|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Semantic deduplication for Hugging Face datasets using SemHash. |
|
|
|
This script removes duplicate or near-duplicate text samples from datasets based on |
|
semantic similarity, helping to clean training data and prevent train/test leakage. |
|
|
|
SemHash is CPU-optimized and uses Model2Vec embeddings that are 500x faster on CPU |
|
than traditional transformers. No GPU required! |
|
|
|
Example usage: |
|
# Basic deduplication |
|
uv run semantic-dedupe.py username/dataset text username/dataset-deduped |
|
|
|
# With custom threshold and max samples for testing |
|
uv run semantic-dedupe.py username/dataset text username/dataset-deduped \\ |
|
--threshold 0.85 --max-samples 1000 |
|
|
|
# Using HF Jobs (CPU is sufficient) |
|
hf jobs uv run --flavor cpu-4x-xlarge \\ |
|
-e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\ |
|
https://huggingface.co/datasets/uv-scripts/deduplication/raw/main/semantic-dedupe.py \\ |
|
username/dataset text username/dataset-deduped |
|
""" |
|
|
|
import argparse |
|
import os |
|
import sys |
|
from datetime import datetime |
|
from typing import Optional |
|
|
|
from datasets import Dataset, load_dataset |
|
from huggingface_hub import DatasetCard, login |
|
from semhash import SemHash |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description="Deduplicate a dataset using semantic similarity", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=""" |
|
Examples: |
|
# Basic usage |
|
uv run semantic-dedupe.py imdb text imdb-deduped |
|
|
|
# With options |
|
uv run semantic-dedupe.py squad question squad-deduped --threshold 0.85 --method duplicates |
|
|
|
# Test with small sample |
|
uv run semantic-dedupe.py large-dataset text test-dedup --max-samples 100 |
|
""", |
|
) |
|
|
|
parser.add_argument("dataset", help="Input dataset ID (e.g., 'imdb' or 'username/dataset')") |
|
parser.add_argument("column", help="Text column to deduplicate on") |
|
parser.add_argument("output_repo", help="Output dataset repository name") |
|
|
|
parser.add_argument( |
|
"--split", |
|
default="train", |
|
help="Dataset split to process (default: train)", |
|
) |
|
parser.add_argument( |
|
"--method", |
|
choices=["duplicates", "outliers", "representatives"], |
|
default="duplicates", |
|
help="Deduplication method (default: duplicates)", |
|
) |
|
parser.add_argument( |
|
"--threshold", |
|
type=float, |
|
default=0.9, |
|
help="Similarity threshold for duplicates (default: 0.9)", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
default=64, |
|
help="Batch size for processing (default: 64)", |
|
) |
|
parser.add_argument( |
|
"--max-samples", |
|
type=int, |
|
help="Maximum number of samples to process (for testing)", |
|
) |
|
parser.add_argument( |
|
"--private", |
|
action="store_true", |
|
help="Create private dataset repository", |
|
) |
|
parser.add_argument( |
|
"--hf-token", |
|
default=os.environ.get("HF_TOKEN"), |
|
help="Hugging Face API token (defaults to HF_TOKEN env var)", |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def create_dataset_card( |
|
original_dataset: str, |
|
column: str, |
|
method: str, |
|
threshold: float, |
|
original_size: int, |
|
deduped_size: int, |
|
) -> str: |
|
"""Create a dataset card with deduplication information.""" |
|
reduction_pct = ((original_size - deduped_size) / original_size) * 100 |
|
|
|
return f"""--- |
|
viewer: false |
|
tags: |
|
- deduplication |
|
- semhash |
|
- uv-script |
|
--- |
|
|
|
# Deduplicated {original_dataset} |
|
|
|
This dataset is a deduplicated version of [{original_dataset}](https://huggingface.co/datasets/{original_dataset}). |
|
|
|
## Deduplication Details |
|
|
|
- **Method**: {method} |
|
- **Column**: `{column}` |
|
- **Threshold**: {threshold} |
|
- **Original size**: {original_size:,} samples |
|
