|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Document layout analysis and OCR using dots.ocr with vLLM. |
|
|
|
This script processes document images through the dots.ocr model to extract |
|
layout information, text content, or both. Supports multiple output formats |
|
including JSON, structured columns, and markdown. |
|
|
|
Features: |
|
- Layout detection with bounding boxes and categories |
|
- Text extraction with reading order preservation |
|
- Multiple prompt modes for different tasks |
|
- Flexible output formats |
|
- Multilingual document support |
|
""" |
|
|
|
import argparse |
|
import base64 |
|
import io |
|
import json |
|
import logging |
|
import os |
|
import sys |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from huggingface_hub import login |
|
from PIL import Image |
|
from toolz import partition_all |
|
from tqdm.auto import tqdm |
|
|
|
|
|
try: |
|
from vllm import LLM, SamplingParams |
|
VLLM_AVAILABLE = True |
|
except ImportError: |
|
VLLM_AVAILABLE = False |
|
|
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
try: |
|
from qwen_vl_utils import process_vision_info |
|
QWEN_VL_AVAILABLE = True |
|
except ImportError: |
|
QWEN_VL_AVAILABLE = False |
|
logger.warning("qwen_vl_utils not available, transformers backend may not work properly") |
|
|
|
|
|
PROMPT_MODES = { |
|
"layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. |
|
|
|
1. Bbox format: [x1, y1, x2, y2] |
|
|
|
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. |
|
|
|
3. Text Extraction & Formatting Rules: |
|
- Picture: For the 'Picture' category, the text field should be omitted. |
|
- Formula: Format its text as LaTeX. |
|
- Table: Format its text as HTML. |
|
- All Others (Text, Title, etc.): Format their text as Markdown. |
|
|
|
4. Constraints: |
|
- The output text must be the original text from the image, with no translation. |
|
- All layout elements must be sorted according to human reading order. |
|
|
|
5. Final Output: The entire output must be a single JSON object. |
|
""", |
|
|
|
"layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""", |
|
|
|
"ocr": """Extract the text content from this image.""", |
|
|
|
"grounding-ocr": """Extract text from the given bounding box on the image (format: [x1, y1, x2, y2]).\nBounding Box:\n""" |
|
} |
|
|
|
|
|
def check_cuda_availability(): |
|
"""Check if CUDA is available and exit if not.""" |
|
if not torch.cuda.is_available(): |
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
logger.error("Please run on a machine with a CUDA-capable GPU.") |
|
sys.exit(1) |
|
else: |
|
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
def make_dots_message( |
|
image: Union[Image.Image, Dict[str, Any], str], |
|
mode: str = "layout-all", |
|
bbox: Optional[List[int]] = None, |
|
) -> List[Dict]: |
|
"""Create chat message for dots.ocr processing.""" |
|
|
|
if isinstance(image, Image.Image): |
|
pil_img = image |
|
elif isinstance(image, dict) and "bytes" in image: |
|
pil_img = Image.open(io.BytesIO(image["bytes"])) |
|
elif isinstance(image, str): |
|
pil_img = Image.open(image) |
|
else: |
|
raise ValueError(f"Unsupported image type: {type(image)}") |
|
|
|
|
|
buf = io.BytesIO() |
|
pil_img.save(buf, format="PNG") |
|
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" |
|
|
|
|
|
prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"]) |
|
|
|
|
|
if mode == "grounding-ocr" and bbox: |
|
prompt = prompt + str(bbox) |
|
|
|
|
|
return [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image_url", "image_url": {"url": data_uri}}, |
|
{"type": "text", "text": prompt}, |
|
], |
|
} |
|
] |
|
|
|
|
|
def parse_dots_output( |
|
output: str, |
|
output_format: str = "json", |
|
filter_category: Optional[str] = None, |
|
mode: str = "layout-all", |
|
) -> Union[str, Dict[str, List]]: |
|
"""Parse dots.ocr output and convert to requested format.""" |
|
|
|
|
|
if mode == "ocr": |
|
return output.strip() |
|
|
|
try: |
|
|
|
data = json.loads(output.strip()) |
|
|
|
|
|
if filter_category and "categories" in data: |
|
indices = [i for i, cat in enumerate(data["categories"]) if cat == filter_category] |
|
filtered_data = { |
|
"bboxes": [data["bboxes"][i] for i in indices], |
|
"categories": [data["categories"][i] for i in indices], |
|
} |
|
|
|
|
|
if "texts" in data: |
|
filtered_data["texts"] = [data["texts"][i] for i in indices] |
|
|
|
|
|
if "reading_order" in data: |
|
|
|
filtered_reading_order = [] |
|
for group in data.get("reading_order", []): |
|
filtered_group = [idx for idx in group if idx in indices] |
|
if filtered_group: |
|
|
|
remapped_group = [indices.index(idx) for idx in filtered_group] |
|
filtered_reading_order.append(remapped_group) |
|
if filtered_reading_order: |
|
filtered_data["reading_order"] = filtered_reading_order |
|
|
|
data = filtered_data |
|
|
|
if output_format == "json": |
|
return json.dumps(data, ensure_ascii=False) |
|
|
|
elif output_format == "structured": |
|
|
|
result = { |
|
"bboxes": data.get("bboxes", []), |
|
"categories": data.get("categories", []), |
|
} |
|
|
|
|
|
if mode == "layout-all": |
|
result["texts"] = data.get("texts", []) |
|
else: |
|
result["texts"] = [] |
|
|
|
return result |
|
|
|
elif output_format == "markdown": |
|
|
|
|
|
if mode != "layout-all" or "texts" not in data: |
|
logger.warning("Markdown format works best with layout-all mode") |
|
return json.dumps(data, ensure_ascii=False) |
|
|
|
md_lines = [] |
|
texts = data.get("texts", []) |
|
categories = data.get("categories", []) |
|
reading_order = data.get("reading_order", []) |
|
|
|
|
|
if reading_order: |
|
for group in reading_order: |
|
for idx in group: |
|
if idx < len(texts) and idx < len(categories): |
|
text = texts[idx] |
|
category = categories[idx] |
|
md_lines.append(format_markdown_text(text, category)) |
|
else: |
|
|
|
for text, category in zip(texts, categories): |
|
md_lines.append(format_markdown_text(text, category)) |
|
|
|
return "\n".join(md_lines) |
|
|
|
except json.JSONDecodeError as e: |
|
logger.warning(f"Failed to parse JSON output: {e}") |
|
return output.strip() |
|
except Exception as e: |
|
logger.error(f"Error parsing output: {e}") |
|
return output.strip() |
|
|
|
|
|
def format_markdown_text(text: str, category: str) -> str: |
|
"""Format text based on its category for markdown output.""" |
|
if category == "Title": |
|
return f"# {text}\n" |
|
elif category == "Section-header": |
|
return f"## {text}\n" |
|
elif category == "List-item": |
|
return f"- {text}" |
|
elif category == "Page-header" or category == "Page-footer": |
|
return f"_{text}_\n" |
|
elif category == "Caption": |
|
return f"**{text}**\n" |
|
elif category == "Footnote": |
|
return f"[^{text}]\n" |
|
elif category == "Table": |
|
|
|
return f"\n{text}\n" |
|
elif category == "Formula": |
|
|
|
return f"\n${text}$\n" |
|
elif category == "Picture": |
|
|
|
return "\n![Image]()\n" |
|
else: |
|
return f"{text}\n" |
|
|
|
|
|
def process_with_transformers( |
|
images: List[Union[Image.Image, Dict[str, Any], str]], |
|
model, |
|
processor, |
|
mode: str = "layout-all", |
|
max_new_tokens: int = 16384, |
|
) -> List[str]: |
|
"""Process images using transformers instead of vLLM.""" |
|
outputs = [] |
|
|
|
for image in tqdm(images, desc="Processing with transformers"): |
|
|
|
if isinstance(image, dict) and "bytes" in image: |
|
pil_image = Image.open(io.BytesIO(image["bytes"])) |
|
elif isinstance(image, str): |
|
pil_image = Image.open(image) |
|
else: |
|
pil_image = image |
|
|
|
|
|
prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"]) |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": pil_image}, |
|
{"type": "text", "text": prompt} |
|
] |
|
} |
|
] |
|
|
|
|
|
text = processor.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
if QWEN_VL_AVAILABLE: |
|
|
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
else: |
