metadata
language:
- yue
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:129371
- loss:CachedGISTEmbedLoss
base_model: hon9kon9ize/bert-large-cantonese-sts
widget:
- source_sentence: 'query: is ampulla of vater part of the pancreas'
sentences:
- >-
document: Ampulla of Vater The ampulla of Vater, also known as the
hepatopancreatic ampulla or the hepatopancreatic duct, is formed by the
union of the pancreatic duct and the common bile duct. The ampulla is
specifically located at the major duodenal papilla.
- 'document: 抗凝加化疗;化疗'
- >-
document: Daylight saving time in Australia Daylight saving was first
used in Australia during World War I, and was applied in all states. It
was used again during the Second World War. A drought in Tasmania in
1967 led to the reintroduction of daylight saving in that state during
the summer, and this was repeated every summer since then. In 1971, New
South Wales, Victoria,[16] Queensland, South Australia, and the
Australian Capital Territory followed Tasmania by observing daylight
saving. Western Australia and the Northern Territory did not. Queensland
abandoned daylight saving time in 1972.[17]
- source_sentence: 'query: henry''s law states that the solubility of a gas in a liquid'
sentences:
- >-
document: Henry's law In chemistry, Henry's law is a gas law that states
that the amount of dissolved gas is proportional to its partial pressure
in the gas phase. The proportionality factor is called the Henry's law
constant. It was formulated by the English chemist William Henry, who
studied the topic in the early 19th century. In his publication about
the quantity of gases absorbed by water,[1] he described the results of
his experiments:
- >-
document: Saint Stephen's Day Saint Stephen's Day, or the Feast of Saint
Stephen, is a Christian saint's day to commemorate Saint Stephen, the
first Christian martyr or protomartyr, celebrated on 26 December in the
Latin Church and 27 December in Eastern Christianity. The Eastern
Orthodox Church adheres to the Julian calendar and mark Saint Stephen's
Day on 27 December according to that calendar, which places it on 9
January of the Gregorian calendar used in secular contexts. In Latin
Christian denominations, Saint Stephen's Day marks the second day of
Christmastide.[1][2]
- >-
document: American Revolutionary War The American Revolutionary War
(1775–1783), also known as the American War of Independence,[40] was a
global war that began as a conflict between Great Britain and its
Thirteen Colonies which declared independence as the United States of
America.[N 1]
- source_sentence: 'query: what is the plot of american horror story hotel'
sentences:
- >-
document: American Horror Story: Hotel The plot centers around the
enigmatic Hotel Cortez in Los Angeles, California, that catches the eye
of an intrepid homicide detective (Bentley). The Cortez is host to the
strange and bizarre, spearheaded by its owner, The Countess (Gaga), who
is a bloodsucking fashionista. The hotel is loosely based on an actual
hotel built in 1893 by H. H. Holmes in Chicago, Il. for the 1893 World's
Columbian Exposition. It became known as the 'Murder Castle' as it was
built for Holmes to torture, murder, and dispose of evidence just as is
the Cortez. This season features two murderous threats in the form of
the Ten Commandments Killer, a serial offender who selects his victims
in accordance with biblical teachings, and "the Addiction Demon", who
roams the hotel armed with a drill bit dildo.
- >-
document: Book of Job Rabbinic tradition ascribes the authorship of Job
to Moses, but scholars generally agree that it was written between the
7th and 4th centuries BCE, with the 6th century BCE as the most likely
period for various reasons.[17] The anonymous author was almost
certainly an Israelite, although he has set his story outside Israel, in
southern Edom or northern Arabia, and makes allusion to places as far
apart as Mesopotamia and Egypt.[18] According to the 6th-century BCE
prophet Ezekiel, Job was a man of antiquity renowned for his
righteousness,[19] and the book's author has chosen this legendary hero
for his parable.[20]
- >-
document: Galešnjak Galešnjak (also called Island of Love, Lover's
Island, Otok za zaljubljene) is located in the Pašman channel of the
Adriatic, between the islands of Pašman and the town of Turanj on
mainland Croatia. It is one of the world's few naturally occurring
heart-shaped objects such as the Heart Reef in the Whitsundays.
- source_sentence: >-
query: what historical event inspired wollstonecraft's book a vindication
of the rights of woman
sentences:
- >-
document:
銀河嘅獨特外形自古以嚟就引起人類嘅幻想。例如中國就有牛郎織女嘅故事,相傳身為人類嘅牛郎同身為仙女嘅織女相遇並且墮入愛河,但因為人仙相戀犯天規而俾天界阻止,王母娘娘變條銀河出嚟分隔佢哋,限佢哋淨係喺每年嘅農曆七月初七先可以喺條鵲橋上面相會-呢個傳說就係傳統節日七姐誕嘅起源。
- >-
document: Rock Star (2001 film) The singing voice for Wahlberg's
character was provided by Steelheart frontman Miljenko Matijevic for the
Steel Dragon Songs, the final number was dubbed by Brian Vander Ark.
