yue-embed / README.md
indiejoseph's picture
Update README.md
0d1575e verified
metadata
language:
  - yue
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:129371
  - loss:CachedGISTEmbedLoss
base_model: hon9kon9ize/bert-large-cantonese-sts
widget:
  - source_sentence: 'query: is ampulla of vater part of the pancreas'
    sentences:
      - >-
        document: Ampulla of Vater The ampulla of Vater, also known as the
        hepatopancreatic ampulla or the hepatopancreatic duct, is formed by the
        union of the pancreatic duct and the common bile duct. The ampulla is
        specifically located at the major duodenal papilla.
      - 'document: 抗凝加化疗;化疗'
      - >-
        document: Daylight saving time in Australia Daylight saving was first
        used in Australia during World War I, and was applied in all states. It
        was used again during the Second World War. A drought in Tasmania in
        1967 led to the reintroduction of daylight saving in that state during
        the summer, and this was repeated every summer since then. In 1971, New
        South Wales, Victoria,[16] Queensland, South Australia, and the
        Australian Capital Territory followed Tasmania by observing daylight
        saving. Western Australia and the Northern Territory did not. Queensland
        abandoned daylight saving time in 1972.[17]
  - source_sentence: 'query: henry''s law states that the solubility of a gas in a liquid'
    sentences:
      - >-
        document: Henry's law In chemistry, Henry's law is a gas law that states
        that the amount of dissolved gas is proportional to its partial pressure
        in the gas phase. The proportionality factor is called the Henry's law
        constant. It was formulated by the English chemist William Henry, who
        studied the topic in the early 19th century. In his publication about
        the quantity of gases absorbed by water,[1] he described the results of
        his experiments:
      - >-
        document: Saint Stephen's Day Saint Stephen's Day, or the Feast of Saint
        Stephen, is a Christian saint's day to commemorate Saint Stephen, the
        first Christian martyr or protomartyr, celebrated on 26 December in the
        Latin Church and 27 December in Eastern Christianity. The Eastern
        Orthodox Church adheres to the Julian calendar and mark Saint Stephen's
        Day on 27 December according to that calendar, which places it on 9
        January of the Gregorian calendar used in secular contexts. In Latin
        Christian denominations, Saint Stephen's Day marks the second day of
        Christmastide.[1][2]
      - >-
        document: American Revolutionary War The American Revolutionary War
        (1775–1783), also known as the American War of Independence,[40] was a
        global war that began as a conflict between Great Britain and its
        Thirteen Colonies which declared independence as the United States of
        America.[N 1]
  - source_sentence: 'query: what is the plot of american horror story hotel'
    sentences:
      - >-
        document: American Horror Story: Hotel The plot centers around the
        enigmatic Hotel Cortez in Los Angeles, California, that catches the eye
        of an intrepid homicide detective (Bentley). The Cortez is host to the
        strange and bizarre, spearheaded by its owner, The Countess (Gaga), who
        is a bloodsucking fashionista. The hotel is loosely based on an actual
        hotel built in 1893 by H. H. Holmes in Chicago, Il. for the 1893 World's
        Columbian Exposition. It became known as the 'Murder Castle' as it was
        built for Holmes to torture, murder, and dispose of evidence just as is
        the Cortez. This season features two murderous threats in the form of
        the Ten Commandments Killer, a serial offender who selects his victims
        in accordance with biblical teachings, and "the Addiction Demon", who
        roams the hotel armed with a drill bit dildo.
      - >-
        document: Book of Job Rabbinic tradition ascribes the authorship of Job
        to Moses, but scholars generally agree that it was written between the
        7th and 4th centuries BCE, with the 6th century BCE as the most likely
        period for various reasons.[17] The anonymous author was almost
        certainly an Israelite, although he has set his story outside Israel, in
        southern Edom or northern Arabia, and makes allusion to places as far
        apart as Mesopotamia and Egypt.[18] According to the 6th-century BCE
        prophet Ezekiel, Job was a man of antiquity renowned for his
        righteousness,[19] and the book's author has chosen this legendary hero
        for his parable.[20]
      - >-
        document: Galešnjak Galešnjak (also called Island of Love, Lover's
        Island, Otok za zaljubljene) is located in the Pašman channel of the
        Adriatic, between the islands of Pašman and the town of Turanj on
        mainland Croatia. It is one of the world's few naturally occurring
        heart-shaped objects such as the Heart Reef in the Whitsundays.
  - source_sentence: >-
      query: what historical event inspired wollstonecraft's book a vindication
      of the rights of woman
    sentences:
      - >-
        document:
        銀河嘅獨特外形自古以嚟就引起人類嘅幻想。例如中國就有牛郎織女嘅故事,相傳身為人類嘅牛郎同身為仙女嘅織女相遇並且墮入愛河,但因為人仙相戀犯天規而俾天界阻止,王母娘娘變條銀河出嚟分隔佢哋,限佢哋淨係喺每年嘅農曆七月初七先可以喺條鵲橋上面相會-呢個傳說就係傳統節日七姐誕嘅起源。
      - >-
        document: Rock Star (2001 film) The singing voice for Wahlberg's
        character was provided by Steelheart frontman Miljenko Matijevic for the
        Steel Dragon Songs, the final number was dubbed by Brian Vander Ark.
        Jeff Scott Soto (of Talisman, Yngwie Malmsteen, Soul SirkUS, and
        Journey) provided the voice of the singer Wahlberg's character replaces.
        Kennedy is the only actor whose actual voice is used.[citation needed].
        Ralph Saenz (Steel Panther) also appears briefly, as the singer
        auditioning ahead of Chris at the studio.
      - >-
        document: A Vindication of the Rights of Woman Wollstonecraft was
        prompted to write the Rights of Woman after reading Charles Maurice de
        Talleyrand-Périgord's 1791 report to the French National Assembly, which
        stated that women should only receive a domestic education; she used her
        commentary on this specific event to launch a broad attack against
        sexual double standards and to indict men for encouraging women to
        indulge in excessive emotion. Wollstonecraft wrote the Rights of Woman
        hurriedly to respond directly to ongoing events; she intended to write a
        more thoughtful second volume but died before completing it.
