seed
stringlengths
25
1.88k
seed_api
stringlengths
14
102
index
int64
0
1.05k
import tensorflow as tf return crop def random_apply(fn, image, prob=1.): b, *_ = image.get_shape().as_list() chance = tf.less(tf.random_uniform([b], 0, 1.0), prob) return tf.where(chance, fn(image), tf.identity(image)) def color_distortion(image, s=1.0): lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image x = tf.image.random_brightness(x, max_delta=0.8*s) x = tf.image.random_contrast(x, lower=lower, upper=upper) x = tf.image.random_saturation(x, lower=lower, upper=upper) x = tf.image.random_hue(x, max_delta=0.2*s) x = tf.clip_by_value(x, 0, 1) return x def color_drop(image): image = tf.image.rgb_to_grayscale(image) image = tf.tile(image, [1, 1, 1, 3]) return image # pylint: disable=not-callable @gin.configurable(blacklist=["kwargs"]) class CLGAN(modular_gan.ModularGAN):
tensorflow.image.random_hue
500
import tensorflow as tf if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
tensorflow.distribute.cluster_resolver.TPUClusterResolver
501
import tensorflow as tf return out @layer def recurrent_layer(tensor, cell=None, hidden_dims=128, sequence_length=None, decoder_fn=None, activation=tf.nn.tanh, initializer=tf.orthogonal_initializer(), initial_state=None, keep_prob=1.0, return_final_state=False, return_next_cell_input=True, **opts): if cell is None: cell = tf.contrib.rnn.BasicRNNCell(hidden_dims, activation=activation) # cell = tf.contrib.rnn.LSTMCell(hidden_dims, activation=activation) if keep_prob < 1.0: keep_prob = _global_keep_prob(keep_prob) cell = tf.contrib.rnn.DropoutWrapper(cell, keep_prob, keep_prob) if opts.get("name"): tf.add_to_collection(opts.get("name"), cell)
tensorflow.contrib.rnn.BasicRNNCell
502
import tensorflow as tf predict_nor = tf.nn.softmax(logit_nor) predict_adv = tf.nn.softmax(logit_adv) # Calculate entropy argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1) normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1) entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot,1) / normalized_y_nonmaximal + tf.log(normalized_y_nonmaximal) for k in range(1): result_dict = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_for_attack_' + f1 + '.mat') result_dict_median = loadmat('kernel_para_'+FLAGS.dataset+'/kernel1000_median_for_attack_' + f1 + '.mat') # e_mean = result_dict['mean_logits_' + f1] # 10X64
tensorflow.log
503
from tensorflow.contrib.distributions.python.ops import distribution_util x: `Tensor`. Input transposed/reshaped to `B_+E_+S_`. sample_shape: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") sample_shape, batch_shape, event_shape = self.get_shape(x) event_shape = distribution_util.pick_vector( self._event_ndims_is_0, (1,), event_shape) batch_shape = distribution_util.pick_vector( self._batch_ndims_is_0, (1,), batch_shape) new_shape = array_ops.concat(0, ((-1,), batch_shape, event_shape)) x = array_ops.reshape(x, shape=new_shape)
tensorflow.contrib.distributions.python.ops.distribution_util.pick_vector
504
from tensorflow.python.framework import random_seed embed_np = embeds[ids] embed_tf = ops.embedding_lookup(embeds, ids).eval() self.assertEqual(embed_np.shape, embed_tf.shape) self.assertAllClose(embed_np, embed_tf) def test_categorical_variable(self): random_seed.set_random_seed(42) with self.cached_session() as sess: cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2]) embeddings = ops.categorical_variable( cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var") sess.run(variables.global_variables_initializer())
tensorflow.python.framework.random_seed.set_random_seed
505
from tensorflow.core.framework import op_def_pb2 def _to_argdef_list(args): names = [n for n, t in args] if len(names) != len(set(names)): raise ValueError("Expected names to all be unique: %s" % str(names)) return [op_def_pb2.OpDef.ArgDef(type=t.as_datatype_enum, name=n) for n, t in args] self._sig.input_arg.extend(_to_argdef_list(inputs)) self._sig.output_arg.extend(_to_argdef_list(outputs))
tensorflow.core.framework.op_def_pb2.OpDef.ArgDef
506
import tensorflow as tf tf.saved_model.load(
tensorflow.saved_model.load
507
import tensorflow as tf with tf.variable_scope(scope_name): dec_op, _ = seq2seq(enc_inp, dec_inp, feed_previous=feed_previous) net_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope_name) optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5) update_op = optimizer.minimize( tf.nn.seq2seq.sequence_loss(dec_op, targets, weights), var_list=net_variables) return dec_op, update_op, net_variables dec_op_fp_true, update_fp_true, variables_fp_true = ForwardBackward( enc_inp, dec_inp_fp_true, feed_previous=True)
tensorflow.nn.seq2seq.sequence_loss
508
import tensorflow as tf self._deeplift_ref.clear() ops = [] g = tf.compat.v1.get_default_graph() for op in g.get_operations():
tensorflow.compat.v1.get_default_graph
509
import tensorflow as tf def cnn_bi_lstm_model(x, amp_factor, bil_lstm_win_size, num_classes): logits = cnn_model(x, amp_factor=amp_factor) logits = tf.reshape(logits, [-1, bil_lstm_win_size, 256*amp_factor]) forward_cell = tf.nn.rnn_cell.LSTMCell(128) backward_cell = tf.nn.rnn_cell.LSTMCell(128) encoder_outputs,_ = tf.nn.bidirectional_dynamic_rnn( forward_cell, backward_cell, logits,
tensorflow.nn.rnn_cell.LSTMCell
510
import tensorflow as tf def conv_layer(self, bottom, kernal_size, in_channels, out_channels, stride, name): with tf.variable_scope(name): filt, conv_biases = self.get_conv_var(kernal_size, in_channels, out_channels, name) conv = tf.nn.conv2d(bottom, filt, [1,stride,stride,1], padding='SAME') bias = tf.nn.bias_add(conv, conv_biases) tf.summary.histogram('weight', filt) tf.summary.histogram('bias', conv_biases) return bias def conv_bn_relu(self, bottom,name, kernel_size, output_channels, initializer,stride=1, bn=False,training=False,relu=True):
tensorflow.summary.histogram
511
from tensorflow.python.ops import gen_nn_ops """ return gen_nn_ops._top_kv2(input, k=k, sorted=sorted, name=name)
tensorflow.python.ops.gen_nn_ops._top_kv2
512
import tensorflow as tf :param cov_structure: "diag" or "full" - "diag": cov holds the diagonal elements of the covariance matrix - "full": cov holds the full covariance matrix (without jitter) :return: sample from the MVN of shape N x D """ eps = tf.random_normal(tf.shape(mean), dtype=settings.float_type) # N x P if cov_structure == "diag": sample = mean + tf.sqrt(cov) * eps # N x P elif cov_structure == "full": cov = cov + (tf.eye(tf.shape(mean)[1], dtype=settings.float_type) * settings.numerics.jitter_level)[None, ...] # N x P x P chol = tf.cholesky(cov) # N x P x P return mean + (tf.matmul(chol, eps[..., None])[..., 0]) # N x P else: raise NotImplementedError # pragma: no cover return sample # N x P def _expand_independent_outputs(fvar, full_cov, full_output_cov): """ Reshapes fvar to the correct shape, specified by `full_cov` and `full_output_cov`.