Jeff Scott Soto (of Talisman, Yngwie Malmsteen, Soul SirkUS, and
Journey) provided the voice of the singer Wahlberg's character replaces.
Kennedy is the only actor whose actual voice is used.[citation needed].
Ralph Saenz (Steel Panther) also appears briefly, as the singer
auditioning ahead of Chris at the studio.
- >-
document: A Vindication of the Rights of Woman Wollstonecraft was
prompted to write the Rights of Woman after reading Charles Maurice de
Talleyrand-Périgord's 1791 report to the French National Assembly, which
stated that women should only receive a domestic education; she used her
commentary on this specific event to launch a broad attack against
sexual double standards and to indict men for encouraging women to
indulge in excessive emotion. Wollstonecraft wrote the Rights of Woman
hurriedly to respond directly to ongoing events; she intended to write a
more thoughtful second volume but died before completing it.
- source_sentence: 'query: when did england change from fahrenheit to celsius'
sentences:
- >-
document: Periodic table Importantly, the organization of the periodic
table can be utilized to derive relationships between various element
properties, but also predicted chemical properties and behaviours of
undiscovered or newly synthesized elements. Russian chemist Dmitri
Mendeleev was first to publish a recognizable periodic table in 1869,
developed mainly to illustrate periodic trends of the then-known
elements. He also predicted some properties of unidentified elements
that were expected to fill gaps within this table. Most of his forecasts
proved to be correct. Mendeleev's idea has been slowly expanded and
refined with the discovery or synthesis of further new elements and by
developing new theoretical models to explain chemical behaviour. The
modern periodic table now provides a useful framework for analyzing
chemical reactions, and continues to be widely adopted in chemistry,
nuclear physics and other sciences.
- >-
document: How to Train Your Dragon (franchise) The How to Train Your
Dragon franchise from DreamWorks Animation consists of two feature films
How to Train Your Dragon (2010) and How to Train Your Dragon 2 (2014),
with a third feature film, How to Train Your Dragon: The Hidden World,
set for a 2019 release. The franchise is inspired by the British book
series of the same name by Cressida Cowell. The franchise also consists
of four short films: Legend of the Boneknapper Dragon (2010), Book of
Dragons (2011), Gift of the Night Fury (2011) and Dawn of the Dragon
Racers (2014). A television series following the events of the first
film, Dragons: Riders of Berk, began airing on Cartoon Network in
September 2012. Its second season was renamed Dragons: Defenders of
Berk. Set several years later, and as a more immediate prequel to the
second film, a new television series, titled Dragons: Race to the Edge,
aired on Netflix in June 2015.[1] The second season of the show was
added to Netflix in January 2016 and a third season in June 2016. A
fourth season aired on Netflix in February 2017, a fifth season in
August 2017, and a sixth and final season on February 16, 2018.
- >-
document: Metrication in the United Kingdom Adopting the metric system
was discussed in Parliament as early as 1818 and some industries and
even some government agencies had metricated, or were in the process of
metricating by the mid 1960s. A formal government policy to support
metrication was agreed by 1965. This policy, initiated in response to
requests from industry, was to support voluntary metrication, with costs
picked up where they fell. In 1969 the government created the
Metrication Board as a quango to promote and coordinate metrication. In
1978, after some carpet retailers reverted to pricing by the square yard
rather than the square metre, government policy shifted, and they
started issuing orders making metrication mandatory in certain sectors.
