GeekAgents

community

AI & ML interests

None defined yet.

Recent Activity

GeekAgents's activity

m-ric 
posted an update 1 day ago
view post
Post
664
If you didn't yet, you should read the technical report for SmolVLA, published yesterday by the Hugging Face robotics team!
➡️ Amongst other ideas, it introduces "Async inference" to boost their robot actions.

Robots have a problem: performing the actions takes time (Unlike agents where action executions are near-instant!)
Most often, robots wait until they've finished performing actions to start thinking about hte next steps. This is a huge latency cost!

So the team decided to have the PolicyServer (aka the"thinking" part) restart early : instead of waiting for the n observations they just sent to be completed, they gather the observations after k < n steps, and start preparing the next actions based on that while the steps are running until n, to directly send their next steps.

➡️ This boosted robot throughput by ~30%! (nearly 2× tasks per time window).

gg @cadene and team! 👏

Report here: SmolVLA: A Vision-Language-Action Model for Affordable and Efficient Robotics (2506.01844)
m-ric 
posted an update 10 days ago
view post
Post
2553
A new research paper from KAIST builds on smolagents to push boundaries of distillation 🥳
➡️ "Distilling LLM Agent into Small Models with Retrieval and Code Tools" teaches that, when trying to distil reasoning capability from a strong LLM ("teacher") into a smaller one ("student"), it's much better to use Agent traces than CoT traces.

Advantages are:
1. Improved generalization
Intuitively, this is because your agent can encounter more "surprising" results by interacting with its environment : for example, a web research called by the LLM teacher in agent mode can bring results that the LLM teacher would not have generated in CoT.

2. Reduce hallucinations
The trace won't hallucinate tool call outputs!

Thank you @akseljoonas for mentioning this paper!
clefourrier 
posted an update 18 days ago
view post
Post
595
Always surprised that so few people actually read the FineTasks blog, on
✨how to select training evals with the highest signal✨

If you're serious about training models without wasting compute on shitty runs, you absolutely should read it!!

An high signal eval actually tells you precisely, during training, how wel & what your model is learning, allowing you to discard the bad runs/bad samplings/...!

The blog covers in depth prompt choice, metrics, dataset, across languages/capabilities, and my fave section is "which properties should evals have"👌
(to know on your use case how to select the best evals for you)

Blog: HuggingFaceFW/blogpost-fine-tasks
  • 2 replies
·
m-ric 
posted an update 23 days ago
view post
Post
2627
𝗔𝗯𝘀𝗼𝗹𝘂𝘁𝗲 𝗭𝗲𝗿𝗼: 𝗟𝗟𝗠𝘀 𝗰𝗮𝗻 𝘁𝗿𝗮𝗶𝗻 𝘄𝗶𝘁𝗵𝗼𝘂𝘁 𝗮𝗻𝘆 𝗲𝘅𝘁𝗲𝗿𝗻𝗮𝗹 𝗱𝗮𝘁𝗮 🤯

Has the "data wall" just been breached?

Recent RL paradigms often relied on a set of questions an answers that needs to be manually curated. Researchers from Tsinghua University went like "why though".

🤔 Indeed, why learn from question designed by a human teacher, when the model can start from their base knowledge and learn by experimenting in a code environment, proposing coding tasks themselves and trying to solve them?

Thus they created “Absolute Zero Reasoning” (AZR), an approach that removes any need for human curated data.

🎭 𝗗𝘂𝗮𝗹 𝗿𝗼𝗹𝗲𝘀:
‣ Proposer: Generates challenging but solvable coding tasks
‣ Solver: Attempts to solve those self-proposed tasks

🧪 𝗧𝗵𝗿𝗲𝗲 𝘁𝗮𝘀𝗸 𝘁𝘆𝗽𝗲𝘀: all types are defined as triplets of program, input and output
‣ Deduction: Give model an input and program, it must deduce the output
‣ Abduction: Give model an program and output, it must find the input that gave said output
‣ Induction: Synthesize a program from input/output pairs
Btw this reminded me of my long-forgotten philosophy classes: Aristotle was more on the induction side, learning from real-world analogies, while Plato was more on the deduction side, trying to progress quite far with just one input and his reasoning.

📊 𝗥𝗲𝘀𝘂𝗹𝘁𝘀:
‣ AZR post-training creates a nice improvement on known models like Qwen2.5-7B
‣ Shows strong cross-domain transfer: coding ↔️ math reasoning

🧐 𝗢𝘁𝗵𝗲𝗿 𝗳𝗶𝗻𝗱𝗶𝗻𝗴𝘀:
‣ Having a better base performance (general or code specific) amplify the gains from Absolute Zero Reasoning
‣ Researchers warn about "Uh-oh moments" (winking to the "aha moments" of DeepSeek) where the model generates concerning goals like "make an extremely convoluted code to outsmart all these humans": so supervision is still needed!

