metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
base_model: openai/whisper-tiny.en
model-index:
- name: openai/whisper-tiny.en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_pfs
type: rishabhjain16/infer_pfs
config: en
split: test
metrics:
- type: wer
value: 54.68
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_myst
type: rishabhjain16/infer_myst
config: en
split: test
metrics:
- type: wer
value: 17.56
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_cmu
type: rishabhjain16/infer_cmu
config: en
split: test
metrics:
- type: wer
value: 33.53
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/libritts_dev_clean
type: rishabhjain16/libritts_dev_clean
config: en
split: test
metrics:
- type: wer
value: 14.71
name: WER
openai/whisper-tiny.en
This model is a fine-tuned version of openai/whisper-tiny.en on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6129
- Wer: 18.2504
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3898 | 4.02 | 1000 | 0.4541 | 17.0533 |
0.2333 | 8.04 | 2000 | 0.4818 | 16.6839 |
0.0899 | 13.01 | 3000 | 0.5512 | 17.3679 |
0.0368 | 17.02 | 4000 | 0.5962 | 17.6199 |
0.0289 | 21.04 | 5000 | 0.6129 | 18.2504 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2