In 1980 government policy shifted again to prefer voluntary metrication,
and the Metrication Board was abolished. By the time the Metrication
Board was wound up, all the economic sectors that fell within its remit
except road signage and parts of the retail trade sector had metricated.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Bert base fine-tuned with Cantonese and English mixed STS dataset
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: cosine_accuracy@1
value: 0.06
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.22
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.26
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.032
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.035
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.105
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.12666666666666665
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.14400000000000002
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.10738523976006756
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.12305555555555553
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08386746046821102
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.44
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.52
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15200000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.154
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.005776685612719247
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.025711996601987995
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.04879480020144454
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.08175565470928514
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1564753058784049
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.22302380952380954
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08481993410477483
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: cosine_accuracy@1
value: 0.06
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.12
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.03333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.02
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.012000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.05
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.09
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.09
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.11
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.07804424038166692
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.07533333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.07658274436198606
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.26
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.36
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07999999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.064
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.046000000000000006
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07085714285714287
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.13621428571428573
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.14993650793650792
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.21193650793650792
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.15989208858068493
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.18794444444444444
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1278932041519149
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.38
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.44
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.084
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05200000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.26
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.21524243911000313
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2793333333333333
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.16949818775802034
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.08
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.16
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.24
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.05333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.024000000000000004
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.16
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.24
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.155021218726892
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.12816666666666665
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.14387227309213746
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.12
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.18
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05600000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.042
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0023944899556066555
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.004511202133435534
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.005335271278326478
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.006887081773042016
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0513758550014842
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11271428571428571
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.011178329865269043
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.38
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.44
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04800000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.24
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.37
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.43
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26691470842049086
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21954761904761902
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22127704921258506
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: cosine_accuracy@1
value: 0.56
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.66
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.56
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25333333333333335
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.092
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.49
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6073333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.634
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7406666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6315714749064664
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6265555555555555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6007758177607536
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: cosine_accuracy@1
value: 0.06
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.12
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.14
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.22
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.05333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.036000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.026000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.015666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.03666666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.04066666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.05666666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.05444580189319236
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10085714285714287
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.03825732082321992
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.34
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.64
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10400000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.34
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.52
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.64
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.36676045848370026
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2815
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.28967419376346565
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.36
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07999999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.068