  - source_sentence: 'query: when did england change from fahrenheit to celsius'
    sentences:
      - >-
        document: Periodic table Importantly, the organization of the periodic
        table can be utilized to derive relationships between various element
        properties, but also predicted chemical properties and behaviours of
        undiscovered or newly synthesized elements. Russian chemist Dmitri
        Mendeleev was first to publish a recognizable periodic table in 1869,
        developed mainly to illustrate periodic trends of the then-known
        elements. He also predicted some properties of unidentified elements
        that were expected to fill gaps within this table. Most of his forecasts
        proved to be correct. Mendeleev's idea has been slowly expanded and
        refined with the discovery or synthesis of further new elements and by
        developing new theoretical models to explain chemical behaviour. The
        modern periodic table now provides a useful framework for analyzing
        chemical reactions, and continues to be widely adopted in chemistry,
        nuclear physics and other sciences.
      - >-
        document: How to Train Your Dragon (franchise) The How to Train Your
        Dragon franchise from DreamWorks Animation consists of two feature films
        How to Train Your Dragon (2010) and How to Train Your Dragon 2 (2014),
        with a third feature film, How to Train Your Dragon: The Hidden World,
        set for a 2019 release. The franchise is inspired by the British book
        series of the same name by Cressida Cowell. The franchise also consists
        of four short films: Legend of the Boneknapper Dragon (2010), Book of
        Dragons (2011), Gift of the Night Fury (2011) and Dawn of the Dragon
        Racers (2014). A television series following the events of the first
        film, Dragons: Riders of Berk, began airing on Cartoon Network in
        September 2012. Its second season was renamed Dragons: Defenders of
        Berk. Set several years later, and as a more immediate prequel to the
        second film, a new television series, titled Dragons: Race to the Edge,
        aired on Netflix in June 2015.[1] The second season of the show was
        added to Netflix in January 2016 and a third season in June 2016. A
        fourth season aired on Netflix in February 2017, a fifth season in
        August 2017, and a sixth and final season on February 16, 2018.
      - >-
        document: Metrication in the United Kingdom Adopting the metric system
        was discussed in Parliament as early as 1818 and some industries and
        even some government agencies had metricated, or were in the process of
        metricating by the mid 1960s. A formal government policy to support
        metrication was agreed by 1965. This policy, initiated in response to
        requests from industry, was to support voluntary metrication, with costs
        picked up where they fell. In 1969 the government created the
        Metrication Board as a quango to promote and coordinate metrication. In
        1978, after some carpet retailers reverted to pricing by the square yard
        rather than the square metre, government policy shifted, and they
        started issuing orders making metrication mandatory in certain sectors.
        In 1980 government policy shifted again to prefer voluntary metrication,
        and the Metrication Board was abolished. By the time the Metrication
        Board was wound up, all the economic sectors that fell within its remit
        except road signage and parts of the retail trade sector had metricated.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: Bert base fine-tuned with Cantonese and English mixed STS dataset
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.06
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.22
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.26
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.06666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05200000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.032
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.035
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.105
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.12666666666666665
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.14400000000000002
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.10738523976006756
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.12305555555555553
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08386746046821102
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: cosine_accuracy@1
            value: 0.1
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.44
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.52
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.1
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.12666666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15200000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.154
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.005776685612719247
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.025711996601987995
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.04879480020144454
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.08175565470928514
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.1564753058784049
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.22302380952380954
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08481993410477483
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.06
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.12
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.03333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.02
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.012000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.09
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.09
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.11
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.07804424038166692
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.07533333333333334
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.07658274436198606
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: cosine_accuracy@1
            value: 0.12
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.22
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.26
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.36
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.12
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07999999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.064
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.046000000000000006
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.07085714285714287
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.13621428571428573
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.14993650793650792
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.21193650793650792
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.15989208858068493
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.18794444444444444
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1278932041519149
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: cosine_accuracy@1
            value: 0.18
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.38
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.4
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.44
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.13333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.084
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05200000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.09
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.21
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.26
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21524243911000313
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2793333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.16949818775802034
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: cosine_accuracy@1
            value: 0.08
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.16
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.2
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.24
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.08
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.04
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.024000000000000004
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.08
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.16
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.2
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.24
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.155021218726892
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.12816666666666665
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.14387227309213746
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: cosine_accuracy@1
            value: 0.1
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.12
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.18
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.1
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.06
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05600000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.042
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.0023944899556066555
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.004511202133435534
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.005335271278326478
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.006887081773042016
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.0513758550014842
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.11271428571428571
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.011178329865269043
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: cosine_accuracy@1
            value: 0.12
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.26
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.38
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.44
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.12
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04800000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.24
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.37
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.43
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.26691470842049086
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.21954761904761902
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22127704921258506
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.56
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.66
