395 | 0.6164 | 0.6708 | 0.9607 | nan | 0.3547 | 0.9870 | nan | 0.2727 | 0.9601 |
| 0.1895 | 80.0 | 160 | 0.2196 | 0.6254 | 0.6721 | 0.9636 | nan | 0.3542 | 0.9900 | nan | 0.2878 | 0.9630 |
| 0.1681 | 85.0 | 170 | 0.2176 | 0.6302 | 0.6829 | 0.9630 | nan | 0.3773 | 0.9884 | nan | 0.2979 | 0.9624 |
| 0.1612 | 90.0 | 180 | 0.2175 | 0.6334 | 0.6870 | 0.9633 | nan | 0.3857 | 0.9884 | nan | 0.3042 | 0.9627 |
| 0.1545 | 95.0 | 190 | 0.2140 | 0.6337 | 0.6816 | 0.9644 | nan | 0.3732 | 0.9900 | nan | 0.3035 | 0.9638 |
| 0.1551 | 100.0 | 200 | 0.2134 | 0.6357 | 0.6891 | 0.9637 | nan | 0.3896 | 0.9886 | nan | 0.3083 | 0.9631 |
| 0.1508 | 105.0 | 210 | 0.2090 | 0.6359 | 0.6865 | 0.9642 | nan | 0.3837 | 0.9894 | nan | 0.3083 | 0.9636 |
| 0.1536 | 110.0 | 220 | 0.2057 | 0.6346 | 0.6801 | 0.9650 | nan | 0.3694 | 0.9908 | nan | 0.3048 | 0.9644 |
| 0.1392 | 115.0 | 230 | 0.2083 | 0.6387 | 0.6890 | 0.9646 | nan | 0.3883 | 0.9896 | nan | 0.3133 | 0.9640 |
| 0.1446 | 120.0 | 240 | 0.2075 | 0.6372 | 0.6861 | 0.9647 | nan | 0.3822 | 0.9900 | nan | 0.3104 | 0.9641 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_1
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3428
- Mean Iou: 0.4792
- Mean Accuracy: 0.5000
- Overall Accuracy: 0.9583
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0001
- Accuracy Undropoff: 0.9999
- Iou Unlabeled: nan
- Iou Dropoff: 0.0001
- Iou Undropoff: 0.9583
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.8047 | 5.0 | 10 | 0.9867 | 0.2744 | 0.6315 | 0.7475 | nan | 0.5049 | 0.7581 | 0.0 | 0.0812 | 0.7422 |
| 0.7528 | 10.0 | 20 | 0.8526 | 0.3461 | 0.5957 | 0.9213 | nan | 0.2406 | 0.9508 | 0.0 | 0.1178 | 0.9205 |
| 0.7087 | 15.0 | 30 | 0.7023 | 0.3450 | 0.5533 | 0.9467 | nan | 0.1243 | 0.9824 | 0.0 | 0.0887 | 0.9464 |
| 0.6601 | 20.0 | 40 | 0.6251 | 0.3381 | 0.5390 | 0.9462 | nan | 0.0948 | 0.9832 | 0.0 | 0.0684 | 0.9460 |
| 0.6274 | 25.0 | 50 | 0.5828 | 0.3286 | 0.5178 | 0.9486 | nan | 0.0479 | 0.9876 | 0.0 | 0.0374 | 0.9485 |
| 0.5929 | 30.0 | 60 | 0.5478 | 0.3257 | 0.5122 | 0.9488 | nan | 0.0359 | 0.9884 | 0.0 | 0.0284 | 0.9487 |
| 0.5672 | 35.0 | 70 | 0.5237 | 0.3240 | 0.5088 | 0.9494 | nan | 0.0283 | 0.9893 | 0.0 | 0.0227 | 0.9493 |
| 0.5454 | 40.0 | 80 | 0.4966 | 0.4856 | 0.5072 | 0.9529 | nan | 0.0212 | 0.9933 | nan | 0.0183 | 0.9528 |
| 0.5261 | 45.0 | 90 | 0.4700 | 0.3234 | 0.5062 | 0.9553 | nan | 0.0163 | 0.9960 | 0.0 | 0.0149 | 0.9552 |
| 0.5012 | 50.0 | 100 | 0.4576 | 0.4832 | 0.5041 | 0.9563 | nan | 0.0107 | 0.9974 | nan | 0.0101 | 0.9563 |
| 0.4875 | 55.0 | 110 | 0.4430 | 0.4811 | 0.5018 | 0.9566 | nan | 0.0058 | 0.9978 | nan | 0.0056 | 0.9565 |
| 0.4622 | 60.0 | 120 | 0.4328 | 0.4800 | 0.5007 | 0.9570 | nan | 0.0031 | 0.9983 | nan | 0.0030 | 0.9570 |
| 0.4394 | 65.0 | 130 | 0.4179 | 0.4796 | 0.5004 | 0.9572 | nan | 0.0021 | 0.9986 | nan | 0.0021 | 0.9572 |
| 0.4352 | 70.0 | 140 | 0.4048 | 0.4795 | 0.5002 | 0.9573 | nan | 0.0016 | 0.9988 | nan | 0.0016 | 0.9573 |
| 0.426 | 75.0 | 150 | 0.3881 | 0.4796 | 0.5003 | 0.9577 | nan | 0.0015 | 0.9992 | nan | 0.0014 | 0.9577 |
| 0.4175 | 80.0 | 160 | 0.3794 | 0.4797 | 0.5004 | 0.9579 | nan | 0.0014 | 0.9994 | nan | 0.0014 | 0.9579 |
| 0.4087 | 85.0 | 170 | 0.3742 | 0.3196 | 0.5002 | 0.9577 | nan | 0.0012 | 0.9992 | 0.0 | 0.0012 | 0.9577 |
| 0.3887 | 90.0 | 180 | 0.3645 | 0.4792 | 0.4999 | 0.9581 | nan | 0.0003 | 0.9996 | nan | 0.0003 | 0.9581 |
| 0.3799 | 95.0 | 190 | 0.3540 | 0.4791 | 0.4999 | 0.9581 | nan | 0.0001 | 0.9997 | nan | 0.0001 | 0.9581 |
| 0.376 | 100.0 | 200 | 0.3511 | 0.4792 | 0.4999 | 0.9582 | nan | 0.0001 | 0.9998 | nan | 0.0001 | 0.9582 |
| 0.3677 | 105.0 | 210 | 0.3452 | 0.4792 | 0.4999 | 0.9582 | nan | 0.0001 | 0.9998 | nan | 0.0001 | 0.9582 |
| 0.358 | 110.0 | 220 | 0.3437 | 0.4792 | 0.4999 | 0.9582 | nan | 0.0001 | 0.9998 | nan | 0.0001 | 0.9582 |
| 0.3997 | 115.0 | 230 | 0.3434 | 0.4792 | 0.5000 | 0.9583 | nan | 0.0001 | 0.9999 | nan | 0.0001 | 0.9583 |
| 0.3769 | 120.0 | 240 | 0.3428 | 0.4792 | 0.5000 | 0.9583 | nan | 0.0001 | 0.9999 | nan | 0.0001 | 0.9583 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_2
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4198
- Mean Iou: 0.3194
- Mean Accuracy: 0.4998
- Overall Accuracy: 0.9558
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0023
- Accuracy Undropoff: 0.9972
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.0022
- Iou Undropoff: 0.9558
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.989 | 5.0 | 10 | 1.0190 | 0.2162 | 0.5831 | 0.5879 | nan | 0.5779 | 0.5883 | 0.0 | 0.0657 | 0.5829 |
| 0.9092 | 10.0 | 20 | 0.8686 | 0.3164 | 0.5199 | 0.8922 | nan | 0.1137 | 0.9260 | 0.0 | 0.0539 | 0.8953 |
| 0.8483 | 15.0 | 30 | 0.7438 | 0.3256 | 0.5234 | 0.9219 | nan | 0.0888 | 0.9581 | 0.0 | 0.0545 | 0.9224 |
| 0.7856 | 20.0 | 40 | 0.6571 | 0.3182 | 0.5013 | 0.9336 | nan | 0.0297 | 0.9728 | 0.0 | 0.0210 | 0.9335 |
| 0.7459 | 25.0 | 50 | 0.6144 | 0.3164 | 0.4980 | 0.9324 | nan | 0.0242 | 0.9718 | 0.0 | 0.0168 | 0.9324 |
| 0.7027 | 30.0 | 60 | 0.5861 | 0.3168 | 0.4975 | 0.9351 | nan | 0.0202 | 0.9748 | 0.0 | 0.0151 | 0.9353 |