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.165
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.345
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.24854556538285397
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.22416666666666665
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23077037853195492
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: cosine_accuracy@1
value: 0.3469387755102041
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7959183673469388
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9387755102040817
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3469387755102041
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32653061224489793
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.30612244897959184
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.2714285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.01725883684742171
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.06000832753846316
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.10128699807186763
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.17048580946181527
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.29344650277463163
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5436912860382248
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.18279928418932134
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.1605337519623234
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2872527472527473
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.35199372056514916
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.42452119309262165
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1605337519623234
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11281004709576138
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0940094191522763
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0694945054945055
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09630414014919672
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.17041890861447484
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.21512976237088305
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2644152605549218
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.21424006917696453
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2404530537489721
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.17394355216027804
name: Cosine Map@100
Bert base fine-tuned with Cantonese and English mixed STS dataset
This is a sentence-transformers model finetuned from hon9kon9ize/bert-large-cantonese-sts. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: hon9kon9ize/bert-large-cantonese-sts
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Language: yue
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hon9kon9ize/yue-embed")
# Run inference
sentences = [
'query: when did england change from fahrenheit to celsius',
'document: Metrication in the United Kingdom Adopting the metric system was discussed in Parliament as early as 1818 and some industries and even some government agencies had metricated, or were in the process of metricating by the mid 1960s. A formal government policy to support metrication was agreed by 1965. This policy, initiated in response to requests from industry, was to support voluntary metrication, with costs picked up where they fell. In 1969 the government created the Metrication Board as a quango to promote and coordinate metrication. In 1978, after some carpet retailers reverted to pricing by the square yard rather than the square metre, government policy shifted, and they started issuing orders making metrication mandatory in certain sectors. In 1980 government policy shifted again to prefer voluntary metrication, and the Metrication Board was abolished. By the time the Metrication Board was wound up, all the economic sectors that fell within its remit except road signage and parts of the retail trade sector had metricated.',
"document: Periodic table Importantly, the organization of the periodic table can be utilized to derive relationships between various element properties, but also predicted chemical properties and behaviours of undiscovered or newly synthesized elements. Russian chemist Dmitri Mendeleev was first to publish a recognizable periodic table in 1869, developed mainly to illustrate periodic trends of the then-known elements. He also predicted some properties of unidentified elements that were expected to fill gaps within this table. Most of his forecasts proved to be correct. Mendeleev's idea has been slowly expanded and refined with the discovery or synthesis of further new elements and by developing new theoretical models to explain chemical behaviour. The modern periodic table now provides a useful framework for analyzing chemical reactions, and continues to be widely adopted in chemistry, nuclear physics and other sciences.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
InformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.06 | 0.1 | 0.06 | 0.12 | 0.18 | 0.08 | 0.1 | 0.12 | 0.56 | 0.06 | 0.12 | 0.18 | 0.3469 |
cosine_accuracy@3 | 0.2 | 0.26 | 0.1 | 0.22 | 0.38 | 0.16 | 0.1 | 0.26 | 0.66 | 0.12 | 0.34 | 0.22 | 0.7143 |
cosine_accuracy@5 | 0.22 | 0.44 | 0.1 | 0.26 | 0.4 | 0.2 | 0.12 | 0.38 | 0.68 | 0.14 | 0.52 | 0.32 | 0.7959 |
cosine_accuracy@10 | 0.26 | 0.52 | 0.12 | 0.36 | 0.44 | 0.24 | 0.18 | 0.44 | 0.8 | 0.22 | 0.64 | 0.36 | 0.9388 |
cosine_precision@1 | 0.06 | 0.1 | 0.06 | 0.12 | 0.18 | 0.08 | 0.1 | 0.12 | 0.56 | 0.06 | 0.12 | 0.18 | 0.3469 |
cosine_precision@3 | 0.0667 | 0.1267 | 0.0333 | 0.08 | 0.1333 | 0.0533 | 0.06 | 0.0867 | 0.2533 | 0.0533 | 0.1133 | 0.08 | 0.3265 |
cosine_precision@5 | 0.052 | 0.152 | 0.02 | 0.064 | 0.084 | 0.04 | 0.056 | 0.08 | 0.16 | 0.036 | 0.104 | 0.068 | 0.3061 |
cosine_precision@10 | 0.032 | 0.154 | 0.012 | 0.046 | 0.052 | 0.024 | 0.042 | 0.048 | 0.092 | 0.026 | 0.064 | 0.04 | 0.2714 |
cosine_recall@1 | 0.035 | 0.0058 | 0.05 | 0.0709 | 0.09 | 0.08 | 0.0024 | 0.11 | 0.49 | 0.0157 | 0.12 | 0.165 | 0.0173 |
cosine_recall@3 | 0.105 | 0.0257 | 0.09 | 0.1362 | 0.2 | 0.16 | 0.0045 | 0.24 | 0.6073 | 0.0367 | 0.34 | 0.21 | 0.06 |
cosine_recall@5 | 0.1267 | 0.0488 | 0.09 | 0.1499 | 0.21 | 0.2 | 0.0053 | 0.37 | 0.634 | 0.0407 | 0.52 | 0.3 | 0.1013 |
cosine_recall@10 | 0.144 | 0.0818 | 0.11 | 0.2119 | 0.26 | 0.24 | 0.0069 | 0.43 | 0.7407 | 0.0567 | 0.64 | 0.345 | 0.1705 |
cosine_ndcg@10 | 0.1074 | 0.1565 | 0.078 | 0.1599 | 0.2152 | 0.155 | 0.0514 | 0.2669 | 0.6316 | 0.0544 | 0.3668 | 0.2485 | 0.2934 |
cosine_mrr@10 | 0.1231 | 0.223 | 0.0753 | 0.1879 | 0.2793 | 0.1282 | 0.1127 | 0.2195 | 0.6266 | 0.1009 | 0.2815 | 0.2242 | 0.5437 |
cosine_map@100 | 0.0839 | 0.0848 | 0.0766 | 0.1279 | 0.1695 | 0.1439 | 0.0112 | 0.2213 | 0.6008 | 0.0383 | 0.2897 | 0.2308 | 0.1828 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1605 |
cosine_accuracy@3 | 0.2873 |
cosine_accuracy@5 | 0.352 |
cosine_accuracy@10 | 0.4245 |
cosine_precision@1 | 0.1605 |
cosine_precision@3 | 0.1128 |
cosine_precision@5 | 0.094 |
cosine_precision@10 | 0.0695 |
cosine_recall@1 | 0.0963 |
cosine_recall@3 | 0.1704 |
cosine_recall@5 | 0.2151 |
cosine_recall@10 | 0.2644 |
cosine_ndcg@10 | 0.2142 |
cosine_mrr@10 | 0.2405 |
cosine_map@100 | 0.1739 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 129,371 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 13 tokens
- mean: 22.58 tokens
- max: 134 tokens
- min: 7 tokens
- mean: 169.6 tokens
- max: 512 tokens
- Samples:
query answer query: hotel and restaurant employees and bartenders international union
document: Hotel Employees and Restaurant Employees Union The Hotel Employees and Restaurant Employees Union (HERE) was a United States labor union representing workers of the hospitality industry, formed in 1891. In 2004, HERE merged with the Union of Needletrades, Industrial, and Textile Employees (UNITE) to form UNITE HERE. HERE notably organized the staff of Yale University in 1984. Other major employers that contracted with this union included several large casinos (Harrah's, Caesars Palace, and Wynn Resorts); hotels (Hilton, Hyatt and Starwood), and Walt Disney World. HERE was affiliated with the AFL-CIO.
query: 多肢离断伤的并发症是什么?