tensorflow.cholesky
513
from tensorflow.python.framework import dtypes **self._extra_kwargs) _ = defined.name # Fully instantiate the function definition. if self._grad_func: # If _grad_func is given, it is another # _OverloadedFunction. We need to instantiate it with the # right input types. output_types = [ dtypes.DType(_.type) for _ in defined.definition.signature.output_arg ] # pylint: disable=protected-access defined._grad_func = self._grad_func.instantiate(input_types + output_types) # pylint: enable=protected-access
tensorflow.python.framework.dtypes.DType
514
import tensorflow as tf 'a', py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0))) var_a = task.theta.a # Make a NaN gradient. var_grads = py_utils.NestedMap(a=(var_a, 0. * tf.log(0.))) has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads) with self.session(): tf.global_variables_initializer().run() self.assertTrue(has_nan_or_inf.eval()) self.assertEqual(0., grad_scale.eval()) # The final gradient must be finite. self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval()) self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval()) def testScaleGradientsCheckNumerics(self): """ScaleGradients when enable_check_numerics=True.""" FLAGS.enable_check_numerics = True p = self.TestParams() p.input = base_input_generator.BaseSequenceInputGenerator.Params() task = p.cls(p) task.CreateVariable( 'a', py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0)))
tensorflow.is_nan
515
from tensorflow.contrib import metrics as metrics_lib metrics[_MetricKeys.PRECISION_MEAN % threshold] = _streaming_with_threshold( metrics_lib.streaming_precision, threshold) # Recall for positive examples. metrics[_MetricKeys.RECALL_MEAN % threshold] = _streaming_with_threshold( metrics_lib.streaming_recall, threshold) return metrics # TODO(zakaria): support weights. def _targets_streaming_mean(unused_predictions, targets): return metrics_lib.streaming_mean(targets) def _predictions_streaming_mean(predictions, unused_targets): return metrics_lib.streaming_mean(predictions) def _streaming_with_threshold(streaming_metrics_fn, threshold): def _streaming_metrics(predictions, targets): return streaming_metrics_fn(predictions=math_ops.to_float(
tensorflow.contrib.metrics.streaming_mean
516
from tensorflow.python.ops import gen_nn_ops " {}".format(padding)) return gen_nn_ops.conv2d_backprop_input(input_sizes=output_shape_, filter=filter,
tensorflow.python.ops.gen_nn_ops.conv2d_backprop_input
517
from tensorflow.python.eager import test if __name__ == "__main__": test.main()
tensorflow.python.eager.test.main
518
import tensorflow as tf initializer=tf.constant_initializer(0), trainable=False) label = tf.reshape(label, [-1]) centers_batch = tf.gather(centers, label) diff = (1 - alfa) * (centers_batch - features) centers = tf.scatter_sub(centers, label, diff) # centers = tf.nn.l2_normalize(centers, 1, 1e-10, name='centers_norm') loss = tf.reduce_mean(tf.square(features - centers_batch)) return loss, centers
tensorflow.scatter_sub
519
import tensorflow as tf tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold()
tensorflow.train.Scaffold
520
import tensorflow as tf train_op = opt.apply_gradients(grads_and_vars, global_step) # Validation ''' if params.validation and params.references[0]: files = [params.validation] + list(params.references) eval_inputs = files eval_input_fn = dataset.get_evaluation_input else: print("Don't evaluate") eval_input_fn = None ''' # Add hooks train_hooks = [ tf.train.StopAtStepHook(last_step=params.train_steps), tf.train.NanTensorHook(loss), # Monitors the loss tensor and stops training if loss is NaN tf.train.LoggingTensorHook( { "step": global_step, "loss": loss, "chars": tf.shape(features["chars"]), "source": tf.shape(features["source"]), #"bert": tf.shape(features["bert"]), "lr": learning_rate }, every_n_iter=1 ), tf.train.CheckpointSaverHook(
tensorflow.train.StopAtStepHook
521
from tensorflow.python.ops import gen_nn_ops features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`, `int16`, or `int8`. name: A name for the operation (optional). Returns: A `Tensor` with the same type as `features`. """ with ops.op_scope([features], name, "Relu6") as name: features = ops.convert_to_tensor(features, name="features") return gen_nn_ops._relu6(features, name=name) def softmax_cross_entropy_with_logits(logits, labels, name=None): """Computes softmax cross entropy between `logits` and `labels`. Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image
tensorflow.python.ops.gen_nn_ops._relu6
522
from tensorflow.contrib.slim.python.slim.data import tfexample_decoder items_to_handlers = { 'image': tfexample_decoder.Image(), 'label': tfexample_decoder.Tensor('image/class/label'), }
tensorflow.contrib.slim.python.slim.data.tfexample_decoder.Tensor
523
import tensorflow as tf full_video, time_axis=1) latent = common_video.get_gaussian_tensor(latent_mean, latent_std) latent = tf.layers.flatten(latent) latent = tf.expand_dims(latent, axis=1)
tensorflow.layers.flatten
524
from tensorflow.python.ops import array_ops next_size = _next_array_size(new_size) next_shape = array_ops.pack([next_size] + fixed_shape) new_value = array_ops.zeros(next_shape, dtype=values.dtype) old_value = array.value() assign_op = state_ops.assign(array, new_value, validate_shape=False) with ops.control_dependencies([assign_op]): copy_op = array[:size].assign(old_value[:size]) # return value needs to be the same dtype as no_op() for cond with ops.control_dependencies([copy_op]): return control_flow_ops.no_op() new_size = size + batch_size array_size = array_ops.shape_internal(array, optimize=False)[0] maybe_reallocate_op = control_flow_ops.cond( new_size > array_size, reallocate, control_flow_ops.no_op) with ops.control_dependencies([maybe_reallocate_op]): append_values_op = array[size:new_size].assign(batch_values) with ops.control_dependencies([append_values_op]): update_op = size.assign(new_size) if metrics_collections: ops.add_to_collections(metrics_collections, value) if updates_collections:
tensorflow.python.ops.array_ops.shape_internal
525
