metadata
language: en
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: BERT IMDB Sentiment Classifier
results:
- task:
type: text-classification
name: Sentiment Analysis
dataset:
name: IMDB
type: imdb
metrics:
- type: accuracy
value: 0.93
tags:
- sentiment
- imdb
- text-classification
- bert
license: apache-2.0
BERT IMDB Sentiment Classifier
This model is a fine-tuned version of bert-base-uncased
on the IMDB movie reviews dataset.
Task
Binary Sentiment Classification:
0
→ Negative1
→ Positive
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment")
tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment")
text = "This movie was absolutely wonderful!"
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model(**inputs)
predicted_class = outputs.logits.argmax().item()
print("Predicted Sentiment:", predicted_class)