File size: 10,505 Bytes
2c2ec4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-finetuned-ner-covidmed-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-finetuned-ner-covidmed-v2

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2063
- Accuracy: 0.9462
- Precision: 0.7743
- Recall: 0.7764
- F1: 0.7662
- Age Precision: 0.8797
- Age Recall: 0.9553
- Age F1-score: 0.9160
- Date Precision: 0.9645
- Date Recall: 0.9867
- Date F1-score: 0.9755
- Gender Precision: 0.9151
- Gender Recall: 0.9329
- Gender F1-score: 0.9239
- Job Precision: 0.4643
- Job Recall: 0.1503
- Job F1-score: 0.2271
- Location Precision: 0.7505
- Location Recall: 0.8372
- Location F1-score: 0.7915
- Name Precision: 0.8225
- Name Recall: 0.7579
- Name F1-score: 0.7889
- Organization Precision: 0.5831
- Organization Recall: 0.6822
- Organization F1-score: 0.6288
- Patient Id Precision: 0.9330
- Patient Id Recall: 0.9800
- Patient Id F1-score: 0.9560
- Symptom And Disease Precision: 0.6264
- Symptom And Disease Recall: 0.6937
- Symptom And Disease F1-score: 0.6583
- Transportation Precision: 0.8042
- Transportation Recall: 0.7876
- Transportation F1-score: 0.7958
- Micro avg Precision: 0.7994
- Micro avg Recall: 0.8551
- Micro avg F1-score: 0.8263
- Macro avg Precision: 0.7743
- Macro avg Recall: 0.7764
- Macro avg F1-score: 0.7662
- Weighted avg Precision: 0.8004
- Weighted avg Recall: 0.8551
- Weighted avg F1-score: 0.8250

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Age Precision | Age Recall | Age F1-score | Date Precision | Date Recall | Date F1-score | Gender Precision | Gender Recall | Gender F1-score | Job Precision | Job Recall | Job F1-score | Location Precision | Location Recall | Location F1-score | Name Precision | Name Recall | Name F1-score | Organization Precision | Organization Recall | Organization F1-score | Patient Id Precision | Patient Id Recall | Patient Id F1-score | Symptom And Disease Precision | Symptom And Disease Recall | Symptom And Disease F1-score | Transportation Precision | Transportation Recall | Transportation F1-score | Micro avg Precision | Micro avg Recall | Micro avg F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------:|:----------:|:------------:|:--------------:|:-----------:|:-------------:|:----------------:|:-------------:|:---------------:|:-------------:|:----------:|:------------:|:------------------:|:---------------:|:-----------------:|:--------------:|:-----------:|:-------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------------:|:--------------------------:|:----------------------------:|:------------------------:|:---------------------:|:-----------------------:|:-------------------:|:----------------:|:------------------:|:-------------------:|:----------------:|:------------------:|:----------------------:|:-------------------:|:---------------------:|
| No log        | 1.0   | 79   | 0.5109          | 0.8608   | 0.6258    | 0.4426 | 0.4738 | 0.9455        | 0.8643     | 0.9031       | 0.9407         | 0.9692      | 0.9547        | 1.0              | 0.4026        | 0.5741          | 0.0           | 0.0        | 0.0          | 0.4126             | 0.6039          | 0.4903            | 0.9479         | 0.2862      | 0.4396        | 0.0620                 | 0.0506              | 0.0557                | 0.7840               | 0.9666            | 0.8658              | 0.2288                        | 0.0546                     | 0.0881                       | 0.9362                   | 0.2280                | 0.3667                  | 0.5747              | 0.6091           | 0.5914             | 0.6258              | 0.4426           | 0.4738             | 0.5763                 | 0.6091              | 0.5655                |
| No log        | 2.0   | 158  | 0.3149          | 0.9142   | 0.6666    | 0.6617 | 0.6599 | 0.8715        | 0.9210     | 0.8956       | 0.9433         | 0.9752      | 0.9590        | 0.9499           | 0.8615        | 0.9035          | 0.0           | 0.0        | 0.0          | 0.6003             | 0.7613          | 0.6713            | 0.8434         | 0.7453      | 0.7913        | 0.3226                 | 0.3774              | 0.3479                | 0.8531               | 0.9791            | 0.9118              | 0.4833                        | 0.4208                     | 0.4499                       | 0.7986                   | 0.5751                | 0.6687                  | 0.6936              | 0.7676           | 0.7287             | 0.6666              | 0.6617           | 0.6599             | 0.6905                 | 0.7676              | 0.7238                |