document: 失血性休克;血循环危象;急性肾功能衰竭
query: who is the father of kelly taylor's son on 90210
document: Kelly Taylor (90210) In 2008, Kelly Taylor returned in the spin-off 90210, now working as a guidance counselor at her alma mater West Beverly Hills High School. It was revealed that in the intervening years, she attained a master's degree and had a son named Sammy with Dylan. She and Dylan ended their relationship soon after. It was also revealed that West Beverly principal Harry Wilson was Kelly's neighbor growing up.[39]
- Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 11 tokens
- mean: 22.61 tokens
- max: 146 tokens
- min: 7 tokens
- mean: 164.27 tokens
- max: 512 tokens
- Samples:
query answer query: 微创经皮肾镜手术的推荐药有些什么?
document: 阿司匹林
query: why are the fires in ca called the thomas fires
document: Thomas Fire On December 4, 2017, the Thomas Fire was reported at 6:26 p.m. PST,[36] to the north of Santa Paula, near Steckel Park and Thomas Aquinas College,[3][24] after which the fire is named.[37] That night, the small brush fire exploded in size and raced through the rugged mountain terrain that lies west of Santa Paula, between Ventura and Ojai.[19][38] Officials blamed strong Santa Ana winds that gusted up to 60 miles per hour (97 km/h) for the sudden expansion.[28][39] Soon after the fire had started, a second blaze was ignited nearly 30 minutes later, about 4 miles (6.4 km) to the north in Upper Ojai at the top of Koenigstein Road.[40] According to eyewitnesses, this second fire was sparked by an explosion in the power line over the area. The second fire was rapidly expanded by the strong Santa Ana winds, and soon merged into the Thomas Fire later that night.[40]
query: which mountain man rediscovered south pass and brought back important information about this trail
document: Jedediah Smith Jedediah Strong Smith (January 6, 1799 – May 27, 1831), was a clerk, frontiersman, hunter, trapper, author, cartographer, and explorer of the Rocky Mountains, the North American West, and the Southwest during the early 19th century. After 75 years of obscurity following his death, Smith was rediscovered as the American whose explorations led to the use of the 20-mile (32 km)-wide South Pass as the dominant point of crossing the Continental Divide for pioneers on the Oregon Trail.
- Loss:
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.05seed
: 12bf16
: Trueprompts
: {'query': 'query: ', 'answer': 'document: '}batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: {'query': 'query: ', 'answer': 'document: '}batch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0010 | 1 | 31.7042 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0049 | 5 | 32.9433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0099 | 10 | 27.0338 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0148 | 15 | 18.1598 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0198 | 20 | 12.5771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0247 | 25 | 8.6872 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0297 | 30 | 6.0455 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0346 | 35 | 5.1917 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0396 | 40 | 4.8424 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0445 | 45 | 4.4785 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0495 | 50 | 4.1896 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0544 | 55 | 4.2621 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0593 | 60 | 3.8401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0643 | 65 | 3.9482 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0692 | 70 | 3.7762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0742 | 75 | 3.4895 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0791 | 80 | 3.5892 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0841 | 85 | 3.5312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0890 | 90 | 3.3244 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0940 | 95 | 3.4369 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0989 | 100 | 3.1867 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1039 | 105 | 3.1734 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1088 | 110 | 3.2156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1137 | 115 | 2.8888 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1187 | 120 | 2.8613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1236 | 125 | 2.8905 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1286 | 130 | 2.5984 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1335 | 135 | 2.6853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1385 | 140 | 2.7013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1434 | 145 | 2.5577 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1484 | 150 | 2.6287 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1533 | 155 | 2.6481 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1583 | 160 | 2.7741 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1632 | 165 | 2.5738 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1682 | 170 | 2.5335 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1731 | 175 | 2.531 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1780 | 180 | 2.437 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1830 | 185 | 2.4836 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1879 | 190 | 2.4642 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1929 | 195 | 2.399 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1978 | 200 | 2.3896 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2028 | 205 | 2.3738 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2077 | 210 | 2.5518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2127 | 215 | 2.4836 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2176 | 220 | 2.2157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2226 | 225 | 2.2986 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2275 | 230 | 2.4967 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2324 | 235 | 2.121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2374 | 240 | 2.4301 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2423 | 245 | 2.5054 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2473 | 250 | 2.3213 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2522 | 255 | 2.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2572 | 260 | 2.2966 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2621 | 265 | 2.2662 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2671 | 270 | 2.3188 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2720 | 275 | 2.1836 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2770 | 280 | 2.2206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2819 | 285 | 2.3144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2868 | 290 | 2.2496 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2918 | 295 | 1.9909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2967 | 300 | 2.1294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3017 | 305 | 2.119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3066 | 310 | 2.0076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3116 | 315 | 2.127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3165 | 320 | 2.1309 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3215 | 325 | 2.0868 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3264 | 330 | 1.9429 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3314 | 335 | 1.