import tensorflow as tf loss_class = tf.where(mask_neg, 1 - class_pred[:, 0][..., tf.newaxis], 0) # 2. hard negative mining loss_class = tf.reshape(loss_class, [num_batch, num_prior]) loss_class_idx = tf.argsort(loss_class, axis=1, direction='DESCENDING') loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1) mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior]) num_pos_per_batch = tf.reduce_sum( tf.cast(mask_pos_per_batch, tf.float32), 1, keepdims=True)
tensorflow.argsort
526
import tensorflow as tf _MergeCandidates, (tokens, candidates), parallel_iterations=1, back_prop=False)[0] def Encode(self, text): """Converts string `text` to integer ids and the encoded string. Encoding includes prefixing the beginning-of-word token to each word. Returns: ids: the encoded integer ids. tokens: the encoded string. """ words = tf.sparse.to_dense(tf.strings.split([text]), default_value='')[0] num_words = tf.size(words) ids_ta = tf.TensorArray(tf.int32, 0, dynamic_size=True) def _WordsToIds(i, words, ids_ta): encoded_ids = self._EncodeToIds(BOW_STR + words[i]) ids_ta = ids_ta.scatter( tf.range(ids_ta.size(), ids_ta.size() + tf.size(encoded_ids)), encoded_ids) return i + 1, words, ids_ta _, _, ids_ta = tf.while_loop( lambda i, *_: i < num_words,
tensorflow.strings.split
527
import tensorflow as tf # for each direction, we'll store tensors for each layer self.lstm_outputs = {'forward': [], 'backward': []} self.lstm_state_sizes = {'forward': [], 'backward': []} self.lstm_init_states = {'forward': [], 'backward': []} self.lstm_final_states = {'forward': [], 'backward': []} update_ops = [] for direction in ['forward', 'backward']: if direction == 'forward': layer_input = self.embedding else: layer_input = tf.reverse_sequence( self.embedding, sequence_lengths, seq_axis=1, batch_axis=0 ) for i in range(n_lstm_layers): if projection_dim < lstm_dim: # are projecting down output lstm_cell = tf.nn.rnn_cell.LSTMCell( lstm_dim, num_proj=projection_dim,
tensorflow.reverse_sequence
528
import tensorflow as tf # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import tensorflow.contrib.metrics as metrics import tensorflow.contrib.rnn as rnn tf.logging.set_verbosity(tf.logging.INFO) SEQ_LEN = 10 DEFAULTS = [[0.0] for x in range(0, SEQ_LEN)] BATCH_SIZE = 20 TIMESERIES_INPUT_LAYER = 'rawdata' TIMESERIES_COL = '{}_input'.format(TIMESERIES_INPUT_LAYER) # In each sequence, column index 0 to N_INPUTS - 1 are features, and column index N_INPUTS to SEQ_LEN are labels
tensorflow.logging.set_verbosity
529
import tensorflow as tf init = tf.truncated_normal_initializer(stddev=init_stddev) X = tf.layers.conv2d(X, out_channels, kernel_size=filtersize, strides=(stride, stride), padding="valid", kernel_initializer=init) if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse, epsilon=0.001) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=True) elif norm == 'G':
tensorflow.contrib.layers.instance_norm
530
import tensorflow as tf # forward pass if cfg.TEST.HAS_RPN: feed_dict={net.data: blobs['data'], net.im_info: blobs['im_info'], net.keep_prob: 1.0} else: feed_dict={net.data: blobs['data'], net.rois: blobs['rois'], net.keep_prob: 1.0} run_options = None run_metadata = None if cfg.TEST.DEBUG_TIMELINE: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() #theta_tensor = tf.get_default_graph().get_tensor_by_name('spt_trans_theta') cls_score, cls_prob, bbox_pred, rois = sess.run([net.get_output('cls_score'), net.get_output('cls_prob'), net.get_output('bbox_pred'), net.get_output('rois')], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
tensorflow.RunOptions
531
import tensorflow as tf i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(_ln(c, gc, bc)) xs[idx] = h
tensorflow.tanh
532
from tensorflow.python.ops import array_ops non_zero_count = math_ops.maximum(count, array_ops.ones_like(count),
tensorflow.python.ops.array_ops.ones_like
533
import tensorflow as tf """Dataset for iterating over text.""" import collections import numpy as np import tensorflow as tf def _split_string(string): """Splits a byte string into an array of character bytes.""" text = tf.compat.as_text(string) ret = np.empty(len(text), dtype=np.object) for i, char in enumerate(text): ret[i] = tf.compat.as_bytes(char) return ret def vocabulary(filename, max_size=None, num_oov_buckets=1): """Builds vocabulary and ID lookup tables from the given file."""
tensorflow.compat.as_text
534
import tensorflow as tf tf.stop_gradient(indicator_matrix), distance_matrix, tf.fill(tf.shape(distance_matrix), distance_matrix.dtype.max)) hard_distances = tf.math.reduce_min(distance_matrix, axis=-1) return hard_distances
tensorflow.math.reduce_min
535
from tensorflow.python.platform import googletest ig = integrated_gradients.IntegratedGradients(graph, sess, y[0], x) mask = ig.GetMask(x_value=x_input_val[0], feed_dict={}, x_baseline=x_baseline_val[0], x_steps=1000) # Verify the result. self.assertAlmostEqual(expected_val, mask.sum(), places=3) if __name__ == '__main__': googletest.main()
tensorflow.python.platform.googletest.main
536
import tensorflow as tf return {f: example[f] for f in feature_list if f in example} def _eager_dataset_iterator(dataset): for item in dataset: flat = tf.nest.flatten(item) flat = [el.numpy() for el in flat] yield tf.nest.pack_sequence_as(item, flat) def _train_and_eval_dataset_v1(problem_name, data_dir, train_shuffle_files, eval_shuffle_files): """Return train and evaluation datasets, feature info and supervised keys.""" with tf.device('cpu:0'):
tensorflow.nest.pack_sequence_as
537
import tensorflow as tf batch_size=batch_size) num_dims = shape.size if tt_rank.size == 1: tt_rank = tt_rank * np.ones(num_dims - 1) tt_rank = np.insert(tt_rank, 0, 1) tt_rank = np.append(tt_rank, 1) tt_rank = tt_rank.astype(int) tt_cores = [None] * num_dims with tf.name_scope(name): for i in range(num_dims): curr_core_shape = (batch_size, tt_rank[i], shape[i], tt_rank[i + 1]) tt_cores[i] = tf.random_normal(curr_core_shape, mean=mean, stddev=stddev, dtype=dtype) return TensorTrainBatch(tt_cores, shape, tt_rank, batch_size) def matrix_with_random_cores(shape, tt_rank=2, mean=0., stddev=1., dtype=tf.float32, name='t3f_matrix_with_random_cores'): """Generate a TT-matrix of given shape with N(mean, stddev^2) cores.