| No log        | 3.0   | 237  | 0.2443          | 0.9324   | 0.7024    | 0.7168 | 0.7082 | 0.8834        | 0.9244     | 0.9034       | 0.9594         | 0.9867      | 0.9729        | 0.9368           | 0.8983        | 0.9171          | 0.0           | 0.0        | 0.0          | 0.6713             | 0.8095          | 0.7340            | 0.8293         | 0.7484      | 0.7868        | 0.4736                 | 0.5110              | 0.4916                | 0.9115               | 0.9761            | 0.9427              | 0.5902                        | 0.625                      | 0.6071                       | 0.7688                   | 0.6891                | 0.7268                  | 0.7539              | 0.8191           | 0.7851             | 0.7024              | 0.7168           | 0.7082             | 0.7491                 | 0.8191              | 0.7812                |
| No log        | 4.0   | 316  | 0.2329          | 0.9347   | 0.6945    | 0.7329 | 0.7118 | 0.8716        | 0.9450     | 0.9068       | 0.9640         | 0.9867      | 0.9752        | 0.9194           | 0.9134        | 0.9164          | 0.0           | 0.0        | 0.0          | 0.6822             | 0.8325          | 0.7499            | 0.8253         | 0.7579      | 0.7902        | 0.5069                 | 0.5227              | 0.5147                | 0.9277               | 0.9786            | 0.9524              | 0.5454                        | 0.6822                     | 0.6062                       | 0.7026                   | 0.7098                | 0.7062                  | 0.7541              | 0.8367           | 0.7933             | 0.6945              | 0.7329           | 0.7118             | 0.7520                 | 0.8367              | 0.7905                |
| No log        | 5.0   | 395  | 0.2173          | 0.9419   | 0.7434    | 0.7682 | 0.7441 | 0.8366        | 0.9674     | 0.8972       | 0.9634         | 0.9867      | 0.9749        | 0.8912           | 0.9394        | 0.9146          | 0.4186        | 0.1040     | 0.1667       | 0.7247             | 0.8298          | 0.7737            | 0.8114         | 0.7579      | 0.7837        | 0.5401                 | 0.6719              | 0.5988                | 0.9129               | 0.9830            | 0.9467              | 0.5894                        | 0.6963                     | 0.6384                       | 0.7461                   | 0.7461                | 0.7461                  | 0.7730              | 0.8519           | 0.8106             | 0.7434              | 0.7682           | 0.7441             | 0.7756                 | 0.8519              | 0.8096                |
| No log        | 6.0   | 474  | 0.2085          | 0.9443   | 0.7635    | 0.7745 | 0.7595 | 0.8719        | 0.9588     | 0.9133       | 0.9640         | 0.9867      | 0.9752        | 0.9153           | 0.9351        | 0.9251          | 0.4340        | 0.1329     | 0.2035       | 0.7369             | 0.8356          | 0.7832            | 0.8225         | 0.7579      | 0.7889        | 0.5739                 | 0.6900              | 0.6266                | 0.9282               | 0.9800            | 0.9534              | 0.6085                        | 0.6963                     | 0.6494                       | 0.7801                   | 0.7720                | 0.7760                  | 0.7887              | 0.8550           | 0.8205             | 0.7635              | 0.7745           | 0.7595             | 0.7907                 | 0.8550              | 0.8196                |
| 0.2745        | 7.0   | 553  | 0.2063          | 0.9462   | 0.7743    | 0.7764 | 0.7662 | 0.8797        | 0.9553     | 0.9160       | 0.9645         | 0.9867      | 0.9755        | 0.9151           | 0.9329        | 0.9239          | 0.4643        | 0.1503     | 0.2271       | 0.7505             | 0.8372          | 0.7915            | 0.8225         | 0.7579      | 0.7889        | 0.5831                 | 0.6822              | 0.6288                | 0.9330               | 0.9800            | 0.9560              | 0.6264                        | 0.6937                     | 0.6583                       | 0.8042                   | 0.7876                | 0.7958                  | 0.7994              | 0.8551           | 0.8263             | 0.7743              | 0.7764           | 0.7662             | 0.8004                 | 0.8551              | 0.8250                |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1