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.68
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.56
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25333333333333335
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.092
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.49
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6073333333333334
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.634
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7406666666666666
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6315714749064664
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6265555555555555
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6007758177607536
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: cosine_accuracy@1
            value: 0.06
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.12
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.14
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.22
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.036000000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.026000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.015666666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.03666666666666667
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.04066666666666666
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.05666666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.05444580189319236
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.10085714285714287
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.03825732082321992
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: cosine_accuracy@1
            value: 0.12
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.34
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.52
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.64
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.12
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10400000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.064
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.12
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.34
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.52
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.64
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.36676045848370026
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2815
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.28967419376346565
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: cosine_accuracy@1
            value: 0.18
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.22
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.32
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.36
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07999999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.068
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.165
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.21
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.345
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.24854556538285397
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.22416666666666665
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.23077037853195492
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: cosine_accuracy@1
            value: 0.3469387755102041
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7142857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7959183673469388
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9387755102040817
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3469387755102041
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32653061224489793
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.30612244897959184
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.2714285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.01725883684742171
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.06000832753846316
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.10128699807186763
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.17048580946181527
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.29344650277463163
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5436912860382248
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.18279928418932134
            name: Cosine Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: cosine_accuracy@1
            value: 0.1605337519623234
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2872527472527473
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.35199372056514916
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.42452119309262165
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.1605337519623234
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11281004709576138
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.0940094191522763
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0694945054945055
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.09630414014919672
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.17041890861447484
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.21512976237088305
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2644152605549218
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21424006917696453
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2404530537489721
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.17394355216027804
            name: Cosine Map@100

Bert base fine-tuned with Cantonese and English mixed STS dataset

This is a sentence-transformers model finetuned from hon9kon9ize/bert-large-cantonese-sts. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: hon9kon9ize/bert-large-cantonese-sts
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Language: yue
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hon9kon9ize/yue-embed")
# Run inference
sentences = [
    'query: when did england change from fahrenheit to celsius',
    'document: Metrication in the United Kingdom Adopting the metric system was discussed in Parliament as early as 1818 and some industries and even some government agencies had metricated, or were in the process of metricating by the mid 1960s. A formal government policy to support metrication was agreed by 1965. This policy, initiated in response to requests from industry, was to support voluntary metrication, with costs picked up where they fell. In 1969 the government created the Metrication Board as a quango to promote and coordinate metrication. In 1978, after some carpet retailers reverted to pricing by the square yard rather than the square metre, government policy shifted, and they started issuing orders making metrication mandatory in certain sectors. In 1980 government policy shifted again to prefer voluntary metrication, and the Metrication Board was abolished. By the time the Metrication Board was wound up, all the economic sectors that fell within its remit except road signage and parts of the retail trade sector had metricated.',
    "document: Periodic table Importantly, the organization of the periodic table can be utilized to derive relationships between various element properties, but also predicted chemical properties and behaviours of undiscovered or newly synthesized elements. Russian chemist Dmitri Mendeleev was first to publish a recognizable periodic table in 1869, developed mainly to illustrate periodic trends of the then-known elements. He also predicted some properties of unidentified elements that were expected to fill gaps within this table. Most of his forecasts proved to be correct. Mendeleev's idea has been slowly expanded and refined with the discovery or synthesis of further new elements and by developing new theoretical models to explain chemical behaviour. The modern periodic table now provides a useful framework for analyzing chemical reactions, and continues to be widely adopted in chemistry, nuclear physics and other sciences.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with InformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
cosine_accuracy@1 0.06 0.1 0.06 0.12 0.18 0.08 0.1 0.12 0.56 0.06 0.12 0.18 0.3469
cosine_accuracy@3 0.2 0.26 0.1 0.22 0.38 0.16 0.1 0.26 0.66 0.12 0.34 0.22 0.7143
cosine_accuracy@5 0.22 0.44 0.1 0.26 0.4 0.2 0.12 0.38 0.68 0.14 0.52 0.32 0.7959
cosine_accuracy@10 0.26 0.52 0.12 0.36 0.44 0.24 0.18 0.44 0.8 0.22 0.64 0.36 0.9388
cosine_precision@1 0.06 0.1 0.06 0.12 0.18 0.08 0.1 0.12 0.56 0.06 0.12 0.18 0.3469
cosine_precision@3 0.0667 0.1267 0.0333 0.08 0.1333 0.0533 0.06 0.0867 0.2533 0.0533 0.1133 0.08 0.3265
cosine_precision@5 0.052 0.152 0.02 0.064 0.084 0.04 0.056 0.08 0.16 0.036 0.104 0.068 0.3061
cosine_precision@10 0.032 0.154 0.012 0.046 0.052 0.024 0.042 0.048 0.092 0.026 0.064 0.04 0.2714
cosine_recall@1 0.035 0.0058 0.05 0.0709 0.09 0.08 0.0024 0.11 0.49 0.0157 0.12 0.165 0.0173
cosine_recall@3 0.105 0.0257 0.09 0.1362 0.2 0.16 0.0045 0.24 0.6073 0.0367 0.34 0.21 0.06
cosine_recall@5 0.1267 0.0488 0.09 0.1499 0.21 0.2 0.0053 0.37 0.634 0.0407 0.52 0.3 0.1013
cosine_recall@10 0.144 0.0818 0.11 0.2119 0.26 0.24 0.0069 0.43 0.7407 0.0567 0.64 0.345 0.1705
cosine_ndcg@10 0.1074 0.1565 0.078 0.1599 0.2152 0.155 0.0514 0.2669 0.6316 0.0544 0.3668 0.2485 0.2934
cosine_mrr@10 0.1231 0.223 0.0753 0.1879 0.2793 0.1282 0.1127 0.2195 0.6266 0.1009 0.2815 0.2242 0.5437
cosine_map@100 0.0839 0.0848 0.0766 0.1279 0.1695 0.1439 0.0112 0.2213 0.6008 0.0383 0.2897 0.2308 0.1828

Nano BEIR

Metric Value
cosine_accuracy@1 0.1605
cosine_accuracy@3 0.2873
cosine_accuracy@5 0.352
cosine_accuracy@10 0.4245
cosine_precision@1 0.1605
cosine_precision@3 0.1128
cosine_precision@5 0.094
cosine_precision@10 0.0695
cosine_recall@1 0.0963
cosine_recall@3 0.1704
cosine_recall@5 0.2151
cosine_recall@10 0.2644
cosine_ndcg@10 0.2142
cosine_mrr@10 0.2405
cosine_map@100 0.1739

Training Details

Training Dataset

Unnamed Dataset

  • Size: 129,371 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 13 tokens
    • mean: 22.58 tokens
    • max: 134 tokens
    • min: 7 tokens
    • mean: 169.6 tokens
    • max: 512 tokens
  • Samples:
    query answer
    query: hotel and restaurant employees and bartenders international union document: Hotel Employees and Restaurant Employees Union The Hotel Employees and Restaurant Employees Union (HERE) was a United States labor union representing workers of the hospitality industry, formed in 1891. In 2004, HERE merged with the Union of Needletrades, Industrial, and Textile Employees (UNITE) to form UNITE HERE. HERE notably organized the staff of Yale University in 1984. Other major employers that contracted with this union included several large casinos (Harrah's, Caesars Palace, and Wynn Resorts); hotels (Hilton, Hyatt and Starwood), and Walt Disney World. HERE was affiliated with the AFL-CIO.
