whisper-base-ar-mix / README.md
deepdml's picture
Update README.md
a03b19a verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
  - google/fleurs
  - ymoslem/MediaSpeech
metrics:
  - wer
model-index:
  - name: Whisper Base ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 62.6842346347641

Whisper Base ar

This model is a fine-tuned version of openai/whisper-base on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5272
  • Wer: 62.6842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.3483 0.2 1000 2.0647 67.7943
0.1912 1.0454 2000 2.3245 65.8907
0.131 1.2454 3000 2.4512 63.3511
0.0954 2.0908 4000 2.4555 62.8998
0.0711 2.2908 5000 2.5272 62.6842

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1