metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:221
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: |
Name : Vitality Systems
Category: Facility Management, Health Services
Department: Office Administration
Location: Chicago, IL
Amount: 347.29
Card: Office Wellness Initiative
Trip Name: unknown
sentences:
- |
Name : BizPro Connect
Category: Data Services & Analytics, Telecommunications
Department: Executive
Location: London, UK
Amount: 1249.67
Card: Q3 Strategic Enhancement Plan
Trip Name: unknown
- |
Name : Global Insights Group
Category: Subscriptions & Memberships, Data Services & Analytics
Department: Marketing
Location: London, UK
Amount: 1245.67
Card: Marketing Intelligence Fund
Trip Name: unknown
- |
Name : Allied Workplace Solutions
Category: Facility Management, Energy Services
Department: Office Administration
Location: New York, NY
Amount: 861.47
Card: Monthly Expenses Allocation
Trip Name: unknown
- source_sentence: |
Name : Café Del Mar
Category: Catering Services, Event Planning
Department: Sales
Location: Barcelona, ES
Amount: 578.29
Card: Q3 Client Engagement
Trip Name: unknown
sentences:
- |
Name : TranspoSolutions LLP
Category: Corporate Travel Analyst, Expense Management Services
Department: Executive
Location: New York, NY
Amount: 629.45
Card: Strategic Partnership Infrastructure
Trip Name: Tech Symposium NYC
- |
Name : Talent Scout Services
Category: Professional Services, Recruitment Solutions
Department: HR
Location: New York, NY
Amount: 3200.0
Card: Recruitment Excellence Fund
Trip Name: unknown
- |
Name : FastLane Transport
Category: Logistics & Transport, Vehicle Services
Department: Sales
Location: Miami, FL
Amount: 158.25
Card: Sales Travel Expenses
Trip Name: unknown
- source_sentence: |
Name : CleverCo
Category: Software & Licenses
Department: Customer Success
Location: Amsterdam, Netherlands
Amount: 2999.99
Card: Digital Engagement Tools
Trip Name: unknown
sentences:
- |
Name : Miller & Gartner
Category: Consulting, Business Expense
Department: Legal
Location: Chicago, IL
Amount: 1500.0
Card: Legal Fund
Trip Name: unknown
- |
Name : Urban Mobility Solutions
Category: Transportation Services, Leasing Services
Department: Executive
Location: Chicago, IL
Amount: 1023.45
Card: Strategic Partnership Building
Trip Name: Vendor Contract Negotiations
- |
Name : Tech Haven Solutions
Category: Integrated Systems Provider, Custom Hardware Solutions
Department: IT Operations
Location: Toronto, Canada
Amount: 1550.43
Card: Infrastructure Upgrades Project
Trip Name: unknown
- source_sentence: |
Name : Globex Solutions
Category: Financial Software, Data Management
Department: Finance
Location: New York, NY
Amount: 1324.57
Card: Global Revenue Enhancement Initiative
Trip Name: unknown
sentences:
- |
Name : CloudSync Security
Category: Cloud Solutions, Cybersecurity Services
Department: IT Operations
Location: Dublin, Ireland
Amount: 1239.45
Card: Integration Compliance Fund
Trip Name: unknown
- |
Name : Cirrus Insights
Category: Customer Engagement Platform, SaaS
Department: Sales
Location: Austin, TX
Amount: 1899.99
Card: Annual Software Licensing Fund
Trip Name: unknown
- |
Name : Innovative Patents Co.