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3363 | 340 | 1.82 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3412 | 345 | 1.9731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3462 | 350 | 2.0156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3511 | 355 | 2.0106 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3561 | 360 | 1.9383 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3610 | 365 | 2.0491 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3660 | 370 | 1.8893 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3709 | 375 | 1.958 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3759 | 380 | 1.9821 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3808 | 385 | 2.024 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3858 | 390 | 2.0182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3907 | 395 | 1.9659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3956 | 400 | 1.8339 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4006 | 405 | 1.9081 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4055 | 410 | 1.7876 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4105 | 415 | 1.8371 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4154 | 420 | 1.8274 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4204 | 425 | 1.7863 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4253 | 430 | 1.9064 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4303 | 435 | 1.7721 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4352 | 440 | 1.7162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4402 | 445 | 1.9112 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4451 | 450 | 1.9384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4500 | 455 | 1.8096 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4550 | 460 | 1.7145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4599 | 465 | 1.784 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4649 | 470 | 1.9506 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4698 | 475 | 1.7243 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4748 | 480 | 1.8003 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4797 | 485 | 1.7568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4847 | 490 | 1.5696 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4896 | 495 | 1.8973 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4946 | 500 | 1.6981 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4995 | 505 | 1.7616 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5045 | 510 | 1.6573 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5094 | 515 | 1.8685 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5143 | 520 | 1.8532 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5193 | 525 | 1.7603 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5242 | 530 | 1.7636 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5292 | 535 | 1.4829 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5341 | 540 | 1.6959 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5391 | 545 | 1.6389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5440 | 550 | 1.6624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5490 | 555 | 1.8193 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5539 | 560 | 1.7144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5589 | 565 | 1.4954 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5638 | 570 | 1.6659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5687 | 575 | 1.669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5737 | 580 | 1.6931 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5786 | 585 | 1.6894 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5836 | 590 | 1.6437 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5885 | 595 | 1.7259 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5935 | 600 | 1.7937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5984 | 605 | 1.7279 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6034 | 610 | 1.6769 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6083 | 615 | 1.4731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6133 | 620 | 1.6466 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6182 | 625 | 1.6954 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6231 | 630 | 1.6224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6281 | 635 | 1.62 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6330 | 640 | 1.5795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6380 | 645 | 1.5245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6429 | 650 | 1.7629 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6479 | 655 | 1.5767 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6528 | 660 | 1.6749 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6578 | 665 | 1.5602 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6627 | 670 | 1.6768 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6677 | 675 | 1.8311 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6726 | 680 | 1.5973 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6775 | 685 | 1.5066 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6825 | 690 | 1.6036 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6874 | 695 | 1.7857 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6924 | 700 | 1.4387 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6973 | 705 | 1.5886 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7023 | 710 | 1.551 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7072 | 715 | 1.5561 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7122 | 720 | 1.4458 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7171 | 725 | 1.5703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7221 | 730 | 1.6162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7270 | 735 | 1.5643 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7319 | 740 | 1.4894 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7369 | 745 | 1.6413 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7418 | 750 | 1.5406 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7468 | 755 | 1.5185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7517 | 760 | 1.488 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7567 | 765 | 1.5041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7616 | 770 | 1.4665 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7666 | 775 | 1.5252 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7715 | 780 | 1.4925 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7765 | 785 | 1.3833 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7814 | 790 | 1.3808 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7864 | 795 | 1.5468 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7913 | 800 | 1.5317 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7962 | 805 | 1.5385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8012 | 810 | 1.4012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8061 | 815 | 1.5531 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8111 | 820 | 1.6032 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8160 | 825 | 1.4053 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8210 | 830 | 1.5082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8259 | 835 | 1.5559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8309 | 840 | 1.4286 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8358 | 845 | 1.4336 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8408 | 850 | 1.3731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8457 | 855 | 1.5706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8506 | 860 | 1.4184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8556 | 865 | 1.4312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8605 | 870 | 1.4364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8655 | 875 | 1.5605 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8704 | 880 | 1.4219 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8754 | 885 | 1.4082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8803 | 890 | 1.3846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8853 | 895 | 1.4292 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8902 | 900 | 1.4195 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8952 | 905 | 1.5103 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9001 | 910 | 1.5041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9050 | 915 | 1.427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9100 | 920 | 1.4385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9149 | 925 | 1.298 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9199 | 930 | 1.4499 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9248 | 935 | 1.4752 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9298 | 940 | 1.4752 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9347 | 945 | 1.3705 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9397 | 950 | 1.4567 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9446 | 955 | 1.3364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9496 | 960 | 1.376 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9545 | 965 | 1.35 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9594 | 970 | 1.5841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9644 | 975 | 1.3449 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9693 | 980 | 1.2132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9743 | 985 | 1.3414 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9792 | 990 | 1.5148 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9842 | 995 | 1.3866 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9891 | 1000 | 1.2051 | 1.3370 | 0.0906 | 0.1578 | 0.0712 | 0.1504 | 0.1887 | 0.1554 | 0.0466 | 0.2528 | 0.6197 | 0.0672 | 0.2857 | 0.2291 | 0.2718 | 0.1990 |
