dataset_info:
features:
- name: audio
dtype: audio
- name: sample_id
dtype: string
- name: system_id
dtype: string
- name: distill_mos
dtype: float32
- name: dnsmos_ovrl
dtype: float32
- name: estoi
dtype: float32
- name: lps
dtype: float32
- name: lsd
dtype: float32
- name: mcd
dtype: float32
- name: mos
dtype: float32
- name: nisqa_mos
dtype: float32
- name: pesq
dtype: float32
- name: pesqc2
dtype: float32
- name: sbert
dtype: float32
- name: scoreq
dtype: float32
- name: sdr
dtype: float32
- name: sigmos_col
dtype: float32
- name: sigmos_disc
dtype: float32
- name: sigmos_loud
dtype: float32
- name: sigmos_noise
dtype: float32
- name: sigmos_ovrl
dtype: float32
- name: sigmos_reverb
dtype: float32
- name: sigmos_sig
dtype: float32
- name: spksim
dtype: float32
- name: utmos
dtype: float32
splits:
- name: blind_test_mos
num_bytes: 1389061983.1
num_examples: 6900
- name: validation
num_bytes: 7970138575
num_examples: 67000
- name: blind_test
num_bytes: 17529748955.8
num_examples: 79400
- name: nonblind_test
num_bytes: 31304135944
num_examples: 171000
download_size: 57624434841
dataset_size: 58193085457.9
configs:
- config_name: default
data_files:
- split: blind_test_mos
path: data/blind_test_mos/*
- split: validation
path: data/validation/*
- split: blind_test
path: data/blind_test/*
- split: nonblind_test
path: data/nonblind_test/*
license: cc-by-nc-sa-4.0
language:
- en
tags:
- speech
- audio
- speech enhancement
- speech quality assessment
Dataset Description
This dataset comprises noisy and enhanced speech from the URGENT Speech Enhancement Challenge (NeurIPS 2024), curated for SQA/SE research. Each entry includes audio/IDs with a comprehensive suite of objective and model-predicted quality metrics, and human MOS where available (see Data fields).
The MOS label for each speech sample were collected from 8 distinct human subjects through Amazon Mechanical Turk (MTurk) platform, following the P.808 recommendation. The raw ratings from each subject were averaged to obtain the final MOS score.
Detailed information about the MOS collection process can be found in our summary paper.
All speech samples in this dataset are in English, with a single microphone channel and sampling frequencies ranging from 8 kHz to 48 kHz.
Example Usage
The dataset can be loaded using the datasets
library.
from datasets import load_dataset
data = load_dataset("urgent-challenge/urgent2024-sqa")
# Load a single sample
sample = data["blind_test_mos"][100]
print(sample)
# Iterate over all samples
# for idx, sample in enumerate(data["blind_test_mos"]):
# print(sample)
This will generate the following output:
{
"audio": {
"path": "fileid_338.flac",
"array": array([0.00027466, -0.00161743, 0.00033569, ..., 0., 0., 0.]),
"sampling_rate": 16000
},
"sample_id": "urgent24_blind_test_submission_422_fileid_000338",
"system_id": "urgent24_blind_test_submission_422",
"distill_mos": 2.5663137435913086,
"dnsmos_ovrl": 3.025352716445923,
"estoi": None,
"lps": None,
"lsd": None,
"mcd": None,
"mos": 2.5,
"nisqa_mos": 2.630293607711792,
"pesq": None,
"pesqc2": None,
"sbert": None,
"scoreq": 2.496799945831299,
"sdr": None,
"sigmos_col": 3.276144504547119,
"sigmos_disc": 2.80405330657959,
"sigmos_loud": 3.370774984359741,
"sigmos_noise": 3.403278350830078,
"sigmos_ovrl": 2.105903148651123,
"sigmos_reverb": 4.257360935211182,
"sigmos_sig": 2.3926312923431396,
"spksim": None,
"utmos": 2.594034433364868
}
Data fields
Audio
audio
(dict)path
(str | null)array
(float32 ndarray): Mono waveform, typically ~[-1, 1].sampling_rate
(int): e.g., 16000.
