seed
stringlengths 25
1.88k
| seed_api
stringlengths 14
102
| index
int64 0
1.05k
|
---|---|---|
from tensorflow.python.ops import gen_state_ops
shape = shape.merge_with(input_tensor.get_shape())
if not shape.is_fully_defined():
# TODO(pbar): Make a version of assign_add that accepts an uninitialized
# lvalue, and takes its shape from that? This would allow accumulate_n to
# work in all situations that add_n currently works.
raise ValueError("Cannot infer the shape of the accumulator for "
"accumulate_n. Pass the shape argument, or set the shape "
"of at least one of the inputs.")
with ops.op_scope(inputs, name, "AccumulateN") as name:
var = gen_state_ops._temporary_variable(shape=shape, dtype=tensor_dtype)
var_name = var.op.name
var = state_ops.assign(var, array_ops.zeros_like(inputs[0]))
update_ops = []
for input_tensor in inputs:
op = state_ops.assign_add(var, input_tensor, use_locking=True)
update_ops.append(op)
with ops.control_dependencies(update_ops):
return gen_state_ops._destroy_temporary_variable(var,
| tensorflow.python.ops.gen_state_ops._temporary_variable | 600 |
import tensorflow as tf
if (len(test_data.encoded_x) > 1 or
test_data.decoded_x is not list(test_data.encoded_x.values())[0]):
self.assertIn(encoding_stage.DECODE_SCOPE_SUFFIX,
test_data.decoded_x.name)
if is_adaptive_stage(stage):
# The property should have keys matching those of state_update_tensors.
self.assertSameElements(stage.state_update_aggregation_modes.keys(),
test_data.state_update_tensors.keys())
for mode in six.itervalues(stage.state_update_aggregation_modes):
self.assertIn(mode, encoding_stage.StateAggregationMode)
for tensor in six.itervalues(test_data.initial_state):
self.assertTrue(tf.is_tensor(tensor))
for tensor in six.itervalues(test_data.state_update_tensors):
self.assertTrue(tf.is_tensor(tensor))
for tensor in six.itervalues(test_data.updated_state):
self.assertTrue(tf.is_tensor(tensor))
# The state related Tensors should have appropriate substrings in their
# names.
for tensor in six.itervalues(test_data.initial_state):
self.assertIn(encoding_stage.INITIAL_STATE_SCOPE_SUFFIX, tensor.name)
for tensor in six.itervalues(test_data.updated_state):
self.assertIn(encoding_stage.UPDATE_STATE_SCOPE_SUFFIX, tensor.name)
for tensor in six.itervalues(test_data.state_update_tensors):
| tensorflow.is_tensor | 601 |
from tensorflow.python.platform import gfile
except OSError:
pass # Ignore
gfile.MakeDirs(save_dir)
| tensorflow.python.platform.gfile.MakeDirs | 602 |
import tensorflow as tf
options = self.options
input_shape = tf.shape(encoder_states)
batch_size = input_shape[0]
passage_len = input_shape[1]
with variable_scope.variable_scope("attention_decoder"):
encoder_features = tf.expand_dims(encoder_states, axis=2) # now is shape [batch_size, passage_len, 1, encoder_dim]
W_h = variable_scope.get_variable("W_h", [1, 1, encoder_dim, options.attention_vec_size])
self.W_h = W_h
encoder_features = nn_ops.conv2d(encoder_features, W_h, [1, 1, 1, 1], "SAME") # [batch_size, passage_len, 1, attention_vec_size]
encoder_features = tf.reshape(encoder_features, [batch_size, passage_len, options.attention_vec_size])
return encoder_features
def decode_mode(self, word_vocab, beam_size, state_t_1, context_t_1, coverage_t_1, word_t,
encoder_states, encoder_features, passage_word_idx, passage_mask):
options = self.options
with variable_scope.variable_scope("attention_decoder"):
v = variable_scope.get_variable("v", [options.attention_vec_size])
v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0)
| tensorflow.reshape | 603 |
import tensorflow as tf
global_mode(),
feed_dict={tf.global_mode(): tf.estimator.ModeKeys.PREDICT})
# mode == tf.estimator.ModeKeys.PREDICT
"""
mode = tf.get_collection_ref(_GLOBAL_MODE_KEY)
if len(mode) < 1:
# mode_tensor = tf.placeholder(tf.string, name="global_mode")
mode_tensor = tf.placeholder_with_default(
input=tf.estimator.ModeKeys.TRAIN,
shape=(),
name="global_mode")
# mode_tensor = tf.constant(
# value=tf.estimator.ModeKeys.TRAIN,
# dtype=tf.string,
| tensorflow.placeholder_with_default | 604 |
import tensorflow as tf
sparse_map_op=st_handles.op, sparse_handles=st_handles)
st_roundtrip_op = st_roundtrip.values.op
st_serialized = tf.serialize_many_sparse(st)
st_deserialized = tf.deserialize_many_sparse(
st_serialized, dtype=values.dtype)
| tensorflow.serialize_many_sparse | 605 |
import tensorflow as tf
def test_tensor_rearrange():
tensor_rearrange = TensorRearrange(seed=713)
in_node_a = tensor_rearrange.get_placeholder("input_0")
in_node_b = tensor_rearrange.get_placeholder("input_1")
in_node_c = tensor_rearrange.get_placeholder("input_2")
stitched = tf.dynamic_stitch([[1, 10], [[0, 7, 9], [5, 8, 3]], [[6], [4], [2]]],
[in_node_a, in_node_b, in_node_c]) # should be 11,5,4
list_of_parts = tf.dynamic_partition(tf.transpose(stitched, perm=[1, 2, 0]),
[[0, 1, 2, 3], [1, 0, 2, 3], [2, 3, 1, 0], [2, 1, 0, 3], [0, 1, 2, 3]],
num_partitions=4) # after permute becomes 5,4,11, return all partitions 5,11
node_a = tf.div(list_of_parts[0], list_of_parts[1])
node_b = tf.divide(list_of_parts[2], list_of_parts[3])
trace_node = tf.trace(node_a) + node_b # there is a broadcast here
out_node = tf.cast(tf.count_nonzero(trace_node), dtype=tf.float32) + tf.Variable(tf.random_normal(shape=(2, 3)))
placeholders = [in_node_a, in_node_b, in_node_c]
predictions = [out_node]
# Run and persist
tfp = TensorFlowPersistor(save_dir="partition_stitch_misc")
tfp.set_placeholders(placeholders) \
.set_output_tensors(predictions) \
.set_test_data(tensor_rearrange.get_test_data()) \
.build_save_frozen_graph()
| tensorflow.trace | 606 |
import tensorflow as tf
# add by wangxiao
# define the inputs of signature
def serving_input_fn():
label_ids = tf.placeholder(tf.int32, [None], name='label_ids')
input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids')
input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask')
segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'label_ids': label_ids,
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids,
})()
return input_fn
| tensorflow.estimator.export.build_raw_serving_input_receiver_fn | 607 |
import tensorflow as tf
within the assets subdirectory, we will return a None.
Args:
vocab_filename: The vocabulary name to lookup.
"""
mapping_path = os.path.join(self._transformed_metadata_dir, self.ASSET_MAP)
mapping = {}
if tf.io.gfile.exists(mapping_path):
with tf.io.gfile.GFile(mapping_path) as f:
mapping = json.loads(f.read())
if vocab_filename in mapping:
vocab_path = os.path.join(self.transform_savedmodel_dir,
tf.saved_model.ASSETS_DIRECTORY,
mapping[vocab_filename])
if tf.io.gfile.exists(vocab_path):
return vocab_path
prefix = os.path.join(self.transform_savedmodel_dir,
tf.saved_model.ASSETS_DIRECTORY,
sanitized_vocab_filename(filename=vocab_filename))
files = tf.io.gfile.glob(prefix) + tf.io.gfile.glob(
'{}.tfrecord.gz'.format(prefix))
if not files:
return None
if len(files) != 1:
raise ValueError('Found too many vocabulary files: {}'.format(files))
return files[0]
def _vocabulary_size_from_annotations(self,
| tensorflow.io.gfile.exists | 608 |
import tensorflow as tf
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=False,
num_additional_channels=predict_input_config.num_additional_channels)
input_dict = transform_fn(decoder.decode(example))
images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
images = tf.expand_dims(images, axis=0)
true_image_shape = tf.expand_dims(
input_dict[fields.InputDataFields.true_image_shape], axis=0)
return tf.estimator.export.ServingInputReceiver(
features={
fields.InputDataFields.image: images,
fields.InputDataFields.true_image_shape: true_image_shape},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn | tensorflow.estimator.export.ServingInputReceiver | 609 |
from tensorflow.python.ops import gen_resource_variable_ops
def read_value(self):
return self._read_variable_op()
def assign(self, value, use_locking=None, name=None, read_value=False):
del use_locking
with _handle_graph(self.handle), self._assign_dependencies():
value_tensor = ops.convert_to_tensor(value, dtype=self.dtype)
assign_op = gen_resource_variable_ops.assign_variable_op(
self.handle, value_tensor, name=name)
if read_value:
return self._read_variable_op()
return assign_op
def assign_add(self, delta, use_locking=None, name=None, read_value=True):
del use_locking
| tensorflow.python.ops.gen_resource_variable_ops.assign_variable_op | 610 |
import tensorflow as tf
if checkpoint_state is None:
return
for checkpoint_path in checkpoint_state.all_model_checkpoint_paths:
tf.compat.v1.train.remove_checkpoint(checkpoint_path)
return
| tensorflow.compat.v1.train.remove_checkpoint | 611 |
import tensorflow as tf
vec row, should agree with vecs in shape[0]
Output:
A tensor of shape (vec_dim)
"""
if reduction_mode == 'max':
print('USING MAX POOLING FOR REDUCTION!')