| 0.6827 | 35.0 | 70 | 0.5568 | 0.3171 | 0.4975 | 0.9391 | nan | 0.0159 | 0.9791 | 0.0 | 0.0122 | 0.9391 |
| 0.6362 | 40.0 | 80 | 0.5405 | 0.3179 | 0.4982 | 0.9424 | nan | 0.0138 | 0.9827 | 0.0 | 0.0112 | 0.9425 |
| 0.6098 | 45.0 | 90 | 0.5192 | 0.3174 | 0.4971 | 0.9449 | nan | 0.0087 | 0.9855 | 0.0 | 0.0073 | 0.9449 |
| 0.5946 | 50.0 | 100 | 0.5025 | 0.3179 | 0.4978 | 0.9475 | nan | 0.0072 | 0.9883 | 0.0 | 0.0062 | 0.9477 |
| 0.5868 | 55.0 | 110 | 0.4943 | 0.3179 | 0.4976 | 0.9490 | nan | 0.0052 | 0.9900 | 0.0 | 0.0046 | 0.9491 |
| 0.5557 | 60.0 | 120 | 0.4798 | 0.3184 | 0.4983 | 0.9505 | nan | 0.0051 | 0.9915 | 0.0 | 0.0045 | 0.9506 |
| 0.5327 | 65.0 | 130 | 0.4736 | 0.3184 | 0.4983 | 0.9514 | nan | 0.0041 | 0.9925 | 0.0 | 0.0038 | 0.9514 |
| 0.525 | 70.0 | 140 | 0.4657 | 0.3187 | 0.4987 | 0.9526 | nan | 0.0038 | 0.9937 | 0.0 | 0.0035 | 0.9526 |
| 0.5266 | 75.0 | 150 | 0.4528 | 0.3190 | 0.4992 | 0.9534 | nan | 0.0037 | 0.9946 | 0.0 | 0.0034 | 0.9535 |
| 0.5139 | 80.0 | 160 | 0.4538 | 0.3189 | 0.4991 | 0.9533 | nan | 0.0037 | 0.9945 | 0.0 | 0.0035 | 0.9534 |
| 0.5128 | 85.0 | 170 | 0.4460 | 0.3192 | 0.4995 | 0.9543 | nan | 0.0033 | 0.9956 | 0.0 | 0.0031 | 0.9543 |
| 0.4901 | 90.0 | 180 | 0.4371 | 0.3192 | 0.4995 | 0.9548 | nan | 0.0029 | 0.9961 | 0.0 | 0.0027 | 0.9548 |
| 0.4767 | 95.0 | 190 | 0.4325 | 0.3193 | 0.4997 | 0.9552 | nan | 0.0029 | 0.9965 | 0.0 | 0.0027 | 0.9552 |
| 0.4692 | 100.0 | 200 | 0.4272 | 0.3193 | 0.4997 | 0.9556 | nan | 0.0024 | 0.9970 | 0.0 | 0.0023 | 0.9556 |
| 0.4632 | 105.0 | 210 | 0.4251 | 0.3193 | 0.4996 | 0.9556 | nan | 0.0023 | 0.9969 | 0.0 | 0.0023 | 0.9556 |
| 0.4626 | 110.0 | 220 | 0.4236 | 0.3193 | 0.4997 | 0.9556 | nan | 0.0024 | 0.9970 | 0.0 | 0.0024 | 0.9556 |
| 0.4837 | 115.0 | 230 | 0.4216 | 0.3194 | 0.4998 | 0.9558 | nan | 0.0023 | 0.9972 | 0.0 | 0.0023 | 0.9558 |
| 0.4809 | 120.0 | 240 | 0.4198 | 0.3194 | 0.4998 | 0.9558 | nan | 0.0023 | 0.9972 | 0.0 | 0.0022 | 0.9558 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_3
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2768
- Mean Iou: 0.3194
- Mean Accuracy: 0.4999
- Overall Accuracy: 0.9578
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0006
- Accuracy Undropoff: 0.9993
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.0006
- Iou Undropoff: 0.9578
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0992 | 5.0 | 10 | 1.0599 | 0.1938 | 0.4241 | 0.5281 | nan | 0.3106 | 0.5376 | 0.0 | 0.0540 | 0.5273 |
| 1.0188 | 10.0 | 20 | 0.9493 | 0.2781 | 0.4808 | 0.7846 | nan | 0.1494 | 0.8122 | 0.0 | 0.0476 | 0.7868 |
| 0.9218 | 15.0 | 30 | 0.8130 | 0.3074 | 0.4913 | 0.8851 | nan | 0.0618 | 0.9209 | 0.0 | 0.0364 | 0.8858 |
| 0.8411 | 20.0 | 40 | 0.7253 | 0.3089 | 0.4866 | 0.9038 | nan | 0.0315 | 0.9416 | 0.0 | 0.0221 | 0.9047 |
| 0.7583 | 25.0 | 50 | 0.6719 | 0.3097 | 0.4890 | 0.9069 | nan | 0.0331 | 0.9448 | 0.0 | 0.0216 | 0.9076 |
| 0.688 | 30.0 | 60 | 0.6303 | 0.3109 | 0.4883 | 0.9170 | nan | 0.0207 | 0.9559 | 0.0 | 0.0149 | 0.9179 |
| 0.6279 | 35.0 | 70 | 0.5919 | 0.3139 | 0.4918 | 0.9276 | nan | 0.0164 | 0.9671 | 0.0 | 0.0133 | 0.9283 |
| 0.5533 | 40.0 | 80 | 0.5375 | 0.3168 | 0.4961 | 0.9377 | nan | 0.0144 | 0.9777 | 0.0 | 0.0125 | 0.9380 |
| 0.5116 | 45.0 | 90 | 0.5111 | 0.3176 | 0.4970 | 0.9442 | nan | 0.0093 | 0.9847 | 0.0 | 0.0083 | 0.9445 |
| 0.4801 | 50.0 | 100 | 0.4696 | 0.3183 | 0.4981 | 0.9492 | nan | 0.0062 | 0.9901 | 0.0 | 0.0057 | 0.9492 |
| 0.4744 | 55.0 | 110 | 0.4317 | 0.3187 | 0.4987 | 0.9543 | nan | 0.0018 | 0.9956 | 0.0 | 0.0017 | 0.9543 |
| 0.4494 | 60.0 | 120 | 0.3991 | 0.3189 | 0.4991 | 0.9555 | nan | 0.0013 | 0.9969 | 0.0 | 0.0012 | 0.9555 |
| 0.386 | 65.0 | 130 | 0.3737 | 0.3189 | 0.4990 | 0.9565 | nan | 0.0000 | 0.9980 | 0.0 | 0.0000 | 0.9565 |
| 0.3674 | 70.0 | 140 | 0.3538 | 0.3191 | 0.4994 | 0.9567 | nan | 0.0007 | 0.9981 | 0.0 | 0.0007 | 0.9567 |
| 0.3601 | 75.0 | 150 | 0.3413 | 0.3192 | 0.4995 | 0.9573 | nan | 0.0002 | 0.9988 | 0.0 | 0.0002 | 0.9573 |
| 0.3626 | 80.0 | 160 | 0.3225 | 0.3193 | 0.4996 | 0.9569 | nan | 0.0009 | 0.9984 | 0.0 | 0.0009 | 0.9569 |
| 0.3331 | 85.0 | 170 | 0.3163 | 0.3195 | 0.5000 | 0.9576 | nan | 0.0009 | 0.9991 | 0.0 | 0.0009 | 0.9576 |
| 0.319 | 90.0 | 180 | 0.3004 | 0.3200 | 0.5008 | 0.9577 | nan | 0.0024 | 0.9991 | 0.0 | 0.0024 | 0.9577 |
| 0.3163 | 95.0 | 190 | 0.2931 | 0.3198 | 0.5004 | 0.9575 | nan | 0.0020 | 0.9989 | 0.0 | 0.0020 | 0.9575 |
| 0.3185 | 100.0 | 200 | 0.2920 | 0.3194 | 0.4999 | 0.9577 | nan | 0.0006 | 0.9992 | 0.0 | 0.0006 | 0.9577 |
| 0.3122 | 105.0 | 210 | 0.2831 | 0.3194 | 0.4999 | 0.9578 | nan | 0.0005 | 0.9994 | 0.0 | 0.0005 | 0.9578 |
| 0.3218 | 110.0 | 220 | 0.2788 | 0.3195 | 0.5000 | 0.9576 | nan | 0.0009 | 0.9991 | 0.0 | 0.0009 | 0.9576 |
| 0.3037 | 115.0 | 230 | 0.2752 | 0.3194 | 0.4999 | 0.9577 | nan | 0.0006 | 0.9992 | 0.0 | 0.0006 | 0.9577 |
| 0.3319 | 120.0 | 240 | 0.2768 | 0.3194 | 0.4999 | 0.9578 | nan | 0.0006 | 0.9993 | 0.0 | 0.0006 | 0.9578 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_4 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_4