    query: 多肢离断伤的并发症是什么? document: 失血性休克;血循环危象;急性肾功能衰竭
    query: who is the father of kelly taylor's son on 90210 document: Kelly Taylor (90210) In 2008, Kelly Taylor returned in the spin-off 90210, now working as a guidance counselor at her alma mater West Beverly Hills High School. It was revealed that in the intervening years, she attained a master's degree and had a son named Sammy with Dylan. She and Dylan ended their relationship soon after. It was also revealed that West Beverly principal Harry Wilson was Kelly's neighbor growing up.[39]
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
      (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01}
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 11 tokens
    • mean: 22.61 tokens
    • max: 146 tokens
    • min: 7 tokens
    • mean: 164.27 tokens
    • max: 512 tokens
  • Samples:
    query answer
    query: 微创经皮肾镜手术的推荐药有些什么? document: 阿司匹林
    query: why are the fires in ca called the thomas fires document: Thomas Fire On December 4, 2017, the Thomas Fire was reported at 6:26 p.m. PST,[36] to the north of Santa Paula, near Steckel Park and Thomas Aquinas College,[3][24] after which the fire is named.[37] That night, the small brush fire exploded in size and raced through the rugged mountain terrain that lies west of Santa Paula, between Ventura and Ojai.[19][38] Officials blamed strong Santa Ana winds that gusted up to 60 miles per hour (97 km/h) for the sudden expansion.[28][39] Soon after the fire had started, a second blaze was ignited nearly 30 minutes later, about 4 miles (6.4 km) to the north in Upper Ojai at the top of Koenigstein Road.[40] According to eyewitnesses, this second fire was sparked by an explosion in the power line over the area. The second fire was rapidly expanded by the strong Santa Ana winds, and soon merged into the Thomas Fire later that night.[40]
    query: which mountain man rediscovered south pass and brought back important information about this trail document: Jedediah Smith Jedediah Strong Smith (January 6, 1799 – May 27, 1831), was a clerk, frontiersman, hunter, trapper, author, cartographer, and explorer of the Rocky Mountains, the North American West, and the Southwest during the early 19th century. After 75 years of obscurity following his death, Smith was rediscovered as the American whose explorations led to the use of the 20-mile (32 km)-wide South Pass as the dominant point of crossing the Continental Divide for pioneers on the Oregon Trail.
  • Loss: CachedGISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
      (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.05
  • seed: 12
  • bf16: True
  • prompts: {'query': 'query: ', 'answer': 'document: '}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: {'query': 'query: ', 'answer': 'document: '}
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoClimateFEVER_cosine_ndcg@10 NanoDBPedia_cosine_ndcg@10 NanoFEVER_cosine_ndcg@10 NanoFiQA2018_cosine_ndcg@10 NanoHotpotQA_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoNFCorpus_cosine_ndcg@10 NanoNQ_cosine_ndcg@10 NanoQuoraRetrieval_cosine_ndcg@10 NanoSCIDOCS_cosine_ndcg@10 NanoArguAna_cosine_ndcg@10 NanoSciFact_cosine_ndcg@10 NanoTouche2020_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0.0010 1 31.7042 - - - - - - - - - - - - - - -
0.0049 5 32.9433 - - - - - - - - - - - - - - -
0.0099 10 27.0338 - - - - - - - - - - - - - - -
0.0148 15 18.1598 - - - - - - - - - - - - - - -
0.0198 20 12.5771 - - - - - - - - - - - - - - -
0.0247 25 8.6872 - - - - - - - - - - - - - - -
0.0297 30 6.0455 - - - - - - - - - - - - - - -
0.0346 35 5.1917 - - - - - - - - - - - - - - -
0.0396 40 4.8424 - - - - - - - - - - - - - - -
0.0445 45 4.4785 - - - - - - - - - - - - - - -
0.0495 50 4.1896 - - - - - - - - - - - - - - -
0.0544 55 4.2621 - - - - - - - - - - - - - - -
0.0593 60 3.8401 - - - - - - - - - - - - - - -
0.0643 65 3.9482 - - - - - - - - - - - - - - -
0.0692 70 3.7762 - - - - - - - - - - - - - - -
0.0742 75 3.4895 - - - - - - - - - - - - - - -
0.0791 80 3.5892 - - - - - - - - - - - - - - -
0.0841 85 3.5312 - - - - - - - - - - - - - - -
0.0890 90 3.3244 - - - - - - - - - - - - - - -
0.0940 95 3.4369 - - - - - - - - - - - - - - -
0.0989 100 3.1867 - - - - - - - - - - - - - - -
0.1039 105 3.1734 - - - - - - - - - - - - - - -
0.1088 110 3.2156 - - - - - - - - - - - - - - -
0.1137 115 2.8888 - - - - - - - - - - - - - - -
0.1187 120 2.8613 - - - - - - - - - - - - - - -
0.1236 125 2.8905 - - - - - - - - - - - - - - -
0.1286 130 2.5984 - - - - - - - - - - - - - - -
0.1335 135 2.6853 - - - - - - - - - - - - - - -
0.1385 140 2.7013 - - - - - - - - - - - - - - -
