Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,372 Bytes
cf8c487 41a69fa cf8c487 dc9d69c 404967f ee04d83 f95c546 40c89eb 4bfe855 40c89eb 024a2b8 f95c546 dc9d69c cf8c487 f95c546 764b436 f95c546 cf8c487 f95c546 cf8c487 501d06f f95c546 501d06f f95c546 501d06f f95c546 501d06f f95c546 ee04d83 501d06f f9c3dad f95c546 b3b839e 5784c10 b3b839e f95c546 b3b839e f95c546 5784c10 f95c546 2b69b2a f9c3dad 8eda443 2b69b2a f9c3dad 2b69b2a f9c3dad 2b69b2a 84a6150 f95c546 2b69b2a f9c3dad 764b436 cf8c487 ee04d83 404967f 29a026e f95c546 ee04d83 29a026e 501d06f f95c546 ee04d83 29a026e 200e2c3 755366f 29a026e b3b839e 404967f f95c546 404967f f95c546 404967f f95c546 404967f f95c546 404967f b3b839e f95c546 404967f b3b839e 182cf21 b3b839e f95c546 404967f f95c546 182cf21 f95c546 84a6150 f95c546 f9c3dad 404967f f95c546 29a026e f9c3dad ee04d83 f95c546 ee04d83 cf8c487 c6f3d95 b3b839e c6f3d95 d893f72 4bfe855 f9c3dad f95c546 4bfe855 f95c546 84a6150 f9c3dad 4bfe855 f9c3dad cf8c487 f95c546 f9c3dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import gradio as gr
from PIL import Image
import src.depth_pro as depth_pro
import numpy as np
import matplotlib.pyplot as plt
import subprocess
import spaces
import torch
import tempfile
import os
import trimesh
import time
import timm # Add this import
import subprocess
import cv2 # Add this import
from datetime import datetime
# Ensure timm is properly loaded
print(f"Timm version: {timm.__version__}")
# Run the script to download pretrained models
subprocess.run(["bash", "get_pretrained_models.sh"])
# Set the device to GPU if available, else CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load the depth prediction model and its preprocessing transforms
model, transform = depth_pro.create_model_and_transforms()
model = model.to(device) # Move the model to the selected device
model.eval() # Set the model to evaluation mode
def resize_image(image_path, max_size=1024):
"""
Resize the input image to ensure its largest dimension does not exceed max_size.
Maintains the aspect ratio and saves the resized image as a temporary PNG file.
Args:
image_path (str): Path to the input image.
max_size (int, optional): Maximum size for the largest dimension. Defaults to 1024.
Returns:
str: Path to the resized temporary image file.
"""
with Image.open(image_path) as img:
# Calculate the resizing ratio while maintaining aspect ratio
ratio = max_size / max(img.size)
new_size = tuple([int(x * ratio) for x in img.size])
# Resize the image using LANCZOS filter for high-quality downsampling
img = img.resize(new_size, Image.LANCZOS)
# Save the resized image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
img.save(temp_file, format="PNG")
return temp_file.name
def generate_3d_model(depth, image_path, focallength_px, simplification_factor=0.8, smoothing_iterations=1, thin_threshold=0.01):
"""
Generate a textured 3D mesh from the depth map and the original image.