Paper here: Absolute Zero: Reinforced Self-play Reasoning with Zero Data (2505.03335)
m-ric 
posted an update 27 days ago
view post
Post
4422
I've made an open version of Google's NotebookLM, and it shows the superiority of the open source tech task! 💪

The app's workflow is simple. Given a source PDF or URL, it extracts the content from it, then tasks Meta's Llama 3.3-70B with writing the podcast script, with a good prompt crafted by @gabrielchua ("two hosts, with lively discussion, fun notes, insightful question etc.")
Then it hands off the text-to-speech conversion to Kokoro-82M, and there you go, you have two hosts discussion any article.

The generation is nearly instant, because:
> Llama 3.3 70B is running at 1,000 tokens/seconds with Cerebras inference
> The audio is generated in streaming mode by the tiny (yet powerful) Kokoro, generating voices faster than real-time.

And the audio generation runs for free on Zero GPUs, hosted by HF on H200s.

Overall, open source solutions rival the quality of closed-source solutions at close to no cost!

Try it here 👉👉 m-ric/open-notebooklm
·
m-ric 
posted an update about 2 months ago
view post
Post
2870
New king of open VLMs: InternVL3 takes Qwen 2.5's crown! 👑

InternVL have been a wildly successful series of model : and the latest iteration has just taken back their crown thanks to their superior, natively multimodal vision training pipeline.

➡️ Most of the vision language models (VLMs) these days are built like Frankenstein : take a good text-only Large Language Model (LLM) backbone, stitch a specific vision transformer (ViT) on top of it. Then the training is sequential 🔢 : 1. Freeze the LLM weights while you train the ViT only to work with the LLM part, then 2. Unfreeze all weights to train all weights in order to work together.

💫 The Shanghai Lab decided to challenge this paradigm and chose this approach that they call "native". For each of their model sizes, they still start from a good LLM (mostly Qwen-2.5 series, did I tell you I'm a huge fan of Qwen? ❤️), and stitch the ViT, but they don't freeze anything : they train all weights together with interleaved text and image understanding data in a single pre-training phase 🎨.

They claim it results in more seamless interactions between modalities. And the results prove them right: they took the crown of top VLMs, at nearly all sizes, from their Qwen-2.5 parents. 👑
  • 2 replies
·
thomwolf 
posted an update about 2 months ago
view post
Post
5071
If you've followed the progress of robotics in the past 18 months, you've likely noticed how robotics is increasingly becoming the next frontier that AI will unlock.

At Hugging Face—in robotics and across all AI fields—we believe in a future where AI and robots are open-source, transparent, and affordable; community-built and safe; hackable and fun. We've had so much mutual understanding and passion working with the Pollen Robotics team over the past year that we decided to join forces!

You can already find our open-source humanoid robot platform Reachy 2 on the Pollen website and the Pollen community and people here on the hub at pollen-robotics

We're so excited to build and share more open-source robots with the world in the coming months!
  • 1 reply
·
m-ric 
posted an update 2 months ago
view post
Post
2405
🚀 DeepSeek R1 moment has come for GUI agents: Rule-based Reinforcement Learning gives better results than SFT with 500x smaller datasets!

Traditionally (by which I mean "in the last few months"), GUI agents have been trained with supervised fine-tuning (SFT). This meant, collecting huge datasets of screen captures from people using computers, and using these to fine-tune your model. 📚

👉 But last week, a new paper introduced UI-R1, applying DeepSeek's R1-style rule-based reinforcement learning (RL) specifically to GUI action prediction tasks.
This is big news: with RL, maybe we could build good agents without the need for huge datasets.

UI-R1 uses a unified reward function that evaluates multiple responses from models, optimizing via policy algorithms like Group Relative Policy Optimization (GRPO).

Specifically, the reward function assesses:
🎯 Action type accuracy: Does the predicted action match the ground truth?
📍 Coordinate accuracy (specifically for clicks): Is the predicted click within the correct bounding box?
📑 Output format: Does the model clearly articulate both its reasoning and final action?

Using just 136 carefully selected mobile tasks—compared to 76,000 tasks for larger models like OS-Atlas—UI-R1 shows significant efficiency and improved performance:
📈 Boosted action prediction accuracy from 76% to 89% on AndroidControl.
🌐 Outperformed larger, SFT-trained models (e.g., OS-Atlas-7B), demonstrating superior results with vastly fewer data points (136 tasks vs. 76K).
🔍 Enhanced adaptability and generalization, excelling even in out-of-domain scenarios.

