library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation
Stable-Diffusion-v1.5: Optimized for Mobile Deployment
State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v1.5 found here.
This repository provides scripts to run Stable-Diffusion-v1.5 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_generation
- Model Stats:
- Input: Text prompt to generate image
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- Model size: 1GB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
text_encoder | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 11.111 ms | 0 - 9 MB | NPU | Use Export Script |
text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 5.363 ms | 0 - 2 MB | NPU | Use Export Script |
text_encoder | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 5.933 ms | 0 - 10 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 11.111 ms | 0 - 9 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 5.396 ms | 0 - 3 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 5.398 ms | 0 - 3 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 5.933 ms | 0 - 10 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 5.413 ms | 0 - 2 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.773 ms | 0 - 162 MB | NPU | Stable-Diffusion-v1.5.onnx |
text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 3.909 ms | 0 - 18 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.097 ms | 0 - 19 MB | NPU | Stable-Diffusion-v1.5.onnx |
text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 3.501 ms | 0 - 14 MB | NPU | Use Export Script |
text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.754 ms | 0 - 14 MB | NPU | Stable-Diffusion-v1.5.onnx |
text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.836 ms | 0 - 0 MB | NPU | Use Export Script |
text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.977 ms | 157 - 157 MB | NPU | Stable-Diffusion-v1.5.onnx |
unet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 263.602 ms | 0 - 7 MB | NPU | Use Export Script |
unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 110.81 ms | 0 - 2 MB | NPU | Use Export Script |
unet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 105.273 ms | 0 - 8 MB | NPU | Use Export Script |
unet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 263.602 ms | 0 - 7 MB | NPU | Use Export Script |
unet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 111.393 ms | 0 - 7 MB | NPU | Use Export Script |
unet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 111.635 ms | 0 - 3 MB | NPU | Use Export Script |
unet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 105.273 ms | 0 - 8 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 111.871 ms | 0 - 3 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 111.763 ms | 0 - 898 MB | NPU | Stable-Diffusion-v1.5.onnx |
unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 78.019 ms | 0 - 18 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 80.045 ms | 0 - 15 MB | NPU | Stable-Diffusion-v1.5.onnx |
unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 67.577 ms | 0 - 14 MB | NPU | Use Export Script |
unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 67.421 ms | 0 - 15 MB | NPU | Stable-Diffusion-v1.5.onnx |
unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 113.221 ms | 0 - 0 MB | NPU | Use Export Script |
unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 114.344 ms | 842 - 842 MB | NPU | Stable-Diffusion-v1.5.onnx |
vae | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 718.731 ms | 0 - 9 MB | NPU | Use Export Script |
vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 270.917 ms | 0 - 4 MB | NPU | Use Export Script |
vae | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 248.917 ms | 0 - 10 MB | NPU | Use Export Script |
vae | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 718.731 ms | 0 - 9 MB | NPU | Use Export Script |
vae | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 270.775 ms | 0 - 3 MB | NPU | Use Export Script |
vae | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 270.064 ms | 0 - 3 MB | NPU | Use Export Script |
vae | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 248.917 ms | 0 - 10 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 271.182 ms | 0 - 2 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 269.668 ms | 0 - 66 MB | NPU | Stable-Diffusion-v1.5.onnx |
vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 207.636 ms | 0 - 18 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 207.55 ms | 3 - 22 MB | NPU | Stable-Diffusion-v1.5.onnx |
vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 175.815 ms | 0 - 14 MB | NPU | Use Export Script |
vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 194.632 ms | 3 - 17 MB | NPU | Stable-Diffusion-v1.5.onnx |
vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 265.394 ms | 0 - 0 MB | NPU | Use Export Script |
vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 265.427 ms | 63 - 63 MB | NPU | Stable-Diffusion-v1.5.onnx |
Deploy to Snapdragon X Elite NPU
Please follow the Stable Diffusion Windows App tutorial to quantize model with custom weights.
Quantize and Deploy Your Own Fine-Tuned Stable Diffusion
Please follow the Quantize Stable Diffusion tutorial to quantize model with custom weights.
Installation
Install the package via pip:
pip install "qai-hub-models[stable-diffusion-v1-5]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.stable_diffusion_v1_5.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.stable_diffusion_v1_5.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v1_5.export
Profiling Results
------------------------------------------------------------
text_encoder
Device : cs_8275 (ANDROID 14)
Runtime : QNN
Estimated inference time (ms) : 11.1
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 437
Compute Unit(s) : npu (437 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
unet
Device : cs_8275 (ANDROID 14)
Runtime : QNN
Estimated inference time (ms) : 263.6
Estimated peak memory usage (MB): [0, 7]
Total # Ops : 4041
Compute Unit(s) : npu (4041 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
vae
Device : cs_8275 (ANDROID 14)
Runtime : QNN
Estimated inference time (ms) : 718.7
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 173
Compute Unit(s) : npu (173 ops) gpu (0 ops) cpu (0 ops)
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v1.5's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Stable-Diffusion-v1.5 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.