Identifiers
sample_id
(str):"{system_id}_fileid_{fileid:06d}"
system_id
(str): Participant/system identifier.
Metrics
Metric | Range | Opt. | Reference Type |
---|---|---|---|
PESQ | [1, 4.5] | β | Signal |
PESQc2 | [1, 4.5] | β | Signal |
DNSMOS | [1, 5] | β | No-reference |
SIGMOS_OVRL | [1, 5] | β | No-reference |
SIGMOS_DISC | [1, 5] | β | No-reference |
SIGMOS_NOISE | [1, 5] | β | No-reference |
SIGMOS_REVERB | [1, 5] | β | No-reference |
SIGMOS_COL | [1, 5] | β | No-reference |
SIGMOS_LOUD | [1, 5] | β | No-reference |
SIGMOS_SIG | [1, 5] | β | No-reference |
LSD | [0, β) | β | Signal |
SDR | (ββ, β) | β | Signal |
UTMOS | [1, 5] | β | No-reference |
Distill_MOS | [1, 5] | β | No-reference |
NISQA_MOS | [1, 5] | β | No-reference |
SCOREQ | [1, 5] | β | No-reference |
ESTOI | [0, 1] | β | Signal |
SpeechBERTScore (sbert) | [0, 1] | β | Signal |
PhonemeSimilarity (lps) | [0, 1] | β | Signal |
SpeakerSimilarity (spksim) | [β1, 1] | β | Signal |
MCD | [0, β) | β | Signal |
MOS (human) | [1, 5] | β | No-reference |
More information and analysis
For more information about the dataset, please refer to our speech quality assessment paper and analysis paper.
Acknowledgment and license information
The 2024 URGENT Challenge data were created based on the following source speech, noise, and room impulse response (RIR) data, which are publicly available with varying licenses:
Source speech
Source | License |
---|---|
LibriVox in DNS5 Challenge | CC BY 4.0 |
LibriTTS | CC BY 4.0 |
CommonVoice 11.0 (English portion) | CC0 |
VCTK | ODC-BY |
SLR83 | CC BY-SA 4.0 |
CHiME-6 | CC BY-SA 4.0 |
VOiCES | CC BY 4.0 |
EasyCom | CC BY-NC 4.0 |
Audios extracted from Youtube videos | CC BY 4.0 |
Expand to see a full list of Youtube audio data used in this competition
2ziV6vH-5wo, 4SzRZvEvyr8, 7XcyE1Rrp8g, 5ZqqXHz_xyo, 617jBfdO8MQ, AOvV9m7feKo, JDAYv4tv7yk, JQkewbO-qf4, rj27kDNtl2c, uB_ykR_yjnY, 4G1__QdEp0U, AbixsuKqfLQ, G3zK1aB_zU4, LWC3dS8EEDM, LZnNzQse2OA, QCltA8fDdQw, RaQ96aK4f58, WFAf2kEEBaI, c6UOJfoenss, kBJ2yTaq-UU, klvdARnvpjg, kmQBICeWhAQ, mWF5GXvfP-4, q_Tjw0SnRu8, ud0Aqc3lqLU, wr1hs6geXyk, omhUqE0SANk, d5NEhm7ZOyc, xw39PKAXkdE, qQrY8ZjSCnQ, GLeoET3gZWg, i_r3gCZrdSc, omhUqE0SANk, qQrY8ZjSCnQ, COls47WPPNk, qQrY8ZjSCnQ, xw39PKAXkdE, In35ZJEGtu8, bLVLhLMoV70, pkc-AJTfNDY, nIWnC9RMW08, GLeoET3gZWg, qQrY8ZjSCnQ, FtN8XzP8ZWg, 