File size: 19,956 Bytes
f8d95b7 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e e35735a f8d95b7 b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e 1f6b1ac d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e b707dc6 d7d1d4e 7abd4e3 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 d7d1d4e f8d95b7 12c1c02 f8d95b7 7abd4e3 f8d95b7 7abd4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import os
from dotenv import load_dotenv
import uuid
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, Any, List, Optional
import pandas as pd
import numpy as np
import json
import io
import contextlib
import traceback
import time
from datetime import datetime, timedelta
import seaborn as sns
import scipy.stats as stats
from pydantic import BaseModel
from supabase_service import upload_file_to_supabase
# Load environment variables from .env file
load_dotenv()
class CodeResponse(BaseModel):
"""Container for code-related responses"""
language: str = "python"
code: str
class ChartSpecification(BaseModel):
"""Details about requested charts"""
image_description: str
code: Optional[str] = None
class AnalysisOperation(BaseModel):
"""Container for a single analysis operation with its code and result"""
code: CodeResponse
description: str
class CsvChatResult(BaseModel):
"""Structured response for CSV-related AI interactions"""
response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
casual_response: str
analysis_operations: List[AnalysisOperation]
charts: Optional[List[ChartSpecification]] = None
class PythonExecutor:
"""Handles execution of Python code with comprehensive data analysis libraries"""
def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
"""
Initialize the PythonExecutor with a DataFrame
Args:
df (pd.DataFrame): The DataFrame to operate on
charts_folder (str): Folder to save charts in
"""
self.df = df
self.charts_folder = Path(charts_folder)
self.charts_folder.mkdir(exist_ok=True)
def execute_code(self, code: str) -> Dict[str, Any]:
"""
Execute Python code with full data analysis context and return results
Args:
code (str): Python code to execute
Returns:
dict: Dictionary containing execution results and any generated plots
"""
output = ""
error = None
plots = []
# Capture stdout
stdout = io.StringIO()
# Monkey patch plt.show() to save figures
original_show = plt.show
def custom_show():
"""Custom show function that saves plots instead of displaying them"""
for i, fig in enumerate(plt.get_fignums()):
figure = plt.figure(fig)
# Save plot to bytes buffer
buf = io.BytesIO()
figure.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plots.append(buf.read())
plt.close('all')
try:
# Create comprehensive execution context with data analysis libraries
exec_globals = {
# Core data analysis
'pd': pd,
'np': np,
'df': self.df,
# Visualization
'plt': plt,
'sns': sns,
# Statistics
'stats': stats,
# Date/time
'datetime': datetime,
'timedelta': timedelta,
'time': time,
# Utilities
'json': json,
'__builtins__': __builtins__,
}
# Replace plt.show with custom implementation
plt.show = custom_show
# Execute code and capture output
with contextlib.redirect_stdout(stdout):
exec(code, exec_globals)
output = stdout.getvalue()
except Exception as e:
error = {
"message": str(e),
"traceback": traceback.format_exc()
}
finally:
# Restore original plt.show
plt.show = original_show
return {
'output': output,
'error': error,
'plots': plots
}
async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
"""
Save plot to Supabase storage and return the public URL
Args:
plot_data (bytes): Image data in bytes
description (str): Description of the plot
chat_id (str): ID of the chat session
Returns:
str: Public URL of the uploaded chart
"""
# Generate unique filename
filename = f"chart_{uuid.uuid4().hex}.png"
filepath = self.charts_folder / filename
# Save the plot locally first
with open(filepath, 'wb') as f:
f.write(plot_data)
try:
# Upload to Supabase
public_url = await upload_file_to_supabase(
file_path=str(filepath),
file_name=filename,
chat_id=chat_id
)
# Remove the local file after upload
os.remove(filepath)
return public_url
except Exception as e:
# Clean up local file if upload fails
if os.path.exists(filepath):
os.remove(filepath)
raise Exception(f"Failed to upload plot to Supabase: {e}")
def _looks_like_structured_data(self, output: str) -> bool:
"""Helper to detect JSON-like or array-like output"""
output = output.strip()
return (
output.startswith('{') and output.endswith('}') or # JSON object
output.startswith('[') and output.endswith(']') or # Array
'\n' in output and '=' in output # Python console output
)
async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
"""
Process the CsvChatResult response and generate formatted output
with markdown code blocks for structured data.
