size_categories:
- 1M<n<10M
pretty_name: CF/MS Homo sapiens Elution Profile PPI Dataset
tags:
- biology
- chemistry
dataset_summary: >-
Processed data from several *Homo sapiens* protein co-fractionation mass
spectrometry (CF/MS) experiments, as well as positive/negative protein-protein
interaction (PPI) labels for each pair. Collated, maintained by the Drew Lab
at University of Illinois at Chicago.
citation_bibtex:
- >-
@article{Connelly2018, title = {Analysis of Human Nuclear Protein Complexes
by Quantitative Mass Spectrometry Profiling}, volume = {18}, ISSN =
{1615-9861}, url = {http://dx.doi.org/10.1002/pmic.201700427}, DOI =
{10.1002/pmic.201700427}, number = {11}, journal = {PROTEOMICS}, publisher =
{Wiley}, author = {Connelly, Katelyn E. and Hedrick, Victoria and Paschoal
Sobreira, Tiago Jose and Dykhuizen, Emily C. and Aryal, Uma K.}, year =
{2018}, month = may}
- >-
@article{Kirkwood2013, title = {Characterization of Native Protein Complexes
and Protein Isoform Variation Using Size-fractionation-based Quantitative
Proteomics}, volume = {12}, ISSN = {1535-9476}, url =
{http://dx.doi.org/10.1074/mcp.M113.032367}, DOI =
{10.1074/mcp.m113.032367}, number = {12}, journal = {Molecular &
Cellular Proteomics}, publisher = {Elsevier BV}, author = {Kirkwood,
Kathryn J. and Ahmad, Yasmeen and Larance, Mark and Lamond, Angus I.},
year = {2013}, month = dec, pages = {3851–3873}}
- >-
@article{Larance2016, title = {Global Membrane Protein Interactome Analysis
using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation
Profiling}, volume = {15}, ISSN = {1535-9476}, url =
{http://dx.doi.org/10.1074/mcp.O115.055467}, DOI =
{10.1074/mcp.o115.055467}, number = {7}, journal = {Molecular & Cellular
Proteomics}, publisher = {Elsevier BV}, author = {Larance, Mark and
Kirkwood, Kathryn J. and Tinti, Michele and Brenes Murillo, Alejandro and
Ferguson, Michael A.J. and Lamond, Angus I.}, year = {2016}, month = jul,
pages = {2476–2490}}
- >-
@article{Mallam2019, title = {Systematic Discovery of Endogenous Human
Ribonucleoprotein Complexes}, volume = {29}, ISSN = {2211-1247}, url =
{http://dx.doi.org/10.1016/j.celrep.2019.09.060}, DOI =
{10.1016/j.celrep.2019.09.060}, number = {5}, journal = {Cell Reports},
publisher = {Elsevier BV}, author = {Mallam, Anna L. and Sae-Lee, Wisath
and Schaub, Jeffrey M. and Tu, Fan and Battenhouse, Anna and Jang, Yu
Jin and Kim, Jonghwan and Wallingford, John B. and Finkelstein, Ilya J.
