monika_asr / README.md
honzapucalek's picture
End of training
7003e8c verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- honzapucalek/monika_asr
metrics:
- wer
model-index:
- name: monika_asr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: honzapucalek/monika_asr cs
type: honzapucalek/monika_asr
config: cs
split: test
args: cs
metrics:
- name: Wer
type: wer
value: 0.26058233423048693
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# monika_asr
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the honzapucalek/monika_asr cs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7834
- Wer: 0.2606
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:--------:|:----:|:---------------:|:------:|
| 0.0001 | 45.4545 | 1000 | 0.6877 | 0.2625 |
| 0.0001 | 90.9091 | 2000 | 0.6910 | 0.2589 |
| 0.0 | 136.3636 | 3000 | 0.7108 | 0.2591 |
| 0.0 | 181.8182 | 4000 | 0.7377 | 0.2618 |
| 0.0 | 227.2727 | 5000 | 0.7669 | 0.2606 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.1.2+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0