|
--- |
|
tags: |
|
- bittensor |
|
- subnet-20 |
|
- agent |
|
- function-calling |
|
- generated_from_trainer |
|
license: mit |
|
datasets: |
|
- HuggingFaceH4/ultrachat_200k |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
language: |
|
- en |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
pipeline_tag: text-generation |
|
widget: |
|
- example_title: Pirate! |
|
messages: |
|
- role: system |
|
content: You are a pirate chatbot who always responds with Arr! |
|
- role: user |
|
content: There's a llama on my lawn, how can I get rid of him? |
|
output: |
|
text: >- |
|
Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare |
|
sight, but I've got a plan that might help ye get rid of 'im. Ye'll need |
|
to gather some carrots and hay, and then lure the llama away with the |
|
promise of a tasty treat. Once he's gone, ye can clean up yer lawn and |
|
enjoy the peace and quiet once again. But beware, me hearty, for there |
|
may be more llamas where that one came from! Arr! |
|
model-index: |
|
- name: zephyr-7b-beta |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
name: normalized accuracy |
|
value: 62.03 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
name: normalized accuracy |
|
value: 84.36 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Drop (3-Shot) |
|
type: drop |
|
split: validation |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: f1 |
|
name: f1 score |
|
value: 9.66 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 57.45 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 12.74 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 61.07 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 77.74 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AlpacaEval |
|
type: tatsu-lab/alpaca_eval |
|
metrics: |
|
- type: unknown |
|
name: win rate |
|
value: 0.906 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MT-Bench |
|
type: unknown |
|
metrics: |
|
- type: unknown |
|
name: score |
|
value: 7.34 |
|
--- |
|
|
|
# Zephyr-7B-Beta (Fine-tuned for Subnet 20 BitAgent) |
|
|
|
This is a fine-tuned version of **Mistral-7B** adapted for **function-calling and reasoning tasks** in **Bittensor Subnet 20 (BitAgent)**. |
|
|
|
## 🧠 Use Case |
|
- Works as an **agent LLM** inside the BitAgent subnet. |
|
- Supports **reasoning** and **function-calling outputs**. |
|
- Optimized for **task delegation and structured outputs**. |
|
|
|
## 🚀 How to Use |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("username/zephyr-7b-beta-bitagent") |
|
tokenizer = AutoTokenizer.from_pretrained("username/zephyr-7b-beta-bitagent") |
|
|
|
prompt = "Summarize the latest research in AI safety in 3 bullet points." |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=200) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|