9up7LiqU9u4, i_r3gCZrdSc, omhUqE0SANk, nIWnC9RMW08, zWDJojt_KTU, AAckOJEBODk, VE0v1gsOMlw, kDDEQUfMT_8, d5NEhm7ZOyc, DUAdarwNCRs, qQrY8ZjSCnQ, 9jiyee7zCXo, 9up7LiqU9u4, pauj3PKE6L4, GLeoET3gZWg, 5YrhJMiyaPM, qQrY8ZjSCnQ, 5YrhJMiyaPM, POXAC1WpDBU, FtN8XzP8ZWg, qQrY8ZjSCnQ, DUAdarwNCRs, pauj3PKE6L4, qQrY8ZjSCnQ, 4geYwpsHQd8, 2r2BRN2tAFc, pauj3PKE6L4, xw39PKAXkdE, ZtUv67HHw6g, POXAC1WpDBU, Ab6ryHD_ahQ, zWDJojt_KTU, nIWnC9RMW08, d5NEhm7ZOyc, COls47WPPNk, 9up7LiqU9u4, omhUqE0SANk, 9R4O3bzONQQ, l6L2xaYRm7U, nIWnC9RMW08, qQrY8ZjSCnQ, zWDJojt_KTU, COls47WPPNk, GLeoET3gZWg, nIWnC9RMW08, mL6-d5mTQuM, qQrY8ZjSCnQ, bLVLhLMoV70, qQrY8ZjSCnQ, kDDEQUfMT_8, zY4K3sEL5lU, 9jiyee7zCXo, qQrY8ZjSCnQ, sG548miBvh0, 9up7LiqU9u4, qQrY8ZjSCnQ, GLeoET3gZWg, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, qQrY8ZjSCnQ, COls47WPPNk, FtN8XzP8ZWg, In35ZJEGtu8, l6L2xaYRm7U, qQrY8ZjSCnQ, 9zy1SdoIpkA, nIWnC9RMW08, l6rHUHZx5Vc, xw39PKAXkdE, qQrY8ZjSCnQ, omhUqE0SANk, R5gE6vK8c7Y, 9jiyee7zCXo, pauj3PKE6L4, 9R4O3bzONQQ, omhUqE0SANk, zY4K3sEL5lU, omhUqE0SANk, 6vcXN7ko3Fk, COls47WPPNk, FmtbYlybAlo, zWDJojt_KTU, 9R4O3bzONQQ, 9jiyee7zCXo, i_r3gCZrdSc, qQrY8ZjSCnQ, omhUqE0SANk, qQrY8ZjSCnQ, 541Dq1D1_JY, 9R4O3bzONQQ, 9up7LiqU9u4, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, ZtUv67HHw6g, qQrY8ZjSCnQ, l6rHUHZx5Vc, bLVLhLMoV70, COls47WPPNk, 9jiyee7zCXo, omhUqE0SANk, qQrY8ZjSCnQ, POXAC1WpDBU, qQrY8ZjSCnQ, d5NEhm7ZOyc, DUAdarwNCRs, 5YrhJMiyaPM, l6L2xaYRm7U, zWDJojt_KTU, DUAdarwNCRs, pauj3PKE6L4, sk53YzngvEs, omhUqE0SANk, Ab6ryHD_ahQ, OB9GAgiEVqk, xw39PKAXkdE, WyugIciIeq8, s4HerxySu4c, pauj3PKE6L4, 9R4O3bzONQQ, qQrY8ZjSCnQ, omhUqE0SANk, DUAdarwNCRs, 9jiyee7zCXo, qQrY8ZjSCnQ, l6L2xaYRm7U, WyugIciIeq8, GLeoET3gZWg, In35ZJEGtu8, WyugIciIeq8, pkc-AJTfNDY, jzcrUdexbNE, POXAC1WpDBU, i_r3gCZrdSc, POXAC1WpDBU, FtN8XzP8ZWg, Ab6ryHD_ahQ, qQrY8ZjSCnQ, 6vcXN7ko3Fk, VE0v1gsOMlw, GLeoET3gZWg, s4HerxySu4c, omhUqE0SANk, 9R4O3bzONQQ, 2MZR4cT7GbY, nIWnC9RMW08, d5NEhm7ZOyc, xw39PKAXkdE, Yvy_WkwkufU, d5NEhm7ZOyc, s4HerxySu4c, 