0.1434 145 2.5577 - - - - - - - - - - - - - - -
0.1484 150 2.6287 - - - - - - - - - - - - - - -
0.1533 155 2.6481 - - - - - - - - - - - - - - -
0.1583 160 2.7741 - - - - - - - - - - - - - - -
0.1632 165 2.5738 - - - - - - - - - - - - - - -
0.1682 170 2.5335 - - - - - - - - - - - - - - -
0.1731 175 2.531 - - - - - - - - - - - - - - -
0.1780 180 2.437 - - - - - - - - - - - - - - -
0.1830 185 2.4836 - - - - - - - - - - - - - - -
0.1879 190 2.4642 - - - - - - - - - - - - - - -
0.1929 195 2.399 - - - - - - - - - - - - - - -
0.1978 200 2.3896 - - - - - - - - - - - - - - -
0.2028 205 2.3738 - - - - - - - - - - - - - - -
0.2077 210 2.5518 - - - - - - - - - - - - - - -
0.2127 215 2.4836 - - - - - - - - - - - - - - -
0.2176 220 2.2157 - - - - - - - - - - - - - - -
0.2226 225 2.2986 - - - - - - - - - - - - - - -
0.2275 230 2.4967 - - - - - - - - - - - - - - -
0.2324 235 2.121 - - - - - - - - - - - - - - -
0.2374 240 2.4301 - - - - - - - - - - - - - - -
0.2423 245 2.5054 - - - - - - - - - - - - - - -
0.2473 250 2.3213 - - - - - - - - - - - - - - -
0.2522 255 2.1182 - - - - - - - - - - - - - - -
0.2572 260 2.2966 - - - - - - - - - - - - - - -
0.2621 265 2.2662 - - - - - - - - - - - - - - -
0.2671 270 2.3188 - - - - - - - - - - - - - - -
0.2720 275 2.1836 - - - - - - - - - - - - - - -
0.2770 280 2.2206 - - - - - - - - - - - - - - -
0.2819 285 2.3144 - - - - - - - - - - - - - - -
0.2868 290 2.2496 - - - - - - - - - - - - - - -
0.2918 295 1.9909 - - - - - - - - - - - - - - -
0.2967 300 2.1294 - - - - - - - - - - - - - - -
0.3017 305 2.119 - - - - - - - - - - - - - - -
0.3066 310 2.0076 - - - - - - - - - - - - - - -
0.3116 315 2.127 - - - - - - - - - - - - - - -
0.3165 320 2.1309 - - - - - - - - - - - - - - -
0.3215 325 2.0868 - - - - - - - - - - - - - - -
0.3264 330 1.9429 - - - - - - - - - - - - - - -
0.3314 335 1.9 - - - - - - - - - - - - - - -
0.3363 340 1.82 - - - - - - - - - - - - - - -
0.3412 345 1.9731 - - - - - - - - - - - - - - -
0.3462 350 2.0156 - - - - - - - - - - - - - - -
0.3511 355 2.0106 - - - - - - - - - - - - - - -
0.3561 360 1.9383 - - - - - - - - - - - - - - -
0.3610 365 2.0491 - - - - - - - - - - - - - - -
0.3660 370 1.8893 - - - - - - - - - - - - - - -
0.3709 375 1.958 - - - - - - - - - - - - - - -
0.3759 380 1.9821 - - - - - - - - - - - - - - -
0.3808 385 2.024 - - - - - - - - - - - - - - -
0.3858 390 2.0182 - - - - - - - - - - - - - - -
0.3907 395 1.9659 - - - - - - - - - - - - - - -
0.3956 400 1.8339 - - - - - - - - - - - - - - -
0.4006 405 1.9081 - - - - - - - - - - - - - - -
0.4055 410 1.7876 - - - - - - - - - - - - - - -
0.4105 415 1.8371 - - - - - - - - - - - - - - -
0.4154 420 1.8274 - - - - - - - - - - - - - - -
0.4204 425 1.7863 - - - - - - - - - - - - - - -
0.4253 430 1.9064 - - - - - - - - - - - - - - -
0.4303 435 1.7721 - - - - - - - - - - - - - - -
0.4352 440 1.7162 - - - - - - - - - - - - - - -
0.4402 445 1.9112 - - - - - - - - - - - - - - -
0.4451 450 1.9384 - - - - - - - - - - - - - - -
0.4500 455 1.8096 - - - - - - - - - - - - - - -
0.4550 460 1.7145 - - - - - - - - - - - - - - -
0.4599 465 1.784 - - - - - - - - - - - - - - -
0.4649 470 1.9506 - - - - - - - - - - - - - - -
0.4698 475 1.7243 - - - - - - - - - - - - - - -
0.4748 480 1.8003 - - - - - - - - - - - - - - -
0.4797 485 1.7568 - - - - - - - - - - - - - - -
0.4847 490 1.5696 - - - - - - - - - - - - - - -
0.4896 495 1.8973 - - - - - - - - - - - - - - -
0.4946 500 1.6981 - - - - - - - - - - - - - - -
0.4995 505 1.7616 - - - - - - - - - - - - - - -
0.5045 510 1.6573 - - - - - - - - - - - - - - -
0.5094 515 1.8685 - - - - - - - - - - - - - - -
0.5143 520 1.8532 - - - - - - - - - - - - - - -
0.5193 525 1.7603 - - - - - - - - - - - - - - -
0.5242 530 1.7636 - - - - - - - - - - - - - - -
0.5292 535 1.4829 - - - - - - - - - - - - - - -
0.5341 540 1.6959 - - - - - - - - - - - - - - -
0.5391 545 1.6389 - - - - - - - - - - - - - - -
0.5440 550 1.6624 - - - - - - - - - - - - - - -
0.5490 555 1.8193 - - - - - - - - - - - - - - -
0.5539 560 1.7144 - - - - - - - - - - - - - - -
0.5589 565 1.4954 - - - - - - - - - - - - - - -
0.5638 570 1.6659 - - - - - - - - - - - - - - -
0.5687 575 1.669 - - - - - - - - - - - - - - -
0.5737 580 1.6931 - - - - - - - - - - - - - - -
0.5786 585 1.6894 - - - - - - - - - - - - - - -
0.5836 590 1.6437 - - - - - - - - - - - - - - -
0.5885 595 1.7259 - - - - - - - - - - - - - - -
0.5935 600 1.7937 - - - - - - - - - - - - - - -
0.5984 605 1.7279 - - - - - - - - - - - - - - -
0.6034 610 1.6769 - - - - - - - - - - - - - - -
0.6083 615 1.4731 - - - - - - - - - - - - - - -
0.6133 620 1.6466 - - - - - - - - - - - - - - -
0.6182 625 1.6954 - - - - - - - - - - - - - - -
0.6231 630 1.6224 - - - - - - - - - - - - - - -
