saathwik's picture
Upload folder using huggingface_hub
18c076f verified
raw
history blame
14.3 kB
from google.colab import drive
import os
import glob
import torch
import torch.nn as nn
import torch.optim as optim
import pdfplumber
import random
import math
from tqdm import tqdm
from transformers import AutoTokenizer
from torch.utils.data import DataLoader, Dataset, random_split
from torch.cuda.amp import autocast, GradScaler # Fixed import
from huggingface_hub import login
from torch.utils.tensorboard import SummaryWriter
import logging
from typing import Tuple, List, Dict
# Configuration
class Config:
# Model
D_MODEL = 512
NHEAD = 8
ENC_LAYERS = 6
DEC_LAYERS = 6
DIM_FEEDFORWARD = 2048
DROPOUT = 0.1
# Training
BATCH_SIZE = 4
GRAD_ACCUM_STEPS = 2
LR = 1e-4
EPOCHS = 20
MAX_GRAD_NORM = 1.0
# Data
INPUT_MAX_LEN = 512
SUMMARY_MAX_LEN = 128
CHUNK_SIZE = 512
# Paths
CHECKPOINT_DIR = "/content/drive/MyDrive/legal_summarization_checkpoints_6"
LOG_DIR = os.path.join(CHECKPOINT_DIR, "logs")
@classmethod
def setup_paths(cls):
os.makedirs(cls.CHECKPOINT_DIR, exist_ok=True)
os.makedirs(cls.LOG_DIR, exist_ok=True)
# Initialize config
Config.setup_paths()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(Config.LOG_DIR, 'training.log')),
logging.StreamHandler()
]
)
logger = logging.getLogger(_name_)
# Authenticate Hugging Face
login(token="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")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Mount Google Drive
drive.mount('/content/drive', force_remount=True)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("t5-small")
vocab_size = tokenizer.vocab_size
# TensorBoard
writer = SummaryWriter(Config.LOG_DIR)
def clean_text(text: str) -> str:
"""Basic text cleaning"""
text = ' '.join(text.split()) # Remove extra whitespace
return text.strip()
def extract_text_from_pdf(pdf_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]:
"""Extract and chunk text from PDF with error handling"""
text = ''
try:
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text() or ''
text += page_text + ' '
except Exception as e:
logger.warning(f"Error processing {pdf_path}: {str(e)}")
return []
text = clean_text(text)
words = text.split()
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)] if words else []
def load_texts_from_folder(folder_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]:
"""Load and chunk texts from folder with multiple file types"""
texts = []
for fname in sorted(os.listdir(folder_path)):
path = os.path.join(folder_path, fname)
try:
if path.endswith('.pdf'):
chunks = extract_text_from_pdf(path, chunk_size)
if chunks:
texts.extend(chunks)
else:
with open(path, 'r', encoding='utf-8', errors='ignore') as f:
content = clean_text(f.read())
if content:
texts.extend([content[i:i+chunk_size] for i in range(0, len(content), chunk_size)])
except Exception as e:
logger.warning(f"Error loading {path}: {str(e)}")
continue
return texts
class LegalDataset(Dataset):
def _init_(self, texts: List[str], summaries: List[str], tokenizer: AutoTokenizer,
input_max_len: int = Config.INPUT_MAX_LEN,
summary_max_len: int = Config.SUMMARY_MAX_LEN):
assert len(texts) == len(summaries), "Texts and summaries must be same length"
self.texts = texts
self.summaries = summaries
self.tokenizer = tokenizer
self.input_max_len = input_max_len
self.summary_max_len = summary_max_len
def _len_(self):
return len(self.texts)
def _getitem_(self, idx):
src = self.texts[idx]
tgt = self.summaries[idx]
enc = self.tokenizer(
src,
padding='max_length',
truncation=True,
max_length=self.input_max_len,
return_tensors='pt'
)
dec = self.tokenizer(
tgt,
padding='max_length',
truncation=True,
max_length=self.summary_max_len,
return_tensors='pt'
)
return {
'input_ids': enc.input_ids.squeeze(),
'attention_mask': enc.attention_mask.squeeze(),
'labels': dec.input_ids.squeeze()
}
class PositionalEncoding(nn.Module):
def _init_(self, d_model: int, dropout: float = 0.1, max_len: int = 1024):
super()._init_()
self.dropout = nn.Dropout(dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div)
pe[:, 1::2] = torch.cos(position * div)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class CustomTransformer(nn.Module):
def _init_(self, vocab_size: int, d_model: int = Config.D_MODEL, nhead: int = Config.NHEAD,
enc_layers: int = Config.ENC_LAYERS, dec_layers: int = Config.DEC_LAYERS,
dim_feedforward: int = Config.DIM_FEEDFORWARD, dropout: float = Config.DROPOUT):
super()._init_()
self.embed = nn.Embedding(vocab_size, d_model)
self.pos_enc = PositionalEncoding(d_model, dropout)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=enc_layers,
num_decoder_layers=dec_layers,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=True
)
self.fc = nn.Linear(d_model, vocab_size)
# Initialize weights
self._init_weights()
def _init_weights(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src_ids: torch.Tensor, tgt_ids: torch.Tensor,
src_key_padding_mask: torch.Tensor = None,
tgt_key_padding_mask: torch.Tensor = None) -> torch.Tensor:
