Safetensors
Hebrew
bert
dictabert-splinter / README.md
bargazit's picture
Changing "release here" to "released here"
1ad3a8e verified
metadata
license: cc-by-4.0
language:
  - he

DictaBERT-splinter: Splintering Nonconcatenative Languages for Better Tokenization

DictaBERT-splinter is a BERT-style language model for Hebrew, released here.

This is the base model pretrained with the masked-language-modeling objective.

Sample usage:

from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-splinter', trust_remote_code=True)
model = AutoModelForMaskedLM.from_pretrained('dicta-il/dictabert-splinter')

model.eval()

sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 [MASK] 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'

output = model(tokenizer.encode(sentence, return_tensors='pt'))
# the [MASK] is the 7th token (including [CLS])
import torch
top_2 = torch.topk(output.logits[0, 7, :], 2)[1]
print('\n'.join(tokenizer.batch_decode(top_2))) # should print 讛转诪讞讜转讜 / 诇讬诪讜讚讬讜 

Citation

If you use DictaBERT-splinter in your research, please cite Splintering Nonconcatenative Languages for Better Tokenization

BibTeX:

@misc{gazit2025splinteringnonconcatenativelanguagesbetter,
      title={Splintering Nonconcatenative Languages for Better Tokenization}, 
      author={Bar Gazit and Shaltiel Shmidman and Avi Shmidman and Yuval Pinter},
      year={2025},
      eprint={2503.14433},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.14433}, 
}

License

Shield: CC BY 4.0

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0