0.9941 | 1005 | 1.3021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9990 | 1010 | 1.391 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0040 | 1015 | 1.1452 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0089 | 1020 | 1.3989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0138 | 1025 | 1.2142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0188 | 1030 | 1.2472 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0237 | 1035 | 1.3058 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0287 | 1040 | 1.2643 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0336 | 1045 | 1.2581 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0386 | 1050 | 1.2434 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0435 | 1055 | 1.1874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0485 | 1060 | 1.0421 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0534 | 1065 | 1.3834 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0584 | 1070 | 1.3279 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0633 | 1075 | 1.3779 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0682 | 1080 | 1.3071 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0732 | 1085 | 1.1569 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0781 | 1090 | 1.2427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0831 | 1095 | 1.1607 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0880 | 1100 | 1.2691 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0930 | 1105 | 1.2936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0979 | 1110 | 1.2527 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1029 | 1115 | 1.1143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1078 | 1120 | 1.1508 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1128 | 1125 | 1.1627 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1177 | 1130 | 0.9774 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1227 | 1135 | 1.1827 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1276 | 1140 | 0.9429 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1325 | 1145 | 1.0029 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1375 | 1150 | 1.0764 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1424 | 1155 | 1.0555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1474 | 1160 | 1.0559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1523 | 1165 | 1.0081 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1573 | 1170 | 1.1928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1622 | 1175 | 1.0774 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1672 | 1180 | 0.9185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1721 | 1185 | 1.0838 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1771 | 1190 | 0.9981 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1820 | 1195 | 1.0395 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1869 | 1200 | 0.9522 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1919 | 1205 | 0.9652 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1968 | 1210 | 1.0276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2018 | 1215 | 0.9663 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2067 | 1220 | 1.1356 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2117 | 1225 | 1.159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2166 | 1230 | 0.8575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2216 | 1235 | 0.9134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2265 | 1240 | 1.1889 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2315 | 1245 | 0.935 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2364 | 1250 | 0.975 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2413 | 1255 | 1.073 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2463 | 1260 | 1.0709 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2512 | 1265 | 0.9241 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2562 | 1270 | 1.0101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2611 | 1275 | 1.1451 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2661 | 1280 | 1.0501 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2710 | 1285 | 0.9724 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2760 | 1290 | 0.9222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2809 | 1295 | 1.086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2859 | 1300 | 0.973 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2908 | 1305 | 0.9287 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2957 | 1310 | 0.9051 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3007 | 1315 | 0.9531 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3056 | 1320 | 0.9605 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3106 | 1325 | 0.8778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3155 | 1330 | 0.9399 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3205 | 1335 | 0.9185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3254 | 1340 | 0.9078 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3304 | 1345 | 0.8266 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3353 | 1350 | 0.8186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3403 | 1355 | 0.9394 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3452 | 1360 | 1.0972 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3501 | 1365 | 0.8895 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3551 | 1370 | 0.8678 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3600 | 1375 | 0.9493 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3650 | 1380 | 0.8449 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3699 | 1385 | 0.917 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3749 | 1390 | 0.8899 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3798 | 1395 | 0.9516 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3848 | 1400 | 0.9538 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3897 | 1405 | 0.9964 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3947 | 1410 | 0.9123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3996 | 1415 | 0.86 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4045 | 1420 | 0.9382 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4095 | 1425 | 0.764 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4144 | 1430 | 0.9161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4194 | 1435 | 0.937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4243 | 1440 | 0.8487 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4293 | 1445 | 0.7928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4342 | 1450 | 0.8586 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4392 | 1455 | 0.9355 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4441 | 1460 | 0.965 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4491 | 1465 | 0.9019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4540 | 1470 | 0.8624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4590 | 1475 | 0.8204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4639 | 1480 | 1.