0.6281 635 1.62 - - - - - - - - - - - - - - -
0.6330 640 1.5795 - - - - - - - - - - - - - - -
0.6380 645 1.5245 - - - - - - - - - - - - - - -
0.6429 650 1.7629 - - - - - - - - - - - - - - -
0.6479 655 1.5767 - - - - - - - - - - - - - - -
0.6528 660 1.6749 - - - - - - - - - - - - - - -
0.6578 665 1.5602 - - - - - - - - - - - - - - -
0.6627 670 1.6768 - - - - - - - - - - - - - - -
0.6677 675 1.8311 - - - - - - - - - - - - - - -
0.6726 680 1.5973 - - - - - - - - - - - - - - -
0.6775 685 1.5066 - - - - - - - - - - - - - - -
0.6825 690 1.6036 - - - - - - - - - - - - - - -
0.6874 695 1.7857 - - - - - - - - - - - - - - -
0.6924 700 1.4387 - - - - - - - - - - - - - - -
0.6973 705 1.5886 - - - - - - - - - - - - - - -
0.7023 710 1.551 - - - - - - - - - - - - - - -
0.7072 715 1.5561 - - - - - - - - - - - - - - -
0.7122 720 1.4458 - - - - - - - - - - - - - - -
0.7171 725 1.5703 - - - - - - - - - - - - - - -
0.7221 730 1.6162 - - - - - - - - - - - - - - -
0.7270 735 1.5643 - - - - - - - - - - - - - - -
0.7319 740 1.4894 - - - - - - - - - - - - - - -
0.7369 745 1.6413 - - - - - - - - - - - - - - -
0.7418 750 1.5406 - - - - - - - - - - - - - - -
0.7468 755 1.5185 - - - - - - - - - - - - - - -
0.7517 760 1.488 - - - - - - - - - - - - - - -
0.7567 765 1.5041 - - - - - - - - - - - - - - -
0.7616 770 1.4665 - - - - - - - - - - - - - - -
0.7666 775 1.5252 - - - - - - - - - - - - - - -
0.7715 780 1.4925 - - - - - - - - - - - - - - -
0.7765 785 1.3833 - - - - - - - - - - - - - - -
0.7814 790 1.3808 - - - - - - - - - - - - - - -
0.7864 795 1.5468 - - - - - - - - - - - - - - -
0.7913 800 1.5317 - - - - - - - - - - - - - - -
0.7962 805 1.5385 - - - - - - - - - - - - - - -
0.8012 810 1.4012 - - - - - - - - - - - - - - -
0.8061 815 1.5531 - - - - - - - - - - - - - - -
0.8111 820 1.6032 - - - - - - - - - - - - - - -
0.8160 825 1.4053 - - - - - - - - - - - - - - -
0.8210 830 1.5082 - - - - - - - - - - - - - - -
0.8259 835 1.5559 - - - - - - - - - - - - - - -
0.8309 840 1.4286 - - - - - - - - - - - - - - -
0.8358 845 1.4336 - - - - - - - - - - - - - - -
0.8408 850 1.3731 - - - - - - - - - - - - - - -
0.8457 855 1.5706 - - - - - - - - - - - - - - -
0.8506 860 1.4184 - - - - - - - - - - - - - - -
0.8556 865 1.4312 - - - - - - - - - - - - - - -
0.8605 870 1.4364 - - - - - - - - - - - - - - -
0.8655 875 1.5605 - - - - - - - - - - - - - - -
0.8704 880 1.4219 - - - - - - - - - - - - - - -
0.8754 885 1.4082 - - - - - - - - - - - - - - -
0.8803 890 1.3846 - - - - - - - - - - - - - - -
0.8853 895 1.4292 - - - - - - - - - - - - - - -
0.8902 900 1.4195 - - - - - - - - - - - - - - -
0.8952 905 1.5103 - - - - - - - - - - - - - - -
0.9001 910 1.5041 - - - - - - - - - - - - - - -
0.9050 915 1.427 - - - - - - - - - - - - - - -
0.9100 920 1.4385 - - - - - - - - - - - - - - -
0.9149 925 1.298 - - - - - - - - - - - - - - -
0.9199 930 1.4499 - - - - - - - - - - - - - - -
0.9248 935 1.4752 - - - - - - - - - - - - - - -
0.9298 940 1.4752 - - - - - - - - - - - - - - -
0.9347 945 1.3705 - - - - - - - - - - - - - - -
0.9397 950 1.4567 - - - - - - - - - - - - - - -
0.9446 955 1.3364 - - - - - - - - - - - - - - -
0.9496 960 1.376 - - - - - - - - - - - - - - -
0.9545 965 1.35 - - - - - - - - - - - - - - -
0.9594 970 1.5841 - - - - - - - - - - - - - - -
0.9644 975 1.3449 - - - - - - - - - - - - - - -
0.9693 980 1.2132 - - - - - - - - - - - - - - -
0.9743 985 1.3414 - - - - - - - - - - - - - - -
0.9792 990 1.5148 - - - - - - - - - - - - - - -
0.9842 995 1.3866 - - - - - - - - - - - - - - -
0.9891 1000 1.2051 1.3370 0.0906 0.1578 0.0712 0.1504 0.1887 0.1554 0.0466 0.2528 0.6197 0.0672 0.2857 0.2291 0.2718 0.1990
0.9941 1005 1.3021 - - - - - - - - - - - - - - -
0.9990 1010 1.391 - - - - - - - - - - - - - - -
1.0040 1015 1.1452 - - - - - - - - - - - - - - -
1.0089 1020 1.3989 - - - - - - - - - - - - - - -
1.0138 1025 1.2142 - - - - - - - - - - - - - - -
1.0188 1030 1.2472 - - - - - - - - - - - - - - -
1.0237 1035 1.3058 - - - - - - - - - - - - - - -
1.0287 1040 1.2643 - - - - - - - - - - - - - - -
1.0336 1045 1.2581 - - - - - - - - - - - - - - -
1.0386 1050 1.2434 - - - - - - - - - - - - - - -
1.0435 1055 1.1874 - - - - - - - - - - - - - - -
1.0485 1060 1.0421 - - - - - - - - - - - - - - -
1.0534 1065 1.3834 - - - - - - - - - - - - - - -
1.0584 1070 1.3279 - - - - - - - - - - - - - - -
1.0633 1075 1.3779 - - - - - - - - - - - - - - -
1.0682 1080 1.3071 - - - - - - - - - - - - - - -
1.0732 1085 1.1569 - - - - - - - - - - - - - - -
1.0781 1090 1.2427 - - - - - - - - - - - - - - -
1.0831 1095 1.1607 - - - - - - - - - - - - - - -
1.0880 1100 1.2691 - - - - - - - - - - - - - - -
1.0930 1105 1.2936 - - - - - - - - - - - - - - -