- **Deduplicated size**: {deduped_size:,} samples |
|
- **Reduction**: {reduction_pct:.1f}% |
|
- **Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} |
|
|
|
## Method Description |
|
|
|
{get_method_description(method)} |
|
|
|
## How to Use |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the deduplicated dataset |
|
dataset = load_dataset("{os.environ.get('HF_USERNAME', 'username')}/{os.path.basename(original_dataset)}-deduped") |
|
``` |
|
|
|
## Reproduce |
|
|
|
This dataset was created using the [uv-scripts/deduplication](https://huggingface.co/datasets/uv-scripts/deduplication) tool: |
|
|
|
```bash |
|
uv run https://huggingface.co/datasets/uv-scripts/deduplication/raw/main/semantic-dedupe.py \\ |
|
{original_dataset} {column} {os.path.basename(original_dataset)}-deduped \\ |
|
--method {method} --threshold {threshold} |
|
``` |
|
|
|
Generated with 🤖 UV Scripts |
|
""" |
|
|
|
|
|
def get_method_description(method: str) -> str: |
|
"""Get description for deduplication method.""" |
|
descriptions = { |
|
"duplicates": "Removes semantic duplicates by finding samples with high similarity scores above the threshold.", |
|
"outliers": "Removes outlier samples that have low similarity to other samples in the dataset.", |
|
"representatives": "Keeps only representative samples, removing both duplicates and outliers.", |
|
} |
|
return descriptions.get(method, "Unknown method") |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
if args.hf_token: |
|
login(args.hf_token) |
|
else: |
|
print("Warning: No HF token provided. Using cached credentials or anonymous mode.") |
|
|
|
|
|
print(f"Loading dataset: {args.dataset}") |
|
dataset = load_dataset(args.dataset, split=args.split) |
|
|
|
|
|
if args.max_samples: |
|
dataset = dataset.select(range(min(args.max_samples, len(dataset)))) |
|
print(f"Limited to {len(dataset)} samples for testing") |
|
|
|
original_size = len(dataset) |
|
|
|
|
|
if args.column not in dataset.column_names: |
|
print(f"Error: Column '{args.column}' not found in dataset") |
|
print(f"Available columns: {', '.join(dataset.column_names)}") |
|
sys.exit(1) |
|
|
|
|
|
print("Converting dataset to records...") |
|
records = [dict(row) for row in dataset] |
|
|
|
|
|
print("Initializing SemHash (CPU-optimized)...") |
|
semhash = SemHash.from_records(records=records, columns=[args.column]) |
|
|
|
|
|
print(f"Performing {args.method} deduplication on '{args.column}' column...") |
|
|
|
if args.method == "duplicates": |
|
result = semhash.self_deduplicate(threshold=args.threshold) |
|
elif args.method == "outliers": |
|
result = semhash.self_filter_outliers() |
|
elif args.method == "representatives": |
|
result = semhash.self_find_representative() |
|
else: |
|
raise ValueError(f"Unknown method: {args.method}") |
|
|
|
|
|
deduplicated_records = result.selected |
|
|
|
|
|
result_dataset = Dataset.from_list(deduplicated_records) |
|
deduped_size = len(result_dataset) |
|
|
|
|
|
print(f"\nDeduplication complete!") |
|
print(f"Original size: {original_size:,}") |
|
print(f"Deduplicated size: {deduped_size:,}") |
|
print(f"Removed: {original_size - deduped_size:,} ({((original_size - deduped_size) / original_size) * 100:.1f}%)") |
|
print("\nNote: SemHash processes ~20,000 sentences/second on CPU") |
|
|
|
|
|
card = create_dataset_card( |
|
args.dataset, |
|
args.column, |
|
args.method, |
|
args.threshold, |
|
original_size, |
|
deduped_size, |
|
) |
|
|
|
|
|
print(f"\nPushing to hub: {args.output_repo}") |
|
result_dataset.push_to_hub( |
|
args.output_repo, |
|
private=args.private, |
|
commit_message=f"Deduplicated using {args.method} method", |
|
) |
|
|
|
|
|
dataset_card = DatasetCard(card) |
|
dataset_card.push_to_hub(args.output_repo) |
|
|
|
print(f"✅ Dataset successfully pushed to: https://huggingface.co/datasets/{args.output_repo}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |