Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
model_name = "sentence-transformers/all-MiniLM-L6-v2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name) | |
# Function to get embeddings | |
def get_embedding(text): | |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
return embeddings | |
st.title("Text Embedding with all-MiniLM-L6-v2") | |
st.write("Enter text to get its embedding:") | |
# Input text from the user | |
input_text = st.text_area("Input Text", "") | |
# If input text is provided, show the embeddings | |
if input_text: | |
embedding = get_embedding(input_text) | |
st.write("Embedding:") | |
st.write(embedding.numpy()) | |