tensorflow.random_normal
538
import tensorflow as tf self.generated_image = tflib.convert_images_to_uint8(self.generator_output, nchw_to_nhwc=True, uint8_cast=False) self.generated_image_uint8 = tf.saturate_cast(self.generated_image, tf.uint8)
tensorflow.saturate_cast
539
import tensorflow as tf update_op = tf.group(*[ param.assign(param - grad * self.LEARNING_RATE) for param, grad in zip(params, grads) ]) # return update_op with tf.name_scope('validate'): x, y = self._build_data_pipeline() y_hat, loss = self._build_validation_model(x, y) with tf.control_dependencies([update_op]): return tf.print('expect', loss, y, y_hat, summarize=50) class DataOwner: BATCH_SIZE = 30 def __init__(self, player_name, build_training_model): self.player_name = player_name
tensorflow.control_dependencies
540
from tensorflow.contrib.layers.python.layers import feature_column dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3), dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) input_fn = test_data.iris_input_logistic_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertSingleClassMetrics(metrics) def benchmarkMultiClass(self): iris = base.load_iris() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=(bucketized_feature,), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3)) input_fn = test_data.iris_input_multiclass_fn
tensorflow.contrib.layers.python.layers.feature_column.real_valued_column
541
from tensorflow.python.framework import ops ops.RegisterShape("Neg")(common_shapes.unchanged_shape) ops.RegisterShape("Real")(common_shapes.unchanged_shape) ops.RegisterShape("Rsqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Sign")(common_shapes.unchanged_shape) ops.RegisterShape("Sin")(common_shapes.unchanged_shape) ops.RegisterShape("Sqrt")(common_shapes.unchanged_shape) ops.RegisterShape("Square")(common_shapes.unchanged_shape) ops.RegisterShape("Sigmoid")(common_shapes.unchanged_shape) ops.RegisterShape("Tanh")(common_shapes.unchanged_shape) ops.RegisterShape("Cast")(common_shapes.unchanged_shape) ops.RegisterShape("ComplexAbs")(common_shapes.unchanged_shape) @ops.RegisterShape("Add") @ops.RegisterShape("Complex") @ops.RegisterShape("Div") @ops.RegisterShape("Equal") @ops.RegisterShape("Greater")
tensorflow.python.framework.ops.RegisterShape
542
from tensorflow.contrib.learn.python.learn.estimators import test_data indices=((0, 0), (0, 1), (60, 0)), dense_shape=(len(iris.target), 2)) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), (-1, 1)) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column( cont_features[i], test_data.get_quantile_based_buckets(iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=tempfile.mkdtemp(), linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=(3, 3)) metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate(
tensorflow.contrib.learn.python.learn.estimators.test_data.get_quantile_based_buckets
543
import tensorflow as tf use_skip_connections = self.options['lstm']['use_skip_connections'] if use_skip_connections: print("USING SKIP CONNECTIONS") else: print("NOT USING SKIP CONNECTIONS") # the sequence lengths from input mask if self.use_character_inputs: mask = tf.reduce_any(self.ids_placeholder > 0, axis=2) else: mask = self.ids_placeholder > 0 sequence_lengths = tf.reduce_sum(tf.cast(mask, tf.int32), axis=1) batch_size = tf.shape(sequence_lengths)[0] # for each direction, we'll store tensors for each layer self.lstm_outputs = {'forward': [], 'backward': []}
tensorflow.reduce_any
544
from tensorflow.contrib.learn.python.learn.estimators import run_config classifier.fit(input_fn=_train_input_fn, steps=15) classifier.evaluate(input_fn=_eval_input_fn, steps=1) classifier.export(self._export_dir_base) def testThatLeafIndexIsInPredictions(self): learner_config = learner_pb2.LearnerConfig() learner_config.num_classes = 2 learner_config.constraints.max_tree_depth = 1 model_dir = tempfile.mkdtemp() config = run_config.RunConfig() classifier = estimator.GradientBoostedDecisionTreeClassifier( learner_config=learner_config, num_trees=1, examples_per_layer=3, model_dir=model_dir, config=config, feature_columns=[contrib_feature_column.real_valued_column("x")], output_leaf_index=True)
tensorflow.contrib.learn.python.learn.estimators.run_config.RunConfig
545
from tensorflow.contrib.layers.python.layers import utils _add_variable_to_collections(layer.bias, variables_collections, 'biases') if normalizer_fn is not None: normalizer_params = normalizer_params or {} outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None: outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
tensorflow.contrib.layers.python.layers.utils.collect_named_outputs
546
import tensorflow as tf import random import tensorflow as tf FLAGS = flags.FLAGS # augmentation functions # augment def random_crop_and_resize(images, ratio=0.8): b, h, w, c = images.get_shape().as_list() ch, cw = map(lambda x: int(x * ratio), (h, w)) crop = tf.random_crop(images, size=[b, ch, cw, 3]) crop = tf.image.resize(crop, [h, w]) return crop def random_apply(fn, image, prob=1.): b, *_ = image.get_shape().as_list() chance = tf.less(tf.random_uniform([b], 0, 1.0), prob) return tf.where(chance, fn(image), tf.identity(image)) def color_distortion(image, s=1.0): lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image x = tf.image.random_brightness(x, max_delta=0.8*s)
tensorflow.random_crop
547
import tensorflow as tf with tf.variable_scope('x_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
tensorflow.nn.softmax_cross_entropy_with_logits
548
import tensorflow.contrib.graph_editor as ge checkpoints_other) debug_print("ops_to_copy = %s", ops_to_copy) if not ops_to_copy: # we're done! break copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected_other, checkpoints_other, copied_ops) # gradient flowing through the checkpointed node boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts] substitute_backprops = [d_checkpoints[r] for r in ts] dv = tf_gradients(boundary, checkpoints_disconnected_other+xs,
tensorflow.contrib.graph_editor.reroute_ts
549
import tensorflow as tf # the true input symbols for the decoder with feed_previous=False. dec_fp_true = sess.run(dec_op_fp_true) output_symbols_fp_true = np.argmax(dec_fp_true, axis=2) dec_inp_fp_false = np.vstack((dec_inp_fp_true[0].eval(), output_symbols_fp_true[:-1])) sess.run(update_fp_true) sess.run(update_fp_false, {holder: inp for holder, inp in zip(dec_inp_holder_fp_false, dec_inp_fp_false)}) for v_true, v_false in matched_variables: self.assertAllClose(v_true.eval(), v_false.eval()) def EmbeddingRNNSeq2SeqF(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingRNNSeq2SeqNoTupleF(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) return tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingTiedRNNSeq2Seq(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