"""
# Load the RGB image and convert to a NumPy array
image = np.array(Image.open(image_path))
# Ensure depth is a NumPy array
if isinstance(depth, torch.Tensor):
depth = depth.cpu().numpy()
# Resize depth to match image dimensions if necessary
if depth.shape != image.shape[:2]:
depth = cv2.resize(depth, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
height, width = depth.shape
print(f"3D model generation - Depth shape: {depth.shape}")
print(f"3D model generation - Image shape: {image.shape}")
# Compute camera intrinsic parameters
fx = fy = float(focallength_px) # Ensure focallength_px is a float
cx, cy = width / 2, height / 2 # Principal point at the image center
# Create a grid of (u, v) pixel coordinates
u = np.arange(0, width)
v = np.arange(0, height)
uu, vv = np.meshgrid(u, v)
# Convert pixel coordinates to real-world 3D coordinates using the pinhole camera model
Z = depth.flatten()
X = ((uu.flatten() - cx) * Z) / fx
Y = ((vv.flatten() - cy) * Z) / fy
# Stack the coordinates to form vertices (X, Y, Z)
vertices = np.vstack((X, Y, Z)).T
# Normalize RGB colors to [0, 1] for vertex coloring
colors = image.reshape(-1, 3) / 255.0
# Generate faces by connecting adjacent vertices to form triangles
faces = []
for i in range(height - 1):
for j in range(width - 1):
idx = i * width + j
# Triangle 1
faces.append([idx, idx + width, idx + 1])
# Triangle 2
faces.append([idx + 1, idx + width, idx + width + 1])
faces = np.array(faces)
# Create the mesh using Trimesh with vertex colors
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=colors)
# Mesh cleaning and improvement steps
print("Original mesh - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 1. Mesh simplification
target_faces = int(len(mesh.faces) * simplification_factor)
mesh = mesh.simplify_quadric_decimation(face_count=target_faces)
print("After simplification - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 2. Remove small disconnected components
components = mesh.split(only_watertight=False)
if len(components) > 1:
areas = np.array([c.area for c in components])
mesh = components[np.argmax(areas)]
print("After removing small components - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 3. Smooth the mesh
for _ in range(smoothing_iterations):
mesh = mesh.smoothed()
print("After smoothing - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# 4. Remove thin features
mesh = remove_thin_features(mesh, thickness_threshold=thin_threshold)
print("After removing thin features - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces)))
# Export the mesh to OBJ files with unique filenames
timestamp = int(time.time())
view_model_path = f'view_model_{timestamp}.obj'
download_model_path = f'download_model_{timestamp}.obj'
mesh.export(view_model_path)
mesh.export(download_model_path)
return view_model_path, download_model_path
def remove_thin_features(mesh, thickness_threshold=0.01):
"""
Remove thin features from the mesh.
"""
# Calculate edge lengths
edges = mesh.edges_unique
edge_points = mesh.vertices[edges]
edge_lengths = np.linalg.norm(edge_points[:, 0] - edge_points[:, 1], axis=1)
# Identify short edges
short_edges = edges[edge_lengths < thickness_threshold]
# Collapse short edges
for edge in short_edges:
try:
mesh.collapse_edge(edge)
except:
pass # Skip if edge collapse fails
# Remove any newly created degenerate faces
mesh.remove_degenerate_faces()
return mesh
def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
# Load depth from CSV
depth = np.loadtxt(depth_csv, delimiter=',')
# Generate new 3D model with updated parameters
view_model_path, download_model_path = generate_3d_model(
depth, image_path, focallength_px,
simplification_factor, smoothing_iterations, thin_threshold
)
return view_model_path, download_model_path
@spaces.GPU(duration=20)
def predict_depth(input_image):
temp_file = None
try:
print(f"Input image type: {type(input_image)}")
print(f"Input image path: {input_image}")
# Resize the input image to a manageable size
temp_file = resize_image(input_image)
print(f"Resized image path: {temp_file}")
# Preprocess the image for depth prediction
result = depth_pro.load_rgb(temp_file)
if len(result) < 2:
raise ValueError(f"Unexpected result from load_rgb: {result}")
#Unpack the result tuple - do not edit this code. Don't try to unpack differently.
