|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Llama-3.1-8B-Instruct |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- seacorn/news-summarizer-reasoner |
|
model-index: |
|
- name: llama3.1-8b-reasoning-summarizer |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.8.0.dev0` |
|
```yaml |
|
base_model: meta-llama/Llama-3.1-8B-Instruct |
|
# optionally might have model_type or tokenizer_type |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
# Automatically upload checkpoint and final model to HF |
|
hub_model_id: seacorn/llama3.1-8b-reasoning-summarizer |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
seed: 42 |
|
|
|
datasets: |
|
- path: output.jsonl |
|
type: chat_template |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./lora-out |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
|
|
wandb_project: huggingface |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: llama3.1-8b-reasoning-summarizer |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
s2_attention: |
|
|
|
warmup_ratio: 0.05 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 5 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# llama3.1-8b-reasoning-summarizer |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [seacorn/news-summarizer-reasoner](https://huggingface.co/datasets/seacorn/news-summarizer-reasoner) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1173 |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
The model performs best in summarization tasks, specifically in English and maybe Chinese. The model provides reasoning ON/OFF via system prompt trigger, all instructions should be contained within the user prompt. |
|
|
|
Reasoning off example: |
|
```json |
|
messages = [ |
|
{"role": "system", "content": "reasoning off"}, |
|
{"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."} |
|
] |
|
|
|
# output |
|
- Elon Musk's xAI acquires X ... |
|
``` |
|
|
|
Reasoning on example: |
|
```json |
|
messages = [ |
|
{"role": "system", "content": "reasoning on"}, |
|
{"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."} |
|
] |
|
|
|
# output |
|
<think> |
|
Okay, I need to summarize this article into 5 bullet points, each with a maximum of 20 words. ... |
|
</think> |
|
|
|
- Musk's xAI acquires X ... |
|
``` |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 56 |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.0396 | 0.0018 | 1 | 1.7982 | |
|
| 1.3908 | 0.2506 | 141 | 1.2241 | |
|
| 1.8534 | 0.5011 | 282 | 1.1842 | |
|
| 1.5745 | 0.7517 | 423 | 1.1560 | |
|
| 0.9261 | 1.0018 | 564 | 1.1288 | |
|
| 1.2359 | 1.2523 | 705 | 1.1344 | |
|
| 1.1835 | 1.5029 | 846 | 1.1223 | |
|
| 0.9898 | 1.7534 | 987 | 1.1173 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.0 |
|
- Transformers 4.50.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.4.1 |
|
- Tokenizers 0.21.1 |