rishabhjain16's picture
Librarian Bot: Add base_model information to model (#1)
4c4b1cc verified
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
base_model: openai/whisper-tiny.en
model-index:
- name: openai/whisper-tiny.en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_pfs
type: rishabhjain16/infer_pfs
config: en
split: test
metrics:
- type: wer
value: 54.68
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_myst
type: rishabhjain16/infer_myst
config: en
split: test
metrics:
- type: wer
value: 17.56
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_cmu
type: rishabhjain16/infer_cmu
config: en
split: test
metrics:
- type: wer
value: 33.53
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/libritts_dev_clean
type: rishabhjain16/libritts_dev_clean
config: en
split: test
metrics:
- type: wer
value: 14.71
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-tiny.en
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6129
- Wer: 18.2504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3898 | 4.02 | 1000 | 0.4541 | 17.0533 |
| 0.2333 | 8.04 | 2000 | 0.4818 | 16.6839 |
| 0.0899 | 13.01 | 3000 | 0.5512 | 17.3679 |
| 0.0368 | 17.02 | 4000 | 0.5962 | 17.6199 |
| 0.0289 | 21.04 | 5000 | 0.6129 | 18.2504 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2