The paper tests this RL-based method only in low-level GUI tasks. Could it generalize to more complex interactions? 🧐

Read the full paper here 👉 UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning (2503.21620)
thomwolf 
posted an update 2 months ago
view post
Post
3497
The new DeepSite space is really insane for vibe-coders
enzostvs/deepsite

With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.

It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.

AI is eating the world and *open-source* AI is eating AI itself!

PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?

PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
  • 1 reply
·
m-ric 
posted an update 3 months ago
view post
Post
5072
smolagents now support vLLM! 🥳

As one of the most popular local inference solutions, the community had been asking us to integrate vLLM: after a heavy refactoring of our LLM classes, we've just released smolagents 1.11.0, with a brand new VLLMModel class.

Go try it and tell us what you think!

https://github.com/huggingface/smolagents/blob/45b2c86857b7f7657daaa74e4d17d347e9e2c4a4/src/smolagents/models.py#L497
thomwolf 
posted an update 3 months ago
view post
Post
2927
We've kept pushing our Open-R1 project, an open initiative to replicate and extend the techniques behind DeepSeek-R1.

And even we were mind-blown by the results we got with this latest model we're releasing: ⚡️OlympicCoder ( open-r1/OlympicCoder-7B and open-r1/OlympicCoder-32B)

It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!

And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co/blog/open-r1/update-3

Datasets are are releasing:
- open-r1/codeforces
- open-r1/codeforces-cots
- open-r1/ioi
- open-r1/ioi-test-cases
- open-r1/ioi-sample-solutions
- open-r1/ioi-cots
- open-r1/ioi-2024-model-solutions
clefourrier 
posted an update 3 months ago
view post
Post
2485
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.

Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**.
(Which everybody does, but people usually don't say)

For a tech report, it makes a lot of sense to report model performance when used optimally!
On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)

Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!

Because if your model knows its evals by heart, you're not testing for generalization.
m-ric 
posted an update 3 months ago
view post
Post
1092
Our new Agentic leaderboard is now live!💥

If you ever asked which LLM is best for powering agents, we've just made a leaderboard that ranks them all! Built with @albertvillanova , this ranks LLMs powering a smolagents CodeAgent on subsets of various benchmarks. ✅

🏆 GPT-4.5 comes on top, even beating reasoning models like DeepSeek-R1 or o1. And Claude-3.7-Sonnet is a close second!

The leaderboard also allows you to show the scores of vanilla LLMs (without any agentic setup) on the same benchmarks: this shows the huge improvements brought by agentic setups. 💪

(Note that results will be added manually, so the leaderboard might not always have the latest LLMs)
  • 1 reply
·
m-ric 
posted an update 3 months ago
view post
Post
4869
We now have a Deep Research for academia: SurveyX automatically writes academic surveys nearly indistinguishable from human-written ones 🔥

Researchers from Beijing and Shanghai just published the first application of a deep research system to academia: their algorithm, given a question, can give you a survey of all papers on the subject.

To make a research survey, you generally follow two steps, preparation (collect and organize papers) and writing (outline creation, writing, polishing). Researchers followed the same two steps and automated them.

🎯 For the preparation part, a key part is find all the important references on the given subject.
Researchers first cast a wide net of all relevant papers. But then finding the really important ones is like distilling knowledge from a haystack of information. To solve this challenge, they built an “AttributeTree” object that structures key information from citations. Ablating these AttributeTrees significantly decreased structure and synthesis scores, so they were really useful!

📝 For the writing part, key was to get a synthesis that's both short and true. This is not easy to get with LLMs! So they used methods like LLM-based deduplication to shorten the too verbose listings made by LLMs, and RAG to grab original quotes instead of made-up ones.

As a result, their system outperforms previous approaches by far!

As assessed by LLM-judges, the quality score os SurveyX even approaches this of human experts, with 4.59/5 vs 4.75/5 🏆

I advise you to read the paper, it's a great overview of the kind of assistants that we'll get in the short future! 👉 SurveyX: Academic Survey Automation via Large Language Models (2502.14776)
Their website shows examples of generated surveys 👉 http://www.surveyx.cn/
m-ric 
posted an update 4 months ago
view post
Post
3124
Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! 🤯

Do we really need o1's huge RL procedure to see reasoning emerge? It seems not.
Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT —no huge datasets or RL procedures needed.

Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.

⚡ The Less-is-More Reasoning Hypothesis:
‣ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity
‣ Pre-training knowledge plus sufficient computational resources at inference levels up math skills

➡️ Core techniques:
‣ High-quality reasoning chains with self-verification steps
‣ 817 handpicked problems that encourage deeper reasoning
‣ Enough inference-time computation to allow extended reasoning

💪 Efficiency gains:
‣ Only 817 examples instead of 100k+
‣ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data

This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers 🚀

Read the full paper here 👉  LIMO: Less is More for Reasoning (2502.03387)