metadata
license: apache-2.0
base_model: facebook/convnext-small-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-small-224-finetuned-piid
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: val
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7625570776255708
convnext-small-224-finetuned-piid
This model is a fine-tuned version of facebook/convnext-small-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5651
- Accuracy: 0.7626
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3405 | 0.98 | 20 | 1.3201 | 0.4155 |
1.1715 | 2.0 | 41 | 1.1362 | 0.5708 |
0.9231 | 2.98 | 61 | 0.9255 | 0.6438 |
0.7128 | 4.0 | 82 | 0.7558 | 0.6986 |
0.6204 | 4.98 | 102 | 0.7056 | 0.7534 |
0.5322 | 6.0 | 123 | 0.6610 | 0.7397 |
0.4403 | 6.98 | 143 | 0.6639 | 0.7443 |
0.4388 | 8.0 | 164 | 0.6472 | 0.7306 |
0.3901 | 8.98 | 184 | 0.6684 | 0.7352 |
0.4202 | 10.0 | 205 | 0.5934 | 0.7397 |
0.3784 | 10.98 | 225 | 0.5651 | 0.7626 |
0.2973 | 12.0 | 246 | 0.6439 | 0.7580 |
0.3614 | 12.98 | 266 | 0.5844 | 0.7534 |
0.2795 | 14.0 | 287 | 0.6015 | 0.7306 |
0.2825 | 14.98 | 307 | 0.6031 | 0.7626 |
0.2364 | 16.0 | 328 | 0.6249 | 0.7534 |
0.2162 | 16.98 | 348 | 0.6248 | 0.7626 |
0.2455 | 18.0 | 369 | 0.6153 | 0.7489 |
0.2314 | 18.98 | 389 | 0.6113 | 0.7580 |
0.248 | 19.51 | 400 | 0.6131 | 0.7580 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3