|
--- |
|
language: vi |
|
tags: |
|
- ner |
|
- named-entity-recognition |
|
- slot-filling |
|
- smart-home |
|
- vietnamese |
|
- phobert |
|
- token-classification |
|
license: mit |
|
datasets: |
|
- custom-vn-slu-augmented |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: PhoBERT NER for Vietnamese Smart Home Slot Filling |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: VN-SLU Augmented Dataset |
|
type: custom |
|
metrics: |
|
- type: accuracy |
|
value: 96.64 |
|
name: Accuracy |
|
- type: f1 |
|
value: 86.55 |
|
name: F1 Score (Weighted) |
|
- type: f1 |
|
value: 67.04 |
|
name: F1 Score (Macro) |
|
widget: |
|
- text: "bật đèn phòng khách" |
|
- text: "tắt quạt phòng ngủ lúc 10 giờ tối" |
|
- text: "điều chỉnh nhiệt độ điều hòa 25 độ" |
|
- text: "mở cửa garage sau 5 phút" |
|
--- |
|
|
|
# PhoBERT Fine-tuned for Vietnamese Smart Home NER/Slot Filling |
|
|
|
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) for Named Entity Recognition (NER) in Vietnamese smart home commands. It extracts slot values such as devices, locations, times, and numeric values from user commands. |
|
|
|
## Model Description |
|
|
|
- **Base Model**: vinai/phobert-base |
|
- **Task**: Token Classification / Slot Filling for Smart Home Commands |
|
- **Language**: Vietnamese |
|
- **Number of Entity Types**: 13 |
|
|
|
## Intended Uses & Limitations |
|
|
|
### Intended Uses |
|
- Extracting entities from Vietnamese smart home voice commands |
|
- Slot filling for voice assistant systems |
|
- Integration with intent classification for complete NLU pipeline |
|
- Research in Vietnamese NLP for IoT applications |
|
|
|
### Limitations |
|
- Optimized specifically for smart home domain |
|
- May not generalize well to other domains |
|
- Trained on Vietnamese language only |
|
- Best performance when used with corresponding intent classifier |
|
|
|
## Entity Types (Slot Labels) |
|
|
|
The model recognizes 13 types of entities: |
|
|
|
1. `B-device` / `I-device` - Device names (e.g., "đèn", "quạt", "điều hòa") |
|
2. `B-living_space` / `I-living_space` - Room/location names (e.g., "phòng khách", "phòng ngủ") |
|
3. `B-time_at` / `I-time_at` - Specific times (e.g., "10 giờ tối", "7 giờ sáng") |
|
4. `B-duration` / `I-duration` - Time durations (e.g., "5 phút", "2 giờ") |
|
5. `B-target_number` / `I-target_number` - Target values (e.g., "25 độ", "50%") |
|
6. `B-changing_value` / `I-changing_value` - Change amounts (e.g., "tăng 10%") |
|
7. `O` - Outside/No entity |
|
|
|
## How to Use |
|
|
|
### Using Transformers Library |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
import torch |
|
import json |
|
|
|
# Load model and tokenizer |
|
model_name = "ntgiaky/phobert-ner-smart-home" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
|
|
# Load label mappings |
|
with open('label_mappings.json', 'r') as f: |
|
label_mappings = json.load(f) |
|
id2label = {int(k): v for k, v in label_mappings['id2label'].items()} |
|
|
|
def extract_entities(text): |
|
# Tokenize |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) |
|
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) |
|
|
|
# Predict |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
predictions = torch.argmax(outputs.logits, dim=2) |
|
|
|
# Extract entities |
|
entities = [] |
|
current_entity = None |
|
current_tokens = [] |
|
|
|
for token, pred_id in zip(tokens, predictions[0]): |
|
label = id2label[pred_id.item()] |
|
|
|
if label.startswith('B-'): |
|
# Save previous entity if exists |
|
if current_entity: |
|
entities.append({ |
|
'type': current_entity, |
|
'text': tokenizer.convert_tokens_to_string(current_tokens) |
|
}) |
|
# Start new entity |
|
current_entity = label[2:] |
|
current_tokens = [token] |
|
elif label.startswith('I-') and current_entity == label[2:]: |
|
# Continue current entity |
|
current_tokens.append(token) |
|
else: |
|
# End current entity |
|
if current_entity: |
|
entities.append({ |
|
'type': current_entity, |
|
'text': tokenizer.convert_tokens_to_string(current_tokens) |
|
}) |
|
current_entity = None |
|
current_tokens = [] |
|
|
|
# Don't forget last entity |
|
if current_entity: |
|
entities.append({ |
|
'type': current_entity, |
|
'text': tokenizer.convert_tokens_to_string(current_tokens) |
|
}) |
|
|
|
return entities |
|
|
|
# Example usage |
|
text = "bật đèn phòng khách lúc 7 giờ tối" |
|
entities = extract_entities(text) |
|
print(f"Input: {text}") |
|
print(f"Entities: {entities}") |
|
``` |
|
|
|
### Using Pipeline |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
# Load NER pipeline |
|
ner = pipeline( |
|
"token-classification", |
|
model="ntgiaky/phobert-ner-smart-home", |
|
aggregation_strategy="simple" |
|
) |
|
|
|
# Extract entities |
|
result = ner("tắt quạt phòng ngủ sau 10 phút") |
|
print(result) |
|
``` |
|
|
|
## Integration with Intent Classification |
|
|
|
For a complete NLU pipeline: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline |
|
|
|
# Load with PhoBERT tokenizer explicitly |
|
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") |
|
model = AutoModelForTokenClassification.from_pretrained( |
|
"ntgiaky/phobert-ner-smart-home", |
|
ignore_mismatched_sizes=True # Add this if needed |
|
) |
|
|
|
# Create pipeline with explicit tokenizer |
|
ner = pipeline( |
|
"token-classification", |
|
model=model, |
|
tokenizer=tokenizer, |
|
aggregation_strategy="simple" |
|
) |
|
|
|
# Test |
|
result = ner("bật đèn phòng khách") |
|
print(result) |
|
``` |
|
|
|
## Example Outputs |
|
|
|
```python |
|
# Input: "bật đèn phòng khách" |
|
# [{'entity_group': 'living_space', 'score': np.float32(0.97212785), 'word': 'đèn', 'start': None, 'end': None}, |
|
# {'entity_group': 'duration', 'score': np.float32(0.9332844), 'word': 'phòng khách', 'start': None, 'end': None}] |
|
``` |
|
|
|
## Citation |
|
|
|
If you use this model, please cite: |
|
|
|
```bibtex |
|
@misc{phobert-ner-smart-home-2025, |
|
author = {Trần Quang Huy and Nguyễn Trần Gia Kỳ}, |
|
title = {PhoBERT Fine-tuned for Vietnamese Smart Home NER}, |
|
year = {2025}, |
|
publisher = {Hugging Face}, |
|
journal = {Hugging Face Model Hub}, |
|
howpublished = {\url{https://huggingface.co/ntgiaky/ner-smart-home}} |
|
} |
|
``` |
|
|
|
## Authors |
|
|
|
- **Trần Quang Huy** |
|
- **Nguyễn Trần Gia Kỳ** |
|
|
|
## License |
|
|
|
This model is released under the MIT License. |