Activity Feed

AI & ML interests

Offering a great user experience for organizations on Hugging Face!

Recent Activity

HF-test-lab's activity

florentgbelidjiย 
posted an update about 16 hours ago
view post
Post
337
๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ฒ๐˜…๐˜ ๐—ฆ๐—ธ๐—ถ ๐—”๐—ฑ๐˜ƒ๐—ฒ๐—ป๐˜๐˜‚๐—ฟ๐—ฒ ๐—๐˜‚๐˜€๐˜ ๐—š๐—ผ๐˜ ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฟ: ๐—œ๐—ป๐˜๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐—”๐—น๐—ฝ๐—ถ๐—ป๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜!๐Ÿ”๏ธโ›ท๏ธ

With the big hype around AI agents these days, I couldnโ€™t stop thinking about how AI agents could truly enhance real-world activities.
What sort of applications could we build with those AI agents: agentic RAG? self-correcting text-to-sql? Nah, boringโ€ฆ

Passionate about outdoors, Iโ€™ve always dreamed of a tool that could simplify planning mountain trips while accounting for all potential risks. Thatโ€™s why I built ๐—”๐—น๐—ฝ๐—ถ๐—ป๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜, a smart assistant designed to help you plan safe and enjoyable itineraries in the French Alps and Pyrenees.

Built using Hugging Face's ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ library, Alpine Agent combines the power of AI with trusted resources like ๐˜š๐˜ฌ๐˜ช๐˜ต๐˜ฐ๐˜ถ๐˜ณ.๐˜ง๐˜ณ (https://skitour.fr/) and METEO FRANCE. Whether itโ€™s suggesting a route with moderate difficulty or analyzing avalanche risks and weather conditions, this agent dynamically integrates data to deliver personalized recommendations.

In my latest blog post, I share how I developed this projectโ€”from defining tools and integrating APIs to selecting the best LLMs like ๐˜˜๐˜ธ๐˜ฆ๐˜ฏ2.5-๐˜Š๐˜ฐ๐˜ฅ๐˜ฆ๐˜ณ-32๐˜‰-๐˜๐˜ฏ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต, ๐˜“๐˜ญ๐˜ข๐˜ฎ๐˜ข-3.3-70๐˜‰-๐˜๐˜ฏ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต, or ๐˜Ž๐˜—๐˜›-4.

โ›ท๏ธ Curious how AI can enhance adventure planning?โ€จTry the app and share your thoughts: florentgbelidji/alpine-agent

๐Ÿ‘‰ Want to build your own agents? Whether for cooking, sports training, or other passions, the possibilities are endless. Check out the blog post to learn more: https://huggingface.co/blog/florentgbelidji/alpine-agent

Many thanks to @m-ric for helping on building this tool with smolagents!
ariG23498ย 
posted an update 2 days ago
m-ricย 
posted an update 2 days ago
view post
Post
747
๐— ๐—ถ๐—ป๐—ถ๐— ๐—ฎ๐˜…'๐˜€ ๐—ป๐—ฒ๐˜„ ๐— ๐—ผ๐—˜ ๐—Ÿ๐—Ÿ๐—  ๐—ฟ๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐˜€ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—ฆ๐—ผ๐—ป๐—ป๐—ฒ๐˜ ๐—น๐—ฒ๐˜ƒ๐—ฒ๐—น ๐˜„๐—ถ๐˜๐—ต ๐Ÿฐ๐—  ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐˜€ ๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—น๐—ฒ๐—ป๐—ด๐˜๐—ต ๐Ÿ’ฅ

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

๐—ž๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€:

๐Ÿ—๏ธ MoE with novel hybrid attention:
โ€ฃ Mixture of Experts with 456B total parameters (45.9B activated per token)
โ€ฃ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

๐Ÿ† Outperforms leading models across benchmarks while offering vastly longer context:
โ€ฃ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
โ€ฃ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

๐Ÿ”ฌ Technical innovations enable efficient scaling:
โ€ฃ Novel expert parallel and tensor parallel strategies cut communication overhead in half
โ€ฃ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

๐ŸŽฏ Thorough training strategy:
โ€ฃ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! ๐Ÿ“
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here ๐Ÿ‘‰ MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users ๐Ÿ‘‰ MiniMaxAI/MiniMax-Text-01
m-ricย 
posted an update 3 days ago
view post
Post
2145
๐—ช๐—ฒ'๐˜ƒ๐—ฒ ๐—ท๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜ƒ๐Ÿญ.๐Ÿฏ.๐Ÿฌ ๐Ÿš€, and it comes with a major feature: you can now log agent runs using OpenTelemetry to inspect them afterwards! ๐Ÿ“Š

This interactive format is IMO much easier to inspect big multi-step runs than endless console logs.

