monika_asr / README.md
honzapucalek's picture
End of training
7003e8c verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - honzapucalek/monika_asr
metrics:
  - wer
model-index:
  - name: monika_asr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: honzapucalek/monika_asr cs
          type: honzapucalek/monika_asr
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.26058233423048693

monika_asr

This model is a fine-tuned version of openai/whisper-large-v3 on the honzapucalek/monika_asr cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7834
  • Wer: 0.2606

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0001 45.4545 1000 0.6877 0.2625
0.0001 90.9091 2000 0.6910 0.2589
0.0 136.3636 3000 0.7108 0.2591
0.0 181.8182 4000 0.7377 0.2618
0.0 227.2727 5000 0.7669 0.2606

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.1.2+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0