Category: Intellectual Property Services, Legal Services
Department: Legal
Location: New York, NY
Amount: 3250.0
Card: Patent Acquisition Fund
Trip Name: unknown
- source_sentence: |
Name : TechSavvy Solutions
Category: Software Services, Online Subscription
Department: Engineering
Location: Austin, TX
Amount: 1200.0
Card: Annual Engineering Tools Budget
Trip Name: unknown
sentences:
- |
Name : Kanzan Solutions
Category: Consulting Services, Business Advisory
Department: Legal
Location: Tokyo, Japan
Amount: 3900.75
Card: Quarterly Compliance Review
Trip Name: unknown
- |
Name : Omachi Meitetsu
Category: Transportation Services, Travel Services
Department: Sales
Location: Hakkuba Japan
Amount: 120.0
Card: Quarterly Travel Expenses
Trip Name: unknown
- |
Name : Globex Tech Solutions
Category: Office Equipment Providers, IT Services & Solutions
Department: IT Operations
Location: New York, NY
Amount: 1589.75
Card: Annual IT Enhancement Budget
Trip Name: unknown
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.8280542986425339
name: Cosine Accuracy
- type: dot_accuracy
value: 0.17194570135746606
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8280542986425339
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8280542986425339
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8280542986425339
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0.9714285714285714
name: Cosine Accuracy
- type: dot_accuracy
value: 0.02857142857142857
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9714285714285714
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9714285714285714
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9714285714285714
name: Max Accuracy
SentenceTransformer based on BAAI/bge-base-en
This is a sentence-transformers model finetuned from BAAI/bge-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("juanpprim/finetuned-bge-base-en")
# Run inference
sentences = [
'\nName : TechSavvy Solutions\nCategory: Software Services, Online Subscription\nDepartment: Engineering\nLocation: Austin, TX\nAmount: 1200.0\nCard: Annual Engineering Tools Budget\nTrip Name: unknown\n',
'\nName : Omachi Meitetsu\nCategory: Transportation Services, Travel Services\nDepartment: Sales\nLocation: Hakkuba Japan\nAmount: 120.0\nCard: Quarterly Travel Expenses\nTrip Name: unknown\n',
'\nName : Globex Tech Solutions\nCategory: Office Equipment Providers, IT Services & Solutions\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 1589.75\nCard: Annual IT Enhancement Budget\nTrip Name: unknown\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
bge-base-en-train
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8281 |
dot_accuracy | 0.1719 |
manhattan_accuracy | 0.8281 |
euclidean_accuracy | 0.8281 |
max_accuracy | 0.8281 |
Triplet
- Dataset:
bge-base-en-eval
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9714 |
dot_accuracy | 0.0286 |
manhattan_accuracy | 0.9714 |
euclidean_accuracy | 0.9714 |
max_accuracy | 0.9714 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 221 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 221 samples:
sentence label type string int details - min: 32 tokens
- mean: 39.7 tokens
- max: 49 tokens
- 0: ~4.52%
- 1: ~3.17%
- 2: ~3.17%
- 3: ~4.52%
- 4: ~5.43%
- 5: ~4.07%
- 6: ~4.52%
- 7: ~4.07%
- 8: ~3.62%
- 9: ~3.62%
- 10: ~3.17%
- 11: ~2.71%
- 12: ~3.62%
- 13: ~3.17%
- 14: ~3.62%
- 15: ~2.26%
- 16: ~4.52%
- 17: ~4.07%
- 18: ~4.07%
- 19: ~3.17%
- 20: ~4.98%
- 21: ~3.17%
- 22: ~5.43%
- 23: ~3.62%
- 24: ~4.07%
- 25: ~1.81%
- 26: ~1.81%
- Samples:
sentence label
Name : Palace Suites
Category: Hotel Accommodation, Event Outsourcing
Department: Marketing
Location: Amsterdam, NL
Amount: 1278.64
Card: Annual Conference Stay
Trip Name: 2023 Innovation Summit0
Name : BuroPro Services
Category: Facilities Management, Maintenance Solutions
Department: Office Administration
Location: Berlin, Germany
Amount: 879.99
Card: Monthly Equipment Oversight
Trip Name: unknown1
Name : TechXperts Global
Category: IT Services, Consulting
Department: IT Operations
Location: Berlin, Germany
Amount: 987.49
Card: Quarterly System Assessment
Trip Name: unknown2
- Loss:
BatchSemiHardTripletLoss
Evaluation Dataset
Unnamed Dataset
- Size: 55 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 55 samples:
sentence label type string int details - min: 34 tokens
- mean: 39.07 tokens
- max: 46 tokens
- 0: ~1.82%
- 1: ~7.27%
- 2: ~1.82%
- 3: ~1.82%
- 4: ~1.82%
- 5: ~1.82%
- 6: ~10.91%
- 7: ~5.45%
- 8: ~3.64%
- 9: ~3.64%
- 10: ~14.55%
- 12: ~1.82%
- 13: ~3.64%
- 14: ~3.64%
- 15: ~3.64%
- 16: ~3.64%
- 19: ~9.09%
- 20: ~3.64%
- 22: ~1.82%
- 23: ~3.64%
- 24: ~3.64%
- 25: ~5.45%
- 26: ~1.82%
- Samples:
sentence label
Name : NetSolve Consulting
Category: IT Consulting, Infrastructure Solutions
Department: IT Operations
Location: Berlin, Germany
Amount: 892.45
Card: Tech Infrastructure Enhancement
Trip Name: unknown2
Name : Urban Mobility Solutions
Category: Transportation Services, Leasing Services
Department: Executive
Location: Chicago, IL
Amount: 1023.45
Card: Strategic Partnership Building
Trip Name: Vendor Contract Negotiations10
Name : CloudSync Security
Category: Cloud Solutions, Cybersecurity Services
Department: IT Operations
Location: Dublin, Ireland
Amount: 1239.45
Card: Integration Compliance Fund
Trip Name: unknown15
- Loss:
BatchSemiHardTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
---|---|---|---|
0 | 0 | - | 0.8281 |
5.0 | 70 | 0.9714 | - |
Framework Versions
- Python: 3.9.22
- Sentence Transformers: 3.1.1
- Transformers: 4.42.2
- PyTorch: 2.7.0+cu126
- Accelerate: 1.3.0
- Datasets: 3.6.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchSemiHardTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}