tensorflow.nn.seq2seq.embedding_rnn_seq2seq
550
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc hparams = get_default_hparams() tf.enable_resource_variables() for sample_size in [10, 25, 50, 100, 200]: hparams.n_samples = sample_size tf.reset_default_graph() with tf.Graph().as_default(): energy_fn, _, _ = l2hmc.get_scg_energy_fn() x = tf.random_normal([hparams.n_samples, hparams.x_dim], dtype=tf.float32) dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps) loss, _, _ = l2hmc.compute_loss(dynamics, x) optimizer = tf.train.AdamOptimizer(learning_rate=hparams.learning_rate) train_op, loss, _ = graph_step(dynamics, optimizer, x) # Single thread; fairer comparison against eager session_conf = tf.ConfigProto(inter_op_parallelism_threads=1) with tf.Session(config=session_conf) as sess: sess.run(tf.global_variables_initializer()) # Warmup to reduce initialization effect when timing for _ in range(hparams.n_warmup_iters): _, _ = sess.run([train_op, loss])
tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.compute_loss
551
import tensorflow as tf """Trains model on train_data using optimizer.""" tf.train.get_or_create_global_step() def model_loss(labels, chars, sequence_length): predictions = model((chars, sequence_length), training=True) loss_value = loss(labels, predictions) tf.contrib.summary.scalar("loss", loss_value) return loss_value for (batch, (labels, chars, sequence_length)) in enumerate( tfe.Iterator(train_data)): with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval): batch_model_loss = functools.partial(model_loss, labels, chars,
tensorflow.contrib.summary.scalar
552
from tensorflow.python.ops import array_ops labels_sizes = set_ops.set_size(labels) return math_ops.minimum(labels_sizes, k, name=scope) # For dense Tensor, calculate scalar count based on last dimension, and # tile across labels shape. labels_shape = array_ops.shape(labels) labels_size = labels_shape[-1] num_relevant_scalar = math_ops.minimum(labels_size, k) return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) def expand_and_tile(tensor, multiple, dim=0, name=None): """Slice `tensor` shape in 2, then tile along the sliced dimension. A new dimension is inserted in shape of `tensor` before `dim`, then values are tiled `multiple` times along the new dimension.
tensorflow.python.ops.array_ops.fill
553
import tensorflow as tf from tensor2tensor.data_generators import algorithmic from tensor2tensor.data_generators import problem as problem_module from tensor2tensor.data_generators import problem_hparams from tensor2tensor.layers import modalities from tensor2tensor.utils import test_utils import tensorflow as tf tf.compat.v1.enable_eager_execution() def assert_tensors_equal(sess, t1, t2, n): """Compute tensors `n` times and ensure that they are equal.""" for _ in range(n):
tensorflow.compat.v1.enable_eager_execution
554
import tensorflow as tf # Upsampling up1 = common_deconv2d(dwn5,self.gf*8,stride=1,padding='valid',name='up1') # 16x16 -> 16x16 #print(np.shape(up1)) up2 = common_deconv2d(up1,self.gf*4,name='up2') # 16x16 -> 32x32 up3 = common_deconv2d(up2,self.gf*2,name='up3') # 32x32 -> 64x64 up4 = common_deconv2d(up3,self.gf,name='up4') # 64x64 -> 128x128 out_img = tf.contrib.layers.conv2d_transpose(up4,self.channels,kernel_size=4,stride=2,padding='SAME',activation_fn=tf.nn.tanh) # 128x128 -> 256x256 #print('out_img',(np.shape(out_img))) return out_img def build_discriminator(self,image,reuse=False,name='discriminator'):
tensorflow.contrib.layers.conv2d_transpose
555
import tensorflow as tf """ label_smoothing = 0. def inputs(self): return [tf.TensorSpec([None, self.image_shape, self.image_shape, 3], self.image_dtype, 'input'), tf.TensorSpec([None], tf.int32, 'label')] def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC']
tensorflow.TensorSpec
556
import tensorflow as tf # Compute Pearson correlation pearson = contrib_metrics.streaming_pearson_correlation( logits, label_ids, weights=is_real_example) # Compute MSE # mse = tf.metrics.mean(per_example_loss) mse = tf.metrics.mean_squared_error( label_ids, logits, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example)
tensorflow.metrics.mean_squared_error
557
import tensorflow as tf logit_w = tf.get_variable('W', shape=[dnn_output_size, 1], initializer=tf.truncated_normal_initializer(stddev=1.0 / dnn_output_size, dtype=dtype), dtype=dtype) logit_b = tf.get_variable('b', shape=[1], initializer=tf.constant_initializer(0.0), dtype=dtype) logits = tf.squeeze(tf.nn.bias_add(tf.matmul(dnn_output, logit_w), logit_b), squeeze_dims=[1]) prediction = tf.nn.sigmoid(logits) prediction_inspect = tf.reshape(prediction, [batch_size, rnn_nunroll]) prediction_final = tf.squeeze(tf.slice(prediction_inspect, [0, rnn_nunroll - 1], [-1, 1]), squeeze_dims=[1])
tensorflow.nn.sigmoid
558
import tensorflow as tf import os log = infolog.log def add_embedding_stats(summary_writer, embedding_names, paths_to_meta, checkpoint_path): # Create tensorboard projector config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig() config.model_checkpoint_path = checkpoint_path for embedding_name, path_to_meta in zip(embedding_names, paths_to_meta): # Initialize config embedding = config.embeddings.add() # Specifiy the embedding variable and the metadata
tensorflow.contrib.tensorboard.plugins.projector.ProjectorConfig
559
import tensorflow as tf boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4))) objects.append(tf.reshape(obj, (x_shape[0], -1, 1))) classes.append(tf.reshape(cls, (x_shape[0], -1, num_classes))) boxes = tf.concat(boxes, axis=1) objects = tf.concat(objects, axis=1) classes = tf.concat(classes, axis=1) scores = objects * classes boxes, scores, classes, valid = tf.image.combined_non_max_suppression( boxes=boxes, scores=scores, max_output_size_per_class=max_outputs, max_total_size=max_outputs, iou_threshold=iou_threshold, score_threshold=score_threshold, clip_boxes=False )
tensorflow.image.combined_non_max_suppression
560
import tensorflow as tf import os os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list if not tf.gfile.Exists(FLAGS.checkpoint_path): tf.gfile.MkDir(FLAGS.checkpoint_path) else: if not FLAGS.restore:
tensorflow.gfile.MkDir
561
import tensorflow as tf if W_p is None: W_p = self._make_var('W_p', (1, 1, ch_mul * ch, ch)) X = tf.nn.relu(X) X = tf.nn.separable_conv2d(X, W_d, W_p, strides=(1, stride, stride, 1), padding='SAME') if not no_batch_norm: X = self._add_batch_norm(X, ch, is_train=is_train)