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2351
- Mean Iou: 0.4792
- Mean Accuracy: 0.5
- Overall Accuracy: 0.9584
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0
- Accuracy Undropoff: 1.0
- Iou Unlabeled: nan
- Iou Dropoff: 0.0
- Iou Undropoff: 0.9584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0114 | 5.0 | 10 | 1.0037 | 0.2459 | 0.4345 | 0.7074 | nan | 0.1368 | 0.7322 | 0.0 | 0.0286 | 0.7089 |
| 0.9088 | 10.0 | 20 | 0.8245 | 0.3119 | 0.5046 | 0.8887 | nan | 0.0857 | 0.9235 | 0.0 | 0.0460 | 0.8897 |
| 0.8029 | 15.0 | 30 | 0.6620 | 0.3157 | 0.4998 | 0.9214 | nan | 0.0399 | 0.9596 | 0.0 | 0.0253 | 0.9219 |
| 0.6935 | 20.0 | 40 | 0.5662 | 0.3154 | 0.4959 | 0.9309 | nan | 0.0214 | 0.9704 | 0.0 | 0.0151 | 0.9311 |
| 0.635 | 25.0 | 50 | 0.5018 | 0.3175 | 0.4978 | 0.9401 | nan | 0.0153 | 0.9803 | 0.0 | 0.0121 | 0.9404 |
| 0.5579 | 30.0 | 60 | 0.4701 | 0.3178 | 0.4978 | 0.9422 | nan | 0.0131 | 0.9825 | 0.0 | 0.0111 | 0.9423 |
| 0.5086 | 35.0 | 70 | 0.4403 | 0.3181 | 0.4977 | 0.9459 | nan | 0.0088 | 0.9866 | 0.0 | 0.0080 | 0.9461 |
| 0.472 | 40.0 | 80 | 0.4328 | 0.3177 | 0.4971 | 0.9471 | nan | 0.0063 | 0.9879 | 0.0 | 0.0059 | 0.9473 |
| 0.4484 | 45.0 | 90 | 0.4136 | 0.3184 | 0.4981 | 0.9506 | nan | 0.0046 | 0.9916 | 0.0 | 0.0044 | 0.9508 |
| 0.4026 | 50.0 | 100 | 0.4013 | 0.3186 | 0.4985 | 0.9516 | nan | 0.0043 | 0.9926 | 0.0 | 0.0042 | 0.9517 |
| 0.3873 | 55.0 | 110 | 0.3621 | 0.3189 | 0.4991 | 0.9557 | nan | 0.0010 | 0.9971 | 0.0 | 0.0009 | 0.9557 |
| 0.3549 | 60.0 | 120 | 0.3479 | 0.3189 | 0.4992 | 0.9564 | nan | 0.0004 | 0.9979 | 0.0 | 0.0004 | 0.9564 |
| 0.3358 | 65.0 | 130 | 0.3282 | 0.3191 | 0.4994 | 0.9571 | nan | 0.0001 | 0.9986 | 0.0 | 0.0001 | 0.9571 |
| 0.3146 | 70.0 | 140 | 0.3141 | 0.3193 | 0.4996 | 0.9577 | nan | 0.0000 | 0.9993 | 0.0 | 0.0000 | 0.9577 |
| 0.3116 | 75.0 | 150 | 0.2941 | 0.3194 | 0.4999 | 0.9582 | nan | 0.0 | 0.9998 | 0.0 | 0.0 | 0.9582 |
| 0.3151 | 80.0 | 160 | 0.2809 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 0.9999 | 0.0 | 0.0 | 0.9584 |
| 0.2778 | 85.0 | 170 | 0.2750 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 1.0000 | 0.0 | 0.0 | 0.9584 |
| 0.2753 | 90.0 | 180 | 0.2615 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 1.0000 | 0.0 | 0.0 | 0.9584 |
| 0.2809 | 95.0 | 190 | 0.2547 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 |
| 0.2606 | 100.0 | 200 | 0.2464 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 |
| 0.2563 | 105.0 | 210 | 0.2459 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 |
| 0.2454 | 110.0 | 220 | 0.2393 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 |
| 0.2707 | 115.0 | 230 | 0.2368 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 |
| 0.2433 | 120.0 | 240 | 0.2351 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_5 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_5
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2636
- Mean Iou: 0.4256
- Mean Accuracy: 0.6832
- Overall Accuracy: 0.9656
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3752
- Accuracy Undropoff: 0.9912
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.3118
- Iou Undropoff: 0.9650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.1487 | 5.0 | 10 | 1.0250 | 0.2562 | 0.6276 | 0.6778 | nan | 0.5730 | 0.6823 | 0.0 | 0.0971 | 0.6714 |
| 1.0128 | 10.0 | 20 | 0.9030 | 0.3142 | 0.6730 | 0.8268 | nan | 0.5053 | 0.8407 | 0.0 | 0.1195 | 0.8231 |
| 0.8561 | 15.0 | 30 | 0.7359 | 0.3520 | 0.6913 | 0.8949 | nan | 0.4692 | 0.9133 | 0.0 | 0.1632 | 0.8928 |
| 0.7551 | 20.0 | 40 | 0.6534 | 0.3634 | 0.6999 | 0.9090 | nan | 0.4719 | 0.9280 | 0.0 | 0.1829 | 0.9072 |
| 0.6236 | 25.0 | 50 | 0.5938 | 0.3710 | 0.7001 | 0.9189 | nan | 0.4614 | 0.9388 | 0.0 | 0.1955 | 0.9173 |
| 0.4977 | 30.0 | 60 | 0.5293 | 0.3850 | 0.6987 | 0.9341 | nan | 0.4420 | 0.9555 | 0.0 | 0.2222 | 0.9329 |
| 0.4188 | 35.0 | 70 | 0.4859 | 0.3935 | 0.6941 | 0.9425 | nan | 0.4231 | 0.9650 | 0.0 | 0.2390 | 0.9415 |
| 0.3532 | 40.0 | 80 | 0.4278 | 0.4019 | 0.6823 | 0.9519 | nan | 0.3881 | 0.9764 | 0.0 | 0.2547 | 0.9511 |
| 0.3187 | 45.0 | 90 | 0.3914 | 0.4098 | 0.6873 | 0.9560 | nan | 0.3942 | 0.9804 | 0.0 | 0.2742 | 0.9553 |
| 0.2631 | 50.0 | 100 | 0.3647 | 0.4134 | 0.6918 | 0.9575 | nan | 0.4020 | 0.9815 | 0.0 | 0.2835 | 0.9567 |
| 0.2565 | 55.0 | 110 | 0.3424 | 0.4141 | 0.6895 | 0.9585 | nan | 0.3962 | 0.9829 | 0.0 | 0.2846 | 0.9578 |
| 0.2259 | 60.0 | 120 | 0.3127 | 0.4178 | 0.6853 | 0.9613 | nan | 0.3843 | 0.9863 | 0.0 | 0.2926 | 0.9607 |
| 0.2263 | 65.0 | 130 | 0.2920 | 0.4202 | 0.6822 | 0.9632 | nan | 0.3757 | 0.9886 | 0.0 | 0.2981 | 0.9626 |
| 0.1961 | 70.0 | 140 | 0.2755 | 0.4218 | 0.6769 | 0.9649 | nan | 0.3627 | 0.9911 | 0.0 | 0.3009 | 0.9644 |
| 0.1897 | 75.0 | 150 | 0.2726 | 0.4232 | 0.6803 | 0.9650 | nan | 0.3698 | 0.9908 | 0.0 | 0.3052 | 0.9645 |
| 0.1863 | 80.0 | 160 | 0.2762 | 0.4241 | 0.6830 | 0.9649 | nan | 0.3756 | 0.9904 | 0.0 | 0.3079 | 0.9643 |
| 0.1656 | 85.0 | 170 | 0.2730 | 0.4241 | 0.6809 | 0.9653 | nan | 0.3708 | 0.9911 | 0.0 | 0.3076 | 0.9648 |
