SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
Model Labels
Label |
Examples |
Enrichment / reinterpretation |
- 'the statement recognised the objective compassion but the opinion contradicted it'
- "the person's individual belief doesn't tally with the accepted belief; this is perfectly reasonable."
- 'cyberbully may seem cruel to everyone, but to tom, he does not feel cruel to him.'
|
Linguistic (in)felicity |
- 'because if its wrong how can you then make a statement saying it is not wrong'
- 'it is contradictory.'
- 'because the writer just stated that it s raining so how could she then not know if it is raining?'
|
Lack of understanding / clear misunderstanding |
- 'it sounds very contradictory'
- 'it reads well and makes sense'
- 'it make not sense on one hand help the homeless people is right, on the hand hand it is not unethical.'
|
Evaluation
Metrics
Label |
Accuracy |
Precision |
Recall |
F1 |
all |
0.9211 |
0.9199 |
0.9031 |
0.9106 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("setfit_model_id")
preds = model("it made sense because it is tom's opinion that cyberbullying is not wrong.")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
2 |
16.375 |
92 |
Label |
Training Sample Count |
Enrichment / reinterpretation |
29 |
Lack of understanding / clear misunderstanding |
11 |
Linguistic (in)felicity |
112 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 376
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0026 |
1 |
0.2512 |
- |
0.1316 |
50 |
0.2213 |
- |
0.2632 |
100 |
0.1707 |
- |
0.3947 |
150 |
0.0839 |
- |
0.5263 |
200 |
0.0335 |
- |
0.6579 |
250 |
0.0141 |
- |
0.7895 |
300 |
0.0072 |
- |
0.9211 |
350 |
0.0026 |
- |
1.0526 |
400 |
0.0008 |
- |
1.1842 |
450 |
0.0006 |
- |
1.3158 |
500 |
0.0004 |
- |
1.4474 |
550 |
0.0002 |
- |
1.5789 |
600 |
0.0002 |
- |
1.7105 |
650 |
0.0002 |
- |
1.8421 |
700 |
0.0002 |
- |
1.9737 |
750 |
0.0002 |
- |
2.1053 |
800 |
0.0002 |
- |
2.2368 |
850 |
0.0002 |
- |
2.3684 |
900 |
0.0001 |
- |
2.5 |
950 |
0.0001 |
- |
2.6316 |
1000 |
0.0001 |
- |
2.7632 |
1050 |
0.0001 |
- |
2.8947 |
1100 |
0.0001 |
- |
3.0263 |
1150 |
0.0001 |
- |
3.1579 |
1200 |
0.0001 |
- |
3.2895 |
1250 |
0.0001 |
- |
3.4211 |
1300 |
0.0001 |
- |
3.5526 |
1350 |
0.0001 |
- |
3.6842 |
1400 |
0.0001 |
- |
3.8158 |
1450 |
0.0001 |
- |
3.9474 |
1500 |
0.0001 |
- |
4.0789 |
1550 |
0.0002 |
- |
4.2105 |
1600 |
0.0001 |
- |
4.3421 |
1650 |
0.0033 |
- |
4.4737 |
1700 |
0.0001 |
- |
4.6053 |
1750 |
0.0004 |
- |
4.7368 |
1800 |
0.0035 |
- |
4.8684 |
1850 |
0.0002 |
- |
5.0 |
1900 |
0.0003 |
- |
5.1316 |
1950 |
0.0001 |
- |
5.2632 |
2000 |
0.0001 |
- |
5.3947 |
2050 |
0.0001 |
- |
5.5263 |
2100 |
0.0001 |
- |
5.6579 |
2150 |
0.0001 |
- |
5.7895 |
2200 |
0.0001 |
- |
5.9211 |
2250 |
0.0001 |
- |
6.0526 |
2300 |
0.0001 |
- |
6.1842 |
2350 |
0.0001 |
- |
6.3158 |
2400 |
0.0001 |
- |
6.4474 |
2450 |
0.0001 |
- |
6.5789 |
2500 |
0.0001 |
- |
6.7105 |
2550 |
0.0001 |
- |
6.8421 |
2600 |
0.0001 |
- |
6.9737 |
2650 |
0.0001 |
- |
7.1053 |
2700 |
0.0001 |
- |
7.2368 |
2750 |
0.0001 |
- |
7.3684 |
2800 |
0.0001 |
- |
7.5 |
2850 |
0.0 |
- |
7.6316 |
2900 |
0.0001 |
- |
7.7632 |
2950 |
0.0001 |
- |
7.8947 |
3000 |
0.0001 |
- |
8.0263 |
3050 |
0.0001 |
- |
8.1579 |
3100 |
0.0001 |
- |
8.2895 |
3150 |
0.0001 |
- |
8.4211 |
3200 |
0.0001 |
- |
8.5526 |
3250 |
0.0001 |
- |
8.6842 |
3300 |
0.0001 |
- |
8.8158 |
3350 |
0.0001 |
- |
8.9474 |
3400 |
0.0001 |
- |
9.0789 |
3450 |
0.0001 |
- |
9.2105 |
3500 |
0.0001 |
- |
9.3421 |
3550 |
0.0 |
- |
9.4737 |
3600 |
0.0 |
- |
9.6053 |
3650 |
0.0001 |
- |
9.7368 |
3700 |
0.0001 |
- |
9.8684 |
3750 |
0.0 |
- |
10.0 |
3800 |
0.0 |
- |
Framework Versions
- Python: 3.11.9
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}