karim155's picture
Model save
120173b verified
|
raw
history blame
4.45 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: convnext-tiny-224-finetuned
    results: []

convnext-tiny-224-finetuned

This model is a fine-tuned version of facebook/convnext-tiny-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0311
  • Logloss: 1.0311
  • Accuracy: {'accuracy': 0.5626423690205011}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Logloss Accuracy
1.6135 0.9455 13 1.5881 1.5881 {'accuracy': 0.22323462414578588}
1.5823 1.9636 27 1.5302 1.5302 {'accuracy': 0.35990888382687924}
1.4988 2.9818 41 1.4480 1.4480 {'accuracy': 0.4874715261958998}
1.4303 4.0 55 1.3424 1.3424 {'accuracy': 0.5034168564920274}
1.3653 4.9455 68 1.2544 1.2544 {'accuracy': 0.5239179954441914}
1.2232 5.9636 82 1.1867 1.1867 {'accuracy': 0.5239179954441914}
1.1734 6.9818 96 1.1330 1.1330 {'accuracy': 0.5466970387243736}
1.0747 8.0 110 1.1197 1.1197 {'accuracy': 0.5626423690205011}
1.0405 8.9455 123 1.0871 1.0871 {'accuracy': 0.5535307517084282}
1.0313 9.9636 137 1.0900 1.0900 {'accuracy': 0.5671981776765376}
0.959 10.9818 151 1.0766 1.0766 {'accuracy': 0.5603644646924829}
0.9314 12.0 165 1.0608 1.0608 {'accuracy': 0.5603644646924829}
0.9102 12.9455 178 1.0388 1.0388 {'accuracy': 0.5649202733485194}
0.8437 13.9636 192 1.0332 1.0332 {'accuracy': 0.5785876993166287}
0.8234 14.9818 206 1.0302 1.0302 {'accuracy': 0.5763097949886105}
0.7883 16.0 220 1.0276 1.0276 {'accuracy': 0.5649202733485194}
0.7364 16.9455 233 1.0278 1.0278 {'accuracy': 0.5649202733485194}
0.7561 17.9636 247 1.0258 1.0258 {'accuracy': 0.5649202733485194}
0.7062 18.9818 261 1.0196 1.0196 {'accuracy': 0.5694760820045558}
0.6897 20.0 275 1.0308 1.0308 {'accuracy': 0.5558086560364465}
0.6511 20.9455 288 1.0247 1.0247 {'accuracy': 0.5626423690205011}
0.6338 21.9636 302 1.0310 1.0310 {'accuracy': 0.5603644646924829}
0.619 22.9818 316 1.0258 1.0258 {'accuracy': 0.5671981776765376}
0.6008 24.0 330 1.0299 1.0299 {'accuracy': 0.5626423690205011}
0.601 24.9455 343 1.0329 1.0329 {'accuracy': 0.5671981776765376}
0.595 25.9636 357 1.0277 1.0277 {'accuracy': 0.5694760820045558}
0.598 26.9818 371 1.0288 1.0288 {'accuracy': 0.5671981776765376}
0.5771 28.0 385 1.0311 1.0311 {'accuracy': 0.5603644646924829}
0.5829 28.3636 390 1.0311 1.0311 {'accuracy': 0.5626423690205011}

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1