| 0.1745 | 90.0 | 180 | 0.2740 | 0.4241 | 0.6821 | 0.9651 | nan | 0.3736 | 0.9907 | 0.0 | 0.3079 | 0.9645 |
| 0.1726 | 95.0 | 190 | 0.2779 | 0.4242 | 0.6854 | 0.9645 | nan | 0.3809 | 0.9898 | 0.0 | 0.3085 | 0.9639 |
| 0.158 | 100.0 | 200 | 0.2661 | 0.4248 | 0.6808 | 0.9656 | nan | 0.3701 | 0.9915 | 0.0 | 0.3094 | 0.9651 |
| 0.19 | 105.0 | 210 | 0.2667 | 0.4240 | 0.6790 | 0.9656 | nan | 0.3664 | 0.9916 | 0.0 | 0.3070 | 0.9651 |
| 0.1533 | 110.0 | 220 | 0.2696 | 0.4258 | 0.6843 | 0.9655 | nan | 0.3777 | 0.9910 | 0.0 | 0.3126 | 0.9649 |
| 0.1644 | 115.0 | 230 | 0.2690 | 0.4261 | 0.6855 | 0.9654 | nan | 0.3803 | 0.9908 | 0.0 | 0.3136 | 0.9648 |
| 0.1594 | 120.0 | 240 | 0.2636 | 0.4256 | 0.6832 | 0.9656 | nan | 0.3752 | 0.9912 | 0.0 | 0.3118 | 0.9650 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_6 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_6
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1429
- Mean Iou: 0.6443
- Mean Accuracy: 0.6853
- Overall Accuracy: 0.9669
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3782
- Accuracy Undropoff: 0.9925
- Iou Unlabeled: nan
- Iou Dropoff: 0.3223
- Iou Undropoff: 0.9664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.159 | 5.0 | 10 | 1.0040 | 0.2283 | 0.5676 | 0.6267 | nan | 0.5031 | 0.6321 | 0.0 | 0.0644 | 0.6203 |
| 0.8345 | 10.0 | 20 | 0.7480 | 0.3236 | 0.5320 | 0.9158 | nan | 0.1134 | 0.9506 | 0.0 | 0.0555 | 0.9154 |
| 0.5406 | 15.0 | 30 | 0.5477 | 0.3223 | 0.5049 | 0.9513 | nan | 0.0179 | 0.9918 | 0.0 | 0.0157 | 0.9513 |
| 0.3695 | 20.0 | 40 | 0.4590 | 0.3215 | 0.5036 | 0.9519 | nan | 0.0146 | 0.9926 | 0.0 | 0.0125 | 0.9519 |
| 0.3053 | 25.0 | 50 | 0.3790 | 0.3196 | 0.5001 | 0.9565 | nan | 0.0023 | 0.9979 | 0.0 | 0.0022 | 0.9565 |
| 0.2436 | 30.0 | 60 | 0.3303 | 0.4812 | 0.5020 | 0.9568 | nan | 0.0059 | 0.9981 | nan | 0.0056 | 0.9568 |
| 0.2148 | 35.0 | 70 | 0.2739 | 0.4794 | 0.5002 | 0.9580 | nan | 0.0008 | 0.9996 | nan | 0.0008 | 0.9580 |
| 0.1983 | 40.0 | 80 | 0.2348 | 0.5079 | 0.5284 | 0.9595 | nan | 0.0582 | 0.9986 | nan | 0.0564 | 0.9594 |
| 0.1784 | 45.0 | 90 | 0.2178 | 0.6064 | 0.6440 | 0.9631 | nan | 0.2960 | 0.9920 | nan | 0.2501 | 0.9626 |
| 0.1631 | 50.0 | 100 | 0.1943 | 0.6223 | 0.6811 | 0.9607 | nan | 0.3760 | 0.9861 | nan | 0.2846 | 0.9601 |
| 0.1468 | 55.0 | 110 | 0.1759 | 0.6206 | 0.6731 | 0.9617 | nan | 0.3583 | 0.9879 | nan | 0.2801 | 0.9611 |
| 0.1353 | 60.0 | 120 | 0.1657 | 0.6014 | 0.6335 | 0.9639 | nan | 0.2731 | 0.9939 | nan | 0.2393 | 0.9635 |
| 0.1474 | 65.0 | 130 | 0.1590 | 0.5943 | 0.6228 | 0.9641 | nan | 0.2505 | 0.9951 | nan | 0.2249 | 0.9637 |
| 0.1172 | 70.0 | 140 | 0.1562 | 0.6272 | 0.6662 | 0.9653 | nan | 0.3400 | 0.9924 | nan | 0.2896 | 0.9648 |
| 0.1169 | 75.0 | 150 | 0.1538 | 0.6302 | 0.6696 | 0.9656 | nan | 0.3467 | 0.9925 | nan | 0.2954 | 0.9651 |
| 0.1263 | 80.0 | 160 | 0.1540 | 0.6372 | 0.6784 | 0.9661 | nan | 0.3645 | 0.9922 | nan | 0.3089 | 0.9656 |
| 0.1028 | 85.0 | 170 | 0.1512 | 0.6462 | 0.6948 | 0.9659 | nan | 0.3992 | 0.9904 | nan | 0.3271 | 0.9653 |
| 0.1163 | 90.0 | 180 | 0.1493 | 0.6469 | 0.6932 | 0.9663 | nan | 0.3953 | 0.9911 | nan | 0.3280 | 0.9658 |
| 0.0998 | 95.0 | 190 | 0.1481 | 0.6457 | 0.6894 | 0.9666 | nan | 0.3869 | 0.9918 | nan | 0.3253 | 0.9661 |
| 0.0997 | 100.0 | 200 | 0.1465 | 0.6454 | 0.6893 | 0.9665 | nan | 0.3869 | 0.9917 | nan | 0.3247 | 0.9660 |
| 0.0998 | 105.0 | 210 | 0.1473 | 0.6488 | 0.6937 | 0.9668 | nan | 0.3958 | 0.9916 | nan | 0.3313 | 0.9662 |
| 0.1003 | 110.0 | 220 | 0.1437 | 0.6401 | 0.6774 | 0.9671 | nan | 0.3614 | 0.9934 | nan | 0.3136 | 0.9666 |
| 0.0932 | 115.0 | 230 | 0.1434 | 0.6469 | 0.6898 | 0.9669 | nan | 0.3876 | 0.9920 | nan | 0.3275 | 0.9664 |
| 0.0942 | 120.0 | 240 | 0.1429 | 0.6443 | 0.6853 | 0.9669 | nan | 0.3782 | 0.9925 | nan | 0.3223 | 0.9664 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGBD-b5_7 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGBD-b5_7
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1296
- Mean Iou: 0.6242
- Mean Accuracy: 0.6623
- Overall Accuracy: 0.9652
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3319
- Accuracy Undropoff: 0.9926
- Iou Unlabeled: nan
- Iou Dropoff: 0.2838
- Iou Undropoff: 0.9647
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.9278 | 5.0 | 10 | 0.8454 | 0.3197 | 0.5545 | 0.8788 | nan | 0.2009 | 0.9082 | 0.0 | 0.0807 | 0.8785 |
| 0.5551 | 10.0 | 20 | 0.4668 | 0.3221 | 0.5042 | 0.9540 | nan | 0.0135 | 0.9948 | 0.0 | 0.0122 | 0.9540 |
| 0.3667 | 15.0 | 30 | 0.3354 | 0.3218 | 0.5035 | 0.9570 | nan | 0.0088 | 0.9982 | 0.0 | 0.0085 | 0.9570 |
| 0.2402 | 20.0 | 40 | 0.2678 | 0.5985 | 0.6492 | 0.9587 | nan | 0.3116 | 0.9868 | nan | 0.2388 | 0.9582 |
| 0.1562 | 25.0 | 50 | 0.2101 | 0.6240 | 0.6719 | 0.9631 | nan | 0.3544 | 0.9895 | nan | 0.2854 | 0.9625 |
| 0.1159 | 30.0 | 60 | 0.1704 | 0.6262 | 0.6641 | 0.9654 | nan | 0.3353 | 0.9928 | nan | 0.2875 | 0.9650 |
| 0.0869 | 35.0 | 70 | 0.1443 | 0.6380 | 0.6817 | 0.9657 | nan | 0.3720 | 0.9915 | nan | 0.3108 | 0.9652 |
| 0.079 | 40.0 | 80 | 0.1350 | 0.6072 | 0.6360 | 0.9654 | nan | 0.2766 | 0.9953 | nan | 0.2494 | 0.9650 |