9up7LiqU9u4, l6rHUHZx5Vc, WyugIciIeq8, 9zy1SdoIpkA, l6L2xaYRm7U, qQrY8ZjSCnQ, xw39PKAXkdE, i_r3gCZrdSc, jzcrUdexbNE, DUAdarwNCRs, d5NEhm7ZOyc, 5YrhJMiyaPM, qQrY8ZjSCnQ, nIWnC9RMW08, Yvy_WkwkufU, 5YrhJMiyaPM, sk53YzngvEs, qQrY8ZjSCnQ, l6L2xaYRm7U, 2t18v4HnQxY, qQrY8ZjSCnQ, l6L2xaYRm7U, DUAdarwNCRs, ZtUv67HHw6g, i_r3gCZrdSc, s4HerxySu4c, COls47WPPNk, zWDJojt_KTU, l6L2xaYRm7U, ZtUv67HHw6g, omhUqE0SANk, nIWnC9RMW08, 9up7LiqU9u4, 5YrhJMiyaPM, qQrY8ZjSCnQ, 9up7LiqU9u4, pauj3PKE6L4, VE0v1gsOMlw, GLeoET3gZWg, VE0v1gsOMlw, Ab6ryHD_ahQ, WyugIciIeq8, qQrY8ZjSCnQ, jzcrUdexbNE, l6L2xaYRm7U, POXAC1WpDBU, WyugIciIeq8, FtN8XzP8ZWg, qQrY8ZjSCnQ, GLeoET3gZWg, In35ZJEGtu8, 6vcXN7ko3Fk, GLeoET3gZWg, pauj3PKE6L4, nIWnC9RMW08, FtN8XzP8ZWg, WyugIciIeq8, DUAdarwNCRs, xw39PKAXkdE, l6L2xaYRm7U, SPxCCLU0cTs, Ab6ryHD_ahQ, xw39PKAXkdE, pauj3PKE6L4, sG548miBvh0, i_r3gCZrdSc, SSNfXY_xwxc, POXAC1WpDBU, WyugIciIeq8, qQrY8ZjSCnQ, s4HerxySu4c, 5YrhJMiyaPM, qQrY8ZjSCnQ, bLVLhLMoV70, 9jiyee7zCXo, qQrY8ZjSCnQ, Yvy_WkwkufU, POXAC1WpDBU, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, l6L2xaYRm7U, POXAC1WpDBU, l6rHUHZx5Vc, COls47WPPNk, VE0v1gsOMlw, pkc-AJTfNDY, VE0v1gsOMlw, UFADTgwc4ew, COls47WPPNk, s4HerxySu4c, l6L2xaYRm7U, 6vcXN7ko3Fk, l6L2xaYRm7U, omhUqE0SANk, s4HerxySu4c, FmtbYlybAlo, xw39PKAXkdE, GLeoET3gZWg, qQrY8ZjSCnQ, l6L2xaYRm7U, d5NEhm7ZOyc, 9jiyee7zCXo, d5NEhm7ZOyc, qQrY8ZjSCnQ, VE0v1gsOMlw, i_r3gCZrdSc, 9R4O3bzONQQ, d5NEhm7ZOyc, 9R4O3bzONQQ, 9up7LiqU9u4, COls47WPPNk, 9jiyee7zCXo, bLVLhLMoV70, GLeoET3gZWg, zWDJojt_KTU, UFADTgwc4ew, 9up7LiqU9u4, 9R4O3bzONQQ, VE0v1gsOMlw, POXAC1WpDBU, ZtUv67HHw6g, WyugIciIeq8, d5NEhm7ZOyc, qQrY8ZjSCnQ, 9R4O3bzONQQ, s4HerxySu4c, i_r3gCZrdSc, 4geYwpsHQd8, Ab6ryHD_ahQ, omhUqE0SANk, qQrY8ZjSCnQ, l6rHUHZx5Vc, pauj3PKE6L4, omhUqE0SANk, COls47WPPNk, qQrY8ZjSCnQ, 9R4O3bzONQQ, SPxCCLU0cTs, l6rHUHZx5Vc, POXAC1WpDBU, i_r3gCZrdSc, qQrY8ZjSCnQ, SPxCCLU0cTs, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, l6rHUHZx5Vc, POXAC1WpDBU, 9jiyee7zCXo, Ab6ryHD_ahQ, WyugIciIeq8, COls47WPPNk, WyugIciIeq8, GLeoET3gZWg, qQrY8ZjSCnQ, VE0v1gsOMlw, 6vcXN7ko3Fk, bLVLhLMoV70, VE0v1gsOMlw, xw39PKAXkdE, UFADTgwc4ew, qQrY8ZjSCnQ, GLeoET3gZWg, l6rHUHZx5Vc, omhUqE0SANk, xw39PKAXkdE, COls47WPPNk, 2t18v4HnQxY, l6L2xaYRm7U, SSNfXY_xwxc, GLeoET3gZWg, WyugIciIeq8, FmtbYlybAlo, qQrY8ZjSCnQ, l6L2xaYRm7U, Ab6ryHD_ahQ, pkc-AJTfNDY, xw39PKAXkdE, mL6-d5mTQuM, l6L2xaYRm7U