vecs_reduced = tf.segment_max(vecs, segment_inds)
elif reduction_mode == 'mean':
print('USING AVG POOLING FOR REDUCTION!')
vecs_reduced = tf.segment_mean(vecs, segment_inds)
vecs_reduced.set_shape([num_segments, vecs.get_shape()[1]])
return vecs_reduced
| tensorflow.segment_mean | 612 |
import tensorflow as tf
def _split_string(string):
"""Splits a byte string into an array of character bytes."""
text = tf.compat.as_text(string)
ret = np.empty(len(text), dtype=np.object)
for i, char in enumerate(text):
ret[i] = tf.compat.as_bytes(char)
return ret
def vocabulary(filename, max_size=None, num_oov_buckets=1):
| tensorflow.compat.as_bytes | 613 |
from tensorflow.contrib.layers.python.layers import feature_column
'language', hash_bucket_size=2e7)
embedding_feature = feature_column.embedding_column(
| tensorflow.contrib.layers.python.layers.feature_column.embedding_column | 614 |
import tensorflow as tf
features = {'member/name': tf.io.FixedLenFeature([], tf.string),
'member/encoded': tf.io.FixedLenFeature([], tf.string),
'member/age': tf.io.FixedLenFeature([], tf.int64),
'member/height': tf.io.VarLenFeature(tf.float32),
'member/prefer_prods': tf.io.VarLenFeature(tf.int64)}
features = tf.io.parse_single_example(example_proto, features)
images = tf.image.decode_png(features['member/encoded'], channels=3)
# 注意png原本有4個channel,但執行到下面的處理會出錯,所以前一行先降成3個channel。
images = tf.image.random_brightness(images, 0.1)
images = tf.image.random_saturation(images, 0.7, 1.3)
images = tf.image.random_contrast(images, 0.6, 1.5)
images = tf.image.random_flip_left_right(images)
| tensorflow.image.decode_png | 615 |
import tensorflow as tf
# 2nd part of minimize: apply_gradient
optimizer_step = self._optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step)
update_ops = tf.group(*self.update_ops)
self.training_op = tf.group(update_ops, optimizer_step)
def set_check_ops(self):
self._check_ops = 1
# TODO argo2 This is not working anymore with the new session
#with self.sess.graph.as_default():
self._numerics_ops = tf.add_check_numerics_ops()
def release(self):
super().release()
self.sess.close()
tf.reset_default_graph()
def set_summaries(self):
"""This function sets summaries and summaryFileWriters, it needs to be invoked before
training to keep track of the summaries.
(cannot be invoked in create_and_init_network because the FileWriter will corrupt data in the logfolder
at each initialization)
"""
| tensorflow.add_check_numerics_ops | 616 |
import tensorflow as tf
with tf.variable_scope('self_attention'):
# @2.self-attention in block
# mask generation
sl_indices = tf.range(block_len, dtype=tf.int32)
sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices)
if direction == 'forward':
direct_mask = tf.greater(sl_row, sl_col) # bl,bl
else:
direct_mask = tf.greater(sl_col, sl_row) # bl,bl
direct_mask_tile = tf.tile(
tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl
rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl
rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl
rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2)
attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl
# attention
f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.))
dependent_head = linear(
rep_map, 2 * ivec, False, 0., 'linear_dependent_head', False, wd, keep_prob, is_train) # bs,bn,bl,2vec
dependent, head = tf.split(dependent_head, 2, 3)
dependent_etd = tf.expand_dims(dependent, 2) # bs,bn,1,bl,vec
head_etd = tf.expand_dims(head, 3) # bs,bn,bl,1,vec
logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,bn,bl,bl,vec
logits_masked = exp_mask_for_high_rank(logits, attn_mask)
attn_score = tf.nn.softmax(logits_masked, 3) # bs,bn,bl,bl,vec
attn_score = mask_for_high_rank(attn_score, attn_mask) # bs,bn,bl,bl,vec
self_attn_result = tf.reduce_sum(attn_score * rep_map_tile, 3) # bs,bn,bl,vec
| tensorflow.logical_and | 617 |
import tensorflow as tf
# 50*50
# Step-wise contrastive loss
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(pred, even)
pred2 = tf.gather(pred, odd)
tgt1 = tf.gather(tgt, even)
tgt2 = tf.gather(tgt, odd)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
| tensorflow.gather | 618 |
import tensorflow as tf
[inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]), m2, m3
],
axis=3)
centered_inputs = inputs - means
inv_stdv = tf.exp(-log_scales)
plus_in = inv_stdv * (centered_inputs + 1. / 255.)
cdf_plus = tf.nn.sigmoid(plus_in)
min_in = inv_stdv * (centered_inputs - 1. / 255.)
cdf_min = tf.nn.sigmoid(min_in)
log_cdf_plus = plus_in - tf.nn.softplus(plus_in)
log_one_minus_cdf_min = -tf.nn.softplus(min_in)
cdf_delta = cdf_plus - cdf_min
mid_in = inv_stdv * centered_inputs
log_pdf_mid = mid_in - log_scales - 2. * tf.nn.softplus(mid_in)
log_probs = tf.select(
inputs < -0.999, log_cdf_plus,
tf.select(
inputs > 0.999, log_one_minus_cdf_min,
tf.select(cdf_delta > 1e-5, tf.log(tf.maximum(cdf_delta, 1e-12)),
log_pdf_mid - np.log(127.5))))
| tensorflow.nn.softplus | 619 |
from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils
'accuracy/threshold_0.500000_mean',
metrics)
estimator_test_utils.assert_in_range(
0.9, 1.0, 'precision/positive_threshold_0.500000_mean', metrics)
estimator_test_utils.assert_in_range(
0.9, 1.0, 'recall/positive_threshold_0.500000_mean', metrics)
self._assertCommonMetrics(metrics)
def _assertCommonMetrics(self, metrics):
estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step',
metrics)
estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics)
estimator_test_utils.assert_in_range(0.0, 0.2, 'loss', metrics)
self.report_benchmark(
iters=metrics['global_step'],
extras={k: v
for k, v in metrics.items() if k in _METRIC_KEYS})
def benchmarkMatrixData(self):
iris = test_data.prepare_iris_data_for_logistic_regression()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
| tensorflow.contrib.learn.python.learn.estimators.estimator_test_utils.assert_in_range | 620 |
from tensorflow.contrib.losses.python.losses import loss_ops
def __init__(self, label_name, weight_column_name):
def loss_fn(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(
target, shape=[array_ops.shape(target)[0], 1])
return loss_ops.hinge_loss(logits, target)
super(_BinarySvmTargetColumn, self).__init__(
loss_fn=loss_fn,
n_classes=2,
label_name=label_name,
weight_column_name=weight_column_name)
def logits_to_predictions(self, logits, proba=False):
| tensorflow.contrib.losses.python.losses.loss_ops.hinge_loss | 621 |
import tensorflow as tf
512),
max_steps = 1000)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(read_dataset('valid.csv',
| tensorflow.estimator.LatestExporter | 622 |
from tensorflow.python.ops import variable_scope
Returns:
value_tensor: A tensor representing the current value of the metric.
update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: If `weights` is not `None` and its shape doesn't match `values`,
or if either `metrics_collections` or `updates_collections` are not a list
or tuple.