| 0.0647 | 45.0 | 90 | 0.1370 | 0.5800 | 0.6031 | 0.9643 | nan | 0.2090 | 0.9971 | nan | 0.1959 | 0.9640 |
| 0.0587 | 50.0 | 100 | 0.1336 | 0.6276 | 0.6796 | 0.9628 | nan | 0.3707 | 0.9885 | nan | 0.2929 | 0.9622 |
| 0.0575 | 55.0 | 110 | 0.1313 | 0.6189 | 0.6531 | 0.9654 | nan | 0.3126 | 0.9937 | nan | 0.2729 | 0.9649 |
| 0.0527 | 60.0 | 120 | 0.1298 | 0.6252 | 0.6655 | 0.9648 | nan | 0.3391 | 0.9920 | nan | 0.2860 | 0.9643 |
| 0.0491 | 65.0 | 130 | 0.1313 | 0.6110 | 0.6492 | 0.9635 | nan | 0.3063 | 0.9920 | nan | 0.2589 | 0.9631 |
| 0.0441 | 70.0 | 140 | 0.1295 | 0.6103 | 0.6429 | 0.9648 | nan | 0.2919 | 0.9939 | nan | 0.2562 | 0.9643 |
| 0.0426 | 75.0 | 150 | 0.1233 | 0.6271 | 0.6633 | 0.9659 | nan | 0.3333 | 0.9933 | nan | 0.2887 | 0.9654 |
| 0.0477 | 80.0 | 160 | 0.1286 | 0.6255 | 0.6629 | 0.9655 | nan | 0.3328 | 0.9929 | nan | 0.2861 | 0.9650 |
| 0.039 | 85.0 | 170 | 0.1265 | 0.6380 | 0.6824 | 0.9656 | nan | 0.3735 | 0.9913 | nan | 0.3109 | 0.9650 |
| 0.0378 | 90.0 | 180 | 0.1309 | 0.6185 | 0.6543 | 0.9650 | nan | 0.3154 | 0.9932 | nan | 0.2725 | 0.9645 |
| 0.0362 | 95.0 | 190 | 0.1266 | 0.6311 | 0.6715 | 0.9655 | nan | 0.3508 | 0.9922 | nan | 0.2973 | 0.9650 |
| 0.0394 | 100.0 | 200 | 0.1307 | 0.6274 | 0.6635 | 0.9659 | nan | 0.3337 | 0.9934 | nan | 0.2894 | 0.9655 |
| 0.0362 | 105.0 | 210 | 0.1271 | 0.6366 | 0.6789 | 0.9658 | nan | 0.3661 | 0.9918 | nan | 0.3080 | 0.9653 |
| 0.0361 | 110.0 | 220 | 0.1274 | 0.6317 | 0.6736 | 0.9653 | nan | 0.3554 | 0.9918 | nan | 0.2987 | 0.9648 |
| 0.0353 | 115.0 | 230 | 0.1290 | 0.6216 | 0.6579 | 0.9652 | nan | 0.3228 | 0.9931 | nan | 0.2784 | 0.9647 |
| 0.0344 | 120.0 | 240 | 0.1296 | 0.6242 | 0.6623 | 0.9652 | nan | 0.3319 | 0.9926 | nan | 0.2838 | 0.9647 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b5_1 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b5_1
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6279
- Mean Iou: 0.4054
- Mean Accuracy: 0.7471
- Overall Accuracy: 0.8860
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.5956
- Accuracy Undropoff: 0.8986
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.3318
- Iou Undropoff: 0.8843
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0071 | 5.0 | 10 | 1.0206 | 0.1745 | 0.2748 | 0.5034 | nan | 0.0255 | 0.5241 | 0.0 | 0.0147 | 0.5087 |
| 0.9688 | 10.0 | 20 | 0.9873 | 0.2140 | 0.3486 | 0.5771 | nan | 0.0992 | 0.5979 | 0.0 | 0.0582 | 0.5838 |
| 0.9406 | 15.0 | 30 | 0.9313 | 0.2613 | 0.4446 | 0.6655 | nan | 0.2038 | 0.6855 | 0.0 | 0.1135 | 0.6705 |
| 0.9278 | 20.0 | 40 | 0.8851 | 0.2930 | 0.5149 | 0.7111 | nan | 0.3009 | 0.7289 | 0.0 | 0.1648 | 0.7142 |
| 0.8956 | 25.0 | 50 | 0.8563 | 0.3118 | 0.5642 | 0.7358 | nan | 0.3770 | 0.7514 | 0.0 | 0.1985 | 0.7370 |
| 0.8674 | 30.0 | 60 | 0.8260 | 0.3303 | 0.6086 | 0.7664 | nan | 0.4366 | 0.7807 | 0.0 | 0.2246 | 0.7664 |
| 0.8438 | 35.0 | 70 | 0.8149 | 0.3347 | 0.6355 | 0.7671 | nan | 0.4921 | 0.7790 | 0.0 | 0.2381 | 0.7660 |
| 0.8309 | 40.0 | 80 | 0.7881 | 0.3459 | 0.6472 | 0.7847 | nan | 0.4972 | 0.7972 | 0.0 | 0.2539 | 0.7839 |
| 0.8069 | 45.0 | 90 | 0.7640 | 0.3567 | 0.6617 | 0.8041 | nan | 0.5063 | 0.8170 | 0.0 | 0.2668 | 0.8033 |
| 0.7779 | 50.0 | 100 | 0.7486 | 0.3637 | 0.6792 | 0.8145 | nan | 0.5316 | 0.8268 | 0.0 | 0.2778 | 0.8132 |
| 0.7695 | 55.0 | 110 | 0.7354 | 0.3684 | 0.6936 | 0.8214 | nan | 0.5542 | 0.8329 | 0.0 | 0.2858 | 0.8195 |
| 0.7568 | 60.0 | 120 | 0.7164 | 0.3757 | 0.7032 | 0.8365 | nan | 0.5577 | 0.8486 | 0.0 | 0.2924 | 0.8347 |
| 0.7285 | 65.0 | 130 | 0.6976 | 0.3836 | 0.7119 | 0.8484 | nan | 0.5630 | 0.8608 | 0.0 | 0.3042 | 0.8467 |
| 0.7217 | 70.0 | 140 | 0.6922 | 0.3857 | 0.7217 | 0.8499 | nan | 0.5817 | 0.8616 | 0.0 | 0.3091 | 0.8480 |
| 0.7095 | 75.0 | 150 | 0.6708 | 0.3926 | 0.7287 | 0.8624 | nan | 0.5828 | 0.8745 | 0.0 | 0.3172 | 0.8605 |
| 0.6944 | 80.0 | 160 | 0.6637 | 0.3951 | 0.7320 | 0.8660 | nan | 0.5858 | 0.8781 | 0.0 | 0.3212 | 0.8641 |
| 0.6878 | 85.0 | 170 | 0.6632 | 0.3942 | 0.7397 | 0.8673 | nan | 0.6005 | 0.8788 | 0.0 | 0.3175 | 0.8652 |
| 0.6868 | 90.0 | 180 | 0.6468 | 0.3998 | 0.7391 | 0.8756 | nan | 0.5902 | 0.8880 | 0.0 | 0.3257 | 0.8739 |
| 0.6581 | 95.0 | 190 | 0.6444 | 0.4003 | 0.7421 | 0.8776 | nan | 0.5942 | 0.8899 | 0.0 | 0.3249 | 0.8759 |
| 0.6587 | 100.0 | 200 | 0.6383 | 0.4026 | 0.7427 | 0.8814 | nan | 0.5914 | 0.8940 | 0.0 | 0.3281 | 0.8797 |
| 0.6525 | 105.0 | 210 | 0.6334 | 0.4032 | 0.7434 | 0.8825 | nan | 0.5918 | 0.8951 | 0.0 | 0.3289 | 0.8808 |
| 0.658 | 110.0 | 220 | 0.6345 | 0.4026 | 0.7451 | 0.8811 | nan | 0.5968 | 0.8934 | 0.0 | 0.3285 | 0.8793 |
| 0.6575 | 115.0 | 230 | 0.6300 | 0.4050 | 0.7463 | 0.8851 | nan | 0.5948 | 0.8977 | 0.0 | 0.3314 | 0.8835 |
| 0.6625 | 120.0 | 240 | 0.6279 | 0.4054 | 0.7471 | 0.8860 | nan | 0.5956 | 0.8986 | 0.0 | 0.3318 | 0.8843 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b5_2 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b5_2
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4848
- Mean Iou: 0.4257
- Mean Accuracy: 0.7972
- Overall Accuracy: 0.9466