tensorflow.nn.separable_conv2d
562
import tensorflow as tf X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse) if dropout > 0.0: X = tf.layers.dropout(X, dropout, training=is_train) if slope < 1.0:
tensorflow.contrib.layers.group_norm
563
import tensorflow as tf 'Optimizer to use: momentum or sgd or rmsprop') tf.flags.DEFINE_float('learning_rate', None,
tensorflow.flags.DEFINE_float
564
from tensorflow.python.client import graph_util filter_shape.assert_is_fully_defined() output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name) output_shape.assert_is_fully_defined() filter_height = int(filter_shape[0]) filter_width = int(filter_shape[1]) filter_in_depth = int(filter_shape[2]) filter_out_depth = int(filter_shape[3]) return ops.OpStats("weight_parameters", (filter_height * filter_width * filter_in_depth * filter_out_depth)) @ops.RegisterStatistics("BiasAdd", "flops") def _calc_bias_add_flops(graph, node): """Calculates the computing needed for BiasAdd.""" input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0]) input_shape.assert_is_fully_defined() input_count = np.prod(input_shape.as_list()) return ops.OpStats("flops", input_count) @ops.RegisterStatistics("BiasAdd", "weight_parameters") def _calc_bias_add_weight_params(graph, node): """Calculates the on-disk weight parameters for BiasAdd.""" bias_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[1]) bias_shape.assert_is_fully_defined() bias_count = np.prod(bias_shape.as_list()) return ops.OpStats("weight_parameters", bias_count)
tensorflow.python.client.graph_util.tensor_shape_from_node_def_name
565
import tensorflow as tf self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a))
tensorflow.reduce_max
566
import tensorflow as tf return 196.0 * 21.0 / 4096.0 else: rec = tf.cast(kw * kh, tf.float32) n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.)) ns = tf.range(0., n_max) ns_pow = tf.pow(2., ns) ks = tf.round(ns_pow / rec) diffs = tf.math.abs(ks / ns_pow - 1 / rec) n = tf.argmin(diffs) k = ks[n] scale = k / tf.pow(2., tf.cast(n, tf.float32)) scale *= rec
tensorflow.round
567
import tensorflow as tf if params['optimizer'] == 'momentum': optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=params['momentum']) elif params['optimizer'] == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) elif params['optimizer'] == 'adadelta': optimizer = tf.train.AdadeltaOptimizer(learning_rate) elif params['optimizer'] == 'adagrad': optimizer = tf.train.AdagradOptimizer(learning_rate) elif params['optimizer'] == 'rmsprop': optimizer = tf.train.RMSPropOptimizer( learning_rate, momentum=params['momentum']) elif params['optimizer'] == 'lars': optimizer = tf.contrib.opt.LARSOptimizer( learning_rate, momentum=params['momentum'], weight_decay=params['lars_weight_decay'], skip_list=['batch_normalization', 'bias']) else: raise ValueError('Unsupported optimizer type %s.' % params['optimizer']) return optimizer def remove_variables(variables, resnet_depth=50): """Removes low-level variables from the input.
tensorflow.contrib.opt.LARSOptimizer
568
import tensorflow as tf v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon)
tensorflow.nn.moments
569
import tensorflow as tf import numpy as np import random import TensorflowUtils as utils import read_MITSceneParsingDataParis as scene_parsing import datetime import BatchDatsetReader as dataset from six.moves import xrange FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("batch_size", "50", "batch size for training") tf.flags.DEFINE_string("logs_dir", "/scratch1/ram095/nips20/logs_mnist128/", "path to logs directory") tf.flags.DEFINE_string("data_dir", "/scratch1/ram095/nips20/paris_street", "path to dataset") tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer") tf.flags.DEFINE_string("model_dir", "Model_zoo/", "Path to vgg model mat") tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False") tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize") MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat' MAX_ITERATION = int(1e5 + 1) NUM_OF_CLASSESS = 3 IMAGE_SIZE = 128 def vgg_net(weights, image): layers = ( 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
tensorflow.flags.DEFINE_bool
570
import tensorflow as tf phase = conv3d(phase,3,channel_nr, 'SYMMETRIC', 'relu') concat_layer = tf.keras.layers.concatenate([phase, pc]) concat_layer = conv3d(concat_layer, 1, channel_nr, 'SYMMETRIC', 'relu')
tensorflow.keras.layers.concatenate
571
import tensorflow as tf with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=do_reuse): clf_logits, clf_losses, lm_losses = model(*xs, train=True, reuse=do_reuse) if lm_coef > 0: train_loss = tf.reduce_mean(clf_losses) + lm_coef*tf.reduce_mean(lm_losses) else: train_loss = tf.reduce_mean(clf_losses)
tensorflow.reduce_mean
572
import tensorflow as tf elif (re.sub(r"/ffn_\d+/", "/ffn_1/", six.ensure_str(name)) in init_vars_name and num_of_group > 1): tvar_name = re.sub(r"/ffn_\d+/", "/ffn_1/", six.ensure_str(name)) elif (re.sub(r"/attention_\d+/", "/attention_1/", six.ensure_str(name)) in init_vars_name and num_of_group > 1): tvar_name = re.sub(r"/attention_\d+/", "/attention_1/", six.ensure_str(name)) else: tf.logging.warn("name %s does not get matched", name) continue # tf.logging.info("name %s match to %s", name, tvar_name) if num_of_group > 0: group_matched = False for gid in range(1, num_of_group): if (("/group_" + str(gid) + "/" in name) or ("/ffn_" + str(gid) + "/" in name) or
tensorflow.logging.warn
573
from tensorflow.contrib.eager.python import tfe def loss(labels, predictions): """Computes mean squared loss.""" return tf.reduce_mean(tf.squared_difference(predictions, labels)) def test(model, eval_data): """Computes the average loss on eval_data, which should be a Dataset.""" avg_loss = tfe.metrics.Mean("loss") for (labels, chars, sequence_length) in tfe.Iterator(eval_data): predictions = model((chars, sequence_length), training=False) avg_loss(loss(labels, predictions)) print("eval/loss: %.6f\n" % avg_loss.result()) with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("loss", avg_loss.result())
tensorflow.contrib.eager.python.tfe.metrics.Mean
574
import tensorflow as tf self.assertEqual((2, 2), res[0][0].h.shape) self.assertEqual((2, 2), res[0][1].c.shape) self.assertEqual((2, 2), res[0][1].h.shape) # pylint: disable=unused-variable,invalid-name def testDynamicAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope( "root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4)
tensorflow.nn.rnn_cell.MultiRNNCell