The setup is very easy, in a few lines of code.

Find a tutorial here ๐Ÿ‘‰ https://huggingface.co/docs/smolagents/tutorials/inspect_runs
  • 4 replies
ยท
MoritzLaurerย 
posted an update 3 days ago
view post
Post
1760
Microsoft's rStar-Math paper claims that ๐Ÿค ~7B models can match the math skills of o1 using clever train- and test-time techniques. You can now download their prompt templates from Hugging Face !

๐Ÿ“ The paper introduces rStar-Math, which claims to rival OpenAI o1's math reasoning capabilities by integrating Monte Carlo Tree Search (MCTS) with step-by-step verified reasoning trajectories.
๐Ÿค– A Process Preference Model (PPM) enables fine-grained evaluation of intermediate steps, improving training data quality.
๐Ÿงช The system underwent four rounds of self-evolution, progressively refining both the policy and reward models to tackle Olympiad-level math problemsโ€”without GPT-4-based data distillation.
๐Ÿ’พ While we wait for the release of code and datasets, you can already download the prompts they used from the HF Hub!

Details and links here ๐Ÿ‘‡
Prompt-templates docs: https://moritzlaurer.github.io/prompt_templates/
Templates on the hub: MoritzLaurer/rstar-math-prompts
Prompt-templates collection: MoritzLaurer/prompt-templates-6776aa0b0b8a923957920bb4
Paper: https://arxiv.org/pdf/2501.04519
pagezyhfย 
posted an update 5 days ago
m-ricย 
posted an update 6 days ago
view post
Post
559
๐—ข๐—ฆ-๐—š๐—ฒ๐—ป๐—ฒ๐˜€๐—ถ๐˜€: ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ฝ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ฒ๐˜€ ๐—ฎ ๐—ป๐—ผ๐˜ƒ๐—ฒ๐—น ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—บ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ-๐—จ๐˜€๐—ฒ-๐—น๐—ถ๐—ธ๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐˜„๐—ถ๐˜๐—ต ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€! ๐Ÿ”ฅ

The main bottleneck in building GUI agents it to find training data.
GUI Agent trajectories are not easy to get by. Crowdsourcing trajectories, then manually annotating them, could be an option, but at scale, it's hard to do

You could use synthetic data generation (ask 1000s small existing GUI agents to solve tasks, keep only successful runs). But then it's hard to come up with many high level-tasks.

โžก๏ธ Well, a novel technique was just published that creates a new promising paradigm for synthetic data generation: Shanghai AI Lab researchers propose OS-Genesis, a novel way to create training data for GUI agents that flips the traditional approach on its head. Instead of starting with predefined tasks and having humans or machines execute them, OS-Genesis first explores the interface naturally, then derives meaningful tasks from those interactions.

๐Ÿ” Exploration-driven vs task-driven approach:
โ€ฃ Instead of starting with tasks, OS-Genesis first explores GUIs by clicking and interacting
โ€ฃ It then reverse-engineers high-level tasks from successful interaction patterns
โ€ฃ This leads to more natural and diverse training data than predefined tasks

๐ŸŽฏ Novel reward model for trajectory quality:
โ€ฃ Rather than discarding incomplete trajectories, OS-Genesis scores them based on coherence and completion
โ€ฃ This preserves valuable partial successes that would otherwise be wasted

๐Ÿ† Superior results across environments:
โ€ฃ Nearly doubles performance on AndroidWorld (9.8% โ†’ 17.4%)

By the way, this field of GUI agents is still in infancy, so you can still make a difference with "low-cost" setups: their paper gets SOTA results with only 8xA100!

Read the paper here ๐Ÿ‘‰ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis (2412.19723)
MoritzLaurerย 
posted an update 7 days ago
view post
Post
2915
FACTS is a great paper from @GoogleDeepMind on measuring the factuality of LLM outputs. You can now download their prompt templates from @huggingface to improve LLM-based fact-checking yourself!

๐Ÿ“ The paper introduces the FACTS Grounding benchmark for evaluating the factuality of LLM outputs.

๐Ÿค– Fact-checking is automated by an ensemble of LLM judges that verify if a response is fully grounded in a factual reference document.

๐Ÿงช The authors tested different prompt templates on held-out data to ensure their generalization.