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.6343
- Accuracy Undropoff: 0.9601
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.3321
- Iou Undropoff: 0.9451
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0108 | 5.0 | 10 | 1.0721 | 0.1514 | 0.5401 | 0.4205 | nan | 0.6706 | 0.4096 | 0.0 | 0.0494 | 0.4047 |
| 0.9654 | 10.0 | 20 | 0.9802 | 0.2190 | 0.6570 | 0.5944 | nan | 0.7253 | 0.5887 | 0.0 | 0.0745 | 0.5826 |
| 0.9175 | 15.0 | 30 | 0.9047 | 0.2553 | 0.7350 | 0.6792 | nan | 0.7960 | 0.6741 | 0.0 | 0.0973 | 0.6686 |
| 0.9052 | 20.0 | 40 | 0.8427 | 0.2812 | 0.7661 | 0.7377 | nan | 0.7971 | 0.7351 | 0.0 | 0.1146 | 0.7290 |
| 0.8555 | 25.0 | 50 | 0.7970 | 0.3063 | 0.7827 | 0.7900 | nan | 0.7748 | 0.7906 | 0.0 | 0.1357 | 0.7832 |
| 0.8291 | 30.0 | 60 | 0.7543 | 0.3289 | 0.7891 | 0.8332 | nan | 0.7410 | 0.8372 | 0.0 | 0.1586 | 0.8282 |
| 0.7923 | 35.0 | 70 | 0.7327 | 0.3375 | 0.7961 | 0.8471 | nan | 0.7405 | 0.8517 | 0.0 | 0.1701 | 0.8425 |
| 0.7724 | 40.0 | 80 | 0.6994 | 0.3529 | 0.7968 | 0.8719 | nan | 0.7149 | 0.8787 | 0.0 | 0.1906 | 0.8682 |
| 0.7215 | 45.0 | 90 | 0.6675 | 0.3694 | 0.7935 | 0.8954 | nan | 0.6824 | 0.9047 | 0.0 | 0.2157 | 0.8926 |
| 0.6907 | 50.0 | 100 | 0.6521 | 0.3742 | 0.7998 | 0.9000 | nan | 0.6904 | 0.9091 | 0.0 | 0.2252 | 0.8973 |
| 0.6768 | 55.0 | 110 | 0.6260 | 0.3850 | 0.8022 | 0.9118 | nan | 0.6827 | 0.9217 | 0.0 | 0.2455 | 0.9094 |
| 0.659 | 60.0 | 120 | 0.6010 | 0.3965 | 0.7973 | 0.9244 | nan | 0.6586 | 0.9359 | 0.0 | 0.2671 | 0.9224 |
| 0.6265 | 65.0 | 130 | 0.5847 | 0.4005 | 0.7992 | 0.9276 | nan | 0.6592 | 0.9393 | 0.0 | 0.2757 | 0.9258 |
| 0.6134 | 70.0 | 140 | 0.5673 | 0.4060 | 0.8022 | 0.9316 | nan | 0.6611 | 0.9433 | 0.0 | 0.2881 | 0.9297 |
| 0.5864 | 75.0 | 150 | 0.5401 | 0.4132 | 0.7961 | 0.9383 | nan | 0.6410 | 0.9511 | 0.0 | 0.3029 | 0.9366 |
| 0.5686 | 80.0 | 160 | 0.5289 | 0.4153 | 0.7974 | 0.9395 | nan | 0.6424 | 0.9524 | 0.0 | 0.3080 | 0.9379 |
| 0.5597 | 85.0 | 170 | 0.5386 | 0.4114 | 0.8079 | 0.9350 | nan | 0.6692 | 0.9465 | 0.0 | 0.3011 | 0.9331 |
| 0.5718 | 90.0 | 180 | 0.5080 | 0.4210 | 0.7947 | 0.9438 | nan | 0.6321 | 0.9573 | 0.0 | 0.3208 | 0.9423 |
| 0.517 | 95.0 | 190 | 0.5026 | 0.4222 | 0.7956 | 0.9445 | nan | 0.6332 | 0.9580 | 0.0 | 0.3236 | 0.9430 |
| 0.5252 | 100.0 | 200 | 0.4990 | 0.4232 | 0.7969 | 0.9450 | nan | 0.6354 | 0.9584 | 0.0 | 0.3261 | 0.9435 |
| 0.5174 | 105.0 | 210 | 0.4951 | 0.4223 | 0.8012 | 0.9437 | nan | 0.6457 | 0.9567 | 0.0 | 0.3249 | 0.9422 |
| 0.5217 | 110.0 | 220 | 0.4882 | 0.4238 | 0.7993 | 0.9450 | nan | 0.6404 | 0.9582 | 0.0 | 0.3280 | 0.9435 |
| 0.5224 | 115.0 | 230 | 0.4846 | 0.4258 | 0.7968 | 0.9467 | nan | 0.6333 | 0.9603 | 0.0 | 0.3321 | 0.9452 |
| 0.5399 | 120.0 | 240 | 0.4848 | 0.4257 | 0.7972 | 0.9466 | nan | 0.6343 | 0.9601 | 0.0 | 0.3321 | 0.9451 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b5_3 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b5_3
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3770
- Mean Iou: 0.4572
- Mean Accuracy: 0.7822
- Overall Accuracy: 0.9640
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.5839
- Accuracy Undropoff: 0.9805
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.4086
- Iou Undropoff: 0.9631
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.3135 | 5.0 | 10 | 1.2008 | 0.0546 | 0.2586 | 0.1227 | nan | 0.4069 | 0.1103 | 0.0 | 0.0535 | 0.1102 |
| 1.2309 | 10.0 | 20 | 1.1294 | 0.1176 | 0.3397 | 0.2490 | nan | 0.4388 | 0.2407 | 0.0 | 0.1129 | 0.2400 |
| 1.1346 | 15.0 | 30 | 1.0395 | 0.2171 | 0.4865 | 0.5022 | nan | 0.4694 | 0.5036 | 0.0 | 0.1524 | 0.4989 |
| 1.1088 | 20.0 | 40 | 0.9755 | 0.2608 | 0.5521 | 0.6176 | nan | 0.4808 | 0.6235 | 0.0 | 0.1661 | 0.6163 |
| 1.007 | 25.0 | 50 | 0.9197 | 0.2895 | 0.5959 | 0.6775 | nan | 0.5068 | 0.6849 | 0.0 | 0.1923 | 0.6763 |
| 0.9145 | 30.0 | 60 | 0.8635 | 0.3162 | 0.6299 | 0.7335 | nan | 0.5168 | 0.7429 | 0.0 | 0.2156 | 0.7329 |
| 0.8745 | 35.0 | 70 | 0.8070 | 0.3398 | 0.6784 | 0.7808 | nan | 0.5667 | 0.7901 | 0.0 | 0.2404 | 0.7791 |
| 0.8088 | 40.0 | 80 | 0.7442 | 0.3667 | 0.7191 | 0.8290 | nan | 0.5993 | 0.8389 | 0.0 | 0.2730 | 0.8272 |
| 0.7184 | 45.0 | 90 | 0.6956 | 0.3832 | 0.7513 | 0.8603 | nan | 0.6323 | 0.8702 | 0.0 | 0.2915 | 0.8580 |
| 0.6908 | 50.0 | 100 | 0.6751 | 0.3931 | 0.7592 | 0.8748 | nan | 0.6332 | 0.8853 | 0.0 | 0.3067 | 0.8728 |
| 0.643 | 55.0 | 110 | 0.6101 | 0.4134 | 0.7714 | 0.9108 | nan | 0.6194 | 0.9234 | 0.0 | 0.3308 | 0.9094 |
| 0.6014 | 60.0 | 120 | 0.5971 | 0.4166 | 0.7826 | 0.9189 | nan | 0.6339 | 0.9313 | 0.0 | 0.3324 | 0.9175 |
| 0.5685 | 65.0 | 130 | 0.5595 | 0.4304 | 0.7946 | 0.9328 | nan | 0.6439 | 0.9453 | 0.0 | 0.3599 | 0.9314 |
| 0.5172 | 70.0 | 140 | 0.5344 | 0.4373 | 0.8010 | 0.9406 | nan | 0.6488 | 0.9532 | 0.0 | 0.3727 | 0.9393 |
| 0.4757 | 75.0 | 150 | 0.4963 | 0.4434 | 0.7997 | 0.9490 | nan | 0.6368 | 0.9626 | 0.0 | 0.3822 | 0.9479 |
| 0.4288 | 80.0 | 160 | 0.4599 | 0.4488 | 0.7936 | 0.9556 | nan | 0.6169 | 0.9702 | 0.0 | 0.3918 | 0.9546 |
| 0.4124 | 85.0 | 170 | 0.4710 | 0.4469 | 0.7989 | 0.9540 | nan | 0.6296 | 0.9681 | 0.0 | 0.3876 | 0.9529 |