Args:
response (CsvChatResult): Response from CSV analysis
chat_id (str): ID of the chat session
Returns:
str: Formatted output with results and image URLs
"""
output_parts = []
# Add casual response
output_parts.append(response.casual_response)
# Process analysis operations
for operation in response.analysis_operations:
# Execute the code
result = self.execute_code(operation.code.code)
# Add operation description
output_parts.append(f"\n{operation.description}:")
# Add output or error with markdown wrapping
if result['error']:
output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
else:
output = result['output'].strip()
if self._looks_like_structured_data(output):
output_parts.append("```python\n" + output + "\n```")
else:
output_parts.append(output)
# Process charts
if response.charts:
output_parts.append("\nVisualizations:")
for chart in response.charts:
if chart.code:
result = self.execute_code(chart.code)
if result['plots']:
for plot_data in result['plots']:
try:
public_url = await self.save_plot_to_supabase(
plot_data=plot_data,
description=chart.image_description,
chat_id=chat_id
)
output_parts.append(f"\n{chart.image_description}")
output_parts.append(f"")
except Exception as e:
output_parts.append(f"\nError uploading chart: {str(e)}")
elif result['error']:
output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
return "\n".join(output_parts)
# Table formatter
# import os
# from dotenv import load_dotenv
# import uuid
# import matplotlib.pyplot as plt
# from pathlib import Path
# from typing import Dict, Any, List, Optional
# import pandas as pd
# import numpy as np
# import json
# import io
# import contextlib
# import traceback
# import time
# from datetime import datetime, timedelta
# import seaborn as sns
# import scipy.stats as stats
# from pydantic import BaseModel
# from supabase_service import upload_file_to_supabase
# # Load environment variables from .env file
# load_dotenv()
# class CodeResponse(BaseModel):
# """Container for code-related responses"""
# language: str = "python"
# code: str
# class ChartSpecification(BaseModel):
# """Details about requested charts"""
# image_description: str
# code: Optional[str] = None
# class AnalysisOperation(BaseModel):
# """Container for a single analysis operation with its code and result"""
# code: CodeResponse
# description: str
# class CsvChatResult(BaseModel):
# """Structured response for CSV-related AI interactions"""
# response_type: str # Literal["casual", "data_analysis", "visualization", "mixed"]
# casual_response: str
# analysis_operations: List[AnalysisOperation]
# charts: Optional[List[ChartSpecification]] = None
# class PythonExecutor:
# """Handles execution of Python code with comprehensive data analysis libraries"""
# def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
# """
# Initialize the PythonExecutor with a DataFrame
# Args:
# df (pd.DataFrame): The DataFrame to operate on
# charts_folder (str): Folder to save charts in
# """
# self.df = df
# self.charts_folder = Path(charts_folder)
# self.charts_folder.mkdir(exist_ok=True)
# def execute_code(self, code: str) -> Dict[str, Any]:
# """
# Execute Python code with full data analysis context and return results
# Args:
# code (str): Python code to execute
# Returns:
# dict: Dictionary containing execution results and any generated plots
# """
# output = ""
# error = None
# plots = []
# # Capture stdout
# stdout = io.StringIO()
# # Monkey patch plt.show() to save figures
# original_show = plt.show
# def custom_show():
# """Custom show function that saves plots instead of displaying them"""
# for i, fig in enumerate(plt.get_fignums()):
# figure = plt.figure(fig)
# # Save plot to bytes buffer
# buf = io.BytesIO()
# figure.savefig(buf, format='png', bbox_inches='tight')
# buf.seek(0)
# plots.append(buf.read())
# plt.close('all')
# try:
# # Create comprehensive execution context with data analysis libraries
# exec_globals = {
# # Core data analysis
# 'pd': pd,
# 'np': np,
# 'df': self.df,
# # Visualization
# 'plt': plt,
# 'sns': sns,
# # Statistics
# 'stats': stats,
# # Date/time
# 'datetime': datetime,
# 'timedelta': timedelta,
# 'time': time,
# # Utilities
# 'json': json,
# '__builtins__': __builtins__,
# }
# # Replace plt.show with custom implementation
# plt.show = custom_show
# # Execute code and capture output
# with contextlib.redirect_stdout(stdout):
# exec(code, exec_globals)
# output = stdout.getvalue()
# except Exception as e:
# error = {
# "message": str(e),
# "traceback": traceback.format_exc()
# }
# finally:
# # Restore original plt.show
# plt.show = original_show
# return {
# 'output': output,
# 'error': error,
# 'plots': plots
# }
# def _convert_dataframe_to_text(self, df: pd.DataFrame) -> str:
# """
# Convert pandas DataFrame to a text format that can be easily rendered
# in the frontend using the ScrollableTableRenderer component.
