gcperk20's picture
End of training
4d1088e
metadata
license: apache-2.0
base_model: facebook/convnext-small-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnext-small-224-finetuned-piid
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: val
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7625570776255708

convnext-small-224-finetuned-piid

This model is a fine-tuned version of facebook/convnext-small-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5651
  • Accuracy: 0.7626

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3405 0.98 20 1.3201 0.4155
1.1715 2.0 41 1.1362 0.5708
0.9231 2.98 61 0.9255 0.6438
0.7128 4.0 82 0.7558 0.6986
0.6204 4.98 102 0.7056 0.7534
0.5322 6.0 123 0.6610 0.7397
0.4403 6.98 143 0.6639 0.7443
0.4388 8.0 164 0.6472 0.7306
0.3901 8.98 184 0.6684 0.7352
0.4202 10.0 205 0.5934 0.7397
0.3784 10.98 225 0.5651 0.7626
0.2973 12.0 246 0.6439 0.7580
0.3614 12.98 266 0.5844 0.7534
0.2795 14.0 287 0.6015 0.7306
0.2825 14.98 307 0.6031 0.7626
0.2364 16.0 328 0.6249 0.7534
0.2162 16.98 348 0.6248 0.7626
0.2455 18.0 369 0.6153 0.7489
0.2314 18.98 389 0.6113 0.7580
0.248 19.51 400 0.6131 0.7580

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3