metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
it does not make sense because sally believe its makes sense and at the
same time does not make sense to help the homeless.
- text: >-
it contradicts itself- how can something be right and you then think it's
not right?
- text: it made sense because it is tom's opinion that cyberbullying is not wrong.
- text: >-
a person can think it is raining even when it is. there is nothing wrong
with thinking that way. the thought makes sense even though the fact is
incorrect.
- text: >-
they contradict their own opinions on the morals. although i can
understand how they came to that conclusion. perhaps they mean, helping
the homeless is morally right, however it's not right for my situation.
context and clarification is key here.
metrics:
- accuracy
- precision
- recall
- f1
pipeline_tag: text-classification
library_name: setfit
inference: true
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9210526315789473
name: Accuracy
- type: precision
value: 0.9198717948717949
name: Precision
- type: recall
value: 0.9030769230769231
name: Recall
- type: f1
value: 0.9105882352941177
name: F1
SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Enrichment / reinterpretation |
|
Linguistic (in)felicity |
|
Lack of understanding / clear misunderstanding |
|
Evaluation
Metrics
Label | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
all | 0.9211 | 0.9199 | 0.9031 | 0.9106 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("it made sense because it is tom's opinion that cyberbullying is not wrong.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 16.375 | 92 |
Label | Training Sample Count |
---|---|
Enrichment / reinterpretation | 29 |
Lack of understanding / clear misunderstanding | 11 |
Linguistic (in)felicity | 112 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 376
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0026 | 1 | 0.2512 | - |
0.1316 | 50 | 0.2213 | - |
0.2632 | 100 | 0.1707 | - |
0.3947 | 150 | 0.0839 | - |
0.5263 | 200 | 0.0335 | - |
0.6579 | 250 | 0.0141 | - |
0.7895 | 300 | 0.0072 | - |
0.9211 | 350 | 0.0026 | - |
1.0526 | 400 | 0.0008 | - |
1.1842 | 450 | 0.0006 | - |
1.3158 | 500 | 0.0004 | - |
1.4474 | 550 | 0.0002 | - |
1.5789 | 600 | 0.0002 | - |
1.7105 | 650 | 0.0002 | - |
1.8421 | 700 | 0.0002 | - |
1.9737 | 750 | 0.0002 | - |
2.1053 | 800 | 0.0002 | - |
2.2368 | 850 | 0.0002 | - |
2.3684 | 900 | 0.0001 | - |
2.5 | 950 | 0.0001 | - |
2.6316 | 1000 | 0.0001 | - |
2.7632 | 1050 | 0.0001 | - |
2.8947 | 1100 | 0.0001 | - |
3.0263 | 1150 | 0.0001 | - |
3.1579 | 1200 | 0.0001 | - |
3.2895 | 1250 | 0.0001 | - |
3.4211 | 1300 | 0.0001 | - |
3.5526 | 1350 | 0.0001 | - |
3.6842 | 1400 | 0.0001 | - |
3.8158 | 1450 | 0.0001 | - |
3.9474 | 1500 | 0.0001 | - |
4.0789 | 1550 | 0.0002 | - |
4.2105 | 1600 | 0.0001 | - |
4.3421 | 1650 | 0.0033 | - |
4.4737 | 1700 | 0.0001 | - |
4.6053 | 1750 | 0.0004 | - |
4.7368 | 1800 | 0.0035 | - |
4.8684 | 1850 | 0.0002 | - |
5.0 | 1900 | 0.0003 | - |
5.1316 | 1950 | 0.0001 | - |
5.2632 | 2000 | 0.0001 | - |
5.3947 | 2050 | 0.0001 | - |
5.5263 | 2100 | 0.0001 | - |
5.6579 | 2150 | 0.0001 | - |
5.7895 | 2200 | 0.0001 | - |
5.9211 | 2250 | 0.0001 | - |
6.0526 | 2300 | 0.0001 | - |
6.1842 | 2350 | 0.0001 | - |
6.3158 | 2400 | 0.0001 | - |
6.4474 | 2450 | 0.0001 | - |
6.5789 | 2500 | 0.0001 | - |
6.7105 | 2550 | 0.0001 | - |
6.8421 | 2600 | 0.0001 | - |
6.9737 | 2650 | 0.0001 | - |
7.1053 | 2700 | 0.0001 | - |
7.2368 | 2750 | 0.0001 | - |
7.3684 | 2800 | 0.0001 | - |
7.5 | 2850 | 0.0 | - |
7.6316 | 2900 | 0.0001 | - |
7.7632 | 2950 | 0.0001 | - |
7.8947 | 3000 | 0.0001 | - |
8.0263 | 3050 | 0.0001 | - |
8.1579 | 3100 | 0.0001 | - |
8.2895 | 3150 | 0.0001 | - |
8.4211 | 3200 | 0.0001 | - |
8.5526 | 3250 | 0.0001 | - |
8.6842 | 3300 | 0.0001 | - |
8.8158 | 3350 | 0.0001 | - |
8.9474 | 3400 | 0.0001 | - |
9.0789 | 3450 | 0.0001 | - |
9.2105 | 3500 | 0.0001 | - |
9.3421 | 3550 | 0.0 | - |
9.4737 | 3600 | 0.0 | - |
9.6053 | 3650 | 0.0001 | - |
9.7368 | 3700 | 0.0001 | - |
9.8684 | 3750 | 0.0 | - |
10.0 | 3800 | 0.0 | - |
Framework Versions
- Python: 3.11.9
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}