|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-conformer-rel-pos-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-conformer-rel-pos-jv-openslr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-conformer-rel-pos-jv-openslr |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2470 |
|
- Wer: 0.1227 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 75 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:------:| |
|
| 0.5826 | 2.8329 | 2000 | 0.4733 | 0.4445 | |
|
| 0.3478 | 5.6657 | 4000 | 0.3538 | 0.3191 | |
|
| 0.2532 | 8.4986 | 6000 | 0.3085 | 0.2646 | |
|
| 0.2028 | 11.3314 | 8000 | 0.2799 | 0.2467 | |
|
| 0.1628 | 14.1643 | 10000 | 0.2623 | 0.2095 | |
|
| 0.1407 | 16.9972 | 12000 | 0.2510 | 0.2068 | |
|
| 0.1154 | 19.8300 | 14000 | 0.2922 | 0.1937 | |
|
| 0.1044 | 22.6629 | 16000 | 0.2660 | 0.1730 | |
|
| 0.0929 | 25.4958 | 18000 | 0.2818 | 0.1868 | |
|
| 0.0798 | 28.3286 | 20000 | 0.2573 | 0.1633 | |
|
| 0.074 | 31.1615 | 22000 | 0.2398 | 0.1647 | |
|
| 0.0678 | 33.9943 | 24000 | 0.2601 | 0.1606 | |
|
| 0.0628 | 36.8272 | 26000 | 0.2627 | 0.1613 | |
|
| 0.057 | 39.6601 | 28000 | 0.2393 | 0.1468 | |
|
| 0.0547 | 42.4929 | 30000 | 0.2662 | 0.1585 | |
|
| 0.0512 | 45.3258 | 32000 | 0.2544 | 0.1502 | |
|
| 0.0446 | 48.1586 | 34000 | 0.2542 | 0.1502 | |
|
| 0.045 | 50.9915 | 36000 | 0.2624 | 0.1516 | |
|
| 0.0403 | 53.8244 | 38000 | 0.2487 | 0.1420 | |
|
| 0.0378 | 56.6572 | 40000 | 0.2498 | 0.1330 | |
|
| 0.0353 | 59.4901 | 42000 | 0.2495 | 0.1309 | |
|
| 0.0337 | 62.3229 | 44000 | 0.2505 | 0.1316 | |
|
| 0.029 | 65.1558 | 46000 | 0.2373 | 0.1247 | |
|
| 0.0277 | 67.9887 | 48000 | 0.2543 | 0.1282 | |
|
| 0.0283 | 70.8215 | 50000 | 0.2547 | 0.1234 | |
|
| 0.0275 | 73.6544 | 52000 | 0.2470 | 0.1227 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|