| 0.4995 | 90.0 | 180 | 0.4209 | 0.4537 | 0.7883 | 0.9606 | nan | 0.6004 | 0.9762 | 0.0 | 0.4015 | 0.9597 |
| 0.3815 | 95.0 | 190 | 0.4287 | 0.4524 | 0.7919 | 0.9595 | nan | 0.6090 | 0.9748 | 0.0 | 0.3988 | 0.9586 |
| 0.3764 | 100.0 | 200 | 0.4245 | 0.4529 | 0.7913 | 0.9600 | nan | 0.6073 | 0.9753 | 0.0 | 0.3998 | 0.9590 |
| 0.4074 | 105.0 | 210 | 0.4096 | 0.4542 | 0.7894 | 0.9613 | nan | 0.6018 | 0.9769 | 0.0 | 0.4021 | 0.9603 |
| 0.3975 | 110.0 | 220 | 0.4107 | 0.4538 | 0.7905 | 0.9610 | nan | 0.6045 | 0.9765 | 0.0 | 0.4013 | 0.9601 |
| 0.3598 | 115.0 | 230 | 0.3918 | 0.4558 | 0.7863 | 0.9627 | nan | 0.5939 | 0.9787 | 0.0 | 0.4057 | 0.9618 |
| 0.3709 | 120.0 | 240 | 0.3770 | 0.4572 | 0.7822 | 0.9640 | nan | 0.5839 | 0.9805 | 0.0 | 0.4086 | 0.9631 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b5_4 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b5_4
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2242
- Mean Iou: 0.4568
- Mean Accuracy: 0.7402
- Overall Accuracy: 0.9696
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.4899
- Accuracy Undropoff: 0.9904
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.4016
- Iou Undropoff: 0.9690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.9465 | 5.0 | 10 | 0.9974 | 0.2695 | 0.5001 | 0.6771 | nan | 0.3071 | 0.6931 | 0.0 | 0.1261 | 0.6824 |
| 0.8558 | 10.0 | 20 | 0.8237 | 0.3822 | 0.7119 | 0.8664 | nan | 0.5434 | 0.8804 | 0.0 | 0.2787 | 0.8678 |
| 0.7585 | 15.0 | 30 | 0.6801 | 0.4232 | 0.7487 | 0.9194 | nan | 0.5625 | 0.9349 | 0.0 | 0.3494 | 0.9202 |
| 0.715 | 20.0 | 40 | 0.6076 | 0.4298 | 0.7663 | 0.9232 | nan | 0.5952 | 0.9375 | 0.0 | 0.3661 | 0.9233 |
| 0.6145 | 25.0 | 50 | 0.5298 | 0.4398 | 0.7760 | 0.9380 | nan | 0.5994 | 0.9527 | 0.0 | 0.3819 | 0.9375 |
| 0.5355 | 30.0 | 60 | 0.4821 | 0.4426 | 0.7749 | 0.9428 | nan | 0.5918 | 0.9581 | 0.0 | 0.3857 | 0.9422 |
| 0.4619 | 35.0 | 70 | 0.4266 | 0.4493 | 0.7716 | 0.9524 | nan | 0.5743 | 0.9688 | 0.0 | 0.3962 | 0.9517 |
| 0.4367 | 40.0 | 80 | 0.3941 | 0.4519 | 0.7738 | 0.9568 | nan | 0.5742 | 0.9734 | 0.0 | 0.3997 | 0.9559 |
| 0.3839 | 45.0 | 90 | 0.3801 | 0.4528 | 0.7796 | 0.9577 | nan | 0.5853 | 0.9738 | 0.0 | 0.4017 | 0.9567 |
| 0.3164 | 50.0 | 100 | 0.3549 | 0.4543 | 0.7785 | 0.9608 | nan | 0.5797 | 0.9773 | 0.0 | 0.4030 | 0.9599 |
| 0.3018 | 55.0 | 110 | 0.3327 | 0.4573 | 0.7731 | 0.9639 | nan | 0.5650 | 0.9812 | 0.0 | 0.4087 | 0.9631 |
| 0.2646 | 60.0 | 120 | 0.3127 | 0.4590 | 0.7703 | 0.9658 | nan | 0.5571 | 0.9835 | 0.0 | 0.4121 | 0.9650 |
| 0.2378 | 65.0 | 130 | 0.2958 | 0.4628 | 0.7728 | 0.9673 | nan | 0.5607 | 0.9850 | 0.0 | 0.4217 | 0.9666 |
| 0.2076 | 70.0 | 140 | 0.2778 | 0.4675 | 0.7729 | 0.9693 | nan | 0.5586 | 0.9871 | 0.0 | 0.4340 | 0.9686 |
| 0.1951 | 75.0 | 150 | 0.2648 | 0.4666 | 0.7719 | 0.9692 | nan | 0.5567 | 0.9871 | 0.0 | 0.4314 | 0.9685 |
| 0.1734 | 80.0 | 160 | 0.2522 | 0.4673 | 0.7643 | 0.9703 | nan | 0.5397 | 0.9890 | 0.0 | 0.4322 | 0.9696 |
| 0.1569 | 85.0 | 170 | 0.2436 | 0.4660 | 0.7603 | 0.9703 | nan | 0.5312 | 0.9894 | 0.0 | 0.4282 | 0.9697 |
| 0.1691 | 90.0 | 180 | 0.2411 | 0.4647 | 0.7624 | 0.9697 | nan | 0.5363 | 0.9885 | 0.0 | 0.4250 | 0.9690 |
| 0.1498 | 95.0 | 190 | 0.2335 | 0.4623 | 0.7537 | 0.9699 | nan | 0.5179 | 0.9895 | 0.0 | 0.4176 | 0.9692 |
| 0.1478 | 100.0 | 200 | 0.2281 | 0.4585 | 0.7420 | 0.9700 | nan | 0.4934 | 0.9906 | 0.0 | 0.4062 | 0.9693 |
| 0.1407 | 105.0 | 210 | 0.2278 | 0.4615 | 0.7501 | 0.9701 | nan | 0.5102 | 0.9900 | 0.0 | 0.4151 | 0.9694 |
| 0.1397 | 110.0 | 220 | 0.2305 | 0.4610 | 0.7512 | 0.9698 | nan | 0.5129 | 0.9896 | 0.0 | 0.4140 | 0.9691 |
| 0.1317 | 115.0 | 230 | 0.2265 | 0.4576 | 0.7430 | 0.9695 | nan | 0.4959 | 0.9901 | 0.0 | 0.4038 | 0.9689 |
| 0.1548 | 120.0 | 240 | 0.2242 | 0.4568 | 0.7402 | 0.9696 | nan | 0.4899 | 0.9904 | 0.0 | 0.4016 | 0.9690 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b5_6 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b5_6
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2315
- Mean Iou: 0.6980
- Mean Accuracy: 0.7503
- Overall Accuracy: 0.9714
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.5091
- Accuracy Undropoff: 0.9915
- Iou Unlabeled: nan
- Iou Dropoff: 0.4253
- Iou Undropoff: 0.9708
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 1.0694 | 5.0 | 10 | 1.0190 | 0.2533 | 0.6371 | 0.6676 | nan | 0.6038 | 0.6703 | 0.0 | 0.0976 | 0.6624 |
| 0.8457 | 10.0 | 20 | 0.7681 | 0.4126 | 0.7662 | 0.9307 | nan | 0.5867 | 0.9457 | 0.0 | 0.3078 | 0.9300 |
| 0.6049 | 15.0 | 30 | 0.5718 | 0.4362 | 0.7527 | 0.9568 | nan | 0.5301 | 0.9753 | 0.0 | 0.3527 | 0.9561 |
| 0.5206 | 20.0 | 40 | 0.4181 | 0.4522 | 0.7468 | 0.9662 | nan | 0.5076 | 0.9861 | 0.0 | 0.3909 | 0.9656 |
| 0.3478 | 25.0 | 50 | 0.3144 | 0.4603 | 0.7376 | 0.9709 | nan | 0.4832 | 0.9920 | 0.0 | 0.4105 | 0.9705 |
| 0.2023 | 30.0 | 60 | 0.2893 | 0.4654 | 0.7612 | 0.9701 | nan | 0.5332 | 0.9891 | 0.0 | 0.4267 | 0.9695 |
| 0.1367 | 35.0 | 70 | 0.2351 | 0.6813 | 0.7176 | 0.9715 | nan | 0.4407 | 0.9946 | nan | 0.3916 | 0.9710 |