1.0979 1110 1.2527 - - - - - - - - - - - - - - -
1.1029 1115 1.1143 - - - - - - - - - - - - - - -
1.1078 1120 1.1508 - - - - - - - - - - - - - - -
1.1128 1125 1.1627 - - - - - - - - - - - - - - -
1.1177 1130 0.9774 - - - - - - - - - - - - - - -
1.1227 1135 1.1827 - - - - - - - - - - - - - - -
1.1276 1140 0.9429 - - - - - - - - - - - - - - -
1.1325 1145 1.0029 - - - - - - - - - - - - - - -
1.1375 1150 1.0764 - - - - - - - - - - - - - - -
1.1424 1155 1.0555 - - - - - - - - - - - - - - -
1.1474 1160 1.0559 - - - - - - - - - - - - - - -
1.1523 1165 1.0081 - - - - - - - - - - - - - - -
1.1573 1170 1.1928 - - - - - - - - - - - - - - -
1.1622 1175 1.0774 - - - - - - - - - - - - - - -
1.1672 1180 0.9185 - - - - - - - - - - - - - - -
1.1721 1185 1.0838 - - - - - - - - - - - - - - -
1.1771 1190 0.9981 - - - - - - - - - - - - - - -
1.1820 1195 1.0395 - - - - - - - - - - - - - - -
1.1869 1200 0.9522 - - - - - - - - - - - - - - -
1.1919 1205 0.9652 - - - - - - - - - - - - - - -
1.1968 1210 1.0276 - - - - - - - - - - - - - - -
1.2018 1215 0.9663 - - - - - - - - - - - - - - -
1.2067 1220 1.1356 - - - - - - - - - - - - - - -
1.2117 1225 1.159 - - - - - - - - - - - - - - -
1.2166 1230 0.8575 - - - - - - - - - - - - - - -
1.2216 1235 0.9134 - - - - - - - - - - - - - - -
1.2265 1240 1.1889 - - - - - - - - - - - - - - -
1.2315 1245 0.935 - - - - - - - - - - - - - - -
1.2364 1250 0.975 - - - - - - - - - - - - - - -
1.2413 1255 1.073 - - - - - - - - - - - - - - -
1.2463 1260 1.0709 - - - - - - - - - - - - - - -
1.2512 1265 0.9241 - - - - - - - - - - - - - - -
1.2562 1270 1.0101 - - - - - - - - - - - - - - -
1.2611 1275 1.1451 - - - - - - - - - - - - - - -
1.2661 1280 1.0501 - - - - - - - - - - - - - - -
1.2710 1285 0.9724 - - - - - - - - - - - - - - -
1.2760 1290 0.9222 - - - - - - - - - - - - - - -
1.2809 1295 1.086 - - - - - - - - - - - - - - -
1.2859 1300 0.973 - - - - - - - - - - - - - - -
1.2908 1305 0.9287 - - - - - - - - - - - - - - -
1.2957 1310 0.9051 - - - - - - - - - - - - - - -
1.3007 1315 0.9531 - - - - - - - - - - - - - - -
1.3056 1320 0.9605 - - - - - - - - - - - - - - -
1.3106 1325 0.8778 - - - - - - - - - - - - - - -
1.3155 1330 0.9399 - - - - - - - - - - - - - - -
1.3205 1335 0.9185 - - - - - - - - - - - - - - -
1.3254 1340 0.9078 - - - - - - - - - - - - - - -
1.3304 1345 0.8266 - - - - - - - - - - - - - - -
1.3353 1350 0.8186 - - - - - - - - - - - - - - -
1.3403 1355 0.9394 - - - - - - - - - - - - - - -
1.3452 1360 1.0972 - - - - - - - - - - - - - - -
1.3501 1365 0.8895 - - - - - - - - - - - - - - -
1.3551 1370 0.8678 - - - - - - - - - - - - - - -
1.3600 1375 0.9493 - - - - - - - - - - - - - - -
1.3650 1380 0.8449 - - - - - - - - - - - - - - -
1.3699 1385 0.917 - - - - - - - - - - - - - - -
1.3749 1390 0.8899 - - - - - - - - - - - - - - -
1.3798 1395 0.9516 - - - - - - - - - - - - - - -
1.3848 1400 0.9538 - - - - - - - - - - - - - - -
1.3897 1405 0.9964 - - - - - - - - - - - - - - -
1.3947 1410 0.9123 - - - - - - - - - - - - - - -
1.3996 1415 0.86 - - - - - - - - - - - - - - -
1.4045 1420 0.9382 - - - - - - - - - - - - - - -
1.4095 1425 0.764 - - - - - - - - - - - - - - -
1.4144 1430 0.9161 - - - - - - - - - - - - - - -
1.4194 1435 0.937 - - - - - - - - - - - - - - -
1.4243 1440 0.8487 - - - - - - - - - - - - - - -
1.4293 1445 0.7928 - - - - - - - - - - - - - - -
1.4342 1450 0.8586 - - - - - - - - - - - - - - -
1.4392 1455 0.9355 - - - - - - - - - - - - - - -
1.4441 1460 0.965 - - - - - - - - - - - - - - -
1.4491 1465 0.9019 - - - - - - - - - - - - - - -
1.4540 1470 0.8624 - - - - - - - - - - - - - - -
1.4590 1475 0.8204 - - - - - - - - - - - - - - -
1.4639 1480 1.0131 - - - - - - - - - - - - - - -
1.4688 1485 0.9222 - - - - - - - - - - - - - - -
1.4738 1490 0.9182 - - - - - - - - - - - - - - -
1.4787 1495 0.8247 - - - - - - - - - - - - - - -
1.4837 1500 0.7746 - - - - - - - - - - - - - - -
1.4886 1505 0.882 - - - - - - - - - - - - - - -
1.4936 1510 0.8482 - - - - - - - - - - - - - - -
1.4985 1515 0.9623 - - - - - - - - - - - - - - -
1.5035 1520 0.8804 - - - - - - - - - - - - - - -
1.5084 1525 0.8874 - - - - - - - - - - - - - - -
1.5134 1530 0.9747 - - - - - - - - - - - - - - -
1.5183 1535 0.8805 - - - - - - - - - - - - - - -
1.5232 1540 0.8776 - - - - - - - - - - - - - - -
1.5282 1545 0.7627 - - - - - - - - - - - - - - -
1.5331 1550 0.8975 - - - - - - - - - - - - - - -
1.5381 1555 0.8213 - - - - - - - - - - - - - - -
1.5430 1560 0.9472 - - - - - - - - - - - - - - -
1.5480 1565 0.9379 - - - - - - - - - - - - - - -
1.5529 1570 0.9312 - - - - - - - - - - - - - - -
1.5579 1575 0.7866 - - - - - - - - - - - - - - -
1.5628 1580 0.8629 - - - - - - - - - - - - - - -
1.5678 1585 0.8156 - - - - - - - - - - - - - - -
