DeCLUTR-small
Model description
The "DeCLUTR-small" model from our paper: DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations.
Intended uses & limitations
The model is intended to be used as a universal sentence encoder, similar to Google's Universal Sentence Encoder or Sentence Transformers.
How to use
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
# Load the model
tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-small")
model = AutoModel.from_pretrained("johngiorgi/declutr-small")
# Prepare some text to embed
text = [
"A smiling costumed woman is holding an umbrella.",
"A happy woman in a fairy costume holds an umbrella.",
]
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
# Embed the text
with torch.no_grad():
sequence_output, _ = model(**inputs, output_hidden_states=False)
# Mean pool the token-level embeddings to get sentence-level embeddings
embeddings = torch.sum(
sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1
) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9)
# Compute a semantic similarity via the cosine distance
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
BibTeX entry and citation info
@article{Giorgi2020DeCLUTRDC,
title={DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations},
author={John M Giorgi and Osvald Nitski and Gary D. Bader and Bo Wang},
journal={ArXiv},
year={2020},
volume={abs/2006.03659}
}