| 0.1272 | 40.0 | 80 | 0.2364 | 0.6824 | 0.7217 | 0.9713 | nan | 0.4495 | 0.9939 | nan | 0.3941 | 0.9707 |
| 0.0929 | 45.0 | 90 | 0.2536 | 0.4704 | 0.7617 | 0.9718 | nan | 0.5326 | 0.9909 | 0.0 | 0.4401 | 0.9712 |
| 0.0756 | 50.0 | 100 | 0.2253 | 0.6950 | 0.7479 | 0.9710 | nan | 0.5045 | 0.9912 | nan | 0.4197 | 0.9704 |
| 0.0756 | 55.0 | 110 | 0.2305 | 0.7043 | 0.7606 | 0.9716 | nan | 0.5305 | 0.9908 | nan | 0.4375 | 0.9710 |
| 0.0721 | 60.0 | 120 | 0.2213 | 0.6964 | 0.7448 | 0.9716 | nan | 0.4974 | 0.9922 | nan | 0.4218 | 0.9711 |
| 0.0683 | 65.0 | 130 | 0.2338 | 0.7047 | 0.7631 | 0.9715 | nan | 0.5359 | 0.9904 | nan | 0.4385 | 0.9708 |
| 0.0642 | 70.0 | 140 | 0.2314 | 0.7046 | 0.7637 | 0.9714 | nan | 0.5373 | 0.9902 | nan | 0.4385 | 0.9707 |
| 0.0623 | 75.0 | 150 | 0.2205 | 0.7013 | 0.7565 | 0.9714 | nan | 0.5222 | 0.9909 | nan | 0.4317 | 0.9708 |
| 0.0601 | 80.0 | 160 | 0.2209 | 0.6983 | 0.7496 | 0.9715 | nan | 0.5075 | 0.9917 | nan | 0.4257 | 0.9709 |
| 0.0557 | 85.0 | 170 | 0.2067 | 0.6982 | 0.7463 | 0.9719 | nan | 0.5003 | 0.9923 | nan | 0.4252 | 0.9713 |
| 0.0571 | 90.0 | 180 | 0.2354 | 0.7022 | 0.7603 | 0.9712 | nan | 0.5302 | 0.9904 | nan | 0.4339 | 0.9706 |
| 0.0544 | 95.0 | 190 | 0.2240 | 0.7010 | 0.7562 | 0.9714 | nan | 0.5215 | 0.9909 | nan | 0.4311 | 0.9708 |
| 0.0553 | 100.0 | 200 | 0.2204 | 0.6968 | 0.7454 | 0.9717 | nan | 0.4987 | 0.9922 | nan | 0.4225 | 0.9711 |
| 0.0525 | 105.0 | 210 | 0.2332 | 0.7050 | 0.7625 | 0.9716 | nan | 0.5344 | 0.9906 | nan | 0.4390 | 0.9710 |
| 0.0524 | 110.0 | 220 | 0.2371 | 0.7033 | 0.7605 | 0.9715 | nan | 0.5304 | 0.9906 | nan | 0.4359 | 0.9708 |
| 0.0513 | 115.0 | 230 | 0.2333 | 0.6987 | 0.7519 | 0.9714 | nan | 0.5125 | 0.9913 | nan | 0.4267 | 0.9707 |
| 0.0537 | 120.0 | 240 | 0.2315 | 0.6980 | 0.7503 | 0.9714 | nan | 0.5091 | 0.9915 | nan | 0.4253 | 0.9708 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
sam1120/dropoff-utcustom-train-SF-RGB-b5_7 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dropoff-utcustom-train-SF-RGB-b5_7
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1841
- Mean Iou: 0.7025
- Mean Accuracy: 0.7532
- Overall Accuracy: 0.9721
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.5145
- Accuracy Undropoff: 0.9919
- Iou Unlabeled: nan
- Iou Dropoff: 0.4336
- Iou Undropoff: 0.9715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
| 0.8255 | 5.0 | 10 | 0.7949 | 0.4128 | 0.7856 | 0.9393 | nan | 0.6179 | 0.9533 | 0.0 | 0.3007 | 0.9377 |
| 0.4434 | 10.0 | 20 | 0.4247 | 0.4471 | 0.7066 | 0.9705 | nan | 0.4187 | 0.9944 | 0.0 | 0.3714 | 0.9700 |
| 0.2107 | 15.0 | 30 | 0.2726 | 0.6711 | 0.7003 | 0.9715 | nan | 0.4046 | 0.9961 | nan | 0.3713 | 0.9710 |
| 0.1678 | 20.0 | 40 | 0.2388 | 0.6801 | 0.7343 | 0.9691 | nan | 0.4782 | 0.9904 | nan | 0.3917 | 0.9685 |
| 0.0972 | 25.0 | 50 | 0.1849 | 0.6764 | 0.7096 | 0.9715 | nan | 0.4241 | 0.9952 | nan | 0.3818 | 0.9709 |
| 0.0604 | 30.0 | 60 | 0.2019 | 0.4644 | 0.7568 | 0.9704 | nan | 0.5239 | 0.9897 | 0.0 | 0.4236 | 0.9697 |
| 0.0497 | 35.0 | 70 | 0.1793 | 0.6838 | 0.7345 | 0.9700 | nan | 0.4775 | 0.9914 | nan | 0.3983 | 0.9694 |
| 0.0492 | 40.0 | 80 | 0.2000 | 0.4639 | 0.7567 | 0.9702 | nan | 0.5239 | 0.9896 | 0.0 | 0.4223 | 0.9695 |
| 0.0409 | 45.0 | 90 | 0.1893 | 0.7030 | 0.7778 | 0.9696 | nan | 0.5687 | 0.9869 | nan | 0.4372 | 0.9688 |
| 0.0328 | 50.0 | 100 | 0.1842 | 0.7040 | 0.7715 | 0.9704 | nan | 0.5545 | 0.9885 | nan | 0.4382 | 0.9697 |
| 0.0332 | 55.0 | 110 | 0.1781 | 0.7015 | 0.7563 | 0.9715 | nan | 0.5216 | 0.9910 | nan | 0.4322 | 0.9709 |
| 0.0314 | 60.0 | 120 | 0.1732 | 0.6890 | 0.7305 | 0.9717 | nan | 0.4675 | 0.9935 | nan | 0.4068 | 0.9711 |
| 0.0318 | 65.0 | 130 | 0.1786 | 0.6971 | 0.7477 | 0.9715 | nan | 0.5037 | 0.9918 | nan | 0.4233 | 0.9709 |
| 0.0291 | 70.0 | 140 | 0.1814 | 0.7119 | 0.7687 | 0.9725 | nan | 0.5466 | 0.9909 | nan | 0.4521 | 0.9718 |
| 0.0273 | 75.0 | 150 | 0.1755 | 0.7101 | 0.7677 | 0.9722 | nan | 0.5446 | 0.9907 | nan | 0.4487 | 0.9715 |
| 0.0274 | 80.0 | 160 | 0.1786 | 0.7006 | 0.7494 | 0.9720 | nan | 0.5066 | 0.9922 | nan | 0.4297 | 0.9714 |
| 0.0248 | 85.0 | 170 | 0.1741 | 0.7029 | 0.7526 | 0.9722 | nan | 0.5131 | 0.9921 | nan | 0.4341 | 0.9716 |
| 0.0248 | 90.0 | 180 | 0.1832 | 0.7050 | 0.7595 | 0.9719 | nan | 0.5278 | 0.9912 | nan | 0.4387 | 0.9713 |
| 0.0242 | 95.0 | 190 | 0.1808 | 0.7028 | 0.7539 | 0.9720 | nan | 0.5160 | 0.9918 | nan | 0.4341 | 0.9714 |
| 0.024 | 100.0 | 200 | 0.1796 | 0.7022 | 0.7501 | 0.9723 | nan | 0.5077 | 0.9925 | nan | 0.4327 | 0.9717 |
| 0.0231 | 105.0 | 210 | 0.1835 | 0.7137 | 0.7731 | 0.9724 | nan | 0.5557 | 0.9905 | nan | 0.4556 | 0.9717 |
| 0.0238 | 110.0 | 220 | 0.1823 | 0.7046 | 0.7565 | 0.9721 | nan | 0.5214 | 0.9917 | nan | 0.4376 | 0.9715 |
| 0.0228 | 115.0 | 230 | 0.1833 | 0.7009 | 0.7504 | 0.9720 | nan | 0.5088 | 0.9921 | nan | 0.4305 | 0.9714 |
| 0.0255 | 120.0 | 240 | 0.1841 | 0.7025 | 0.7532 | 0.9721 | nan | 0.5145 | 0.9919 | nan | 0.4336 | 0.9715 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
| [
"unlabeled",
"dropoff",
"undropoff"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.