rmtariq's picture
Fine-tuned on Malaysian classification dataset
979d841 verified
metadata
library_name: transformers
base_model: rmtariq/malay_classification
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: malay_classification
    results: []

malay_classification

This model is a fine-tuned version of rmtariq/malay_classification on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1691 0.2720 500 0.1373 0.9717 0.9717 0.9730 0.9717
0.0493 0.5441 1000 0.0369 0.9943 0.9943 0.9945 0.9943
0.0669 0.8161 1500 0.0406 0.9952 0.9952 0.9954 0.9952
0.0287 1.0881 2000 0.0276 0.9943 0.9944 0.9948 0.9943
0.0061 1.3602 2500 0.0168 0.9971 0.9971 0.9972 0.9971
0.0137 1.6322 3000 0.0128 0.9981 0.9981 0.9981 0.9981
0.0178 1.9042 3500 0.0179 0.9968 0.9968 0.9969 0.9968
0.0112 2.1763 4000 0.0110 0.9975 0.9975 0.9975 0.9975
0.0001 2.4483 4500 0.0079 0.9987 0.9987 0.9988 0.9987
0.0001 2.7203 5000 0.0021 0.9987 0.9987 0.9987 0.9987
0.0003 2.9924 5500 0.0024 0.9990 0.9990 0.9991 0.9990

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.7.1
  • Datasets 3.6.0
  • Tokenizers 0.21.2