"""
with variable_scope.variable_scope(
name, 'false_negatives', [predictions, labels]):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
is_false_negative = math_ops.logical_and(math_ops.equal(labels, 1),
math_ops.equal(predictions, 0))
return _count_condition(is_false_negative, weights, metrics_collections,
updates_collections)
| tensorflow.python.ops.variable_scope.variable_scope | 623 |
import tensorflow as tf
"""
t_rank = tf.rank(t)
| tensorflow.rank | 624 |
import tensorflow as tf
beam_width=beam_width, blank_index=blank_index, top_paths=1,
blank_label=0)
decoded = tf.sparse.SparseTensor(indices[0], values[0], shape[0])
decoded = tf.cast(tf.sparse.to_dense(decoded), tf.int32)
decoded_u = tf.sparse.SparseTensor(indices_u[0], values_u[0], shape_u[0])
decoded_u = tf.cast(tf.sparse.to_dense(decoded_u), tf.int32)
# Adjust event vals according to representation
decoded = tf.where(tf.not_equal(decoded, 0), decoded+shift, decoded)
decoded_u = tf.where(tf.not_equal(decoded_u, 0), decoded_u+shift, decoded_u)
# Set default vals
| tensorflow.sparse.to_dense | 625 |
import tensorflow as tf
| tensorflow.train.ExponentialMovingAverage | 626 |
import tensorflow as tf
1,
scope='feature_projection' + str(i)))
# Resize to decoder_height/decoder_width.
for j, feature in enumerate(decoder_features_list):
decoder_features_list[j] = tf.image.resize_bilinear(
feature, [decoder_height, decoder_width], align_corners=True)
if is_training:
decoder_features_list[j].set_shape(
| tensorflow.image.resize_bilinear | 627 |
import tensorflow as tf
Total_loss = cost + l2_loss
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=momentum, use_nesterov=True)
# Batch norm requires update_ops to be added as a train_op dependency.
| tensorflow.train.MomentumOptimizer | 628 |
import tensorflow as tf
return tf.keras.utils.register_keras_serializable(package=package)
else:
return lambda cls: cls
def _check_tensorflow_version():
"""Check that we're using a compatible TF version.
Raises a warning if either Tensorflow version is less that 2.0 or TF 2.x is
not enabled.
If TF 2.x is enabled, but version is < TF 2.3, raises a warning to indicate
that resources may not be initialized.
"""
major, minor, _ = tf.version.VERSION.split('.')
if not (int(major) >= 2 and tf2.enabled()):
tf.compat.v1.logging.warning(
'Tensorflow version (%s) found. TransformFeaturesLayer is supported '
'only for TF 2.x with TF 2.x behaviors enabled and may not work as '
'intended.', tf.version.VERSION)
elif int(major) == 2 and int(minor) < 3:
# TODO(varshaan): Log a more specific warning.
tf.compat.v1.logging.warning(
'Tensorflow version (%s) found. TransformFeaturesLayer may not work '
'as intended if the SavedModel contains an initialization op.',
tf.version.VERSION)
| tensorflow.version.VERSION.split | 629 |
import tensorflow as tf
# resize y-z
squeeze_b_x = tf.reshape(input_tensor, [-1, y_size, z_size, c_size], name='reshape_bx')
resize_b_x = tf.compat.v1.image.resize_bilinear(squeeze_b_x, [y_size_new, z_size_new], align_corners=align)
resume_b_x = tf.reshape(resize_b_x, [-1, x_size, y_size_new, z_size_new, c_size], name='resume_bx')
# Reorient
reoriented = tf.transpose(resume_b_x, [0, 3, 2, 1, 4])
# squeeze and 2d resize
squeeze_b_z = tf.reshape(reoriented, [-1, y_size_new, x_size, c_size], name='reshape_bz')
resize_b_z = tf.compat.v1.image.resize_bilinear(squeeze_b_z, [y_size_new, x_size_new], align_corners=align)
resume_b_z = tf.reshape(resize_b_z, [-1, z_size_new, y_size_new, x_size_new, c_size], name='resume_bz')
output_tensor = tf.transpose(resume_b_z, [0, 3, 2, 1, 4])
return output_tensor
def conv3d(x, kernel_size, filters, padding='SYMMETRIC', activation=None, initialization=None, use_bias=True):
"""
Based on: https://github.com/gitlimlab/CycleGAN-Tensorflow/blob/master/ops.py
For tf padding, refer to: https://www.tensorflow.org/api_docs/python/tf/pad
| tensorflow.compat.v1.image.resize_bilinear | 630 |
from tensorflow.python.ops import parsing_ops
return self._target_column.logits_to_predictions(logits, proba=True)
def _get_feature_ops_from_example(self, examples_batch):
column_types = layers.create_feature_spec_for_parsing((
self._get_linear_feature_columns() or []) + (
self._get_dnn_feature_columns() or []))
features = parsing_ops.parse_example(examples_batch, column_types)
return features
def _get_linear_feature_columns(self):
if not self._linear_feature_columns:
return None
| tensorflow.python.ops.parsing_ops.parse_example | 631 |
import tensorflow as tf
elif validate_args:
assertions += [tf.compat.v1.assert_rank(perm, 1, message=msg)]
perm_ = tf.get_static_value(perm)
msg = '`perm` must be a valid permutation vector.'
if perm_ is not None:
if not np.all(np.arange(np.size(perm_)) == np.sort(perm_)):
raise ValueError(msg[:-1] + ', saw: {}.'.format(perm_))
elif validate_args:
assertions += [
tf.compat.v1.assert_equal(
tf.sort(perm), tf.range(tf.size(input=perm)), message=msg)
]
return assertions
| tensorflow.sort | 632 |
import tensorflow as tf
Args:
* vars_list: list of variables
Returns:
* prune_ratio: overall pruning ratio of the given list of variables
"""
nb_params_nnz = tf.add_n([tf.count_nonzero(var) for var in vars_list])
nb_params_all = tf.add_n([tf.size(var) for var in vars_list])
prune_ratio = 1.0 - tf.cast(nb_params_nnz, tf.float32) / tf.cast(nb_params_all, tf.float32)
return prune_ratio
| tensorflow.count_nonzero | 633 |
import tensorflow as tf
"""Preprocess a single raw image."""
image = tf.image.decode_image(encoded_image, channels=shape[-1])
image.set_shape(shape)
return tf.cast(image, dtype)
def serving_input_receiver_fn():
image_bytes_list = tf.placeholder(
shape=[None],
dtype=tf.string,
)
images = tf.map_fn(
_preprocess_image, image_bytes_list, back_prop=False, dtype=dtype)
return tf.estimator.export.TensorServingInputReceiver(
features=images, receiver_tensors=image_bytes_list)
return serving_input_receiver_fn
def _encode_image(image_array, fmt='PNG'):
"""encodes an (numpy) image array to string.
Args:
image_array: (numpy) image array
fmt: image format to use
| tensorflow.estimator.export.TensorServingInputReceiver | 634 |
from tensorflow.python.framework import ops
# allowing instances of the class to be used as tensors.
def _tensor_conversion(var, dtype=None, name=None, as_ref=False):
return var._dense_var_to_tensor(dtype=dtype, name=name, as_ref=as_ref) # pylint: disable=protected-access
ops.register_tensor_conversion_function(ReplicatedVariable, _tensor_conversion)
if not TF_23:
ops.register_dense_tensor_like_type(ReplicatedVariable)
| tensorflow.python.framework.ops.register_tensor_conversion_function | 635 |
import tensorflow as tf
alpha_mean = tf.get_variable('alpha_mean_layer'+str(h),
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_logstd = tf.get_variable('alpha_logstd_layer'+str(h),
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_std = tf.exp(alpha_logstd)
# Compute epsilon from {n_samples} standard Gaussian
# epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out])
epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out])
hyp_params = tf.get_variable('hyp_params_layer'+str(h),
shape=[2],
initializer=tf.random_normal_initializer())
l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1])
epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2
# Compute A_{h+1}
A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1])
# Compute z_{h}A_{h+1}
Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5)
Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5)
# Compute u_{h+1} and v_{h+1}
U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2)
Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.)
KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2.
# Output layer
else:
F = tf.squeeze(tf.layers.dense(Z, n_out), [2])
return F, KL | tensorflow.cosh | 636 |
import tensorflow as tf
kernel_size = 5,
mask = self.c_mask,
num_filters = d,
num_heads = nh,
seq_len = self.c_len,
scope = "Model_Encoder",
bias = False,
reuse = True if i > 0 else None,
dropout = self.dropout)
)
with tf.variable_scope("Output_Layer"):
start_logits = tf.squeeze(conv(tf.concat([self.enc[1], self.enc[2]],axis = -1),1, bias = False, name = "start_pointer"),-1)
end_logits = tf.squeeze(conv(tf.concat([self.enc[1], self.enc[3]],axis = -1),1, bias = False, name = "end_pointer"), -1)
self.logits = [mask_logits(start_logits, mask = self.c_mask),
mask_logits(end_logits, mask = self.c_mask)]
logits1, logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2),
tf.expand_dims(tf.nn.softmax(logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, config.ans_limit)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
| tensorflow.concat | 637 |
from tensorflow.python.ops import clip_ops
global_step: Optional global_step. If provided, `decay = decay*n/(n+1)`.