# Args:
# df (pd.DataFrame): DataFrame to convert
# Returns:
# str: Text representation of the DataFrame
# """
# # Convert DataFrame to string with proper formatting
# df_str = df.to_string(index=True)
# # Split into lines and clean up
# lines = df_str.split('\n')
# # Remove any trailing whitespace from each line
# cleaned_lines = [line.rstrip() for line in lines]
# # Join back with newlines
# return '\n'.join(cleaned_lines)
# async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
# """
# Save plot to Supabase storage and return the public URL
# Args:
# plot_data (bytes): Image data in bytes
# description (str): Description of the plot
# chat_id (str): ID of the chat session
# Returns:
# str: Public URL of the uploaded chart
# """
# # Generate unique filename
# filename = f"chart_{uuid.uuid4().hex}.png"
# filepath = self.charts_folder / filename
# # Save the plot locally first
# with open(filepath, 'wb') as f:
# f.write(plot_data)
# try:
# # Upload to Supabase
# public_url = await upload_file_to_supabase(
# file_path=str(filepath),
# file_name=filename,
# chat_id=chat_id
# )
# # Remove the local file after upload
# os.remove(filepath)
# return public_url
# except Exception as e:
# # Clean up local file if upload fails
# if os.path.exists(filepath):
# os.remove(filepath)
# raise Exception(f"Failed to upload plot to Supabase: {e}")
# def _looks_like_structured_data(self, output: str) -> bool:
# """Helper to detect JSON-like or array-like output"""
# output = output.strip()
# return (
# output.startswith('{') and output.endswith('}') or # JSON object
# output.startswith('[') and output.endswith(']') or # Array
# '\n' in output and '=' in output # Python console output
# )
# def _is_dataframe_output(self, output: str) -> bool:
# """Helper to detect if output looks like a pandas DataFrame"""
# lines = output.strip().split('\n')
# if len(lines) < 2:
# return False
# # Check for typical DataFrame header pattern
# first_line = lines[0].strip()
# second_line = lines[1].strip()
# # Look for column headers and separator line
# if not first_line or not second_line:
# return False
# # Check if the first line contains column names
# # and the second line has some alignment characters
# return True
# async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
# """
# Process the CsvChatResult response and generate formatted output
# with markdown code blocks for structured data.
# Args:
# response (CsvChatResult): Response from CSV analysis
# chat_id (str): ID of the chat session
# Returns:
# str: Formatted output with results and image URLs
# """
# output_parts = []
# # Add casual response
# output_parts.append(response.casual_response)
# # Process analysis operations
# for operation in response.analysis_operations:
# # Execute the code
# result = self.execute_code(operation.code.code)
# # Add operation description
# output_parts.append(f"\n{operation.description}:")
# # Add output or error with markdown wrapping
# if result['error']:
# output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
# else:
# output = result['output'].strip()
# # Check if the output is a DataFrame-like structure
# if self._is_dataframe_output(output):
# # Convert to a clean text format for frontend rendering
# try:
# # Get the last evaluated expression which might be the DataFrame
# # This is a simple approach - in practice you might need a more robust way
# # to capture the actual DataFrame from the execution context
# df_output = self._convert_dataframe_to_text(eval(operation.code.code.split('\n')[-1], globals(), locals()))
# output_parts.append("```text\n" + df_output + "\n```")
# except:
# # Fall back to regular output if we can't convert it
# output_parts.append("```text\n" + output + "\n```")
# elif self._looks_like_structured_data(output):
# output_parts.append("```python\n" + output + "\n```")
# else:
# output_parts.append(output)
# # Process charts
# if response.charts:
# output_parts.append("\nVisualizations:")
# for chart in response.charts:
# if chart.code:
# result = self.execute_code(chart.code)
# if result['plots']:
# for plot_data in result['plots']:
# try:
# public_url = await self.save_plot_to_supabase(
# plot_data=plot_data,
# description=chart.image_description,
# chat_id=chat_id
# )
# output_parts.append(f"\n{chart.image_description}")
# output_parts.append(f"")
# except Exception as e:
# output_parts.append(f"\nError uploading chart: {str(e)}")
# elif result['error']:
# output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
# return "\n".join(output_parts) |