|
|
|
inputs = processor( |
|
text=text, |
|
images=[pil_image], |
|
return_tensors="pt", |
|
) |
|
|
|
inputs = inputs.to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
temperature=0.0, |
|
do_sample=False, |
|
) |
|
|
|
|
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
outputs.append(output_text.strip()) |
|
|
|
return outputs |
|
|
|
|
|
def main( |
|
input_dataset: str, |
|
output_dataset: str, |
|
image_column: str = "image", |
|
mode: str = "layout-all", |
|
output_format: str = "json", |
|
filter_category: Optional[str] = None, |
|
batch_size: int = 32, |
|
model: str = "rednote-hilab/dots.ocr", |
|
max_model_len: int = 24000, |
|
max_tokens: int = 16384, |
|
gpu_memory_utilization: float = 0.8, |
|
hf_token: Optional[str] = None, |
|
split: str = "train", |
|
max_samples: Optional[int] = None, |
|
private: bool = False, |
|
use_transformers: bool = False, |
|
|
|
output_column: str = "dots_ocr_output", |
|
bbox_column: str = "layout_bboxes", |
|
category_column: str = "layout_categories", |
|
text_column: str = "layout_texts", |
|
markdown_column: str = "markdown", |
|
): |
|
"""Process images from HF dataset through dots.ocr model.""" |
|
|
|
|
|
check_cuda_availability() |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
if HF_TOKEN: |
|
login(token=HF_TOKEN) |
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
dataset = load_dataset(input_dataset, split=split) |
|
|
|
|
|
if image_column not in dataset.column_names: |
|
raise ValueError( |
|
f"Column '{image_column}' not found. Available: {dataset.column_names}" |
|
) |
|
|
|
|
|
if max_samples: |
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
logger.info(f"Limited to {len(dataset)} samples") |
|
|
|
|
|
all_outputs = [] |
|
|
|
if use_transformers or not VLLM_AVAILABLE: |
|
|
|
if not use_transformers and not VLLM_AVAILABLE: |
|
logger.warning("vLLM not available, falling back to transformers") |
|
|
|
logger.info(f"Initializing transformers with model: {model}") |
|
hf_model = AutoModelForCausalLM.from_pretrained( |
|
model, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
) |
|
processor = AutoProcessor.from_pretrained(model, trust_remote_code=True) |
|
|
|
logger.info(f"Processing {len(dataset)} images with transformers") |
|
logger.info(f"Mode: {mode}, Output format: {output_format}") |
|
|
|
|
|
all_images = [dataset[i][image_column] for i in range(len(dataset))] |
|
raw_outputs = process_with_transformers( |
|
all_images, |
|
hf_model, |
|
processor, |
|
mode=mode, |
|
max_new_tokens=max_tokens |
|
) |
|
|
|
|
|
for raw_text in raw_outputs: |
|
parsed = parse_dots_output(raw_text, output_format, filter_category, mode) |
|
all_outputs.append(parsed) |
|
|
|
else: |
|
|
|
logger.info(f"Initializing vLLM with model: {model}") |
|
llm = LLM( |
|
model=model, |
|
trust_remote_code=True, |
|
max_model_len=max_model_len, |
|
gpu_memory_utilization=gpu_memory_utilization, |
|
) |
|
|
|
sampling_params = SamplingParams( |
|
temperature=0.0, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") |
|
logger.info(f"Mode: {mode}, Output format: {output_format}") |
|
|
|
|
|
for batch_indices in tqdm( |
|
partition_all(batch_size, range(len(dataset))), |
|
total=(len(dataset) + batch_size - 1) // batch_size, |
|
desc="dots.ocr processing", |
|
): |
|
batch_indices = list(batch_indices) |
|
batch_images = [dataset[i][image_column] for i in batch_indices] |
|
|
|
try: |
|
|
|
batch_messages = [make_dots_message(img, mode=mode) for img in batch_images] |
|
|
|
|
|
outputs = llm.chat(batch_messages, sampling_params) |
|
|
|
|
|
for output in outputs: |
|
raw_text = output.outputs[0].text.strip() |
|
parsed = parse_dots_output(raw_text, output_format, filter_category, mode) |
|
all_outputs.append(parsed) |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing batch: {e}") |
|
|
|
all_outputs.extend([{"error": str(e)}] * len(batch_images)) |
|
|
|
|
|
logger.info("Adding output columns to dataset") |