1.5727 1590 0.8737 - - - - - - - - - - - - - - -
1.5776 1595 0.942 - - - - - - - - - - - - - - -
1.5826 1600 0.8167 - - - - - - - - - - - - - - -
1.5875 1605 0.9468 - - - - - - - - - - - - - - -
1.5925 1610 0.9117 - - - - - - - - - - - - - - -
1.5974 1615 1.0137 - - - - - - - - - - - - - - -
1.6024 1620 0.8357 - - - - - - - - - - - - - - -
1.6073 1625 0.8372 - - - - - - - - - - - - - - -
1.6123 1630 0.905 - - - - - - - - - - - - - - -
1.6172 1635 0.9265 - - - - - - - - - - - - - - -
1.6222 1640 0.846 - - - - - - - - - - - - - - -
1.6271 1645 0.7729 - - - - - - - - - - - - - - -
1.6320 1650 0.7885 - - - - - - - - - - - - - - -
1.6370 1655 0.8717 - - - - - - - - - - - - - - -
1.6419 1660 0.9845 - - - - - - - - - - - - - - -
1.6469 1665 0.8286 - - - - - - - - - - - - - - -
1.6518 1670 0.8979 - - - - - - - - - - - - - - -
1.6568 1675 0.8502 - - - - - - - - - - - - - - -
1.6617 1680 0.9423 - - - - - - - - - - - - - - -
1.6667 1685 1.0128 - - - - - - - - - - - - - - -
1.6716 1690 0.8535 - - - - - - - - - - - - - - -
1.6766 1695 0.737 - - - - - - - - - - - - - - -
1.6815 1700 0.9871 - - - - - - - - - - - - - - -
1.6864 1705 0.8828 - - - - - - - - - - - - - - -
1.6914 1710 0.8178 - - - - - - - - - - - - - - -
1.6963 1715 0.7703 - - - - - - - - - - - - - - -
1.7013 1720 0.8739 - - - - - - - - - - - - - - -
1.7062 1725 0.8582 - - - - - - - - - - - - - - -
1.7112 1730 0.9181 - - - - - - - - - - - - - - -
1.7161 1735 0.8801 - - - - - - - - - - - - - - -
1.7211 1740 0.8009 - - - - - - - - - - - - - - -
1.7260 1745 0.9779 - - - - - - - - - - - - - - -
1.7310 1750 0.7777 - - - - - - - - - - - - - - -
1.7359 1755 0.7864 - - - - - - - - - - - - - - -
1.7409 1760 1.0066 - - - - - - - - - - - - - - -
1.7458 1765 0.7776 - - - - - - - - - - - - - - -
1.7507 1770 0.8122 - - - - - - - - - - - - - - -
1.7557 1775 0.8025 - - - - - - - - - - - - - - -
1.7606 1780 0.7559 - - - - - - - - - - - - - - -
1.7656 1785 0.8819 - - - - - - - - - - - - - - -
1.7705 1790 0.8901 - - - - - - - - - - - - - - -
1.7755 1795 0.7598 - - - - - - - - - - - - - - -
1.7804 1800 0.7542 - - - - - - - - - - - - - - -
1.7854 1805 0.8178 - - - - - - - - - - - - - - -
1.7903 1810 0.8374 - - - - - - - - - - - - - - -
1.7953 1815 0.8363 - - - - - - - - - - - - - - -
1.8002 1820 0.8177 - - - - - - - - - - - - - - -
1.8051 1825 0.9488 - - - - - - - - - - - - - - -
1.8101 1830 0.9959 - - - - - - - - - - - - - - -
1.8150 1835 0.7942 - - - - - - - - - - - - - - -
1.8200 1840 0.8747 - - - - - - - - - - - - - - -
1.8249 1845 0.9053 - - - - - - - - - - - - - - -
1.8299 1850 0.7853 - - - - - - - - - - - - - - -
1.8348 1855 0.838 - - - - - - - - - - - - - - -
1.8398 1860 0.7732 - - - - - - - - - - - - - - -
1.8447 1865 0.8613 - - - - - - - - - - - - - - -
1.8497 1870 0.791 - - - - - - - - - - - - - - -
1.8546 1875 0.8203 - - - - - - - - - - - - - - -
1.8595 1880 0.7558 - - - - - - - - - - - - - - -
1.8645 1885 0.9918 - - - - - - - - - - - - - - -
1.8694 1890 0.8272 - - - - - - - - - - - - - - -
1.8744 1895 0.8552 - - - - - - - - - - - - - - -
1.8793 1900 0.8135 - - - - - - - - - - - - - - -
1.8843 1905 0.8297 - - - - - - - - - - - - - - -
1.8892 1910 0.7844 - - - - - - - - - - - - - - -
1.8942 1915 0.8466 - - - - - - - - - - - - - - -
1.8991 1920 0.9099 - - - - - - - - - - - - - - -
1.9041 1925 0.8139 - - - - - - - - - - - - - - -
1.9090 1930 0.8628 - - - - - - - - - - - - - - -
1.9139 1935 0.6778 - - - - - - - - - - - - - - -
1.9189 1940 0.8251 - - - - - - - - - - - - - - -
1.9238 1945 0.8915 - - - - - - - - - - - - - - -
1.9288 1950 0.8136 - - - - - - - - - - - - - - -
1.9337 1955 0.8879 - - - - - - - - - - - - - - -
1.9387 1960 0.8758 - - - - - - - - - - - - - - -
1.9436 1965 0.8153 - - - - - - - - - - - - - - -
1.9486 1970 0.7253 - - - - - - - - - - - - - - -
1.9535 1975 0.8493 - - - - - - - - - - - - - - -
1.9585 1980 1.0186 - - - - - - - - - - - - - - -
1.9634 1985 0.8412 - - - - - - - - - - - - - - -
1.9683 1990 0.7027 - - - - - - - - - - - - - - -
1.9733 1995 0.744 - - - - - - - - - - - - - - -
1.9782 2000 0.9555 1.1452 0.1064 0.1577 0.0780 0.1597 0.2144 0.1550 0.0513 0.2643 0.6316 0.0525 0.3670 0.2485 0.2937 0.2139
1.9832 2005 0.9095 - - - - - - - - - - - - - - -
1.9881 2010 0.7378 - - - - - - - - - - - - - - -
1.9931 2015 0.8024 - - - - - - - - - - - - - - -
1.9980 2020 0.9107 - - - - - - - - - - - - - - -
2.0 2022 - - 0.1074 0.1565 0.0780 0.1599 0.2152 0.1550 0.0514 0.2669 0.6316 0.0544 0.3668 0.2485 0.2934 0.2142

Framework Versions

  • Python: 3.11.2
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.4.0+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.1.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}