and Marcotte, Edward M. and Drew, Kevin}, year = {2019}, month = oct,
pages = {1351--1368.e5}}
- >-
@article{Moutaoufik2019, title = {Rewiring of the Human Mitochondrial
Interactome during Neuronal Reprogramming Reveals Regulators of the
Respirasome and Neurogenesis}, volume = {19}, ISSN = {2589-0042}, url =
{http://dx.doi.org/10.1016/j.isci.2019.08.057}, DOI =
{10.1016/j.isci.2019.08.057}, journal = {iScience}, publisher = {Elsevier
BV}, author = {Moutaoufik, Mohamed Taha and Malty, Ramy and Amin,
Shahreen and Zhang, Qingzhou and Phanse, Sadhna and Gagarinova, Alla and
Zilocchi, Mara and Hoell, Larissa and Minic, Zoran and Gagarinova, Maria
and Aoki, Hiroyuki and Stockwell, Jocelyn and Jessulat, Matthew and
Goebels, Florian and Broderick, Kirsten and Scott, Nichollas E. and
Vlasblom, James and Musso, Gabriel and Prasad, Bhanu and Lamantea,
Eleonora and Garavaglia, Barbara and Rajput, Alex and Murayama, Kei and
Okazaki, Yasushi and Foster, Leonard J. and Bader, Gary D. and Cayabyab,
Francisco S. and Babu, Mohan}, year = {2019}, month = sep, pages =
{1114–1132}}
- >-
@article{Wan2015, title = {Panorama of ancient metazoan macromolecular
complexes}, volume = {525}, ISSN = {1476-4687}, url =
{http://dx.doi.org/10.1038/nature14877}, DOI = {10.1038/nature14877}, number
= {7569}, journal = {Nature}, publisher = {Springer Science and Business
Media LLC}, author = {Wan, Cuihong and Borgeson, Blake and Phanse, Sadhna
and Tu, Fan and Drew, Kevin and Clark, Greg and Xiong, Xuejian and
Kagan, Olga and Kwan, Julian and Bezginov, Alexandr and Chessman, Kyle
and Pal, Swati and Cromar, Graham and Papoulas, Ophelia and Ni, Zuyao
and Boutz, Daniel R. and Stoilova, Snejana and Havugimana, Pierre C. and
Guo, Xinghua and Malty, Ramy H. and Sarov, Mihail and Greenblatt, Jack
and Babu, Mohan and Derry, W. Brent and R. Tillier, Elisabeth and
Wallingford, John B. and Parkinson, John and Marcotte, Edward M. and
Emili, Andrew}, year = {2015}, month = sep, pages = {339–344}}
citation_apa:
- >-
Connelly, K. E., Hedrick, V., Paschoal Sobreira, T. J., Dykhuizen, E. C., &
Aryal, U. K. (2018). Analysis of Human Nuclear Protein Complexes by
Quantitative Mass Spectrometry Profiling. Proteomics, 18(11), e1700427.
https://doi.org/10.1002/pmic.201700427
- Kirkwood, K. J., Ahmad, Y., Larance, M., & Lamond, A. I. (2013). Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Molecular & cellular proteomics: MCP, 12(12), 3851–3873. https://doi.org/10.1074/mcp.M113.032367
- Larance, M., Kirkwood, K. J., Tinti, M., Brenes Murillo, A., Ferguson, M. A., & Lamond, A. I. (2016). Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling. Molecular & cellular proteomics: MCP, 15(7), 2476–2490. https://doi.org/10.1074/mcp.O115.055467
- >-
Mallam, A. L., Sae-Lee, W., Schaub, J. M., Tu, F., Battenhouse, A., Jang, Y.
J., Kim, J., Wallingford, J. B., Finkelstein, I. J., Marcotte, E. M., &
Drew, K. (2019). Systematic Discovery of Endogenous Human Ribonucleoprotein
Complexes. Cell reports, 29(5), 1351–1368.e5.
https://doi.org/10.1016/j.celrep.2019.09.060
- >-
Moutaoufik, M. T., Malty, R., Amin, S., Zhang, Q., Phanse, S., Gagarinova,
A., Zilocchi, M., Hoell, L., Minic, Z., Gagarinova, M., Aoki, H., Stockwell,
J., Jessulat, M., Goebels, F., Broderick, K., Scott, N. E., Vlasblom, J.,
Musso, G., Prasad, B., Lamantea, E., … Babu, M. (2019). Rewiring of the
Human Mitochondrial Interactome during Neuronal Reprogramming Reveals
Regulators of the Respirasome and Neurogenesis. iScience, 19, 1114–1132.