Source noise
Source | License |
---|---|
Audioset+FreeSound noise in DNS5 Challenge | CC BY 4.0 |
WHAM! 48kHz noise | CC BY-NC 4.0 |
DEMAND | CC BY-SA 3.0 |
TUT Urban Acoustic Scenes 2018 Mobile, Evaluation dataset | Non-Commercial |
FSD50K | mixed: CC0, CC BY, CC BY-NC, CC Sampling+ |
SoundingEarth | CC BY 4.0 |
additional noise audios from Freesound | CC0 |
Source RIRs
Source | License |
---|---|
Simulated RIRs in DNS5 Challenge | CC BY 4.0 |
SLR28 | Apache 2.0 |
MYRiAD | CC BY-NC-SA 4.0 |
BRAS | CC BY-SA 4.0 |
BUT_ReverbDB | Apache 2.0 |
voiceHome | CC BY-NC-SA 4.0 |
additional RIRs from Freesound | CC0 |
Citation:
Please cite the following papers if you use this dataset in your research. The first reference creates the dataset annotation, the second describes the URGENT Challenge, and the third details the MOS annotation protocol:
@article{UniVersaExt-Wang2025,
title={Improving Speech Enhancement with Multi-Metric Supervision from Learned Quality Assessment},
author={Wang, Wei and Zhang, Wangyou and Li, Chenda and Shi, Jiatong and Watanabe, Shinji and Qian, Yanmin},
journal={arXiv preprint arXiv:2506.12260},
year={2025}
}
@inproceedings{URGENT-Zhang2024,
title={{URGENT} Challenge: Universality, Robustness, and Generalizability For Speech Enhancement},
author={Zhang, Wangyou and Scheibler, Robin and Saijo, Kohei and Cornell, Samuele and Li, Chenda and Ni, Zhaoheng and Pirklbauer, Jan and Sach, Marvin and Watanabe, Shinji and Fingscheidt, Tim and Qian, Yanmin},
booktitle={Proc. Interspeech},
pages={4868--4872},
year={2024},
}
@article{P808-Sach2025,
title={P.808 Multilingual Speech Enhancement Testing: Approach and Results of {URGENT} 2025 Challenge},
author={Sach, Marvin and Fu, Yihui and Saijo, Kohei and Zhang, Wangyou and Cornell, Samuele and Scheibler, Robin and Li, Chenda and Kumar, Anurag and Wang, Wei and Qian, Yanmin and Watanabe, Shinji and Fingscheidt, Tim},
journal={arXiv preprint arXiv:2507.11306},
year={2025}
}