|
|
--- |
|
|
library_name: ctranslate2 |
|
|
license: apache-2.0 |
|
|
base_model: openai/whisper-small |
|
|
tags: |
|
|
- audio |
|
|
- automatic-speech-recognition |
|
|
- ctranslate2 |
|
|
- faster-whisper |
|
|
- generated_from_trainer |
|
|
- whisper |
|
|
metrics: |
|
|
- cer |
|
|
- wer |
|
|
model-index: |
|
|
- name: whisper-small-jp |
|
|
results: |
|
|
- task: |
|
|
name: Automatic Speech Recognition |
|
|
type: automatic-speech-recognition |
|
|
dataset: |
|
|
name: mozilla-foundation/common_voice_17_0 (ja) |
|
|
type: mozilla-foundation/common_voice_17_0 |
|
|
config: ja |
|
|
split: test |
|
|
args: |
|
|
language: ja |
|
|
metrics: |
|
|
- name: CER |
|
|
type: cer |
|
|
value: 0.23043221252477486 |
|
|
--- |
|
|
|
|
|
> **This repository contains the CTranslate2 export of the fine-tuned model.** |
|
|
> |
|
|
> • Base Transformers model: [drepic/whisper-small-jp](https://huggingface.co/drepic/whisper-small-jp) |
|
|
> • Use with `faster-whisper`: |
|
|
> |
|
|
> ```python |
|
|
> from faster_whisper import WhisperModel |
|
|
> model = WhisperModel("drepic/whisper-small-jp-ct2", device="cuda", compute_type="float16") |
|
|
> ``` |
|
|
|
|
|
# OTHER FINETUNES |
|
|
- Want better accuracy? Try [drepic/whisper-medium-jp-ct2](https://huggingface.co/drepic/whisper-medium-jp-ct2) |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# whisper-small-jp |
|
|
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on a Japanese youtube based dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.6168 |
|
|
- Wer: 0.2600 |
|
|
- Cer: 0.2600 |
|
|
|
|
|
## Model description |
|
|
|
|
|
Better suited for transcribing japanese youtube content. |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5e-06 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 4 |
|
|
- seed: 42 |
|
|
- distributed_type: multi-GPU |
|
|
- num_devices: 2 |
|
|
- total_train_batch_size: 16 |
|
|
- total_eval_batch_size: 8 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_steps: 300 |
|
|
- num_epochs: 10 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
|
| 0.6589 | 1.0 | 7154 | 0.6615 | 0.2735 | 0.2735 | |
|
|
| 0.6273 | 2.0 | 14308 | 0.6457 | 0.2699 | 0.2699 | |
|
|
| 0.6251 | 3.0 | 21462 | 0.6359 | 0.2660 | 0.2660 | |
|
|
| 0.6427 | 4.0 | 28616 | 0.6283 | 0.2642 | 0.2642 | |
|
|
| 0.6389 | 5.0 | 35770 | 0.6243 | 0.2631 | 0.2631 | |
|
|
| 0.6078 | 6.0 | 42924 | 0.6242 | 0.2615 | 0.2615 | |
|
|
| 0.5788 | 7.0 | 50078 | 0.6195 | 0.2603 | 0.2603 | |
|
|
| 0.5801 | 8.0 | 57232 | 0.6180 | 0.2596 | 0.2596 | |
|
|
| 0.5866 | 9.0 | 64386 | 0.6145 | 0.2598 | 0.2598 | |
|
|
| 0.6052 | 10.0 | 71540 | 0.6168 | 0.2600 | 0.2600 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.56.1 |
|
|
- Pytorch 2.8.0+cu128 |
|
|
- Datasets 4.0.0 |
|
|
- Tokenizers 0.22.0 |