https://doi.org/10.1016/j.isci.2019.08.057
- >-
Wan, C., Borgeson, B., Phanse, S., Tu, F., Drew, K., Clark, G., Xiong, X.,
Kagan, O., Kwan, J., Bezginov, A., Chessman, K., Pal, S., Cromar, G.,
Papoulas, O., Ni, Z., Boutz, D. R., Stoilova, S., Havugimana, P. C., Guo,
X., Malty, R. H., … Emili, A. (2015). Panorama of ancient metazoan
macromolecular complexes. Nature, 525(7569), 339–344.
https://doi.org/10.1038/nature14877
dataset_info:
- config_name: pairs
features:
- name: experiment_id
dtype: string
- name: uniprot_id1
dtype: string
- name: uniprot_id2
dtype: string
- name: elut_trace1
sequence: int32
- name: elut_trace2
sequence: int32
- name: label
dtype:
class_label:
names:
'0': neg
'1': pos
splits:
- name: train
num_bytes: 1412437731
num_examples: 2496144
- name: test
num_bytes: 1531716983
num_examples: 2769931
download_size: 262731062
dataset_size: 2944154714
- config_name: proteins
features:
- name: experiment_id
dtype: string
- name: uniprot_id
dtype: string
- name: fraction_names
sequence: string
- name: trace
sequence: int32
splits:
- name: train
num_bytes: 25259541
num_examples: 20383
download_size: 683080
dataset_size: 25259541
configs:
- config_name: pairs
data_files:
- split: train
path: pairs/train-*
- split: test
path: pairs/test-*
- config_name: proteins
data_files:
- split: train
path: proteins/train-*
Quickstart Usage
This dataset can be loaded into python using the Huggingface datasets library. First, install the datasets library via command line:
$ pip install datasets
With datasets installed, the user should then import it into their python script / environment:
>>> import datasets
The user can then load the CF-MS_Homo_sapiens_PPI dataset using datasets.load_dataset(...). There are two configurations, or 'views' for the set. The user can choose between them via the name parameter:
pairs(Default): Pairwise protein elution profiles with binary labels for whether the two proteins are known to interact>>> view = "pairs" >>> dataset = datasets.load_dataset( path = "viridono/CF-MS_Homo_sapiens_PPI", name = view)proteins: Individual protein elution profiles without labels for if the user wishes to assemble in a non-pairwise fashion>>> view = "proteins" >>> dataset = datasets.load_dataset( path = "viridono/CF-MS_Homo_sapiens_PPI", name = view)
and the dataset will be loaded as a datasets.DatasetDict. For pairs:
>>> dataset
DatasetDict({
train: Dataset({
features: ['experiment_id', 'uniprot_id1', 'uniprot_id2', 'elut_trace1', 'elut_trace2', 'label'],
num_rows: 2496144
})
test: Dataset({
features: ['experiment_id', 'uniprot_id1', 'uniprot_id2', 'elut_trace1', 'elut_trace2', 'label'],
num_rows: 2769931
})
})
and for proteins:
DatasetDict({
train: Dataset({
features: ['experiment_id', 'uniprot_id', 'fraction_names', 'trace'],
num_rows: 20383
})
})
This is a column-wise format. Elution traces are 1D vectors of protein abundances (PSMs) that are stored either in the elut_trace# column (for pairs) or in the trace (for individual proteins). Note that the traces have been uploaded in a lossless format, meaning they are not normalized across different experiments (experiment_id) (i.e. have differing lengths, differing peak heights).