๐Ÿ“š It's highly educational to read these templates to learn how frontier labs design prompts and understand their limitations.

๐Ÿ’พ You can now download and reuse these prompt templates via the prompt-templates library!

๐Ÿ”„ The library simplifies sharing prompt templates on the HF hub or locally via standardized YAML files. Letโ€™s make LLM work more transparent and reproducible by sharing more templates like this!

Links ๐Ÿ‘‡
- prompt-templates docs: https://moritzlaurer.github.io/prompt_templates/
- all templates on the HF Hub: MoritzLaurer/facts-grounding-prompts
- FACTS paper: https://storage.googleapis.com/deepmind-media/FACTS/FACTS_grounding_paper.pdf
MoritzLaurerย 
posted an update 9 days ago
view post
Post
1678
The TRL v0.13 release is ๐Ÿ”ฅ! My highlight are the new process reward trainer to train models similar to o1 and tool call support:

๐Ÿง  Process reward trainer: Enables training of Process-supervised Reward Models (PRMs), which reward the quality of intermediate steps, promoting structured reasoning. Perfect for tasks like stepwise reasoning.

๐Ÿ”€ Model merging: A new callback leverages mergekit to merge models during training, improving performance by blending reference and policy models - optionally pushing merged models to the Hugging Face Hub.

๐Ÿ› ๏ธ Tool call support: TRL preprocessing now supports tool integration, laying the groundwork for agent fine-tuning with examples like dynamic temperature fetching in prompts.

โš–๏ธ Mixture of judges: The new AllTrueJudge combines decisions from multiple binary judges for more nuanced evaluation.

Read the release notes and other resources here ๐Ÿ‘‡
Release: https://github.com/huggingface/trl/releases/tag/v0.13.0
Mergekit: https://github.com/arcee-ai/mergekit
Mixture of judges paper: The Perfect Blend: Redefining RLHF with Mixture of Judges (2409.20370)
andrewrreedย 
posted an update 11 days ago
view post
Post
2610
๐Ÿš€ Supercharge your LLM apps with Langfuse on Hugging Face Spaces!

Langfuse brings end-to-end observability and tooling to accelerate your dev workflow from experiments through production

Now available as a Docker Space directly on the HF Hub! ๐Ÿค—

๐Ÿ” Trace everything: monitor LLM calls, retrieval, and agent actions with popular frameworks
1โƒฃ One-click deployment: on Spaces with persistent storage and integrated OAuth
๐Ÿ›  Simple Prompt Management: Version, edit, and update without redeployment
โœ… Intuitive Evals: Collect user feedback, run model/prompt evaluations, and improve quality
๐Ÿ“Š Dataset Creation: Build datasets directly from production data to enhance future performance

Kudos to the Langfuse team for this collab and the awesome, open-first product theyโ€™re building! ๐Ÿ‘ @marcklingen @Clemo @MJannik

๐Ÿ”— Space: langfuse/langfuse-template-space
๐Ÿ”— Docs: https://huggingface.co/docs/hub/spaces-sdks-docker-langfuse
  • 1 reply
ยท
m-ricย 
posted an update 11 days ago
view post
Post
4983
Since I published it on GitHub a few days ago,
Hugging Face's new agentic library ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ has gathered nearly 4k stars ๐Ÿคฏ

โžก๏ธ But we are just getting started on agents: so we are hiring an ML Engineer to join me and double down on this effort!

The plan is to build GUI agents: agents that can act on your computer with mouse & keyboard, like Claude Computer Use.

We will make it work better, and fully open. โœจ

Sounds like something you'd like to do? Apply here ๐Ÿ‘‰ https://apply.workable.com/huggingface/j/AF1D4E3FEB/
ยท
MoritzLaurerย 
posted an update 11 days ago
view post
Post
2045
OpenAI is losing money on the $200/month subscription ๐Ÿคฏ. It's crazy how expensive it is to run these largest LLMs:

- ChatGPT Pro costs $200/month ($2,400/year) and is still unprofitable for OpenAI due to higher-than-expected usage.
- OpenAI reportedly expected losses of about $5 billion on revenue of $3.7 billion last year, with ChatGPT alone once costing an estimated $700,000 per day to operate. ๐Ÿ’ธ๐Ÿ”ฅ
- They build strong models and do great research. Whether this business model will work in the long run is one of the biggest questions in the AI economy today.

Source with the numbers ๐Ÿ‘‡
https://techcrunch.com/2025/01/05/openai-is-losing-money-on-its-pricey-chatgpt-pro-plan-ceo-sam-altman-says/
ยท
jeffboudierย 
posted an update 11 days ago
view post
Post
521
NVIDIA just announced the Cosmos World Foundation Models, available on the Hub: nvidia/cosmos-6751e884dc10e013a0a0d8e6

Cosmos is a family of pre-trained models purpose-built for generating physics-aware videos and world states to advance physical AI development.
The release includes Tokenizers nvidia/cosmos-tokenizer-672b93023add81b66a8ff8e6

Learn more in this great community article by @mingyuliutw and @PranjaliJoshi https://huggingface.co/blog/mingyuliutw/nvidia-cosmos
  • 1 reply
ยท
MoritzLaurerย 
posted an update 12 days ago
view post
Post
2191
๐Ÿš€ Releasing a new zeroshot-classifier based on ModernBERT! Some key takeaways:

- โšก Speed & efficiency: It's multiple times faster and uses significantly less memory than DeBERTav3. You can use larger batch sizes and enabling bf16 (instead of fp16) gave me a ~2x speed boost as well
- ๐Ÿ“‰ Performance tradeoff: It performs slightly worse than DeBERTav3 on average across my zeroshot classification task collection
- ๐Ÿง  Use cases: I recommend using it for scenarios requiring speed and a larger context window (8k).
- ๐Ÿ’ก Whatโ€™s next? Iโ€™m preparing a newer version trained on better + longer synthetic data to fully leverage the 8k context window and improve upon the training mix of my older zeroshot-v2.0 models. I also hope that there will be a multilingual variant in the future.

Great work by https://huggingface.co/answerdotai !

If youโ€™re looking for a high-speed zeroshot classifier, give it a try!

๐Ÿ“„ Resources below: ๐Ÿ‘‡
Base model: MoritzLaurer/ModernBERT-base-zeroshot-v2.0
Large model: MoritzLaurer/ModernBERT-large-zeroshot-v2.0
Updated zeroshot collection: MoritzLaurer/zeroshot-classifiers-6548b4ff407bb19ff5c3ad6f
ModernBERT collection with paper: answerdotai/modernbert-67627ad707a4acbf33c41deb
MoritzLaurerย 
posted an update 29 days ago
view post
Post
2602
Quite excited by the ModernBERT release! 0.15/0.4B small, 2T modern pre-training data and tokenizer with code, 8k context window, great efficient model for embeddings & classification!

This will probably be the basis for many future SOTA encoders! And I can finally stop using DeBERTav3 from 2021 :D

Congrats @answerdotai , @LightOnIO and collaborators like @tomaarsen !

Paper and models here ๐Ÿ‘‡https://huggingface.co/collections/answerdotai/modernbert-67627ad707a4acbf33c41deb
ยท
m-ricย 
posted an update 30 days ago
view post
Post
2316
After 6 years, BERT, the workhorse of encoder models, finally gets a replacement: ๐—ช๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐—ป๐—•๐—˜๐—ฅ๐—ง! ๐Ÿค—

We talk a lot about โœจGenerative AIโœจ, meaning "Decoder version of the Transformers architecture", but this is only one of the ways to build LLMs: encoder models, that turn a sentence in a vector, are maybe even more widely used in industry than generative models.

The workhorse for this category has been BERT since its release in 2018 (that's prehistory for LLMs).

It's not a fancy 100B parameters supermodel (just a few hundred millions), but it's an excellent workhorse, kind of a Honda Civic for LLMs.

Many applications use BERT-family models - the top models in this category cumulate millions of downloads on the Hub.

โžก๏ธ Now a collaboration between Answer.AI and LightOn just introduced BERT's replacement: ModernBERT.

๐—ง๐—Ÿ;๐——๐—ฅ:
๐Ÿ›๏ธ Architecture changes:
โ‡’ First, standard modernizations:
- Rotary positional embeddings (RoPE)
- Replace GeLU with GeGLU,
- Use Flash Attention 2
โœจ The team also introduced innovative techniques like alternating attention instead of full attention, and sequence packing to get rid of padding overhead.

๐Ÿฅ‡ As a result, the model tops the game of encoder models:
It beats previous standard DeBERTaV3 for 1/5th the memory footprint, and runs 4x faster!

