sabroo's picture
End of training
195c7c4 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-czech-colab-CV17.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.05608571906914448

w2v-bert-2.0-czech-colab-CV17.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1030
  • Wer: 0.0561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6496 0.6579 300 0.1459 0.1211
0.0878 1.3158 600 0.1426 0.1034
0.0713 1.9737 900 0.1136 0.0925
0.0478 2.6316 1200 0.1084 0.0815
0.04 3.2895 1500 0.0980 0.0778
0.0309 3.9474 1800 0.0973 0.0723
0.0218 4.6053 2100 0.1035 0.0681
0.0218 5.2632 2400 0.0997 0.0658
0.0157 5.9211 2700 0.0924 0.0693
0.012 6.5789 3000 0.0957 0.0621
0.0103 7.2368 3300 0.0985 0.0623
0.0082 7.8947 3600 0.0942 0.0594
0.0051 8.5526 3900 0.1028 0.0569
0.0042 9.2105 4200 0.1021 0.0567
0.0031 9.8684 4500 0.1030 0.0561

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1
  • Datasets 2.19.1
  • Tokenizers 0.20.1