rishabhjain16's picture
Librarian Bot: Add base_model information to model (#1)
4c4b1cc verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
base_model: openai/whisper-tiny.en
model-index:
  - name: openai/whisper-tiny.en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/infer_pfs
          type: rishabhjain16/infer_pfs
          config: en
          split: test
        metrics:
          - type: wer
            value: 54.68
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/infer_myst
          type: rishabhjain16/infer_myst
          config: en
          split: test
        metrics:
          - type: wer
            value: 17.56
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/infer_cmu
          type: rishabhjain16/infer_cmu
          config: en
          split: test
        metrics:
          - type: wer
            value: 33.53
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/libritts_dev_clean
          type: rishabhjain16/libritts_dev_clean
          config: en
          split: test
        metrics:
          - type: wer
            value: 14.71
            name: WER

openai/whisper-tiny.en

This model is a fine-tuned version of openai/whisper-tiny.en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6129
  • Wer: 18.2504

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3898 4.02 1000 0.4541 17.0533
0.2333 8.04 2000 0.4818 16.6839
0.0899 13.01 3000 0.5512 17.3679
0.0368 17.02 4000 0.5962 17.6199
0.0289 21.04 5000 0.6129 18.2504

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2