|
--- |
|
library_name: keras-hub |
|
--- |
|
### Model Overview |
|
This class represents the CSPDarkNet architecture. |
|
|
|
**Reference** |
|
|
|
- [CSPNet Paper](https://arxiv.org/abs/1911.11929) |
|
|
|
For transfer learning use cases, make sure to read the |
|
[guide to transfer learning & fine-tuning](https://keras.io/guides/transfer_learning/). |
|
|
|
## Links |
|
* [CSPNet Quickstart Notebook](https://www.kaggle.com/code/prasadsachin/cspnet-quickstart-kerashub) |
|
* [CSPDarkNet API Documentation](https://keras.io/keras_hub/api/models/cspnet/) |
|
* [CSPDarkNet Model Card](https://huggingface.co/timm/cspdarknet53.ra_in1k) |
|
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) |
|
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) |
|
|
|
## Installation |
|
|
|
Keras and KerasHub can be installed with: |
|
|
|
``` |
|
pip install -U -q keras-hub |
|
pip install -U -q keras |
|
``` |
|
|
|
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. |
|
|
|
## Presets |
|
|
|
The following model checkpoints are provided by the Keras team. Weights have been ported from: https://huggingface.co/timm. Full code examples for each are available below. |
|
|
|
| Preset name | Parameters | Description | |
|
|-----------------------|------------|---------------| |
|
| `csp_darknet_53_ra_imagenet` | 27642184 | A CSP-DarkNet (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.| |
|
| `csp_resnext_50_ra_imagenet` | 20569896 | A CSP-ResNeXt (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.| |
|
| `csp_resnet_50_ra_imagenet` | 21616168 | A CSP-ResNet (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.| |
|
| `darknet_53_imagenet` | 41609928 | A DarkNet image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution.| |
|
|
|
## Example Usage |
|
```python |
|
input_data = np.ones(shape=(8, 224, 224, 3)) |
|
|
|
# Pretrained backbone |
|
model = keras_hub.models.CSPNetBackbone.from_preset("csp_resnext_50_ra_imagenet") |
|
model(input_data) |
|
|
|
# Randomly initialized backbone with a custom config |
|
model = keras_hub.models.CSPNetBackbone( |
|
stem_filters=32, |
|
stem_kernel_size=3, |
|
stem_strides=1, |
|
stackwise_depth=[1, 2, 4], |
|
stackwise_strides=[1, 2, 2], |
|
stackwise_num_filters=[32, 64, 128], |
|
block_type="dark", |
|
) |
|
|
|
model(input_data) |
|
|
|
#Use cspnet for image classification task |
|
model = keras_hub.models.ImageClassifier.from_preset("csp_resnext_50_ra_imagenet") |
|
|
|
#Use Timm presets directly from HuggingFace |
|
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/cspdarknet53.ra_in1k') |
|
``` |
|
|
|
## Example Usage with Hugging Face URI |
|
|
|
```python |
|
input_data = np.ones(shape=(8, 224, 224, 3)) |
|
|
|
# Pretrained backbone |
|
model = keras_hub.models.CSPNetBackbone.from_preset("hf://keras/csp_resnext_50_ra_imagenet") |
|
model(input_data) |
|
|
|
# Randomly initialized backbone with a custom config |
|
model = keras_hub.models.CSPNetBackbone( |
|
stem_filters=32, |
|
stem_kernel_size=3, |
|
stem_strides=1, |
|
stackwise_depth=[1, 2, 4], |
|
stackwise_strides=[1, 2, 2], |
|
stackwise_num_filters=[32, 64, 128], |
|
block_type="dark", |
|
) |
|
|
|
model(input_data) |
|
|
|
#Use cspnet for image classification task |
|
model = keras_hub.models.ImageClassifier.from_preset("hf://keras/csp_resnext_50_ra_imagenet") |
|
|
|
#Use Timm presets directly from HuggingFace |
|
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/cspdarknet53.ra_in1k') |
|
``` |
|
|