khushi1234455687's picture
Update README.md
2cd67d5 verified
metadata
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
  - fleurs
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xlsr-53-Hindi-Version3
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: fleurs
          type: fleurs
          config: hi_in
          split: None
          args: hi_in
        metrics:
          - type: wer
            value: 0.282143903153373
            name: Wer
language:
  - hi
pipeline_tag: automatic-speech-recognition

wav2vec2-large-xlsr-53-Hindi-Version3

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7311
  • Wer: 0.2821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.362 6.7568 500 3.3795 1.0
0.5309 13.5135 1000 0.5572 0.4268
0.2342 20.2703 1500 0.5206 0.3341
0.1408 27.0270 2000 0.5516 0.3292
0.1126 33.7838 2500 0.6105 0.3199
0.0892 40.5405 3000 0.6489 0.3123
0.0721 47.2973 3500 0.6533 0.3067
0.0719 54.0541 4000 0.6898 0.3050
0.0592 60.8108 4500 0.7007 0.2990
0.0737 67.5676 5000 0.7106 0.2921
0.0399 74.3243 5500 0.7271 0.2916
0.0409 81.0811 6000 0.7298 0.2871
0.0322 87.8378 6500 0.7311 0.2835
0.0285 94.5946 7000 0.7311 0.2821

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1