This provides a quicker adaptation of the mean for the first steps.
report_summary: If `True`, will add histogram summaries of the `max_norm`.
epsilon: Small value chosen to avoid zero variance.
name: The name for this operation is used to scope operations and summaries.
Returns:
A function for applying gradient clipping.
"""
def gradient_clipping(grads_and_vars):
"""Internal function for adaptive clipping."""
grads, variables = zip(*grads_and_vars)
norm = clip_ops.global_norm(grads)
max_norm, log_mean = _adaptive_max_norm(norm, std_factor, decay,
global_step, epsilon, name)
# reports the max gradient norm for debugging
if report_summary:
summary.scalar("global_norm/adaptive_max_gradient_norm", max_norm)
# factor will be 1. if norm is smaller than max_norm
factor = array_ops.where(norm < max_norm, array_ops.ones_like(norm),
math_ops.exp(log_mean) / norm)
if static_max_norm is not None:
| tensorflow.python.ops.clip_ops.global_norm | 638 |
import tensorflow as tf
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin)
| tensorflow.maximum | 639 |
import tensorflow as tf
net : :class:`Layer`
Previous layer with output shape of (batch, width, r).
"""
# with tf.name_scope(name):
# self.outputs = self._apply_activation(self._PS(self.inputs, r=scale))
outputs = self.act(self._PS(inputs, r=self.scale))
return outputs
@private_method
def _PS(self, I, r):
X = tf.transpose(I, [2, 1, 0]) # (r, w, b)
X = tf.batch_to_space_nd(X, [r], [[0, 0]]) # (1, r*w, b)
X = tf.transpose(X, [2, 1, 0])
return X
| tensorflow.batch_to_space_nd | 640 |
from tensorflow.python.ops import math_ops
# For SparseTensor, calculate separate count for each row.
if isinstance(labels, (ops.SparseTensor, ops.SparseTensorValue)):
labels_sizes = set_ops.set_size(labels)
return math_ops.minimum(labels_sizes, k, name=scope)
# For dense Tensor, calculate scalar count based on last dimension, and
# tile across labels shape.
labels_shape = array_ops.shape(labels)
labels_size = labels_shape[-1]
num_relevant_scalar = math_ops.minimum(labels_size, k)
return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope)
def expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
| tensorflow.python.ops.math_ops.minimum | 641 |
from tensorflow.python.framework import tensor_shape
def batch_runner_fn(self):
return _scheduled_stamp_resource_op_runner
def _move_tensors(tensors, device):
"""Moves a list of tensors to a device by concatenating/splitting them."""
# Reset the device setting to avoid weird interactions with device merging
# logic.
with ops.device(None):
if all(tensor.shape == tensor_shape.scalar() for tensor in tensors):
with ops.device(tensors[0].device):
values = array_ops.stack(tensors)
with ops.device(device):
return array_ops.unstack(values)
else:
with ops.device(tensors[0].device):
sizes = array_ops.stack(
[array_ops.shape(tensor)[0] for tensor in tensors])
values = array_ops.concat(tensors, axis=0)
| tensorflow.python.framework.tensor_shape.scalar | 642 |
from tensorflow.python.layers import convolutional as conv_layers
if input_layer is None:
input_layer = self.top_layer
if num_channels_in is None:
num_channels_in = self.top_size
name = 'conv' + str(self.counts['conv'])
self.counts['conv'] += 1
with tf.variable_scope(name):
strides = [1, d_height, d_width, 1]
if self.data_format == 'NCHW':
strides = [strides[0], strides[3], strides[1], strides[2]]
if mode != 'SAME_RESNET':
conv = conv_layers.conv2d(
input_layer,
num_out_channels, [k_height, k_width],
strides=[d_height, d_width],
padding=mode,
data_format=self.channel_pos,
use_bias=False)
else: # Special padding mode for ResNet models
if d_height == 1 and d_width == 1:
conv = conv_layers.conv2d(
input_layer,
| tensorflow.python.layers.convolutional.conv2d | 643 |
import tensorflow as tf
sok_saver = sok.Saver()
restore_op = list()
for i, embedding_layer in enumerate(sok_sparse_demo.embedding_layers):
control_inputs = [restore_op[-1]] if restore_op else None
with tf.control_dependencies(control_inputs):
if args.restore_params:
filepath = r"./embedding_variables"
op = sok_saver.restore_from_file(embedding_layer.embedding_variable, filepath)
else:
op = sok_saver.load_embedding_values(embedding_layer.embedding_variable, init_tensors[i])
restore_op.append(op)
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction="none")
def _replica_loss(labels, logits):
loss = loss_fn(labels, logits)
return tf.nn.compute_average_loss(loss, global_batch_size=args.global_batch_size)
def _train_step(inputs, labels, training):
def _step_fn(inputs, labels):
logit, embedding_vector = sok_sparse_demo(inputs, training=training)
loss = _replica_loss(labels, logit)
emb_var, other_var = sok.split_embedding_variable_from_others(sok_sparse_demo.trainable_variables)
grads = tf.gradients(loss, emb_var + other_var, colocate_gradients_with_ops=True,
unconnected_gradients=tf.UnconnectedGradients.NONE)
emb_grads, other_grads = grads[:len(emb_var)], grads[len(emb_var):]
if "plugin" in args.optimizer:
emb_train_op = emb_opt.apply_gradients(zip(emb_grads, emb_var))
else:
with sok.OptimizerScope(emb_var):
emb_train_op = emb_opt.apply_gradients(zip(emb_grads, emb_var))
| tensorflow.nn.compute_average_loss | 644 |
from tensorflow.python.training import training as train
Raises:
ValueError: if:
* `loss` is an invalid type or shape.
* `global_step` is an invalid type or shape.
* `learning_rate` is an invalid type or value.
* `optimizer` has the wrong type.
* `clip_gradients` is neither float nor callable.
* `learning_rate` and `learning_rate_decay_fn` are supplied, but no
`global_step` is available.
* `gradients` is empty.
"""
loss = ops.convert_to_tensor(loss)
contrib_framework.assert_scalar(loss)
if global_step is None:
global_step = train.get_global_step()
else:
train.assert_global_step(global_step)
with vs.variable_scope(name, "OptimizeLoss", [loss, global_step]):
# Update ops take UPDATE_OPS collection if not provided.
if update_ops is None:
update_ops = set(ops.get_collection(ops.GraphKeys.UPDATE_OPS))
# Make sure update ops are ran before computing loss.
if update_ops:
loss = control_flow_ops.with_dependencies(list(update_ops), loss)
# Learning rate variable, with possible decay.
lr = None
if learning_rate is not None:
| tensorflow.python.training.training.get_global_step | 645 |
import tensorflow as tf
else: # 创建worker两个网络的具体步骤
with tf.variable_scope(scope): # 这里的scope传入的是worker的名字
self.global_step = globalAC.global_step
self.obs_space = N_S
self.act_space = N_A
self.k = 16
self.g_dim = 256
self.c = 10
self.vf_hidden_size = 128 # for value function network
self.alpha = 0.5 # for build loss
self.batch_processor = FeudalBatchProcessor(self.c)
self.build_model() # build feudal policy model
with tf.name_scope('local_grad'):
grads = tf.gradients(self.loss, self.var_list)
grads, _ = tf.clip_by_global_norm(grads, 40)
with tf.name_scope('sync'): # worker和global的同步过程
with tf.name_scope('pull'): # 获取global参数,复制到local—net
self.pull_params_op = tf.group(*[v1.assign(v2)
for v1, v2 in zip(self.var_list, globalAC.var_list)])
with tf.name_scope('push'): # 将参数传送到gloabl中去
self.update_params_op = OPT.apply_gradients(zip(grads, globalAC.var_list))
# 其中传送的是local—net的actor和critic的参数梯度grads,具体计算在上面定义
# apply_gradients是tf.train.Optimizer中自带的功能函数,将求得的梯度参数更新到global中
self.inc_step = self.global_step.assign_add(tf.shape(self.obs)[0])
self.train_op = tf.group(self.update_params_op, self.inc_step)
# GLOBALE_STEP += tf.shape(self.obs)[0]
| tensorflow.gradients | 646 |
import tensorflow as tf
ls = [-1] + l.get_shape().as_list()[1:]
xs = ls[:-1] + [3]
# unpack parameters
logit_probs = l[:, :, :, :nr_mix]
l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix * 3])
# sample mixture indicator from softmax
sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(
tf.shape(logit_probs), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
sel = tf.reshape(sel, xs[:-1] + [1, nr_mix])
# select logistic parameters
means = tf.reduce_sum(l[:, :, :, :, :nr_mix] * sel, 4)
log_scales = tf.maximum(tf.reduce_sum(
l[:, :, :, :, nr_mix:2 * nr_mix] * sel, 4), -7.)