The user may wish to normalize elution data when training. This is easily achievable following conversion to a pandas.DataFrame. Note that the DatasetDict must first be partitioned into its train and test splits:
>>> ds_train = dataset['train']
>>> ds_test = dataset['test']
>>> ds_train.to_pandas()
>>> ds_test.to_pandas()
Useful Pandas Normalizations / Transformations
As a pandas.DataFrame, the user can then apply any of various transformations, including padding the 1D vectors to make them of uniform length:
max_len = max(df_train['elut_trace1'].apply(len))
df_train['elut_trace1'] = df_train['elut_trace1'].apply(lambda x: np.pad(x, (0, max_len - len(x)), mode='constant'))
or value-wise normalization, for example row-max:
df_train['elut_trace1'] = df_train['elut_trace1'].apply(lambda x: x / x.max() if x.max() != 0 else x)
Also note that elution data can be rather sparse, so the user might want to extract only the elution vectors that reach a certain minimum PSM threshold. This should be done prior to value normalization. Good values for minimum peak height are 5 or 10:
df_filtered = df_train[df_train['elut_trace1'].apply(lambda x: np.any(x >= 10)) &
df_train['elut_trace2'].apply(lambda x: np.any(x >= 10))]
CF/MS Elution Profile PPI Dataset
Proteins are the functional basis of life, but it is often their interactions with other proteins which gives rise to said functions. Therefore, we are often interested in whether two proteins participate in the same protein complex, or if they 'co-complex'. Co-fractionation mass spectrometry (CF/MS) is a high-throughput method for determining whether proteins form complexes. If they do, both proteins will typically separate out into the same fractions, or 'co-elute', during column chromatography experiments. As a result, their abundances will be highly correlated across all the fractions measured. CF/MS leverages this fact to identify new protein complexes by attempting to statistically correlate the elution profiles of groups of proteins. Typically, we use Pearson correlation coefficient to determine correlation between protein pairs. While this often works quite well, Pearson is a linear function. Current research is exploring whether there are non-linear, higher-order signals between these elution profiles that might have better predictive power than Pearson. As deep learning models excel at estimating non-linear relationships in data, the goal of this dataset is to act as training data for such models, especially Siamese networks.
This dataset includes processed data from several Homo sapiens protein co-fractionation mass spectrometry (CF/MS) experiments, as well as positive/negative protein-protein interaction (PPI) labels for each pair.
Collated, maintained by Drew Lab at University of Illinois at Chicago
File formats
- The .elut file: A .elut file is a TSV-like format containing raw count data from a chromatographic fractionation experiment. Each row in a .elut file shows the abundance of a single protein across the collected fractions (columns). Generally speaking, these fractions are collected over time. However, different chromatographic columns can separate proteins along different axes. For example, Size-eclusion chromatography (SEC) will mostly separate proteins into fractions according to their size; Ion-exchange chromatography (IEX) will separate them into fractions according to their charge. Each file in this dataset comes from one of these two column separation methods and is named accordingly ('...xx_SEC_xx...' / '...xx_IEX_xx...'). We refer to a given protein's (row's) count data across all fractions (columns) as that protein's elution trace or elution profile. To summarize:
- A given row contains count data for a specific protein
- A row's first column contains its associated protein ID
- A row's subsequent columns contain that protein's count data from the fractionation experiment
- Note: The user may notice that the first row in a .elut file is one column longer than subsequent rows. This is because the first row contains row names (protein IDs), and the first column contains column names (fraction IDs). Therefore, cell 'A0' is empty.
File structure
- The .elut files each contain a collection elution traces for proteins from a given CF/MS experiment. These can be paired to make sample data. A complete list of data sources can be found at the bottom of this README
- The .txt files contain line-wise specification of protein complexes used to generate positive/negative labels. These can be used to direct the pairing of elution traces into data points.