575
from tensorflow.contrib import layers default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples(examples, self._feature_columns) return self._estimator.export( export_dir=export_dir,
tensorflow.contrib.layers.parse_feature_columns_from_examples
576
from tensorflow.contrib.rnn import GRUCell highway_input = tf.layers.dense(highway_input, half_depth) # 4-layer HighwayNet: for i in range(4): highway_input = highwaynet(highway_input, 'highway_%d' % (i + 1), half_depth) rnn_input = highway_input # Bidirectional RNN outputs, states = tf.nn.bidirectional_dynamic_rnn( GRUCell(half_depth), GRUCell(half_depth), rnn_input, sequence_length=input_lengths, dtype=tf.float32) return tf.concat(outputs, axis=2) # Concat forward and backward def highwaynet(inputs, scope, depth): with tf.variable_scope(scope): H = tf.layers.dense(
tensorflow.contrib.rnn.GRUCell
577
import tensorflow as tf with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = [tf.constant(0.5, shape=[2, 2])] * 2 enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state, attn_states, cell, output_size=4) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual(2, len(res[0]))
tensorflow.nn.seq2seq.attention_decoder
578
import tensorflow as tf gn_grads_, gn_grads_true_, v_grads_, v_grads_true_ = sess.run( [gn_grads, gn_grads_true, v_grads, v_grads_true]) np.testing.assert_array_equal(gn_grads_, gn_grads_true_) np.testing.assert_array_equal(v_grads_, v_grads_true_) def test_get_train_op(self): """Tests get_train_op. """ var = tf.Variable(0.) loss = tf.nn.l2_loss(var) train_op = opt.get_train_op(loss) self.assertTrue(tf.contrib.framework.is_tensor(train_op)) if __name__ == "__main__": tf.test.main()
tensorflow.contrib.framework.is_tensor
579
import tensorflow as tf if bidirectional: lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw) outputs_bw, (hidden_bw, output_bw) = lstm_cell_bw(t, dtype=tf.float32, sequence_length=nwords) outputs = tf.concat([outputs_fw, outputs_bw], axis=-1)
tensorflow.contrib.rnn.TimeReversedFusedRNN
580
import tensorflow as tf with tf.Session() as sess: summary_writer = tf.summary.FileWriter(run_log_dir + '_train', sess.graph, flush_secs=5) summary_writer_validation = tf.summary.FileWriter(run_log_dir + '_validate', sess.graph, flush_secs=5) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Training and validation for step in range(FLAGS.max_steps): # Training: Backpropagation using train set
tensorflow.local_variables_initializer
581
import tensorflow.contrib.graph_editor as ge def capture_ops(): """Decorator to capture ops created in the block. with capture_ops() as ops: # create some ops print(ops) # => prints ops created. """ micros = int(time.time()*10**6) scope_name = str(micros) op_list = [] with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"): return tensor_or_op.op return tensor_or_op def _to_ops(iterable): if not _is_iterable(iterable): return iterable return [_to_op(i) for i in iterable] def _is_iterable(o): try:
tensorflow.contrib.graph_editor.select_ops
582
from tensorflow.python.ops import random_ops def _get_batch_shape(self): return array_ops.broadcast_static_shape( self.alpha.get_shape(), self.beta.get_shape()) def _event_shape(self): return constant_op.constant([], dtype=dtypes.int32) def _get_event_shape(self): return tensor_shape.scalar() def _sample_n(self, n, seed=None): """See the documentation for tf.random_gamma for more details.""" return 1. / random_ops.random_gamma([n], self.alpha, beta=self.beta, dtype=self.dtype, seed=seed) def _log_prob(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) return (self.alpha * math_ops.log(self.beta) - math_ops.lgamma(self.alpha) - (self.alpha + 1.) * math_ops.log(x) - self.beta / x) def _prob(self, x): return math_ops.exp(self._log_prob(x))
tensorflow.python.ops.random_ops.random_gamma
583
import tensorflow as tf def build_cnet(self, state_in, name, reuse=False, batch_size=64): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob) state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_cin = tf.expand_dims(layer_c2, axis=1) out_c, state_final_c = tf.nn.dynamic_rnn(cell=lstm_c, inputs=lstm_cin, initial_state=state_init_c) cell_out_c = tf.reshape(out_c, [-1, 256]) vf = tf.layers.dense(cell_out_c, 1, kernel_regularizer=reg)
tensorflow.nn.rnn_cell.DropoutWrapper
584
import tensorflow as tf epoch = step // steps_per_epoch if use_sgdr is True: # Apply Stoachastic Gradient Descent with Warm Restarts (SGDR) lr = tf.train.cosine_decay_restarts(lr, epoch, sgdr_decay_epochs, t_mul=sgdr_t_mul, alpha=sgdr_alpha) return lr
tensorflow.train.cosine_decay_restarts
585
import tensorflow as tf with tf.variable_scope(name): W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args) b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args) # self.outputs = act(tf.matmul(self.inputs, W) + b) LayersConfig.set_keep[name] = tf.placeholder(tf.float32) W_dropcon = tf.nn.dropout(W, LayersConfig.set_keep[name]) self.outputs = act(tf.matmul(self.inputs, W_dropcon) + b) # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params) # self.all_drop = dict(layer.all_drop) self.all_drop.update({LayersConfig.set_keep[name]: keep})
tensorflow.nn.dropout
586
from tensorflow.contrib.layers.python.ops import sparse_feature_cross_op """Tests the new version of the fingerprint concatenation has no collisions. """ # Although the last 10 bits of 359 and 1024+359 are identical. # As a result, all the crosses shouldn't collide. t1 = constant_op.constant([[359], [359 + 1024]]) t2 = constant_op.constant([list(range(10)), list(range(10))]) cross = sparse_feature_cross_op.sparse_feature_cross( [t2, t1], hashed_output=True, num_buckets=1024, hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY) cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
tensorflow.contrib.layers.python.ops.sparse_feature_cross_op.sparse_feature_cross
587
import tensorflow as tf ) mu = 2 * tf.layers.dense(inputs=l1, units=action_dim, # number of hidden units activation=tf.nn.tanh, name='mu', trainable=trainable ) sigma = tf.layers.dense(inputs=l1, units=action_dim, # output units activation=tf.nn.softplus, # get action probabilities name='sigma', trainable=trainable ) norm_dist = tf.distributions.Normal(loc=mu, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params def choose_action(self, s): # 決定下一步該怎麼做 # s = s[np.newaxis, :] s = s.reshape(-1, 84, 84, 3) a = self.sess.run(self.sample_op, {self.tfs: s})[0] return np.clip(a, ACTION_BOUND[0], ACTION_BOUND[1]) def get_v(self, s): if s.ndim < 4:
tensorflow.distributions.Normal
588
