bert-imdb-sentiment / README.md
dina1's picture
Add README with model description
64af738 verified
metadata
language: en
datasets:
  - imdb
metrics:
  - accuracy
model-index:
  - name: BERT IMDB Sentiment Classifier
    results:
      - task:
          type: text-classification
          name: Sentiment Analysis
        dataset:
          name: IMDB
          type: imdb
        metrics:
          - type: accuracy
            value: 0.93
tags:
  - sentiment
  - imdb
  - text-classification
  - bert
license: apache-2.0

BERT IMDB Sentiment Classifier

This model is a fine-tuned version of bert-base-uncased on the IMDB movie reviews dataset.

Task

Binary Sentiment Classification:

  • 0 → Negative
  • 1 → Positive

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("dina1/bert-imdb-sentiment")
tokenizer = AutoTokenizer.from_pretrained("dina1/bert-imdb-sentiment")

text = "This movie was absolutely wonderful!"
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model(**inputs)

predicted_class = outputs.logits.argmax().item()
print("Predicted Sentiment:", predicted_class)