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4688 | 1485 | 0.9222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4738 | 1490 | 0.9182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4787 | 1495 | 0.8247 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4837 | 1500 | 0.7746 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4886 | 1505 | 0.882 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4936 | 1510 | 0.8482 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4985 | 1515 | 0.9623 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5035 | 1520 | 0.8804 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5084 | 1525 | 0.8874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5134 | 1530 | 0.9747 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5183 | 1535 | 0.8805 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5232 | 1540 | 0.8776 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5282 | 1545 | 0.7627 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5331 | 1550 | 0.8975 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5381 | 1555 | 0.8213 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5430 | 1560 | 0.9472 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5480 | 1565 | 0.9379 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5529 | 1570 | 0.9312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5579 | 1575 | 0.7866 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5628 | 1580 | 0.8629 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5678 | 1585 | 0.8156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5727 | 1590 | 0.8737 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5776 | 1595 | 0.942 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5826 | 1600 | 0.8167 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5875 | 1605 | 0.9468 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5925 | 1610 | 0.9117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5974 | 1615 | 1.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6024 | 1620 | 0.8357 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6073 | 1625 | 0.8372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6123 | 1630 | 0.905 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6172 | 1635 | 0.9265 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6222 | 1640 | 0.846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6271 | 1645 | 0.7729 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6320 | 1650 | 0.7885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6370 | 1655 | 0.8717 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6419 | 1660 | 0.9845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6469 | 1665 | 0.8286 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6518 | 1670 | 0.8979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6568 | 1675 | 0.8502 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6617 | 1680 | 0.9423 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6667 | 1685 | 1.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6716 | 1690 | 0.8535 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6766 | 1695 | 0.737 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6815 | 1700 | 0.9871 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6864 | 1705 | 0.8828 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6914 | 1710 | 0.8178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6963 | 1715 | 0.7703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7013 | 1720 | 0.8739 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7062 | 1725 | 0.8582 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7112 | 1730 | 0.9181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7161 | 1735 | 0.8801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7211 | 1740 | 0.8009 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7260 | 1745 | 0.9779 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7310 | 1750 | 0.7777 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7359 | 1755 | 0.7864 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7409 | 1760 | 1.0066 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7458 | 1765 | 0.7776 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7507 | 1770 | 0.8122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7557 | 1775 | 0.8025 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7606 | 1780 | 0.7559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7656 | 1785 | 0.8819 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7705 | 1790 | 0.8901 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7755 | 1795 | 0.7598 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7804 | 1800 | 0.7542 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7854 | 1805 | 0.8178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7903 | 1810 | 0.8374 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7953 | 1815 | 0.8363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8002 | 1820 | 0.8177 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8051 | 1825 | 0.9488 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8101 | 1830 | 0.9959 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8150 | 1835 | 0.7942 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8200 | 1840 | 0.8747 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8249 | 1845 | 0.9053 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8299 | 1850 | 0.7853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8348 | 1855 | 0.838 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8398 | 1860 | 0.7732 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8447 | 1865 | 0.8613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8497 | 1870 | 0.791 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8546 | 1875 | 0.8203 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8595 | 1880 | 0.7558 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8645 | 1885 | 0.9918 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8694 | 1890 | 0.8272 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8744 | 1895 | 0.8552 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8793 | 1900 | 0.8135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8843 | 1905 | 0.8297 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8892 | 1910 | 0.7844 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8942 | 1915 | 0.8466 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8991 | 1920 | 0.9099 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9041 | 1925 | 0.8139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9090 | 1930 | 0.8628 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9139 | 1935 | 0.6778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9189 | 1940 | 0.8251 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9238 | 1945 | 0.8915 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9288 | 1950 | 0.8136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9337 | 1955 | 0.8879 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9387 | 1960 | 0.8758 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9436 | 1965 | 0.8153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9486 | 1970 | 0.7253 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9535 | 1975 | 0.8493 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9585 | 1980 | 1.0186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9634 | 1985 | 0.8412 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9683 | 1990 | 0.7027 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9733 | 1995 | 0.744 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9782 | 2000 | 0.9555 | 1.1452 | 0.1064 | 0.1577 | 0.0780 | 0.1597 | 0.2144 | 0.1550 | 0.0513 | 0.2643 | 0.6316 | 0.0525 | 0.3670 | 0.2485 | 0.2937 | 0.2139 |
1.9832 | 2005 | 0.9095 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9881 | 2010 | 0.7378 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9931 | 2015 | 0.8024 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9980 | 2020 | 0.9107 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0 | 2022 | - | - | 0.1074 | 0.1565 | 0.0780 | 0.1599 | 0.2152 | 0.1550 | 0.0514 | 0.2669 | 0.6316 | 0.0544 | 0.3668 | 0.2485 | 0.2934 | 0.2142 |
Framework Versions
- Python: 3.11.2
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.4.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}