Kurdish Kurmanji BPE Tokenizer

This tokenizer is trained on Kurdish Kurmanji text data using Byte-Pair Encoding (BPE). It's trained using this dataset

Details

  • Tokenization Method: BPE (Byte-Pair Encoding)
  • Vocabulary Size: 20,000 tokens
  • Special Tokens: [UNK], [CLS], [SEP], [PAD], [MASK]
  • Language: Kurdish Kurmanji

Usage

Encoding

from transformers import PreTrainedTokenizerFast

tokenizer = PreTrainedTokenizerFast.from_pretrained("muzaffercky/kurdish-kurmanji-tokenizer", revision="v1.0")

ids = tokenizer.encode("Ez diçim malê")
tokens = tokenizer.tokenize("Ez diçim malê")


print(f"Tokens: {tokens}")
print(f"IDs: {ids}")

Decoding

This tokenizer includes spaces within some tokens (e.g., 'Ez ê ', 'di vê '), which causes the default tokenizer.decode() method from the transformers library to add extra spaces between tokens during decoding. To decode text correctly and preserve the original formatting, decode each token ID individually and join the results without spaces.

Use the following code example:

from transformers import PreTrainedTokenizerFast


tokenizer = PreTrainedTokenizerFast.from_pretrained("muzaffercky/kurdish-kurmanji-tokenizer", revision="v1.0")


text = "Ez diçim malê"
ids = tokenizer.encode(text)


individual_tokens = [tokenizer.decode([id]) for id in ids]
decoded_text = "".join(individual_tokens)
print(decoded_text)  # Output: Ez diçim malê
Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support