|
|
|
if output_format == "json": |
|
dataset = dataset.add_column(output_column, all_outputs) |
|
|
|
elif output_format == "structured": |
|
|
|
bboxes = [] |
|
categories = [] |
|
texts = [] |
|
|
|
for output in all_outputs: |
|
if isinstance(output, dict) and "error" not in output: |
|
bboxes.append(output.get("bboxes", [])) |
|
categories.append(output.get("categories", [])) |
|
texts.append(output.get("texts", [])) |
|
else: |
|
bboxes.append([]) |
|
categories.append([]) |
|
texts.append([]) |
|
|
|
dataset = dataset.add_column(bbox_column, bboxes) |
|
dataset = dataset.add_column(category_column, categories) |
|
dataset = dataset.add_column(text_column, texts) |
|
|
|
elif output_format == "markdown": |
|
dataset = dataset.add_column(markdown_column, all_outputs) |
|
|
|
else: |
|
dataset = dataset.add_column(output_column, all_outputs) |
|
|
|
|
|
logger.info(f"Pushing to {output_dataset}") |
|
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) |
|
|
|
logger.info("✅ dots.ocr processing complete!") |
|
logger.info( |
|
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
if len(sys.argv) == 1: |
|
print("=" * 80) |
|
print("dots.ocr Document Layout Analysis and OCR") |
|
print("=" * 80) |
|
print("\nThis script processes document images using the dots.ocr model to") |
|
print("extract layout information, text content, or both.") |
|
print("\nFeatures:") |
|
print("- Layout detection with bounding boxes and categories") |
|
print("- Text extraction with reading order preservation") |
|
print("- Multiple output formats (JSON, structured, markdown)") |
|
print("- Multilingual document support") |
|
print("\nExample usage:") |
|
print("\n1. Full layout analysis + OCR (default):") |
|
print(" uv run dots-ocr.py document-images analyzed-docs") |
|
print("\n2. Layout detection only:") |
|
print(" uv run dots-ocr.py scanned-pdfs layout-analysis --mode layout-only") |
|
print("\n3. Simple OCR (text only):") |
|
print(" uv run dots-ocr.py documents extracted-text --mode ocr") |
|
print("\n4. Convert to markdown:") |
|
print(" uv run dots-ocr.py papers papers-markdown --output-format markdown") |
|
print("\n5. Extract only tables:") |
|
print(" uv run dots-ocr.py reports table-data --filter-category Table") |
|
print("\n6. Structured output with custom columns:") |
|
print(" uv run dots-ocr.py docs analyzed \\") |
|
print(" --output-format structured \\") |
|
print(" --bbox-column boxes \\") |
|
print(" --category-column types \\") |
|
print(" --text-column content") |
|
print("\n7. Process a subset for testing:") |
|
print(" uv run dots-ocr.py large-dataset test-output --max-samples 10") |
|
print("\n8. Use transformers backend (more compatible):") |
|
print(" uv run dots-ocr.py documents analyzed --use-transformers") |
|
print("\n9. Running on HF Jobs:") |
|
print(" hf jobs run --gpu l4x1 \\") |
|
print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\") |
|
print( |
|
" uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\" |
|
) |
|
print(" your-document-dataset \\") |
|
print(" your-analyzed-output \\") |
|
print(" --use-transformers") |
|
print("\n" + "=" * 80) |
|
print("\nFor full help, run: uv run dots-ocr.py --help") |
|
sys.exit(0) |
|
|
|
parser = argparse.ArgumentParser( |
|
description="Document layout analysis and OCR using dots.ocr", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=""" |
|
Modes: |
|
layout-all - Extract layout + text content (default) |
|
layout-only - Extract only layout information (bbox + category) |
|
ocr - Extract only text content |
|
grounding-ocr - Extract text from specific bbox (requires --bbox) |
|
|
|
Output Formats: |
|
json - Raw JSON output from model (default) |
|
structured - Separate columns for bboxes, categories, texts |
|
markdown - Convert to markdown format |
|
|
|
Examples: |
|
# Basic layout + OCR |
|
uv run dots-ocr.py my-docs analyzed-docs |
|
|
|
# Layout detection only |
|