- intact_complex_merge_20230309.train_ppis.txt: List of positive PPIs for training data
- intact_complex_merge_20230309.test_ppis.txt: List of positive PPIs for testing data
- intact_complex_merge_20230309.neg_train_ppis.txt: List of negative PPIs for training data
- intact_complex_merge_20230309.neg_test_ppis.txt: List of negative PPIs for testing data
- intact_complex_merge_20230309.train.txt Line-wise list of protein complexes
List of publications/experiments from which this dataset was assembled:
Connelly, K. E., Hedrick, V., Paschoal Sobreira, T. J., Dykhuizen, E. C., & Aryal, U. K. (2018). Analysis of Human Nuclear Protein Complexes by Quantitative Mass Spectrometry Profiling. Proteomics, 18(11), e1700427. https://doi.org/10.1002/pmic.201700427
- T98G_glioblastoma_multiforme_cells_SEC_Conelly_2018_Bio1.elut
- T98G_glioblastoma_multiforme_cells_SEC_Conelly_2018_Bio2.elut
Kirkwood, K. J., Ahmad, Y., Larance, M., & Lamond, A. I. (2013). Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Molecular & cellular proteomics : MCP, 12(12), 3851–3873. https://doi.org/10.1074/mcp.M113.032367
- U2OS_cells_SEC_Kirkwood_2013_rep1.elut
- U2OS_cells_SEC_Kirkwood_2013_rep2.elut
- U2OS_cells_SEC_Kirkwood_2013_rep3.elut
Larance, M., Kirkwood, K. J., Tinti, M., Brenes Murillo, A., Ferguson, M. A., & Lamond, A. I. (2016). Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling. Molecular & cellular proteomics : MCP, 15(7), 2476–2490. https://doi.org/10.1074/mcp.O115.055467
- U2OS_cells_SEC_Larance_2016_PT3281S1.elut
- U2OS_cells_SEC_Larance_2016_PT3441S1.elut
- U2OS_cells_SEC_Larance_2016_PT3442S1.elut
- U2OS_cells_SEC_Larance_2016_PT3701S1.elut
- U2OS_cells_SEC_Larance_2016_PTSS3801.elut
- U2OS_cells_SEC_Larance_2016_PTSS3802.elut
Mallam, A. L., Sae-Lee, W., Schaub, J. M., Tu, F., Battenhouse, A., Jang, Y. J., Kim, J., Wallingford, J. B., Finkelstein, I. J., Marcotte, E. M., & Drew, K. (2019). Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell reports, 29(5), 1351–1368.e5. https://doi.org/10.1016/j.celrep.2019.09.060
- HEK_293_T_cells_SEC_Mallam_2019_C1.elut
- HEK_293_T_cells_SEC_Mallam_2019_C2.elut
Moutaoufik, M. T., Malty, R., Amin, S., Zhang, Q., Phanse, S., Gagarinova, A., Zilocchi, M., Hoell, L., Minic, Z., Gagarinova, M., Aoki, H., Stockwell, J., Jessulat, M., Goebels, F., Broderick, K., Scott, N. E., Vlasblom, J., Musso, G., Prasad, B., Lamantea, E., … Babu, M. (2019). Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis. iScience, 19, 1114–1132. https://doi.org/10.1016/j.isci.2019.08.057
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_2_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_2_R2.elut
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_R2.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_2_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_2_R2.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_R1.elut
- NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_R2.elut
Wan, C., Borgeson, B., Phanse, S., Tu, F., Drew, K., Clark, G., Xiong, X., Kagan, O., Kwan, J., Bezginov, A., Chessman, K., Pal, S., Cromar, G., Papoulas, O., Ni, Z., Boutz, D. R., Stoilova, S., Havugimana, P. C., Guo, X., Malty, R. H., … Emili, A. (2015). Panorama of ancient metazoan macromolecular complexes. Nature, 525(7569), 339–344. https://doi.org/10.1038/nature14877
- CB660_neural_stem_cell_IEX_Wan_2015.elut
- G166_glioma_stem_cell_IEX_Wan_2015_Hs_HCW_2.elut
- G166_glioma_stem_cell_IEX_Wan_2015_Hs_HCW_3.elut
- IEX_Wan_2015_Hs_HCW_4.elut
- IEX_Wan_2015_Hs_HCW_5.elut
- IEX_Wan_2015_Hs_HCW_6.elut
- IEX_Wan_2015_Hs_HCW_7.elut
- IEX_Wan_2015_Hs_HCW_8.elut
- IEX_Wan_2015_Hs_HCW_9.elut
- IEX_Wan_2015_Hs_IEX_1.elut
- IEX_Wan_2015_Hs_IEX_2.elut