|
--- |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
datasets: |
|
- fleurs |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-large-xlsr-53-Hindi-Version3 |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: fleurs |
|
type: fleurs |
|
config: hi_in |
|
split: None |
|
args: hi_in |
|
metrics: |
|
- type: wer |
|
value: 0.282143903153373 |
|
name: Wer |
|
language: |
|
- hi |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-53-Hindi-Version3 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the fleurs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7311 |
|
- Wer: 0.2821 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 3.362 | 6.7568 | 500 | 3.3795 | 1.0 | |
|
| 0.5309 | 13.5135 | 1000 | 0.5572 | 0.4268 | |
|
| 0.2342 | 20.2703 | 1500 | 0.5206 | 0.3341 | |
|
| 0.1408 | 27.0270 | 2000 | 0.5516 | 0.3292 | |
|
| 0.1126 | 33.7838 | 2500 | 0.6105 | 0.3199 | |
|
| 0.0892 | 40.5405 | 3000 | 0.6489 | 0.3123 | |
|
| 0.0721 | 47.2973 | 3500 | 0.6533 | 0.3067 | |
|
| 0.0719 | 54.0541 | 4000 | 0.6898 | 0.3050 | |
|
| 0.0592 | 60.8108 | 4500 | 0.7007 | 0.2990 | |
|
| 0.0737 | 67.5676 | 5000 | 0.7106 | 0.2921 | |
|
| 0.0399 | 74.3243 | 5500 | 0.7271 | 0.2916 | |
|
| 0.0409 | 81.0811 | 6000 | 0.7298 | 0.2871 | |
|
| 0.0322 | 87.8378 | 6500 | 0.7311 | 0.2835 | |
|
| 0.0285 | 94.5946 | 7000 | 0.7311 | 0.2821 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |