This model has been pushed to the Hub using the PytorchModelHubMixin integration:

Usage

from rocket.arm.models import ROCKET1
from rocket.stark_tech.env_interface import MinecraftWrapper

model = ROCKET1.from_pretrained("phython96/ROCKET-1").to("cuda")
memory = None
input = {
  "img": torch.rand(224, 224, 3, dtype=torch.uint8), 
  'segment': {
    'obj_id': torch.tensor(6),                              # specify the interaction type
    'obj_mask': torch.zeros(224, 224, dtype=torch.uint8),   # highlight the regions of interest
  }
}
agent_action, memory = model.get_action(input, memory, first=None, input_shape="*")
env_action = MinecraftWrapper.agent_action_to_env(agent_action)

# --------------------- the output --------------------- #
# agent_action = {'buttons': tensor([1], device='cuda:0'), 'camera': tensor([54], device='cuda:0')}
# env_action = {'attack': array(0), 'back': array(0), 'forward': array(0), 'jump': array(0), 'left': array(0), 'right': array(0), 'sneak': array(0), 'sprint': array(0), 'use': array(0), 'drop': array(0), 'inventory': array(0), 'hotbar.1': array(0), 'hotbar.2': array(0), 'hotbar.3': array(0), 'hotbar.4': array(0), 'hotbar.5': array(0), 'hotbar.6': array(0), 'hotbar.7': array(0), 'hotbar.8': array(0), 'hotbar.9': array(0), 'camera': array([-0.61539427, 10.        ])}

Interaction Details

Here are some interaction types:

interaction obj_id function
Hunt 0 Approach the animals then kill it.
Mine 2 Approach and mine the target object.
Interact 3 Approach and right click the target object.
Craft 4 Move the cursor to the item and click on it.
Switch 5 Highlight an item in the hotkey bar, then switch to holding state.
Approach 6 Approach the target object.

Play ROCKET-1 with Gradio

Click the following picture to learn how to play ROCKET-1 with gradio.

cd rocket/arm
python eval_rocket.py --port 8110 --sam-path "/path/to/sam2-ckpt-directory"

Citing ROCKET-1

If you use ROCKET-1 in your research, please use the following BibTeX entry.

@article{cai2024rocket,
  title={ROCKET-1: Master Open-World Interaction with Visual-Temporal Context Prompting},
  author={Cai, Shaofei and Wang, Zihao and Lian, Kewei and Mu, Zhancun and Ma, Xiaojian and Liu, Anji and Liang, Yitao},
  journal={arXiv preprint arXiv:2410.17856},
  year={2024}
}
Downloads last month
12
Safetensors
Model size
119M params
Tensor type
F32
·
Video Preview
loading

Model tree for phython96/ROCKET-1

Finetunes
1 model