uv run dots-ocr.py papers layouts --mode layout-only |
|
|
|
# Convert to markdown |
|
uv run dots-ocr.py scans readable --output-format markdown |
|
|
|
# Extract only formulas |
|
uv run dots-ocr.py math-docs formulas --filter-category Formula |
|
""", |
|
) |
|
|
|
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") |
|
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") |
|
parser.add_argument( |
|
"--image-column", |
|
default="image", |
|
help="Column containing images (default: image)", |
|
) |
|
parser.add_argument( |
|
"--mode", |
|
choices=["layout-all", "layout-only", "ocr", "grounding-ocr"], |
|
default="layout-all", |
|
help="Processing mode (default: layout-all)", |
|
) |
|
parser.add_argument( |
|
"--output-format", |
|
choices=["json", "structured", "markdown"], |
|
default="json", |
|
help="Output format (default: json)", |
|
) |
|
parser.add_argument( |
|
"--filter-category", |
|
choices=['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', |
|
'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'], |
|
help="Filter results by layout category", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
default=32, |
|
help="Batch size for processing (default: 32)", |
|
) |
|
parser.add_argument( |
|
"--model", |
|
default="rednote-hilab/dots.ocr", |
|
help="Model to use (default: rednote-hilab/dots.ocr)", |
|
) |
|
parser.add_argument( |
|
"--max-model-len", |
|
type=int, |
|
default=24000, |
|
help="Maximum model context length (default: 24000)", |
|
) |
|
parser.add_argument( |
|
"--max-tokens", |
|
type=int, |
|
default=16384, |
|
help="Maximum tokens to generate (default: 16384)", |
|
) |
|
parser.add_argument( |
|
"--gpu-memory-utilization", |
|
type=float, |
|
default=0.8, |
|
help="GPU memory utilization (default: 0.8)", |
|
) |
|
parser.add_argument("--hf-token", help="Hugging Face API token") |
|
parser.add_argument( |
|
"--split", default="train", help="Dataset split to use (default: train)" |
|
) |
|
parser.add_argument( |
|
"--max-samples", |
|
type=int, |
|
help="Maximum number of samples to process (for testing)", |
|
) |
|
parser.add_argument( |
|
"--private", action="store_true", help="Make output dataset private" |
|
) |
|
parser.add_argument( |
|
"--use-transformers", |
|
action="store_true", |
|
help="Use transformers instead of vLLM (more compatible but slower)", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--output-column", |
|
default="dots_ocr_output", |
|
help="Column name for JSON output (default: dots_ocr_output)", |
|
) |
|
parser.add_argument( |
|
"--bbox-column", |
|
default="layout_bboxes", |
|
help="Column name for bboxes in structured mode (default: layout_bboxes)", |
|
) |
|
parser.add_argument( |
|
"--category-column", |
|
default="layout_categories", |
|
help="Column name for categories in structured mode (default: layout_categories)", |
|
) |
|
parser.add_argument( |
|
"--text-column", |
|
default="layout_texts", |
|
help="Column name for texts in structured mode (default: layout_texts)", |
|
) |
|
parser.add_argument( |
|
"--markdown-column", |
|
default="markdown", |
|
help="Column name for markdown output (default: markdown)", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
main( |
|
input_dataset=args.input_dataset, |
|
output_dataset=args.output_dataset, |
|
image_column=args.image_column, |
|
mode=args.mode, |
|
output_format=args.output_format, |
|
filter_category=args.filter_category, |
|
batch_size=args.batch_size, |
|
model=args.model, |
|
max_model_len=args.max_model_len, |
|
max_tokens=args.max_tokens, |
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
hf_token=args.hf_token, |
|
split=args.split, |
|
max_samples=args.max_samples, |
|
private=args.private, |
|
use_transformers=args.use_transformers, |
|
output_column=args.output_column, |
|
bbox_column=args.bbox_column, |
|
category_column=args.category_column, |
|
text_column=args.text_column, |
|
markdown_column=args.markdown_column, |
|
) |