|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
base_model: openai/whisper-tiny.en |
|
model-index: |
|
- name: openai/whisper-tiny.en |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: rishabhjain16/infer_pfs |
|
type: rishabhjain16/infer_pfs |
|
config: en |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 54.68 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: rishabhjain16/infer_myst |
|
type: rishabhjain16/infer_myst |
|
config: en |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 17.56 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: rishabhjain16/infer_cmu |
|
type: rishabhjain16/infer_cmu |
|
config: en |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 33.53 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: rishabhjain16/libritts_dev_clean |
|
type: rishabhjain16/libritts_dev_clean |
|
config: en |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 14.71 |
|
name: WER |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# openai/whisper-tiny.en |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6129 |
|
- Wer: 18.2504 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.3898 | 4.02 | 1000 | 0.4541 | 17.0533 | |
|
| 0.2333 | 8.04 | 2000 | 0.4818 | 16.6839 | |
|
| 0.0899 | 13.01 | 3000 | 0.5512 | 17.3679 | |
|
| 0.0368 | 17.02 | 4000 | 0.5962 | 17.6199 | |
|
| 0.0289 | 21.04 | 5000 | 0.6129 | 18.2504 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|