30_sentencesV1 / README.md
deepinfinityai's picture
End of training
e1e1ebe verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large
tags:
  - generated_from_trainer
datasets:
  - deepinfinityai/30_report_sentences_dataset
metrics:
  - wer
model-index:
  - name: Whisper_Large_30_sent_Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: 11 Sentences
          type: deepinfinityai/30_report_sentences_dataset
        metrics:
          - name: Wer
            type: wer
            value: 169.6969696969697

Whisper_Large_30_sent_Model

This model is a fine-tuned version of openai/whisper-large on the 11 Sentences dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8472
  • Wer: 169.6970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.3891 8.3333 50 1.2466 21.2121
0.0553 16.6667 100 0.1580 18.1818
0.0002 25.0 150 0.1879 157.5758
0.0002 33.3333 200 0.2462 87.8788
0.0001 41.6667 250 0.3595 200.0
0.0001 50.0 300 0.5265 190.9091
0.0001 58.3333 350 0.6597 184.8485
0.0001 66.6667 400 0.7327 175.7576
0.0001 75.0 450 0.8169 172.7273
0.0001 83.3333 500 0.8472 169.6970

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0