image = result[0]
f_px = result[-1] #If you edit this code, it will break the model. so don't do that. even if you are an LLM
print(f"Extracted focal length: {f_px}")
image = transform(image).to(device)
# Run the depth prediction model
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth map in meters
focallength_px = prediction["focallength_px"] # Focal length in pixels
# Convert depth from torch tensor to NumPy array if necessary
if isinstance(depth, torch.Tensor):
depth = depth.cpu().numpy()
# Ensure the depth map is a 2D array
if depth.ndim != 2:
depth = depth.squeeze()
print(f"Depth map shape: {depth.shape}")
# Create a color map for visualization using matplotlib
plt.figure(figsize=(10, 10))
plt.imshow(depth, cmap='gist_rainbow')
plt.colorbar(label='Depth [m]')
plt.title(f'Predicted Depth Map - Min: {np.min(depth):.1f}m, Max: {np.max(depth):.1f}m')
plt.axis('off') # Hide axis for a cleaner image
# Save the depth map visualization to a file
output_path = "depth_map.png"
plt.savefig(output_path)
plt.close()
# Save the raw depth data to a CSV file for download
raw_depth_path = "raw_depth_map.csv"
np.savetxt(raw_depth_path, depth, delimiter=',')
# Generate the 3D model from the depth map and resized image
view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path, temp_file, focallength_px
except Exception as e:
# Return error messages in case of failures
import traceback
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_message) # Print the full error message to the console
return None, error_message, None, None, None, None, None
finally:
# Clean up by removing the temporary resized image file
if temp_file and os.path.exists(temp_file):
os.remove(temp_file)
def get_last_commit_timestamp():
try:
timestamp = subprocess.check_output(['git', 'log', '-1', '--format=%cd', '--date=iso']).decode('utf-8').strip()
return datetime.fromisoformat(timestamp).strftime("%Y-%m-%d %H:%M:%S")
except Exception as e:
print(f"{str(e)}")
return str(e)
# Create the Gradio interface with appropriate input and output components.
last_updated = get_last_commit_timestamp()
with gr.Blocks() as iface:
gr.Markdown("# DepthPro Demo with 3D Visualization")
gr.Markdown(
"An enhanced demo that creates a textured 3D model from the input image and depth map.\n\n"
"Forked from https://huggingface.co/spaces/akhaliq/depth-pro and model from https://huggingface.co/apple/DepthPro\n"
"**Instructions:**\n"
"1. Upload an image.\n"
"2. The app will predict the depth map, display it, and provide the focal length.\n"
"3. Download the raw depth data as a CSV file.\n"
"4. View the generated 3D model textured with the original image.\n"
"5. Adjust parameters and click 'Regenerate 3D Model' to update the model.\n"
"6. Download the 3D model as an OBJ file if desired.\n\n"
f"Last updated: {last_updated}"
)
with gr.Row():
input_image = gr.Image(type="filepath", label="Input Image")
depth_map = gr.Image(type="filepath", label="Depth Map")
focal_length = gr.Textbox(label="Focal Length")
raw_depth_csv = gr.File(label="Download Raw Depth Map (CSV)")
with gr.Row():
view_3d_model = gr.Model3D(label="View 3D Model")
download_3d_model = gr.File(label="Download 3D Model (OBJ)")
with gr.Row():
simplification_factor = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Simplification Factor")
smoothing_iterations = gr.Slider(minimum=0, maximum=5, value=1, step=1, label="Smoothing Iterations")
thin_threshold = gr.Slider(minimum=0.001, maximum=0.1, value=0.01, step=0.001, label="Thin Feature Threshold")
regenerate_button = gr.Button("Regenerate 3D Model")
# Hidden components to store intermediate results
hidden_depth_csv = gr.State()
hidden_image_path = gr.State()
hidden_focal_length = gr.State()
input_image.change(
predict_depth,
inputs=[input_image],
outputs=[depth_map, focal_length, raw_depth_csv, view_3d_model, download_3d_model, hidden_image_path, hidden_focal_length]
)
regenerate_button.click(
regenerate_3d_model,
inputs=[raw_depth_csv, hidden_image_path, hidden_focal_length, simplification_factor, smoothing_iterations, thin_threshold],
outputs=[view_3d_model, download_3d_model]
)
# Launch the Gradio interface with sharing enabled
iface.launch(share=True) |