Read the blog post ๐Ÿ‘‰ https://huggingface.co/blog/modernbert
  • 1 reply
ยท
m-ricย 
posted an update 30 days ago
view post
Post
2477
๐‡๐ฎ๐ ๐ ๐ข๐ง๐  ๐…๐š๐œ๐ž ๐ซ๐ž๐ฅ๐ž๐š๐ฌ๐ž๐ฌ ๐๐ข๐œ๐จ๐ญ๐ซ๐จ๐ง, ๐š ๐ฆ๐ข๐œ๐ซ๐จ๐ฌ๐œ๐จ๐ฉ๐ข๐œ ๐ฅ๐ข๐› ๐ญ๐ก๐š๐ญ ๐ฌ๐จ๐ฅ๐ฏ๐ž๐ฌ ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐Ÿ’๐ƒ ๐ฉ๐š๐ซ๐š๐ฅ๐ฅ๐ž๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐Ÿฅณ

๐Ÿ•ฐ๏ธ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.

๐Ÿ‘ด๐Ÿป If they had needed all this time, we would have GPU stories from the time of Pharaoh ๐“‚€: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "

๐Ÿ› ๏ธ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.

๐Ÿค ๐—•๐˜‚๐˜ ๐—ป๐—ผ๐˜„ ๐˜„๐—ฒ ๐—ฑ๐—ผ๐—ป'๐˜ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐—ต๐˜‚๐—ด๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐˜€ ๐—ฎ๐—ป๐˜†๐—บ๐—ผ๐—ฟ๐—ฒ! Instead of building mega-training codes, Hugging Face colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!

โšก ๐—œ๐˜'๐˜€ ๐˜๐—ถ๐—ป๐˜†, ๐˜†๐—ฒ๐˜ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)

Go take a look ๐Ÿ‘‰ https://github.com/huggingface/picotron/tree/main/picotron
  • 1 reply
ยท
MoritzLaurerย 
posted an update about 1 month ago
m-ricย 
posted an update about 1 month ago
view post
Post
2207
๐—ฃ๐—ผ๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ด๐—บ ๐˜€๐—ต๐—ถ๐—ณ๐˜ ๐—ถ๐—ป ๐—Ÿ๐—Ÿ๐— ๐˜€: ๐—ป๐—ฒ๐˜„ ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ฏ๐˜† ๐— ๐—ฒ๐˜๐—ฎ ๐—ฐ๐—น๐—ฎ๐—ถ๐—บ๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐˜„๐—ฒ ๐—ฐ๐—ฎ๐—ป ๐—ด๐—ฒ๐˜ ๐—ฟ๐—ถ๐—ฑ ๐—ผ๐—ณ ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐—ถ๐˜‡๐—ฒ๐—ฟ๐˜€! ๐Ÿฅณ

Current LLMs process text by first splitting it into tokens. They use a module named "tokenizer", that -spl-it-s- th-e- te-xt- in-to- arbitrary tokens depending on a fixed dictionnary.
On the Hub you can find this dictionary in a model's files under tokenizer.json.

โžก๏ธ This process is called BPE tokenization. It is suboptimal, everyone says it. It breaks text into predefined chunks that often fail to capture the nuance of language. But it has been a necessary evil in language models since their inception.

๐Ÿ’ฅ In Byte Latent Transformer (BLT), Meta researchers propose an elegant solution by eliminating tokenization entirely, working directly with raw bytes while maintaining efficiency through dynamic "patches."

This had been tried before with different byte-level tokenizations, but it's the first time that an architecture of this type scales as well as BPE tokenization. And it could mean a real paradigm shift! ๐Ÿ‘๐Ÿ‘

๐Ÿ—๏ธ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ:
Instead of a lightweight tokenizer, BLT has a lightweight encoder that process raw bytes into patches. Then the patches are processed by the main heavy-duty transformers as we do normally (but for patches of bytes instead of tokens), before converting back to bytes.

๐Ÿงฉ ๐——๐˜†๐—ป๐—ฎ๐—บ๐—ถ๐—ฐ ๐—ฃ๐—ฎ๐˜๐—ฐ๐—ต๐—ถ๐—ป๐—ด:
Instead of fixed tokens, BLT groups bytes based on their predictability (measured by entropy) - using more compute for complex sequences and efficiently handling simple ones. This allows efficient processing while maintaining byte-level understanding.

I hope this breakthrough is confirmed and we can get rid of all the tokenizer stuff, it will make model handling easier!

Read their paper here ๐Ÿ‘‰ https://dl.fbaipublicfiles.com/blt/BLT__Patches_Scale_Better_Than_Tokens.pdf
  • 2 replies
ยท