coeffs = tf.reduce_sum(tf.nn.tanh(
l[:, :, :, :, 2 * nr_mix:3 * nr_mix]) * sel, 4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5)
x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u))
x0 = tf.minimum(tf.maximum(x[:, :, :, 0], -1.), 1.)
x1 = tf.minimum(tf.maximum(
x[:, :, :, 1] + coeffs[:, :, :, 0] * x0, -1.), 1.)
x2 = tf.minimum(tf.maximum(
x[:, :, :, 2] + coeffs[:, :, :, 1] * x0 + coeffs[:, :, :, 2] * x1, -1.), 1.)
return tf.concat([tf.reshape(x0, xs[:-1] + [1]), tf.reshape(x1, xs[:-1] + [1]), tf.reshape(x2, xs[:-1] + [1])], 3)
| tensorflow.nn.tanh | 647 |
import tensorflow as tf
# Trainable parameters
w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1))
w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
b = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
with tf.name_scope('v'):
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
# key_masks = tf.expand_dims(mask, 1) # [B, 1, T]
paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1)
v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T]
alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape
# Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
#output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1)
output = facts * tf.expand_dims(alphas, -1)
output = tf.reshape(output, tf.shape(facts))
# output = output / (facts.get_shape().as_list()[-1] ** 0.5)
if not return_alphas:
return output
else:
| tensorflow.tensordot | 648 |
import tensorflow as tf
z_t_len = tf.strings.length(z_t)
z_t = tf.string_split([z_t], delimiter='').values
for i in tf.range(start=0, limit=x_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(x_t[i:i + self._p], '')
vx_keys, r = tf.cond(
tf.greater(vx.lookup(u), -1),
true_fn=lambda: (vx_keys, tf.add(vx.lookup(u), 1)),
false_fn=lambda: (tf.concat([vx_keys, tf.reshape(u, (-1, 1))], axis=0),
tf.constant(1, dtype=tf.int64, name='constant'))
)
vx.insert(u, r)
for i in tf.range(start=0, limit=z_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(z_t[i:i + self._p], '')
vz_keys, r = tf.cond(
tf.greater(vz.lookup(u), -1),
true_fn=lambda: (vz_keys, tf.add(vz.lookup(u), 1)),
false_fn=lambda: (
tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64))
)
vz.insert(u, r)
kk = tf.Variable(0, dtype=tf.int64)
for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'):
for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'):
to_add = tf.cond(
tf.greater(vz.lookup(vx_keys[i]), -1),
| tensorflow.string_join | 649 |
import tensorflow as tf
# for each key I get the collection of summary nodes
# I set up a filewriter for each summary node
self.summary_nodes = {sk: tf.get_collection(sk) for sk in self.summary_keys}
for sk in self.summary_keys:
self.summary_writers[sk] = [tf.compat.v1.summary.FileWriter(self._tensorboard_dir+sn.name)
for sn in self.summary_nodes[sk]]
def create_hooks(self, config):
| tensorflow.compat.v1.summary.FileWriter | 650 |
import tensorflow as tf
self.dropout_mask = []
for layer in range(num_layers):
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
init_fw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
init_bw = tf.tile(tf.Variable(
| tensorflow.contrib.cudnn_rnn.CudnnGRU | 651 |
from tensorflow.contrib.framework import tensor_util
pearson_r: A tensor representing the current Pearson product-moment
correlation coefficient, the value of
`cov(predictions, labels) / sqrt(var(predictions) * var(labels))`.
update_op: An operation that updates the underlying variables appropriately.
Raises:
ValueError: If `labels` and `predictions` are of different sizes, or if
`weights` is the wrong size, or if either `metrics_collections` or
`updates_collections` are not a `list` or `tuple`.
"""
with variable_scope.variable_scope(name, 'pearson_r', [predictions, labels]):
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
cov, update_cov = streaming_covariance(
predictions, labels, weights=weights, name='covariance')
var_predictions, update_var_predictions = streaming_covariance(
predictions, predictions, weights=weights, name='variance_predictions')
var_labels, update_var_labels = streaming_covariance(
labels, labels, weights=weights, name='variance_labels')
pearson_r = _safe_div(
| tensorflow.contrib.framework.tensor_util.remove_squeezable_dimensions | 652 |
import tensorflow as tf
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver('grpc://' + os.environ['COLAB_TPU_ADDR'])
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
| tensorflow.contrib.cluster_resolver.TPUClusterResolver | 653 |
import tensorflow as tf
with tf.name_scope('validate'):
x, y = self._build_data_pipeline()
y_hat, loss = self._build_validation_model(x, y)
with tf.control_dependencies([update_op]):
return tf.print('expect', loss, y, y_hat, summarize=50)
class DataOwner:
BATCH_SIZE = 30
| tensorflow.print | 654 |
import tensorflow as tf
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
for name, model in models.iteritems():
model.export_ops(name)
metagraph = tf.train.export_meta_graph()
if tf.__version__ < "1.1.0" and FLAGS.num_gpus > 1:
raise ValueError("num_gpus > 1 is not supported for TensorFlow versions "
"below 1.1.0")
soft_placement = False
if FLAGS.num_gpus > 1:
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
| tensorflow.train.export_meta_graph | 655 |
from tensorflow.contrib.eager.python.examples.spinn import data
inference_sentences=("( foo ( bar . ) )", None))
with self.assertRaises(ValueError):
spinn.train_or_infer_spinn(embed, word2index, None, None, None, config)
def testTrainSpinn(self):
"""Test with fake toy SNLI data and GloVe vectors."""
# 1. Create and load a fake SNLI data file and a fake GloVe embedding file.
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
fake_train_file = self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
train_data = data.SnliData(fake_train_file, word2index)
dev_data = data.SnliData(fake_train_file, word2index)
test_data = data.SnliData(fake_train_file, word2index)
# 2. Create a fake config.
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"))
# 3. Test training of a SPINN model.
trainer = spinn.train_or_infer_spinn(
embed, word2index, train_data, dev_data, test_data, config)
# 4. Load train loss values from the summary files and verify that they
# decrease with training.
summary_file = glob.glob(os.path.join(config.logdir, "events.out.*"))[0]
| tensorflow.contrib.eager.python.examples.spinn.data.SnliData | 656 |
import tensorflow as tf
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if task_name != "sts-b":
probabilities = tf.nn.softmax(logits, axis=-1)
predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32)
log_probs = tf.nn.log_softmax(logits, axis=-1)
| tensorflow.nn.softmax | 657 |
import tensorflow as tf
# define train_op
gen_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
dis_optimizer = tf.train.RMSPropOptimizer(learning_rate=0.05)
# wrapper to make the optimizer work with TPUs
if params['use_tpu']:
gen_optimizer = tf.contrib.tpu.CrossShardOptimizer(gen_optimizer)
dis_optimizer = tf.contrib.tpu.CrossShardOptimizer(dis_optimizer)
gan_train_ops = tf.contrib.gan.gan_train_ops(gan_model, gan_loss, gen_optimizer, dis_optimizer)
while_loop = tf.contrib.tpu.while_loop if params['use_tpu'] else tf.while_loop
# train the discriminator 100 steps
inputs = [tf.constant(0), tf.constant(0.0)]
cond = lambda i, x: tf.less(i, 100)
def body(i, x):
return tf.add(i, 1), gan_train_ops.discriminator_train_op
| tensorflow.contrib.gan.gan_train_ops | 658 |
from tensorflow.python.ops import array_ops
with self.cached_session():
embed_np = embeds[ids]
embed_tf = ops.embedding_lookup(embeds, ids).eval()
self.assertEqual(embed_np.shape, embed_tf.shape)
self.assertAllClose(embed_np, embed_tf)
def test_categorical_variable(self):
random_seed.set_random_seed(42)
with self.cached_session() as sess:
cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2])
embeddings = ops.categorical_variable(
cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var")
sess.run(variables.global_variables_initializer())
emb1 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]})
emb2 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 2], [1, 3]]})
self.assertEqual(emb1.shape, emb2.shape)
| tensorflow.python.ops.array_ops.placeholder | 659 |
import tensorflow as tf
for name, tensor in predictions.items()
})
return tf.estimator.EstimatorSpec(
mode, predictions=predictions,
| tensorflow.estimator.EstimatorSpec | 660 |
import tensorflow as tf
'image/object/area':
tf.io.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.io.VarLenFeature(tf.int64),
}
if include_mask:
self._keys_to_features.update({
'image/object/mask':
tf.io.VarLenFeature(tf.string),
})
def _decode_image(self, parsed_tensors):
"""Decodes the image and set its static shape."""