# Create causal mask for decoder
tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_ids.size(1)).to(tgt_ids.device)
src = self.pos_enc(self.embed(src_ids))
tgt = self.pos_enc(self.embed(tgt_ids))
out = self.transformer(
src, tgt,
tgt_mask=tgt_mask,
src_key_padding_mask=src_key_padding_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=src_key_padding_mask
)
return self.fc(out)
def create_masks(input_ids: torch.Tensor, decoder_input: torch.Tensor, pad_token_id: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Create padding masks for transformer"""
src_pad_mask = (input_ids == pad_token_id)
tgt_pad_mask = (decoder_input == pad_token_id)
return src_pad_mask, tgt_pad_mask
def train_model(model: nn.Module, train_loader: DataLoader, val_loader: DataLoader,
optimizer: optim.Optimizer, criterion: nn.Module, device: torch.device,
epochs: int = Config.EPOCHS, grad_accum_steps: int = Config.GRAD_ACCUM_STEPS):
model.to(device)
scaler = GradScaler()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.5)
best_val_loss = float('inf')
early_stop_counter = 0
for epoch in range(1, epochs + 1):
model.train()
train_loss = 0
progress_bar = tqdm(train_loader, desc=f"Epoch {epoch}/{epochs}")
for step, batch in enumerate(progress_bar, 1):
input_ids = batch['input_ids'].to(device)
attn_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
# Prepare decoder input with <pad> as start
decoder_input = torch.cat([
torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device),
labels[:, :-1]
], dim=1)
# Create masks
src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id)
with autocast():
outputs = model(
input_ids,
decoder_input,
src_key_padding_mask=src_pad_mask,
tgt_key_padding_mask=tgt_pad_mask
)
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
loss = loss / grad_accum_steps
scaler.scale(loss).backward()
if step % grad_accum_steps == 0:
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), Config.MAX_GRAD_NORM)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
train_loss += loss.item() * grad_accum_steps
progress_bar.set_postfix({'train_loss': f"{loss.item():.4f}"})
avg_train_loss = train_loss / len(train_loader)
writer.add_scalar('Loss/train', avg_train_loss, epoch)
logger.info(f"Epoch {epoch} Train Loss: {avg_train_loss:.4f}")
# Validation
model.eval()
val_loss = 0
with torch.no_grad():
for batch in tqdm(val_loader, desc="Validating"):
input_ids = batch['input_ids'].to(device)
labels = batch['labels'].to(device)
decoder_input = torch.cat([
torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device),
labels[:, :-1]
], dim=1)
src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id)
with autocast():
outputs = model(
input_ids,
decoder_input,
src_key_padding_mask=src_pad_mask,
tgt_key_padding_mask=tgt_pad_mask
)
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
writer.add_scalar('Loss/val', avg_val_loss, epoch)
logger.info(f"Epoch {epoch} Val Loss: {avg_val_loss:.4f}")
# Learning rate scheduling
scheduler.step(avg_val_loss)
# Early stopping & checkpointing
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
early_stop_counter = 0
# Save best model
ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_best.pt")
torch.save(model.state_dict(), ckpt_path)
logger.info(f"New best model saved with val loss: {best_val_loss:.4f}")
else:
early_stop_counter += 1
if early_stop_counter >= 3:
logger.info("Early stopping triggered")
break
# Save regular checkpoint
ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_epoch_{epoch}.pt")
torch.save(model.state_dict(), ckpt_path)
# Keep only latest 2 checkpoints
manage_checkpoints()
def manage_checkpoints():
"""Keep only the 2 most recent checkpoints"""
files = sorted(glob.glob(os.path.join(Config.CHECKPOINT_DIR, "transformer_epoch_*.pt")), key=os.path.getctime)
if len(files) > 2:
for old in files[:-2]:
os.remove(old)
logger.info(f"Removed old checkpoint: {old}")
if _name_ == "_main_":
try:
logger.info("Starting training process")
# Load data
logger.info("Loading texts and summaries")
texts = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/judgement")
sums = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/summary")
if not texts or not sums:
raise ValueError("No data loaded - check your input paths and files")
logger.info(f"Loaded {len(texts)} text chunks and {len(sums)} summary chunks")
# Create dataset
full_ds = LegalDataset(texts, sums, tokenizer)
# Train/val split
val_size = int(0.1 * len(full_ds))
train_size = len(full_ds) - val_size
train_ds, val_ds = random_split(full_ds, [train_size, val_size])
train_loader = DataLoader(train_ds, batch_size=Config.BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_ds, batch_size=Config.BATCH_SIZE)
# Initialize model
model = CustomTransformer(vocab_size)
optimizer = optim.Adam(model.parameters(), lr=Config.LR)
criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
# Train
train_model(model, train_loader, val_loader, optimizer, criterion, device)
logger.info("Training completed successfully")
except Exception as e:
logger.error(f"Training failed: {str(e)}", exc_info=True)
raise