johaness14's picture
End of training
eb49b29
|
raw
history blame
3.11 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-conformer-rel-pos-large
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-conformer-rel-pos-jv-openslr
    results: []

wav2vec2-conformer-rel-pos-jv-openslr

This model is a fine-tuned version of facebook/wav2vec2-conformer-rel-pos-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2470
  • Wer: 0.1227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 75
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5826 2.8329 2000 0.4733 0.4445
0.3478 5.6657 4000 0.3538 0.3191
0.2532 8.4986 6000 0.3085 0.2646
0.2028 11.3314 8000 0.2799 0.2467
0.1628 14.1643 10000 0.2623 0.2095
0.1407 16.9972 12000 0.2510 0.2068
0.1154 19.8300 14000 0.2922 0.1937
0.1044 22.6629 16000 0.2660 0.1730
0.0929 25.4958 18000 0.2818 0.1868
0.0798 28.3286 20000 0.2573 0.1633
0.074 31.1615 22000 0.2398 0.1647
0.0678 33.9943 24000 0.2601 0.1606
0.0628 36.8272 26000 0.2627 0.1613
0.057 39.6601 28000 0.2393 0.1468
0.0547 42.4929 30000 0.2662 0.1585
0.0512 45.3258 32000 0.2544 0.1502
0.0446 48.1586 34000 0.2542 0.1502
0.045 50.9915 36000 0.2624 0.1516
0.0403 53.8244 38000 0.2487 0.1420
0.0378 56.6572 40000 0.2498 0.1330
0.0353 59.4901 42000 0.2495 0.1309
0.0337 62.3229 44000 0.2505 0.1316
0.029 65.1558 46000 0.2373 0.1247
0.0277 67.9887 48000 0.2543 0.1282
0.0283 70.8215 50000 0.2547 0.1234
0.0275 73.6544 52000 0.2470 0.1227

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.2.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1