image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
image.set_shape([None, None, 3])
return image
def _decode_boxes(self, parsed_tensors):
"""Concat box coordinates in the format of [ymin, xmin, ymax, xmax]."""
xmin = parsed_tensors['image/object/bbox/xmin']
xmax = parsed_tensors['image/object/bbox/xmax']
ymin = parsed_tensors['image/object/bbox/ymin']
ymax = parsed_tensors['image/object/bbox/ymax']
return tf.stack([ymin, xmin, ymax, xmax], axis=-1)
def _decode_masks(self, parsed_tensors):
| tensorflow.io.decode_image | 661 |
from tensorflow.python.util.deprecation import deprecated
"""
dim = 1
for d in variable.get_shape()[1:].as_list():
dim *= d
return tf.reshape(variable, shape=[-1, dim], name=name)
@deprecated("2018-06-30", "TensorLayer relies on TensorFlow to check naming.")
def clear_layers_name():
logging.warning('this method is DEPRECATED and has no effect, please remove it from your code.')
@deprecated("2018-06-30", "TensorLayer relies on TensorFlow to check name reusing.")
def set_name_reuse(enable=True):
logging.warning('this method is DEPRECATED and has no effect, please remove it from your code.')
def initialize_rnn_state(state, feed_dict=None):
"""Returns the initialized RNN state.
The inputs are `LSTMStateTuple` or `State` of `RNNCells`, and an optional `feed_dict`.
Parameters
----------
state : RNN state.
| tensorflow.python.util.deprecation.deprecated | 662 |
import tensorflow as tf
import numpy as np
from google.protobuf import text_format
import tensorflow as tf
import preprocessing
import datasets
NUM_TEST_IMAGES = 50000
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.compat.v1.GraphDef()
import os
file_ext = os.path.splitext(model_file)[1]
with open(model_file, "rb") as f:
if file_ext == '.pbtxt':
text_format.Merge(f.read(), graph_def)
else:
| tensorflow.Graph | 663 |
import tensorflow as tf
f_i_ = distribution_f.prob(action_)
f_polyak_i = f_polyak.prob(self.action_ph)
phi_i = strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps)
q_value = strip(train_model.value_fn, self.n_envs, self.n_steps)
q_i = q_value[:, 0]
rho_i = tf.reshape(f_i, [-1, 1]) / (self.mu_ph + eps)
rho_i_ = tf.reshape(f_i_, [-1, 1]) / (self.mu_ph + eps)
qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, tf.pow(rho_i, 1 / self.n_act),
self.n_envs, self.n_steps, self.gamma)
else:
# strip off last step
# f is a distribution, chosen to be Gaussian distributions
# with fixed diagonal covariance and mean \phi(x)
# in the paper
distribution_f, f_polyak, q_value = \
map(lambda variables: strip(variables, self.n_envs, self.n_steps),
[train_model.policy_proba, polyak_model.policy_proba, train_model.q_value])
| tensorflow.pow | 664 |
import tensorflow as tf
parser.add_argument('--max_train_step', type=int, default=50000, help='the maximum training step')
parser.add_argument('--model_path', type=str, default='', help='the path of checkpoint file')
args = parser.parse_args()
def model():
x = tf.placeholder(tf.float32, [None, 784], name='x')
gt = tf.placeholder(tf.float32, [None, 10], name='groundtruth')
with tf.variable_scope('layer1'):
w1 = tf.get_variable('weight1', [784, 1024], initializer=tf.random_normal_initializer())
b1 = tf.get_variable('bias1', [1024], initializer=tf.constant_initializer(0.0))
h1 = tf.nn.relu(tf.matmul(x, w1) + b1)
with tf.variable_scope('layer2'):
w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer())
b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0))
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer())
b3 = tf.get_variable('bias3', [10], initializer=tf.constant_initializer(0.0))
y = tf.matmul(h2, w3) + b3
# losses
| tensorflow.matmul | 665 |
from tensorflow.contrib.learn.python.learn.estimators import head as head_lib
self._hidden_units = hidden_units
self._feature_columns = tuple(feature_columns or [])
self._enable_centered_bias = enable_centered_bias
self._estimator = estimator.Estimator(
model_fn=_dnn_model_fn,
model_dir=model_dir,
config=config,
params={
"head":
head_lib._multi_class_head( # pylint: disable=protected-access
n_classes,
weight_column_name=weight_column_name,
enable_centered_bias=enable_centered_bias),
"hidden_units":
hidden_units,
"feature_columns":
self._feature_columns,
"optimizer":
| tensorflow.contrib.learn.python.learn.estimators.head._multi_class_head | 666 |
import tensorflow as tf
if max_iterations:
pbar.close()
# List of dicts to dict of lists
metrics = dict(zip(metrics[0], zip(*[m.values() for m in metrics])))
metrics = {m: np.nanmean(metrics[m], axis=0) for m in metrics}
return metrics
def _checkpoint_var_search(self, checkpoint_path):
reader = tf.train.NewCheckpointReader(checkpoint_path)
saved_shapes = reader.get_variable_to_shape_map()
model_names = tf.model_variables() # Used by tf.slim layers
if not len(tf.model_variables()):
model_names = tf.global_variables() # Fallback when slim is not used
model_names = set([v.name.split(':')[0] for v in model_names])
checkpoint_names = set(saved_shapes.keys())
found_names = model_names & checkpoint_names
missing_names = model_names - checkpoint_names
| tensorflow.train.NewCheckpointReader | 667 |
from tensorflow.contrib.slim.python.slim.data import test_utils
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
| tensorflow.contrib.slim.python.slim.data.test_utils.create_tfrecord_files | 668 |
import tensorflow as tf
identity = (registry.Modalities.GENERIC, None)
if self.has_inputs:
p.input_modality["inputs_segmentation"] = identity
p.input_modality["inputs_position"] = identity
p.input_modality["targets_segmentation"] = identity
p.input_modality["targets_position"] = identity
def example_reading_spec(self):
data_fields = {"targets": tf.VarLenFeature(tf.int64)}
if self.has_inputs:
data_fields["inputs"] = tf.VarLenFeature(tf.int64)
if self.packed_length:
if self.has_inputs:
data_fields["inputs_segmentation"] = tf.VarLenFeature(tf.int64)
data_fields["inputs_position"] = tf.VarLenFeature(tf.int64)
| tensorflow.VarLenFeature | 669 |
import tensorflow as tf
Returns:
a tensor with shape [N, M] representing pairwise iou scores.
"""
intersections = pairwise_intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = (
tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
@under_name_scope()
def pairwise_iou_batch(proposal_boxes, gt_boxes, orig_gt_counts, batch_size):
"""Computes pairwise intersection-over-union between box collections.
Args:
proposal_boxes: K x 5 (batch_index, x1, y1, x2, y2)
gt_boxes: BS x MaxNumGTs x 4
orig_gt_counts: BS
| tensorflow.truediv | 670 |
from tensorflow.python.ops import control_flow_ops
if update_ops is None:
update_ops = global_update_ops
else:
update_ops = set(update_ops)
# Make sure update_ops are computed before total_loss.
if update_ops:
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name='update_barrier')
self.d_losses[-1] = control_flow_ops.with_dependencies([barrier], self.d_losses[-1])
self.g_losses[-1] = control_flow_ops.with_dependencies([barrier], self.g_losses[-1])
self.d_loss_real = control_flow_ops.with_dependencies([barrier], self.d_loss_real)
self.d_loss_fake = control_flow_ops.with_dependencies([barrier], self.d_loss_fake)
self.d_loss_class = control_flow_ops.with_dependencies([barrier], self.d_loss_class)
t_vars = self._get_vars_semi_supervised()
if self.clip_by_global_norm:
self.capped_d_grads = self._clip_grad_global_norms(
t_vars['d_vars'], self.d_losses[-1], d_optimizer, gradient_noise_scale=0.0)
self.capped_g_grads = self._clip_grad_global_norms(
| tensorflow.python.ops.control_flow_ops.with_dependencies | 671 |
import tensorflow as tf
lstm_cell = rnn.BasicLSTMCell(LSTM_SIZE, forget_bias = 1.0)
outputs, _ = rnn.static_rnn(lstm_cell, x, dtype = tf.float32)
# Slice to keep only the last cell of the RNN
outputs = outputs[-1]
#print('last outputs={}'.format(outputs))
# Output is result of linear activation of last layer of RNN
weight = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS]))
bias = tf.Variable(tf.random_normal([N_OUTPUTS]))
predictions = tf.matmul(outputs, weight) + bias
# 2. Loss function, training/eval ops
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
loss = tf.losses.mean_squared_error(labels, predictions)
train_op = tf.contrib.layers.optimize_loss(
loss = loss,
global_step = tf.train.get_global_step(),
learning_rate = 0.01,
optimizer = "SGD")
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(labels, predictions)
}
else:
loss = None
train_op = None
eval_metric_ops = None
| tensorflow.losses.mean_squared_error | 672 |
import tensorflow as tf
input_tensor: The input tensor of tensorflow graph.
output_tensor: The output tensor of tensorflow graph.
use_mlir_converter: Whether or not to use MLIRConverter to convert the
model.