import tensorflow as tf tf.to_float(tf.range(num_timescales)) * -log_timescale_increment) scaled_time = ( tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims( tf.expand_dims(inv_timescales, 0), 0)) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2) signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]]) return signal
tensorflow.cos
589
from tensorflow.python.saved_model import loader self.session = tf.Session() metagraph_def = loader.load(
tensorflow.python.saved_model.loader.load
590
import tensorflow as tf def contra_step_lossV5(pred, tgt, resample=1): # p = tf.print('begin loss v5', [resample, pred.shape,tgt.shape]) # with tf.control_dependencies([p]): pred_flat = tf.reshape(pred, [-1]) tgt_flat = tf.reshape(tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) num_sam = tools.shape(batch)[0] index = tf.range(num_sam) divider = tf.constant(resample, dtype=tf.float32) def sample_compute(cur_loss, i): batch1 = tf.gather(batch, tf.random.shuffle(index)) batch2 = tf.gather(batch, tf.random.shuffle(index)) pred1 = tf.slice(batch1, [0, 0], [num_sam, 1]) pred2 = tf.slice(batch2, [0, 0], [num_sam, 1]) tgt1 = tf.slice(batch1, [0, 1], [num_sam, 1]) tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1]) loss = cur_loss + compute_contra_loss(pred1, pred2, tgt1, tgt2) print(loss) return (loss, i + 1) # def sample_compute(i): # batch1 = tf.gather(batch, tf.random.shuffle(index)) # batch2 = tf.gather(batch, tf.random.shuffle(index))
tensorflow.random.shuffle
591
from tensorflow.contrib import learn # Setup vocabulary processor vocab_processor = learn.preprocessing.VocabularyProcessor(sentence_size, min_frequency=min_word_freq)
tensorflow.contrib.learn.preprocessing.VocabularyProcessor
592
import tensorflow as tf # Only make the ops if we know that `is_training=True`, or the value of # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const: update_mean_op, update_variance_op = utils.smart_cond( is_training, build_update_ops, build_no_ops, ) # Every new connection creates a new op which adds its contribution # to the running average when ran. tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_variance_op) def _build_update_ops_second_moment(self, mean, second_moment, is_training): """Builds the moving average update ops when using the moving second moment. Args: mean: The mean value to update with. second_moment: The second_moment value to update with. is_training: Boolean Tensor to indicate if we're currently in training mode. """ def build_update_ops(): """Builds the exponential moving average update ops."""
tensorflow.add_to_collection
593
import tensorflow.contrib.rnn as rnn model.add(keras.layers.Dense(1)) model.compile(loss = 'mean_squared_error', optimizer = 'adam', metrics = ['mae', 'mape']) # mean absolute [percentage] error return keras.estimator.model_to_estimator(model, model_dir=output_dir) # Create the inference model def simple_rnn(features, labels, mode): # 0. Reformat input shape to become a sequence x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1) # 1. Configure the RNN lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0) outputs, _ = rnn.static_rnn(lstm_cell, x, dtype = tf.float32) # Slice to keep only the last cell of the RNN outputs = outputs[-1] #print('last outputs={}'.format(outputs)) # Output is result of linear activation of last layer of RNN weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS])) bias = tf.Variable(tf.random_normal([N_OUTPUTS])) predictions = tf.matmul(outputs, weight) + bias # 2. Loss function, training/eval ops if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
tensorflow.contrib.rnn.static_rnn
594
from tensorflow.python.client import timeline pred_boxes = pred_boxes[inv_index, :] if cfg.TEST.DEBUG_TIMELINE: trace = timeline.Timeline(step_stats=run_metadata.step_stats) trace_file = open(str(int(time.time() * 1000)) + '-test-timeline.ctf.json', 'w') trace_file.write(trace.generate_chrome_trace_format(show_memory=False))
tensorflow.python.client.timeline.Timeline
595
from tensorflow import keras dataset = dataset.repeat(num_epochs).batch(batch_size) iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() return batch_features, batch_labels return _input_fn # Create inference model using Keras # The model here is a dnn regressor def make_keras_estimator(output_dir): from tensorflow import keras model = keras.models.Sequential() model.add(keras.layers.Dense(32, input_shape=(N_INPUTS,), name=TIMESERIES_INPUT_LAYER)) model.add(keras.layers.Activation('relu')) model.add(keras.layers.Dense(1)) model.compile(loss = 'mean_squared_error', optimizer = 'adam', metrics = ['mae', 'mape']) # mean absolute [percentage] error return keras.estimator.model_to_estimator(model, model_dir=output_dir) # Create the inference model def simple_rnn(features, labels, mode): # 0. Reformat input shape to become a sequence x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1) # 1. Configure the RNN
tensorflow.keras.layers.Activation
596
import tensorflow as tf Haa = param_eta * prec + Waa # Haa = 0.5 * (Haa + TT.transpose(Haa)) HaaInv = tf.matrix_inverse(Haa) # The two terms 'term1' and 'term2' which come from normalizers of the # 1. Original policy distribution # 2. The distribution after completing the square sigma = tf.matrix_inverse(prec) term1 = -0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * sigma)) if self.beta == 0: term2 = 0.5 * param_eta * tf.log(tf.matrix_determinant(2 * np.pi * param_eta * HaaInv)) else: term2 = 0.5 * (param_eta + param_omega) * tf.log(tf.matrix_determinant(2 * np.pi * (param_eta + param_omega) * HaaInv)) dual = param_eta * self.epsilon - param_omega * beta + \ term1 + term2 + tf.reduce_mean( 0.5 * (tf.reduce_sum(tf.matmul(ha, HaaInv) * ha, axis=1) - hss))
tensorflow.matrix_determinant
597
import tensorflow as tf dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True) def normalize(input_image, input_mask): input_image = tf.cast(input_image, tf.float32) / 255.0 input_mask -= 1 return input_image, input_mask def load_image_train(datapoint): """Load images for training.""" input_image = tf.image.resize(datapoint['image'], (512, 512)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) input_mask = tf.image.flip_left_right(input_mask) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask def load_image_test(datapoint): input_image = tf.image.resize(datapoint['image'], (512, 512)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask
tensorflow.image.flip_left_right
598
from tensorflow.python.ops import nn_ops with tf.device("/gpu:0"): conv = nn_ops.conv3d(d1, d2, strides, padding)
tensorflow.python.ops.nn_ops.conv3d
599