|
|
--- |
|
|
library_name: transformers |
|
|
license: llama3.2 |
|
|
base_model: meta-llama/Llama-3.2-3B |
|
|
tags: |
|
|
- axolotl |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- yahma/alpaca-cleaned |
|
|
model-index: |
|
|
- name: qat-nvfp4-llama3B |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
|
<details><summary>See axolotl config</summary> |
|
|
|
|
|
axolotl version: `0.13.0.dev0` |
|
|
```yaml |
|
|
base_model: meta-llama/Llama-3.2-3B |
|
|
hub_model_id: smohammadi/qat-nvfp4-llama3B |
|
|
|
|
|
load_in_8bit: false |
|
|
load_in_4bit: false |
|
|
strict: false |
|
|
|
|
|
#chunked_cross_entropy: true |
|
|
#plugins: |
|
|
# - axolotl.integrations.liger.LigerPlugin |
|
|
|
|
|
liger_rope: true |
|
|
liger_rms_norm: true |
|
|
liger_glu_activation: true |
|
|
liger_layer_norm: true |
|
|
#liger_fused_linear_cross_entropy: true |
|
|
|
|
|
datasets: |
|
|
- path: yahma/alpaca-cleaned |
|
|
type: alpaca |
|
|
split: train[:95%] |
|
|
|
|
|
output_dir: ./outputs/qat_out/ |
|
|
dataset_prepared_path: ./outputs/qat_out/dataset_prepared |
|
|
|
|
|
sample_packing: false #true |
|
|
sequence_len: 4096 |
|
|
flash_attention: true |
|
|
#flex_attention: true |
|
|
#flex_attn_compile_kwargs: |
|
|
# dynamic: false |
|
|
#mode: max-autotune-no-cudagraphs |
|
|
qat: |
|
|
activation_dtype: nvfp4 |
|
|
weight_dtype: nvfp4 |
|
|
group_size: 16 # only group_size of 16 is supported with nvfp4 |
|
|
|
|
|
wandb_project: qat_v2 |
|
|
wandb_entity: |
|
|
wandb_watch: |
|
|
wandb_name: nvfp4 |
|
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 1 |
|
|
micro_batch_size: 64 |
|
|
num_epochs: 1 |
|
|
optimizer: adamw_torch_fused |
|
|
gradient_checkpointing: true |
|
|
|
|
|
cosine_constant_lr_ratio: 0 |
|
|
cosine_min_lr_ratio: 1.0 |
|
|
learning_rate: 2e-5 |
|
|
save_only_model: true |
|
|
bf16: true |
|
|
|
|
|
resume_from_checkpoint: |
|
|
logging_steps: 1 |
|
|
|
|
|
evals_per_epoch: 1 |
|
|
saves_per_epoch: 1 |
|
|
|
|
|
warmup_ratio: 0.1 |
|
|
weight_decay: 0.0 |
|
|
|
|
|
special_tokens: |
|
|
pad_token: <|finetune_right_pad_id|> |
|
|
|
|
|
# save_first_step: true # uncomment this to validate checkpoint saving works with your config |
|
|
|
|
|
``` |
|
|
|
|
|
</details><br> |
|
|
|
|
|
# qat-nvfp4-llama3B |
|
|
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the yahma/alpaca-cleaned dataset. |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 64 |
|
|
- eval_batch_size: 64 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: cosine |
|
|
- lr_scheduler_warmup_steps: 76 |
|
|
- training_steps: 769 |
|
|
|
|
|
### Training results |
|
|
|
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.55.4 |
|
|
- Pytorch 2.8.0+cu128 |
|
|
- Datasets 4.0.0 |
|
|
- Tokenizers 0.21.4 |
|
|
|