Returns:
The tflite inference result.
"""
converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor],
[output_tensor])
tflite = converter.convert()
converter.experimental_enable_mlir_converter = use_mlir_converter
interpreter = tf.lite.Interpreter(model_content=tflite)
try:
interpreter.allocate_tensors()
except ValueError:
assert False
input_index = (interpreter.get_input_details()[0]["index"])
interpreter.set_tensor(input_index, test_inputs)
interpreter.invoke()
output_index = (interpreter.get_output_details()[0]["index"])
result = interpreter.get_tensor(output_index)
# Reset all variables so it will not pollute other inferences.
| tensorflow.lite.Interpreter | 673 |
from tensorflow.contrib.eager.python.examples.spinn import data
f.write("%s " % word)
for j in range(data.WORD_VECTOR_LEN):
f.write("%.5f" % (i * 0.1))
if j < data.WORD_VECTOR_LEN - 1:
f.write(" ")
else:
f.write("\n")
return fake_train_file
def testInferSpinnWorks(self):
"""Test inference with the spinn model."""
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"),
inference_sentences=("( foo ( bar . ) )", "( bar ( foo . ) )"))
logits = spinn.train_or_infer_spinn(
embed, word2index, None, None, None, config)
self.assertEqual(tf.float32, logits.dtype)
self.assertEqual((3,), logits.shape)
def testInferSpinnThrowsErrorIfOnlyOneSentenceIsSpecified(self):
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
self._create_test_data(snli_1_0_dir)
| tensorflow.contrib.eager.python.examples.spinn.data.load_vocabulary | 674 |
import tensorflow as tf
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
loss = tf.losses.mean_squared_error(labels, predictions)
train_op = tf.contrib.layers.optimize_loss(
loss = loss,
global_step = tf.train.get_global_step(),
learning_rate = 0.01,
optimizer = "SGD")
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(labels, predictions)
}
else:
loss = None
train_op = None
eval_metric_ops = None
# 3. Create predictions
| tensorflow.metrics.root_mean_squared_error | 675 |
import tensorflow as tf
inputs.append(inputs_)
encoder_inputs_ = tf.concat(inputs, axis=2)
# if encoder.convolution_activation.lower() == 'relu':
encoder_inputs_ = tf.nn.relu(encoder_inputs_)
if encoder.maxout_stride:
if encoder.binary:
raise NotImplementedError
stride = encoder.maxout_stride
k = tf.to_int32(tf.ceil(time_steps / stride) * stride) - time_steps # TODO: simpler
pad = tf.zeros([batch_size, k, tf.shape(encoder_inputs_)[2]])
encoder_inputs_ = tf.concat([encoder_inputs_, pad], axis=1)
encoder_inputs_ = tf.nn.pool(encoder_inputs_, window_shape=[stride], pooling_type='MAX',
padding='VALID', strides=[stride])
encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / stride))
if encoder.highway_layers:
x = encoder_inputs_
for j in range(encoder.highway_layers):
size = x.shape[2].value
with tf.variable_scope('highway_{}'.format(j + 1)):
g = tf.layers.dense(x, size, activation=tf.nn.sigmoid, use_bias=True, name='g')
y = tf.layers.dense(x, size, activation=tf.nn.relu, use_bias=True, name='y')
x = g * y + (1 - g) * x
| tensorflow.nn.pool | 676 |
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc
x = tf.random_normal([hparams.n_samples, hparams.x_dim],
dtype=tf.float32)
dynamics = l2hmc.Dynamics(
x_dim=hparams.x_dim,
| tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.Dynamics | 677 |
import tensorflow as tf
sess = tf.Session()
# 上面的wtih或者是name都是可选的,可以选择添加,也可以选择不添加,but下面的这一行是一定要写的。
# 这个表明了 在当前的目录下面创建以恶搞logs的文件家,然后把图的信息保存进去
# 这样运行完这段代码之后,就会有一个logs的文件夹被创建
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: # tensorflow version < 0.12
writer = tf.train.SummaryWriter('logs/', sess.graph)
else: # tensorflow version >= 0.12
writer = tf.summary.FileWriter("logs/", sess.graph)
| tensorflow.__version__.split | 678 |
from tensorflow.python.ops import nn
"""
in_top_k = math_ops.to_float(nn.in_top_k(predictions, labels, k))
| tensorflow.python.ops.nn.in_top_k | 679 |
import tensorflow.contrib.graph_editor as ge
# partial derivatives to the checkpointed tensors and xs
ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys],
stop_at_ts=checkpoints, within_ops=fwd_ops)
debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s",
len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints)
debug_print("ops_to_copy = %s", ops_to_copy)
debug_print("Processing list %s", ys)
copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {})
for origin_op, op in info._transformed_ops.items():
op._set_device(origin_op.node_def.device)
copied_ops = info._transformed_ops.values()
debug_print("Copied %s to %s", ops_to_copy, copied_ops)
ge.reroute_ts(checkpoints_disconnected.values(), checkpoints_disconnected.keys(), can_modify=copied_ops)
debug_print("Rewired %s in place of %s restricted to %s",
checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops)
| tensorflow.contrib.graph_editor.sgv | 680 |
from tensorflow.python.framework import tensor_shape
returned_shape = []
for i, dim in enumerate(input_shape.dims):
if i != dimension:
returned_shape.append(dim)
return [tensor_shape.TensorShape(returned_shape)]
else:
raise ValueError(
"dimension (%d) must be in the range [0, %d), where %d is the number "
| tensorflow.python.framework.tensor_shape.TensorShape | 681 |
from tensorflow.python.platform import gfile
class BoostedTreeEstimatorTest(test_util.TensorFlowTestCase):
def setUp(self):
self._export_dir_base = tempfile.mkdtemp() + "export/"
gfile.MkDir(self._export_dir_base)
def testFitAndEvaluateDontThrowException(self):
learner_config = learner_pb2.LearnerConfig()
| tensorflow.python.platform.gfile.MkDir | 682 |
import tensorflow as tf
scope = tf.get_variable_scope()
with tf.variable_scope(scope):
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = tf.sparse_tensor_dense_matmul(support, x0)
x = self._concat(x, x1)
for _ in range(2, self._max_diffusion_step + 1):
x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
| tensorflow.sparse_tensor_dense_matmul | 683 |
from tensorflow.contrib.learn.python.learn.datasets import base
dnn_hidden_units=(3, 3),
dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1))
input_fn = test_data.iris_input_logistic_fn
metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate(
input_fn=input_fn, steps=100)
self._assertSingleClassMetrics(metrics)
def benchmarkMultiClass(self):
iris = base.load_iris()
cont_feature = feature_column.real_valued_column('feature', dimension=4)
bucketized_feature = feature_column.bucketized_column(
cont_feature, test_data.get_quantile_based_buckets(iris.data, 10))
classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
n_classes=3,
linear_feature_columns=(bucketized_feature,),
dnn_feature_columns=(cont_feature,),
| tensorflow.contrib.learn.python.learn.datasets.base.load_iris | 684 |
import tensorflow as tf
# Running this command requires an internet connection and a few minutes to download all the images.
(X_train, y_train), (X_test, y_test) = tf.contrib.keras.datasets.cifar10.load_data()
| tensorflow.contrib.keras.datasets.cifar10.load_data | 685 |
import tensorflow as tf
val = val[permutation]
shape = np.array([3, 4]).astype(np.int64)
return tf.SparseTensorValue(ind, val, shape)
def _SparseTensorValue_1x1x1(self):
| tensorflow.SparseTensorValue | 686 |
import tensorflow as tf
A = tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1))
return (1.0/(N*N)) * tf.reduce_sum(N0(A, 2*y)) + N0(0.0, 2.0 + 2*y) - (2/N) * tf.reduce_sum(N0(X, 1.0 + 2*y))
def cw_2d(X, y=None):
def __phi(x):
def __phi_f(s):
t = s/7.5
return tf.exp(-s/2) * (1 + 3.5156229*t**2 + 3.0899424*t**4 + 1.2067492*t**6 + 0.2659732*t**8
+ 0.0360768*t**10 + 0.0045813*t**12)
def __phi_g(s):
t = s/7.5
return tf.sqrt(2/s) * (0.39894228 + 0.01328592*t**(-1) + 0.00225319*t**(-2) - 0.00157565*t**(-3)
+ 0.0091628*t**(-4) - 0.02057706*t**(-5) + 0.02635537*t**(-6) - 0.01647633*t**(-7)
+ 0.00392377*t**(-8))
| tensorflow.exp | 687 |
import tensorflow as tf
images = data['data']
num_images = images.shape[0]
images = images.reshape((num_images, 3, 32, 32))
labels = data['labels']
with tf.Graph().as_default():
image_placeholder = tf.placeholder(dtype=tf.uint8)
encoded_image = tf.image.encode_png(image_placeholder)
with tf.Session('') as sess:
for j in range(num_images):
sys.stdout.write('\r>> Reading file [%s] image %d' % (
filename, offset + 1))
sys.stdout.flush()
| tensorflow.image.encode_png | 688 |
import tensorflow as tf
X = self.conv('d_1', X, 512, size=1, stride=1, padding="SAME")
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('d_2', X, 512, size=1, stride=1, padding="SAME")
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('d_3', X, 512, size=1, stride=1, padding="SAME")
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('d_out', X, 1, size=1, stride=1, padding="SAME")
print('D out:', X.get_shape().as_list())
| tensorflow.nn.leaky_relu | 689 |
from tensorflow.contrib.learn.python.learn.estimators import tensor_signature
def _check_inputs(self, features, targets):
if self._features_info is not None:
if not tensor_signature.tensors_compatible(features, self._features_info):
raise ValueError('Features are incompatible with given information. '
'Given features: %s, required signatures: %s.' %
(str(features), str(self._features_info)))
else:
self._features_info = tensor_signature.create_signatures(features)
if self._targets_info is not None:
if not tensor_signature.tensors_compatible(targets, self._targets_info):
raise ValueError('Targets are incompatible with given information. '
'Given targets: %s, required signatures: %s.' %
(str(targets), str(self._targets_info)))
else:
| tensorflow.contrib.learn.python.learn.estimators.tensor_signature.create_signatures | 690 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')
tf.app.flags.DEFINE_string('pretrained_model_path', None, '')
| tensorflow.app.flags.DEFINE_boolean | 691 |
from tensorflow.contrib.learn.python.learn import ops
ids = np.random.randint(0, n_embed, ids_shape)
with self.cached_session():
embed_np = embeds[ids]
embed_tf = ops.embedding_lookup(embeds, ids).eval()
self.assertEqual(embed_np.shape, embed_tf.shape)
self.assertAllClose(embed_np, embed_tf)
| tensorflow.contrib.learn.python.learn.ops.embedding_lookup | 692 |
import tensorflow as tf
:return: [Tensor] Convolution output.
"""
with tf.variable_scope(name):
in_filters = ksize[2]
out_filters = ksize[3]
n = ksize[0] * ksize[1] * out_filters
init = tf.truncated_normal_initializer(
mean=0.0, stddev=np.sqrt(2.0 / n), seed=0, dtype=dtype)
def _reg(x):
if weight_decay is not None:
return tf.multiply(tf.nn.l2_loss(x), weight_decay)
else:
return None
if weight_decay is not None:
reg = _reg
else:
reg = None
kernel = tf.get_variable(
'w', ksize, initializer=init, regularizer=reg, dtype=dtype, trainable=True)
| tensorflow.nn.l2_loss | 693 |
from tensorflow.python.framework import tensor_shape
filter_shape = tensor_util.constant_value(op.inputs[1])
if filter_shape is not None:
return [tensor_shape.TensorShape(filter_shape.tolist())]
else:
# NOTE(mrry): We could in principle work out the shape from the
# gradients and the attrs, but if we do not know filter_shape
# statically, then we are unlikely to know the shape of the
# gradients either.
return [tensor_shape.unknown_shape(ndims=4)]
@ops.RegisterShape("Conv2DBackpropInput")
def _Conv2DBackpropInputShape(op):
"""Shape function for the Conv2DBackpropInput op."""
input_shape = tensor_util.constant_value(op.inputs[0])
if input_shape is not None:
| tensorflow.python.framework.tensor_shape.unknown_shape | 694 |
import tensorflow as tf
var = tf.Variable(other_value, name=var_name)
save = tf.train.Saver({var_name: var})
save.restore(sess, save_path)
self.assertAllClose(var_value, var.eval())
def testCacheRereadsFile(self):
save_path = os.path.join(self.get_temp_dir(), "cache_rereads")
# Save and reload one Variable named "var0".
self._SaveAndLoad("var0", 0.0, 1.0, save_path)
# Save and reload one Variable named "var1" in the same file.
# The cached readers should know to re-read the file.
self._SaveAndLoad("var1", 1.1, 2.2, save_path)
def testGPU(self):
if not tf.test.is_built_with_cuda():
return
save_path = os.path.join(self.get_temp_dir(), "gpu")
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_1 = tf.Variable(123.45)
save = tf.train.Saver({"v0": v0_1})
tf.initialize_all_variables().run()
save.save(sess, save_path)
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_2 = tf.Variable(543.21)
save = tf.train.Saver({"v0": v0_2})
| tensorflow.test.is_built_with_cuda | 695 |
import tensorflow as tf
self.dropout_input = args.dropout_input
self.clip_norm = args.clip_norm
self.embedding_init = embedding_init
self.x = tf.placeholder(tf.int32, [None, None], 'input')
self.y = tf.placeholder(tf.int32, [None, self.num_classes], 'labels')
self.seq_len = tf.placeholder(tf.int64, [None], 'input_length')
def inference(self, forward_only=None):
embed_inputs = tf.nn.embedding_lookup(self.embedding_init, self.x) ## (batch_size, seq_len, 100)
| tensorflow.placeholder | 696 |
import tensorflow as tf
A namedtuple of input and target data.
"""
input_text = tf.map_fn(lambda x: x[:-1], chunk)
target_text = tf.map_fn(lambda x: x[1:], chunk)
return (input_text, target_text)
def build_to_ids_fn(vocab, max_seq_len):
"""Constructs function mapping examples to sequences of token indices."""
_, _, bos, eos = get_special_tokens(len(vocab))
table_values = np.arange(len(vocab), dtype=np.int64)
table = tf.lookup.StaticVocabularyTable(
tf.lookup.KeyValueTensorInitializer(vocab, table_values),
num_oov_buckets=1)
def to_ids(example):
sentence = tf.reshape(example['tokens'], shape=[1])
words = tf.strings.split(sentence, sep=' ').values
truncated_words = words[:max_seq_len]
tokens = table.lookup(truncated_words) + 1
tokens = tf.cond(
tf.less(tf.size(tokens), max_seq_len),
lambda: tf.concat([tokens, [eos]], 0), lambda: tokens)
return tf.concat([[bos], tokens], 0)
| tensorflow.lookup.KeyValueTensorInitializer | 697 |
from tensorflow.python.ops import state_ops
var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold))
return control_flow_ops.group(*[var_update, ])
def _apply_sparse(self, grad, var): # sparse grad (only for the shakespeare model)
return self._apply_sparse_shared(
grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add(x, i, v))
def set_params(self, cog, avg_gradient, client):
with client.model.graph.as_default():
all_vars = tf.trainable_variables()
for variable, value in zip(all_vars, cog):
| tensorflow.python.ops.state_ops.scatter_add | 698 |
import tensorflow as tf
[rank_assertions[0]],
tf.shape(image_list[0]))
image_height = image_shape[0]
image_width = image_shape[1]
crop_size_assert = tf.Assert(
tf.logical_and(
tf.greater_equal(image_height, crop_height),
tf.greater_equal(image_width, crop_width)),
['Crop size greater than the image size.'])
asserts = [rank_assertions[0], crop_size_assert]
for i in range(1, len(image_list)):
image = image_list[i]
| tensorflow.greater_equal | 699 |